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Populärvetenskaplig sammanfattning

De flesta människorna har nog en idé vad en yta är för n̊agot. Det kan
vara skalet p̊a en apelsin eller ovansidan av ett bord. En sluten yta är inom
matematiken en s̊adan yta som inte har n̊agra kanter. I detta arbete är målet
att kunna klassificera alla möjliga slutna ytor. Denna klassifikation är med
avseende p̊a ett ämne inom matematiken som kallas topologi. Där klassas
tv̊a ytor som samma sak om man kan deformera den ena till den andra.
Exempelvis kan man ta en kub och genom att runda av hörnen f̊a en sfär.
En sfär och en badring är dock inte densamma eftersom badringen har ett h̊al
medan sfären inte har det och just h̊al är en s̊adan sak som inte f̊ar tillföras i
deformationen. I fallet av att klassificera slutna ytor är det antalet h̊al som
är den avgörande faktorn.

Det är dock sv̊art att direkt se p̊a en allmän sluten yta hur m̊anga h̊al den
har, därför kommer verktyg fr̊an algebra och geometri behövas till v̊ar hjälp.
Först undersöks antalet h̊al p̊a ytan genom att introducera en s̊a kallad grupp
som ska kolla p̊a hur många sätt en ögla kan träs runt ytan utan att öglan
försvinner när den dras åt. Denna grupp kallas ytans fundamentalgrupp och
det är en av de huvudsakliga objekten vi undersöker.
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Abstract

In this thesis we will study some basic concepts in algebraic topology such as
the fundamental group, simplicial complexes and simplicial homology. These
are then used together with a method called surgery to prove a complete
topological classification of closed surfaces.
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Introduction

One of the aims of this thesis is to give a small introduction to some of the key
concepts used in algebraic topology. It starts by defining the fundamental
group of a space in the first chapter and proving some elementary properties
of it. In this thesis, all spaces are assumed to be topological spaces with
the most natural topology if not stated otherwise. In the second chapter,
we introduce the more geometric tool of simplicies and simplicial complexes
that we use mainly to simplify determining the fundamental group of certain
spaces. In the third chapter, we take a slight detour looking at the concept
homology and how it relates to the fundamental group. Finally, in the last
chapter, we come to the main part of this thesis which is a proof of the
classification theorem for closed surfaces. The method here is not the most
common. It uses a technique called surgery from Armstrong’s book on basic
topology.

The reader is assumed to have basic knowledge in point-set topology and
group theory. This includes notions such as compactness, connectedness,
homeomorphisms, groups, presentations of groups, isomorphisms and theo-
rems such as the first isomorphism theorem.
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1 The fundamental group

1.1 The fundamentals

Definition 1.1. A loop in a space X is a continuous function α : [0, 1]→ X
such that α(0) = α(1). We say that α(0) is the base point for the loop or
that α is based at α(0).

Definition 1.2. Given two loops α and β on X with equal base point, their
product is defined as

α · β(s) =

{
α(2s) s ∈ [0, 1/2]

β(2s− 1) s ∈ [1/2, 1].

This does however not define an associative operation on the space of all
loops with fixed base point. To try and get around that problem, we decide
to not look at all possible loops separately, but instead group them according
to the following definition.

Definition 1.3. Let f, g : X → Y be continuous functions. Then f is
homotopic to g, written f ' g, if there exists a continuous function F :
X × [0, 1] → Y such that F (x, 0) = f(x) and F (x, 1) = g(x) for all x ∈ X.
F is called a homotopy from f to g. If in addition F satisfies that F (a, t) =
f(a) = g(a) for all a ∈ A ⊆ X and all t ∈ [0, 1], f is said to be homotopic to
g relative to A, written f ' g rel A.

The notation for homotopic functions indicates that it might be an equiv-
alence relation and this is indeed the case, but before this can be shown, a
lemma is needed.

Lemma 1.4 (Gluing lemma). Let X, Y ⊆ T and f : X → Z, g : Y → Z be
continuous functions such that f(x) = g(y) for x, y ∈ X ∩ Y . If X and Y
are both closed in X ∪ Y then h : X ∪ Y → Z with h(x) = f(x) for x ∈ X
and h(y) = g(y) for y ∈ Y is continuous.

Proof. Let F ⊆ Z be closed. Then h−1(F ) = f−1(F ) ∪ g−1(F ) is closed in
X ∪ Y . This follows from that f−1(F ) is closed in X by continuity of f and
thus closed in X ∪ Y since X is closed. Similarly for g−1(F ). Hence h−1(F )
is closed in X ∪ Y and therefore h is continuous.
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Lemma 1.5. The notion of homotopic functions is an equivalence relation
on the set of continuous function from X to Y.

Proof. Let f, g, h : X → Y be continuous functions. Firstly, f ' f via the
homotopy F (x, t) = f(x). Secondly, if f ' g via the homotopy F (x, t), then
g ' f via F (x, 1 − t). Finally, if f ' g via F (x, t) and g ' h via G(x, t),
then f ' h via

H(x, t) =

{
F (x, 2t) t ∈ [0, 1/2]

G(x, 2t− 1) t ∈ [1/2, 1]

where the continuity of H follows from the gluing lemma.

We note that if all the above homotopies were relative some set A, then it
would not affect the argument and hence homotopic functions relative some
set is also an equivalence relation.

One or two examples of homotopic functions might be useful here.

Example 1.6. Let i : S1 → S1 be the identity function on S1 = {z ∈ C; |z| =
1} and f : S1 → S1 the antipodal function, f(x) = −x. Then i is homotopic
to f via the homotopy F (x, t) = eπitx.

Example 1.7. Let f, g : X → Y be any continuous functions and Y a convex
space. Then f and g are homotopic via the straight line homotopy

F (x, t) = tg(x) + (1− t) f(x).

Consider the space of loops on a space X with a fixed base point p.
From Lemma 1.5, it follows that homotopic loops rel {0, 1} is an equivalence
relation on the space. Call the resulting equivalence classes homotopy classes
and let [α] denote the homotopy class of the loop α. The multiplication of
such homotopy classes is then defined in the natural way

[α][β] = [α · β].

Lemma 1.8. Multiplication of homotopy classes as defined above is a well
defined operation.

Proof. Assume that α ' α′ rel {0, 1} via the homotopy F and that β ' β′ rel
{0, 1} via the homotopy G. Then α · β ' α′ · β′ rel {0, 1} via the homotopy
H defined by

H(x, t) =

{
F (2x, t) x ∈ [0, 1/2]

G(2x− 1, t) x ∈ [1/2, 1].
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Note that the continuity of H follows from the gluing lemma. The use
of this lemma will be implicit for the rest of this thesis. The transition
from single loops to homotopy classes does now take away our problem with
associativity encountered in Definition 1.2. It can even be said more than
that.

Theorem 1.9. The set of homotopy classes of loops in a space X with a
fixed base point p forms a group under multiplication of homotopy classes.

Before this can be proven we need a small lemma.

Lemma 1.10. Composition with continuous functions preserve homotopy
equivalence.

Proof. If f, g : X → Y and h : Y → Z are continuous functions where
f ' g rel A via the homotopy F , then hf ' hg rel A via the homotopy hF .
Similarly, if f : X → Y and g, h : Y → Z are continuous functions where
g ' h rel B via the homotopy G, then gf ' hf rel f−1(B) via the homotopy
H(x, t) = G(f(x), t).

Proof of Theorem 1.9. We start by showing that the multiplication is asso-
ciative. Let α, β and γ be three loops in X based at p. By definition we have
that

((α · β) · γ)(s) =


α(4s) s ∈ [0, 1/4]

β(4s− 1) s ∈ [1/4, 1/2]

γ(2s− 1) s ∈ [1/2, 1]

and

(α · (β · γ))(s) =


α(2s) s ∈ [0, 1/2]

β(4s− 2) s ∈ [1/2, 3/4]

γ(4s− 3) s ∈ [1/2, 1].

Now define f : [0, 1]→ [0, 1] as

f(s) =


2s s ∈ [0, 1/4]

s+ 1
4

s ∈ [1/4, 1/2]
s+1
2

s ∈ [1/2, 1].

Note that f satisfies f(0) = 0, f(1) = 1 and since [0, 1] is convex, we can use
the straight line homotopy from Example 1.7 to see that f and the identity
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function i are homotopic rel {0, 1}. We also have that (α·β)·γ = (α·(β·γ))◦f .
Using Lemma 1.10 we get

(α · β) · γ = (α · (β · γ)) ◦ f
' (α · (β · γ)) ◦ i rel {0, 1}
= α · (β · γ).

Hence [α·β][γ] = [α][β ·γ] as desired. The unity in this group is the homotopy
class of the constant path at p, p(s) = p for s ∈ [0, 1]. Define

f(s) =

{
2s s ∈ [0, 1/2]

1 s ∈ [1/2, 1].

Then f is again homotopic to the identity function and we have that

α · p = α ◦ f ' α ◦ i rel {0, 1} = α.

Hence [α][p] = [α] and similarly one gets [p][α] = [α]. Finally, the inverse of
the homotopy class containing the loop α is obtained by taking the class of
the reversed loop α−1(s) = α(1− s). This time we define

f(s) =

{
1− 2s s ∈ [0, 1/2]

2s− 1 s ∈ [1/2, 1]

and note that f is homotopic to the constant path at 1 rel {0, 1}. Therefore

α−1 · α = α ◦ f ' α ◦ 1 rel {0, 1} = α(1) = p

and similarly [α][α−1] = [p].

Definition 1.11. The group of loops in a space X based at p is called the
fundamental group of X based at p and is denoted by π1(X, p). If it happens
that π1(X, p) is isomorphic to π1(X, q) for all p, q ∈ X, then we will disregard
the base point and write π1(X).

This omission of base point for the fundamental group can be done in a
lot of spaces as seen from the following theorem.

Theorem 1.12. If X is path-connected then π1(X, p) is isomorphic to π1(X, q)
for all p, q ∈ X.
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Proof. Since X is path-connected, we can choose a path γ in X such that
γ(0) = p and γ(1) = q. Now define γ∗ : π1(X, p)→ π1(X, q) by letting γ act
via conjugation, i.e.

γ∗([α]) = [γ−1 · α · γ].

Then γ∗([α])(0) = γ∗([α])(1) = q and

γ∗([α][β]) = γ∗([α · β]) = [γ−1 · α · β · γ] = [γ−1 · α · γ · γ−1 · β · γ]

= [γ−1 · α · γ][γ−1 · β · γ] = γ∗([α]) · γ∗([β]),

hence γ∗ is a homomorphism. Since γ∗ has an inverse γ−1∗ : π1(X, q) →
π1(X, p) defined as conjugation by γ−1, γ∗ is an isomorphism.

Definition 1.13. A space X is called simply connected if it is path-connected
and π1(X) is the trivial group consisting of a single element.

Example 1.14. Any convex space X is simply connected. Here the fun-
damental group is trivial since any two loops α and β are homotopic via
the straight line homotopy from Example 1.7. In particular, Rn is simply
connected for any n.

In view of Lemma 1.10, the following construction is well defined.

Definition 1.15. Let f : X → Y be a continuous function where f(p) = q.
Then we define the induced homomorphism f∗ : π1(X, p) → π1(Y, q) by
f∗([α]) = [f ◦ α].

Note that f∗ is indeed a homomorphism since f ◦ (α ·β) = (f ◦α) · (f ◦β).

Lemma 1.16. If f : X → Y and g : Y → Z are continuous functions such
that f(p) = q and g(q) = r, then (g ◦ f)∗ = g∗ ◦ f∗ : π1(X, p)→ π1(Z, r).

Proof. Let α be a loop in X. Then (g∗ ◦f∗)([α]) = g∗([f ◦α]) = [(g ◦f)◦α] =
(g ◦ f)∗([α]).

The above lemma does not seem like much, but with it we can prove the
following important result, essentially saying that the fundamental group is
a topological invariant.

Theorem 1.17. If X and Y are homeomorphic, path-connected spaces, then
π1(X) is isomorphic to π1(Y ).
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Proof. Let h : X → Y be a homeomorphism with h(p) = q and consider
h∗ : π1(X, p) → π1(Y, q) and h−1∗ : π1(Y, q) → π1(X, p). By Lemma 1.16, we
have h−1∗ ◦h∗ = (iX)∗ : π1(X, p)→ π1(X, p) and h∗ ◦h−1∗ = (iY )∗ : π1(Y, q)→
π1(Y, q) where iX and iY are the identity function on X and Y respectively.
Since the identity function induces the identity homomorphism, we get that
h∗ is an isomorphism.

