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Popularvetenskaplig sammanfattning

De flesta méanniskorna har nog en idé vad en yta ar for nagot. Det kan
vara skalet pa en apelsin eller ovansidan av ett bord. En sluten yta ar inom
matematiken en sadan yta som inte har nagra kanter. I detta arbete ar malet
att kunna klassificera alla mojliga slutna ytor. Denna klassifikation dr med
avseende pa ett &mne inom matematiken som kallas topologi. Dér klassas
tva ytor som samma sak om man kan deformera den ena till den andra.
Exempelvis kan man ta en kub och genom att runda av hornen fa en sfar.
En sfar och en badring ar dock inte densamma eftersom badringen har ett hal
medan sfaren inte har det och just hal &r en sadan sak som inte far tillforas i
deformationen. I fallet av att klassificera slutna ytor ar det antalet hal som
ar den avgorande faktorn.

Det ar dock svart att direkt se pa en allmén sluten yta hur manga hal den
har, darfor kommer verktyg fran algebra och geometri behovas till var hjalp.
Forst undersoks antalet hal pa ytan genom att introducera en sa kallad grupp
som ska kolla pa hur manga satt en 6gla kan tras runt ytan utan att 6glan
forsvinner nar den dras at. Denna grupp kallas ytans fundamentalgrupp och
det ar en av de huvudsakliga objekten vi undersoker.



Abstract

In this thesis we will study some basic concepts in algebraic topology such as
the fundamental group, simplicial complexes and simplicial homology. These
are then used together with a method called surgery to prove a complete
topological classification of closed surfaces.
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Introduction

One of the aims of this thesis is to give a small introduction to some of the key
concepts used in algebraic topology. It starts by defining the fundamental
group of a space in the first chapter and proving some elementary properties
of it. In this thesis, all spaces are assumed to be topological spaces with
the most natural topology if not stated otherwise. In the second chapter,
we introduce the more geometric tool of simplicies and simplicial complexes
that we use mainly to simplify determining the fundamental group of certain
spaces. In the third chapter, we take a slight detour looking at the concept
homology and how it relates to the fundamental group. Finally, in the last
chapter, we come to the main part of this thesis which is a proof of the
classification theorem for closed surfaces. The method here is not the most
common. It uses a technique called surgery from Armstrong’s book on basic
topology.

The reader is assumed to have basic knowledge in point-set topology and
group theory. This includes notions such as compactness, connectedness,
homeomorphisms, groups, presentations of groups, isomorphisms and theo-
rems such as the first isomorphism theorem.



1 The fundamental group

1.1 The fundamentals

Definition 1.1. A loop in a space X is a continuous function « : [0, 1] — X
such that a(0) = «a(1). We say that «(0) is the base point for the loop or
that « is based at «(0).

Definition 1.2. Given two loops a and 5 on X with equal base point, their
product is defined as

] a(2s) s€0,1/2]
O"B(S)_{ﬁ(zs—m se[1/2,1].

This does however not define an associative operation on the space of all
loops with fixed base point. To try and get around that problem, we decide
to not look at all possible loops separately, but instead group them according
to the following definition.

Definition 1.3. Let f,g : X — Y be continuous functions. Then f is
homotopic to g, written f =~ g, if there exists a continuous function F' :
X x [0,1] = Y such that F(z,0) = f(x) and F(z,1) = g(x) for all z € X.
F is called a homotopy from f to g. If in addition F' satisfies that F'(a,t) =
f(a) =g(a) for alla € A C X and all t € [0, 1], f is said to be homotopic to
g relative to A, written f ~ g rel A.

The notation for homotopic functions indicates that it might be an equiv-
alence relation and this is indeed the case, but before this can be shown, a
lemma is needed.

Lemma 1.4 (Gluing lemma). Let X, Y CT and f: X - Z, g: Y — Z be
continuous functions such that f(x) = g(y) forx,y € XNY. If X and Y
are both closed in X UY then h: X UY — Z with h(z) = f(x) forz € X
and h(y) = g(y) fory € Y is continuous.

Proof. Let ' C Z be closed. Then h™'(F) = f~Y(F)U g (F) is closed in
X UY. This follows from that f~(F) is closed in X by continuity of f and
thus closed in X UY since X is closed. Similarly for g7'(F). Hence h™!(F)
is closed in X UY and therefore h is continuous. O



Lemma 1.5. The notion of homotopic functions is an equivalence relation
on the set of continuous function from X to Y.

Proof. Let f,g,h : X — Y be continuous functions. Firstly, f ~ f via the
homotopy F(z,t) = f(x). Secondly, if f ~ ¢ via the homotopy F(z,t), then
g~ f via F(x,1 —t). Finally, if f ~ ¢ via F(z,t) and g ~ h via G(x,t),
then f ~ h via
Hz.t) = {F(m,Qt) tel0,1/2]
Glz,2t —1) te(1/2,1]

where the continuity of H follows from the gluing lemma. O

We note that if all the above homotopies were relative some set A, then it
would not affect the argument and hence homotopic functions relative some
set is also an equivalence relation.

One or two examples of homotopic functions might be useful here.

Example 1.6. Let i : S! — S* be the identity function on S! = {z € C; |z| =
1} and f: S — S! the antipodal function, f(x) = —z. Then 7 is homotopic
to f via the homotopy F(z,t) = e™z.

Example 1.7. Let f,g : X — Y be any continuous functions and Y a convex
space. Then f and ¢ are homotopic via the straight line homotopy

F(z,t) =tg(z)+ (1 —1t) f(z).

Consider the space of loops on a space X with a fixed base point p.
From Lemma 1.5, it follows that homotopic loops rel {0, 1} is an equivalence
relation on the space. Call the resulting equivalence classes homotopy classes
and let [«] denote the homotopy class of the loop o. The multiplication of
such homotopy classes is then defined in the natural way

[][8] = [er- B].

Lemma 1.8. Multiplication of homotopy classes as defined above is a well
defined operation.

Proof. Assume that o ~ o' rel {0, 1} via the homotopy F' and that § ~ (' rel
{0,1} via the homotopy G. Then a- f ~ o’ - ' rel {0,1} via the homotopy
H defined by
F(2x,t €10,1/2
oy~ [Fern zelap
G2z —1,t) =z €[1/2,1].



Note that the continuity of H follows from the gluing lemma. The use
of this lemma will be implicit for the rest of this thesis. The transition
from single loops to homotopy classes does now take away our problem with
associativity encountered in Definition 1.2. It can even be said more than
that.

Theorem 1.9. The set of homotopy classes of loops in a space X with a
fixed base point p forms a group under multiplication of homotopy classes.

Before this can be proven we need a small lemma.

Lemma 1.10. Composition with continuous functions preserve homotopy
equivalence.

Proof. 1If f,g : X — Y and h : Y — Z are continuous functions where
f =~ g rel A via the homotopy F', then hf ~ hg rel A via the homotopy hF'.
Similarly, if f : X — Y and ¢g,h : Y — Z are continuous functions where
g =~ h rel B via the homotopy G, then gf ~ hf rel f~'(B) via the homotopy
H(z,t) = G(f(x),1). O

Proof of Theorem 1.9. We start by showing that the multiplication is asso-
ciative. Let «, 8 and v be three loops in X based at p. By definition we have
that

4

a(4s) s €[0,1/4]
((a-B)-7)(s) = { Blds —1) s€[1/4,1/2]
(Y(2s —1) s€[1/2,1]
and
a(2s) s €10,1/2]
(- (6-7))(s) = { B(4s —2) s €[1/2,3/4]
(Y(4s —3) se[1/2,1].

Now define f:[0,1] — [0,1] as

2s s € [0,1/4]
fls)=qs+1 se[l/4,1/2]

=l se[1/2,1]

Note that f satisfies f(0) =0, f(1) = 1 and since [0, 1] is convex, we can use
the straight line homotopy from Example 1.7 to see that f and the identity
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function ¢ are homotopic rel {0, 1}. We also have that (a-3)-y = (a-(5-7))of.
Using Lemma 1.10 we get

(- f) -~

2

(a-(B-7)of
(- (B-7))cirel {0,1}
“(B-7).

Hence [a-5][y] = [][8-7] as desired. The unity in this group is the homotopy
class of the constant path at p, p(s) = p for s € [0, 1]. Define

J2s se0,1/2]
f(s)_{1 se[1/2,1].

Then f is again homotopic to the identity function and we have that
a-p=aof~aoirel{0,1} = a.

Hence [a][p] = o] and similarly one gets [p|[a] = [@]. Finally, the inverse of
the homotopy class containing the loop « is obtained by taking the class of
the reversed loop a'(s) = a(1 — s). This time we define

TR Pelodit
and note that f is homotopic to the constant path at 1 rel {0,1}. Therefore
al-a=aof~aolrel{0,1} =a(l)=p
and similarly [a][a™!] = [p]. O

Definition 1.11. The group of loops in a space X based at p is called the
fundamental group of X based at p and is denoted by (X, p). If it happens
that 71 (X, p) is isomorphic to m1 (X, ¢) for all p,q € X, then we will disregard
the base point and write m (X).

This omission of base point for the fundamental group can be done in a
lot of spaces as seen from the following theorem.

Theorem 1.12. If X is path-connected then m (X, p) is isomorphic to w1 (X, q)
for all p,q € X.



Proof. Since X is path-connected, we can choose a path v in X such that
7(0) = p and v(1) = q. Now define ~, : m (X, p) — 71 (X, q) by letting ~ act
via conjugation, i.e.

-1

Ylla]) = [y -a-n]

Then 7,([a])(0) = 7([a])(1) = ¢ and

Y([a]B]) =vlla-B) =" a-B-Al=0ayyt B9
= a8y =1l(a]) - %((8),

hence 7, is a homomorphism. Since 7, has an inverse v;! : m(X,q) —
71(X, p) defined as conjugation by v~1, 7, is an isomorphism. O

Definition 1.13. A space X is called simply connected if it is path-connected
and m1(X) is the trivial group consisting of a single element.

Example 1.14. Any convex space X is simply connected. Here the fun-
damental group is trivial since any two loops a and 8 are homotopic via
the straight line homotopy from Example 1.7. In particular, R" is simply
connected for any n.

In view of Lemma 1.10, the following construction is well defined.

Definition 1.15. Let f: X — Y be a continuous function where f(p) = q.
Then we define the induced homomorphism f. : m(X,p) — m(Y,q) by

filla]) =[f o al.
Note that f, is indeed a homomorphism since fo(a-3) = (foa)-(fof).

Lemma 1.16. If f : X =Y and g : Y — Z are continuous functions such
that f(p) = q and g(q) =r, then (go f). = g« o fu : m(X,p) = m(Z, 7).

Proof. Let a be aloop in X. Then (g.o f.)([a]) = g.([foa]) = [(go f)oa] =
(g0 f)x(la])- O
The above lemma does not seem like much, but with it we can prove the

following important result, essentially saying that the fundamental group is
a topological invariant.

Theorem 1.17. If X and Y are homeomorphic, path-connected spaces, then
m1(X) is isomorphic to m (Y).



Proof. Let h : X — Y be a homeomorphism with h(p) = ¢ and consider
hy : T (X, p) — 7 (Y,q) and h' : m (Y, q) — 71 (X, p). By Lemma 1.16, we
have hyloh, = (ix).: m(X,p) = m(X,p) and h,oh ! = (iy). : m(Y,q) —
(Y, q) where ix and iy are the identity function on X and Y respectively.
Since the identity function induces the identity homomorphism, we get that
h, is an isomorphism. O

In our final classification of closed surfaces, this result will be used to
show that all surfaces on our list are unique.

