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Abstract

This thesis presents and tests the convergence rate of the Dirichlet-Neumann
algorithm for two Poisson equations coupled by transmission boundary condi-
tions. Three second order discretisation methods are used when analyzing the
convergence: standard equidistant finite difference, standard adaptive linear fi-
nite element, and standard adaptive finite volume discretisation of Poisson’s
equation. The convergence rate of the Dirichlet-Neumann algorithm, when us-
ing each of the discretisations for both sub problems, is presented and proved.
Using elements of the proofs for the intermediate results leads to a theorem
when combining the discretisations. The theorem states that the Dirichlet-
Neumann algorithm’s convergence rate is entirely independent of the grid used
for any combination of the discretisations analyzed. Inspired by these results a
general theorem of the convergence rate is presented. Using semi-discrete anal-
ysis it is possible to generalize the results to a large subset of discretisations
in the asymptotic case. It is possible to remove the asymptotic argument if
the discretisations approximate the homogenous solution exactly. All theoreti-
cal results were numerically confirmed. The numerical results aligned with the
theoretical conclusions.
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Chapter 1

Introduction

Differential equations coupled by transmission conditions are differential equa-
tions coupled by boundary conditions on common interfaces. These problems
arise in aerodynamics [1], bio-mechanics [2] and rocket simulations [3] and are
usually impossible to solve analytically. Finding properties of numerical meth-
ods that solve these transmission problems is therefore of interest.

Domain decomposition can be used to work with transmission problems. Instead
of dealing with one large problem, we can analyze a set of sub problems. Using
the Dirichlet-Neumann algorithm allows us to solve the sub problems several
times in order to find a solution to the larger problem. Codes and knowledge
could exist for the sub problems when none exist for the larger problem. In
such cases the algorithm allows us to reuse code and therefore requires fewer
resources.

The Dirichlet-Neumann algorithm allows us to mix discretisation techniques.
We can use a finite volume discretisation on one domain and a finite element
discretisation on the other domain because of the modularity of the algorithm.
There are problems where mixed discretisations are of interest. There is research
where a finite volume method is used on a fluid domain and a finite element
method is used on a structure domain [4]. This thesis focuses on the conver-
gence rate when mixing three different discretisations. The first discretisation
is equidistant finite difference, which was chosen because it is familiar and the
result of this thesis extends to it. The other discretisations are the second order
standard adaptive finite element and finite volume methods. For these discreti-
sations the convergence rate can be found and is found exactly.

This approach of dividing and mixing is only relevant if the algorithm con-
verges and if it converges at a reasonable pace. The idea is interesting, but is it
useful? If the algorithm does not converge a solution will not be found. If the
convergence is slow, the execution times may be unreasonably long. To answer
these questions, we need to analyze the algorithms convergence rate. In this
thesis we focus on a specific set of transmission problems: two one-dimensional
Poisson equations coupled at one point. Analyzing these convergence rates gives
us information about effectiveness of the algorithm. The goal of this thesis is to
give some insight into finding the convergence rates of higher dimensional time

9



10 CHAPTER 1. INTRODUCTION

dependent problems. By analyzing an easier set of equations, one might find
hints on how to handle the harder ones.



Chapter 2

Theory

2.1 Schur Complement

The Schur complement introduced in this section is inspired by Fuzhen [9, p.17-
18].

Remark 2.1.1. For a linear system of the form:A11 0 A1Γ

0 A22 A2Γ

AΓ1 AΓ2 AΓΓ

u1

u2

uΓ

 =

f1

f2

fΓ


we can express uΓ by the following equation:

SuΓ = fΓ −AΓ1A
−1
11 f1 −AΓ2A

−1
22 f2

S = AΓΓ −AΓ1A
−1
11 A1Γ −AΓ2A

−1
22 A2Γ,

(2.1)

where S is the Schur compliment.

Proof. We use block Gaussian elimination by multiplying the first system with
A−1

11 AΓ1 and subtracting it from the last. We do the same thing with the second
system with A−1

22 AΓ2. This becomes:A11 0 A1Γ

0 A22 A2Γ

0 0 AΓΓ −AΓ1A
−1
11 A1Γ −AΓ2A

−1
22 A2Γ

u1

u2

uΓ

 =

=

A11 0 A1Γ

0 A22 A2Γ

0 0 S

u1

u2

uΓ

 =

 f1

f2

fΓ −AΓ1A
−1
11 f1 −AΓ2A

−1
22 f2

 .
Here we observe that the last equation in the linear system is (2.1).

2.2 Convergence Rate

Definition 2.2.1. Given a converging sequence lk, k ∈ Z+, where ln → l, n→
∞. Then the sequence lk is said to converge linearly to µ ∈ (0, 1), if:

|ek+1|
|ek|

→ µ, k →∞. (2.2)

11



12 CHAPTER 2. THEORY

where ek = lk − l. We call µ the convergence rate.

Definition 2.2.2. A matrix Σ ∈ C is called an iteration matrix for the sequence
lk ∈ C if:

lk+1 = Σlk + α, (2.3)

where α is a constant independent of k.

Theorem 2.2.1. For the one dimensional case the convergence rate µ of a
complex valued sequence lk converging to l is the absolute value of the iteration
matrix. Moreover:

|ek+1|
|ek|

= |Σ| = µ,

where ek = lk − l.

Proof. The first part of this proof is inspired by Fox [10, p.190-191].

lk+1 = Σlk + α⇔ lk+1 − Σlk = α

⇒ lim
k→∞

lk+1 − Σlk = l − Σl = α⇔ α = l − Σl.

Inserting this into (2.3) we get:

lk+1 = Σlk + l − Σl

⇔ lk+1 = Σ(lk − l) + l⇔ lk+1 = Σek + l⇔ lk+1 − l = Σek

⇔ ek+1 = Σek ⇒ ek+1 = Σk+1e0

⇒ |ek+1|
|ek|

=
|Σk+1e0|
|Σke0|

=
(|Σ|)k+1||e0|

(|Σ|)k|e0|
= |Σ|

⇔ |ek+1| = |Σ||ek|,
which is what we wanted to prove.

2.3 Coupled Poisson Equations

Let’s start by introducing Poisson’s equation with two sets of boundary condi-
tions.

u′′ = f(x), x ∈ [a, b]

u(a) and u(b) given
(2.4)

and

u′′ = f(x), x ∈ [a, b]

u′(a) and u(b) given,
(2.5)

for some xΓ ∈ [a, b]. The first differential equation has two Dirichlet boundary
conditions and the second has one Dirichlet and one Neumann boundary con-
dition. The coupled problem we wish to analyze in this thesis has the following
form:

λ1v
′′(x) = f1(x), x ∈ [a, xΓ]

λ2w
′′(x) = f2(x), x ∈ [xΓ, b]

λ1v
′(xΓ) = λ2w

′(xΓ), v(xΓ) = w(xΓ)

v(a) and w(b) given.

(2.6)
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This equation is two coupled Poisson equations, coupled by two transmission
conditions. The transmission interface is xΓ and the first condition forces conti-
nuity between the two functions and the second forces a relation on the deriva-
tive over the interface. Examples and analytic solutions to all three of these
problems can be found in Appendix A1. In Chapter 2.4 we will show a way
to decouple (2.6). We will create a sequence of functions vi and wi, that are
defined by solving equations (2.4) and (2.5) alternatingly. If these sequences
converge to limits v and w they will be a solution to (2.6).

2.4 The Dirichlet-Neumann Algorithm in 1D

The Dirichlet-Neumann method and algorithm is presented in this section. The
method and algorithm we use is presented in Toselli [11, p.8]. The section
on convergence rate is presented similarly in Monge [5, p.20-26]. The main
differences are that Monge presents the discretisation for the multidimensional
problem, focuses on the finite element discretisation as discretisation, and is
discretizing a slightly different differential equation.

2.4.1 Method and Algorithm

To find an approximation of u and v in the transmission problem (2.6) we will use
the Dirichlet-Neumann method and algorithm. The Dirichlet-Neumann method
starts by rearranging the initial problem as two separate problems coupled by
a common interface, xΓ. The two problems are: a Dirichlet boundary problem
and a Neumann boundary problem.

λ1v
′′(x) = f1(x), x ∈ [a, xΓ]

v(a) given and v(xΓ) = w(xΓ)

λ2w
′′(x) = f2(x), x ∈ [xΓ, b]

w′(xΓ) =
λ1

λ2
v′(xΓ) and w(b) given.

(2.7)

The algorithm start with an initial guess of w(xΓ). With this approximation we
solve the Dirichlet part of (2.7). This will give us a function we will call v1. We
then solve the Dirichlet part of (2.7) with the Neumann condition λ1

λ2
(v1)′(xΓ).

The solution to this problem we call w1. Using w1, we solve the Dirichlet part
of (2.7) with Dirichlet condition w1(xΓ). This new solution we call v2. This
process continues with vk and wk being the functions for the kth iteration. If
wk and vk converge to some functions w and v, then by construction they must
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be a solution to (2.7) and in extension (2.6). The recursion is:

w0(xΓ) given

λ1(vk+1)′′(x) = f1(x), x ∈ [a, xΓ]

vk+1(a) = v(a) and vk+1(xΓ) = wk(xΓ)

λ2(wk+1)′′(x) = f2(x), x ∈ [xΓ, b]

(wk+1)′(xΓ) =
λ1

λ2
(vk)′(xΓ) and wk+1(b) = w(b).

(2.8)

This recursive algorithm is called a continuous Dirichlet-Neumann algorithm.
Now we discretize this algorithm. Each iteration requires us to solve two Poisson
equations, one with Dirichlet boundary conditions and one with a Dirichlet
and a Neumann boundary condition. So we discretize each of these individual
problems. The discretisations of the Dirichlet problem we analyze can be written
as the following linear system:

λ1A
(1)v̄k+1 = b(1)v(a) + f̄ (1) − λ1A

(1)
Γ wk(xΓ), (2.9)

where v̄k+1 is some discrete representation of vk+1. The discretisation of the
Neumann problem we analyze can be written as:

λ2

[
A(2) A

(2)
Γ

d(2) d
(2)
Γ

] [
w̄k+1

wk+1(xΓ)

]
=

[
b(2)u(b) + f̄ (2)

f
(2)
Γ − f (1)

Γ + λ1d
(1)v̄k+1 + λ1d

(1)
Γ wk(xΓ),

]
(2.10)

where w̄k+1 is some discrete representation of wk+1, d(1)wk(xΓ)+d
(1)
Γ v̄k+1 is an

approximation of (vk+1)′(xΓ) and d(2)wk+1(xΓ) +d
(2)
Γ w̄k+1 is an approximation

of (wk+1)′(xΓ). Combining these discretisation into one linear system results
in: λ1A

(1) 0 0

0 λ2A
(2) λ2A

(2)
Γ

−λ1d
(1) λ2d

(2) λ2d
(2)
Γ


 v̄k+1

w̄k+1

wk+1(xΓ)

 =

b(1)v(a)− λ1A
(1)
Γ wk(xΓ) + f̄ (1)

b(2)w(b) + f̄ (2)

f
(2)
Γ − f (1)

Γ + λ1d
(1)
Γ wk(xΓ)

 .
(2.11)

We call this the discrete Dirichlet-Neumann Algorithm. This algorithm allows
us to solve the transmission problem (2.6) by using any discretisation methods
to approximate solutions to Poisson equations without modifications. This is
incredibly useful. That is, if it converges and if its convergence is reasonable.
In the next section we will discuss this in detail.