In our final classification of closed surfaces, this result will be used to
show that all surfaces on our list are unique.

1.2 Homotopy equivalence

Definition 1.18. Two spaces X, Y are called homotopy equivalent and are
said to have the same homotopy type, if there exists continuous functions
f : X → Y and g : Y → X such that g ◦ f ' iX and f ◦ g ' iY . We then
write X ' Y and call f a homotopy inverse for g.

Lemma 1.19. Homotopy equivalence is an equivalence relation on topological
spaces.

Proof. The relation is reflexive since one can take f = g = iX . Symmetry
follow directly from the definition. For transitivity, we let f : X → Y have
homotopy inverse g and u : Y → Z have homotopy inverse v. Then using
Lemma 1.10, we get

(g ◦ v) ◦ (u ◦ f) = g ◦ (v ◦ u) ◦ f ' g ◦ iY ◦ f = g ◦ f ' iX

and
(u ◦ f) ◦ (g ◦ v) = u ◦ (f ◦ g) ◦ v ' u ◦ iY ◦ v = u ◦ v ' iZ .

Hence X ' Z via the homotopy inverses g ◦ v and u ◦ f .

We wish to combine our earlier study of the fundamental group with the
notion of homotopy type. To do this, we first need to see how much the
induced homomorphism of homotopic maps differ.

Lemma 1.20. Let f, g : X → Y be continuous functions where f ' g
via the homotopy F . Then g∗ = γ∗f∗ where g∗ : π1(X, p) → π1(Y, g(p)),
f∗ : π1(X, p)→ π1(Y, f(p)) and γ(s) = F (p, s) with γ∗ acting via conjugation.
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Proof. Let α be a loop in X with base point p. Since g∗([α]) = [g ◦ α] and
γ∗f∗([α]) = [γ−1 · (f ◦ α) · γ], we need to show that g ◦ α is homotopic to
γ−1 ·(f ◦α) ·γ rel {0, 1}. Define G : [0, 1]× [0, 1]→ Y by G(s, t) = F (α(s), t).
The sought homotopy is then given by

H(s, t) =



γ(1− 4s) s ∈
[
0,

1− t
4

]
G

(
4s+ t− 1

3t+ 1
, t

)
s ∈

[
1− t

4
,
1 + t

2

]
γ(2s− 1) s ∈

[
1 + t

2
, 1

]
.

The main result of this section is the following.

Theorem 1.21. Homotopy equivalent spaces have isomorphic fundamental
groups.

Proof. Let X ' Y via the homotopy inverses f and g. Say g ◦ f ' iX
via the homotopy F and f ◦ g ' iY via G. Pick p = g(q) ∈ X, we show
f∗ : π1(X, p) → π1(Y, f(p)) is an isomorphism. Define γ by γ(s) = F (p, s)
and σ by σ(s) = G(q, s). By Lemma 1.20, we get the following commutative
diagram.

π1(Y, q) π1(Y, f(p))

π1(X, p) π1(X, gf(p))

g∗

σ∗

g∗

γ∗

f∗

By the argument from Theorem 1.12, σ∗ and γ∗ are isomorphisms. The lower
triangle in the diagram forces f∗ to be injective and the upper triangle forces
f∗ to be surjective. Hence f∗ is an isomorphism and thus π1(X) is isomorphic
to π1(Y ).

We note that homeomorphic spaces have the same homotopy type. A
more non-trivial example is the following.
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Example 1.22. For n ≥ 1, Rn \ {0} ' Sn−1. Define f(x) = x as the
inclusion and g(x) = x

‖x‖ . Then g ◦ f = iSn−1 and f ◦ g ' iR\{0} via F (x, t) =

(1− t)x+ t x
‖x‖ .

The above example is a special case of the following.

Definition 1.23. Let Y ⊆ X. A deformation retraction of X onto Y is a
homotopy F : X × [0, 1]→ X rel Y where F (x, 0) = x and F (x, 1) ∈ Y .

If Y is a deformation retraction of X, then X and Y can be seen to have
the same homotopy type by taking f(x) = x and g(x) = F (x, 1).

2 Simplicial complexes

2.1 Triangulation

Determining the fundamental group of an arbitrary space X can in general
be very difficult. We therefore turn our attention to a more strict class of
spaces that can be thought of as being built up of finitely many simple parts.
Before this can be made precise, a few definitions are needed.

Definition 2.1. Points v0, v1, . . . , vm ∈ Rn are called affinely independent if
the vectors vi − v0, i = 1, 2, . . . ,m, are linearly independent.

Definition 2.2. Let v0, v1, . . . , vk be k + 1 points that are affinely indepen-
dent. The smallest convex set containing all the points is called a k-simplex.
The points are then called the vertices of the simplex.

Example 2.3. For the lowest dimensions we see that a 0-simplex is a point,
a 1-simplex a closed line segment, a 2-simplex a triangle including its interior
and a 3-simplex a solid tetrahedron.

We can also generalize the concept of faces for an arbitrary simplex.

Definition 2.4. Let σ and τ be simplexes and assume the vertices of τ forms
a subset to those of σ. Then τ is said to be a face of σ, written τ < σ. A
face of dimension 1 is often called an edge.

This allows us to construct more complicated structures as follows.
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Figure 1: A simplicial complex. Figure 2: Not a simplicial complex.

Definition 2.5. A finite collection K of simplexes in Rn is called a simplicial
complex, or more often just a complex, if whenever the simplex σ is in K,
then all faces of σ is also in K. Also if two simplexes in K intersect, they do
so in a common face.

To be able to use this concept for our future study of closed surfaces, we
need the following definition.

Definition 2.6. Let K be a simplicial complex in Rn. The polyhedron of K,
denoted |K|, is the topological space obtained by forming the union of all
simplexes in K and giving them the subspace topology in Rn. A triangulation
of a space X is then a simplicial complex K and a homeomorphism h : X →
|K|.

Note that K can be seen as a purely combinatorial object containing
a collection of vertices and information about those vertices, telling which
subcollections forms a simplex. On the other hand, |K| is the geometric
realization of that structure, embedded into some Rn.

Example 2.7. Let X = S2 be the unit sphere in R3. An example of a
triangulation of X is then given by the simplicial complex K consisting of a
hollow tetrahedron with |K| embedded in R3 such that |K| ⊂ {x ∈ R3; ‖x‖ <
1} together with the homeomorphism h that is radial projection from |K| to
X.

Example 2.8. The non orientable surface called the Klein Bottle can be
triangulated as in Figure 3. Note that the arrows indicates identifications to
be made for the edges.

9



Figure 3: Triangulation of a Klein bottle.

Sometimes, a given triangulation might not be suitable, instead one would
like some kind of refinement of it. This can be achieved in the following
manner. Let σ be a simplex having vertices v0, v1, . . . , vm. Then x ∈ σ if
and only if x = λ0v0 + · · · + λmvm with

∑m
i=0 λi = 1 and λi ≥ 0. Define the

barycentre of σ as

σ̂ =
1

m+ 1
(v0 + v1 + · · ·+ vm) .

Using the barycentre, we can from a given complex K create a new complex
K1 as follows. Let the vertices of K1 be the barycentres of all the simplexes
in K. Also, σ̂0, · · · , σ̂k form the vertices of some k-simplex of K1 if and only
if σi0 < · · · < σik where {i0, · · · , ik} = {0, · · · , k}.
Definition 2.9. Given a simplicial complex K, the barycentric subdivision
of K is the complex K1, constructed as above.

Figure 4: A simplicial complex.
Figure 5: Its barycentric subdivi-
sion.

Some basic properties of simplicial complexes and its first barycentric sub-
division is presented in the subsequent lemma. A full prof of each statement
can be found in [1].
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Lemma 2.10. Let K be a simplicial complex in Rn. Then

a) |K| is a compact space.

b) If |K| is connected, then it is also path-connected.

c) If we consider the polyhedron of every simplex in K separately and take
the identification topology on their union, we get |K|.

d) Each simplex of K1 is contained in some simplex of K.

e) K1 is a well defined simplicial complex and |K1| = |K|.

Since we always consider a simplex in some Rn, we can define the diameter
of a simplex σ as diam(σ) = supx,y∈σ |x − y|. The diameter of a simplicial
complex K can from this be defined as diam(K) = maxσ∈K diam(σ). One
of the main properties of the barycentric subdivision is that it makes the
diameter of the simplicial complex smaller. To prove that, two lemmas are
needed.

Lemma 2.11. The diameter of a simplex is the length of its longest edge.

Proof. Let σ be a simplex having the vertices v0, . . . , vm and set d = max{|vi−
vj|; 0 ≤ i ≤ j ≤ m}. Pick x ∈ σ, x =

∑m
i=0 tivi,

∑m
i=0 ti = 1. Then

|x− vj| =
∣∣∣x− (∑ ti

)
vj

∣∣∣ =
∣∣∣∑ ti (vi − vj)

∣∣∣ ≤ (∑ ti

)
d = d.

Now given y ∈ σ, y =
∑m

i=0 sivi,
∑m

i=0 si = 1, we have

|x− y| =
∣∣∣(∑ si

)
x− y

∣∣∣ =
∣∣∣∑ si (x− vi)

∣∣∣ ≤ (∑ si

)
d = d.

Lemma 2.12. Let σ be an arbitrary n-simplex. Then supx∈σ |x − σ̂| ≤ nd
n+1

where d = diam(σ).

Proof. Let v0, . . . , vn be the vertices of σ. Then

|σ̂ − vj| =

∣∣∣∣∣
(

1

n+ 1

n∑
i=0

vi

)
− vj

∣∣∣∣∣ ≤ 1

n+ 1

n∑
i=0

|vi − vj| ≤
nd

n+ 1
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since |vi − vj| = 0 if i = j. Let x ∈ σ, x =
∑m

i=0 tivi,
∑m

i=0 ti = 1. Then

|σ̂ − x| =
∣∣∣∑ ti (σ̂ − vi)

∣∣∣ ≤∑ ti

(
nd

n+ 1

)
=

nd

n+ 1
.

Defining the dimension of a simplicial complex as the maximum dimension
of its simplexes, we arrive at the following theorem.

Theorem 2.13. Let K be a simplicial complex of dimension n, then

diam(K1) ≤ n

n+ 1
diam(K).

Proof. Since the diameter of a simplicial complex is the maximum of the
diameters of its simplexes, it suffices to prove it for a single n-simplex. The
statement is trivial for a 0-simplex. Now assume it holds for all simplexes of
dimension up to n − 1. Let σ0 < σ1 < · · · < σm be simplexes where σm has
dimension n. Then the simplex σ̃k in σ1

m with vertices σ̂i0 , . . . , σ̂ik , ij 6= m,
satisfies diam(σ̃k) ≤ m′

m′+1
diam(σm) for some m′ < n being the dimension

of σ̃k and since σ̃k lies in some face of σm. Since m′

m′+1
is increasing in m′,

we get diam(σ̃k) ≤ n
n+1

diam(σm). By Lemma 2.11 and the definition of
diameter for a complex, we need only consider the edges of σ1

m to determine
its diameter. Any edge not having σ̂m as a vertex is in some σ̃k and hence
satisfies the bound. The bound for an edge having σ̂m as a vertex is then
shown in Lemma 2.12.

Thus if we define the m:th barycentric subdivision of K inductively as
(Km−1)1, we can make the diameter of our simplicial complex arbitrarily
small.

2.2 Simplicial approximation

Definition 2.14. Let K and L be simplicial complexes. A function s : |K| →
|L| is called simplicial if it takes simplex linearly onto simplexes. That is if
v1, . . . , vn are vertices of a simplex in K and x = λ1v1 + · · · + λnvn, then
s(v1), . . . , s(vn) span a simplex of L and s(x) = λ1s(v1) + · · ·+ λns(vn).
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Definition 2.15. Let K be a complex and v a vertex of K. Let σ ∈ K have
the vertices v0, . . . , vm and x ∈ σ. Then x is said to be in the interior of
the simplex σ if x = λ0v0 + · · · + λmvm with

∑m
i=0 λi = 1 and λi > 0. The

open star of v in K, denoted star(v,K), is the union of the interiors of all
simplexes of K having v as a vertex.