1.2 Homotopy equivalence

Definition 1.18. Two spaces X, Y are called homotopy equivalent and are
said to have the same homotopy type, if there exists continuous functions
f: X —=>Yandg:Y — X such that go f ~ iy and f o g ~ iy. We then
write X ~ Y and call f a homotopy inverse for g.

Lemma 1.19. Homotopy equivalence is an equivalence relation on topological
spaces.

Proof. The relation is reflexive since one can take f = g = ix. Symmetry
follow directly from the definition. For transitivity, we let f : X — Y have
homotopy inverse g and v : Y — Z have homotopy inverse v. Then using
Lemma 1.10, we get

(gov)o(uof)=go(vou)of~goiyof=gof~ix
and
(uo flo(gov)=uo(fog)ov~uoiyov=uov~ig.
Hence X ~ Z via the homotopy inverses g o v and u o f. [

We wish to combine our earlier study of the fundamental group with the
notion of homotopy type. To do this, we first need to see how much the
induced homomorphism of homotopic maps differ.

Lemma 1.20. Let f,g : X — Y be continuous functions where f =~ g
via the homotopy F. Then g. = vufs« where g, : m(X,p) — m(Y,9(p)),
fe i m(X,p) = m (Y, f(p)) and v(s) = F(p, s) with . acting via conjugation.



Proof. Let a be a loop in X with base point p. Since g.([a]) = [g o o] and
Yofe([a]) = [Y7' - (f o @) - 7], we need to show that g o @ is homotopic to
vt (foa)-yrel {0,1}. Define G : [0,1] x[0,1] = Y by G(s,t) = F(a(s), ).
The sought homotopy is then given by

( [ 11—t
v(1 — 4s) s € 0,—]
4
4s+t—1 (1—¢ 1+t
H(s,t) =G|~ -
(5:%) (3t+1’)$€ 4’2}
[14+¢
v(2s — 1) s € L,l]
\ 2

The main result of this section is the following.

Theorem 1.21. Homotopy equivalent spaces have isomorphic fundamental
groups.

Proof. Let X ~ Y via the homotopy inverses f and g. Say go f ~ ix
via the homotopy F' and f o g ~ iy via G. Pick p = ¢(q) € X, we show
fe : m(X,p) = m (Y, f(p)) is an isomorphism. Define v by v(s) = F(p, s)
and o by o(s) = G(q, s). By Lemma 1.20, we get the following commutative
diagram.

m(Y,q) ————— m(Y, f(p))

f

m(X,p) ———— m(X, g/ (p))

By the argument from Theorem 1.12, o, and 7, are isomorphisms. The lower
triangle in the diagram forces f, to be injective and the upper triangle forces
f« to be surjective. Hence f, is an isomorphism and thus 7 (X) is isomorphic
to m (Y). O

We note that homeomorphic spaces have the same homotopy type. A
more non-trivial example is the following.



Example 1.22. For n > 1, R" \ {0} ~ S""'. Define f(z) = z as the

inclusion and g(z) = Tay- Then go [ =1ign1 and fog ~ip o via F(z,t) =
(1—t)z + 2

B
The above example is a special case of the following.

Definition 1.23. Let Y C X. A deformation retraction of X onto Y is a
homotopy F: X x [0,1] — X rel Y where F/(2,0) =z and F(z,1) € Y.

If Y is a deformation retraction of X, then X and Y can be seen to have
the same homotopy type by taking f(z) = z and g(z) = F(z,1).

2 Simplicial complexes

2.1 Triangulation

Determining the fundamental group of an arbitrary space X can in general
be very difficult. We therefore turn our attention to a more strict class of
spaces that can be thought of as being built up of finitely many simple parts.
Before this can be made precise, a few definitions are needed.

Definition 2.1. Points vy, vy, ..., v, € R™ are called affinely independent if
the vectors v; — vg, i = 1,2, ..., m, are linearly independent.

Definition 2.2. Let vy, v1,...,vx be k+ 1 points that are affinely indepen-
dent. The smallest convex set containing all the points is called a k-simplex.
The points are then called the vertices of the simplex.

Example 2.3. For the lowest dimensions we see that a 0-simplex is a point,
a 1-simplex a closed line segment, a 2-simplex a triangle including its interior
and a 3-simplex a solid tetrahedron.

We can also generalize the concept of faces for an arbitrary simplex.

Definition 2.4. Let o and 7 be simplexes and assume the vertices of 7 forms
a subset to those of 0. Then 7 is said to be a face of o, written 7 < 0. A
face of dimension 1 is often called an edge.

This allows us to construct more complicated structures as follows.



—

Figure 1: A simplicial complex. Figure 2: Not a simplicial complex.

Definition 2.5. A finite collection K of simplexes in R" is called a simplicial
complex, or more often just a complex, if whenever the simplex o is in K,
then all faces of ¢ is also in K. Also if two simplexes in K intersect, they do
so in a common face.

To be able to use this concept for our future study of closed surfaces, we
need the following definition.

Definition 2.6. Let K be a simplicial complex in R™. The polyhedron of K,
denoted |K|, is the topological space obtained by forming the union of all
simplexes in K and giving them the subspace topology in R™. A triangulation
of a space X is then a simplicial complex K and a homeomorphism A : X —
K.

Note that K can be seen as a purely combinatorial object containing
a collection of vertices and information about those vertices, telling which
subcollections forms a simplex. On the other hand, |K| is the geometric
realization of that structure, embedded into some R".

Example 2.7. Let X = S? be the unit sphere in R3. An example of a
triangulation of X is then given by the simplicial complex K consisting of a
hollow tetrahedron with | K| embedded in R? such that |K| C {z € R?;||z|| <
1} together with the homeomorphism A that is radial projection from | K| to
X.

Example 2.8. The non orientable surface called the Klein Bottle can be
triangulated as in Figure 3. Note that the arrows indicates identifications to
be made for the edges.



<
Figure 3: Triangulation of a Klein bottle.

Sometimes, a given triangulation might not be suitable, instead one would
like some kind of refinement of it. This can be achieved in the following
manner. Let o be a simplex having vertices vy, vy,...,v,,. Then z € o if
and only if x = Agvg + - - - + \v,, With ZZO A = 1 and A\; > 0. Define the
barycentre of o as

1
m+ 1
Using the barycentre, we can from a given complex K create a new complex
K* as follows. Let the vertices of K! be the barycentres of all the simplexes
in K. Also, ¢y, -- , ) form the vertices of some k-simplex of K! if and only
if 0y, < -+ < 0y, where {ig, - i} ={0,--- , k}.

o= (vo+v1+ -+ ).

Definition 2.9. Given a simplicial complex K, the barycentric subdivision
of K is the complex K, constructed as above.

J

Figure 5: Its barycentric subdivi-
sion.

Figure 4: A simplicial complex.

Some basic properties of simplicial complexes and its first barycentric sub-
division is presented in the subsequent lemma. A full prof of each statement
can be found in [1].

10



Lemma 2.10. Let K be a simplicial complezx in R™. Then
a) |K| is a compact space.
b) If |K| is connected, then it is also path-connected.

c) If we consider the polyhedron of every simplex in K separately and take
the identification topology on their union, we get |K|.

d) Each simplex of K is contained in some simplex of K.
e) K' is a well defined simplicial complex and |K'| = | K].

Since we always consider a simplex in some R", we can define the diameter
of a simplex ¢ as diam(c) = sup, ¢, [v — y|. The diameter of a simplicial
complex K can from this be defined as diam(K) = max,cx diam(o). One
of the main properties of the barycentric subdivision is that it makes the
diameter of the simplicial complex smaller. To prove that, two lemmas are
needed.

Lemma 2.11. The diameter of a simplex is the length of its longest edge.

Proof. Let o be a simplex having the vertices vy, . . ., v, and set d = max{|v;—
v;;0<i<j<m}. Pickzco,x=>3 ", tv;, > . yti =1. Then

|x—vj|:‘x—(2ti>vj :‘Zti(vi—vj) < (Zti>d:d.

Now given y € o, y = Y " 8V, D vy i = 1, we have

|z —y| = ‘(Zsz>x—y‘ = ‘Zsi(x—vi) < (Zsi)d:d.

]

Lemma 2.12. Let o be an arbitrary n-simplex. Then sup,c, |t — | < 2%

— n+l1
where d = diam(o).

Proof. Let vy, ..., v, be the vertices of o. Then
ol =| (2

o —vj| = v | — v,

/ n+ 14 I

11

1 " nd
§n+1;|vi—%‘|§




since [v; —v;| =0ifi=j. Letx € o, 2= " tv;, > ooyti = 1. Then

d d
o= [Sto -] < S () = 2

O

Defining the dimension of a simplicial complex as the maximum dimension
of its simplexes, we arrive at the following theorem.

Theorem 2.13. Let K be a simplicial complex of dimension n, then

diam(K') < n ] diam(K).

n+
Proof. Since the diameter of a simplicial complex is the maximum of the
diameters of its simplexes, it suffices to prove it for a single n-simplex. The
statement is trivial for a 0-simplex. Now assume it holds for all simplexes of
dimension up ton — 1. Let 09 < 01 < --- < 7, be simplexes where o, has
dimension n. Then the simplex g} in o}, with vertices oy, ..., 0}, i; # m,
satisfies diam(oy) < m’,”—+/1 diam(o,,) for some m’ < n being the dimension
of g3, and since g}, lies in some face of o,,. Since mT,”—Jlrl is increasing in m/,
we get diam(dy,) < ;25 diam(o,,). By Lemma 2.11 and the definition of
diameter for a complex, we need only consider the edges of o), to determine
its diameter. Any edge not having 7, as a vertex is in some g3 and hence
satisfies the bound. The bound for an edge having &,, as a vertex is then
shown in Lemma 2.12. O

Thus if we define the m:th barycentric subdivision of K inductively as
(K™ 1) we can make the diameter of our simplicial complex arbitrarily
small.

2.2 Simplicial approximation

Definition 2.14. Let K and L be simplicial complexes. A function s : |K| —
|L| is called simplicial if it takes simplex linearly onto simplexes. That is if
v1,...,0, are vertices of a simplex in K and =z = A\jv; + --- + \,v,, then
s(v1),...,s(v,) span a simplex of L and s(z) = A\js(vy) + -+ + Aps(vp)-

12



Definition 2.15. Let K be a complex and v a vertex of K. Let ¢ € K have
the vertices vg,...,v,, and x € 0. Then x is said to be in the wnterior of
the simplex o if @ = Agvg + - - - + A\, with >N, = 1 and A; > 0. The
open star of v in K, denoted star(v, K), is the union of the interiors of all
simplexes of K having v as a vertex.

Definition 2.16. Let K and L be simplicial complexes and f : |K| — |L]
a continuous function. The carrier of f(z) is the unique simplex in L that
has z in its interior. A simplicial function s : |K| — |L| such that s(x) is in
the carrier f(x) for all x € |K| is called a simplicial approzimation of f.

Simplicial approximations are useful in the sense that they are homotopic
to the original function via the straight line homotopy. Since they are sim-
plicial, they are also easier to work with. This will be used for the rest of
this section. Before the main result of this section can be stated and proven,
we are in need of two preliminary lemmas.

Lemma 2.17. The vertices vy, ..., v, span a simplex in K if and only if the
intersection of their open stars is non-empty.