2.4.2 Convergence Rate

We will analyze the convergence rate of wk(xΓ). If this value converges, so will
the algorithm. To find the convergence rate of wk(xΓ) of the Dirichlet-Neumann
algorithm we first find the iteration matrix Σ.

wk+1(xΓ) = Σwk(xΓ) + α, α independent on k. (2.12)

To get an expression for wk+1(xΓ), we start by taking the Schur compliment,
Section 2.1, of (2.11).

A1 = λ1A
(1), A2 = λ2A

(2), A1Γ = 0, A2Γ = λ2A
(2)
Γ , AΓ1 = −λ1d

(1), AΓ2 = λ2d
(2)
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AΓΓ = λ2d
(2)
Γ , f1 = b(1)v(a) + f̄ (1) − λ1A

(1)
Γ wk(xΓ), f2 = b(2)w(b) + f̄ (2),

fΓ = f
(2)
Γ − f (1)

Γ + λ1d
(1)
Γ wk(xΓ).

With this we can get an equation for wk+1(xΓ):

Swk+1(xΓ) = f
(2)
Γ −f

(1)
Γ +λ1d

(1)
Γ wk(xΓ)−(−λ1d

(1))(λ1A
(1))−1(b(1)v(a)+f̄ (1)−λ1A

(1)
Γ wk(xΓ))

−(λ2d
(2))(λ2A

(2))−1(b(2)w(b) + f̄ (2))

S = λ2d
(2)
Γ − (λ2d

(2))(λ2A
(2))−1(λ2A

(2)
Γ ).

Next we put everything that isn’t dependent on k into a new constant α1.

Swk+1(xΓ) = λ1(d
(1)
Γ − (d(1))(A(1))−1(A

(1)
Γ ))wk(xΓ) + α1

Because we are in the one dimensional case, we know that S ∈ R.

⇒ wk+1(xΓ) =
λ1

λ2

d
(1)
Γ − (d(1))(A(1))−1(A

(1)
Γ )

d
(2)
Γ − (d(2))(A(2))−1(A

(2)
Γ )

wk(xΓ) + α,

where α is another variable that is independent of k. From this we can get Σ:

Σ =
λ1

λ2

d
(1)
Γ − d(1)(A(1))−1A

(1)
Γ

d
(2)
Γ − d(2)(A(2))−1A

(2)
Γ

.

We know from Theorem 2.2.1 that the convergence rate is the absolute value of
the iteration matrix Σ.

µ = |Σ| =
∣∣∣∣λ1

λ2

∣∣∣∣
∣∣∣∣∣d(1)

Γ − d(1)(A(1))−1A
(1)
Γ

d
(2)
Γ − d(2)(A(2))−1A

(2)
Γ

∣∣∣∣∣ . (2.13)

2.5 Finite Difference Method for Poisson’s Equa-
tion

A second order finite difference discretisation of Poisson’s equation is presented
in this section. The discretisations will be used to approximate the one dimen-
sional Poisson’s equation. This section is heavily inspired by Ortega [7, p.74-82].
In Ortega [7, p.74-82], the approximations used and the method to construct
the finite difference discretisation in this section are presented.

Before we introduce our approximations and discretisation we need to define
a grid. We will use equidistant grids where ∆x is the distance between the grid
points, xi, on the interval [a, b]. With the grid defined, we start by providing
the two second order finite difference approximations we use for our numerical
method.

u′′(x) =
u(x+ ∆x)− 2u(x) + u(x−∆x)

∆x2
+O(∆x2). (2.14)

u′(x) =
−3u(x) + 4u(x+ ∆x)− u(x+ 2∆x)

2∆x
+O(∆x2). (2.15)
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2.5.1 Discretizing Poisson’s Equation

In this section we wish to to find an approximation of u in the differential
equations (2.4) and (2.5). We start by approximating (2.4):

u′′(x) = f(x), x ∈ [a, b], u(a) and u(b) given.

This method will produce approximations u(xi) ≈ ui for each grid point, so we
focus on:

u′′(xi) = f(xi), ∀i = 1 . . . n.

Next we use the discrete approximation of the second derivative (2.14) to get
the following approximated relation,(

−ui−1 + 2ui − ui+1

∆x

)
= −∆xf(xi), ∀i = 1 . . . n,

where u0 = u(a) and un+1 = u(b). The discrete approximation, ū, of u is then
given by solving the following linear system:

Aū = f̄ +
u(a)

∆x
e1 +

u(b)

∆x
en

f̄ ∈ Rn : [f̄ ]i = −∆xf(xi)

A ∈ Rn×n : [A]i,j =


2

∆x , i = j

− 1
∆x , i = j + 1

− 1
∆x , j = i+ 1

0 else

.

(2.16)

To extend this approximation to Neumann boundary conditions, (2.5), we treat
u(a) ≈ ua as an unknown.

[
A − 1

∆x

] [ ū
ua

]
= f̄ +

u(b)

∆x
en. (2.17)

We need one more equation to make this system square. The equation will
be chosen such that the Neumann condition holds. By using the one-sided
approximation of u′(a), (2.15), we can get such an equation.

u′(a) ≈ −3u(x0) + 4u(x1)− u(x2)

2∆x
≈ −3ua + 4u1 − u2

2∆x
.

Adding this equation to (2.17) gives:[
A − 1

∆x
4

2∆xe
T
1 −

eT2
2∆x − 3

2∆x

] [
ū
ua

]
=

[
f̄ + u(b)

∆x en
u′(a)

]
(2.18)

This system is square and solving it gives the discrete approximation ū and ua
of u(x) and u(a).



2.6. FINITE ELEMENT METHOD FOR POISSON’S EQUATION 17

2.5.2 Numerical confirmation

The approximations’ convergence and order were analyzed. To analyze the
methods convergence we used the test problems (5.2) and (5.1). These test
problems were approximated by the finite difference approximations (2.16) and
(2.18) and made continuous by linear interpolation. These continuous approx-
imations we call uh. These approximations’ error with respect the the exact
solution was then evaluated in the L2-norm, ‖u−uh‖L2

for different ∆x. These
errors were then plotted in a logarithmic graph. This graph is presented in
Figure 2.1. In Figure 2.1 the error seems to converge as ∆x tends to zero. It
seems to be a second order convergence. We see this because when ∆x is 10−3

the error is 10−7 and when ∆x is 10−4 the error is almost 10−9. The method
we constructed was supposed to be a second order method and the numerical
results shows a second order convergence.

10 4 10 3

x

10 8

10 7

b a
(u

uh )
2
dx

Normed Error of the Finite Difference Approximation.
Dirichlet Boundary Conditions
Mixed Boundary Conditions

Figure 2.1: The error of the approximations with respect to ∆x. The discrete
approximations were found using the strategies presented in Section 2.5.1. Then
they were made continuous by linear interpolation. The continuous approxima-
tion, uh, was then compared to the real solution, u, in the L2-norm. Both
methods seem to be second order in this norm.

2.6 Finite Element Method For Poisson’s Equa-
tion

In this section a finite element discretisation for the Poisson’s equation in one di-
mension is presented. First the grid and the basis functions used for the method
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are presented. Then we use Galerkin’s method to get a general discretisation
template for Poisson’s equation. With a template we create the discretisations
for the Poisson’s equation with both Dirichlet and Neumann boundary condi-
tions. Lastly we confirm that the method converges and that the method is a
second order method numerically. We omit the proof that discusses the order
of the method; a detailed explanation can be found in Hughes [6, p.27-31].

2.6.1 Basis functions

The goal is to find a discrete approximation, uh, of u for Poisson’s equation.
The finite element method approximates u using a linear combination of basis
functions φ.

u ≈ uh =

n∑
k=1

ukφk.

We partition these functions into two sets: φI and φΓ. A function in φI is 0 on
the boundary points {a, b} and a function in φΓ is not. With this new partition
we reformulate our approximation as:

u ≈ uh =

nI∑
k=1

uIkφ
I
k +

nΓ∑
k=1

uΓ
kφ

Γ
k ,

where uIk and uΓ
k are unknowns we wish to find. We are going to focus on

approximations were only two boundary functions are used, so we re-write uh

as:

uh = uΓ
1φ

Γ
1 +

n∑
k=1

uIkφ
I
k + uΓ

2φ
Γ
2 . (2.19)

We define the basis functions with respect to a grid. The grid points we call xi,
where

a ≤ xI1 ≤ xI2 ≤ · · · ≤ xIn ≤ b.

With these grid points, we define ∆xi as the distance between them.

∆x1 = xI1 − a, ∆xi = xIi − xIi−1, ∆xn+1 = b− xn, i = 2, . . . , n.

An illustration of the different variables is presented in Figure 2.2.

a

∆x1

xI1

∆x2

xI2 . . . xIn

∆xn+1

b

Figure 2.2: The grid used for the finite element method in one dimension.

The basis functions we use are the standard linear finite element basis functions
presented in Hughes [6, p.20]:

φIi (x) =


x−xI

i−1

∆xi
, x ∈ (xIi−1, x

I
i ]

xI
i+1−x

∆xi+1
, x ∈ (xIi , x

I
i+1)

0, else

, (2.20)
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using the convention xI0 = a and xIn+1 = b. φΓ
1 and φΓ

2 are defined as cut off
saw-tooth functions.

φΓ
1 (x) =

{
x−xI

1

∆x1
, x ∈ [a, xI1)

0, else
φΓ

2 (x) =

{
xI
n−x

∆xn+1
, x ∈ (xIn, b]

0, else
. (2.21)

An illustration of the basis function are presented in Figure 2.3

a xI1 xI2
. . .

xIn−1 xIn b

φΓ
1 φI1 φI2 φIn−1 φIn φΓ

2

Figure 2.3: The basis functions φI and φΓ.

2.6.2 Galerkin’s method

Instead of working with the Poisson equations (2.4) and (2.5) directly, we are
going to work with their weak form. A motivation to why we can work with
these equations instead of the original Poisson equations can be found in Hughes
[6, p.4-6]. In this thesis we will use Galerkin’s method for finding the basis co-
efficients uIk in (2.19). We are following the same steps as Hughes [6, p.7-11].
We simplify the process by making it less general.

The method evaluates the solution u when:∫ b

a

u′′φIi dx =

∫ b

a

fφIi dx, i = 1 . . . n.

Using integration by parts on the left hand side gives the following equivalent
expression.∫ b

a

u′′φIi dx =
[
u′φIi

]b
a
−
∫ b

a

u′(φIi )
′dx =

∫ b

a

fφIi dx, i = 1 . . . n.

Now we use the fact that φIi (a) = φIi (b) = 0, which leads to the result:

−
∫ b

a

u′(φIi )
′dx =

∫ b

a

fφIi dx, i = 1 . . . n.

To get an expression with the coefficients uIk, we replace u with our approxima-
tion uh. This will produce the following linear system.

−
∫ b

a

(uh)′(φIi )
′dx =

∫ b

a

fφIi dx, i = 1 . . . n

⇔ −
∫ b

a

(
n∑
k=1

uIk(φIk)′(φIi )
′

)
dx−

∫ b

a

uΓ
1 (φΓ

1 )′(φIi )
′+uΓ

2 (φΓ
2 )′(φIi )

′dx =

∫ b

a

fφIi dx, i = 1 . . . n
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⇔ −
n∑
k=1

uIk

∫ b

a

(φIk)′(φIi )
′dx−

∫ b

a

uΓ
1 (φΓ

1 )′(φIi )
′+uΓ

2 (φΓ
2 )′(φIi )

′dx =

∫ b

a

fφIi dx, i = 1 . . . n

AuI = b− f̄ .

