
MACHINE LEARNING BASED

VIDEO EDITING TOOLBOX

FOR AUTOMATIC SUMMARY

OF MEDICAL VIDEOS

EMIL NILÉN, OLLE OSWALD

Master’s thesis
2019:E25

Faculty of Engineering
Centre for Mathematical Sciences
Mathematics

C
EN

TR
U

M
SC

IEN
TIA

R
U

M
M

A
TH

EM
A

TIC
A

R
U

M

Abstract

Recording of medical procedures makes it possible for medical staff to review
their work, learn from their mistakes and produce material for education. Med-
ical videos tend to be long, which has an impact on usability and raises issues
concerning memory storage.

The aim of this master thesis is to make the material more user-friendly with
an intelligent toolbox based on machine learning and image analysis techniques.
The tools divide the video into chapters with a k-means++ clustering technique,
detect when an X-ray source is active with ROI based processing, track camera
movements by comparing frames with the optical flow algorithm by Gunnar
Farnebäck and identify when medical instruments are present using an artificial
neural network. Based on the information from these tools a combined timeline
and an automatic summary is created.

The results indicate that the chapter tool is especially promising when the videos
include sections from before and after a medical procedure, since these are easier
to separate. The region of interest (ROI) based tool detects all the frames with
an active X-ray. The neural network performs well on classifying frames con-
taining an instrument, but requires annotated data for training. The majority
of camera movements are found, but the algorithm sometimes fails to detect
zoom in the video.

This thesis is intended as a proof of concept of the potential in automatic pro-
cessing of medical videos. The tools can create reference points to important
sequences. More data and evaluation of the tools are necessary for the further
development of an automatic summary system.

ii

Acknowledgements

First and foremost, we would like to thank our supervisor Mikael Nilsson from
the Department of Mathematics at LTH for his support and guidance through-
out the process of this thesis. We would also like to thank Kalle Åström for
accepting the role as our examiner.

Our collaborators Medical Imaging Technologies have embraced us with open
arms and especially Per Wilhelmsson has been a great source of inspiration. We
are thankful for the equipment, data and support they have provided us with.

Thank you also Kiet Tran, for giving us a clinician’s perspective on the subject.

Last but not least, we would like to extend our immense gratitude to our friends
and families for putting up with us during the course of this project.

iii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Scope . 2

2 Theory 4
2.1 Previous work on automatic video summary 4
2.2 Supervised machine learning . 5

2.2.1 K-fold cross-validation . 5
2.2.2 ROC analysis . 6

2.3 Unsupervised machine learning 7
2.3.1 Clustering . 8
2.3.2 k-means++ clustering . 9
2.3.3 Clustering metrics . 10

2.4 Convolutional Neural Networks 13
2.4.1 Data augmentation . 14
2.4.2 Feature extraction using pretrained convolutional networks 14
2.4.3 Residual networks . 15

2.5 ROI-Based Processing . 16
2.6 Optical flow . 16

2.6.1 Gunnar Farnebäck algorithm (Dense optical flow) 17
2.7 Software . 18

2.7.1 Multicore processors . 18

3 Data 19
3.1 Video sources . 19
3.2 Cross-validation datasets for tool 3 20

4 Method 21
4.1 Tool 1: Unsupervised clustering 21

4.1.1 Frame preprocessing . 21
4.1.2 Feature extraction with ResNet50 21
4.1.3 k-means++ clustering . 21
4.1.4 Median filter . 22
4.1.5 Sort clusters . 22

4.2 Tool 2: X-ray detector . 22
4.3 Tool 3: Supervised instrument detector 23

4.3.1 The Optical Coherence Tomograph - OCT 23
4.3.2 Video annotation . 24
4.3.3 7-fold cross-validation . 24
4.3.4 Training a CNN . 25
4.3.5 Validation and predictions 26

4.4 Tool 4: Camera motion detector 26
4.4.1 Farnebäck optical flow . 27
4.4.2 Distinguishing between local and global motion 27
4.4.3 Removing single peaks . 27
4.4.4 Validating the classifier 28

4.5 Automatic summary . 28
4.5.1 Combined timeline . 28

iv

4.5.2 Short video summary . 28

5 Results 29
5.1 Tool 1: Unsupervised clustering 29
5.2 Tool 2: X-ray detector . 34
5.3 Tool 3: Supervised instrument detector 36
5.4 Tool 4: Camera motion detector 38
5.5 Automatic summary . 39

6 Discussion 41
6.1 Data . 41
6.2 Tool 1: Unsupervised clustering 42

6.2.1 Benefit of the ResNet50 42
6.2.2 Median filter: Time structure vs visual similarity 42
6.2.3 Sorting clusters . 43
6.2.4 Finding k in k-means . 43

6.3 Tool 2: X-ray detector . 43
6.3.1 Percentage of active X-ray 44

6.4 Tool 3: Supervised instrument detector 44
6.4.1 Flexibility of tool 3 . 44

6.5 Tool 4: Camera motion detector 45
6.6 Automatic summary . 45

7 Conclusions 47
7.1 Future work . 47

7.1.1 Investigate what tools are in demand 47
7.1.2 Improvements to tool 1 47
7.1.3 Improvements to tool 3 48
7.1.4 Adapt tool 3 for another instrument 48
7.1.5 Improvements to tool 4 48
7.1.6 Video summary with reinforcement learning 48

8 Appendix 53

v

1 Introduction

1.1 Background

An increasing amount of health data is overwhelming the healthcare system.
There are many sources generating this data: images, physicians notes, read-
ings from sensors and devices, etc. With this increase, a problem arises of how
to handle all the data, which is too valuable to throw away. Possible uses range
from diagnosing diseases in early stages, to predicting if a patient is at risk for
surgery complications or hospital-acquired illness [1].

One segment of the data is video recordings. Per Wilhelmsson, Chief Tech-
nology Officer at Medical Imaging Technologies (collaborating company of this
thesis), has 10 years of expertise from the surveillance industry, expressed the
following thoughts on the future of medical video during an interview [2]: ”The
state of medical video recording today is in many ways similar to where the
surveillance industry was in its beginning in the 80s, and is likely to follow
the same journey. In the beginning, users were satisfied by simply having the
equipment and no particular thought was paid to how to make use of all the
video. As the technology became more common and widespread, people started
to think about why they wanted to record everything, and what to actually do
with the abundance of information that was created every day.”

Medical Imaging Technologies [3] was founded in 2009, and provides solutions
for audiovisual integration in hospitals worldwide. With over 100 installations
in the Nordics, India, the UK and the United Arab Emirates, their technology
enable medical professionals to record and share audio, image and video from
the operation room to within the hospital or beyond. The reasons for want-
ing to capture such material may be e.g. to access remote expertise, distribute
audiovisual content to a conference room or to hold an online master class of
a procedure for pedagogical purposes. Apart from live streaming of medical
audiovisual content, there is also an incentive for recording procedures. The
reasons may be juridical – sometimes procedures must be recorded and saved
for insurance purposes [2]. There are also educational possibilities, such as being
able to watch previously recorded medical procedures, or to ”self-review” after
performing a procedure and answer such questions as ”Did I make the right
decision?” or ”How do I make sure this does not happen again?” [4].

There is a gap between recording a medical procedure and actually making
good use of the video. To sift through hours of raw video, where a lot of the
time nothing interesting is happening, is time consuming manual labour. A
summarized video decreases the amount of data and makes it manageable to
watch. To obtain a summarized video of a medical procedure, a method is to
do it manually which is also time consuming for a clinician. Many companies
offer this service today where they have staff with medical expertise editing the
videos [5] [6] [7]. By creating an algorithm that automatically creates highlights
from the video, the need for manual editing could be removed which would save
time and money. This is what Medical Imaging Technologies has realized and
where this thesis comes into the picture.

1

1.2 Scope

The purpose of this master thesis is to investigate and adapt image analysis
and machine learning techniques that can be used to develop ”intelligent tools”
in a video editing toolbox. The medical videos of interest for this thesis have
been captured by Medical Imaging Technologies’ InVision system during percu-
taneous heart procedures. A grid view example of the visual material is shown
in figure 8 in the Data section. The main goal is to create a set of tools which
can provide helpful information on a video editing timeline. A secondary goal
is to create automatic summaries of the videos by combining the information
from the tools, to save time for the user. In this work, four tools will be con-
structed. An overview of the tools and the techniques used to implement them
is displayed in figure 1. The tools are further explained in the Method section.

The first tool builds upon unsupervised machine learning clustering techniques.
Its purpose is to automatically divide the video into chapters which are coherent
in time but also visually similar within each chapter.

The second tool utilizes a feature based method of recognizing when an X-
ray symbol is present in the X-ray video. The purpose of this tool is to identify
when the X-ray is active. This is motivated by the assumption that X-ray is
used as sparingly as possible, and is only activated during critical episodes of a
procedure.

The third tool is also a feature based method which uses a supervised classifier
to identify when a medical instrument is present. This shows the possibility to
customize a medical video summary depending on what objects are of interest
to the user.

The fourth tool uses optical flow to detect when the camera is zooming in
or being moved. Such manoeuvring of the camera can indicate that something
interesting is happening during the procedure which the operator wish to cap-
ture in greater detail. This is a shot selection based method.

The tools will be combined to create an enhanced video timeline, allowing the
operator to navigate through the material with more ease. For example, the
automatic chapters (tool 1) brings some temporal structure to the video, while
the X-ray identifier (tool 2) helps the operator to find sequences where there is
X-ray related activity.

Finally, a short summary of a medical video could be automatically created
using the tools, with the goal to retain as much information as possible while
not allowing the summary to become too long.

2

sec:Data

Overview
Video

X-ray
Video

Optical Flow:
Camera

Movement
Detection

Custom CNN:
Object

Detection

ROI Threshold:
X-ray

Detection

Camera
Movement

in
Frame #

Object
in

Frame #

X-ray
in

Frame #

Video
Editing
Toolbox

43 2

Median Filtering:
Temporal

Smothening

ResNet50 CNN:
Feature

Extraction

k-means++:
Visual

Clustering

Median Filtering:
Temporal

Smoothening

Chapter
of

Frame #
1

Figure 1: Overview of the tools and the techniques used to implement them.
The numbering of each tool corresponds to the order in which they are treated
throughout this report.

3

2 Theory

In this section, theory related to the development of the four tools is intro-
duced. The theory covers previous approaches to video summary and the image
processing techniques optical flow and region of interest processing. Machine
learning concepts which have been used in this thesis are briefly covered, al-
though some previous knowledge on artificial neural networks is likely to aid
the reader in better understanding the contents.