Proof. 1f vy, ..., v, span a simplex of o of K, then the open star star(v;, K)
contains the interior of ¢ for all 7, hence their intersection is non empty.
Conversely, pick = € (,_, star(v;, K) and let o be the carrier of z. From the
definition of open star we get that each v; must be a vertex of ¢. Since any
collection of vertices of a simplex span a face of that simplex, vy, ..., v, span
a face of o. m

Lemma 2.18 (Lebesgue’s lemma). Let X be a compact metric space and F
an open cover of X. Then there exists 6 > 0 such that for all V C X of
diameter less than 6, there exists U € % such that V C U. The number ¢ is
called the Lebesque number of the covering % .

Proof. Assume that there exists sets A;, 1 = 1,2,..., each of diameter less
than 1/, such that A; is not included in any U € #. Pick z; € A; and form
the sequence (z;)°,. Since X is compact, the sequence has a converging
subsequence, say convergent to y. Choose U € .% such that y € U and pick
e > 0 such that B(y,e) C U. Now fix N large enough such that diam(Ay)<
¢/2 and zx € B(y,e/2). Then d(z,y) < d(z,zyn) + d(zn,y) < € for all
x € Ay. Hence Ay C B(y,e) C U contradicting the construction of the
A;’s. L]

13



Theorem 2.19 (Simplicial approximation theorem). Let K and L be sim-
plicial complexes and f : |K| — |L| a continuous function. Then there

exists n € N and s : |K"| — |L| where s is a simplicial approximation of
[ K = L]

Proof. Begin by assuming that for each vertex u of K, there exists a vertex
v of L such that
f(star(u, K)) C star(v, L). (1)

Define s on the vertices of K by letting s(u) = v with v and v as in (1).
If wy,...,uy span a simplex of K, then by Lemma 2.17, (), star(u;, K)
is non empty which by (1) implies that ();*, star(s(u;), K) is non-empty,
which again by Lemma 2.17 implies that s(u),...,s(um,) span a simplex.
Then extend s linearly over all simplexes of K to get s : |[K| — |L| as a
simplicial map. Let = € |K| and wq,...,u; be the vertices of the carrier
of x. Again, by repeated use of Lemma 2.17 and equation (1), we get = €
N, star(us, K) = f(x) € N, star(s(u;), K). Hence the carrier of f(z)
has the simplex spanned by s(uy), ..., s(ux) as a face and thus s(z) is in the
carrier of f(z). Therefore s is a simplicial approximation of f. Now we show
that (1) can be achieved if not by K, then at least by K™ for some n € N.
Since the open stars in L form an open cover of L and f : |K| — |L] is
continuous, we get that the preimage of those opens stars under f is an open
cover of |K|. Because |K| is compact we can use Lebesgue’s lemma and pick
a Lebesgue number § of the covering. If we choose n large enough such that
diam(K™) < §/2, then given a vertex u € K™, the open star at u satisfies
diam(star(u, K™)) < 6 = star(u, K™) C f~!(star(v, L)) for some vertex
v € L as desired. O

The simplicial approximation theorem is one of the key parts in our path
to proving the classification theorem.

Corollary 2.20. The set of homotopy classes from one triangulable space to
another is at most countable.

Proof. By the simplicial approximation theorem, any continuous function
f K| — |L| is homotopic to a simplicial map from s : |K™| — |L| for some
n € N. Since simplicial maps are completely determined by their effect on the
vertices and that vertices map to vertices, there are only finitely many pos-
sible such s for at a given number of barycentric subdivisions. Because there
are countably many possible barycentric subdivisions, there exists countably
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many simplicial maps from some |K™| and hence at most countably many
homotopy classes. O

Theorem 2.21. S" is simply connected for n > 2.

Proof. Triangulate S™ by the boundary of an (n + 1) simplex o, denoted X,
and let T = [0,1]. Let a: I — S™ be a loop based at p and since S™ is path-
connected we can from Theorem 1.12 w.l.o.g. assume that p is a vertex of 3.
By the simplicial approximation theorem, « is homotopic to some simplicial
function s : [I™] — S™ for some m. This is a homotopy rel {0, 1} since s(0)
and s(1) must lie in the carrier of a(0) = (1) which is p since p is a vertex.
Since s is a simplicial map, it is linear between all vertices of ¥ and thus only
attains values on the edges of . In particular the antipodal point —p of p,
corresponding to the barycentre of the simplex spanned by all other vertices
of X, does not lie on an edge because for n > 2, ¥ has more than 3 vertices.
Hence

(I —=t)s(z) +tp

(1 —t)s(z) + tpl|

is a homotopy from s to the constant path at p rel {0, 1} and thus [a] = [s] =
[p] in 7 (S™, p) so S™ is simply connected. O

F(z,t)

2.3 The edge group

Given a space X that is triangulated by some simplicial complex K, we
can determine 7 (X)) by calculating m (] K|) since the groups are isomorphic.
This will in turn be determined by constructing two other isomorphic groups.
The first of them is constructed as follows.

A sequence of vertices vyvy ---v, in K where each pair v;v;1; span a
simplex of K is called an edge path in K. If vg = v, = v, then the sequence
is called an edge loop based at v in K. To mimic that two loops in 7 (| K|)
are equivalent if there is a homotopy between them, we say that two edge
loops are equivalent if they differ by finitely many relations of the following
type. A double vertex wu is equivalent to u. If wvw span a simplex then
uvw is equivalent to uw. Intuitively, this allows us to replace two sides of a
triangle by the opposite third side and to disregard a path that goes back and
forth along an edge. Denote the equivalence class of the edge loop vvy - - - v
by {vv;---v}. We define the multiplication of two equivalence classes by

15



{vvy -~ v} - {vwy - wpvt = {vvy - vVwy - - wypwE. The identity element
is {v} and the inverse of {vv; - - - v,v} is {vv, - - - vV}

Definition 2.22. The group described above is called the edge group of K
based at v and is denoted by E(K,v).

Theorem 2.23. E(K,v) is isomorphic to m (| K|,v).

Proof. Consider an edge loop vv; ... v,_1v in K. From this, we can consider
a corresponding loop «v in | K| by letting a(0) = a(1) = v, a(i/m) = v; for i =
1,2,...m—1 and extending it linearly between those points. Since equivalent
edge paths correspond to homotopic loops, we can define ¢ : E(K,v) —
m (K], v) by ¢({vvy ... vm_1v}) = [a] which clearly is a homomorphism. We
want to show that ¢ is even an isomorphism. To show surjectivity, we pick
a loop a : [0,1] — |K| based at v and consider a complex I triangulating
[0, 1] with only the end points as vertices. By the simplicial approximation
theorem, there exists n € N and a simplicial map s : |I"| — |K]| that is
homotopic to . Denoting v; = s(i/2"), we get ¢p({vvy...von_1v}) = [s] =
[a]. For injectivity, we consider an edge loop vv; . ..v,,v that corresponds to
an edge loop « that is homotopic to the constant loop at v via a homotopy F.
Must show vy . .. v,,v is equivalent to v. We note that F': [0,1] x [0, 1] — |K]|
satisfies
F(z,0) = a(z), F(z,1) = F(0,t) = F(1,t) = v.

This can be expressed as F' sending the lower edge of the complex I x [ in
Figure 6 linearly to | K| with F'(a;) = v; for a; = (i/(m +1),0) and the outer
edges constantly mapped to the vertex v. We argue that the edge paths
aaias . . . a,,d and abcd are equivalent in I X I. Letting ~ denote the relation
of equivalent edge loops, we get

a(bed)ay, ... asara ~ a(bd)ay, .. .aja ~ ab(apday,)a, 1 ... a1a
~ a(bap)am-1 . ..a1a ~ ab(@pm_10m0n_1)m_2 . ..a1a

~ a(bay,_1)am_2...a1a

where the brackets indicate on what part of the edge loop a equivalence
relation will be used. Continuing the same procedure of eliminating parts of
the lower edge, we get after finitely many steps to

a(bay)a ~ ab(aaia) ~ aba ~ a

and hence abcd ~ aay . . .a,,d.
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Figure 6: The complex [ x I.

Now consider the complex (I x I)¥, we show that the edge path traversing
the lower edge, denoted Ej, is still equivalent to the edge path traversing
the other three edges, denoted FE,. Inductively, we may assume they are
equivalent in (I x I)*1. Since all edges of (I x I)*7! are still present in
(I x I)*, just divided in half, the result follows if we can show that the
relations used in (I x I)*=! still can be used in (I x I)¥. Considering the
complex in Figure 7, we must show (adc)(cda) ~ a and (aeb)(bfc) ~ ade.
The first relation follows via

ad(cc)da ~ a(ded)a ~ ada ~ a
and the second via
ae(bb) fc ~ a(eb) fc ~ aeg(bf)c ~ ae(gbg) fe
~ (aeg)fe~algfe) ~ (ag)c
~ a(dgc) ~ ade.

Hence E; and E; are equivalent in (I x I)¥. Now we may use the simplicial
approximation theorem to get a simplicial map S : |(I x I)"| — |K| that
simplicially approximates F'. Since the relations defining edge equivalence
are in terms of spanning a simplex, a simplicial map will map equivalent
edge paths to equivalent edge paths. Since F' is constantly equal to v on Es,
S maps Es to the constant loop at v. On Ej, since F'(a;) = v;, this forces
S to map every extra vertex created between a; and a;; by the barycentric
subdivision to either v; or v;;1. Hence S maps E; to an edge loop equivalent
to vvy ... vpv. Thus vvy ... v,v ~ v and ¢ is injective. O
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Figure 7: A barycentrically subdivided triangle.

From F(K,v), we can construct another group that is easier to determine
by using even more of the graph structure of the 1-simplex of K. Recall that
a tree is a graph where any two vertices is connected by exactly one path.
If we define a partial order on trees in a complex K by inclusion, we get the
following lemma.

Lemma 2.24. A mazimal tree contains all the vertices of a connected com-
plex K.

Proof. Let T be a maximal tree in K and assume that T does not contain
the vertex v. Now pick a vertex u in T". Since |K| is path-connected, there
exists an edge path uv; ---v,v in K from u to v. Let v; be the last vertex
not in 7', possibly v. Form 7" by adjoining v; and the edge spanned by v;_;
and v; to T'. Then T" is a tree that strictly includes T, a contradiction to the
maximality of T. Hence T contains all the vertices of K. O]

Let L denote the simplex for a such a maximal tree in K. Since there are
no loops in a tree, any edge loop in L will traverse each edge equally many
times in either direction and hence be equivalent to the constant loop. Thus
any edge loop in L will not contribute to E(K,v). Let vg = v and list all
the edges in K as vg, -+, v, and let G(K, L) be the group determined by
the following generators and relations. For each ordered pair of vertices v;, v;
that span a simplex of K, there is a generator ¢;;. Now g¢;; = 1 if v;, v; span
a simplex of L and g;;9;x = gix if vi, v;, v, span a simplex of K.

Theorem 2.25. G(K, L) is isomorphic to E(K,v).
Proof. Let E; be the edge path in L from v to v; for each vertex of K and
define ¢ : G(K,L) — E(K,v) by ¢(gi;) = {E,Ej_l} If v;, v; span a simplex
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of L, then {EZEJ_ 1 is an edge loop in L and hence equal to the identity since
L is a tree. If v;,v;, v, span a simplex of K, then

0(9i;)0(95) = {E:E; ' HE By = {E.E; VBB,
={Ev;E; "} = {EE "} = ¢(gur)

where we used that {v;v;u,} = {vvr}. Hence ¢ is a well defined homo-
morphism. Now define 6§ : E(K,v) — G(K,L) by 0({vv,v;,...v;,v}) =
90i,Givis - * - Ji0- By an analogue argument as for ¢ we see that 6 is also a
homomorphism. We now argue that in fact ¢ is invertible with inverse 6 and
hence an isomorphism. 0(¢(g;;)) = 0({E:E;'}) = gi; since any consecutive
vertices in F; and FE; span a simplex of L. Since 8¢ is the identity on the
generators of G(K, L), it is the identity on the whole group. Furthermore,
writing {vvy, vy, ... v, v} = {EoE; "HE,E'} .. {Ei, Ey'}, we see that ¢f
is the identity on each factor of the product and since it is a homeomorphism,
it is also the identity on the entire edge loop. O]

Before turning to our final main tool for calculating the fundamental
group, we wish to see what we can do so far.