[A]i,j =

∫ b

a

(φIi )
′(φIj )

′dx

bi = −uΓ
1

∫ b

a

(φΓ
1 )′(φIi )

′dx− uΓ
2

∫ b

a

(φΓ
2 )′(φIi )

′dx

f̄i =

∫ b

a

fφIi dx.

(2.22)

In this thesis we only use one set of basis functions. We therefore compute the
linear system with respect to the basis functions chosen. We do this by making
and proving three remarks. Then we use the following three remarks to simplify
the linear system (2.22).

Remark 2.6.1. Any entry of A that is outside of the first sub-diagonal or
diagonal is 0.

Proof. The function (φi)
′(φj)

′ is the zero function if if |i − j| > 1. This is
because they have no overlapping non-zeros function values.

Remark 2.6.2.

[A]i,i =
1

∆xi
+

1

∆xi+1
, i = 1 . . . n.

Proof. We will be using the convention xI1 = a, xIn+1 = b. With this we can
show:

[A]i,i =

∫ xI
i+1

xI
i−1

((φIi )
′)2 dx =

∫ xI
i

xI
i−1

(
1

∆xi
)2 dx+

∫ xI
i+1

xI
i

(
− 1

∆xi+1

)2

dx =

∆xi

(
1

∆xi

)2

+ ∆xi+1

(
1

∆xi+1

)2

=
1

∆xi
+

1

∆xi+1
.

Remark 2.6.3.

[A]i,i+1 = [A]i+1,i = − 1

∆xi
, i = 1, . . . , n− 1.

Proof. We will be using the convention xI0 = a, xIn+1 = b. With this we can
show:

[A]i,i+1 =

∫ xI
i

xI
i−1

((φIi )
′(φIi+1)′) dx =

∫ xI
i

xI
i−1

(
− 1

∆xi

)(
1

∆xi

)
dx

= −∆xi
1

∆x2
i

= − 1

∆xi
.

Due to symmetry [A]i+1,i is the same.
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Remark 2.6.4.

b =

(
uΓ

1

∆x1
eT1 +

uΓ
2

∆xn+1
eTn

)
. (2.23)

Proof. i = 1 and i = n are the only cases when it is not zero. For those two
cases we have:

[b]1 = −uΓ
1

∫ b

a

(φΓ
1 )′(φI1)′dx = −uΓ

1

∫ a+∆x1

a

(∆x1)−1(−∆x1)−1dx =
uΓ

1

∆x1
,

[b]n = −uΓ
2

∫ b

a

(φΓ
2 )′(φIn)′ = −uΓ

2

∫ b

b−∆xn+1

(−∆xn+1)−1(∆xn+1)−1dx =
uΓ

2

∆xn+1
.

Writing this in vector form finishes the proof.

f̄ can not be simplified as it depends on what function f we use. Using Remark
2.6.2, 2.6.3 and 2.6.4 in (2.22) gives:

AuI = b− f̄ .

[A]i,j =


1

∆xi
+ 1

∆xi+1
, i = j

− 1
∆xi+1

, i = j + 1

− 1
∆xi+1

, j = i+ 1

0, else

b = λ

(
ua

∆x1
e1 +

ub
∆xn+1

en

)
f̄i =

∫ b

a

fφIi dx.

(2.24)

We let uΓ
1 = ua ≈ u(a) and uΓ

2 = ub ≈ u(b). This is motivated by uh(a) = uΓ
1

and uh(b) = uΓ
2 .

Dirichlet Boundary conditions

If we have Dirichlet boundary conditions on a and b, we let u(a) = ua and
u(b) = ub in (2.24). With these variables set, (2.24) is a linear system we can
solve to get the coefficients of the approximation uh.

A Neumann Boundary condition

Here we wish to find an approximation for (2.5). Just as the Dirichlet case we
set ub = u(b) in (2.24). Unlike the Dirichlet case, u(a) is not known. Therefore
we treat ua as an unknown and move it to the left hand side:

[
A − 1

∆x1
e1

] [uI
ua

]
=

u(b)

∆xn+1
en − f̄ . (2.25)

Adding an unknown to the linear system means that we are missing one equation
to make it square. To get this last equation we analyze:∫ b

a

u′′φΓ
1dx =

∫ b

a

fφΓ
1dx.
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By using integration by parts we get:∫ b

a

u′′φΓ
1dx =

[
u′φΓ

1

]b
a
−
∫ b

a

u′(φΓ
1 )′dx =

∫ b

a

fφΓ
1dx

⇔ −u′(a)−
∫ b

a

u′(φΓ
1 )′dx =

∫ b

a

fφΓ
1dx.

Here we replace u with our approximation uh.

−u′(a)−
∫ b

a

(uh)′(φΓ
1 )′dx =

∫ b

a

fφΓ
1dx

⇔ −ua
∫ a+∆x1

a

(φΓ
1 )′(φΓ

1 )′dx− uI1
∫ a+∆x1

a

(φI1)′(φΓ
1 )′dx = u′(a) +

∫ b

a

fφΓ
1dx

⇔ −ua
∫ a+∆x1

a

1

∆x2
1

dx− uI1
∫ a+∆x1

a

(
− 1

∆x1

)
1

∆x1
dx = u′(a) +

∫ b

a

fφΓ
1dx

⇔ −ua
1

∆x1
+ uI1

1

∆x1
= u′(a) +

∫ b

a

fφΓ
1dx

⇔ uI1 − ua
∆x1

= u′(a) +

∫ b

a

fφΓ
1dx.

Adding this equation to (2.25) gives a square system describing the coefficients
of our approximation.[

A − 1
∆x1

e1
1

∆x1
eT1 − 1

∆x1

] [
uI

ua

]
=

[
u(b)

∆xn+1
en − f̄

u′(a) +
∫ b
a
fφΓ

1dx

]
. (2.26)

2.6.3 Numerical Confirmation

We confirmed that a set of approximations found using the method in Section
2.6.2 converged to their exact solutions and analyzed the order of the con-
vergence numerically. We decided to quantify the error using the L2 norm,
‖u−uh‖L2

. This error was then computed for different approximations, uh, for
different equidistant grids. The Poisson equations used for testing were (5.2)
and (5.1). The errors of these approximations were then put into a logarithmic
graph. This plot is presented in Figure 2.4. In this graph, we notice convergence.
Moreover we have second order convergence.

2.7 Finite Volume Method For Poisson’s Equa-
tion

A finite volume discretisation of Poisson’s equation is presented in this section.
The methods are presented in Leveque [8]. Analysis of the order of the methods
has been omitted in this section. Instead we will motivate the second order of
the methods by performing numerical experiments. For order testing we used
equidistant grids.
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10 4 10 3

x

10 8

10 7

b a
(u

uh )
2
dx

Normed Error of the Finite Element Approximation.
Dirichlet Boundary Conditions
Mixed Boundary Conditions

Figure 2.4: The errors ‖u−uh‖2 for different approximations ∆x. The approxi-
mations are found using the strategies presented in Section 2.6.2. At ∆x = 10−2

the error is 10−4 and at ∆x = 10−3 the error is 10−6. This indicates that the
method is second order.

2.7.1 Discretizing Poisson’s Equation

In this chapter we follow Leveque [8, p.64-66]. The function, u, we wish to
approximate is defined in [a, b]. With this in mind, we define the interior grid
points, xk k = 1 . . . n, and the distances between these points ∆xi.

a < x1 < x2 < · · · < xn < b

∆xi = xi − xi−1, i = 1, . . . , n+ 1

x0 = a and xn+1 = b.

We also define xi+0.5 and xi−0.5 as:

xi+0.5 = xi + 0.5∆xi+1 xi−0.5 = xi − 0.5∆xi.

To illustrate these variables Figure 2.5 is provided.

a

∆x1

x0.5 x1

∆x2

x1.5 x2 . . . xn

∆xn+1

xn+0.5 b

Figure 2.5: The grid used for the finite volume method.
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We let Ci = [xi−0.5, xi+0.5] be called the ith cell. These cells are used to define
averages ui of u(Ci):

u(xk) ≈ uk =
1

|Ci|

∫
Ci

u dx.

We define our approximation as:

ûh(x) =


u(a), x ∈ [a, x0.5)

ui, x ∈ Ci
u(b), x ∈ [xn−0.5, b]

. (2.27)

To illustrate this approximation Figure 2.6 is provided.

a x0.5 x1 x1.5 x2 . . . xn xn+0.5 b

u(a)

u1

u2

un

u(b)

Figure 2.6: The approximation function ûh.

To get ui we use the following property of our problem:

4u = f ⇒
∫
Ci

u′′dx =

∫
Ci

f dx, i = 1, . . . , n.

Using the fundamental theorem of calculus we get:

u′(xi+0.5)− u′(xi−0.5) =

∫
Ci

f dx, i = 1, . . . , n. (2.28)

Now ûh is discontinuous at xk+0.5 k = 0 . . . n. To handle this we introduce the
numerical flux, similar to Leveque [8, p.67 eq (4.10)], F0.5, F1.5, . . . , Fn+0.5.

u′(xk+0.5) ≈ Fk+0.5 =
uk+1 − uk

∆xk
, k = 0 . . . n.

An illustration of the numerical flux is presented in Figure 2.7.

xk xk+0.5 xk+1

uk

uk+1

Figure 2.7: The numerical flux, Fk+0.5, is the slope of the dashed line.
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Using the numerical flux as approximations of u′(xk+0.5) in (2.28) gives:

Fi+0.5 − Fi−0.5 ≈ u′(xi+0.5)− u′(xi−0.5) =

∫
Ci

f dx, i = 1, . . . , n.

The approximations coefficients, ū = (u1, . . . , un)T , are defined by the following
linear system.

Fi+0.5 − Fi−0.5 =

∫
Ci

f dx, i = 1, . . . , n.

⇔



1
∆x2

(u2 − u1)− 1
∆x1

(u1 − u(a)) =
∫
C1
fdx

1
∆x3

(u3 − u2)− 1
∆x2

(u2 − u1) =
∫
C2
fdx

...
1

∆xn+1
(b− un)− 1

∆xn
(un − un−1) =

∫
Cn
fdx

⇔



1
∆x1

u(a)−
(

1
∆x1

+ 1
∆x2

)
u1 + 1

∆x2
u2 =

∫
C1
fdx

1
∆x2

u1 −
(

1
∆x2

+ 1
∆x3

)
u2 + 1

∆x3
u3 =

∫
C2
fdx

...
1

∆xn
un−1 −

(
1

∆xn
+ 1

∆xn+1

)
un + 1

∆xn+1
u(b) =

∫
Cn
fdx

.

⇔

Aū =

(
e1

∆x1
u(a) +

en
∆xn+1

u(b)

)
− f̄

[A]i,j =


1

∆xi
+ 1

∆xi+1
, i = j

− 1
∆xi+1

, i = j + 1

− 1
∆xi+1

, j = i+ 1

0, else

f̄ =

(∫
C1

f dx, . . . ,

∫
Cn

f dx

)
.

(2.29)

Dirichlet problem

To get ū = (u1, . . . , un)T , we solve (2.29) where u(a) and u(b) are given. If
f = 0 then the linear system AuI = b is identical to that in the finite element
case (2.24).