Definition 2.16. Let K and L be simplicial complexes and f : |K| → |L|
a continuous function. The carrier of f(x) is the unique simplex in L that
has x in its interior. A simplicial function s : |K| → |L| such that s(x) is in
the carrier f(x) for all x ∈ |K| is called a simplicial approximation of f .

Simplicial approximations are useful in the sense that they are homotopic
to the original function via the straight line homotopy. Since they are sim-
plicial, they are also easier to work with. This will be used for the rest of
this section. Before the main result of this section can be stated and proven,
we are in need of two preliminary lemmas.

Lemma 2.17. The vertices v1, . . . , vn span a simplex in K if and only if the
intersection of their open stars is non-empty.

Proof. If v1, . . . , vn span a simplex of σ of K, then the open star star(vi, K)
contains the interior of σ for all i, hence their intersection is non empty.
Conversely, pick x ∈

⋂n
i=1 star(vi, K) and let σ be the carrier of x. From the

definition of open star we get that each vi must be a vertex of σ. Since any
collection of vertices of a simplex span a face of that simplex, v1, . . . , vn span
a face of σ.

Lemma 2.18 (Lebesgue’s lemma). Let X be a compact metric space and F
an open cover of X. Then there exists δ > 0 such that for all V ⊆ X of
diameter less than δ, there exists U ∈ F such that V ⊆ U . The number δ is
called the Lebesgue number of the covering F .

Proof. Assume that there exists sets Ai, i = 1, 2, . . . , each of diameter less
than 1/i, such that Ai is not included in any U ∈ F . Pick xi ∈ Ai and form
the sequence (xi)

∞
i=1. Since X is compact, the sequence has a converging

subsequence, say convergent to y. Choose U ∈ F such that y ∈ U and pick
ε > 0 such that B(y, ε) ⊂ U . Now fix N large enough such that diam(AN)<
ε/2 and xN ∈ B(y, ε/2). Then d(x, y) ≤ d(x, xN) + d(xN , y) < ε for all
x ∈ AN . Hence AN ⊆ B(y, ε) ⊂ U contradicting the construction of the
Ai’s.
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Theorem 2.19 (Simplicial approximation theorem). Let K and L be sim-
plicial complexes and f : |K| → |L| a continuous function. Then there
exists n ∈ N and s : |Kn| → |L| where s is a simplicial approximation of
f : |Kn| → |L|.

Proof. Begin by assuming that for each vertex u of K, there exists a vertex
v of L such that

f(star(u,K)) ⊆ star(v, L). (1)

Define s on the vertices of K by letting s(u) = v with u and v as in (1).
If u1, . . . , um span a simplex of K, then by Lemma 2.17,

⋂m
i=1 star(ui, K)

is non empty which by (1) implies that
⋂m
i=1 star(s(ui), K) is non-empty,

which again by Lemma 2.17 implies that s(u1), . . . , s(um) span a simplex.
Then extend s linearly over all simplexes of K to get s : |K| → |L| as a
simplicial map. Let x ∈ |K| and u1, . . . , uk be the vertices of the carrier
of x. Again, by repeated use of Lemma 2.17 and equation (1), we get x ∈⋂k
i=1 star(ui, K) =⇒ f(x) ∈

⋂k
i=1 star(s(ui), K). Hence the carrier of f(x)

has the simplex spanned by s(u1), . . . , s(uk) as a face and thus s(x) is in the
carrier of f(x). Therefore s is a simplicial approximation of f . Now we show
that (1) can be achieved if not by K, then at least by Kn for some n ∈ N.
Since the open stars in L form an open cover of L and f : |K| → |L| is
continuous, we get that the preimage of those opens stars under f is an open
cover of |K|. Because |K| is compact we can use Lebesgue’s lemma and pick
a Lebesgue number δ of the covering. If we choose n large enough such that
diam(Kn) < δ/2, then given a vertex u ∈ Kn, the open star at u satisfies
diam(star(u,Kn)) < δ =⇒ star(u,Kn) ⊆ f−1(star(v, L)) for some vertex
v ∈ L as desired.

The simplicial approximation theorem is one of the key parts in our path
to proving the classification theorem.

Corollary 2.20. The set of homotopy classes from one triangulable space to
another is at most countable.

Proof. By the simplicial approximation theorem, any continuous function
f : |K| → |L| is homotopic to a simplicial map from s : |Kn| → |L| for some
n ∈ N. Since simplicial maps are completely determined by their effect on the
vertices and that vertices map to vertices, there are only finitely many pos-
sible such s for at a given number of barycentric subdivisions. Because there
are countably many possible barycentric subdivisions, there exists countably
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many simplicial maps from some |Kn| and hence at most countably many
homotopy classes.

Theorem 2.21. Sn is simply connected for n ≥ 2.

Proof. Triangulate Sn by the boundary of an (n + 1) simplex σ, denoted Σ,
and let I = [0, 1]. Let α : I → Sn be a loop based at p and since Sn is path-
connected we can from Theorem 1.12 w.l.o.g. assume that p is a vertex of Σ.
By the simplicial approximation theorem, α is homotopic to some simplicial
function s : |Im| → Sn for some m. This is a homotopy rel {0, 1} since s(0)
and s(1) must lie in the carrier of α(0) = α(1) which is p since p is a vertex.
Since s is a simplicial map, it is linear between all vertices of Σ and thus only
attains values on the edges of Σ. In particular the antipodal point −p of p,
corresponding to the barycentre of the simplex spanned by all other vertices
of Σ, does not lie on an edge because for n ≥ 2, Σ has more than 3 vertices.
Hence

F (x, t) =
(1− t)s(x) + tp

||(1− t)s(x) + tp||
is a homotopy from s to the constant path at p rel {0, 1} and thus [α] = [s] =
[p] in π1(Sn, p) so Sn is simply connected.

2.3 The edge group

Given a space X that is triangulated by some simplicial complex K, we
can determine π1(X) by calculating π1(|K|) since the groups are isomorphic.
This will in turn be determined by constructing two other isomorphic groups.
The first of them is constructed as follows.

A sequence of vertices v0v1 · · · vn in K where each pair vivi+1 span a
simplex of K is called an edge path in K. If v0 = vn = v, then the sequence
is called an edge loop based at v in K. To mimic that two loops in π1(|K|)
are equivalent if there is a homotopy between them, we say that two edge
loops are equivalent if they differ by finitely many relations of the following
type. A double vertex uu is equivalent to u. If uvw span a simplex then
uvw is equivalent to uw. Intuitively, this allows us to replace two sides of a
triangle by the opposite third side and to disregard a path that goes back and
forth along an edge. Denote the equivalence class of the edge loop vv1 · · · v
by {vv1 · · · v}. We define the multiplication of two equivalence classes by
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{vv1 · · · vnv} ·{vw1 · · ·wmv} = {vv1 · · · vnvw1 · · ·wmv}. The identity element
is {v} and the inverse of {vv1 · · · vnv} is {vvn · · · v1v}.

Definition 2.22. The group described above is called the edge group of K
based at v and is denoted by E(K, v).

Theorem 2.23. E(K, v) is isomorphic to π1(|K|, v).

Proof. Consider an edge loop vv1 . . . vm−1v in K. From this, we can consider
a corresponding loop α in |K| by letting α(0) = α(1) = v, α(i/m) = vi for i =
1, 2, . . .m−1 and extending it linearly between those points. Since equivalent
edge paths correspond to homotopic loops, we can define φ : E(K, v) →
π1(|K|, v) by φ({vv1 . . . vm−1v}) = [α] which clearly is a homomorphism. We
want to show that φ is even an isomorphism. To show surjectivity, we pick
a loop α : [0, 1] → |K| based at v and consider a complex I triangulating
[0, 1] with only the end points as vertices. By the simplicial approximation
theorem, there exists n ∈ N and a simplicial map s : |In| → |K| that is
homotopic to α. Denoting vi = s(i/2n), we get φ({vv1 . . . v2n−1v}) = [s] =
[α]. For injectivity, we consider an edge loop vv1 . . . vmv that corresponds to
an edge loop α that is homotopic to the constant loop at v via a homotopy F .
Must show vv1 . . . vmv is equivalent to v. We note that F : [0, 1]×[0, 1]→ |K|
satisfies

F (x, 0) = α(x), F (x, 1) = F (0, t) = F (1, t) = v.

This can be expressed as F sending the lower edge of the complex I × I in
Figure 6 linearly to |K| with F (ai) = vi for ai = (i/(m+ 1), 0) and the outer
edges constantly mapped to the vertex v. We argue that the edge paths
aa1a2 . . . amd and abcd are equivalent in I × I. Letting ∼ denote the relation
of equivalent edge loops, we get

a(bcd)am . . . a2a1a ∼ a(bd)am . . . a1a ∼ ab(amdam)am−1 . . . a1a

∼ a(bam)am−1 . . . a1a ∼ ab(am−1amam−1)am−2 . . . a1a

∼ a(bam−1)am−2 . . . a1a

where the brackets indicate on what part of the edge loop a equivalence
relation will be used. Continuing the same procedure of eliminating parts of
the lower edge, we get after finitely many steps to

a(ba1)a ∼ ab(aa1a) ∼ aba ∼ a

and hence abcd ∼ aa1 . . . amd.
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b c

da1 a2 am

Figure 6: The complex I × I.

Now consider the complex (I×I)k, we show that the edge path traversing
the lower edge, denoted E1, is still equivalent to the edge path traversing
the other three edges, denoted E2. Inductively, we may assume they are
equivalent in (I × I)k−1. Since all edges of (I × I)k−1 are still present in
(I × I)k, just divided in half, the result follows if we can show that the
relations used in (I × I)k−1 still can be used in (I × I)k. Considering the
complex in Figure 7, we must show (adc)(cda) ∼ a and (aeb)(bfc) ∼ adc.
The first relation follows via

ad(cc)da ∼ a(dcd)a ∼ ada ∼ a

and the second via

ae(bb)fc ∼ a(eb)fc ∼ aeg(bf)c ∼ ae(gbg)fc

∼ (aeg)fc ∼ a(gfc) ∼ (ag)c

∼ a(dgc) ∼ adc.

Hence E1 and E2 are equivalent in (I×I)k. Now we may use the simplicial
approximation theorem to get a simplicial map S : |(I × I)n| → |K| that
simplicially approximates F . Since the relations defining edge equivalence
are in terms of spanning a simplex, a simplicial map will map equivalent
edge paths to equivalent edge paths. Since F is constantly equal to v on E2,
S maps E2 to the constant loop at v. On E1, since F (ai) = vi, this forces
S to map every extra vertex created between ai and ai+1 by the barycentric
subdivision to either vi or vi+1. Hence S maps E1 to an edge loop equivalent
to vv1 . . . vmv. Thus vv1 . . . vmv ∼ v and φ is injective.

17



a d c

e
g

f

b

Figure 7: A barycentrically subdivided triangle.

From E(K, v), we can construct another group that is easier to determine
by using even more of the graph structure of the 1-simplex of K. Recall that
a tree is a graph where any two vertices is connected by exactly one path.
If we define a partial order on trees in a complex K by inclusion, we get the
following lemma.

Lemma 2.24. A maximal tree contains all the vertices of a connected com-
plex K.

Proof. Let T be a maximal tree in K and assume that T does not contain
the vertex v. Now pick a vertex u in T . Since |K| is path-connected, there
exists an edge path uv1 · · · vnv in K from u to v. Let vi be the last vertex
not in T , possibly v. Form T ′ by adjoining vi and the edge spanned by vi−1
and vi to T . Then T ′ is a tree that strictly includes T , a contradiction to the
maximality of T . Hence T contains all the vertices of K.

Let L denote the simplex for a such a maximal tree in K. Since there are
no loops in a tree, any edge loop in L will traverse each edge equally many
times in either direction and hence be equivalent to the constant loop. Thus
any edge loop in L will not contribute to E(K, v). Let v0 = v and list all
the edges in K as v0, · · · , vm and let G(K,L) be the group determined by
the following generators and relations. For each ordered pair of vertices vi, vj
that span a simplex of K, there is a generator gij. Now gij = 1 if vi, vj span
a simplex of L and gijgjk = gik if vi, vj, vk span a simplex of K.

Theorem 2.25. G(K,L) is isomorphic to E(K, v).