Example 2.26. Since a complex K consists of finitely many simplexes, there
are only finitely many generators and relations for G(K, L). Hence if X is a
triangulable space, then 7 (X) is finitely presented.

Example 2.27. Consider a bouquet of n circles, that is, n circles glued
together at a common point. This can be triangulated by a complex K
consisting of the boundary of n triangles all meeting at a common vertex
v. Take a maximal tree L consisting of all the vertices as well as the edges
from v to all those vertices. Then each triangle has two edges in L and
one in K \ L. The non-trivial generators of G(K, L) is then in bijective
correspondence with those n edges not in L. Since K does not have any
simplexes of higher dimension, there are no relations between them. Hence
G(K, L) is a free group on n generators. In particular, for n = 1, we get the
following result.

Theorem 2.28. m,(S') = Z.

Our final tool for calculating fundamental groups will allow us to deter-
mine the fundamental group of a more complicated structure by considering
the fundamental group of smaller subsets of the original space.
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Theorem 2.29 (The Seifert-van Kampen theorem). Let J, K be simplicial
complexes in R™ where |J|,|K| and |J N K| are path-connected. Let also
ji|JNK| = |J| and k : |JN K| — |K| be the inclusion mappings and v
a vertex of |J N K|. Then m(]J U K|,v) = m(|J|,v) * m (| K|, v) with the
additional relation that j.(a) = k.«(a) Va € m(]J N K|,v). Here * denotes
the free product of groups.

Proof. Let Ty be a maximal tree in |JN K| and extend it to maximal trees Ty
in |J| and T3 in |K|. By Theorem 2.23 and 2.25, m(|J U K|, v) is generated
by generators g;; corresponding to edges of J U K \ T} U T since Ty U T
is a maximal tree in |J U K|. These generators have relations g;;g;x = gix
corresponding to each 2-simplex of |J U K|. But this group can also be
described by defining generators h;; for each edge of J \ 77 and f;; for each
edge of K \ Tb, subject to h;jhjr = hy, and fi;f;x = fix if they span a 2-
simplex of J or K respectively and h;; = f;; if they correspond to the same
edge of JN K. Since the edges of J N K \ Ty generate G(J N K, Ty), j. of an
edge in J N K is some h;; and k, of an edge in J N K is some f;;, the last
relation can be rephrased as j.(a) = k.(a) Va € m(|J N K|,v). Hence the
statement is proven. ]

Note that this is not the most common nor general version of the Seifert-
van Kampen theorem. For this more general approach, see [§].

Example 2.30. Let T = R?/Z? denote the torus. Following the notation
from the Seifert-van Kampen theorem, we let K be a triangle and J a trian-
gulation of the torus with the interior of that triangle removed, see Figure 8.
Then JNK is the edges of a triangle and JUK is a triangulation of the torus.
Now | K| is convex so 71 (|K|,v) = 1. For |J|, the space deformation retracts
onto its boundary which becomes a bouquet of two circles, hence m(|.J|,v)
is a free group on two generators by Example 2.27. For the extra relations,
we need to consider a single loop in |J N K|. In |K| this is homotopic to the
identity since | K| is simply connected. In |J|, this is homotopic to 8y3~ 'y~
Hence by Seifert-van Kampen, the fundamental group of the torus is given

by (8,988~ =v) =22
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Figure 8: Complex triangulating a punctured torus.

3 Simplicial homology

3.1 Construction of homology groups

Even though the Seifert-van Kampen theorem gives us a strong tool for
determining the fundamental group of a space in terms of generators and
relations, it is in principle hard to determine if two different presentations
of a group determine the same group or not. It has even been proven that
an algorithm to determine whenever two words in a presentation determine
the same group element does not exist, see [3]. When simplifying these
presentations, another invariant of topological spaces called homology groups
will come into play and that is what we will study in this section.

At first, we need to define orientation for a simplex as well as induced
orientations.

Definition 3.1. Let vg,...,v; be an ordering of the vertices for some k-
simplex o, written 0 = (vp,...,v;). We say that two such orderings are
equivalent if one can be obtained from the other by an even permutation.
The equivalence classes obtained is then called the possible orientations of
o. A simplex with a specified orientation will be called an oriented simplex.

We note that for a given k-simplex, there are exactly two possible orien-
tations. Only exception is if £ = 0. In agreement with intuition, a vertex has
only one orientation. An orientation of a simplex also induces an orientation
of its faces in the following way.
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Definition 3.2. Let (vg,...,v;) = o and let 7 be the simplex spanned by
all the vertices of o except v;. For i even, we let 7 be oriented by the natural
ordering vy, . .., V;_1,Vit1, - - -, V. For i odd, we take the opposite orientation.

Example 3.3. Consider a triangle with vertices vy, v1, vy determining its
orientation. One can check that the intuitive orientations of the edges as
(vo, 1), (v1,v2) and (ve, vg) is indeed obtained by the above definition.

From a simplicial complex, we can now define the following group.

Definition 3.4. Let K be a simplicial complex. Define the gth chain group
of K, denoted C,(K), as the free abelian group generated by all the oriented
g-simplexes of K, subject to the relation that o + 7 = 0 if they represent the
same simplex but with opposite orientations. An element in C,(K) is called
a q-dimensional chain.

A g-chain can be written as a formal linear combination \joq +- -+ \,0,
where o; is an oriented g-simplex and A\; € Z. We also note that (—\)o =
A(—o) where —o stands for o with opposite orientation. We can now define
a homomorphism on C,(K) as follows.

Definition 3.5. Let K be a simplicial complex. The boundary homomor-
phism 0 : Cy(K) — Cy—1(K) is defined such that for a given oriented g¢-
simplex, it gives the sum of its (¢ — 1)-dimensional faces with their induced
orientation, i.e.

q

a(’Uo, R ,Uq) = Z(-l)i(’ljo, vy Vi1, Viaty - - - ,’Uq).

=0
It is then extended linearly to an arbitrary element of C,(K).

We see that 0 is a well defined homomorphism since if the orientation of o
is reversed, then so is the orientation of all its faces and hence do+90(—0) = 0.
If ¢ = 0, then we define the boundary of a point to be zero. Thus C,(K) = 0

if ¢ < 0. An important property of the boundary homomorphism can be
summarized as that a boundary has no boundary.

Lemma 3.6. Let 9> = 000 : Cpy(K) — Cp1(K). Then ker(9%) =
Oq+1(K)’
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Proof. Tt suffices to prove 0%(vy,...,v441) = 0 since elements of that form
generate Cy11(K). Now

2
0 (Uo,...,Uq+1)
q+1
=0 § UOa'"7Ui—1avi+17"'7vq+1)
q+1 i—1
_ z
g (UOa'"7Uj—lavj+17"'7Ui—luvi+17"'avq+1)
j= 0
q+1 q+1
7j—1
+ E E =177 (W0, -+ Vim 1, Vit - V1, Vgt - - Uggl)
Jj=i+1
q+1 q+1
j 1
= E E (1—1)(U07-"7Uj—1;Uj+17-~,Uz'—17Ui+1,---7Uq+1)
7=0
JF
=0.

]

Definition 3.7. For 0 : Cy(K) — C,—1(K), we denote ker(0) = Z,(K) and
call it the group of g-cycles of K. If 0 : Cyyq(K) — C,(K), we denote its
image Im(0) = B,(K) and call it the group of bounding g-cycles of K.

We note that Z;(K) is generated by the elementary 1-cycles of the form
(v1,v9) + (v2,v3) +. .. (Ug, v1). By Lemma 3.6, B,(K) is a subgroup of Z,(K)
and hence we can make the following definition.

Definition 3.8. Let K be a simplicial complex. The gth homology group of
K is defined as the quotient group

HQ(K) = Zq(K)/Bq(K)'

Elements of H,(K) are called homology classes, denoted [z] for z € Z,(K),
and two ¢-cycles in the same homology class are called homologous cycles.

For the reader with more knowledge in abstract algebra, the definitions
of Z,(K) and B,(K) can be remembered via the short exact sequence

0 —— Z,(K) — Cy(K) —2= B, 1(K) —— 0
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where the unspecified morphisms are inclusion on the first two and the only
possible on the last. Homology groups can be defined for topological spaces
without the necessity of any underlying simplicial complex, for more on that,
see e.g. [8]. By construction, H,(K) is a finitely generated abelian group.
Such groups can by the fundamental theorem of finitely generated abelian
groups be decomposed as Z" @ Z,, & - - - & Z,, where p;|p; 11, see [2].

Definition 3.9. Let H,(K) =Z"®Z,, & - - - & Zy,. Then n is called the qth
Betti number of K, denoted f,.

3.2 Basic properties

Some homology groups can be expressed in terms of already known objects
relating to the simplicial complex.

Theorem 3.10. Hy(K) is isomorphic to Z" where n is the number of con-
nected components of |K|.

Proof. Since C_1(K) =0, Zy(K) = Co(K). Hence we only need to determine
B,(K). Let v,w be two vertices in the complex K that lie in the same
component of | K|. Then there exists an edge path vv; ... v,w from v to w in
K. The 1-cycle (v,v1) + (v1,v2) + - - - + (U, w) has then the boundary v — w,
hence v is homologous to w. If the vertices lie in different components then
they are not homologous since the boundary of any 1-cycle always contributes
with an even number of vertices in each connected component. Finally, v is
not homologous to Aw for any A # 1 since after taking the boundary of a
1-cycle, there are equally many vertices appearing positive as negative. [

For our purposes, the main result about homology groups is the following.

Theorem 3.11. Let K be a connected simplicial complex. Then Hy(K) is
isomorphic to m (|K1])/[mi (|KT), m (|K])] where [m (K1), mi (|KT)] is the com-
mutator subgroup.

Proof. Pick a vertex v of K as base point. By Theorem 2.23, we can con-
sider F(K,v) instead of 7 (|K|,v). Given an edge loop o = vvy ... vpv, we
denote the corresponding 1-cycle by ((a) = (v,v1) + (v1,v2) + -+ + (Vg, V)
where (v;,v;41) is omitted if v; = v;41. Define ¢ : E(K,v) — Hi(K) by
¢({a}) = [((a)]. Note that equivalent edge paths give homologous 1-cycles.
For example, if (wq,ws,ws3) is an oriented 2-simplex, then O((wy, wy, w3)) =
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(w1, wz) + (wa, w3) — (wy,w3) so ¢p({wy, wq, w3}) = ¢({wr,w3}). Hence ¢ is
a well defined homomorphism. We first show that ¢ is surjective by prov-
ing that any elementary 1-cycle is in Im(¢). Let z; = (wy, wg) + (we, w3) +
-+« 4+ (wp,wy). Defining v as an edge path in K from v to w; gives that
d({ywrwy ... w,yt}) = 2 as desired. Since H;(K) is abelian, the com-
mutator subgroup of E(K,v) is included in ker(¢). If we show that any
element in ker(¢) also is in [E(K,v), E(K,v)], then the result follows from
the first isomorphism theorem. Pick o € ker(¢), then ((o) € By (K), say
((a) = (Moy + -+ + Apon) where o; are oriented 2-simplexes of K. Now
assume o; = (a;, b;, ¢;) and define 7; as an edge path in K from v to a;. Then
{yia:bicsy; '} = {v} and therefore also

{8} = H{%aibicz”Y;l})\i = {v}.