Neumann problem

For the one dimensional Neumann problem, (2.5), we have u(b) given, but u(a)
is unknown. We use (2.29), but approximate u(a) and move it to the left hand
side to get: [

A − e1
∆x1

] [uI
ua

]
=

en
∆xn+1

u(b)− f̄ , (2.30)

where ua is an approximation of u(a). We have n + 1 unknowns but only n
equations, so we need to add one equation. Here we use the fact that we know
u′(a). To get the last equation we integrate our differential equation over the
first segment:

u′′ = f ⇒
∫ x0.5

a

u′′dx =

∫ x0.5

a

fdx
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⇔ (u′(x0.5)− u′(a)) =

∫ x0.5

a

fdx.

uh is discontinuous in 0.5, so we use the flux function F0.5 to approximate the
derivative. Using this approximation in the equation gives:

F0.5 =

(
u(x1)− u(a)

∆x1

)
= u′(a) +

∫ x0.5

a

fdx

⇒ u(xI1)− u(a)

∆x1
= u′(a) +

∫ x0.5

a

fdx

⇒ u(xI1)− ua
∆x1

≈ u′(a) +

∫ x0.5

a

fdx. (2.31)

Adding equation (2.31) to the linear system in (2.30) gives us an expression for
the coefficients of the approximation.[

A − e1
∆x1

eT1
∆x1

− 1
∆x1

] [
uI

u(a)

]
=

[ en
∆xn+1

u(b)− f̄
u′(a) +

∫ x0.5

a
fdx.

]
(2.32)

2.7.2 Numerical Confirmation

To confirm that our finite volume discretisation is correct, we analyzed the errors
of a set of approximations numerically. We used the L2-norm when defining the
error, ‖u(x) − uh(x)‖L2

. Using the L2 norm, our approximation ûh will never
have second order. To give the method a chance in order testing we use linear
interpolation of the averages at the center of each cell. This modified function
is what we use as uh. The test problems used in testing were the same as in
Section 2.6.3, (5.2) and (5.1). The results, errors, of both tests are presented
in Figure 2.8. In Figure 2.8 we can observe second order convergence for both
discretisations. When ∆x = 10−3 the error is approximately 10−6 and when
∆x = 104 the error is approximately 10−8.
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Normed Error of the Finite Volume Approximation.
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Figure 2.8: An error graph for the finite volume discretisation of the Poisson’s
equation in one dimension. Approximations were found using the finite volume
method presented in Section 2.7.1. At ∆x = 10−2 the error was 10−4 and at
∆x = 10−3 the error was 10−6. This indicates that the method is of second
order.
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Chapter 3

Convergence rate of the
Algorithm

The convergence rate for the Dirichlet Neumann algorithm will be analyzed and
numerically tested in this chapter. First, the convergence rate for non -mixed
standard discretisations are analyzed and proved using linear algebra. The re-
sults from these three separate cases are combined into one theorem for the
mixed case. This results is surprising. It sais that the convergence rate for
mixed adaptive discretisations is indepedent of the grids chosen. It also shows
that it is possible to find the convergence rate by analyzing the discretisations
separately. This is made easier due to the clear structure of the discretisations.
The same approach could be used for higher order methods and the multidi-
mensional case. The linear systems would be harder to solve, but there would
still be a similar structure to them. This chapter ends by analyzing the linear
systems arising in the asymptotic case for a set of general discretisations. Using
this approach might give more general information about the convergence rate.
There is no clear way to extend this result to the multidimensional case, but a
similar approach could be used to make statements of the convergence rate for
higher order discretisations.

3.1 The Dirichlet-Neumann Algorithm FDM -
FDM

In this section, we analyze the convergence rate of the Dirichlet-Neumann algo-
rithm when using the finite difference discretisation to get an approximation of
the solution to the transmission problem (2.6). We will use the finite difference
discretisation introduced in Section 2.5.1.

3.1.1 The Method

The first step will introduce a new grid for our discrete solution. We use two
equidistant methods, so we construct two equidistant grids. The spacing of the

29
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grids are defined by:

∆x =
xΓ − a
n1 + 1

and ∆y =
b− xΓ

n2 + 1
,

where n1 will be the resolution of the Dirichlet part and n2 for the Neumann
part. Following the steps of Section 2.4.1, using the finite difference method
to approximate discrete solutions for both the Dirichlet and Neumann problem
leads to the following terms in (2.11):

A(1) = Ax, f̄
(1) = f̄x, A

(1)
Γ = −en1

∆x
, b(1) = λ1

e1

∆x
.

A(2) = Ay, f̄
(2) = f̄y, A

(2)
Γ = − e1

∆y
, f

(1)
Γ = f

(2)
Γ = 0, b(2) = λ

en2

∆x

d
(2)
Γ = − 3

2∆y
, d(2) =

4eT1 − eT2
2∆y

, d
(1)
Γ =

3

2∆x
, d(1) = −

4eTn1
− eTn1−1

2∆x
,

(3.1)

where Ax and Ay are the two A matrices and f̄x and f̄y are the f̄s in the
Dirichlet and Neumann problem respectfully. We get d(1) and d(2) by using a
mirrored version of (2.15). The Dirichlet-Neumann algorithm follows by using
the recursion defined in (2.11) with these terms and an initial guess wΓ0 .

Numerical confirmation

The discretisation was set up and tested. To analyze the convergence of the
discretisations of v and w, we used the test problem (5.3). Knowing the exact
solutions, we quantify the error of the interpolated discrete approximations vh

and wh with a modified L2 norm:√∫ xΓ

a

(v − vh)2dx+

∫ b

xΓ

(w − wh)2dx. (3.2)

With the error quantified, the error for different approximations of the test
equation with different ∆x and ∆y were evaluated. For simplicity we let ∆x =
∆y. We then analyze the error for different ∆x and collect them in Figure 3.1.1.
Figure 3.1.1 shows that the approximations converges to the correct solutions
when ∆x goes to zero. Moreover, the convergence is second order.

3.1.2 Convergence Rate

Before we go into Theorem 3.1.1, we provide some Lemmas.

Lemma 3.1.1. A(1) and A(2) have the form of A in Lemma 5.0.1 and 5.0.2.

Proof.
2

∆x
=

1

∆x
+

1

∆x
and

2

∆y
=

1

∆y
+

1

∆y
.

Lemma 3.1.2.

1

2∆x

(
3−

(
4eTn1

− eTn1−1

) (A(1))−1

∆x
en1

)
=

1

l1
(3.3)
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Figure 3.1: The error of the approximate solution compared to the correct solu-
tion of the Dirichlet-Neumann problem. Discretisations used are finite difference
discretistaions, where ∆y = ∆x. We observe second order convergence.

Proof. First we use Lemma 5.0.1, motivated by Lemma 3.1.1:

eTn1
A−1en1

= ∆x

(
1− ∆x

l

)
.

This is applied to the left hand side of (3.3) to get:

1

2∆x

(
3− 4

(
1− ∆x

l1

)
+ eTn1−1

(A(1))−1

∆x
en1

)
. (3.4)

Here we use Lemma 5.0.2, again motivating with Lemma 3.1.1, to get the rela-
tion:

eTn1−1A
−1en1

= ∆x

(
1− 2

∆x

l

)
.

Using this in (3.4) finishes the proof.

1

2∆x

(
3− 4

(
1− ∆x

l1

)
+

(
1− 2

∆x

l1

))
=

1

2∆x

(
2

∆x

l1

)
=

1

l1
.

Lemma 3.1.3.

1

2∆y

(
3−

(
4eT1 − eT2

) (A(2))−1

∆y
e1

)
= − 1

l2
(3.5)
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Proof. Lemma 3.1.1 tells us that we can use Lemma 5.0.1 to get the following
relation:

eTnA
−1en = ∆y

(
1− ∆y

l

)
.

Using this on the left hand side of (3.5) gives:

1

2∆y

(
3− 4

(
1− ∆y

l2

)
+ eT2

(A(2))−1

∆y
e1

)
. (3.6)

Next we use Lemma 5.0.2, motivating with Lemma 3.1.1, to get another relation:

eTn−1A
−1en = ∆y

(
1− ∆y

l
− ∆y

l

)
Using this in (3.6) gives us the wanted result.

1

2∆y

(
3− 4

(
1− ∆y

l2

)
+

(
1− 2

∆y

l2

))
=

1

∆y

(
−∆y

l2

)
= − 1

l2
.

Theorem 3.1.1. The convergence rate of the Dirichlet-Neumann algorithm
approximating (2.6) with the finite difference discretisations presented in Section
3.1.1 is:

µ =

∣∣∣∣λ1l2
λ2l1

∣∣∣∣ ,
where

l1 = xΓ − a, l2 = b− xΓ.

Proof. We know from (2.13) that the convergence rate is:

µ =

∣∣∣∣λ1

λ2

∣∣∣∣
∣∣∣∣∣d(1)

Γ − d(1)(A(1))−1A
(1)
Γ

d
(2)
Γ − d(2)(A(2))−1A

(2)
Γ

∣∣∣∣∣ ,
Using the terms for the finite difference discretisation, (3.1), gives the following:

µ =

∣∣∣∣λ1

λ2

∣∣∣∣
∣∣∣∣∣∣∣∣
−3

2∆x −
(

4eTn1
−eTn1−1

2∆x

)
(A(1))−1

(
− en1

2∆x

)
3

2∆y +
(

4eT1 −eT2
2∆y

)
(A(2))−1

(
− e1

2∆y

)
∣∣∣∣∣∣∣∣

⇔ µ =

∣∣∣∣λ1

λ2

∣∣∣∣
∣∣∣∣∣∣

1
2∆x

(
3−

(
4eTn1

− eTn1−1

) (A(1))−1

∆x en1

)
1

2∆y

(
3−

(
4eT1 − eT2

) (A(2))−1

∆y e1

)
∣∣∣∣∣∣ . (3.7)

Next we analyze the nominator and denominator following terms separately in
Lemma 3.1.2 and Lemma 3.1.3. To prove the theorem we use Lemma 3.1.2 and
3.1.3 in (3.7).

µ =

∣∣∣∣λ1

λ2

∣∣∣∣
∣∣∣∣∣

1
l1

− 1
l2

∣∣∣∣∣ =

∣∣∣∣λ1l2
λ2l1

∣∣∣∣ .



3.2. THE DIRICHLET-NEUMANN ALGORITHM FEM - FEM 33

Numerical confirmation

We know the convergence rate of the Dirichlet-Neumann algorithm solving the
transmission problems with finite difference discretisations by Theorem 3.1.1.
We tested this remark by performing the algorithm for a number of different
transmission problems and comparing the convergence rates to the expected
rates. Two tests were performed. The first test varied λ1 and λ2 and the second
varied l1 and l2. In each test we set λ1 = λ2 = 1 and l1 = l2 = 1 unless stated
otherwise. For each test we found the deviation from the expected convergence
rates for three different resolutions. The deviation was assessed as:

max
k=0,...,9

∣∣∣∣λ1l2
λ2l1

− ek+1

ek

∣∣∣∣ ,
where ek = |wk(xΓ)−w(xΓ)|. This deviation was calculated five separate times
for each test and the mean value was the result. The results of these tests are
presented in Table 3.1 and 3.2. They show that the deviation from the expected
result is negligible.