Proof. Let Ei be the edge path in L from v to vi for each vertex of K and
define φ : G(K,L) → E(K, v) by φ(gij) = {EiE−1j }. If vi, vj span a simplex
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of L, then {EiE−1j } is an edge loop in L and hence equal to the identity since
L is a tree. If vi, vj, vk span a simplex of K, then

φ(gij)φ(gjk) = {EiE−1j }{EjE−1k } = {EiE−1j EjE
−1
k }

= {EivjE−1k } = {EiE−1k } = φ(gik)

where we used that {vivjvk} = {vivk}. Hence φ is a well defined homo-
morphism. Now define θ : E(K, v) → G(K,L) by θ({vvi1vi2 . . . vinv}) =
g0i1gi1i2 · · · gin0. By an analogue argument as for φ we see that θ is also a
homomorphism. We now argue that in fact φ is invertible with inverse θ and
hence an isomorphism. θ(φ(gij)) = θ({EiE−1j }) = gij since any consecutive
vertices in Ei and Ej span a simplex of L. Since θφ is the identity on the
generators of G(K,L), it is the identity on the whole group. Furthermore,
writing {vvi1vi2 . . . vinv} = {E0E

−1
i1
}{Ei1E−1i2 } . . . {EinE

−1
0 }, we see that φθ

is the identity on each factor of the product and since it is a homeomorphism,
it is also the identity on the entire edge loop.

Before turning to our final main tool for calculating the fundamental
group, we wish to see what we can do so far.

Example 2.26. Since a complex K consists of finitely many simplexes, there
are only finitely many generators and relations for G(K,L). Hence if X is a
triangulable space, then π1(X) is finitely presented.

Example 2.27. Consider a bouquet of n circles, that is, n circles glued
together at a common point. This can be triangulated by a complex K
consisting of the boundary of n triangles all meeting at a common vertex
v. Take a maximal tree L consisting of all the vertices as well as the edges
from v to all those vertices. Then each triangle has two edges in L and
one in K \ L. The non-trivial generators of G(K,L) is then in bijective
correspondence with those n edges not in L. Since K does not have any
simplexes of higher dimension, there are no relations between them. Hence
G(K,L) is a free group on n generators. In particular, for n = 1, we get the
following result.

Theorem 2.28. π1(S1) = Z.

Our final tool for calculating fundamental groups will allow us to deter-
mine the fundamental group of a more complicated structure by considering
the fundamental group of smaller subsets of the original space.
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Theorem 2.29 (The Seifert-van Kampen theorem). Let J,K be simplicial
complexes in Rn where |J |,|K| and |J ∩ K| are path-connected. Let also
j : |J ∩ K| → |J | and k : |J ∩ K| → |K| be the inclusion mappings and v
a vertex of |J ∩ K|. Then π1(|J ∪ K|, v) = π1(|J |, v) ∗ π1(|K|, v) with the
additional relation that j∗(α) = k∗(α) ∀α ∈ π1(|J ∩ K|, v). Here ∗ denotes
the free product of groups.

Proof. Let T0 be a maximal tree in |J ∩K| and extend it to maximal trees T1
in |J | and T2 in |K|. By Theorem 2.23 and 2.25, π1(|J ∪K|, v) is generated
by generators gij corresponding to edges of J ∪ K \ T1 ∪ T2 since T1 ∪ T2
is a maximal tree in |J ∪ K|. These generators have relations gijgjk = gik
corresponding to each 2-simplex of |J ∪ K|. But this group can also be
described by defining generators hij for each edge of J \ T1 and fij for each
edge of K \ T2, subject to hijhjk = hik and fijfjk = fik if they span a 2-
simplex of J or K respectively and hij = fij if they correspond to the same
edge of J ∩K. Since the edges of J ∩K \ T0 generate G(J ∩K,T0), j∗ of an
edge in J ∩ K is some hij and k∗ of an edge in J ∩ K is some fij, the last
relation can be rephrased as j∗(α) = k∗(α) ∀α ∈ π1(|J ∩K|, v). Hence the
statement is proven.

Note that this is not the most common nor general version of the Seifert-
van Kampen theorem. For this more general approach, see [8].

Example 2.30. Let T = R2/Z2 denote the torus. Following the notation
from the Seifert-van Kampen theorem, we let K be a triangle and J a trian-
gulation of the torus with the interior of that triangle removed, see Figure 8.
Then J∩K is the edges of a triangle and J∪K is a triangulation of the torus.
Now |K| is convex so π1(|K|, v) = 1. For |J |, the space deformation retracts
onto its boundary which becomes a bouquet of two circles, hence π1(|J |, v)
is a free group on two generators by Example 2.27. For the extra relations,
we need to consider a single loop in |J ∩K|. In |K| this is homotopic to the
identity since |K| is simply connected. In |J |, this is homotopic to βγβ−1γ−1.
Hence by Seifert-van Kampen, the fundamental group of the torus is given
by 〈β, γ|βγβ−1γ−1 = v〉 = Z2.
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Figure 8: Complex triangulating a punctured torus.

3 Simplicial homology

3.1 Construction of homology groups

Even though the Seifert-van Kampen theorem gives us a strong tool for
determining the fundamental group of a space in terms of generators and
relations, it is in principle hard to determine if two different presentations
of a group determine the same group or not. It has even been proven that
an algorithm to determine whenever two words in a presentation determine
the same group element does not exist, see [3]. When simplifying these
presentations, another invariant of topological spaces called homology groups
will come into play and that is what we will study in this section.

At first, we need to define orientation for a simplex as well as induced
orientations.

Definition 3.1. Let v0, . . . , vk be an ordering of the vertices for some k-
simplex σ, written σ = (v0, . . . , vk). We say that two such orderings are
equivalent if one can be obtained from the other by an even permutation.
The equivalence classes obtained is then called the possible orientations of
σ. A simplex with a specified orientation will be called an oriented simplex.

We note that for a given k-simplex, there are exactly two possible orien-
tations. Only exception is if k = 0. In agreement with intuition, a vertex has
only one orientation. An orientation of a simplex also induces an orientation
of its faces in the following way.
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Definition 3.2. Let (v0, . . . , vk) = σ and let τ be the simplex spanned by
all the vertices of σ except vi. For i even, we let τ be oriented by the natural
ordering v0, . . . , vi−1, vi+1, . . . , vk. For i odd, we take the opposite orientation.

Example 3.3. Consider a triangle with vertices v0, v1, v2 determining its
orientation. One can check that the intuitive orientations of the edges as
(v0, v1), (v1, v2) and (v2, v0) is indeed obtained by the above definition.

From a simplicial complex, we can now define the following group.

Definition 3.4. Let K be a simplicial complex. Define the qth chain group
of K, denoted Cq(K), as the free abelian group generated by all the oriented
q-simplexes of K, subject to the relation that σ+ τ = 0 if they represent the
same simplex but with opposite orientations. An element in Cq(K) is called
a q-dimensional chain.

A q-chain can be written as a formal linear combination λ1σ1 + · · ·+λnσn
where σi is an oriented q-simplex and λi ∈ Z. We also note that (−λ)σ =
λ(−σ) where −σ stands for σ with opposite orientation. We can now define
a homomorphism on Cq(K) as follows.

Definition 3.5. Let K be a simplicial complex. The boundary homomor-
phism ∂ : Cq(K) → Cq−1(K) is defined such that for a given oriented q-
simplex, it gives the sum of its (q − 1)-dimensional faces with their induced
orientation, i.e.

∂(v0, . . . , vq) =

q∑
i=0

(−1)i(v0, . . . , vi−1, vi+1, . . . , vq).

It is then extended linearly to an arbitrary element of Cq(K).

We see that ∂ is a well defined homomorphism since if the orientation of σ
is reversed, then so is the orientation of all its faces and hence ∂σ+∂(−σ) = 0.
If q = 0, then we define the boundary of a point to be zero. Thus Cq(K) = 0
if q < 0. An important property of the boundary homomorphism can be
summarized as that a boundary has no boundary.

Lemma 3.6. Let ∂2 = ∂ ◦ ∂ : Cq+1(K) → Cq−1(K). Then ker(∂2) =
Cq+1(K).
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Proof. It suffices to prove ∂2(v0, . . . , vq+1) = 0 since elements of that form
generate Cq+1(K). Now

∂2(v0, . . . , vq+1)

= ∂

q+1∑
i=0

(−1)i(v0, . . . , vi−1, vi+1, . . . , vq+1)

=

q+1∑
i=0

(−1)i
i−1∑
j=0

(−1)j(v0, . . . , vj−1, vj+1, . . . , vi−1, vi+1, . . . , vq+1)

+

q+1∑
i=0

(−1)i
q+1∑
j=i+1

(−1)j−1(v0, . . . , vi−1, vi+1, . . . , vj−1, vj+1, . . . , vq+1)

=

q+1∑
i=0

(−1)i
q+1∑
j=0
j 6=i

(−1)j−1(1− 1)(v0, . . . , vj−1, vj+1, . . . , vi−1, vi+1, . . . , vq+1)

= 0.

Definition 3.7. For ∂ : Cq(K)→ Cq−1(K), we denote ker(∂) = Zq(K) and
call it the group of q-cycles of K. If ∂ : Cq+1(K) → Cq(K), we denote its
image Im(∂) = Bq(K) and call it the group of bounding q-cycles of K.

We note that Z1(K) is generated by the elementary 1-cycles of the form
(v1, v2) + (v2, v3) + . . . (vk, v1). By Lemma 3.6, Bq(K) is a subgroup of Zq(K)
and hence we can make the following definition.

Definition 3.8. Let K be a simplicial complex. The qth homology group of
K is defined as the quotient group

Hq(K) = Zq(K)/Bq(K).

Elements of Hq(K) are called homology classes, denoted [z] for z ∈ Zq(K),
and two q-cycles in the same homology class are called homologous cycles.

For the reader with more knowledge in abstract algebra, the definitions
of Zq(K) and Bq(K) can be remembered via the short exact sequence

0 Zq(K) Cq(K) Bq−1(K) 0∂
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where the unspecified morphisms are inclusion on the first two and the only
possible on the last. Homology groups can be defined for topological spaces
without the necessity of any underlying simplicial complex, for more on that,
see e.g. [8]. By construction, Hq(K) is a finitely generated abelian group.
Such groups can by the fundamental theorem of finitely generated abelian
groups be decomposed as Zn ⊕ Zp1 ⊕ · · · ⊕ Zpk where pi|pi+1, see [2].

Definition 3.9. Let Hq(K) = Zn⊕Zp1 ⊕ · · ·⊕Zpk . Then n is called the qth
Betti number of K, denoted βq.

3.2 Basic properties

Some homology groups can be expressed in terms of already known objects
relating to the simplicial complex.

Theorem 3.10. H0(K) is isomorphic to Zn where n is the number of con-
nected components of |K|.

Proof. Since C−1(K) = 0, Z0(K) = C0(K). Hence we only need to determine
Bq(K). Let v, w be two vertices in the complex K that lie in the same
component of |K|. Then there exists an edge path vv1 . . . vmw from v to w in
K. The 1-cycle (v, v1) + (v1, v2) + · · ·+ (vm, w) has then the boundary v−w,
hence v is homologous to w. If the vertices lie in different components then
they are not homologous since the boundary of any 1-cycle always contributes
with an even number of vertices in each connected component. Finally, v is
not homologous to λw for any λ 6= 1 since after taking the boundary of a
1-cycle, there are equally many vertices appearing positive as negative.

For our purposes, the main result about homology groups is the following.

Theorem 3.11. Let K be a connected simplicial complex. Then H1(K) is
isomorphic to π1(|K|)/[π1(|K|), π1(|K|)] where [π1(|K|), π1(|K|)] is the com-
mutator subgroup.

Proof. Pick a vertex v of K as base point. By Theorem 2.23, we can con-
sider E(K, v) instead of π1(|K|, v). Given an edge loop α = vv1 . . . vkv, we
denote the corresponding 1-cycle by ζ(α) = (v, v1) + (v1, v2) + · · · + (vk, v)
where (vi, vi+1) is omitted if vi = vi+1. Define φ : E(K, v) → H1(K) by
φ({α}) = [ζ(α)]. Note that equivalent edge paths give homologous 1-cycles.
For example, if (w1, w2, w3) is an oriented 2-simplex, then ∂((w1, w2, w3)) =
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(w1, w2) + (w2, w3) − (w1, w3) so φ({w1, w2, w3}) = φ({w1, w3}). Hence φ is
a well defined homomorphism. We first show that φ is surjective by prov-
ing that any elementary 1-cycle is in Im(φ). Let z1 = (w1, w2) + (w2, w3) +
· · · + (wn, w1). Defining γ as an edge path in K from v to w1 gives that
φ({γw1w2 . . . wnγ

−1}) = z1 as desired. Since H1(K) is abelian, the com-
mutator subgroup of E(K, v) is included in ker(φ). If we show that any
element in ker(φ) also is in [E(K, v), E(K, v)], then the result follows from
the first isomorphism theorem. Pick α ∈ ker(φ), then ζ(α) ∈ B1(K), say
ζ(α) = ∂(λ1σ1 + · · · + λmσm) where σi are oriented 2-simplexes of K. Now
assume σi = (ai, bi, ci) and define γi as an edge path in K from v to ai. Then
{γiaibiciγ−1i } = {v} and therefore also

{β} =
m∏
i=1

{γiaibiciγ−1i }λi = {v}.