2.1 Previous work on automatic video summary

As the amount of video content in the world increases rapidly, the need for solu-
tions that enable effective storage and retrieval of relevant information has led
to an emerging field of research and numerous suggested solutions to the prob-
lem of video summarization. The suggested approaches each have advantages
and disadvantages and are more or less suited to the particular characteristics
of a certain video or genre of videos. A broad classification of these techniques
into six categories, some of which can be further divided into subcategories,
has been suggested by [8], where the suitability of each technique for different
genres and video characteristics is also discussed. The six main categories of
summarization techniques are:

• Feature based: Feature based summarization techniques build upon de-
tecting certain features of a video, such as color, gestures, audio, motion
or certain objects. The detection of these features, or changes to them,
are then used to select keyframes which, hopefully, can give a meaningful
summary of the video content.

• Cluster based: Clustering techniques attempt to group video frames
together based on the similarity of some characteristic. Once the video
has been clustered, keyframes may be selected from each cluster, or entire
clusters may be concatenated or omitted based on some criteria to generate
a summary of the video.

• Event based: The difference between a frame and a reference frame is
calculated. If the difference is large enough a new event is said to have
begun, and a new reference frame is chosen to calculate similarity of the
subsequent frames to the new event.

• Shot selection based: A shot in a video is a set of frames which belong
together in time and appearance. A movie scene where the camera shifts
from one actor to another for example, consists of two shots. The detection
of shots may be done by measuring the distance between frames using e.g.
color histograms. After detecting shots, the user may then select the most
important ones. These techniques are applicable only to videos captured
by a moving camera.

• Trajectory based: In trajectory based approaches, a static camera such
as a surveillance camera is assumed. A summary is then based on the
behaviour of moving objects in the static scene, either by showing their
trajectory over time or by only selecting frames where the trajectory of a
moving object changes significantly.

4

• Mosaic based: These techniques stitch together consecutive frames to
form a panoramic image. Assuming the background is static (the camera
may move, however), a background mosaic can first be constructed. By
analyzing the trajectory of moving objects in the foreground additional
mosaics can then be added on top of the background.

2.2 Supervised machine learning

The choice of a machine learning algorithm is affected by what data exists for
training and evaluation of the model. Depending on the available data, different
techniques and algorithms are used to solve regression or classification problems.
A common situation is to have data with labels to train the algorithm, which is
the definition of supervised learning. Some common supervised algorithms are
listed in table 1. A dataset can consist of a thousand images of dogs and the
same number of images of cats, where every image has a label referring to if it
is a dog or a cat. The dataset is split into two parts. One part is used to train
the model to learn how to classify data, and the other part is for evaluation of
the model. With the performance result from the evaluation, the model can be
adjusted and optimized to increase the performance [9].

Supervised algorithms
Classification Regression

Logistic regression Linear regression
Classification trees Decision trees

Support vector machine Bayesian networks
Random forests Fuzzy classification

Artificial neural networks Artificial neural networks

Table 1: A collection of algorithms used when the dataset consists of training
data with ground truth [9].

2.2.1 K-fold cross-validation

K-fold cross-validation is a robust method to estimate the performance of a
model. The method randomly splits the dataset in a number of folds, where
one fold is used for evaluation and the rest are used to train the algorithm. K
iterations are executed and for every iteration a new fold is used as test data.
The performance result of the algorithm is the average of all the iterations [10].
Figure 2 shows the structure of a 7-fold cross-validation.

5

Data

Training Test

Test

Test

Test

1st iteration

2nd iteration

3rd iteration

7th iteration

Figure 2: A 7-fold cross-validation where the green squares represent the data
for testing and the white squares the data for training.

2.2.2 ROC analysis

Classifier models map data to predicted class labels. A discrete classifier out-
puts a class label directly, whilst a continuos classifier produces a continuous
output. To predict class membership, various thresholds can be applied on the
continuous output. A method to evaluate the classifiers is a receiver operating
characteristics (ROC) analysis [11]. The ROC analysis provides information on
the impact of a specific threshold. This is important to know when desiring a
conservative classifier with low correct positive prediction rate (hit rate) and a
false positive prediction rate (false alarm rate) close to zero, or a classifier with
higher hit rate which allows the false alarm rate to increase. The true positive
and false positive rates are explained in equations 1 and 2.

True positive rate =
Positives correctly classified

Total positives
(1)

False positive rate =
Negatives incorrectly classified

Total negatives
(2)

A ROC graph visualizes the relationship between the true positive rate and the
false positive rate. Varying the thresholds for a continuos classifier will result
in different dots in the graph. A threshold at +∞ corresponds to a dot at the
coordinate (0,0) and −∞ at (1,1), see figure 3. The representation of a discrete
classifier is similar to a continuous classifier with one threshold. The aim is to
find a classifier with a dot at (0,1) where all the positives are correctly classified
and the false alarm rate is zero.

6

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr
ue

 p
os
iti
ve

 ra
te

ROC Curve

AUC=0.604

Figure 3: The ROC-curve visualizes the performance of a classifier. The blue
line shows how the ratio changes with different thresholds. The dotted orange
line corresponds to a randomly guessing classifier.

Area under curve (AUC)

Drawing a line from coordinate (0,0) to (1,1) via the classifier dot(s) enables
calculation of the area under curve, which is a way of representing the ROC
performance with a scalar. The randomly guessing classifier will have an AUC
of 0.5, therefore a good classifier needs to perform above that, and preferably
close to the optimal AUC at 1.0. The importance of AUC can be questioned as
it is possible to have a classifier with a low AUC performing better than a high
AUC classifier in certain regions, depending on the aim of the classifier.

2.3 Unsupervised machine learning

Without ground truth, it is difficult for an algorithm to learn from training
data how to map data to labels. Instead, an algorithm has to focus on how
data differs from, or resembles, other data, i.e. to find structures and patterns
in the dataset. Classification of data can be performed by clustering on some
data features, for example colours or shapes [9]. Some common unsupervised
algorithms are listed in table 2.

Unsupervised algorithms
Clustering Dimension reduction

K-means clustering Principal component analysis
Hierarchical clustering Tensor decomposition

Gaussian mixture models Multidimensional statistics
Genetic algorithms Random projection

Artificial neural networks Artificial neural networks

Table 2: A collection of algorithms used when the dataset does not consist of
training data with ground truth [9].

7

2.3.1 Clustering

Clustering of data is about dividing samples into groups based on the observable
information. There exists many algorithms which use different approaches for
this cause.

Hierarchical clustering [12] is a collective name for clustering algorithms which
divide data into sequentially smaller partitions, creating a tree-like data struc-
ture. At the root of the tree is a very large, single cluster containing all the
samples. The root is repeatedly divided into smaller clusters, so that each leaf
of the tree eventually contain only a single sample. Various metrics may be
used for partitioning, such as average linkage, single linkage or Ward distance.
Hierarchical clustering algorithms can be used for large quantities of data, but
suffer from a problem of favoring clusters which are already large, sometimes
referred to as ”rich gets richer” [13].

DBSCAN [14] is a clustering algorithm which defines a cluster as a set of core
samples. A core sample is a sample which has at least a minimal number of
neighbouring samples within a distance ε. All core samples which are connected
this way make up one cluster. In addition to the core samples, samples which
are within ε of a core sample but are not themselves core samples are also part
of the cluster. These non-core samples are typically found along the edge of
a cluster. Samples which are further away than ε from any core sample are
considered as outliers. DBSCAN is good for partitioning clusters of odd shape
and different sizes, but the minimal number of neighbouring samples and the
distance ε are parameters which must be carefully selected for the algorithm to
work well [13].

The previously mentioned clustering algorithms use distance between samples as
basis for partitioning data. The order in which data has been observed and the
possibility of temporal dependencies is not taken into consideration, however.
Hidden Markov Models (HMM) [15] are a family of statistical models which
can be used for clustering of time-series [16]. They consist of a finite number of
hidden states, which have a probability of generating certain outputs, known as
the emission probability. In the model, there are also probabilites for transition-
ing from one state to another, known as transition probabilities. One problem
formulation of HMMs is to estimate the underlying sequence of hidden states,
which has generated a sequence of observations. HMMs have been successfully
used in many applications such as speech recognition, financial predictions and
time-series clustering, but require training data for estimation of parameters.
Thus, HMMs are not suitable for entirely unsupervised clustering.

k-means clustering [17], also referred to as Lloyds algorithm, is an unsupervised
clustering algorithm which has been called ”one of the most popular approaches
in the field of datamining” [18]. An improved version of this algorithm called
k-means++ [19] has been selected for use in this thesis, due to its simplicity
and scalability to large quantities of data, despite the fact that it does not take
temporal order into account.

8

2.3.2 k-means++ clustering

Feature 1

Fe
at

ur
e

2

x

x

k-means clustering concept

Figure 4: An illustration of the k-means clustering principle. The dataset has
been divided into two clusters, based on the similarity between the samples
w.r.t. the features ”Feature 1” and ”Feature 2”. The ”x”:es symbolize each
cluster center.

The basic principle of k-means is that all the samples in a dataset are assigned to
k different groups (clusters), based on how similar they are with regard to some
features. The similarity is usually measured by euclidean distance, and the goal
of the k-means algorithm is to minimize the distance between each sample and
the center of the cluster to which it has been assigned [17]. A simple illustration
is shown in figure 4. With k as the number of clusters, xi as the i:th sample and
cj as the j:th cluster center, the basic k-means algorithm can be described as

1. Select k cluster centers cj at random

2. For a sample xi, calculate the distance ||xi − cj || to each cluster center cj
and assign the sample to the nearest cluster

3. Calculate the centroid of each cluster (the mean of all its assigned samples)
and move the cluster center there

4. Repeat step 2-3 until convergence (no reassignments of xi) or for a given
number of iterations

The speed and accuracy of k-means are dependent on the initial locations of the
cluster centers, which in the basic algorithm are seeded uniformly at random in
the feature space, or uniformly from among the samples. An extension to the
basic k-means algorithm called k-means++ [19] uses a more advanced scheme

9

for seeding the initial cluster centers. k-means++ takes into account the squared
distance from each sample to the closest cluster center which has already been
chosen. A sample is more likely to be chosen as an initial cluster center if it
is far away from an already existing cluster center. After the initial seeding of
the cluster centers, k-means++ proceeds by (re)assigning samples to clusters
and updating the cluster centers just as the standard k-means algorithm. With
D(xi) being the distance between sample xi and its nearest cluster center, the
k-means++ algorithm looks like this

1. Select one cluster center uniformly at random from all the samples

2. Add a new cluster center from the samples with probability
D(xi)

2∑
iD(xi)2

3. Repeat step 2 until k initial cluster centers have been selected

4. Continue with the standard k-means algorithm

The probability
D(xi)

2∑
iD(xi)2

means that the further away a sample is from its

closest cluster center (which implicitly means it is even further away from any
other cluster center), the more likely it is to be selected as a new cluster center.
The benefit is that the initial cluster centers will tend to be more spread out
than if they had been seeded randomly. k-means++ has been shown both
theoretically and empirically to outperform the standard k-means algorithm
with regards to speed and consistency.