Resolution λ1 = 2 λ2 = 0.5 λ1 = 4 λ2 = 0.25
n1 = 100, n2 = 100 1.3e-11 1.3e-11 2.9e-11 2.9e-11
n1 = 20, n2 = 100 4.6e-12 4.6e-12 3.6e-11 3.6e-11
n1 = 100, n2 = 20 8.1e-12 8.1e-12 1.7e-11 1.7e-11

Table 3.1: Deviation of the convergence rate for the Dirichlet-Neumann algo-
rithm with finite difference discretisations. In this test we vary λ1 and λ2.

Resolution l1 = 2 l2 = 0.5 l1 = 4 l2 = 0.25
n1 = 100, n2 = 100 1.7e-11 7.4e-12 4.1e-11 4.9e-12
n1 = 20, n2 = 100 4.6e-12 6.4e-13 3.2e-12 3.2e-12
n1 = 100, n2 = 100 7.3e-11 4.5e-12 4.1e-11 3.4e-11

Table 3.2: Deviation of the convergence rate for the Dirichlet-Neumann algo-
rithm with finite difference discretisations. In this test we vary l1 and l2.

3.2 The Dirichlet-Neumann Algorithm FEM -
FEM

In this section we find the convergence rate of the Dirichlet-Neumann algorithm
when using the finite element method presented in Section 2.6 for both dis-
cretisations. We use the result of Section 2.4.2, (2.13), to get an expression
of the convergence rate. The result, Theorem 3.2.1, is then confirmed through
numerical testing.

3.2.1 The Method

First we need to define our grids for both discretisations. The grid points for
the Dirichlet part will be denoted xI ⊂ (a, xΓ), #xI = n1 and the grid points
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for the Neumann part will be denoted yI ⊂ (xΓ, b), #yI = n2. The distances
between these grid points and boundary points will be denoted ∆x for xI and
∆y for yI . An illustration to visualize these terms is provided in Figure 3.2.

a

∆x1

xI1

∆x2

xI2 . . . xIn1

∆xn1+1

xΓ

∆y1

yI1

∆y2

yI2 . . . yIn2

∆yn2+1

b

Figure 3.2: The grid used for the Dirichlet-Neumann algorithm.

With the grid defined, we set up finite element discretisations for both the
Dirichlet and Neumann problems in (2.7). From these discretisations we get the
following terms of (2.11):

A(1) = Ax, f̄
(1) = f̄x, b

(1) =
λ1

∆x1
e1, A

(1)
Γ = − 1

∆xn1+1
en1 .

A(2) = Ay, f̄
(2) = f̄y, b

(2) =
λ2

∆yn2+1
en2

, A
(2)
Γ = − 1

∆y1
e1,

d(2) =
eT1

∆y1
, d

(2)
Γ = − 1

∆y1
, f

(2)
Γ =

∫ b

xΓ

(φy)Γ
1f

(2)dx,

d(1) = −
eTn1

∆xn1+1
, d

(1)
Γ =

1

∆xn+1
, f

(1)
Γ =

∫ xΓ

xn1

f (1)(φx)Γ
2dx,

(3.8)

where φx and φy are the basis functions, Ax and Ay are the A matrices and f̄x
and f̄y are f̄ from the Dirichlet and Neumann discretisation respectably. To get

d(1) and d
(1)
Γ , we use the same process getting the last equation for the Neumann

problem in Section 2.6.2.

Numerical Confirmation

This discretisation was set up and tested. To analyze the convergence of the
approximations vh and wh, we use the test problem (5.3). Just like in the finite
difference case we quantify the error of the approximations as (3.2). This error
was evaluated for different approximations of the test problem with equidistant
∆x and ∆y. We also let ∆x = ∆y for simplicity. The errors are presented in
Figure 3.2.1. The results show that we have convergence and that the conver-
gence is second order.

3.2.2 Convergence Rate

Theorem 3.2.1. The convergence rate of the Dirichlet-Neumann algorithm
approximating (2.6) with the finite element discretisations in Section 2.6 is:

µ =

∣∣∣∣λ1l2
λ2l1

∣∣∣∣ ,
where

l1 = xΓ − a, l2 = b− xΓ.
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Figure 3.3: The norm of the error when using different ∆x when ∆x = ∆y.

Proof. Using the result of Section 2.4.2, we know that the convergence rate of
the algorithm is (2.13). Putting (3.8) into (2.13) leads to:

µ =

∣∣∣∣λ1

λ2

∣∣∣∣
∣∣∣∣∣d(1)

Γ − (d(1))(A(1))−1(A
(1)
Γ )

d
(2)
Γ − (d(2))(A(2))−1(A

(2)
Γ )

∣∣∣∣∣

=

∣∣∣∣λ1

λ2

∣∣∣∣
∣∣∣∣∣∣∣∣
(

1
∆xn1+1

)
−
(
− eTn1

∆xn1+1

)
(A(1))−1

(
− en1

∆xn1+1

)
(
− 1

∆y1

)
−
(

1
∆y1

eT1

)
(A(2))−1

(
− 1

∆y1
e1

)
∣∣∣∣∣∣∣∣

⇔ µ =

∣∣∣∣λ1

λ2

∣∣∣∣
∣∣∣∣∣∣∣∣
(

1
∆xn1+1

)(
1− eTn1

(A(1))−1en1

∆xn1+1

)
(
− 1

∆y1

)(
1− eT1 (A(2))−1e1

∆y1

)
∣∣∣∣∣∣∣∣ . (3.9)

Next we use Lemma 5.0.1. We notice that the matrices A(1) and A(2) paired
with ∆x and ∆y respectively have the same form as A in the lemma. Using
this we know the following:

eTn1
(A(1))−1en1

∆xn1+1
= 1− ∆xn1+1

l1

eT1 (A(2))−1e1

∆y1
= 1− ∆y1

l2

(3.10)
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Adding (3.9) into (3.9) gives the wanted result.

µ =

∣∣∣∣λ1

λ2

∣∣∣∣
∣∣∣∣∣∣
(

1
∆xn1+1

)(
1−

(
1− ∆xn1+1

l1

))
(
− 1

∆y1

)(
1−

(
1− ∆y1

l2

))
∣∣∣∣∣∣ =

∣∣∣∣λ1

λ2

∣∣∣∣
∣∣∣∣∣

1
l1

− 1
l2

∣∣∣∣∣ . =

∣∣∣∣λ1l2
λ2l1

∣∣∣∣ .

The result of Section 2.4.2 states that the convergence rate is independent of
what grid you use. The convergence rate is entirely dependent on the terms of
the transmission problem.

Numerical Confirmation

We tested four different strategies when choosing the grids xIs and yIs for each
test performed. If Theorem 3.2.1 is true, then there should be no difference
which strategy is used.

The first strategy is the equidistant distribution. The second strategy is us-
ing pseudo-random uniform distribution, the third has grid points concentrated
around the interface, xΓ, and the fourth has grid points concentrated around
the boundary points a and b. The points for the second and third points are
generated by getting an uniformly distributed set between [0, 1]. These sets are
then put into the functions:

fl(x) =
ex − 1

e− 1
and fu(x) = f−1

l (x) = ln(x(e− 1) + 1).

This creates new sets that are either concentrated around 0 (fl) or 1 (fu). Next
the values in the sets are sorted, scaled, and offset to be between the wanted
boundary values. So for the third strategy we used fu for the xIi s and fl for the
yIi s, the fourth is vice versa.

Three tests were performed. The first test varied λ1, λ2, the second l1, l2, and
the third the resolutions n1 and n2. In all tests we set λ1 = λ2 = 1, l1 = l2 = 1
and n1 = n2 = 100 unless stated otherwise. For each test we found the devi-
ation from the expected convergence rates for each one of our four strategies.
The deviation was assessed as:

max
k=0,...,9

∣∣∣∣λ1l2
λ2l1

− ek
ek−1

∣∣∣∣ ,
where ek = |wk(xΓ)−w(xΓ)|. This deviation was found five separate times and
the mean value was the result. The results of the tests are presented in Tables
3.3, 3.4 and 3.5. The results indicate that the deviation is negligible.

Strategy λ1 = 2 λ2 = 0.5 λ1 = 4 λ2 = 0.25
Equidistant 5.8e-13 5.8e-13 7.1e-9 7.11e-9

Uniform 3.5e-10 3.6e-10 9.7e-8 2.8e-8
Dense Interface 1.5e-9 1.6e-10 3.5e-7 4.1e-8
Sparse Interface 2.8e-10 3.6e-9 1.6e-7 7.1e-8

Table 3.3: Deviation when varying λ1 and λ2
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Strategy l1 = 2 l2 = 0.5 l1 = 4 l2 = 0.25
Equidistant 6.3e-13 3.7e-11 7.1e-9 1.6 e-9

Uniform 1.8e-8 3.6e-10 1.2e-7 7.6e-8
Dense Interface 1.0e-10 7.2e-10 4.0e-8 4.3e-7
Sparse Interface 3.4e-10 4.9e-10 3.3e-7 8.8e-8

Table 3.4: Deviation when varying l1 and l2

Strategy l1 = 2, n1 = 10, n2 = 100 l1 = 2, n1 = 100, n2 = 10
Equidistant 1.6e-12 8.0e-13

Uniform 2.9e-10 1.4e-11
Dense Interface 1.4e-9 7.5e-12
Sparse Interface 4.0e-10 2.2e-11

Table 3.5: Deviation when varying n1 and n2

3.3 The Dirichlet-Neumann Algorithm FVM -
FVM

This section analyzes the convergence rate of the finite volume method. We
first set up the Dirichlet-Neumann problem using the discretisations presented
in Section 2.7.1. The terms relating to the convergence rate in the Dirichlet-
Neumann algorithm are identical to the terms in the finite element case.

3.3.1 The Method

The grid chosen will be the same grid as in the finite element case, Figure 3.2.
We set up the discretisations of the Dirichlet part and Neumann part of (2.11).
From these discretisations we get the following terms (2.11):

A(1) = Ax, f̄
(1) = −f̄x, b(1) =

λ1

∆x1
e1 and A

(1)
Γ = − 1

∆xn1+1
en1

A(2) = Ay, f̄
(2) = −f̄y, b(2) =

λ2

∆yn2+1
en2

, A
(2)
Γ = − 1

∆y1
e1,

d(2) =
eT1

∆y1
, d

(2)
Γ = − 1

∆y1
, d(1) = −

eTn1

∆xn1+1
, d

(1)
Γ =

1

∆xn+1
,

f
(2)
Γ =

∫ y0.5

xΓ

f2(x)dx, f
(1)
Γ =

∫ xΓ

xn1−0.5

f1(x)dx,

(3.11)

where Ax and Ay are A and f̄ (1) and f̄ (2) are f̄ in the Dirichlet and Neumann

part respectfully. The terms d(1), d
(1)
Γ , and f

(1)
Γ are chosen using the same

method when creating the last equation of the Neumann discretisation (2.32).

Numerical Confirmation

We perform the same procedure when testing the convergence rates as the finite
difference (Section 3.1) and finite element (Section 3.2) discretisations. We
evaluate the error in the modified L2 error, (3.2), and use test equation (5.3)
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for testing. We simplify testing by choosing equidistant grids ∆x and ∆y with
∆x = ∆y. The approximation will be constant segments so we choose to analyze
the approximation uh, which is created by linear interpolation of the mean
function values at xi and yi. These approximations are then compared to the
exact solutions using the error we defined. These errors are presented in Figure
3.3.1. In Figure 3.3.1, we can see that the error seems to converge with second
order convergence.
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Figure 3.4: Error of the approximation of the Dirichlet-Neumann problem when
using an equidistant grids with ∆x = ∆y for the finite volume method.