Hence {αβ−1} = {α}. But since ζ(γiaibiciγ
−1
i ) = ∂(aibici) we get ζ(αβ−1) =

0. By construction of ζ, any such edge loop mapping to 0 must traverse
the oriented edge (vi, vi+1) equally many times as (vi+1, vi). Hence, recalling
θ : E(K, v) → G(K,L) from Theorem 2.25, we get that θ({αβ−1}) equals
a product of elements where each element occur equally many times as its
inverse. Thus θ({αβ−1}) ∈ [G(K,L), G(K,L)], which implies that {α} =
{αβ−1} ∈ [E(K, v), E(K, v)] since θ is an isomorphism.

Since the number of components of a topological space as well as its
fundamental group is a topological invariant of the space, so is the zeroth
and first homology group by the above theorems. In general, the homology
group of any order is an invariant, for a proof, see e.g. [1]. We will now
take a look at two examples for how to determine the homology groups of a
simplicial complex.

Example 3.12. Consider a connected graph G with v vertices and e edges.
Since |G| is connected, H0(G) = Z and β0 = 1 by Theorem 3.10. To deter-
mine H1(G), we use Theorem 2.25 and 3.11 saying that H1(G) is isomorphic
to G(G,L)/[G(G,L), G(G,L)]. Since G has v vertices, there are v − 1 edges
in the spanning tree L and thus e − (v − 1) = e − v + 1 edges determining
generators for G(K,L). Since a graph does not have any 2-simplexes, there
are no additional relations and G(K,L) is a free group on e−v+1 generators.
Therefore H1(G) = Ze−v+1 and β1 = e− v + 1. Since there are no simplexes
of higher order, Hq(G) = 0 for q ≥ 2.
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Another interesting structure that we can determine the homology groups
of is a simplicial complex which can be obtained as the cone of another
complex.

Definition 3.13. Let v0, . . . , vm be points in Rn, seen as a subspace of Rn+1.
Let v = (0, 0, . . . , 0, 1) ∈ Rn+1 and call the simplex spanned by v0, . . . , vm for
σ. The cone on σ is the simplex determined by the points v0, . . . , vm, v in
Rn+1. The cone on a complex K in Rn is a complex CK in Rn+1 obtained by
taking the cone on each simplex of K. We call v the apex of the cone CK.

Note that any other point of Rn+1\Rn could also have been used to define
the cone since the relations between all the vertices would still be the same
and thus their polyhedra would be homeomorphic.

Example 3.14. Let K be a simplicial complex which is also a cone, say
K = CL for some complex L with apex v. Since a cone is connected,
H0(K) = Z by Theorem 3.10. For q > 0, define d : Cq(K) → Cq+1(K)
by d(σ) = (v, v0, . . . , vq) for an oriented q-simplex σ = (v0, . . . , vq) ∈ L and
d(σ) = 0 for any other q-simplex in K. Since d(σ) + d(−σ) = 0, d is a
homomorphism if we extend in linearly to any q-chain in Cq(K). We now
argue that ∂d(σ) = σ − d∂(σ) for any oriented q-simplex σ. If σ ∈ L, then

∂d(σ) = ∂(v, v0, . . . , vq)

= (v0, . . . , vq) +

q∑
i=0

(−1)i+1(v, v0, . . . , vi−1, vi+1, . . . , vq)

= σ − d∂(σ).

If σ is not in L, then one vertex of σ must be v. Therefore we may assume
σ = (v0, . . . , v, . . . , vq) with v in the jth position. Since d(σ) = 0, we need to
show d∂(σ) = σ. But since any oriented simplex containing the vertex v is
in ker(d), we get

d∂(σ) = d((−1)j(v0, . . . , vj−1, vj+1, . . . , vq))

= (−1)j(v, v0, . . . , vj−1, vj+1, . . . , vq) = σ.

Hence the relation ∂d(σ) = σ − d∂(σ) holds for any q-chain by linearity.
Now let z ∈ Zq(K). Then ∂d(z) = z − d∂(z) = z. Hence z ∈ Bq(K), so
Zq(K) = Bq(K), which in turn shows that Hq(K) = 0 for q > 0.
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4 The classification theorem

4.1 Notes on surfaces

We have now built up enough machinery to turn our focus directly towards
the classification theorem. Before we can state our first version of the theo-
rem, we need some definitions.

Definition 4.1. An n-dimensional topological manifold M is a Hausdorff,
second countable space where each point x ∈M has a neighbourhood home-
omorphic to Dn = {x ∈ Rn ; ‖x‖ < 1}.

Definition 4.2. A closed surface is a compact and connected 2-dimensional
manifold.

Hence objects such as the sphere S2, the torus T and even non-orientable
surfaces such as the Klein bottle are closed surfaces. On the other hand,
the Möbius strip is not since it has a boundary where points does not have
a neighbourhood homeomorphic to D2. Note also the distinction between a
closed surface and a closed topological space. One might think that a more
suitable name for closed surfaces would be compact surfaces since that is the
actual requirement in the definition. That is however a slightly larger class
of surfaces.

Definition 4.3. A compact surface S is a compact and connected 2-dimensional
manifold that can have boundary. The boundary of S, denoted ∂S, is defined
as points with a neighbourhood homeomorphic to D2

+ = {(x, y) ∈ D2|x ≥ 0}.

Before stating our main theorem, we will mention two small facts about
compact surfaces that will be useful later.

Lemma 4.4. The boundary and interior of a compact surface are disjoint.

Proof. Let S be a compact surface and assume that its boundary and interior
are not disjoint. Then there exists x ∈ S having neighbourhoods U and V
such that f : D2

+ → U and g : D2 → V with f(0) = g(0) = x are homeomor-
phisms. By replacing D2

+ with half discs of smaller radius if necessary, we
may assume f(D2

+) ⊆ V . Define φ : g−1f : D2
+ → D2. Then φ(D2

+) is a neigh-
bourhood of 0 in D2. Pick another disc D ⊂ D2 centred at the origin with
small enough radius R such that D ⊂ φ(D2

+). Let r : φ(D2
+) \ {0} → ∂D,

r(x) = R (x/‖x‖) be radial projection. Since r is the identity on ∂D, it
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induces a surjective homomorphism r∗ : π1(φ(D2
+) \ {0}) → π1(∂D). Since

φ(D2
+) \ {0} is homeomorphic to D2

+ \ {0} via the homeomorphism φ−1 and
D2

+ \ {0} deformation retracts onto any point in {(x, y) ∈ D2
+ \ {0}|x > 0},

we get π1(φ(D2
+)\{0}) = 1. But ∂D is homeomorphic to S1 and by Theorem

2.28 this gives π1(∂D) = Z. Thus we get a contradiction from the surjectivity
of r∗.

Corollary 4.5. Let h : S1 → S2 be a homeomorphism between two compact
surfaces. Then h is also a homeomorphism from ∂S1 to ∂S2. In particular,
homeomorphic surfaces have homeomorphic boundary.

Proof. Pick x in the interior of S1 and let f : D2 → U be a homeomorphism
onto a neighbourhood of x. Since h is a homeomorphism, h(U) is a neigh-
bourhood of h(x) in S2 and fh : D2 → h(U) is a homeomorphism. Thus
h(x) is in the interior of S2 and h maps interior of S1 into interior of S2. By
the same logic applied to h−1, the interior of S2 is mapped to the interior
of S1 and hence the interior of S1 is mapped bijectively onto the interior of
S2. Since the interior and the boundary of a compact surface are disjoint, h
must map ∂S1 to ∂S2 bijectively as well.

We now turn to the statement of the main theorem of this thesis.

Theorem 4.6 (The classification theorem for closed surfaces). Any closed
surface is homeomorphic to either the sphere S2, the sphere with a finite
number of handles added or the sphere with a finite number of discs removed
and replaced by Möbius strips. Furthermore, no pair of those surfaces are
homeomorphic.

The surfaces mentioned in the classification theorem will be called the
standard surfaces. We do however need to clarify what we mean by adding
handles. In short, by adding a handle, we mean removing two disjoint discs
from a closed surface S and gluing opposite ends of a cylinder in their place.
By gluing we mean to take the union of the spaces together with the equiv-
alence relation that identifies the appropriate boundary circles and giving
it the identification topology. The procedure can also be described in the
following way. Consider a closed disc in S containing the two removed discs
in its interior. Removing that disc and then gluing the cylinder to it, we get
a surface as in Figure 9, clearly homeomorphic to a punctured torus. Hence,
adding a handle can be described as removing an open disc from S and T
respectively and forming the space obtained by gluing their boundary circles
together. We therefore make the following definition.
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Figure 9: A punctured torus.

Definition 4.7. Let S1 and S2 be two closed surfaces. Their connected
sum, denoted S1#S2, is defined as the surface obtained by removing an open
disc from both S1 and S2 and then gluing their resulting boundary circles
together.

We will see in the last section that this is a well defined operation, that
no matter where we choose the discs on the surfaces, the connected sum
gives homeomorphic surfaces. Replacing discs with Möbius strips can also
be described in the language of connected sums, but for that, we need to
define another closed surface.

Definition 4.8. The projective plane, denoted P, is defined as the closed
surface obtained by removing an open disc from S2 and gluing in a Möbius
strip along the resulting boundary circle.

The definition of the projective plane is done to suit the applications we
have in mind for it. A more common definition would be to take equiva-
lence classes of points in S2 with the equivalence relation that (x1, y1, z1) ∼
(x2, y2, z2) if there exists λ ∈ R such that (x1, y1, z1) = λ(x2, y2, z2). The
interested reader can check that this gives the projective plane. Going back,
we see that removing an open disc from S and replacing it with a Möbius
strip can be explained as forming the connected sum S#P via the same logic
as for adding a handle. Since S2#T is homeomorphic to T and S2#P is home-
omorphic to P, we get the following version of the classification theorem.

Theorem 4.9. Any closed surface is homeomorphic to either S2, a connected
sum of finitely many tori or a connected sum of finitely many projective
planes. Furthermore, non of these surfaces are homeomorphic to another.
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A question that can come to mind when considering the classification
theorem is what happens if we were to both form the connected sum with
tori and projective planes. This is the content of the next lemma.

Lemma 4.10. The space obtained by removing m disjoint discs from S2 and
replacing them with Möbius strips as well as adding n handles is homeomor-
phic to S2 with 2n+m disjoint discs removed and replaced by Möbius strips.
In other words, P#P#P is homeomorphic to P#T.

To prove this, we will use another lemma.

Lemma 4.11. Let K denote the Klein bottle as defined by the identification
made on the square in Figure 3. Then P#P is homeomorphic to K.

Proof. We first wish to acquire knowledge about P#P. By the second charac-
terisation of the projective plane, we se that it can be obtained by considering
the northern hemisphere S2

+ = {(x, y, z) ∈ S2|z ≥ 0} with the relation that
diametrically opposite points on the equator should be identified. Since S2

+

is homeomorphic to D2 which in turn is homeomorphic to a square, P can be
obtained by doing identifications as in Figure 10. Also, considering P as D2

with diametrically opposite points identified on its boundary, we can when
removing an open disc from P choose the disc D = {(x, y) ∈ D2| |x| > 1/2}
and we see that what remains of P is homeomorphic to the Möbius strip.
Thus P#P is the space obtained by identifying the edges of two Möbius
strips. But recalling the Klein bottle K, we see that if we consider the square
with identifications defining K, we can divide the square into three rectan-
gles. The middle rectangle becomes a Möbius strip by the identification of
two of its edges and similarly the other two rectangles also form a single
Möbius strip after the identifications, see Figure 11 for clarification. Hence
K is obtained by identifying the boundary circles of two Möbius strips, thus
P#P is homeomorphic to K.