2.3.3 Clustering metrics

There are several metrics for evaluating the performance of clustering algo-
rithms. What they have in common is that they quantify how well the data has
been separated into different groups. In absence of a ground truth where the
true ”optimal” grouping is known beforehand, the unsupervised metrics are re-
stricted to quantifying how similar or close the data are within a cluster or how
well separated the clusters are from each other. Three such unsupervised cluster-
ing metrics are the Silhouette [20], Calinski-Harabaz [21] and Davis-Bouldin [22]
scores. Clustering metrics can serve as guidance in determining how many clus-
ters the data should be partitioned into, e.g. selecting a good value of k in the
k-means++ algorithm [23].

10

Silhouette score

-0.1 0 0.2 0.4 0.6 0.8 1
Silhouette coefficient values

Cl
us

te
r l
ab

el

0

1

2

3

Silhouette plot for the various clusters

-12 -10 -8 -6 -4 -2 0
Feature space for the 1st feature

-10.0

-7.5

-5.0

-2.5

0.0

2.5

5.0

7.5

Fe
at
ur

e
sp

ac
e
fo
r t

he
 2
nd

 fe
at
ur

e

Visualization of the clustered data
Silhouettes for k-means clustering on 4 clusters

Figure 5: The cluster silhouettes for k-means clustering of sample data where
k = 4. The width of a silhouette corresponds to the silhouette coefficient of
individual samples, the height corresponds to the number of samples within a
cluster.

Cluster silhouettes can be used for both graphical and numerical evaluation of
the clustering of a dataset. The silhouette coefficient of a sample s, belonging
to cluster A, is defined as

Ssilhouette(s) =
b− a

max(a, b)
(3)

where a is the mean distance between s and all other samples within A, and b is
the mean distance between s and all samples in the nearest neighbouring cluster
B. Had s not belonged to A, it would likely have ended up in B instead. The
value of Ssilhouette is bounded between −1 ≤ S ≤ 1, and says something about
how appropriate the current cluster assignment of s is

• S is close to 1 implies that b is much larger than a. Sample s is likely in
the correct cluster, since the average distance to B is much larger than
the average distance to A.

• S is around 0 implies that a and b are approximately equal. Sample s is
equally far away from both A and B, and therefore could belong to either
cluster.

• S is close to -1 implies that a is much larger than b. s is likely in the
wrong cluster, as it is closer on average to B than to its own cluster A.

All the individual silhouette coefficients can be combined to create a silhouette
plot, as shown in figure 5. In a silhouette plot, the width of a cluster silhouette

11

corresponds to the silhouette coefficient of individual samples and the height
corresponds to how many samples are within each cluster. Wider silhouettes
indicate better pronounced clusters.

The individual silhouette coefficients can also be used to calculate an overall
average silhouette width S̄, which is the average of the silhouette coefficients
over the entire dataset. This single number can be used as guidance to deter-
mine an optimal number of clusters, by selecting the value of k which yields the
highest S̄ [20].

Calinski-Harabaz index

The Calinski-Harabaz index compares the ratio between ”within group sum of
squares” and ”between group sum of squares”. It is often referred to as the
Variance Ratio Criterion, as it describes the ratio of the intracluster variance
and the intercluster variance. Mathematically, the Calinski-Harabaz index is
given by

SCH(k) =
Tr(Bk)

Tr(Wk)

N − k
k − 1

(4)

Wk =

k∑
q−1

∑
x∈Cq

(x− cq)(x− cq)T (5)

Bk =
∑
q

nq(cq − c)(cq − c)T (6)

where SCH(k) is the variance ratio, k is the number of clusters, N is the total
number of samples, Cq is the set of samples in cluster q and cq is the cluster
center of cluster q. Tr(A) is the trace of a matrix A. The variable c is the
center of all the cluster centers. It is desirable with compact clusters which are
well separated from each other. This translates to a low intracluster variance
(Tr(Wk)) and a high intercluster variance (Tr(Bk)). Thus, larger values of
SCH(k) indicate a better choice of the number of clusters k [21] [23].

Davis-Bouldin

The Davis-Bouldin index is a similarity measurement describing the average
similarity between each cluster and its nearest neighbour. The similarity in the
Davis-Bouldin index is defined as

Rij =
si + sj
dij

(7)

with si being the cluster radius, i.e. average distance between each point in
cluster i and its centroid, and dij being the distance between the centroid of
cluster i and cluster j. The Davis-Bouldin index is defined as the average
similarity between each cluster and its nearest neighbour

SDB(k) =
1

k

k∑
i=1

max
i6=j

Rij . (8)

12

A smaller value of the Davis-Bouldin index, with zero being the lowest, indicates
better separated clusters [22].

2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a special type of neural networks
which have become very popular for solving machine learning problems involv-
ing images [24] [25] [26]. The idea is that rather than representing images with
handcrafted features, which can be both time consuming and difficult without
extensive domain specific knowledge, the CNN learns to extract useful features
by itself from labeled training data. While the architecture of different CNNs
vary, they usually consist of three basic components - 2D convolutional kernels,
non-linear activation functions and pooling operators.

The name giving component of a CNN is the 2D convolution between a ker-
nel and an input image. The kernel is typically a 3x3 or 5x5 matrix, which
is convolved with a much larger image to form linear combinations of adjacent
pixel values. A mathematical description of the operation is given by

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (9)

where S is the output of the convolution, often referred to as a ”feature map”,
K is the kernel and I is the input image.

Depending on the weights in the convolutional kernel, it may enhance certain
structures in the input image such as corners, edges or circles. Usually, several
kernels are used in parallel on the input image, producing many different feature
maps as output. For color images, there are also three separate color channels
of input for the kernels to operate on so that even more feature maps are gen-
erated. The feature maps themselves might in turn be convolved with another
set of kernels, building up new feature maps of more complex structure. An
important property of the convolutional kernels is that they are trainable. This
means that the kernel weights are updated through training to extract features
which are useful for solving the task of the CNN.

As most neural networks, the CNN has non-linear activation functions which
perform some non-linear transformation of the input to the layer. A common
choice for a CNN is the Rectified Linear Unit (ReLU), which sets all negative
values of the input to zero, while all non-negative values are simply mapped to
themselves

f(x) =

{
0, x < 0

x, x ≥ 0 .
(10)

The third important component of a CNN is a pooling operator. A pooling
operator takes as input a few nearby outputs from convolution and compresses
them into a single summary statistic. For example, the max pooling operator
divides a feature map into a grid with usually 2x2 or 3x3 elements in each cell.
Only the maximum value in each cell is kept, thus reducing the size of the fea-
ture map considerably - a feature map of size 16x16 would after a 2x2 max

13

pooling be reduced to size 8x8. Aside from reducing the overall complexity of
the neural network, pooling also adds the benefit of making the network more
robust against image translations. Max pooling is the most commonly used
pooling type, but there are other pooling operators such as average pooling,
weighted average pooling and L2 norm pooling.

A typical CNN begins with an input image, then a block which consists of
a convolution, a non-linear activation and a pooling operator. The block struc-
ture is repeated a number of times. This part of the CNN is sometimes referred
to as the feature extractor. At the end (the top) of the CNN sits a normal dense
neural network, which takes as input the features extracted by the feature ex-
tractor and use these to classify the input image. When training the CNN,
the weights of the dense network as well as the kernel weights are optimized to
increase the classification performance [27].

2.4.1 Data augmentation

Data augmentation is a technique for increasing the number of training samples,
without the need to collect more data [28] [29] [30]. Instead, the existing data
is manipulated in different ways to create new samples which are similar to the
original data, but not quite the same. It is important to balance the augmen-
tation, so that new data is close enough to the original to be representative,
but not so close as to cause overfitting of the machine learning system. In the
context of image classification, data augmentations may be e.g. translations of
the image, rotation, skewing, flipping, adding slight noise, dropping out pixels,
cropping, color shifting and zooming, etc [31].

2.4.2 Feature extraction using pretrained convolutional networks

There exists a collection of publicly available CNNs with a rather deep and
complex architecture, which have been trained on millions of natural images in
the ImageNet [32] database to classify them into 1000 categories, ranging from
cats and dogs to pencils and coffee cups. By removing the classifying part of
these pretrained CNNs while keeping the feature extracting part with already
well trained weights, the networks can be used to obtain useful general image
features. These features can be used as input for another machine learning
task, such as a different classifier. Depending on the application one might also
choose to use the output from some intermediate layer of the feature extractor,
to lock the pretrained weights or have them trainable for fine tuning. A benefit
of using pretrained CNNs is that a lot of the computationally heavy training
is already completed. Thus, it is possible to build powerful image processing
applications even with limited computational resources.

A large variety of pretrained neural networks with different architectures, such
as AlexNet, VGG, DenseNet, GoogLeNet and ResNet, have been proven suc-
cessful at the task of classifying ImageNet images. An overview of some of
these networks can be seen in table 3. For the task of feature extraction, pre-
trained networks of the ResNet family have been proven to be particularly use-
ful [33] [34].

14

Network Depth Size (MB) Parameters (106) Input size

AlexNet 8 227 61.0 227-by-227
VGG16 16 515 138 224-by-224
VGG19 19 535 144 224-by-224

GoogleNet 22 27 7.0 224-by-224
DenseNet-201 201 77 20.0 224-by-224

ResNet18 18 44 11.7 224-by-224
ResNet50 50 96 25.6 224-by-224
ResNet101 101 167 44.6 224-by-224

Table 3: An overview of a selection of pretrained neural networks [33]. The
table contains the network name, layer depth, size of stored weights, number of
trainable parameters and required image input size.

2.4.3 Residual networks

Making neural networks deeper, i.e. increasing the number of layers stacked
upon each other, is a common approach to increase performance and allow the
network to succeed at more complex tasks. However, this is not entirely un-
problematic. As deep networks become deeper, the backpropagated gradient
of the loss function becomes increasingly smaller, a problem referred to as the
vanishing gradient problem. The vanishing gradient has adverse effects on the
training speed and convergence of the network. Solutions such as normalized
weight initialization and intermediate normalization layers have been successful
in mitigating this problem. Another problem which arises when the network
becomes deeper is that of accuracy degradation. Training accuracy gets satu-
rated and then degrades as more layers are added, contrary to what might be
expected in terms of model complexity and overfitting. An architecture called
residual networks (ResNets) has been successful in overcoming this problem [35].
What makes ResNets different from ordinary CNNs is the addition of shortcut
connections, which allow the output from a convolutional layer to bypass a few
layers and connect directly to the network at a later stage. An illustration of a
shortcut connection is shown in figure 6.

Isolating a small part of an ordinary network F(x) which is an approximation
of the mapping from the input, x, to the output, H(x), gives

F(x) ≈ H(x) , (11)

adding a skip connection gives instead the mapping

F̂(x) + x ≈ H(x) , (12)

and equivalently:

F̂(x) ≈ H(x)− x . (13)

The last relation is what has given the ResNet family its name - the mapping
of the residual H(x) − x. ResNets are constructed using these skip connec-
tion blocks. Shallower models, having fewer than 50 layers, use 2-layer blocks,
whereas deeper models with a depth of 50 or more instead have 3-layer blocks.