Hence {aB7'} = {a}. But since ((yiabiciy; ) = O(a;bic;) we get ((aB™1) =
0. By construction of {, any such edge loop mapping to 0 must traverse
the oriented edge (v;, v;41) equally many times as (v;11,v;). Hence, recalling
0 : E(K,v) = G(K,L) from Theorem 2.25, we get that ({a37'}) equals
a product of elements where each element occur equally many times as its
inverse. Thus 0({af™'}) € [G(K,L),G(K, L)], which implies that {a} =
{apf™'} € [E(K,v), E(K,v)] since 6 is an isomorphism. O

Since the number of components of a topological space as well as its
fundamental group is a topological invariant of the space, so is the zeroth
and first homology group by the above theorems. In general, the homology
group of any order is an invariant, for a proof, see e.g. [1]. We will now
take a look at two examples for how to determine the homology groups of a
simplicial complex.

Example 3.12. Consider a connected graph G with v vertices and e edges.
Since |G| is connected, Hy(G) = Z and Sy = 1 by Theorem 3.10. To deter-
mine H;(G), we use Theorem 2.25 and 3.11 saying that H,(G) is isomorphic
to G(G,L)/|G(G,L),G(G, L)]. Since G has v vertices, there are v — 1 edges
in the spanning tree L and thus e — (v — 1) = e — v + 1 edges determining
generators for G(K, L). Since a graph does not have any 2-simplexes, there
are no additional relations and G(K, L) is a free group on e—v+1 generators.
Therefore H,(G) = Z¢*! and 8 = e — v + 1. Since there are no simplexes
of higher order, H,(G) = 0 for ¢ > 2.
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Another interesting structure that we can determine the homology groups
of is a simplicial complex which can be obtained as the cone of another
complex.

Definition 3.13. Let vy, ..., v,, be points in R", seen as a subspace of R"*1,
Let v = (0,0,...,0,1) € R™"! and call the simplex spanned by vy, . . ., v,, for
0. The cone on o is the simplex determined by the points vy, ..., v, v in

R"*1. The cone on a complex K in R” is a complex CK in R"*! obtained by
taking the cone on each simplex of K. We call v the apex of the cone CK.

Note that any other point of R\ R" could also have been used to define
the cone since the relations between all the vertices would still be the same
and thus their polyhedra would be homeomorphic.

Example 3.14. Let K be a simplicial complex which is also a cone, say

K = CL for some complex L with apex v. Since a cone is connected,
Hy(K) = Z by Theorem 3.10. For ¢ > 0, define d : Cy(K) — Cyp1(K)
by d(o) = (v,vy,...,v,) for an oriented ¢-simplex o = (vy,...,v,) € L and

d(o) = 0 for any other g-simplex in K. Since d(o) + d(—0) = 0, d is a
homomorphism if we extend in linearly to any g-chain in Cy(K). We now
argue that 0d(c) = 0 — dd(o) for any oriented g-simplex o. If o € L, then

dd(o) = (v, vg, ... ,v,)
q

= (UO, NP ,Uq) + Z(—l)”l(v, Voye ooy Vi—1,Vit1y--- ,Uq>
=0

=0 —do(o).

If o is not in L, then one vertex of ¢ must be v. Therefore we may assume
o= (vo,...,v,...,v,) with v in the jth position. Since d(c) = 0, we need to
show d0(c) = o. But since any oriented simplex containing the vertex v is
in ker(d), we get

do(o) = d((=1)7 (vo, . . ., Vj_1, Vju1s -+ -, V)
= (—1)j(?],/l)0, e Ui—1, V541, - - ,’Uq) = 0.

Hence the relation dd(c) = o — dd(o) holds for any g-chain by linearity.
Now let z € Z,(K). Then 0d(z) = z — dd(z) = z. Hence z € B,(K), so
Z,(K) = By(K), which in turn shows that H,(K) = 0 for ¢ > 0.
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4 The classification theorem

4.1 Notes on surfaces

We have now built up enough machinery to turn our focus directly towards
the classification theorem. Before we can state our first version of the theo-
rem, we need some definitions.

Definition 4.1. An n-dimensional topological manifold M is a Hausdorff,
second countable space where each point © € M has a neighbourhood home-
omorphic to D" = {x € R™; ||z| < 1}.

Definition 4.2. A closed surface is a compact and connected 2-dimensional
manifold.

Hence objects such as the sphere S?, the torus T and even non-orientable
surfaces such as the Klein bottle are closed surfaces. On the other hand,
the Mobius strip is not since it has a boundary where points does not have
a neighbourhood homeomorphic to D?. Note also the distinction between a
closed surface and a closed topological space. One might think that a more
suitable name for closed surfaces would be compact surfaces since that is the
actual requirement in the definition. That is however a slightly larger class
of surfaces.

Definition 4.3. A compact surface S is a compact and connected 2-dimensional
manifold that can have boundary. The boundary of S, denoted 0.5, is defined
as points with a neighbourhood homeomorphic to D3 = {(z,y) € D*|z > 0}.

Before stating our main theorem, we will mention two small facts about
compact surfaces that will be useful later.

Lemma 4.4. The boundary and interior of a compact surface are disjoint.

Proof. Let S be a compact surface and assume that its boundary and interior
are not disjoint. Then there exists x € S having neighbourhoods U and V'
such that f: D3 — U and ¢ : D* — V with f(0) = g(0) = 2 are homeomor-
phisms. By replacing D3 with half discs of smaller radius if necessary, we
may assume (D) C V. Define ¢ : g f : D? — D?. Then ¢(ID?) is a neigh-
bourhood of 0 in D?. Pick another disc D C ID? centred at the origin with
small enough radius R such that D C ¢(D?). Let r: ¢(D3) \ {0} — 9D,
r(x) = R(z/||z|) be radial projection. Since r is the identity on 9D, it
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induces a surjective homomorphism r, : 71 (¢(D%) \ {0}) — m(9D). Since
¢(D2) \ {0} is homeomorphic to D3 \ {0} via the homeomorphism ¢! and
D2 \ {0} deformation retracts onto any point in {(z,y) € D% \ {0}z > 0},
we get 71 (¢(D%) \ {0}) = 1. But 9D is homeomorphic to S and by Theorem
2.28 this gives m1(0D) = Z. Thus we get a contradiction from the surjectivity
of r,. O

Corollary 4.5. Let h : S; — S5 be a homeomorphism between two compact
surfaces. Then h is also a homeomorphism from 0S7 to 0S,. In particular,
homeomorphic surfaces have homeomorphic boundary.

Proof. Pick x in the interior of S; and let f : D?> — U be a homeomorphism
onto a neighbourhood of z. Since h is a homeomorphism, A(U) is a neigh-
bourhood of h(x) in Sy and fh : D* — h(U) is a homeomorphism. Thus
h(x) is in the interior of Sy and h maps interior of S; into interior of Sy. By
the same logic applied to h~!, the interior of S, is mapped to the interior
of S; and hence the interior of S; is mapped bijectively onto the interior of
Sy. Since the interior and the boundary of a compact surface are disjoint, h
must map 95; to 05, bijectively as well. m

We now turn to the statement of the main theorem of this thesis.

Theorem 4.6 (The classification theorem for closed surfaces). Any closed
surface is homeomorphic to either the sphere S%, the sphere with a finite
number of handles added or the sphere with a finite number of discs removed
and replaced by Mobius strips. Furthermore, no pair of those surfaces are
homeomorphic.

The surfaces mentioned in the classification theorem will be called the
standard surfaces. We do however need to clarify what we mean by adding
handles. In short, by adding a handle, we mean removing two disjoint discs
from a closed surface S and gluing opposite ends of a cylinder in their place.
By gluing we mean to take the union of the spaces together with the equiv-
alence relation that identifies the appropriate boundary circles and giving
it the identification topology. The procedure can also be described in the
following way. Consider a closed disc in S containing the two removed discs
in its interior. Removing that disc and then gluing the cylinder to it, we get
a surface as in Figure 9, clearly homeomorphic to a punctured torus. Hence,
adding a handle can be described as removing an open disc from S and T
respectively and forming the space obtained by gluing their boundary circles
together. We therefore make the following definition.
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Figure 9: A punctured torus.

Definition 4.7. Let S; and S; be two closed surfaces. Their connected
sum, denoted S1#55s, is defined as the surface obtained by removing an open
disc from both S; and S5 and then gluing their resulting boundary circles
together.

We will see in the last section that this is a well defined operation, that
no matter where we choose the discs on the surfaces, the connected sum
gives homeomorphic surfaces. Replacing discs with Mobius strips can also
be described in the language of connected sums, but for that, we need to
define another closed surface.

Definition 4.8. The projective plane, denoted P, is defined as the closed
surface obtained by removing an open disc from S? and gluing in a Mobius
strip along the resulting boundary circle.

The definition of the projective plane is done to suit the applications we
have in mind for it. A more common definition would be to take equiva-
lence classes of points in S* with the equivalence relation that (xq,y;,21) ~
(22, Yo, 29) if there exists A € R such that (z1,y1,21) = A(xe,y2,22). The
interested reader can check that this gives the projective plane. Going back,
we see that removing an open disc from S and replacing it with a Mobius
strip can be explained as forming the connected sum S#P via the same logic
as for adding a handle. Since S?#T is homeomorphic to T and S?#P is home-
omorphic to P, we get the following version of the classification theorem.

Theorem 4.9. Any closed surface is homeomorphic to either S?, a connected
sum of finitely many tori or a connected sum of finitely many projective
planes. Furthermore, non of these surfaces are homeomorphic to another.
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A question that can come to mind when considering the classification
theorem is what happens if we were to both form the connected sum with
tori and projective planes. This is the content of the next lemma.

Lemma 4.10. The space obtained by removing m disjoint discs from S? and
replacing them with Mobius strips as well as adding n handles 1s homeomor-
phic to S? with 2n +m disjoint discs removed and replaced by Mébius strips.
In other words, P#P#IP is homeomorphic to P#T.

To prove this, we will use another lemma.

Lemma 4.11. Let K denote the Klein bottle as defined by the identification
made on the square in Figure 3. Then P#P is homeomorphic to K.