3.3.2 Convergence Rate

Theorem 3.3.1. The convergence rate of the Dirichlet-Neumann algorithm
approximating (2.11) with the finite volume discretisations in Section 2.7.1 is:

µ =

∣∣∣∣λ1l2
λ2l1

∣∣∣∣ ,
where

l1 = xΓ − a, l2 = b− xΓ.

Proof. The finite volume and finite element discretisation of the discrete Dirichlet-

Neumann algorithm, (2.11), has the same terms d(1), d(2), d
(1)
Γ , d

(2)
Γ , A(1), A(2),

A
(1)
Γ , and A

(2)
Γ when using the same grid. We know from (2.13) that these are

the only terms that influence the convergence rate. Therefore the convergence
rate of the finite volume discretisation and the finite element discretisation have
to be the same. By Theorem 3.2.1 we know that the convergence rate is as
stated.
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Numerical Confirmation

We know from Theorem 3.3.1 that the convergence rate is independent of the
grid used. The convergence rate is entirely dependent on the terms of the
transmission problem, as with the finite element case in Section 3.2.2. We
therefore used the same four grid choosing strategies and tests presented in
Section 3.2.2. The results of these tests are presented in Table 3.6, 3.7 and
3.8. We observe that the tables generated are similar to the finite element case
(Table 3.5, 3.4 and 3.3). This makes sense as both of the discretisations becomes
identical when f = 0. Moreover the deviations are negligible.

Strategy λ1 = 2 λ2 = 0.5 λ1 = 4 λ2 = 0.25
Equidistant 1.3e-12 1.3e-12 2.8e-8 2.8e-8

Uniform 3.6e-10 1.2e-9 3.9e-7 1.0e-7
Dense Interface 5.1e-9 6.8e-10 8e-7 4.7e-7
Sparse Interface 4.1e-10 1.8e-10 1.8e-7 6.1e-8

Table 3.6: Deviation when varying λ1 and λ2

Strategy l1 = 2 l2 = 0.5 l1 = 4 l2 = 0.25
Equidistant 1.4e-12 7.4e-11 2.8e-8 5.6 e-9

Uniform 3.1e-10 3.3e-10 7e-7 7.8e-7
Dense Interface 5.3e-10 7.9e-10 7.9e-7 3.8e-7
Sparse Interface 6.5e-10 3.6e-10 4.0e-7 2.6e-7

Table 3.7: Deviation when varying l1 and l2

Strategy l1 = 2, n1 = 10, n2 = 100 l1 = 2, n1 = 100, n2 = 10
Equidistant 3.8e-12 1.5e-12

Uniform 8.6e-10 4.6e-11
Dense Interface 5.2e-10 4.6e-11
Sparse Interface 5.2e-10 1.1e-11

Table 3.8: Deviation when varying n1 and n2

3.4 Convergence Rate for Mixed Discretisations

In this section we analyze the convergence of the Dirichlet-Neumann algorithm
when different discretisations are used. We use conclusions made from Chapters
3.1, 3.2 and 3.3 to combine them into one theorem about the convergence rate.

3.4.1 The Method

Mixed discretisations use one discretisation method to approximate the Dirichlet
part and another to approximate Neumann part of the problem. Doing so you
end up with the terms:

A(1), b(1), f̄ (1), A
(1)
Γ , d(1), d

(1)
Γ and f

(1)
Γ , (3.12)



40 CHAPTER 3. CONVERGENCE RATE OF THE ALGORITHM

from the Dirichlet discretisations and

A(2), b(2), f̄ (2), A
(2)
Γ , d(2), d

(2)
Γ and f

(2)
Γ , (3.13)

from the Neumann discretisation in (2.11).

Numerical Confirmation

The L2 error, (3.2), was found for four different combinations with different
grids. The combinations were:

• Finite difference for v and finite element for w

• Finite volume for v and finite difference for w

• Finite element for v and finite volume for w

• Finite volume for v and finite element for w

The grids were chosen to be equidistant where ∆x = ∆y. The test problem
used was (5.3). With the error defined, problem set, and discretisations chosen,
we generate and analyze a wide range of approximations using the four different
discretisation pairs. To generate the approximations for the different ∆x the
Dirichlet-Neumann algorithm is used. We let the algorithm go until |wk(xΓ)−
wk+1(xΓ)| < 10−8. All of these errors are presented in Figure 3.4.1. The results
show that all the approximations converge to the exact solutions. Moreover,
they all have seem to have second order convergence.

3.4.2 Convergence Rate

Now we combine Theorem 3.1.1, 3.2.1, and 3.3.1 into one general theorem,
Theorem 3.4.1.

Theorem 3.4.1. The convergence rate of the Dirichlet-Neumann algorithm
approximating (2.6) with any mix of the discretisations presented in Section
2.5.1, 2.7.1 and 2.6.2 is:

µ =

∣∣∣∣λ1l2
λ2l1

∣∣∣∣ ,
where

l1 = xΓ − a, l2 = b− xΓ.

Proof. We know that the terms effecting the rate of convergence for the finite
element and finite volume cases are identical. Therefore mixing the terms for
the two discretisations will have no effect on the convergence rate. We can con-
sider them equivalent from a convergence rate point of view.

That leaves mixing a finite element discretisation with a finite difference discreti-
sation. To analyze these cases we first write out the formula for the convergence
rate (2.13).

µ =

∣∣∣∣λ1

λ2

∣∣∣∣
∣∣∣∣∣d(1)

Γ − d(1)(A(1))−1A
(1)
Γ

d
(2)
Γ − d(2)(A(2))−1A

(2)
Γ

∣∣∣∣∣ .
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Figure 3.5: Error of the approximation of the Dirichlet-Neumann problem when
using an equidistant grids with ∆x = ∆y for different mixed discretisations. ∆x
was chosen slightly irregularly so that each of the markers is shown in the graph.

We re-write this as:

µ =

∣∣∣∣λ1

λ2

∣∣∣∣ ∣∣∣∣ CDIR

CNEU

∣∣∣∣ , (3.14)

where

CDIR = d
(1)
Γ − d

(1)(A(1))−1A
(1)
Γ and CNEU = d

(2)
Γ − d

(2)(A(2))−1A
(2)
Γ .

This isolates the terms that are dependent on the Dirichlet discretisation in CDIR

and the terms that are dependent on the Neumann discretisation in CNEU. We
now analyze what these variables are for the finite difference, finite element, and
finite volume discretisation.

For the finite difference discretisation we know that:

CFDM
DIR =

1

l1
and CFDM

NEU = − 1

l2
,

from Lemma 3.1.2 and 3.1.3. For the finite element and finite volume case we
get:

CFVM
DIR = CFEM

DIR =
1

l1
and CFVM

NEU = CFEM
NEU = − 1

l2
,
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by using (3.9) in (3.10). From this we get the following result:

|CFVM
DIR | = |CFEM

DIR | = |CFDM
DIR | =

∣∣∣∣ 1

l1

∣∣∣∣
|CFVM

NEU | = |CFEM
NEU | = |CFDM

NEU | =
∣∣∣∣ 1

l2

∣∣∣∣ . (3.15)

This means that for all combinations of the three discretisations we get:

µ =

∣∣∣∣λ1

λ2

∣∣∣∣ ∣∣∣∣ CD1
DIR

CD2
NEU

∣∣∣∣ =

∣∣∣∣λ1l2
λ2l1

∣∣∣∣ , ∀D1,D2 ∈ {FDM,FEM,FVM},

which is what we wanted to prove.

Numerical Confirmation

To ensure that Theorem 3.4.1 is true, we performed several numerical tests. The
three discretisation combinations we analyzed was:

1. Finite difference for v and finite element for w

2. Finite volume for v and finite difference for w

3. Finite element for v and finite volume for w

4. Finite volume for v and finite element for w

We set the resolution of the finite difference discretisation to n = 100 and use
the same grid choosing strategies as in Section 3.2.2 for the finite element and
finite volume discretisations. Only one Dirichlet-Neumann problem was used
when testing. The terms of this Dirichlet-Neumann problem was λ1 = 1, λ2 =
2, l1 = 1, l2 = 1, f (1) = f (2) = 0. We then found the devation of the expected
convergence rate to the actual rate by defining and then computing the following
devation:

max
k=1,...,10

∣∣∣∣λ1l2
λ2l1

− ek
ek−1

∣∣∣∣ ,
where ek = |wk(xΓ)−w(xΓ)|. This deviation was calculated five times for each
of the tests and the mean value was chosen as the result. The devations are
presented in Table 3.9. We observe by the very small deviations the results are
as expected.

Strategy FDM-FEM FVM-FDM FEM-FVM FVM-FEM
Equidistant 3.1e-12 2.9e-13 3.8e-12 1.6e-12

Uniform 7.2e-10 3.6e-11 8.4e-10 2.6e-11
Dense Interface 2.5e-8 6.9e-11 1.2e-9 2.9e-11
Sparse Interface 2.6e-9 4.0e-11 3.6e-10 9.4e-12

Table 3.9: Deviation of theoretical convergence rate with numerical when mixing
discretisations.
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3.5 Convergence Rate for General Discretisa-
tions

Using semi-discrete analysis gives statements on the asymptotic case. In this
section we will take that approach. First we introduce a set of discretisations of
(2.4) of the form (2.9) and then we introduce a set of discretisations of (2.5) of
the form (2.10). First (2.4):

v′′(x) = f, x ∈ [a, xΓ], v(a) and v(xΓ) given. (3.16)

In this section we impose that f is chosen so the differential equation has a
unique solution in a given function space V. The homogeneous solutions to this
problem are lines, so we impose that polynomials of degree one are included in
V. To approximate v in (3.16) we set up a system of the following form:

A(1)v̄ = b(1)v(a)−A(1)
Γ v(xΓ) + f̄ , (3.17)

where f̄ = 0 if f = 0. With this we define a convergent Poisson-Dirichlet
discretisation.

Definition 3.5.1. Let vh1 , . . . , v
h
n be n functions on [a, xΓ], where the func-

tions are continuous on some interval (xΓ − ε, xΓ], ε > 0. Then let vh(x) =∑n
i=1 v̄iv

h
i (x), where v̄ is defined by solving a system on the form (3.17) given

some differential equation (3.16) with exact solution v. A discretisation on
this form is called a convergent Poisson-Dirichlet discretisation on V if
‖v − vh‖L2 → 0, n→∞ for all v ∈ V.

Now we handle Neumann problems. We wish to approximate w in the following
differential equation:

w′′(x) = f, x ∈ [a, xΓ], w′(xΓ) and w(b) given, (3.18)

where f is chosen so the differential equation has a unique solution in some
function space W. The homogeneous solution to this problem is a first degree
polynomial, so we impose that they are included in W. To approximate w in
this equation we will set up a system on the following form:[

A(2) A
(2)
Γ

d(2) d
(2)
Γ

] [
w̄

wh(xΓ)

]
=

[
w(b)b(2) + f̄
w′(xΓ)

]
, (3.19)

where f̄ = 0 if f = 0. With this we define a convergent Poisson-Neumann
discretisation.