Figure 10: A projective plane. Figure 11: A divided Klein bottle.
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proof of Lemma 4.10. By the preceding lemma, it suffices to show P#T is
homeomorphic to P#K. This will be done by showing that both spaces
correspond to identical polygons in the plane with identifications on their
edges. In Figure 12, we pick a disc with boundary d in a Klein bottle and
a projective plane. Gluing the resulting spaces together in the direction
indicated by the arrows on the bounding circles, we get a hexagon with
edges to be identified in pairs. The same thing is then done for a torus
and a projective plane in Figure 13. To prove that the two hexagons with
identifications correspond to the same closed surface, we use a cut and paste
technique. Consider the hexagon obtained from the connected sum of a
torus and a projective plane. Insert a new edge denoted d as indicated in the
first polygon in Figure 14. We can then do the identifications along the edges
labelled c to get a new hexagon. In that hexagon, we make a new cut to form
an edge labelled e so that we can glue the edges labelled a together. This
creates a hexagon with identical identifications on its edges to that of P#K,
the only difference being that all arrows are pointing in the opposite direction.
But since those identifications give the same closed surface (intuitively, one
hexagon can be turned up side down to get the other), the statement is
proven.

a

b

a

b
d

d

c

c

c

c

ab

a

b

Figure 12: Connected sum of a Klein bottle and a projective plane.

A more detailed description on how to read of the identifications in the
above figures is given at the start of the last section on polygonal represen-
tations. Recalling the definition of a monoid as a group where we do not
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Figure 13: Connected sum of a torus and a projective plane.

c

c

ab

a

b d

a

bd

b

a e

e

db

d

b

d e

Figure 14: The cut and paste needed to go from P#T to P#K.

require elements to have inverses, we can state another form of the classifi-
cation theorem.

Theorem 4.12. The set of closed surfaces forms a commutative monoid
under taking connected sum with the sphere as identity element. Furthermore,
it has presentation

〈T,P|P#P#P = P#T〉 .

4.2 Combinatorial surfaces

A key fact for our proof of the classification theorem is the following theorem
which allows our to utilize our knowledge about simplicial complexes.

Theorem 4.13. Any closed surface can be triangulated.

This will not be proven here but a proof can be found in [5]. Essential
for that proof is a generalization of the classical Jordan-curve theorem.
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Theorem 4.14 (The Jordan-Schönflies theorem). Any homeomorphism from
a simple closed curve in R2 onto another can be extended to a homeomorphism
of the whole plane.

In particular, any simple closed curve in R2 bounds a region homeomor-
phic to D2. A proof of this can in turn be found in [9]. For completeness, we
also state the usual Jordan curve theorem.

Theorem 4.15 (The Jordan curve theorem). Any simple closed curve in R2

separates it.

We note that the Jordan curve theorem works with R2 replaced with S2

as well. For a proof of both cases for the Jordan curve theorem, see [7].
Since any closed surface can be triangulated, we can turn our focus to

the simplicial complex that triangulates it rather then the surface itself. We
therefore wish to obtain knowledge about the structure of simplicial com-
plexes that can triangulate a closed surface. A such example is what is
called a combinatorial surface.

Definition 4.16. A combinatorial surface is a simplicial complex K with
the properties that it has dimension 2, any two vertices can be connected by
an edge path, each edge is a face of exactly two triangles and each vertex can
be seen the apex of a simple polygonal curve in K.

Figure 15: Structure around a vertex in a combinatorial surface.

The interesting part of combinatorial surfaces is that any complex trian-
gulating a closed surface is indeed a combinatorial surface.

Theorem 4.17. If h : S → |K| is a triangulation of the closed surface S,
then the complex K is a combinatorial surface.

Proof. Connectedness: The connectedness property follow from that any
maximal tree in K must contain all the vertices of K given that |K| is
connected.
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Number of triangles: We then turn to the number of triangles having
a specific edge as its face. Let h : |K| → S be a homeomorphism and σ a
1-simplex in K. Assume first that σ is not the face of any triangle in K.
Pick x in the interior of σ, then there exists a neighbourhood U of h(x) and
a homeomorphism g : U → D2 with gh(x) = 0. Since V = h−1(U) is a
neighbourhood of x, we get that V \ {x} is homeomorphic to D2 \ {0} where
only the last set is connected, a contradiction. If σ is the face of exactly
one triangle in K, then any point x in the interior of σ will clearly have a
neighbourhood homeomorphic to D2

+ and thus also h(x), contradicting that
the interior and boundary of a compact surface are disjoint. Now assume
that n ≥ 3 triangles have σ as a face. Pick x in the interior of σ and con-
sider the embedding of those triangles in R3 with x mapped to the origin.
Call the space Tn. Pick a neighbourhood U of h(x) and a homeomorphism
g : U → D2 with gh(x) = 0. By replacing D2 with discs of smaller radius
if necessary, we may assume that h−1g−1(D2) is a neighbourhood of 0 in Tn.
We can then construct a space T ′n homeomorphic to Tn but with triangles
of smaller side lengths such that T ′n ⊆ h−1g−1(D2). The radial projection
r : h−1g−1(D2) \ {0} → ∂T ′n will then induce a surjective homeomorphism
r∗ : H1(h

−1g−1(D2) \ {0})→ H1(∂T
′
n). Now h−1g−1(D2) \ {0} is homeomor-

phic to D2 \ {0} which deformation retracts onto its boundary S1. Hence
H1(h

−1g−1(D2) \ {0}) = Z. But ∂T ′n is a graph with 2n edges and n + 2
vertices and thus H1(∂T

′
n) = Zn−1 by example 3.12, contradicting the sur-

jectivity of r∗. Thus we have shown that any edge is a face of exactly two
triangles.

Dimension: Next, to show K has dimension 2, we assume K contains
a simplex σ of dimension n ≥ 3. As usual, pick x in the interior of σ
and a neighbourhood U of h(x) such that g : U → D2 with hg(x) = 0 is
a homeomorphism. But we can also pick a neighbourhood V of x and a
homeomorphism f : V → Dn such that f(x) = 0. Let φ = ghf−1 : Dn → D2

and pick a sphere Dn
1 ⊂ Dn such that hf−1(Dn

1 ) ⊂ U . Then φ(Dn
1 ) is

a neighbourhood of the origin in D2. Let D2
2 be a disc such that D2

2 ⊆
φ(Dn

1 ). The radial projection will then induce a surjective homeomorphism
r∗ : π1(φ(Dn

1 )\{0})→ π1(∂D
2
2). Now φ(Dn

1 )\{0} is homeomorphic toDn
1\{0}

which deformation retracts onto its boundary that is homeomorphic to Sn−1.
Since n > 2, π1(Sn−1) = 0. But π1(∂D

2
2) = π1(S1) = Z, contradicting the

surjectivity of r∗.
Vertex structure: Lastly, for the fact that each vertex can be seen as

the apex of a cone with polygonal base, we note that the other properties
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implies that any triangle having that vertex as a face must be a part of such
a cone. The only thing that needs to be ruled out is the existence of several
such layers of triangles having that vertex as a cone. But this follows from a
connectedness argument almost verbatim as in the proof that any edge must
be a face of a triangle.

The first property of closed surfaces that we would like to translate onto
a property of combinatorial surfaces is that of orientability. We remember
that a surface is said to be orientable if there can be defined a continuously
varying unit normal on the surface. For example, a sphere and a torus is
orientable but a Möbius strip is not. Since the Möbius strip is non orientable,
it follows that any surface containing a subset homeomorphic to it is also non
orientable. Hence the projective plane and the Klein bottle are non orientable
closed surfaces. For combinatorial surfaces, we note that the orientation of
a single simplex was defined at the start of the chapter on homology.

Definition 4.18. A combinatorial surface K is said to be orientable if it
is possible to define an orientation on all the triangles in K such that any
two triangles intersecting at an edge will induce opposite orientation on that
edge. Otherwise, the combinatorial surface is called non orientable.

The reader is encouraged to consider any combinatorial surface that can
triangulate the sphere and see that it will be orientable. Similarly, it will not
be possible to find such a triangulation for the Möbius strip. We will show
that any complex triangulating an orientable surface must be orientable. But
we need another definition at first that will be used several times later.

Definition 4.19. Let K be a combinatorial surface and L a 1-dimensional
subcomplex. By thickening L, we mean taking the polyhedron of the sub-
complex of K2 consisting of all simplexes that meet L together with their
faces.

Theorem 4.20. Let h : |K| → S be a triangulation of the orientable surface
S. Then the simplicial complex K is orientable.

Proof. Assume that K is not orientable. Then there exists a sequence of
distinct oriented 2-simplexes σ1, . . . , σk such that σi shares an edge with σi+1

for 1 ≤ i ≤ k − 1 and have compatible orientations but σk share an edge
with σ1, not having compatible orientations. Add simplexes to K in form
of the barycetres of the σi’s, the barycentres of their edges of intersection
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and the edges from σ̂i to those intersection barycentres where the edge is a
face of σi. Those edges forms an elementary 1-cycle L in K when viewed as
a 1-chain. Since all pairs of 2-simplexes are pairwise compatible except for
one pair, thickening L gives a strip homeomorphic to a Möbius strip in |K|,
contradicting that S is orientable.

We now show two other results on thickening 1-dimensional complexes.
But first, we need some preliminaries.

Lemma 4.21. Let A be homeomorphic to the unit disc D2. Then any home-
omorphism g : ∂A→ ∂A can be extended to a homeomorphism on the whole
of A.

Proof. Let h : A → D2 be a homeomorphism. Then we get another homeo-

morphism hgh−1 : S1 → S1 that can be extended to a function f : D2 → D2

as follows. Let f(0) = 0 and f(x) = ‖x‖hgh−1(x/‖x‖) for x ∈ D2\{0}. Then
h−1fh : A→ A will be the sought extension of g.

Lemma 4.22. Let A and B both be homeomorphic to D2 which intersect
along their boundaries in an arc. Then A ∪B is also homeomorphic to D2.

Proof. Let γ = A∩B, α = ∂A \A∩B and β = ∂B \A∩B. View D2 as the

union of the two half-discs D− = {(x, y) ∈ D2|x ≤ 0} and D+ = {(x, y) ∈
D2|x ≥ 0} having boundaries γ′ = D− ∩ D+, α′ = ∂D− \ (D− ∩D+) and
β′ = ∂D+ \ (D− ∩D+). Since both γ and γ′ are homeomorphic to [0, 1],
γ is homeomorphic to γ′. Similarly, α is homeomorphic to α′. By doing
identifications on the end points, we get that γ∪α = γ∪α is homeomorphic to
γ′∪α′ = γ′∪α′. Call that homeomorphism g : ∂A→ ∂D−. Let h1 : D− → D2

and h2 : A → D2 be homeomorphisms. Then f = g ◦ h1 ◦ h−12 : ∂A → ∂A
can be extended to a homeomorphism f̃ : A → A by Lemma 4.21. Thus
F = h−11 ◦ h2 ◦ f̃ : A → D− is a homeomorphism of A and D− sending γ to
γ′. Similarly we get a homeomorphism G : B → D+ sending γ to γ′. Using
the gluing lemma we get a homeomorphism from A∪B to D− ∪D+ = D2 as
desired.

Now, only as small graph theoretical lemma is needed before we can turn
to the thickening complexes again.

Lemma 4.23. Any tree contains a vertex with exactly one edge connected to
it.
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Proof. Let T be a tree and assume every vertex is connected to at least two
edges. Since a tree has a unique path between all its vertices and there are
only finitely many vertices, there exits a path between two vertices containing
a maximum number of edges. Call this path P = v0, v1 . . . , vm. Let w 6= vm−1
be a vertex connected by an edge to vm. If w ∈ P , this contradicts the
uniqueness of path in a tree. If w /∈ P , then v0, v1, . . . , vm, w will be a path
in T containing more edges than P , contradicting the maximality. Hence vm
can have only one edge connected to it.

Definition 4.24. Let K be a simplicial complex and v a simplex in K. The
closed star of v in K, denoted star(v,K) is the union of all simplexes in K
having v as a vertex.

Lemma 4.25. Thickening a tree gives a disc.