15

The reason for this increase in block depth is to decrease training time.

weigths

weights

+

F(x)

F(x) + x

x

x

relu

Figure 6: Illustration of the skip layer connection of ResNets.

2.5 ROI-Based Processing

In image analysis, identifying a region of interest (ROI) is partly done to avoid
the need for processing a full image. By defining ROI boundaries all the pixels
outside the area will be ignored. The boundaries are fixed or updated gradu-
ally. The pixels in the ROI can be filtered with a threshold for classification
or manipulated in any other desired way. This will speed up the computation
and enables enhancing important information only visible in certain regions.
ROI-based processing is a common approach for medical imaging, where the
boundaries help focusing on an object, e.g. the movement of an organ [36] [37].
Other interesting areas range from fingerprint segmentation [38], to developing
pedestrian detection systems on vehicles [39].

2.6 Optical flow

Optical flow is the resulting 2D vector field from comparing two consecutive
frames and tracking motion of objects, as can be seen in figure 7. The vectors
represent the displacement of an object from its position in the previous frame.
Assumptions regarding optical flow are that objects retain their pixel intensities
during movements, and that a patch of neighbouring pixels has a comparative
movement [40].

16

Figure 7: Optical flow visualized with flow vectors representing moving peo-
ple [41].

2.6.1 Gunnar Farnebäck algorithm (Dense optical flow)

The Gunnar Farnebäck algorithm [42] estimates the displacement between two
frames to discover motion, and it is a dense technique since it calculates the
flow vectors for all individual pixels (compared to the Lucas–Kanade approach
of using a sparse feature set [43]). The neighbourhood of a pixel is approximated
by the following polynomial

f(x) ∼ xTAx + bTx + c , (14)

where A is a symmetric matrix, b a vector and c a scalar. A weighted least
squares fit estimates the coefficients. An ideal translation of a polynomial (i.e.
a movement of a neighborhood of pixels, e.g. from a ball flying in the air) is
calculated by comparing two polynomials at the same coordinate in two subse-
quent frames. The difference is the displacement. This is done by constructing
the signal f 1 from the first frame

f1(x) = xTA1x + bT
1 x + c1 , (15)

and f 2 from the subsequent frame

f2(x) = f1(x− d) = (x− d)TA1(x− d) + bT
1 (x− d) + c1

= xTA1x + (b1 − 2A1d)Tx + dTA1d− bT
1 d + c1

= xTA2x + bT
2 x + c2 ,

(16)

where d is the global displacement. From the last two lines in equation 16 the
coefficients are determined

A2 = A1,

b2 = b1 − 2A1d,

c2 = dTA1d− bT
1 d + c1 ,

(17)

and from this, d is calculated as

d = −1

2
A−11 (b2 − b1) . (18)

Two polynomials at the same coordinate in two frames might differ more than
the displacement. This is an issue especially for larger movements. A priori

17

knowledge can be incorporated to handle these movements to reduce the error.
The equations presented here have assumptions of an ideal scenario to give a
brief introduction to the concept. To understand the algorithm in more detail
readers are referred to [42].

2.7 Software

TensorFlow [44] is an open source machine learning platform. It uses the con-
cept of computational graphs to allow users to build complex pipelines for data
with distribution over several computational nodes. It is directed both at ma-
chine learning researchers to help advance the field of machine learning, as well
as developers to deploy machine learning powered applications. TensorFlow is
developed by Google and was released as open source in 2015.

Keras [45] is an API for constructing, training and evaluating neural networks,
which is built to run with TensorFlow [44], CNTK [46] or Theano [47] as back-
end. It provides a library for deep learning that supports many types of neural
networks including CNNs. It also provides support for data augmentation,
piecewise loading of large datasets, pretrained neural networks and more. It
was originally developed by François Chollet.

OpenCV [48] is an open source library for computer vision with many algo-
rithms and functions related to image analysis and computer vision. Apart from
basic functions to read and write images and video in a program, it supports
applications such as facial recognition, 3D model extraction, object tracking and
augmented reality.

2.7.1 Multicore processors

Optimizing the computational time is necessary to maximize the gain of using
machine learning. This can be done by improving the algorithms or improving
the hardware [49]. A multicore processor enables parallelism which can decrease
the computational time. Multiple processing units can operate simultaneously
and therefore process a larger amount of data compared to a single core proces-
sor. Another advantage for battery driven appliances is the reduction of power
consumption with two cores instead of one. Using several processing units does
not automatically reduce the computational time. It is necessary to construct
the machine learning algorithm in a multicore compatible way, to prevent star-
vation or idle cores [50].

18

3 Data

The data used in this thesis consists of 9 video recordings, further described
in table 4. The videos were recorded at three hospitals. All the videos depict
percutaneous heart procedures. This thesis does not dive into any details about
the procedure, only using the basic information that can be retrieved from
the available visual material (operating table, staff, screens, blanket, blood,
instruments).

Video Hospital Length (hh:mm:ss) Number of frames

1 1 00:54:19 81497
2 1 02:58:52 268313
3 1 00:59:15 88876
4 1 02:17:04 205612
5 1 02:55:13 262833
6 2 00:21:48 32720
7 2 01:29:58 134957
8 2 00:58:12 87309
9 3 01:19:54 119871

Table 4: Information about the videos used in this thesis.

3.1 Video sources

The videos had views from four time synchronized sources, as shown in figure 8.
Video sources 1 and 2 were cameras capturing different overview angles of the
procedure, corresponding to ”Overview video” in figure 1. The angles changed
between each video, but the content was similar. Source 1 captured a wide
angle of the room. Source 2 was a close up of the operating table. Source 3
displayed fluoroscopy video, corresponding to ”X-ray video” in figure 1. Source 4
monitored patient parameters, but was not used in this thesis. The environment,
staff and colours of the equipment were varying since the recordings came from
different hospitals.

19

Figure 8: A sample image from video 3, with four time synchronized video
sources showing a percutaneous heart procedure.

3.2 Cross-validation datasets for tool 3

To develop tool 3 with supervised training of a CNN, the data was manually
annotated. Extracted frames were divided into seven folds for a 7-fold cross-
validation scheme. Table 5 shows the relationship between the video numbers
and the constructed datasets. Due to a major movement of the camera, video 7
was divided into two different folds as there was such a large difference in the
frames. Video 1, 2 and 5 did not contain anything to annotate, and were
therefore excluded from this set.

Video View Validation in dataset

3 2 1
4 2 2
6 2 3
7a 2 4
7b 2 5
8 2 6
9 1 7

Table 5: Validation video and corresponding dataset used for 7-fold cross-
validation. The views correspond to the numbers in figure 8.

20

4 Method

To speed up the computation of the algorithms described below, an NVIDIA
GeForce GTX 1070 Ti graphics card was used to enable parallelization. The
code was written in Python using JupyterLab and the Python libraries Keras [45]
(with Tensorflow [44]), Scikit-learn [51] and OpenCV [48].

4.1 Tool 1: Unsupervised clustering

The first method was a cluster based technique without ground truth. The idea
was to find patterns in the frames, and structure these into chapters. No a priori
assumptions were made, making the algorithm generalizable for many types of
medical procedures. All videos where clustered individually. The output of
tool 1 was a vector with numbers where the index represented a frame and the
number represents its cluster label. Each cluster can be seen as a chapter of the
video.

4.1.1 Frame preprocessing

OpenCV was used to extract each frame from the video. Preprocessing the
input is a recommended procedure when using pretrained models [52]. In the
case of ResNet50 pretrained on ImageNet, this meant resizing each frame to
224x224 pixels (from the original 1920x1080 resolution), changing the order of
the color channels from RGB to BGR and subtracting the mean of the ImageNet
color channels: B = 103.939, G = 116.779, R = 123.68, from each pixel. The
rearranging of color channels and subtraction of mean color was facilitated with
the built-in preprocess_input() function associated with Keras ResNet50 [53]
[54].

4.1.2 Feature extraction with ResNet50

After the preprocessing, ResNet50 was used to extract features containing in-
formation about shapes and structures in each frame. Instead of representing
a frame by all its 1920x1080 pixels, it was represented by these features. A
complete ResNet50 resulted in 2048 features, decreasing the amount of data to
1‰ to use for clustering.

A deep network produces specific features with detailed information of com-
mon patterns in the ImageNet dataset. To generalize the features, a shallow
ResNet50 with 30 layers using only a fifth of the trainable parameters was also
computed, producing 1024 features per frame.

4.1.3 k-means++ clustering

The k-means++ algorithm was used to organize the frames of a video into
clusters based on the similarity of the features, with the intention that frames
with similar features should end up in the same cluster. Several clusterings of
each video were calculated, changing the number of clusters k = 3, 5, 7, 9, 11, as
well as the two different feature representations. In total, this means that for
each video, 10 different clusterings where calculated. For each clustering, the

21

Silhouette, Calinski-Harabaz and Davies-Bouldin scores were calculated to aid
in the estimation of the best value for k.

4.1.4 Median filter

The clusters are meant to represent specific phases of the procedure and a good
clustering means that frames from the same time period in the video should
appear in the same cluster. The output from the clustering was sometimes
noisy with peaks appearing at random places. These peaks are frames that
have been paired together in a cluster with other frames from a different time
period of the video. A median filter was used to remove these peaks. With a
window size of 1001, the 500 frames before and after a specific frame on the
time axis were observed, which corresponds to 20 seconds before and after. The
new cluster label for the frame was the median of the cluster labels of these
1000 neighbouring frames.

4.1.5 Sort clusters

On the timeline the clusters should resemble an ascending stair starting with
cluster 1, but since the cluster labels were not sorted this was not the case,
which can be seen in the centre plot in figure 13. This was solved by renaming
each cluster depending on its position on the timeline. To find the positions, the
mean of the cluster frame indices were compared. In the centre plot in figure
13 the cluster order is 5, 1, 4, 3, 2. The mean index of cluster 5 is the lowest
mean and therefore cluster 5 is renamed to cluster 1. The mean index of cluster
1 is the second lowest mean and therefore renamed to cluster 2, and so on. The
sorted cluster labels are the output of tool 1, which can be seen in the lower
plot in figure 13.

4.2 Tool 2: X-ray detector

Tool 2 was a feature based technique with the purpose to detect frames from
the fluoroscope where the X-ray source was active. Iterating through the video,
a vector of zeros and ones was built, where a zero indicated no detection in the
corresponding frame, and a one indicated that the X-ray was detected.

22

Figure 9: The image shows an X-ray frame with a bounding box within which
the intensity is counted to capture if the symbol is present. In this case it is.