Proof. We first wish to acquire knowledge about P#[P. By the second charac-
terisation of the projective plane, we se that it can be obtained by considering
the northern hemisphere S2 = {(z,y,2) € $*|z > 0} with the relation that
diametrically opposite points on the equator should be identified. Since S%
is homeomorphic to D? which in turn is homeomorphic to a square, P can be
obtained by doing identifications as in Figure 10. Also, considering P as D?
with diametrically opposite points identified on its boundary, we can when
removing an open disc from P choose the disc D = {(z,y) € D |z| > 1/2}
and we see that what remains of P is homeomorphic to the Mobius strip.
Thus P#P is the space obtained by identifying the edges of two Mobius
strips. But recalling the Klein bottle K, we see that if we consider the square
with identifications defining K, we can divide the square into three rectan-
gles. The middle rectangle becomes a Md6bius strip by the identification of
two of its edges and similarly the other two rectangles also form a single
Mobius strip after the identifications, see Figure 11 for clarification. Hence
K is obtained by identifying the boundary circles of two Md&bius strips, thus
P#P is homeomorphic to K. O]

\
\

>
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Figure 10: A projective plane. Figure 11: A divided Klein bottle.
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proof of Lemma 4.10. By the preceding lemma, it suffices to show P#T is
homeomorphic to P#K. This will be done by showing that both spaces
correspond to identical polygons in the plane with identifications on their
edges. In Figure 12, we pick a disc with boundary d in a Klein bottle and
a projective plane. Gluing the resulting spaces together in the direction
indicated by the arrows on the bounding circles, we get a hexagon with
edges to be identified in pairs. The same thing is then done for a torus
and a projective plane in Figure 13. To prove that the two hexagons with
identifications correspond to the same closed surface, we use a cut and paste
technique. Consider the hexagon obtained from the connected sum of a
torus and a projective plane. Insert a new edge denoted d as indicated in the
first polygon in Figure 14. We can then do the identifications along the edges
labelled ¢ to get a new hexagon. In that hexagon, we make a new cut to form
an edge labelled e so that we can glue the edges labelled a together. This
creates a hexagon with identical identifications on its edges to that of P#K,
the only difference being that all arrows are pointing in the opposite direction.
But since those identifications give the same closed surface (intuitively, one
hexagon can be turned up side down to get the other), the statement is
proven.

a
> C
b‘; VVb
d -
’ v :
b C
a &
b a

Figure 12: Connected sum of a Klein bottle and a projective plane.

]

A more detailed description on how to read of the identifications in the
above figures is given at the start of the last section on polygonal represen-
tations. Recalling the definition of a monoid as a group where we do not
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Figure 13: Connected sum of a torus and a projective plane.

b ¢ a d b e
a C m—p b s o e

b a d b b d
Figure 14: The cut and paste needed to go from P#T to P#K.

require elements to have inverses, we can state another form of the classifi-
cation theorem.

Theorem 4.12. The set of closed surfaces forms a commutative monoid
under taking connected sum with the sphere as identity element. Furthermore,
it has presentation

(T, P|P#P#P = P4T) .

4.2 Combinatorial surfaces

A key fact for our proof of the classification theorem is the following theorem
which allows our to utilize our knowledge about simplicial complexes.

Theorem 4.13. Any closed surface can be triangulated.

This will not be proven here but a proof can be found in [5]. Essential
for that proof is a generalization of the classical Jordan-curve theorem.
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Theorem 4.14 (The Jordan-Schonflies theorem). Any homeomorphism from
a simple closed curve in R? onto another can be extended to a homeomorphism
of the whole plane.

In particular, any simple closed curve in R? bounds a region homeomor-
phic to D% A proof of this can in turn be found in [9]. For completeness, we
also state the usual Jordan curve theorem.

Theorem 4.15 (The Jordan curve theorem). Any simple closed curve in R?
separates 1t.

We note that the Jordan curve theorem works with R? replaced with S?
as well. For a proof of both cases for the Jordan curve theorem, see [7].

Since any closed surface can be triangulated, we can turn our focus to
the simplicial complex that triangulates it rather then the surface itself. We
therefore wish to obtain knowledge about the structure of simplicial com-
plexes that can triangulate a closed surface. A such example is what is
called a combinatorial surface.

Definition 4.16. A combinatorial surface is a simplicial complex K with
the properties that it has dimension 2, any two vertices can be connected by
an edge path, each edge is a face of exactly two triangles and each vertex can
be seen the apex of a simple polygonal curve in K.

Figure 15: Structure around a vertex in a combinatorial surface.
The interesting part of combinatorial surfaces is that any complex trian-
gulating a closed surface is indeed a combinatorial surface.

Theorem 4.17. If h : S — |K]| is a triangulation of the closed surface S,
then the complex K is a combinatorial surface.

Proof. Connectedness: The connectedness property follow from that any
maximal tree in K must contain all the vertices of K given that |K| is
connected.
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Number of triangles: We then turn to the number of triangles having
a specific edge as its face. Let h : |K| — S be a homeomorphism and o a
1-simplex in K. Assume first that o is not the face of any triangle in K.
Pick z in the interior of o, then there exists a neighbourhood U of h(x) and
a homeomorphism g : U — D? with gh(z) = 0. Since V = h71(U) is a
neighbourhood of x, we get that V' \ {z} is homeomorphic to D*\ {0} where
only the last set is connected, a contradiction. If ¢ is the face of exactly
one triangle in K, then any point x in the interior of ¢ will clearly have a
neighbourhood homeomorphic to D2 and thus also h(z), contradicting that
the interior and boundary of a compact surface are disjoint. Now assume
that n > 3 triangles have o as a face. Pick z in the interior of ¢ and con-
sider the embedding of those triangles in R? with  mapped to the origin.
Call the space T,. Pick a neighbourhood U of h(x) and a homeomorphism
g : U — D? with gh(z) = 0. By replacing D? with discs of smaller radius
if necessary, we may assume that h=1g=1(D?) is a neighbourhood of 0 in T,.
We can then construct a space 7, homeomorphic to 7,, but with triangles
of smaller side lengths such that 7). C h~'g~'(D?). The radial projection
r: h7tg71(D?) \ {0} — 9T’ will then induce a surjective homeomorphism
re : Hi(h™'g7'(D?)\ {0}) — H(9T!). Now h~'g~!(D?)\ {0} is homeomor-
phic to D? \ {0} which deformation retracts onto its boundary S'. Hence
Hi(htg71(D?*) \ {0}) = Z. But 9T is a graph with 2n edges and n + 2
vertices and thus H;(9T!) = Z"! by example 3.12, contradicting the sur-
jectivity of r,. Thus we have shown that any edge is a face of exactly two
triangles.

Dimension: Next, to show K has dimension 2, we assume K contains
a simplex o of dimension n > 3. As usual, pick z in the interior of o
and a neighbourhood U of h(x) such that g : U — D? with hg(z) = 0 is
a homeomorphism. But we can also pick a neighbourhood V of x and a
homeomorphism f : V' — D" such that f(z) = 0. Let ¢ = ghf~!: D" — D?
and pick a sphere D? C D" such that hf~'(D}) C U. Then ¢(D}) is
a neighbourhood of the origin in D?. Let D3 be a disc such that D3 C
¢(D7). The radial projection will then induce a surjective homeomorphism
re : m(p(DP)\{0}) — 71 (0D3). Now ¢(D7)\{0} is homeomorphic to DF\{0}
which deformation retracts onto its boundary that is homeomorphic to S*~!.
Since n > 2, 7 (S™™') = 0. But m(0D3) = m(S') = Z, contradicting the
surjectivity of r,.

Vertex structure: Lastly, for the fact that each vertex can be seen as
the apex of a cone with polygonal base, we note that the other properties
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implies that any triangle having that vertex as a face must be a part of such
a cone. The only thing that needs to be ruled out is the existence of several
such layers of triangles having that vertex as a cone. But this follows from a
connectedness argument almost verbatim as in the proof that any edge must
be a face of a triangle. O]

The first property of closed surfaces that we would like to translate onto
a property of combinatorial surfaces is that of orientability. We remember
that a surface is said to be orientable if there can be defined a continuously
varying unit normal on the surface. For example, a sphere and a torus is
orientable but a Mc6bius strip is not. Since the Mobius strip is non orientable,
it follows that any surface containing a subset homeomorphic to it is also non
orientable. Hence the projective plane and the Klein bottle are non orientable
closed surfaces. For combinatorial surfaces, we note that the orientation of
a single simplex was defined at the start of the chapter on homology.

Definition 4.18. A combinatorial surface K is said to be orientable if it
is possible to define an orientation on all the triangles in K such that any
two triangles intersecting at an edge will induce opposite orientation on that
edge. Otherwise, the combinatorial surface is called non orientable.

The reader is encouraged to consider any combinatorial surface that can
triangulate the sphere and see that it will be orientable. Similarly, it will not
be possible to find such a triangulation for the Mobius strip. We will show
that any complex triangulating an orientable surface must be orientable. But
we need another definition at first that will be used several times later.

Definition 4.19. Let K be a combinatorial surface and L a 1-dimensional
subcomplex. By thickening L, we mean taking the polyhedron of the sub-
complex of K? consisting of all simplexes that meet L together with their
faces.

Theorem 4.20. Let h: |K| — S be a triangulation of the orientable surface
S. Then the simplicial complex K is orientable.

Proof. Assume that K is not orientable. Then there exists a sequence of
distinct oriented 2-simplexes o1, ..., 0} such that o; shares an edge with o,
for 1 < i < k — 1 and have compatible orientations but o, share an edge
with o1, not having compatible orientations. Add simplexes to K in form
of the barycetres of the o;’s, the barycentres of their edges of intersection
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and the edges from g; to those intersection barycentres where the edge is a
face of ;. Those edges forms an elementary 1-cycle L in K when viewed as
a 1-chain. Since all pairs of 2-simplexes are pairwise compatible except for
one pair, thickening L gives a strip homeomorphic to a Mobius strip in |K],
contradicting that S is orientable. [

We now show two other results on thickening 1-dimensional complexes.
But first, we need some preliminaries.

Lemma 4.21. Let A be homeomorphic to the unit disc D2 Then any home-
omorphism g : 0A — 0A can be extended to a homeomorphism on the whole

of A.

Proof. Let h : A — D? be a homeomorphism. Then we get another homeo-
morphism hgh™! : S' — S' that can be extended to a function f : o — D?
as follows. Let f(0) =0 and f(z) = ||z||hgh™*(z/||z|) for € D*\{0}. Then
h='fh: A — A will be the sought extension of g. O

Lemma 4.22. Let A and B both be homeomorphic to D? which intersect
along their boundaries in an arc. Then AU B is also homeomorphic to D2

Proof. Let v = ANB, a =9dA\ AN B and § = 0B\ AN B. View D* as the
union of the two half-discs D_ = {(z,y) € D%z < 0} and D, = {(z,y) €
Dz > 0} having boundaries v/ = D_ N D,, o/ = dD_\ (D_ND,) and
p" = 0D; \ (D-NDy). Since both v and +/ are homeomorphic to [0, 1],
7 is homeomorphic to 7. Similarly, @ is homeomorphic to o/. By doing
identifications on the end points, we get that yUa = yUa is homeomorphic to
YU = v'Ud’. Call that homeomorphism g : 04 — dD_. Let hy : D_ — D?
and hy : A — D? be homeomorphisms. Then f = go hy o hy' : A — 0A
can be extended to a homeomorphism f : A — A by Lemma 4.21. Thus
F=hitohyo f:A— D_ is a homeomorphism of A and D_ sending 7 to
7. Similarly we get a homeomorphism G : B — D sending 7 to 7'. Using
the gluing lemma we get a homeomorphism from AU B to D_U D, = D? as
desired. O

Now, only as small graph theoretical lemma is needed before we can turn
to the thickening complexes again.

Lemma 4.23. Any tree contains a vertex with exactly one edge connected to
it.
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Proof. Let T be a tree and assume every vertex is connected to at least two
edges. Since a tree has a unique path between all its vertices and there are
only finitely many vertices, there exits a path between two vertices containing
a maximum number of edges. Call this path P = vy, vy ..., v,,. Let w # v,,_1
be a vertex connected by an edge to v,,. If w € P, this contradicts the
uniqueness of path in a tree. If w ¢ P, then vy, vy,...,v,,w will be a path
in T" containing more edges than P, contradicting the maximality. Hence v,,
can have only one edge connected to it. O]

Definition 4.24. Let K be a simplicial complex and v a simplex in K. The
closed star of v in K, denoted star(v, K) is the union of all simplexes in K
having v as a vertex.

Lemma 4.25. Thickening a tree gives a disc.