Definition 3.5.2. Let wh1 , . . . , w
h
n be n functions on [xΓ, b], where the func-

tions are continuous on some interval [xΓ, xΓ − ε), ε > 0. Then let wh(x) =∑n
i=1 w̄iw

h
i (x), where w̄ is defined by solving a system on the form (3.17) given

some differential equation (3.18) with exact solution w. A discretisation on
this form is called a convergent Poisson-Neumann discretisation on W
if ‖w − wh‖L2

→ 0, n→∞ for all w ∈ W.

With these definitions the following theorem is presented.
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Theorem 3.5.1. Choose any convergent Poisson-Dirichlet discretisation paired
with function space V and n1 functions vh1 , . . . , v

h
n1

and Poisson-Neumann dis-
cretisation paired with function space W and n2 functions wh1 , . . . , w

h
n2

. If

these discretisations together with d
(1)
Γ vh(x) + d(1)v̄ = (vh)′(xΓ) are used in

the Dirichlet-Neumann algorithm, (2.11), then the convergence rate is∣∣∣∣λ1l2
λ2l1

∣∣∣∣ , n1, n2 →∞,

were l1 = xΓ − a, l2 = b− xΓ.

Proof. From (2.13) we know that the convergence rate of the algorithm is:

µ = |Σ| =
∣∣∣∣λ1

λ2

∣∣∣∣
∣∣∣∣∣d(1)

Γ − d(1)(A(1))−1A
(1)
Γ

d
(2)
Γ − d(2)(A(2))−1A

(2)
Γ

∣∣∣∣∣ . (3.20)

The discretisations are expressed on the same form as (2.9) and (2.10). In this
proof we will first analyze the nominator and then the denominator:

d
(1)
Γ − d

(1)(A(1))−1A
(1)
Γ = d

(1)
Γ + d(1)(A(1))−1(−A(1)

Γ ) = d
(1)
Γ + d(1)h̄,

if A(1)h̄ = −A(1)
Γ . From (3.17) we know that:

A(1)v̄k+1 = −A(1)
Γ wk(xΓ) + b(1)v(a) + f̄ (1)

is a discretisation of the following problem:

(vk+1)′′(x) = f (1)(x), vk+1(a) = v(a) and vk+1(xΓ) = wk(xΓ),

where f (1) is some function. If we let f̄ (1) = 0, v(a) = 0 and wk(xΓ) = 1 we get
the expression for h̄:

A(1)h̄ = −A(1)
Γ ,

which is a discretisation of:

h′′(x) = 0, h(a) = 0 and h(xΓ) = 1.

The Dirichlet discretisation is a convergent Poisson-Dirichlet discretisation and
h ∈ P1 ⊂ V so:∥∥∥∥∥

n∑
i=1

h̄ivi(x)− h

∥∥∥∥∥
L2

=

∥∥∥∥hh − x− a
l1

∥∥∥∥
L2

→ 0, n1 →∞,

where hh is the discrete approximation. For an ε small enough we have uniform
convergence, h and hh are continuous around xΓ. Therefore

hh(x) = h(x), n1 →∞, x ∈ (ε, xΓ] ⇒ h′(xΓ) = (hh)′(x), n1 →∞.

In particular we have: hh(xΓ) = h(xΓ) = 1 and (hh)′(xΓ) = h′(xΓ) = 1
l1

when
n1 →∞. With this we observe that:

d
(1)
Γ + d(1)h̄ = d

(1)
Γ hh(xΓ) + d(1)h̄ = (hh)′(xΓ) =

1

l1
, n1 →∞, (3.21)
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because of the choice of d
(1)
Γ and d(1). Next we analyze the denominator:

d
(2)
Γ − d

(2)(A(2))−1A
(2)
Γ = d

(2)
Γ + d(2)(A(2))−1(−A(1)

Γ ) = d
(2)
Γ + d(2)ḡ,

if A(2)ḡ = −A(2)
Γ . We discretize the following differential equation with the

Neumann discretisation:

g′′(x) = 0, g′(xΓ) = − 1

l2
, g(b) = 0,

where the exact solution is g(x) = b−x
l2

. The corresponding system defining the
coefficients ḡ of this discretisation is:[

A(2) A
(2)
Γ

d(2) d
(2)
Γ

] [
ḡ

gh(xΓ)

]
=

[
0
− 1
l2

]
,

where we see that the first equation is the definition of ḡ. Because this is a
convergent Poisson-Neumann discretisation and g ∈ P1 ⊂ W we know:∥∥∥∥∥

n∑
i=1

ḡiwi(x)− g

∥∥∥∥∥
L2

=

∥∥∥∥gh − b− x
l2

∥∥∥∥
L2

→ 0, n2 →∞,

where gh is the discrete approximation. From the fact that gh and g are con-
tinuous around xΓ we also know that gh(xΓ) = g(xΓ) = 1, n2 → ∞. Adding
this information into the system yields:[

A(2) A
(2)
Γ

d(2) d
(2)
Γ

] [
ḡ

gh(xΓ)

]
=

[
0
− 1
l2

]
→

[
A(2) A

(2)
Γ

d(2) d
(2)
Γ

] [
ḡ
1

]
=

[
0
− 1
l2

]
, n2 →∞.

From the last equation of this system we get:

d
(2)
Γ + d(2)ḡ = − 1

l2
, n2 →∞. (3.22)

Now combining (3.20), (3.21) and (3.22) finishes the proof.

From this theorem we get information about the asymptotic convergence rate.
This could be interesting, but the general case is more interesting. To get state-
ments of the general case, using this approach, we need to remove the limits. In
the proof of Theorem 3.5.1 we use limits to make the discrete approximation,
uh, converge to the exact solution, u. If we can show that the discrete approxi-
mation is the exact solution, independent of n, we can remove all the limits in
the proof. This reasoning gives the following corollary.

Corollary 3.5.1. If the convergent Poisson-Dirichlet and Poisson-Neumann
discretisations in Theorem 3.5.1 approximates a function in P1 exactly, for any
n1 and n2, then the convergence rate is:

µ =

∣∣∣∣λ1l2
λ2l1

∣∣∣∣ , ∀n1, n2 ∈ Z+.

Proof. Follow the proof of Theorem 3.5.1 and remove all the limits by using the
extra condition.
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This result is good. The second order finite element discretisations are Poisson-
Dirichlet and Poisson-Neumann discretisation and have the extended property
required to use Corollary 3.5.1. Instead of solving the large linear systems to
get the result from Section 3.2, we can use this corollary and the properties of
the finite element discretisation. We showed that the convergence rate of the
finite volume discretisation is the same as the finite element discretisation in
Section 3.3. This form of reasoning can be useful. If we can show that two dis-
cretisations are equivalent convergence wise and one has the properties to use
Corollary 3.5.1, then the property must extend to the other discretisation. This
reasoning can be used for any time-independent one-dimensional transmission
problems. If you wish to show that a discretisation has a convergence property
as in Corollary (3.5.1), then check if the discretisation solves the homogenous
solution exactly. If it doesn’t, then you might be able to find a discretisation
that has the properties and show that they have the same convergence rate.

There are issues generalizing these results. There is no direct way to gener-
alize this to multivariable problems. In the proof we use that R has a unit, Rn
does not. If we have time-dependent problems then the homogenous problem
will change. This could effect the convergence rate. It might be interesting to
extend parts of these results to the harder problems, considering this is a very
powerful statement, but there is no easy way to do so.



Chapter 4

Conclusion

This thesis began by introducing the Poisson’s equation and three different dis-
cretisation methods to find an approximation to the solution of the Poisson’s
equation. These approximations are a second order finite difference, a second
order finite element, and a second order finite volume discretisation. We also
introduced the general Dirichlet-Neumann problem, algorithm, and convergence
rate. The general Dirichlet-Neumann problem requires two discretisations; one
for the Dirichlet part and one for the Neumann part.

The convergence rate of the Dirichlet-Neumann algorithm when using the same
discretisation for both the Dirichlet and Neumann part was analyzed first. In
each of the three discretisations the convergence rate was proven and tested.
Different elements of an inverse mass matrix were calculated to prove the conver-
gence rate of each discretisation exactly. The theoretical convergence rate was
tested against several numerical tests. Theses tests showed that the deviation
between the expected results and the actual numerical results were negligible.

To bring the convergence rates together, a theorem was presented. This the-
orem gives the convergence rate of the Dirichlet-Neumann algorithm with any
mix of the discretisations presented. This theorem was proven using elements
of the proofs of the theorems regarding the convergence rate for non-mixed
discretisations. This theorem states that the convergence rate is the same no
matter which combination of the three discretisations is used. Moreover, the
convergence rate is independent of the grid used. The convergence rate is only
dependent on the parameters of the Dirichlet-Neumann problem. To confirm
this property, numerical tests were performed for mixed discretisations. Negli-
gible deviations compared to the theoretical results were observed. Inspired by
this, a general theorem for what discretisations this results holds for was pre-
sented in the asymptotic case. A corollary for when the limits can be dropped
was also provided.

The convergence rate of the three discretisations presented in this thesis was
calculated exactly. Given that we find the convergence rates for the equations
using a pair of discretisations exactly, one might be able to do so for time-
dependent or multidimensional problems. The systems will be more complex,
but they will still have structure. Generalizing the general theorem of this thesis
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to the multidimensional case is not straight forward. In the proof, we use that
R has a unit whereas Rn does not. If there is a way around this issue then
it could give general information about the convergence rate. The proof of the
general theorem can be modified to handle different time-independent transmis-
sion problems. The homogenous solution will be different, but the process will
be identical. Moreover, we showed that if the discretisations approximates the
homogenous solution exactly then we have the result from the general theorem
without the limit. In this thesis, we analyze a differential equation with a ho-
mogenous solution in P1. A lot of discretisations should give the exact solution,
especially higher order discretisations.
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Appendix

A1: Test problems

Poisson’s equation with Dirichlet Boundary conditions:
The following Poisson equation:

u′′(x) = 2, x ∈ [0, 1], u(0) = 1 and u(1) = 1, (5.1)

has the exact solution u(x) = 1− x+ x2.

Poisson’s equation with Dirichlet and Neumann Boundary conditions:
The following Poisson equation:

u′′(x) = 2, x ∈ [0, 1], u′(0) = 1 and u(1) = 1, (5.2)

has the exact solution u(x) = −1 + x+ x2.

Transmission problem:
The following transmission problem:

0.5v′′(x) = 1, x ∈ [0, 1]

w′′(x) = 2, x ∈ [1, 2]

v(1) = w(1), 0.5v′(1) = w′(1), v(0) = 2, w(2) = 1,

(5.3)

has the exact solution v(x) = 2−(8/3)x+x2 and w(x) = −3−(7/3)(x−2)+x2.

A2: Lemmas about the general Discretistation
matrix

Lemma 5.0.1. Let the matrix A ∈ Rn×n have the form:

[A]i,j =


1

∆xi
+ 1

∆xi+1
, i = j

− 1
∆xi+1

, i = j + 1

− 1
∆xi+1

, j = i+ 1

0, else
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where ∆xi ∈ R, ∆xi > 0 for i = 1, . . . , n+ 1. Then:

eTnA
−1en = ∆xn+1(1− ∆xn+1

l
) (5.4)

and

eT1 A
−1e1 = ∆x1(1− ∆x1

l
), (5.5)

if
n+1∑
i=1

∆xi = l.

Proof. We will start by proving (5.4). Let v = (v1, . . . , vn)T ∈ R be defined by:

v = A−1en.

We know that eTnA
−1en = eTnv = vn, so we analyze the linear system Av = en.