Individual frames from the video were extracted using OpenCV. In all the
videos, the layout of the X-ray frames were similar. Of particular interest was a
symbol located in the top left corner, which is present when the X-ray is active.
See figure 9 for reference.

Having manually located the X-ray symbol, a ROI bounding box was created
around it. The average intensity of the pixels within the box was calculated. A
threshold was used to determine if the symbol was present. Studying the aver-
age pixel values with (207 average value) and without (183 average value) the
X-ray symbol present, it was determined that a threshold at 195 was adequate
for making the detection.

4.3 Tool 3: Supervised instrument detector

Tool 3 was a feature based technique with the purpose to identify when an
object of clinical interest is present. The output was a vector of zeros and ones
where a one indicated that the object had been detected in the corresponding
frame.

4.3.1 The Optical Coherence Tomograph - OCT

The first step towards training a supervised classifier on finding objects was
choosing an object to detect. Considerations such as our limited medical exper-
tise, availability of training material and resolution of video led to the choice
of an instrument used for optical coherence tomography (OCT). OCT is used
during percutaneous heart procedures for imaging inside the blood vessels, when
the guidance provided by external X-ray is not enough [55] [56] [57]. The im-
portance of OCT during percutaneous heart procedures, in addition to it being
present in 6 of the 9 videos and straightforward to recognize, made it a good

23

candidate for devising a supervised instrument detector. In figure 10 a sample
frame with the OCT present is shown.

Figure 10: In this frame the OCT is present.

4.3.2 Video annotation

The 6 videos in which the OCT was present were manually annotated as either
being with OCT, without OCT or ambivalent. Ambivalent frames where e.g.
the OCT is temporarily occluded or just entering/leaving the frame were ex-
cluded from training. This was motivated by wanting only unambiguous training
samples for the classifier to improve its performance. Ambivalent frames were
few, and therefore the potential limited capability of classifying them were not
considered to be of much importance for the purposes of this thesis.

4.3.3 7-fold cross-validation

The initial dataset of annotated OCT frames consisted of 49619 positive and
605997 negative examples from the 6 applicable videos. The dataset was divided
into 7 folds, for a 7-fold cross-validation scheme as illustrated in figure 2. The
folds were constructed so that each of the 6 videos corresponded to one fold,
with the exception of video 7 which was divided into two separate folds due to
a major shift in camera angle halfway through the video. In table 5 in the Data
section the relationships between video and fold is listed.

To avoid redundancy of similar neighbouring frames and to balance the amount
of samples in each fold and the ratio of negative and positive samples, the folds
were evenly subsampled so that 1700 positive and 1700 negative frames were
kept from each fold. The number 1700 was selected as the smallest fold (fold 6
coming from video 8) contained only 1742 positive samples.

24

4.3.4 Training a CNN

A CNN with the architecture shown in figure 11 was selected as an OCT detec-
tor. The network was trained with the settings shown in table 6. Following the
7-fold cross-validation scheme, 7 models were trained with a different fold left
out for validation for each model.

Because of limitations in memory, all training images could not be loaded into
the program at once. Instead, the Keras function flow_from_directory() to
flow images on demand from a directory was utilized. In conjunction with this
the training images were randomly augmented to increase the diversity. The
augmentation settings used are listed in table 7. Note that augmentation was
used only when training the classifier, and not during validation.

Figure 11: The CNN architecture used in the OCT classifier.

Setting Value

Epochs 15
Batch size 170

Learning rate 0.001
Optimizer Adam

Loss Binary cross-entropy
Intermediate activations ReLU

Final activation Sigmoid

Table 6: Settings used for training the OCT classifier in tool 3.

25

Augmentation setting Value

Rescale 1/255
Rotation range 20◦

Width shift range 0.2
Height shift range 0.2

Horizontal flip True
Zoom range 0.2
Shear range 0.2

Brightness range 0.7-1.3

Table 7: Settings for Keras data augmentation when training the OCT classifier.

4.3.5 Validation and predictions

To evaluate the performance of the CNN, the validation accuracy was calcu-
lated for each model, as well as the mean validation accuracy across all models.
Additionally, a ROC curve and AUC score was calculated for each model, to
better understand the model and allow a more flexible threshold selection. See
figure 19 and table 11 in the Results section.

Apart from evaluating how well the CNN classified the frames in the constructed
datasets, it was also of interest to see how it performed on an entire video with
some ambivalent cases where the OCT is partially occluded or almost in the
frame (i.e. when it is entering or exiting the scene).

The 6 videos where the OCT was present were processed frame-by-frame by
the classifier. Each video was classified by a model which had not been trained
on frames from that video before. Video 7 (fold 4 and 5) was a special case,
where the CNN had been trained on the first and second half of the video re-
spectively prior to its predictions. The predictions of the CNN were compared
with the ground truth. A decision boundary for labeling a frame as with or
without OCT was manually selected from the ROC-curve in figure 19 for each
video. Low false positive rate was prioritized, since false positives will confuse
the timeline. If the OCT is present in a sequence of 15 minutes, the tool should
guide the clinician to where that sequence is on the timeline, but detecting all
OCT frames in that sequence is not critical. Therefore, the true positive rate
does not have to be maximized.

4.4 Tool 4: Camera motion detector

The aim of tool 4 was to detect camera movements. When people enter the
room there is often (in these videos) an adjustment of the camera position.
When the procedure starts, a zooming to get a better view of the procedure is
not unusual. An example of a camera adjustment is given in figure 12.

26

Figure 12: A series of frames showing global movement of the camera. All pixels
of the frame are moving, as opposed to a local motion where only a part of the
frame (e.g. the hand) would be moving.

4.4.1 Farnebäck optical flow

Frames were extracted with OpenCV. In order to estimate the movement be-
tween two subsequent frames, the Gunnar Farnebäck algorithm for optical flow
was used. The algorithm calculates the magnitude and direction of flow for each
pixel.

4.4.2 Distinguishing between local and global motion

It is necessary to distinguish between a global motion, such as when the cam-
era is moved or zoomed in, from local movements such as a person moving in
an otherwise stationary scene. This problem becomes particularly difficult in
zoomed in scenes, where for example a moving hand (local motion) takes up a
large portion of the frame and might therefore easily be confused with a global
motion.

The solution was to calculate how many pixels in a frame were moving. A
pixel was classified as moving if the flow magnitude was above 1 (heuristically
chosen). If the total number of moving pixels was over a certain threshold (cho-
sen to be 80% from the ROC-curve in figure 23), the frame-to-frame motion
was defined as global, otherwise local. Only the global motions were of interest
since the aim was to detect camera movements.

4.4.3 Removing single peaks

Occasionally the videos froze, which caused errors. If the duration of a freeze
is e.g. ten frames, the difference between the last frame in the freeze and the
subsequent frame will be like comparing a movement of ten frames at once,
which will look like a fast global motion and appear as a single peak in the
plot. Since the freeze is the cause and not an actual camera movement, it is
undesired. With a median filter this category of single peaks were suppressed,
see center plot in figure 22.

27

4.4.4 Validating the classifier

Annotating the camera adjustments and zoom in the video made it possible
to evaluate how often a global motion was discovered by the classifier. The
threshold to separate global and local motion was varied to calculate a ROC-
curve and AUC score.

4.5 Automatic summary

While the four tools of this thesis can be used individually, it was also of interest
to investigate how they can be combined to create a representation of a medical
video with a lot of information delivered to the user in a compact format. For
this task, two kinds of summaries were created: a combined timeline and a short
video summary.

4.5.1 Combined timeline

The combined timeline was constructed by plotting the output from tool 1, 2, 3
and 4 together into the same graph, illustrated in figure 24 and figure 25. With
a common time basis, the timeline shows the partitioning into different clusters
and when the X-ray is active, the OCT is present and there is global motion in
the video. The staircase format was chosen to represent the partitioning into
clusters, whereas points of different colors were used to represent X-ray, OCT
and global motion.

4.5.2 Short video summary

To decrease the length of the original full video, only a few frames were chosen to
be presented in a summary. A rate for how many frames to skip was calculated
for each cluster generated by tool 1. The formula is seen beneath in equation 19.
From each cluster, the same number of frames were included. A longer cluster
will generate a higher rate, and more frames will be skipped in that cluster in
the summary.

cluster i rate =
cluster i length · numbers of clusters

total number of frames · α
(19)

Once the base set of frames had been selected, the X-ray, OCT and global mo-
tion detections were added. The tools were weighted, to choose how much of
each tool should be included, e.g. an X-ray weight of 0.5 meant that every 2:nd
frame with active X-ray should be included in the summary.

Finally, information about time, chapter, X-ray, OCT and global motion status
was added to each frame. Transitions from one chapter to another were marked
out by temporarily making the chapter number larger 25 frames before and after
the transition.

28

5 Results

5.1 Tool 1: Unsupervised clustering

The results of using tool 1 on video 7 with k = 5 and k = 7 are shown in
figure 13 and 14. For both figures, the general features corresponding to the
shallow version of ResNet50 were used.

Figure 15 and 16 show the same clusterings as above, with a frame representing
each cluster.

Table 8 shows the cluster metric scores for each video and value of k when
using the specific features of a complete ResNet50. Table 9 shows the same
metrics, using the general features from the shallow network.

0 00:21:25 00:42:50 01:04:15 01:25:41
1

2

3

4

5

 C
lu
st
er

k-means++: video 7, 5 clusters, general features

0 00:21:25 00:42:50 01:04:15 01:25:41
1

2

3

4

5

 C
lu
st
er

(fi
lte

re
d)

0 00:21:25 00:42:50 01:04:15 01:25:41
Time (hh:mm:ss)

1

2

3

4

5

 C
lu
st
er

(s
or
te
d)

Figure 13: The upper plot is the output from k-means++ clustering on general
features of video 7 with 5 clusters. In the center plot the output has been
filtered to remove noise. The lower plot is the final output from tool 1, where
the clusters have been sorted.

29

0 00:21:25 00:42:50 01:04:15 01:25:41
1
2
3
4
5
6
7

 C
lu

st
er

k-means++: video 7, 7 clusters, general features

0 00:21:25 00:42:50 01:04:15 01:25:41
1
2
3
4
5
6
7

 C
lu

st
er

(fi

lte
re

d)

0 00:21:25 00:42:50 01:04:15 01:25:41
Time (hh:mm:ss)

1
2
3
4
5
6
7

 C
lu

st
er

(s

or
te

d)

Figure 14: The upper plot is the output from k-means++ clustering on general
features of video 7 with 7 clusters. In the center plot the output has been
filtered to remove noise. The lower plot is the final output from tool 1, where
the clusters have been sorted.

30

A B C

D E

A
B

C

D

E

Figure 15: The output of tool 1 on video 7 with 5 clusters, visualized with
frames.

31

G

BA

FED

IH

C

A

B

C

D

E

F

G

H I

Figure 16: The output of tool 1 on video 7 with 7 clusters, visualized with
frames. Each letter does not correspond with a unique cluster since some clusters
reoccur (B/D and C/E).