Proof. Let K be a simplicial complex and the subcomplex T" a tree. If T
consists of a single vertex v, thickening T gives star(v, K?). This, being a
region in R? enclosed by a simple closed polygonal curve, is homeomorphic to
D2 Now let T be a tree having n vertices and assume that thickening a tree of
fewer vertices gives a disc. Choose a vertex v in T" only belonging to one edge
E of T. Then Ty = T\ star(v, T) is a tree with n — 1 vertices, thus thickening
T gives a disc D. Thickening T gives D, union with AiM(EA , K?) and
B = star(v, K?). Now A, B, D are all homeomorphic to D% Since AN D is
an arc and AN B is an arc, two applications of Lemma 4.22 shows AUBUD
is homeomorphic to D2 O]

Theorem 4.26. Thickening a simple closed polygonal curve gives either a
cylinder or a Mobius strip.

Proof. Let K be a simplicial complex. Let C' be a simple closed polygonal
curve in K and E an edge in C. Then T = C \ star(E,C) is a tree and
therefore thickening T gives a disc D by Lemma 4.25. Thickening C' gives
the union of D and M(E , K?), intersecting in two disjoint arcs. Gluing them
together in one of these arcs give a disc by Lemma 4.22. Thus we get a disc
where we need to identify two disjoint arcs. This is in turn homeomorphic to
a rectangle with the two arcs of the disc mapped to opposite sides. Gluing
these sides together can be done in two different ways, either resulting in a
cylinder or a Mobius strip. O]

Thickening of complexes will be one of the tools in our main part of the
proof of the classification theorem later.
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4.3 FEuler characteristic

One of our main tool for relating a general closed surface to our standard
surfaces will be via their Euler characteristic.

Definition 4.27. Let K be an n-dimensional simplicial complex. The Fuler
characteristic of K is defined as the number

i=0
where ¢; is the number of i-simplexes in K.

Thus for a graph, its Euler characteristic equals its number of vertices
minus its number of edges and for a combinatorial surface, its number of
vertices, minus its number of edges, plus its number of faces. When explic-
itly calculating the Euler characteristic, we will make use of the following
relations.

Lemma 4.28. Let K U L be a simplicial complex obtained as the union of
the complezes K and L. Then x(K U L) = x(K)+ x(L) — x(KNL).

Proof. This is a direct consequence of the inclusion-exclusion principle ap-
plied to the number of simplexes of each dimension. O]

The next relation is not as easily proven.

Theorem 4.29. The Euler characteristic is invariant under barycentric sub-
division. Le. x(K) = x(K") for any simplicial complez K.

Before this can be shown, we need a better way of controlling the barycen-
tric subdivision.

Definition 4.30. Let K be a simplicial complex and o, 7 simplexes in K. If
o < 7, let L be the subcomplex of the boundary of 7 that do not have o as
a face. The stellar subdivision of o is then obtained by replacing 7 with the
cone with base L and apex 4.

Lemma 4.31. Applying stellar subdivision to a simplex and its faces finitely
many times gives the barycentric subdivision of the simplex.
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Proof. The statement trivially holds for a 0-simplex. Let ¢ be an n-simplex
and assume that the statement holds for simplexes of dimension < n. The
first stellar subdivision of ¢ creates edges from all the vertices of o to 6. By
the induction assumption, all faces of ¢ will after finitely many subdivisions
be barycentrically subdivided. The only difference made by the fact that
they are faces of ¢ is that an edge will be created from the barycentre of
each face to 6. Thus obtaining o*. O]

VANY /. \
/A

Figure 16: Stellar subdivision on a 2-simplex.

Lemma 4.32. The FEuler characteristic of a simplex is invariant under
barycentric subdivision.

Proof. Again, it holds trivially for a O-simplex. Let ¢ be an (n — 1)-simplex
and assume it hold for all simplexes of dimension < (n — 1). Doing the first
stellar subdivision of o creates (8) new vertices, (711) new edges, (g) new 2-
simplexes, etc. up to (nfl) new (n—1)-simplexes. All faces of o are unaltered,
its just the interior of o that is changed. Therefore the Euler characteristic

of ¢ is changed by

(6)= () () = () )

L=1)" = (=" + (=1)"

using the binomial theorem. Now let 7 be a face of ¢ of dimension (k — 1).
Doing the stellar subdivision on 7 does not change its Euler characteristic
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by assumption. It does however alter an old k-simplex by creating (’8) new

1) new 2-simplexes etc. up to (kfl) new k-simplexes. Hence the total
Euler characteristic is changed by

W0 () (())
—(()- ( ) et (L8 ) ) e

=(1-1D"= (=" + (=)
= (-1 - )
0.

edges, (k

Since any stellar subdivision does not change the Euler characteristic, the
barycentric subdivision does not change it either by Lemma 4.31. O]

Proof of Theorem 4.29. 1f the complex K consists of a single simplex, then
the result follows from Lemma 4.32. Now assume K consists of n simplexes
and that the statement holds for a collection of < n simplexes. Pick a simplex
L of maximum dimension in K and write K = J U L for some simplicial
complex J consisting of n — 1 simplexes. Using the assumption and Lemma
4.28, we get

X(K) = x(J) +x(L) = x(JN L)
= x(JY) + x(L') = x(J' N L)
=x(J'ULY
= X(K7).

]

We now turn to calculating the Euler characteristic for certain classes of
complexes.

Lemma 4.33. Let G be a connected graph. Then x(G) < 1 with equality if
and only if G is a tree.

Proof. 1f G is a tree, then G has one more vertex than edge, giving x(G) = 1.
If G is a general connected graph, we let L be a spanning graph of G. By
Lemma 2.24, L contains all the vertices of G. Hence L can be obtained from
G by removing a finite number n of edges. Thus x(G) = x(L) —n <1. O
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We would like a similar theorem for combinatorial surfaces, but we need
a little more work for that.

Definition 4.34. Let K be a combinatorial surface and 7" a spanning tree.
The dual graph of T, denoted T™, is a 1-dimensional complex with vertices at
the barycentres of 2-simplexes in K. Two vertices in T* determine an edge
in T if the corresponding triangles in K intersect at an edge not in 7.

Lemma 4.35. Let K be a combinatorial surface, T a spanning tree and
N(T) the thickening of T. Then

a) N(T)UN(T*) = |K],
b) N(T)N N(T*) = ON(T),

c) T* is a connected graph.

Proof. To prove a), we note that since |K| = |K?| we have the inclusion
N(T)UN(T*) C |K|. For x € |K|, let L be the carrier of z in K2 If L is
a vertex of K, then x € T. If L is a part of an edge of K, then either its
an edge of T"so x € T, or its a part of an edge of K not in T, giving that
T* goes through that edge. Hence in K2, that edge has four parts where
the outer parts are in N(7T') since they meet vertices in 7', and the inner
two parts are in N (7™) since an edge of T™* goes through there. In any case
x € N(T)UN(T™). If L is a part of a triangle of K, then either that triangle
meets an edge of K or the barycentre of that triangle. In the first case, if the
edge is in 7', then |L| € N(T) U N(T™). If not, then either L meets T at a
vertex of K or it must share an edge with 7%, implying x € N(T) U N(T™).
Finally, if L meets the barycentre of the triangle, then since the barycentre
isin T*, x € N(T) U N(T*) and hence a) is proven.

For b), we know that K does not have any boundary, hence N (T') must be
glued together with parts of N(7*). In other words, ON(T) C N(T)NN(T™).
But from the construction of 7" and 7™, they cannot intersect in any larger
set, hence N(T)U N(T*) = ON(T).

Lastly, for ¢), we remember from Lemma 4.25 that N(T') is homeomorphic
to D? and hence ON(T) to S'. We first show N(T*) is connected. Pick
x,y € N(T*) and a path in |K| from z to y. If that path is entirely in
N(T*) we are done. Else, there exists a first point p and a last point ¢
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in N(T) N N(T*) where that path goes between N(7') and N(7*). Since
N(T) N N(T*) is homeomorphic to S', there exits a path in N(T') N N(T*)
from p to q. Hence going from z to p, then via that path to ¢ and then on to
y, gives a path in N(T™) from z to y. Therefore N(T*) is connected, which
gives that T™ is connected. O]

Lemma 4.36. Let K be a combinatorial surface. Then x(K) < 2.

Proof. Pick a spanning tree T of K and form its dual graph T*. We have
that x(K) = x(T) + x(T*) since x(7T') counts positively all the vertices of
K, any edge in K is either in 7" and hence counted negatively in x(7'), or
its not, giving an edge in x(7™) that is counted negatively. Lastly, for every
2-simplex of K, there is a vertex of 7™ which is counted positively for x(7%).
Hence by Lemma 4.33, x(K) = x(T) + x(T*) <1+1=2. O

The next theorem is the main result of this section. It will allow us to go
between just knowing the FEuler characteristic of a combinatorial surface to
knowing the topological structure of that surface.

Theorem 4.37. Let K be a combinatorial surface. Then the following state-
ments are equivalent.

a) X(K) =2,
b) |K| is homeomorphic to S*.

c) Any simple closed curve in | K| consisting of edges in K' separates |K|.

Proof. Assume that y(K) = 2 and write x(K) = x(T") + x(T™) where T is a
spanning tree for K. Since x(7') = 1 by Lemma 4.33, this gives x(7%) = 1
which again by the same lemma gives that 7" is also a tree. Then, by
Lemma 4.25, N(T') and N(T™) are both homeomorphic to D% Hence since
|K| = N(T)U N(T*) and N(T) N N(T*) = ON(T), |K]| is obtained as the
union of two discs, glued together along their boundary circles, which is
homeomorphic to S? by Lemma, 4.22.

For b) = ¢), we note that its just a variant of the Jordan curve theorem
as mentioned before.

Lastly, we assume that any simple closed curve in |K| consisting of edges in
K! separate |K| into two connected components. Suppose that T* is not a
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tree. Then T* contains a loop in K* which by assumption separates |K|. But
each such component must contain vertices of T', contradicting that T is a
tree. Hence T* must be a tree and by Lemma 4.33, x(K) = x(T)+x(T*) = 2.

O

4.4 Surgery

To show that any surface is homeomorphic to one of the standard surfaces,
we will use a method of doing so called surgery on the surface. The method
will increase the Euler characteristic of the surface and after a finite number
of surgeries, we can show that the space will homeomorphic to S?. Retracing
our surgeries, we can then show that the original surface is homeomorphic
to a standard surface. In detail, the method goes as follows.

Let K be a combinatorial surface in R™ and let L be a 1-dimensional
subcomplex of K that do not separate K. If no such L exists, then by The-
orem 4.37, |K| is homeomorphic to S? and we are done. Note that L might
be a subcomplex of K' and not K, but to simplify notation, we consider
K' as our new complex K. This will give us no problems since they have
the same polyhedron and Euler characteristic. Now, thicken L to obtain
the polyhedron N (L) and call the underlying complex for Nz. Furthermore,
denote the complement of the interior of Ny in K? for M;. Then M; can
be seen as all simplexes in K? that do not meet L together with their faces.
By Theorem 4.26, N(L) is homeomorphic to either a cylinder or a Mdbius
strip. If N(L) is homeomorphic to a cylinder, then |My| will be a compact
surface with boundary consisting of two disjoint circles, call the complexes
that triangulate these circles by L; and Ly respectively. Taking the cone on
Ly and Lo, we get a new closed surface

K* — ML UCLl UCLQ.

If N(L) is homeomorphic to the Mobius strip, then | M| would have only
one circle as boundary whose triangulating complex we denote by L;. Taking
the cone on Ly, we get the closed surface

K,=M,UCL.