Proof. Let K be a simplicial complex and the subcomplex T a tree. If T
consists of a single vertex v, thickening T gives star(v,K2). This, being a
region in R2 enclosed by a simple closed polygonal curve, is homeomorphic to
D2. Now let T be a tree having n vertices and assume that thickening a tree of
fewer vertices gives a disc. Choose a vertex v in T only belonging to one edge
E of T . Then T1 = T \ star(v, T ) is a tree with n−1 vertices, thus thickening
T1 gives a disc D. Thickening T gives D, union with A = star(Ê,K2) and

B = star(v,K2). Now A,B,D are all homeomorphic to D2. Since A ∩D is
an arc and A∩B is an arc, two applications of Lemma 4.22 shows A∪B∪D
is homeomorphic to D2.

Theorem 4.26. Thickening a simple closed polygonal curve gives either a
cylinder or a Möbius strip.

Proof. Let K be a simplicial complex. Let C be a simple closed polygonal
curve in K and E an edge in C. Then T = C \ star(Ê, C) is a tree and
therefore thickening T gives a disc D by Lemma 4.25. Thickening C gives
the union ofD and star(Ê,K2), intersecting in two disjoint arcs. Gluing them
together in one of these arcs give a disc by Lemma 4.22. Thus we get a disc
where we need to identify two disjoint arcs. This is in turn homeomorphic to
a rectangle with the two arcs of the disc mapped to opposite sides. Gluing
these sides together can be done in two different ways, either resulting in a
cylinder or a Möbius strip.

Thickening of complexes will be one of the tools in our main part of the
proof of the classification theorem later.
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4.3 Euler characteristic

One of our main tool for relating a general closed surface to our standard
surfaces will be via their Euler characteristic.

Definition 4.27. Let K be an n-dimensional simplicial complex. The Euler
characteristic of K is defined as the number

χ(K) =
n∑
i=0

(−1)iαi

where αi is the number of i-simplexes in K.

Thus for a graph, its Euler characteristic equals its number of vertices
minus its number of edges and for a combinatorial surface, its number of
vertices, minus its number of edges, plus its number of faces. When explic-
itly calculating the Euler characteristic, we will make use of the following
relations.

Lemma 4.28. Let K ∪ L be a simplicial complex obtained as the union of
the complexes K and L. Then χ(K ∪ L) = χ(K) + χ(L)− χ(K ∩ L).

Proof. This is a direct consequence of the inclusion-exclusion principle ap-
plied to the number of simplexes of each dimension.

The next relation is not as easily proven.

Theorem 4.29. The Euler characteristic is invariant under barycentric sub-
division. I.e. χ(K) = χ(K1) for any simplicial complex K.

Before this can be shown, we need a better way of controlling the barycen-
tric subdivision.

Definition 4.30. Let K be a simplicial complex and σ, τ simplexes in K. If
σ < τ , let L be the subcomplex of the boundary of τ that do not have σ as
a face. The stellar subdivision of σ is then obtained by replacing τ with the
cone with base L and apex σ̂.

Lemma 4.31. Applying stellar subdivision to a simplex and its faces finitely
many times gives the barycentric subdivision of the simplex.
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Proof. The statement trivially holds for a 0-simplex. Let σ be an n-simplex
and assume that the statement holds for simplexes of dimension < n. The
first stellar subdivision of σ creates edges from all the vertices of σ to σ̂. By
the induction assumption, all faces of σ will after finitely many subdivisions
be barycentrically subdivided. The only difference made by the fact that
they are faces of σ is that an edge will be created from the barycentre of
each face to σ̂. Thus obtaining σ1.

Figure 16: Stellar subdivision on a 2-simplex.

Lemma 4.32. The Euler characteristic of a simplex is invariant under
barycentric subdivision.

Proof. Again, it holds trivially for a 0-simplex. Let σ be an (n− 1)-simplex
and assume it hold for all simplexes of dimension < (n− 1). Doing the first
stellar subdivision of σ creates

(
n
0

)
new vertices,

(
n
1

)
new edges,

(
n
2

)
new 2-

simplexes, etc. up to
(
n
n−1

)
new (n−1)-simplexes. All faces of σ are unaltered,

its just the interior of σ that is changed. Therefore the Euler characteristic
of σ is changed by(

n

0

)
−
(
n

1

)
+

(
n

2

)
− · · ·+ (−1)n−1

((
n

n− 1

)
− 1

)
= (1− 1)n − (−1)n + (−1)n

= (−1)n(1− 1)

= 0,

using the binomial theorem. Now let τ be a face of σ of dimension (k − 1).
Doing the stellar subdivision on τ does not change its Euler characteristic
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by assumption. It does however alter an old k-simplex by creating
(
k
0

)
new

edges,
(
k
1

)
new 2-simplexes etc. up to

(
k
k−1

)
new k-simplexes. Hence the total

Euler characteristic is changed by

−
(
k

0

)
+

(
k

1

)
−
(
n

2

)
+ · · ·+ (−1)k

((
k

k − 1

)
− 1

)
= −

((
k

0

)
−
(
k

1

)
+ · · ·+ (−1)k−1

(
k

k − 1

))
+ (−1)k+1

= (1− 1)k − (−1)k + (−1)k+1

= (−1)k(1− 1)

= 0.

Since any stellar subdivision does not change the Euler characteristic, the
barycentric subdivision does not change it either by Lemma 4.31.

Proof of Theorem 4.29. If the complex K consists of a single simplex, then
the result follows from Lemma 4.32. Now assume K consists of n simplexes
and that the statement holds for a collection of < n simplexes. Pick a simplex
L of maximum dimension in K and write K = J ∪ L for some simplicial
complex J consisting of n− 1 simplexes. Using the assumption and Lemma
4.28, we get

χ(K) = χ(J) + χ(L)− χ(J ∩ L)

= χ(J1) + χ(L1)− χ(J1 ∩ L1)

= χ(J1 ∪ L1)

= χ(K1).

We now turn to calculating the Euler characteristic for certain classes of
complexes.

Lemma 4.33. Let G be a connected graph. Then χ(G) ≤ 1 with equality if
and only if G is a tree.

Proof. If G is a tree, then G has one more vertex than edge, giving χ(G) = 1.
If G is a general connected graph, we let L be a spanning graph of G. By
Lemma 2.24, L contains all the vertices of G. Hence L can be obtained from
G by removing a finite number n of edges. Thus χ(G) = χ(L)− n ≤ 1.
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We would like a similar theorem for combinatorial surfaces, but we need
a little more work for that.

Definition 4.34. Let K be a combinatorial surface and T a spanning tree.
The dual graph of T , denoted T ∗, is a 1-dimensional complex with vertices at
the barycentres of 2-simplexes in K. Two vertices in T ∗ determine an edge
in T ∗ if the corresponding triangles in K intersect at an edge not in T .

Lemma 4.35. Let K be a combinatorial surface, T a spanning tree and
N(T ) the thickening of T . Then

a) N(T ) ∪N(T ∗) = |K|,

b) N(T ) ∩N(T ∗) = ∂N(T ),

c) T ∗ is a connected graph.

Proof. To prove a), we note that since |K| = |K2| we have the inclusion
N(T ) ∪ N(T ∗) ⊆ |K|. For x ∈ |K|, let L be the carrier of x in K2. If L is
a vertex of K, then x ∈ T . If L is a part of an edge of K, then either its
an edge of T so x ∈ T , or its a part of an edge of K not in T , giving that
T ∗ goes through that edge. Hence in K2, that edge has four parts where
the outer parts are in N(T ) since they meet vertices in T , and the inner
two parts are in N(T ∗) since an edge of T ∗ goes through there. In any case
x ∈ N(T )∪N(T ∗). If L is a part of a triangle of K, then either that triangle
meets an edge of K or the barycentre of that triangle. In the first case, if the
edge is in T , then |L| ⊆ N(T ) ∪ N(T ∗). If not, then either L meets T at a
vertex of K or it must share an edge with T ∗, implying x ∈ N(T ) ∪N(T ∗).
Finally, if L meets the barycentre of the triangle, then since the barycentre
is in T ∗, x ∈ N(T ) ∪N(T ∗) and hence a) is proven.
For b), we know that K does not have any boundary, hence ∂N(T ) must be
glued together with parts of N(T ∗). In other words, ∂N(T ) ⊆ N(T )∩N(T ∗).
But from the construction of T and T ∗, they cannot intersect in any larger
set, hence N(T ) ∪N(T ∗) = ∂N(T ).
Lastly, for c), we remember from Lemma 4.25 that N(T ) is homeomorphic

to D2 and hence ∂N(T ) to S1. We first show N(T ∗) is connected. Pick
x, y ∈ N(T ∗) and a path in |K| from x to y. If that path is entirely in
N(T ∗) we are done. Else, there exists a first point p and a last point q
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in N(T ) ∩ N(T ∗) where that path goes between N(T ) and N(T ∗). Since
N(T ) ∩ N(T ∗) is homeomorphic to S1, there exits a path in N(T ) ∩ N(T ∗)
from p to q. Hence going from x to p, then via that path to q and then on to
y, gives a path in N(T ∗) from x to y. Therefore N(T ∗) is connected, which
gives that T ∗ is connected.

Lemma 4.36. Let K be a combinatorial surface. Then χ(K) ≤ 2.

Proof. Pick a spanning tree T of K and form its dual graph T ∗. We have
that χ(K) = χ(T ) + χ(T ∗) since χ(T ) counts positively all the vertices of
K, any edge in K is either in T and hence counted negatively in χ(T ), or
its not, giving an edge in χ(T ∗) that is counted negatively. Lastly, for every
2-simplex of K, there is a vertex of T ∗ which is counted positively for χ(T ∗).
Hence by Lemma 4.33, χ(K) = χ(T ) + χ(T ∗) ≤ 1 + 1 = 2.

The next theorem is the main result of this section. It will allow us to go
between just knowing the Euler characteristic of a combinatorial surface to
knowing the topological structure of that surface.

Theorem 4.37. Let K be a combinatorial surface. Then the following state-
ments are equivalent.

a) χ(K) = 2,

b) |K| is homeomorphic to S2.

c) Any simple closed curve in |K| consisting of edges in K1 separates |K|.

Proof. Assume that χ(K) = 2 and write χ(K) = χ(T ) + χ(T ∗) where T is a
spanning tree for K. Since χ(T ) = 1 by Lemma 4.33, this gives χ(T ∗) = 1
which again by the same lemma gives that T ∗ is also a tree. Then, by
Lemma 4.25, N(T ) and N(T ∗) are both homeomorphic to D2. Hence since
|K| = N(T ) ∪ N(T ∗) and N(T ) ∩ N(T ∗) = ∂N(T ), |K| is obtained as the
union of two discs, glued together along their boundary circles, which is
homeomorphic to S2 by Lemma 4.22.
For b) =⇒ c), we note that its just a variant of the Jordan curve theorem
as mentioned before.
Lastly, we assume that any simple closed curve in |K| consisting of edges in
K1 separate |K| into two connected components. Suppose that T ∗ is not a
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tree. Then T ∗ contains a loop in K1 which by assumption separates |K|. But
each such component must contain vertices of T , contradicting that T is a
tree. Hence T ∗ must be a tree and by Lemma 4.33, χ(K) = χ(T )+χ(T ∗) = 2.

4.4 Surgery

To show that any surface is homeomorphic to one of the standard surfaces,
we will use a method of doing so called surgery on the surface. The method
will increase the Euler characteristic of the surface and after a finite number
of surgeries, we can show that the space will homeomorphic to S2. Retracing
our surgeries, we can then show that the original surface is homeomorphic
to a standard surface. In detail, the method goes as follows.

Let K be a combinatorial surface in Rn and let L be a 1-dimensional
subcomplex of K that do not separate K. If no such L exists, then by The-
orem 4.37, |K| is homeomorphic to S2 and we are done. Note that L might
be a subcomplex of K1 and not K, but to simplify notation, we consider
K1 as our new complex K. This will give us no problems since they have
the same polyhedron and Euler characteristic. Now, thicken L to obtain
the polyhedron N(L) and call the underlying complex for NL. Furthermore,
denote the complement of the interior of NL in K2 for ML. Then ML can
be seen as all simplexes in K2 that do not meet L together with their faces.
By Theorem 4.26, N(L) is homeomorphic to either a cylinder or a Möbius
strip. If N(L) is homeomorphic to a cylinder, then |ML| will be a compact
surface with boundary consisting of two disjoint circles, call the complexes
that triangulate these circles by L1 and L2 respectively. Taking the cone on
L1 and L2, we get a new closed surface

K∗ = ML ∪ CL1 ∪ CL2.