32

Specific k=3 k=5 k=7 k=9 k=11

Video
S

CH
DB

S
CH
DB

S
CH
DB

S
CH
DB

S
CH
DB

1
0.17

13162
2.24

0.13
10281
2.21

0.14
8679
2.29

0.14
7421
2.30

0.13
6533
2.37

2
0.12

29656
2.73

0.08
21295
2.80

0.08
17484
2.99

0.09
14926
2.83

0.09
12953
2.80

3
0.07
6946
2.98

0.09
5942
2.76

0.10
5255
2.51

0.10
4620
2.61

0.11
4187
2.48

4
0.13

30003
2.27

0.08
22110
2.58

0.08
17367
2.76

0.08
14355
2.93

0.08
12428
2.91

5
0.27

63917
1.73

0.31
58888
1.46

0.21
49076
2.02

0.22
41396
1.80

0.19
37375
1.88

6
0.15
5775
1.81

0.19
4702
2.26

0.18
3756
2.31

0.19
3283
2.13

0.19
2904
2.00

7
0.16

22512
1.83

0.12
17134
2.35

0.13
14622
2.11

0.13
13294
2.16

0.15
12117
2.12

8
0.13

12442
2.12

0.16
9599
2.24

0.15
8086
2.27

0.14
6949
2.39

0.12
6182
2.52

9
0.10

12083
2.63

0.09
9104
2.51

0.08
7370
2.74

0.08
6354
2.94

0.07
5590
2.99

Table 8: Silhouette (S), Calinski-Harabaz (CH) and Davis-Bouldin (DB) score
for 3-11 clusters on specific features. In each cell, the metrics are presented in
the order S, CH, DB.

33

General k=3 k=5 k=7 k=9 k=11

Video
S

CH
DB

S
CH
DB

S
CH
DB

S
CH
DB

S
CH
DB

1
0.25

13776
1.63

0.11
10114
2.23

0.11
8283
2.48

0.12
7097
2.33

0.14
6465
2.30

2
0.15

44234
2.24

0.13
32633
2.27

0.12
26713
2.53

0.13
22411
2.48

0.12
19590
2.54

3
0.11
8311
2.81

0.11
7111
2.41

0.10
6282
2.37

0.10
5586
2.41

0.10
4995
2.46

4
0.46

120005
0.78

0.12
82100
2.03

0.09
59045
2.59

0.10
46967
2.79

0.10
39514
2.71

5
0.44

134887
1.16

0.38
131333

1.22

0.37
116712

1.10

0.36
98155
1.25

0.26
87415
1.52

6
0.20
5763
2.35

0.16
4364
2.35

0.17
3714
2.16

0.18
3295
2.00

0.18
2972
2.07

7
0.26

55395
1.65

0.26
42469
1.33

0.16
33596
1.88

0.17
28167
1.94

0.18
25457
1.86

8
0.18

19539
1.96

0.19
16265
1.96

0.18
13742
1.94

0.15
11603
2.02

0.15
10187
2.19

9
0.25

15109
1.81

0.09
11962
2.42

0.08
9605
2.61

0.08
8064
2.40

0.08
7039
2.53

Table 9: Silhouette (S), Calinski-Harabaz (CH) and Davis-Bouldin (DB) score
for 3-11 clusters on general features. In each cell, the metrics are presented in
the order S, CH, DB.

5.2 Tool 2: X-ray detector

In figure 17 and 18 the result of using tool 2 on video 1 and video 4 is shown.
Table 10 shows the ratio of active and inactive X-ray frames for each of the 9
videos.

34

0 00:12:55 00:25:51 00:38:47 00:51:43
Time (hh:mm:ss)

Not active

Active

Active X-ray in video 1

Figure 17: Visualization of when the X-ray is active in video 1.

0 00:32:34 01:05:08 01:37:42 02:10:16
Time (hh:mm:ss)

Not active

Active

Active X-ray in video 4

Figure 18: Visualization of when the X-ray is active in video 4.

35

Video Active X-ray [%]

1 19
2 54
3 25
4 35
5 42
6 16
7 18
8 28
9 34

Table 10: Overview of how often (percentage of full video) the X-ray was acti-
vated.

5.3 Tool 3: Supervised instrument detector

The result from tool 3 is presented in figure 19 with a ROC-curve, and as an
overview in table 11.

Figures 20 and 21 show the OCT classifications on video 1 and 4. The blue
lines correspond to the annotation. ”Leave out” means that the instrument is
present, but not visible enough to be used for training of the network. The
upper plot shows the classifiers predictions. A threshold was used to determine
whether or not a prediction was enough for a positive classification. The thresh-
olds were different for each video and were extracted from the ROC-curves in
figure 19 by looking at the highest ratio between true positive rate and false
positive rate.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

ROC curve for each crossvalidation dataset

set 1, AUC = 0.908
set 2, AUC = 0.596
set 3, AUC = 1.000
set 4, AUC = 1.000
set 5, AUC = 0.995
set 6, AUC = 0.999
set 7, AUC = 0.820

Figure 19: ROC-curve for all seven cross-validation trainings on the OCT.

36

Cross-validation set Accuracy AUC

1 82.0 0.908
2 50.1 0.596
3 99.3 1.000
4 98.5 1.000
5 98.0 0.995
6 89.2 0.999
7 89.3 0.820

Average 86.6 0.936

Table 11: Accuracy for each of the cross-validation datasets when training the
OCT network.

0 00:14:06 00:28:12 00:42:19 00:56:25
True

Leave out

0.0

0.5

1.0

Pr
ob
ab
ilit
y OCT predictions for dataset 1

Y_predict
Y_true
Threshold = 0.98

0 00:14:06 00:28:12 00:42:19 00:56:25
Time (hh:mm:ss)

True

Leave out

False

True

Cl
as
sif
ica

tio
n

Y_predict_class
Y_true

Figure 20: The upper plot shows the prediction by the classifier on dataset 1.
The lower plot has a threshold at 0.98 for a positive classification. Both plots
are compared to the annotation of the OCT, which is represented by the blue
lines.

37

0 00:21:25 00:42:50 01:04:15 01:25:41
True

Leave out

0.0

0.5

1.0

Pr
ob

ab
ilit

y OCT predictions for dataset 4

Y_predict
Y_true
Threshold = 0.98

0 00:21:25 00:42:50 01:04:15 01:25:41
Time (hh:mm:ss)

True

Leave out

False

True

Cl
as
sif
ica

tio
n

Y_predict_class
Y_true

Figure 21: The upper plot shows the prediction by the classifier on dataset 4.
The lower plot has a threshold at 0.98 for a positive classification. Both plots
are compared to the annotation of the OCT, which is represented by the blue
lines.

5.4 Tool 4: Camera motion detector

The result of using tool 4 on video 2 is shown in figure 22. A ROC-curve where
all 9 videos have been processed by tool 4 is shown in figure 23.

0 00:42:35 01:25:10 02:07:46 02:50:21
0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f m

ov
in

g
pi

xe
ls

Interframe movement in video 2

0 00:42:35 01:25:10 02:07:46 02:50:21
0.0

0.2

0.4

0.6

0.8

1.0

(F
ilt

er
ed

)

0 00:42:35 01:25:10 02:07:46 02:50:21
Time (hh:mm:ss)

Stationary

Movement

Figure 22: Optical flow signal from video 2 before filtering, after filtering and
after thresholding at 0.8 (the dashed green line). If 80% of the pixels in a frame
are moving, it is classified in the third plot as a camera movement.

38

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 p

os
iti

ve
 ra

te
ROC curve for camera movement detection

video 1, AUC = 0.876
video 2, AUC = 0.739
video 3, AUC = 0.634
video 4 view 1, AUC = 0.782
video 4 view 2, AUC = 0.697
video 5, AUC = 0.820
video 6, AUC = nan
video 7, AUC = 0.564
video 8, AUC = 0.608
video 9 AUC = nan

Figure 23: ROC curve for detection of camera movement and zoom. Video 6
and 9 had no movements or zooms, therefore the ROC-curve is not applicable
for these videos.

5.5 Automatic summary

The combined timelines of video 6 and 7, clustered on general features, are
shown in figure 24 and 25. Figure 26 shows a video summary frame from video
7.

0 00:05:11 00:10:23 00:15:34 00:20:46
Time (hh:mm:ss)

1

2

3

4

5

6

7

Cl
us

te
r

Video 6 combined timeline
Chapters
X-ray
OCT
Global motion

Figure 24: The four tools extracted from video 6 combined. Tool 1 was used
with 7 clusters in the construction of this timeline.

39

0 00:21:24 00:42:49 01:04:14 01:25:38
Time (hh:mm:ss)

1

2

3

4

5

6

7
Cl
us
te
r

Video 7 combined timeline
Chapters
X-ray
OCT
Global motion

Figure 25: The four tools extracted from video 7 combined. Tool 1 was used
with 7 clusters in the construction of this timeline.

Figure 26: A frame from the summary of video 7, with information about time,
chapter, OCT, X-ray and camera motion. Red colour means not active/present,
and green means active/present.

40

6 Discussion

To find suitable tools to show the promise of an intelligent toolbox for video
editing, we started by discussing with Medical Imaging Technologies, and came
to the conclusion that an unsupervised tool without any a priori information
should be included. The reason was that there was no annotated data, and an
unsupervised tool could be generalized to many medical procedures, not only
the percutaneous heart procedures in the dataset. This resulted in tool 1.

From researching the field of automatic video summarization we found three
categories that were suitable for the video material: feature, cluster and shot
selection based techniques. Feature based techniques were represented by find-
ing the X-ray (tool 2) and the OCT (tool 3). Finding camera movements (tool 4)
was based on shot selection. Cluster based techniques were covered by tool 1.
Tool 2-4 were meant to show the potential of tailoring a toolbox based on the
procedure and the interest of the clinician. The OCT was of interest for per-
cutaneous heart procedures, but could be substituted with another instrument.
The reason was to show the effectiveness of neural networks, though it required
annotated frames. The active X-ray and the camera movements added extra
information.

Knowing and understanding a clinicians need is essential when constructing
a toolbox. We got in contact with Kiet Tran [58], a heart surgeon at Sk̊anes
Universitetssjukhus in Lund, Sweden, who gave his thoughts on the subject.
He told us that identifying an instrument is of great interest since his surgeries
include stopping the heart, where a tong is an identicator of when the critical
part begins. Identifying the entry and removal of the tong in the video would
therefore be good reference points. This could be done by annotating and us-
ing a neural network like tool 3. The team around K. Tran writes down when
the patient enters the room and other logistical information. Connecting these
timestamps to the video would do the same job as tool 1. The question is if our
tool can replace the need for writing down information and connecting it to the
video. Regardless, K. Tran thought the information to be of a more logistical
character, and not something that is prioritized to see for a surgeon, compared
to the tong.