In any case, the combinatorial surface K, is called the surface obtained from
K by doing surgery along L. We will now see what we can say about the
resulting complexes and surfaces obtained by this method.
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Lemma 4.38. x(N.) =0

Proof. By the proofs of Lemma 4.25 and Theorem 4.26, we know that N,
consists of unions of closed stars of the form star(v, K?) for v € L!. Since K
is a combinatorial surface, star(v, K?) has the structure of a cone with vertex
v and a simple closed polygonal curve as base. Assume that the curve has n
vertices. Then star(v, K?) has n+ 1 vertices, 2n edges (one from each vertex
of the curve to the next vertex of the curve and one from each vertex of the
curve to v) and n triangles. Using Lemma 4.28, we get x(star(v, K?)) =
n+1—2n+n = 1. This closed star intersects another closed star in exactly
three vertices and two edges, making their total Euler characteristic having
value 1 +1 — (3 — 2) = 1. Joining another closed star to that complex, the
intersection will still be three vertices and two edges, keeping the total Euler
characteristic at 1. But when we will join the last closed star to the complex,
it will intersect it at two different closed stars, at a total intersection of six
vertices and four edges. Hence x(Np) =1+1—(6—-4) =0. O

The main property of surgery is the following relation.
Theorem 4.39. x(K,) > x(K)

Proof. Let Ly be a simplicial complex triangulating a circle. Then L; con-
tains no 2-simplexes and has equally many vertices as edges, hence x (L) = 0.
When taking the cone on L, we get a simplex of the same type as a closed
star in a combinatorial surface. From the proof of Lemma 4.38, we know that
X(CLy) = 1. Turning to our combinatorial surface K, if N(L) is a cylinder,
we get by Lemma 4.28 that

X(K.) = x(Mr) + x(CLy) + x(CLz) — x(L1) — x(L2)
= x(Mp) + 2.

If N(L) is a Mdbius strip, then
X(K) = x(Mp) + x(CLy) — x(L1)
= X(ML> + 1.

In any case, x(K.) > x(Mp). Finally, by Theorem 4.29 and Lemma 4.38, we
have

X(K) = x(K?) = x(Mg) 4+ x(N) — x(My N\ N) = x(My)

since M, NNy, is either one or two circles and thus having Euler characteristic
zero. Hence x(K,) > x(Mp) = x(K). O
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We would now like to apply surgery once again, this time on K,. The
problem is that we need the discs C'L; to be intact through the process.
Hence if the polygonal curve I' do not separate K, and I' intersects C'L;,
we will need to carefully move those apart without moving I' onto any other
CL;. For this, we need several lemmas.

Lemma 4.40. Let Z CY C X be concentric discs in R?. Then there exists
a homeomorphism h : X — X such that h: 0X — X =isx and h(Y) C Z.

Proof. We may assume w.l.o.g. that they are centred at the origin. We can
also identify R? with C. Let Z have radius 71, Y radius r, and X radius 73.
A homeomorphism h is then given explicitly by

et . T r € [0,rs]
T2
h(@,r) =
( ) ew' 7“(7“1—7’3)—7”3(7“1—7”2) T’G[’I‘ 7’]
Ty — T3 251 3]:

Since h is a continuous bijection from a Hausdorff space to a compact space,
h is indeed a homeomorphism. O

Lemma 4.41. Let C, and Cy be two simple polygonal curves in R? where Cs
is included in the interior of the region bounded by Cy. The region between
C1 and Cy is then homeomorphic to an annulus.

Proof. Pick a vertex of C'; and connect it via a straight edge to a vertex of Cs.
Then pick another vertex of C'; and connect it via a simple polygonal curve to
another vertex of C5 such that it does not intersect the first edge created or
intersect C or (5 except at the end points. This divides the region between
(i and C5 into two pieces, each with boundary a simple polygonal curve and
hence homeomorphic to D2 Keeping track of where the edges not in C; and
C5 are mapped to, we get two discs where on each disc, two disjoint arcs are
corresponding to those edges. To get the sought region, we must identify the
corresponding arcs on the two discs. Before this is done, we can map the
discs to rectangles where the special arc are mapped to opposite edges. After
that, gluing the rectangles together clearly gives a region homeomorphic to
an annulus. See Figure 17. O
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Figure 17: Idea for Lemma 4.41.

Lemma 4.42. Let K be combinatorial surface, D a subcomplex homeo-
morphic to D? and o a 2-simplex in D. Then there is a homeomorphism
h : |K| — |K| such that h(D) = star(6, K*) and h = ik on any simplex
that do not meet D.

Proof. We begin by thickening 0D. The resulting complex will then have a
boundary consisting of two disjoint simple polygonal curves in K?. The curve
that is not in D can be seen as the boundary dD; of a complex D; with D;
containing D in its interior and homeomorphic to D% By two applications
of Lemma 4.41, first on dD; and dD and then on 0D and 0 (star(6, K?)),
we can see the situation as three concentric discs, star(é, K?) C D C D;.
By Lemma 4.40, there exists a homeomorphism A : |D;| — |D;| such that
h(D) = star(6, K?) and h : 0D, — Dy = igp,. By extending h to be the
identity on |K|\ |D;], h will be a continuous bijection on |K| and since |K|
is compact and Hausdorff, also an homeomorphism. O

By the above lemma, we know that if I" happens to be a curve that do not
separate K, but goes through some disc C'L;, then we can refine K, to K2
and then replace C'L; with star(6, K2). Since star(d, K?) lies in the interior
of the 2-simplex o, we have I N star(¢, K2) = () and we can continue the
surgery. We can now prove one part of the classification theorem.

Theorem 4.43. Any closed surface is homeomorphic to a standard surface.

Proof. Let S be a closed surface and K be a combinatorial surface triangu-
lating S. If x(K) = 2, then |K| is homeomorphic to S? and we are done.
Else, x(K) < 2 and there is a 1-dimensional subcomplex L of K' that do
not separate K. Doing surgery along L, we get a new combinatorial surface
with strictly higher Euler characteristic. If necessary, we do surgery on that
surface as well and repeat the process until we arrive at a surface with Euler
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characteristic two and hence homeomorphic to S?. This sphere will have a
number of disjoint discs marked on it from the surgeries. We now retrace the
applied surgeries by sewing in a cylinder on a pair of discs if N (L) was home-
omorphic to a cylinder or sewing in a Mobius strip to a single disc if N (L)
was homeomorphic to a Mobius strip. If S is orientable, then we cannot get
any Mobius strips and hence S is homeomorphic to a sphere with a finite
number of handles added. If S is non-orientable, then we could get both
Mobius strips and handles. But by Lemma 4.10, this is the same as sewing
in only several Mdobius strips instead. Hence S is homeomorphic to a sphere
with a finite number of discs removed and replaced by Mobius strips. O

The first complete and published proof that any closed surface is home-
omorphic to a standard surface was done by Brahana in his dissertation [4],
published in 1921. This was done using more of the cut and paste technique
used in the proof of 4.10. For more history about the classification theorem,
see [6].

4.5 Polygonal representation

To complete the classification theorem, we need to show that none of our
standard surfaces is homeomorphic to another. For this, we need to be able
to describe any of our standard surfaces as a polygon in the plane with
different sides identified. This will be called the polygonal representation of
the surface. For example, in Figure 18, we see a polygonal representation of a
torus where we read that the edges with the same letters are to be identified
in the direction of the arrows. A way to express this is to write down all
the letters as they occur in the polygon when traversing its edges clockwise.
Hence for the torus we get aba='b~! where a=! denotes that the arrow is
pointing in the counter clockwise direction at that edge. Such an expression
describing the identifications will be called a surface symbol. We note that
the sphere has surface symbol aa~! and the projective plane aa.

We would like to determine the surface symbol for the connected sum of n
tori and also for n projective planes. To do this, we note that we can always
cut up the surface such that the disc intersects the boundary of its polygonal
representation in exactly one point, see Figure 19. We show that the surface
symbol for the connected sum of n tori is a;bya; b7 - - - anb,a; b by induc-
tion. Since the surface symbol of the torus is aba='b~!, it holds for n = 1.
Then we assume it holds for n and show it for n + 1. By removing a disc
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& 4

Figure 18: Polygonal representation of a torus.

in the connected sum of n tori and a single torus as indicated in Figure 19,
gluing them together gives a polygonal representation as in Figure 20 which
has the sought surface symbol.

n Ap+1
>
b, c
bni1 Y bns1
a1
>
by An41

Figure 19: Discs in the connected sum of n tori and a single torus.

By an analogue argument, we find that the surface symbol for the con-
nected sum of n projective planes is ajaiasas - - - aya,. We summarize the
result of our discussion in a lemma.

Lemma 4.44. The surface symbol for the connected sum of n tori is

n

H aibiaflbfl

=1

and the surface symbol for the connected sum of n projective planes is
I
i=1
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bn+1

Apy1

Figure 20: Polygonal representation of n + 1 tori.

To show that all our standard surfaces are topologically distinct, we will
show that they all have non isomorphic first homology group. Since it is a
topological invariant, it will imply that the surfaces are not homeomorphic.
By Theorem 3.11, this is the same as determining their abelianized funda-
mental group. For this, we will use the Seifert-van Kampen theorem. At
first, we note that since S? is simply connected, it has trivial first homology
group. Now consider a polygonal representation for the connected sum of n
tori and triangulate it. Let J be a 2-simplex and K the complex triangu-
lating that polygon but with the interior of J removed. Then m(|J|) = 1
since |J| is convex. For |K|, we see that the space deformation retract onto
the boundary of the polygon which becomes a bouquet of 2n circles. Hence
m1 (| K]) is a free group on 2n generators, determined by generators a;, b; from
the surface symbol. Then, we see first that a generator of |[J N K| in |J]| is
homotopic to the identity while in |K|, it is clearly homotopic to the surface
symbol [, a;ba; 'h; ! after the deformation retraction. Letting T, denote
the connected sum of n tori, Seifert-van Kampen gives that

ﬂl(']rn) = <a1,b1, c. ,an,bn | Haibiai_lbi_l = 1> .

i=1
Taking the quotient by its commutator subgroup, we get the free abelian
group on 2n generators and no extra relations since [[I_, a;ba; 'b; " is al-
ready included in the commutator subgroup. Thus H;(T,) = Z*". For the
connected sum of n projective planes that we will denote P,,, the exact same
argument applies with triangulating its polygonal representation. The dif-
ference this time is that we will get n generators for m(|K|) and that a
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generator of |J N K| in |K| will now be homotopic to the surface symbol
[T, a?. Hence the fundamental group for P, has presentation

WI(Pn) = <a1,a2,...,an | Ha? = ]_> .
i=1

This time, taking the quotient by its commutator subgroup, we get a free
abelian group with generators aq,as,...,a, subject to the non trivial re-
lation ], a? = 1. Changing basis to (a1az...ay),as,...a,, we see that
H\(P,) = Zy x Z"'. Thus, since the connected sum of different number
of tori or projective planes have different first betti numbers, they are not
homeomorphic. Also, since the first homology group of P, for any n has a
non zero torsion part while T,, does not, they cannot be isomorphic and the
spaces not homeomorphic. This establishes the last part of the classification
theorem. Defining the genus of a orientable surface as the number of tori
needed to get a connected sum of tori isomorphic to the surface and simi-
larly for projective planes for the non orientable case, we can summarize as
follows.

Theorem 4.45. The following statements are equivalent for closed surfaces.
a) The surfaces are homeomorphic.
b) The surfaces have isomorphic first homology group.
c) The surfaces have isomorphic fundamental group.

d) The surfaces have the same genus and are both either orientable or non
orientable.
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