If N(L) is homeomorphic to the Möbius strip, then |ML| would have only
one circle as boundary whose triangulating complex we denote by L1. Taking
the cone on L1, we get the closed surface

K∗ = ML ∪ CL1.

In any case, the combinatorial surface K∗ is called the surface obtained from
K by doing surgery along L. We will now see what we can say about the
resulting complexes and surfaces obtained by this method.
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Lemma 4.38. χ(NL) = 0

Proof. By the proofs of Lemma 4.25 and Theorem 4.26, we know that NL

consists of unions of closed stars of the form star(v,K2) for v ∈ L1. Since K
is a combinatorial surface, star(v,K2) has the structure of a cone with vertex
v and a simple closed polygonal curve as base. Assume that the curve has n
vertices. Then star(v,K2) has n+ 1 vertices, 2n edges (one from each vertex
of the curve to the next vertex of the curve and one from each vertex of the
curve to v) and n triangles. Using Lemma 4.28, we get χ(star(v,K2)) =
n+ 1− 2n+ n = 1. This closed star intersects another closed star in exactly
three vertices and two edges, making their total Euler characteristic having
value 1 + 1 − (3 − 2) = 1. Joining another closed star to that complex, the
intersection will still be three vertices and two edges, keeping the total Euler
characteristic at 1. But when we will join the last closed star to the complex,
it will intersect it at two different closed stars, at a total intersection of six
vertices and four edges. Hence χ(NL) = 1 + 1− (6− 4) = 0.

The main property of surgery is the following relation.

Theorem 4.39. χ(K∗) > χ(K)

Proof. Let L1 be a simplicial complex triangulating a circle. Then L1 con-
tains no 2-simplexes and has equally many vertices as edges, hence χ(L1) = 0.
When taking the cone on L1, we get a simplex of the same type as a closed
star in a combinatorial surface. From the proof of Lemma 4.38, we know that
χ(CL1) = 1. Turning to our combinatorial surface K, if N(L) is a cylinder,
we get by Lemma 4.28 that

χ(K∗) = χ(ML) + χ(CL1) + χ(CL2)− χ(L1)− χ(L2)

= χ(ML) + 2.

If N(L) is a Möbius strip, then

χ(K∗) = χ(ML) + χ(CL1)− χ(L1)

= χ(ML) + 1.

In any case, χ(K∗) > χ(ML). Finally, by Theorem 4.29 and Lemma 4.38, we
have

χ(K) = χ(K2) = χ(ML) + χ(NL)− χ(ML ∩NL) = χ(ML)

since ML∩NL is either one or two circles and thus having Euler characteristic
zero. Hence χ(K∗) > χ(ML) = χ(K).
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We would now like to apply surgery once again, this time on K∗. The
problem is that we need the discs CLi to be intact through the process.
Hence if the polygonal curve Γ do not separate K∗ and Γ intersects CLi,
we will need to carefully move those apart without moving Γ onto any other
CLi. For this, we need several lemmas.

Lemma 4.40. Let Z ⊂ Y ⊂ X be concentric discs in R2. Then there exists
a homeomorphism h : X → X such that h : ∂X → X = i∂X and h(Y ) ⊆ Z.

Proof. We may assume w.l.o.g. that they are centred at the origin. We can
also identify R2 with C. Let Z have radius r1, Y radius r2 and X radius r3.
A homeomorphism h is then given explicitly by

h(θ, r) =


eiθ · rr1

r2
r ∈ [0, r2]

eiθ ·
(
r(r1 − r3)− r3(r1 − r2)

r2 − r3

)
r ∈ [r2, r3].

Since h is a continuous bijection from a Hausdorff space to a compact space,
h is indeed a homeomorphism.

Lemma 4.41. Let C1 and C2 be two simple polygonal curves in R2 where C2

is included in the interior of the region bounded by C1. The region between
C1 and C2 is then homeomorphic to an annulus.

Proof. Pick a vertex of C1 and connect it via a straight edge to a vertex of C2.
Then pick another vertex of C1 and connect it via a simple polygonal curve to
another vertex of C2 such that it does not intersect the first edge created or
intersect C1 or C2 except at the end points. This divides the region between
C1 and C2 into two pieces, each with boundary a simple polygonal curve and
hence homeomorphic to D2. Keeping track of where the edges not in C1 and
C2 are mapped to, we get two discs where on each disc, two disjoint arcs are
corresponding to those edges. To get the sought region, we must identify the
corresponding arcs on the two discs. Before this is done, we can map the
discs to rectangles where the special arc are mapped to opposite edges. After
that, gluing the rectangles together clearly gives a region homeomorphic to
an annulus. See Figure 17.
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Figure 17: Idea for Lemma 4.41.

Lemma 4.42. Let K be combinatorial surface, D a subcomplex homeo-
morphic to D2 and σ a 2-simplex in D. Then there is a homeomorphism
h : |K| → |K| such that h(D) = star(σ̂, K2) and h = i|K| on any simplex
that do not meet D.

Proof. We begin by thickening ∂D. The resulting complex will then have a
boundary consisting of two disjoint simple polygonal curves in K2. The curve
that is not in D can be seen as the boundary ∂D1 of a complex D1 with D1

containing D in its interior and homeomorphic to D2. By two applications
of Lemma 4.41, first on ∂D1 and ∂D and then on ∂D and ∂

(
star(σ̂, K2)

)
,

we can see the situation as three concentric discs, star(σ̂, K2) ⊂ D ⊂ D1.
By Lemma 4.40, there exists a homeomorphism h : |D1| → |D1| such that
h(D) = star(σ̂, K2) and h : ∂D1 → D1 = i∂D1 . By extending h to be the
identity on |K| \ |D1|, h will be a continuous bijection on |K| and since |K|
is compact and Hausdorff, also an homeomorphism.

By the above lemma, we know that if Γ happens to be a curve that do not
separate K∗ but goes through some disc CLi, then we can refine K∗ to K2

∗
and then replace CLi with star(σ̂, K2

∗). Since star(σ̂, K2
∗) lies in the interior

of the 2-simplex σ, we have Γ ∩ star(σ̂, K2
∗) = ∅ and we can continue the

surgery. We can now prove one part of the classification theorem.

Theorem 4.43. Any closed surface is homeomorphic to a standard surface.

Proof. Let S be a closed surface and K be a combinatorial surface triangu-
lating S. If χ(K) = 2, then |K| is homeomorphic to S2 and we are done.
Else, χ(K) < 2 and there is a 1-dimensional subcomplex L of K1 that do
not separate K. Doing surgery along L, we get a new combinatorial surface
with strictly higher Euler characteristic. If necessary, we do surgery on that
surface as well and repeat the process until we arrive at a surface with Euler
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characteristic two and hence homeomorphic to S2. This sphere will have a
number of disjoint discs marked on it from the surgeries. We now retrace the
applied surgeries by sewing in a cylinder on a pair of discs if N(L) was home-
omorphic to a cylinder or sewing in a Möbius strip to a single disc if N(L)
was homeomorphic to a Möbius strip. If S is orientable, then we cannot get
any Möbius strips and hence S is homeomorphic to a sphere with a finite
number of handles added. If S is non-orientable, then we could get both
Möbius strips and handles. But by Lemma 4.10, this is the same as sewing
in only several Möbius strips instead. Hence S is homeomorphic to a sphere
with a finite number of discs removed and replaced by Möbius strips.

The first complete and published proof that any closed surface is home-
omorphic to a standard surface was done by Brahana in his dissertation [4],
published in 1921. This was done using more of the cut and paste technique
used in the proof of 4.10. For more history about the classification theorem,
see [6].

4.5 Polygonal representation

To complete the classification theorem, we need to show that none of our
standard surfaces is homeomorphic to another. For this, we need to be able
to describe any of our standard surfaces as a polygon in the plane with
different sides identified. This will be called the polygonal representation of
the surface. For example, in Figure 18, we see a polygonal representation of a
torus where we read that the edges with the same letters are to be identified
in the direction of the arrows. A way to express this is to write down all
the letters as they occur in the polygon when traversing its edges clockwise.
Hence for the torus we get aba−1b−1 where a−1 denotes that the arrow is
pointing in the counter clockwise direction at that edge. Such an expression
describing the identifications will be called a surface symbol. We note that
the sphere has surface symbol aa−1 and the projective plane aa.

We would like to determine the surface symbol for the connected sum of n
tori and also for n projective planes. To do this, we note that we can always
cut up the surface such that the disc intersects the boundary of its polygonal
representation in exactly one point, see Figure 19. We show that the surface
symbol for the connected sum of n tori is a1b1a

−1
1 b−11 · · · anbna−1n b−1n by induc-

tion. Since the surface symbol of the torus is aba−1b−1, it holds for n = 1.
Then we assume it holds for n and show it for n + 1. By removing a disc
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a

b

a

b

Figure 18: Polygonal representation of a torus.

in the connected sum of n tori and a single torus as indicated in Figure 19,
gluing them together gives a polygonal representation as in Figure 20 which
has the sought surface symbol.

bn

a1

an+1

bn+1

an+1

bn+1

an

b1

c c

Figure 19: Discs in the connected sum of n tori and a single torus.

By an analogue argument, we find that the surface symbol for the con-
nected sum of n projective planes is a1a1a2a2 · · · anan. We summarize the
result of our discussion in a lemma.

Lemma 4.44. The surface symbol for the connected sum of n tori is

n∏
i=1

aibia
−1
i b−1i

and the surface symbol for the connected sum of n projective planes is

n∏
i=1

a2i .
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bn+1

bn+1a1
b1

c

Figure 20: Polygonal representation of n+ 1 tori.

To show that all our standard surfaces are topologically distinct, we will
show that they all have non isomorphic first homology group. Since it is a
topological invariant, it will imply that the surfaces are not homeomorphic.
By Theorem 3.11, this is the same as determining their abelianized funda-
mental group. For this, we will use the Seifert-van Kampen theorem. At
first, we note that since S2 is simply connected, it has trivial first homology
group. Now consider a polygonal representation for the connected sum of n
tori and triangulate it. Let J be a 2-simplex and K the complex triangu-
lating that polygon but with the interior of J removed. Then π1(|J |) = 1
since |J | is convex. For |K|, we see that the space deformation retract onto
the boundary of the polygon which becomes a bouquet of 2n circles. Hence
π1(|K|) is a free group on 2n generators, determined by generators ai, bi from
the surface symbol. Then, we see first that a generator of |J ∩K| in |J | is
homotopic to the identity while in |K|, it is clearly homotopic to the surface
symbol

∏n
i=1 aibia

−1
i b−1i after the deformation retraction. Letting Tn denote

the connected sum of n tori, Seifert-van Kampen gives that

π1(Tn) =

〈
a1, b1, . . . , an, bn |

n∏
i=1

aibia
−1
i b−1i = 1

〉
.

Taking the quotient by its commutator subgroup, we get the free abelian
group on 2n generators and no extra relations since

∏n
i=1 aibia

−1
i b−1i is al-

ready included in the commutator subgroup. Thus H1(Tn) = Z2n. For the
connected sum of n projective planes that we will denote Pn, the exact same
argument applies with triangulating its polygonal representation. The dif-
ference this time is that we will get n generators for π1(|K|) and that a
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generator of |J ∩ K| in |K| will now be homotopic to the surface symbol∏n
i=1 a

2
i . Hence the fundamental group for Pn has presentation

π1(Pn) =

〈
a1, a2, . . . , an |

n∏
i=1

a2i = 1

〉
.

This time, taking the quotient by its commutator subgroup, we get a free
abelian group with generators a1, a2, . . . , an subject to the non trivial re-
lation

∏n
i=1 a

2
i = 1. Changing basis to (a1a2 . . . an), a2, . . . an, we see that

H1(Pn) = Z2 × Zn−1. Thus, since the connected sum of different number
of tori or projective planes have different first betti numbers, they are not
homeomorphic. Also, since the first homology group of Pn for any n has a
non zero torsion part while Tn does not, they cannot be isomorphic and the
spaces not homeomorphic. This establishes the last part of the classification
theorem. Defining the genus of a orientable surface as the number of tori
needed to get a connected sum of tori isomorphic to the surface and simi-
larly for projective planes for the non orientable case, we can summarize as
follows.

Theorem 4.45. The following statements are equivalent for closed surfaces.

a) The surfaces are homeomorphic.

b) The surfaces have isomorphic first homology group.

c) The surfaces have isomorphic fundamental group.

d) The surfaces have the same genus and are both either orientable or non
orientable.
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