In retroperspective we should have had Mr. Tran’s thoughts before we started
the thesis, but it took time to find a contact. We started from scratch with
an idea from Medical Imaging Technologies, and researched the field and found
tools relevant to previous work. Now this thesis and K. Tran’s opinions will be
a good start for the next master thesis to continue on this topic.

6.1 Data

The data of this thesis was nine medical videos of percutaneous heart procedures
from three different hospitals. Writing robust algorithms requires a lot of data,
and it is difficult to know if nine videos are enough. The amount of frames is
almost 1.3 million, but since they come from videos several frames are nearly
identical. The performance of tool 3 might give a hint on the need for more
data. The average accuracy, as seen in table 5 in the Results section, was 86.6%

41

- by ”only” using six videos for training. The result indicates that it is possible
to create a decent classifier from a few videos. What lowers the average accuracy
is the 50% performance on cross-validation set 2, which corresponds to video 4.
The brightness in video 4 differs from the other videos. We tried to solve this
with data augmentation, but it was unsuccessful. To develop the tools further
it would be a good idea to acquire more data with different settings.

6.2 Tool 1: Unsupervised clustering

Extracting features with a pretrained CNN and then using k-means++ to clus-
ter the frames based on deep features turned out well. Although the clustering
algorithm has no knowledge or concept of the temporal dependence between
frames, it still groups the frames more or less in order so that the frames be-
longing to the same period in time are assigned to the same group, as is shown
in figure 13 and figure 16. This indicates that the visual content of the videos
changes enough over time so as to make this approach viable. Examples of how
the visual contents change between clusters are shown in figure 15 and figure 16.

Tool 1 is ideal to use on videos with pre and post sequences of a procedure,
since large changes in the environment are reflected in the clustering. A video
only recording when the procedure is running and is zoomed in is not ideal since
not even we know how to divide it up into chapters without knowledge of the
procedure. It is hard to expect more from an algorithm. Our aim has been to at
least identify major changes in the room. The algorithm distinguishes between
an empty room and a room with staff. It notices when the patient leaves the
operating table. Big instruments will generate new clusters. Combining tool 1
with an editing user interface would make it possible to throw away a cluster
displaying an irrelevant sequence like an empty room.

6.2.1 Benefit of the ResNet50

It would be possible to do a k-means++ on all the pixels instead of using
extracted features from ResNet50, but it requires more memory, increases the
computational time and comparison is limited to pixels instead of complex visual
structures. Clustering on all the pixels would mean having 2073600 elements
(1920x1080) instead of 2048 (or 1024 with a shallow ResNet50).

The features of ResNet50 are specialized on the patterns of the ImageNet
dataset. To generalize the features, a ResNet50 with a reduced number of
layers was also used. It was difficult to decide how many layers to use. Using a
fewer number of layers should result in more basic features, such as edges and
corners, but there is a limit where the features become too general. An example
of the difference in clustering on general and specific features can be noticed by
comparing figure 13 with 27 in the Appendix.

6.2.2 Median filter: Time structure vs visual similarity

By applying the median filter the temporal coherence of clusters is enhanced,
but the visual similarities upon which the clustering is based is ignored. This
might lead to a loss of important information, such as when a fast transient

42

event is occurring in the original video. Such events might be of interest, as
things which do not occur often could be just as important as the ordinary
activity of the video. An extension to the clustering-based approach could be
to include those frames which were forced to change cluster by the filtering.

6.2.3 Sorting clusters

If frames both in the beginning and end of a video are similar, they tend to end
up in the same cluster. The mean frame of that cluster is then in the middle
of the video, which causes problems when sorting the clusters. This occurs in
figure 24.

6.2.4 Finding k in k-means

The selection of k in the k-means++ algorithm is an important decision to make
in tool 1. If k is large, the algorithm might be forced to split ”natural” chapters
apart, whereas too few clusters have the effect of joining chapters together when
it would be more natural to separate them. Examples of the issue can be seen
in figure 28 and 29 in the Appendix, where the clustering was made on 3 and 9
chapters.

Manual decision of the best number of chapters can be made by looking at an
entire video or visually examining the output of tool 1 for different values of k.
However, these manual approaches are not well suited for an automated system.

Using the Silhouette, Calinski-Harabaz and Davis-Bouldin metrics for cluster
evaluation was an attempt to objectively decide an optimal number of chapters.
While it provided some guidance in e.g. video 5, where both the Silhouette and
Davis-Bouldin score indicate that 5 clusters is the best choice when using more
specific features, the outcome is mostly inconclusive. For many of the videos,
the metrics vary only slightly when k is changing, thus conveying no guidance
at all. Another common behaviour is that the metrics indicate that the lowest
amount of clusters is the best choice, which defeats the purpose of dividing the
video into partitions in the first place. See table 8 and table 9 for reference.

From a video summary point of view, the number of frames in each chapter
should perhaps be taken into account, as it is a reasonable wish that a video
of 2 hours length should be divided into more chapters than a short clip of 20
minutes. One might also try to use different features from those used in this
thesis, in case they prove more suitable for partitioning the videos.

6.3 Tool 2: X-ray detector

Detecting the X-ray is a clue to understanding what part of a video is inter-
esting to see. Several heart procedures, and especially those in this thesis, use
catheters together with X-ray to examine the heart [59]. Clusters far away from
an active X-ray flag on the timeline is an indicator of inactivity.

The method of finding the active X-ray may seem hard coded. We manually
identified an area in the videos and counted the pixels within the area. After

43

thresholding, the output was either active or not active, as can be seen in fig-
ure 17 and 18. If the layout of the frame changes or the pixel intensities were
somehow different, the method would break. A future version of this tool might
be more dynamic and e.g. ask the user to mark out the location of the symbol,
or use automatic detection. Another way could be to obtain a signal from the
fluoroscope itself rather than relying on the video signal, although at the cost
of more wiring and the need for interpreting that signal instead.

6.3.1 Percentage of active X-ray

Table 10 shows how often the X-ray is active in a video. This could be an ad-
ditional feature for the clinician, to indicate how much the X-ray is being used.

An issue is that the percentage is dependent on when the recording begins
and ends. If the camera is running around-the-clock, the value does not convey
much information. It is useful only if the routine is to start and stop the camera
at the beginning and the end of a medical procedure, or if the beginning and
end of a procedure is marked out.

6.4 Tool 3: Supervised instrument detector

Table 11 and figure 19 indicate that the OCT classifier performed well on the
majority of the validation datasets, with the exception of dataset 2 which is
illustrated in figure 30 in the Appendix. Keep in mind that the dataset num-
bers are not the same as the video numbers (explained in the Data section).
Dataset 2 corresponded to video 4. Compared to the other videos, video 4 was
a lot brighter in color, which is a likely cause for the bad performance. Some
augmentation of the training images was attempted to overcome this problem,
but without success. Here is potential for future work, e.g. by obtaining more
diverse data to train a classifier on, or by improving the augmentation. Permu-
tation of the color channels or working with gray scale images might solve the
problem.

6.4.1 Flexibility of tool 3

The tool showed how useful neural networks can be to find objects in a video.
We chose to annotate the instrument for OCT as it was present in many of
the available videos and is important to percutaneous heart procedures. The
instrument could be substituted to suit videos of other types of procedures. A
drawback of this tool is the need for annotated data for training. We had to
spend a few days to annotate data.

While the OCT is a comparatively large object and not very hard to detect
for a human, other interesting objects might be harder to annotate and train
a classifier on. Detection of smaller objects such as scalpels and needles might
be hampered by e.g. obstruction by the hand holding the instrument. Image
resolution could also affect the performance, and it might be necessary to use
the full 1920x1080 pixels rather than the 224x224 pixels that were used in this

44

thesis. Increasing resolution comes at a cost of memory requirements and longer
training times.

6.5 Tool 4: Camera motion detector

Considering the result in figure 23, the method for detecting global camera
motion was better than randomly guessing, though it by no means perfectly
matched the annotated movements. Video 6 and 9 had no camera movements,
hence the low ratio of moving pixels in figure 31 in the Appendix, which our
classifier correctly rejected as ”no movement”.

In part, this might be connected to the difficulty in consistently annotating
where there was movement, where it begun and where it ended. If a prolonged
movement over 50 frames in fact consists of many shorter movements, with
just a few stationary frames in between, it is tempting to annotate the entire
sequence as one movement. The detector would likely see it as many small
movements however, as it is only comparing two adjacent frames at a time. A
similar problem arises when the camera ”sways” for a long time in the same
position, which occurred a few times. This should ideally not be picked up by
the detector.

The ROC curve in figure 23 has a peculiar shape in the top right corner, where
it goes below the dotted line which represents random guessing. The likely
explanation is that there are camera movement frames with a ratio of moving
pixel both above and below the stationary frames in figure 22. As the thresh-
old has passed below the first group of the camera movement frames, the true
positive rate in the ROC curve stabilizes. As the threshold decreases, the false
positive rate goes up, until there are more false positives than true positives. At
some point, the threshold reaches the camera movement frames with low ratio
of moving pixels, and the true positive rate increase again. The difficulties in
annotating movement consistently might also be a cause for this effect.

6.6 Automatic summary

The automatic summary is a way of combining all previous tools and presenting
their outputs in a compact format. The combined timeline, as shown in figure 24
and 25 is an example of how this could be done in a static way, providing an
overview of the video with points of interest marked out. This way of presenting
information could be useful in a video editing software, where it is common to
have a timeline of the video for navigation, cutting, merging clips, adding audio
etc.

The other proposed way of presenting the video is making a video summary,
almost like a trailer, with the information about time, chapter, X-ray, OCT
and global motion printed on each frame. A challenge in the development of
an automated summary, is to define what constitutes a ”good summary”. In
the best of worlds, one or a few videos annotated by a trained clinician could
serve as a gold standard. The summary could be evaluated by comparing the
output of the system to the gold standard set by the trained clinician. Another
solution could be to have a panel of intended end users expressing their opinion

45

on different summary proposals. This is beyond the scope of this thesis, and
more suited towards a designer. The purpose of our summary was to act as a
proof of concept of the use of the tools.

46

7 Conclusions

The aim of this master thesis was to create an intelligent toolbox for editing
medical video and to use the toolbox to generate a video summary. Four tools
were to be created, inspired by existing techniques for automatic video summa-
rization.

Tool 1 was a clusterer, which was difficult to evaluate as no annotated data
was available. The independence from ground truth is also one of the appeals
of this tool, as it could be adapted for many situations without extensive data
preparation. Tool 2 was a feature based X-ray detector, which was implemented
by counting pixels in a region of interest. Tool 3 was a supervised classifier, us-
ing a convolutional neural network to detect when a medical instrument was
present. An optical coherence tomograph was selected as the instrument of in-
terest. Overall the classifier performed well, but when lighting conditions where
too different from the training data the performance was no better than random
guessing. Tool 4 was a global camera motion detector, based on optical flow.
Camera translations were detected, but slow zoom passed by undetected.