(
1

∆x1
+ 1

∆x2

)
v1 − 1

∆x2
v2 = 0

− 1
∆x2

v1 +
(

1
∆x2

+ 1
∆x3

)
v2 − 1

∆x3
v3 = 0

...

− 1
∆xn−1

vn−2 +
(

1
∆xn−1

+ 1
∆xn

)
vn−1 − 1

∆xn
vn = 0

− 1
∆xn

vn−1 +
(

1
∆xn

+ 1
∆xn+1

)
vn = 1

(5.6)

Remark 5.0.1.

(5.6)⇒

(
1∑k

i=1 ∆xi
+

1

∆xk+1

)
vk −

1

∆xk+1
vk+1 = 0, k = 1, . . . , n− 1.

Proof. We will prove this by induction. The base case (k = 1)(
1

∆x1
+

1

∆x2

)
v1 −

1

∆x2
v2 = 0

is the first equation in (5.6). Next we prove the induction step. Assume that:(
1∑k

i=1 ∆xi
+

1

∆xk+1

)
vk −

1

∆xk+1
vk+1 = 0, 1 ≤ k ≤ n− 2 (5.7)

then prove that:(
1∑k+1

i=1 ∆xi
+

1

∆xk+2

)
vk+1 −

1

∆xk+2
vk+2 = 0. (5.8)

First we work with the induction assumption (5.7).(
1∑k

i=1 ∆xi
+

1

∆xk+1

)
vk −

1

∆xk+1
vk+1 = 0
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⇔
(

1

lk
+

1

∆xk+1

)
vk −

1

∆xk+1
vk+1 = 0, lk =

k∑
i=1

∆xi

⇔
(
lk + ∆xk+1

lk∆xk+1

)
vk −

1

∆xk+1
vk+1 = 0. (5.9)

Now we use the (k+1)st equation from (5.6). We know that it will never be the
first or last equation. This is because 1 < k+ 1 < n. Therefore our equation is:

− 1

∆xk+1
vk +

(
1

∆xk+1
+

1

∆xk+2

)
vk+1 −

1

∆xk+2
vk+2 = 0. (5.10)

With this we add (5.9) multiplied by lk
lk+∆xk+1

to (5.10). This results in:(
− lk

∆xk+1(lk + ∆xk+1)
+

1

∆xk+1
+

1

∆xk+2

)
vk+1 −

1

∆xk+2
vk+2 = 0

⇔
(
− lk

∆xk+1(lk + ∆xk+1)
+

lk + ∆xk+1

∆xk+1(lk + ∆xk+1)
+

1

∆xk+2

)
vk+1−

1

∆xk+2
vk+2 = 0

⇔
(

∆xk+1

∆xk+1(lk + ∆xk+1)
+

1

∆xk+2

)
vk+1 −

1

∆xk+2
vk+2 = 0

⇔
(

1

lk + ∆xk+1
+

1

∆xk+2

)
vk+1 −

1

∆xk+2
vk+2 = 0

⇔

(
1∑k+1

i=1 ∆xi
+

1

∆xk+2

)
vk+1 −

1

∆xk+2
vk+2 = 0.

Because we have shown that the remark holds for k = 1 and proved the induction
step (5.7)⇒ (5.8) for 1 < k ≤ n− 2 we have proved the remark.

Using Remark 5.0.1 when k = n− 1 we know that:(
1

ln−1
+

1

∆xn

)
vn−1 −

1

∆xn
vn = 0, ln−1 =

n−1∑
i=1

∆xi (5.11)

⇔
(
ln−1 + ∆xn
ln−1∆xn

)
vn−1 −

1

∆xn
vn = 0.

We multiply this with ln−1

ln−1+∆xn
and add it to the last equation in (5.6). The

result is: (
− ln−1

∆xn(ln−1 + ∆xn)
+

1

∆xn
+

1

∆xn+1

)
vn = 1. (5.12)

To prove (5.4) holds we continue to work with (5.12).(
− ln−1

∆xn(ln−1 + ∆xn)
+

ln−1 + ∆xn
∆xn(ln−1 + ∆xn)

+
1

∆xn+1

)
vn = 1

⇔
(

∆xn
∆xn(ln−1 + ∆xn)

+
1

∆xn+1

)
vn = 1

⇔
(

1

(ln−1 + ∆xn)
+

1

∆xn+1

)
vn = 1
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1

(
∑n
i=1 ∆xi)

+
1

∆xn+1

)
vn = 1.

Multiplying both sides with ∆xn+1 gives:(
∆xn+1∑n
i=1 ∆xi

+ 1

)
vn =

(
∆xn+1 +

∑n
i=1 ∆xi∑n

i=1 ∆xi

)
vn = ∆xn+1.

Next we use the definition of l:(∑n+1
i=1 ∆xi∑n
i=1 ∆xi

)
vn =

(
l

l −∆xn+1

)
vn = ∆xn+1.

With this we have finished the proof of Equation 5.4 because:

eTnA
−1en = eTnv = vn = ∆xn+1

(
l −∆xn+1

l

)
= ∆xn+1

(
1− ∆xn+1

l

)

Next we prove (5.5). Let w = (w1, . . . , wn)T ∈ Rn be defined as:

Aw = e1. (5.13)

We know that eT1 A
−1e1 = e1w = w1, so we write out the system Aw = e1.

(
1

∆x1
+ 1

∆x2

)
w1 − 1

∆x2
w2 = 1

− 1
∆x2

w1 +
(

1
∆x2

+ 1
∆x3

)
w2 − 1

∆x3
w3 = 0

...

− 1
∆xn−1

wn−2 +
(

1
∆xn−1

+ 1
∆xn

)
wn−1 − 1

∆xn
wn = 0

− 1
∆xn

wn−1 +
(

1
∆xn

+ 1
∆xn+1

)
wn = 0

(5.14)

Now we define the vector ŵ = (ŵ1, ŵ2, . . . , ŵn) = (wn, wn−1, . . . , w1) and sub-
stitute w with ŵ in (5.14).

(
1

∆x1
+ 1

∆x2

)
ŵn − 1

∆x2
ŵn−1 = 1

− 1
∆x2

ŵn +
(

1
∆x2

+ 1
∆x3

)
ŵn−1 − 1

∆x3
ŵn−2 = 0

...

− 1
∆xn−1

ŵ3 +
(

1
∆xn−1

+ 1
∆xn

)
ŵ2 − 1

∆xn
ŵ1 = 0

− 1
∆xn

ŵ2 +
(

1
∆xn

+ 1
∆xn+1

)
ŵ1 = 0

⇔



(
1

∆xn
+ 1

∆xn+1

)
ŵ1 − 1

∆xn
ŵ2 = 0

− 1
∆xn

ŵ1 +
(

1
∆xn−1

+ 1
∆xn

)
ŵ2 − 1

∆xn−1
ŵ3 = 0

...

− 1
∆x3

ŵn−2 +
(

1
∆x2

+ 1
∆x3

)
ŵn−1 − 1

∆x2
ŵn = 0

− 1
∆x2

ŵn−1

(
1

∆x1
+ 1

∆x2

)
ŵn = 1

. (5.15)
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Here we introduce ∆x̂i = ∆xn−i+2, i = 1, . . . , n+1 and substitute ∆x with ∆x̂
in (5.15) to get (5.16).

(
1

∆x̂1
+ 1

∆x̂2

)
ŵ1 − 1

∆x̂2
ŵ2 = 0

− 1
∆x̂2

ŵ1 +
(

1
∆x̂2

+ 1
∆x̂3

)
ŵ2 − 1

∆x̂3
ŵ3 = 0

...

− 1
∆x̂n−1

ŵn−2 +
(

1
∆x̂n−1

+ 1
∆x̂n

)
ŵn−1 − 1

∆x̂n
ŵn = 0

− 1
∆x̂n

ŵn−1 +
(

1
∆x̂n

+ 1
∆x̂n+1

)
ŵn = 1

. (5.16)

This has the same structure as (5.6). We know that:

ŵn = ∆x̂n+1

(
1− ∆x̂n+1

l

)
,

n+1∑
i=1

∆x̂i =

n+1∑
i=1

∆xn+2−i = l.

Reverting back to w and ∆x will result in:

eT1 A
−1e1 = eT1 w = w1 = ŵn = ∆x1

(
1− ∆x1

l

)
.

With that we have proven both (5.4) and (5.5).

Lemma 5.0.2. Let the matrix A ∈ Rn×n have the form:

[A]i,j =


1

∆xi
+ 1

∆xi+1
, i = j

− 1
∆xi+1

, i = j + 1

− 1
∆xi+1

, j = i+ 1

0, else

where ∆xi ∈ R, ∆xi > 0 for i = 1, . . . , n+ 1. Then:

eT2 A
−1e1 = ∆x1

(
1− ∆x1

l
− ∆x2

l

)
(5.17)

and

eTn−1A
−1en = ∆xn+1

(
1− ∆xn+1

l
− ∆xn

l

)
(5.18)

if
n+1∑
i=1

∆xi = l.

Proof. We start by proving (5.18). The A matrix has the same shape as the A
matrix in Lemma 5.0.1. Therefore we can use Remark 5.0.1 to get:(

1∑n−1
i=1 ∆xi

+
1

∆xn

)
vn−1 −

1

∆xn
vn = 0,

where v = Aen, vn−1 = eTn−1Aen and vn = eTnAen. We know what vn is from
Lemma 5.0.1, so we get:(

1

l −∆xn −∆xn+1
+

1

∆xn

)
vn−1 −

∆xn+1

∆xn

(
1− ∆xn+1

l

)
= 0
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⇔
(

1

l −∆xn −∆xn+1
+

1

∆xn

)
vn−1 =

∆xn+1

∆xn

(
1− ∆xn+1

l

)
.

Next we just continue to simplify until we have shown (5.18).(
1

l −∆xn −∆xn+1
+

1

∆xn

)
vn−1 =

∆xn+1

∆xn

(
1− ∆xn+1

l

)

⇔
(

∆xn
l −∆xn −∆xn+1

+ 1

)
vn−1 = ∆xn+1

(
1− ∆xn+1

l

)
⇔ (l −∆xn+1) vn−1 = (l −∆xn −∆xn+1)∆xn+1

(
1− ∆xn+1

l

)

⇔ vn−1 =
(l −∆xn −∆xn+1)∆xn+1

(
1− ∆xn+1

l

)
l −∆xn+1

⇔ vn−1 =
(l −∆xn −∆xn+1)∆xn+1 (l −∆xn+1)

l(l −∆xn+1)

⇔ vn−1 = ∆xn+1
l −∆xn −∆xn+1

l
⇔ (5.18).

Using the same process as the second part of the proof for Lemma 5.0.1,
we find eT2 A

−1e1 by first solving (5.13). Then we get eT2 w = eT2 A
−1e1 ⇒

w2 = eT2 A
−1e1. With this we introduce ŵ = (ŵ1 . . . , ŵn) = (wn, . . . , w1) and

∆x̂i = ∆xn−i+2, i = 1 . . . n+ 1. Using these new variables we can construct an
equivalent system (5.16). We want to find an expression for w2 = ŵn−1. We
know from the first part of this proof that:

ŵn−1 = eTn−1Â
−1en = ∆x̂n+1

(
1− ∆x̂n+1

l
− ∆x̂n

l

)
,

where Â has the same form as A and Âŵ = en is presented in (5.16). Changing
back to ∆x and w finishes the proof:

w2 = ŵn−1 = ∆x1

(
1− ∆x1

l
− ∆x2

l

)
,
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