The importance of the tools were discussed with a surgeon who showed interest
in identifying instruments, corresponding to tool 3. Tool 1 could be interesting
for logistical planning. A timeline showing the information from all tools simul-
taneously and a short video summary was created to achieve the secondary goal
of this thesis.

7.1 Future work

We have a few suggestions for the further development of the toolbox. Our ideas
are presented in the following sections.

7.1.1 Investigate what tools are in demand

Retrieving more input from clinicians or intended users will build a good knowl-
edge of what is important in a video summary. Using the tools in practice will
not only require relevant tools, but also a focus on design to make the informa-
tion accessible and easy to handle.

7.1.2 Improvements to tool 1

The implementation of tool 1 in this thesis uses k-means++ clustering as a basis
for automatic partitioning into chapters. An assumption is made that frames
which belong together visually also belong together in time, but apart from that
the clusterer does not take any consideration to the temporal order of the frames.
An interesting development could be a clustering scheme which makes use of
the temporal order. Testing other features could also be of interest. ResNet50
was chosen as it is considered good for image feature extraction in general, but
it is not specifically trained on images in a medical setting. Another problem
which could be addressed is finding a way to determine how many chapters a
video should be divided into.

47

7.1.3 Improvements to tool 3

Training the algorithm on more data can make it more robust. An alternative
is to expand the use of data augmentation to cover more scenarios, or to use a
different CNN architecture.

7.1.4 Adapt tool 3 for another instrument

The principle of using neural networks with annotated data could be used with
other medical instruments. The possibility to track any instrument is of interest
when tailoring the video summary for specific medical procedures. Increasing
resolution might be necessary to track needles or other small equipment.

7.1.5 Improvements to tool 4

A future development of tool 4 could be to replace the threshold on the opti-
cal flow signal with a sliding window and a trainable classifier such as logistic
regression. Using a sliding window the state of neighbouring frames would be
taken into account as well, not just the value of the single frame.

7.1.6 Video summary with reinforcement learning

In the article Deep Reinforcement Learning for Unsupervised Video Summa-
rization with Diversity-Representativeness Reward [60] a reinforcement learning
scheme for creating summaries is suggested which tries to make the frames of a
summary as diverse as possible, while also keeping the summary representative.
Implementing the reinforcement learning scheme for medical videos could be an
interesting alternative to the toolbox and the generation of a video summary
proposed in this master thesis.

48

References

[1] Raghupathi W and Raghupathi V. Big data analytics in healthcare:
Promise and potential. Health information science and systems, 2014.

[2] Wilhelmsson, P. Engineer with ten years of expertise from the surveillance
industry. Personal interview, 2019-02-19.

[3] Medical Imaging Technologies
https://www.medicalimagingtechnologies.com/ [Accessed 2019-02-08]

[4] Medical Imaging Technologies press-release 2019-01-07
https://www.arabhealthonline.com/en/media/press-releases/

why-hospitals-need-audio-visual-integration.html [Accessed
2019-02-08]

[5] Plexus Surgical Video Production
https://plexus.tv/ [Accessed 2019-02-08]

[6] SurgiCast Medical Video Editing
https://www.surgicast.io/services/video-editing [Accessed 2019-
02-08]

[7] Incathlab
https://www.incathlab.com/en/home [Accessed 2019-02-08]

[8] Ajmal M, Husnain Ashraf M, Shakir M, Abbas Y and Ali Shah F. Video
Summarization: Techniques and Classification. Proceedings of the Interna-
tional Conference of Computer Vision and Graphics, pp. 1-13, 2012.

[9] Louridas P and Ebert C. Machine Learning. IEEE Software, vol. 33, pp.
110-115, 2016.

[10] Mohri M, Rostamizadeh A and Talwalkar A. Foundations of Machine
Learning, second edition. Series: Adaptive computation and machine learn-
ing, chap, 1.5/4.5, 2012.

[11] Fawcett T. An introduction to ROC analysis. Pattern Recognition Letters,
v.27, n.8, pp. 861-874, 2006.

[12] Ben Ayed A, Ben Halima M and Alimi A M. Survey on clustering methods:
Towards fuzzy clustering for big data. 6th International Conference of Soft
Computing and Pattern Recognition, pp. 331-336, 2014

[13] Scikit Learn - 2.3 Clustering. https://scikit-learn.org/stable/

modules/clustering.html [Accessed 2019-05-14]

[14] Ester M, Kriegel H. P, Sander J and Xu X. A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise. Proceedings
of the 2nd International Conference on Knowledge Discovery and Data
Mining, pp. 226–231, 1996

[15] L.R Rabiner. A tutorial on hidden Markov models and selected applications
in speech recognition. Proceedings of the IEEE, vol. 77, pp. 257-286, 1989

49

https://www.medicalimagingtechnologies.com/
https://www.arabhealthonline.com/en/media/press-releases/why-hospitals-need-audio-visual-integration.html
https://www.arabhealthonline.com/en/media/press-releases/why-hospitals-need-audio-visual-integration.html
https://plexus.tv/
https://www.surgicast.io/services/video-editing
https://www.incathlab.com/en/home
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html

[16] Ghassempour S, Girosi F and Maeder A. Clustering Multivariate Time Se-
ries Using Hidden Markov Models. International Journal of Environmental
Research and Public Health, vol 11(3), pp. 2741–2763, 2014

[17] Kubat M. An Introduction to Machine Learning. Springer Cham, pp. 273-
295, 2017.

[18] Reddy Edla D, Tripathi D, Kuppili V and Cheruku R. Survey on Clustering
Techniques. Second International Conference on Inventive Communication
and Computational Technologies, pp. 696-703, 2018.

[19] Arthur D and Vassilvitskii S. k-means++: The Advantages of Careful Seed-
ing. Proceedings of the eighteenth annual ACM-SIAM symposium on dis-
crete algorithms, pp. 1027-1035, 2007.

[20] Rousseeuw P. Silhouettes: A graphical aid to the interpretation and valida-
tion of cluster analysis. Journal of Computational and Applied Mathemat-
ics, vol. 20, pp 53-65, 1987.

[21] Calinski T and Harabasz J. A Dendrite Method for Cluster Analysis. Com-
munications and Statistics - Simulation and Computation, 1974.

[22] Davies D and Bouldin D. A Cluster Separation Measure. IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol PAMI-1 no 2, pp. 224-
227, 1979.

[23] Scikit Learn - 2.3.9. Clustering performance evaluation
https://scikit-learn.org/stable/modules/clustering.html [Ac-
cessed 2019-04-09]

[24] Zhuangzi L, Xiaobin Z, Lei W and Peiyu G. Image Classification Using
Convolutional Neural Networks and Kernel Extreme Learning Machines.
25th International Conference on Image Processing, 2018.

[25] Török P and Harangi B. Digital Image Analysis with Fully Connected Con-
volutional Neural Network to Facilitate Hysteroscopic Fibroid Resection.
Gynecologic and Obstetric Investigation, pp. 615-619, 2018.

[26] Tianqiang P, Yongwei Z and Shengcai K. Image retrieval based on convo-
lutional neural network and kernel-based supervised hashing. 8th Interna-
tional Congress on Image and Signal Processing, 2015.

[27] Goodfellow I, Bengio Y and Courville A. Deep Learning. MIT Press, ch.9,
2016.

[28] Chaoyun Z, Pan Z, Chenghua L and Lijun L. A Convolutional Neural Net-
work for Leaves Recognition Using Data Augmentation. International Con-
ference on Computer and Information Technology; Ubiquitous Comput-
ing and Communications; Dependable, Autonomic and Secure Computing;
Pervasive Intelligence and Computing, 2015.

[29] Alani A, Cosma G, Taherkhani A and McGinnity M, Hand gesture recogni-
tion using an adapted convolutional neural network with data augmentation.
4th International Conference on Information Management, 2018.

50

https://scikit-learn.org/stable/modules/clustering.html

[30] Qiucheng D, Aiguo W, Na D, Wei F and Shaohua W. A Convolution Neu-
ral Network for Parts Recognition Using Data Augmentation. 13th World
Congress on Intelligent Control and Automation, 2018.

[31] Keras - Image Preprocessing, https://keras.io/preprocessing/image/
[Accessed 2019-04-26]

[32] ImageNet
http://www.image-net.org/ [Accessed 2019-02-08]

[33] MathWorks - Pretrained Convolutional Neural Networks
https://se.mathworks.com/help/deeplearning/ug/

pretrained-convolutional-neural-networks.html [Accessed 2019-02-
08]

[34] Kornblith S, Shlens J and Quoc V L. Do Better ImageNet Models Transfer
Better? Google Brain, 2018.

[35] Kaiming H, Xiangyu Z, Shaoqing R and Jian S. Deep Residual Learning
for Image Recognition. IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

[36] Region of interest (ROI) https://www.techopedia.com/definition/

339/region-of-interest-roi [Accessed 2019-04-23]

[37] Brinkmann R. The Art and Science of Digital Compositing. Morgan Kauf-
mann, p. 184, 1999.

[38] Stojanovic B, Neskovic A, Popovic Z and Lukic V. ANN based fingerprint
image ROI segmentation. TELFOR, pp. 505-508, 2014.

[39] Mesmakhosroshahi M, Loghman M and Joohee Kim. Feature-based ROI
generation for stereo-based pedestrian detection. ICASSP, pp. 1727-1731,
2017.

[40] OpenCV: Optical Flow
https://docs.opencv.org/trunk/d7/d8b/tutorial_py_lucas_

kanade.html [Accessed 2019-04-26]

[41] An Introduction to the NVIDIA Optical Flow SDK
https://devblogs.nvidia.com/an-introduction-to-the-nvidia-optical-flow-sdk/

[Accessed 2019-04-26]

[42] Farnebäck G. Two-frame motion estimation based on polynomial expansion.
Proceedings of the 13th Scandinavian conference on Image analysis, 2003.

[43] Lucas B and Kanade T. An iterative image registration technique with an
application to stereo vision. Proceedings of Imaging Understanding Work-
shop, pp. 121-130, 1981.

[44] TensorFlow, https://www.tensorflow.org/ [Accessed 2019-04-26]

[45] Keras, https://keras.io/ [Accessed 2019-04-26]

[46] CNTK, https://docs.microsoft.com/en-us/cognitive-toolkit/ [Ac-
cessed 2019-04-26]

51

https://keras.io/preprocessing/image/
http://www.image-net.org/
https://se.mathworks.com/help/deeplearning/ug/pretrained-convolutional-neural-networks.html
https://se.mathworks.com/help/deeplearning/ug/pretrained-convolutional-neural-networks.html
https://www.techopedia.com/definition/339/region-of-interest-roi
https://www.techopedia.com/definition/339/region-of-interest-roi
https://docs.opencv.org/trunk/d7/d8b/tutorial_py_lucas_kanade.html
https://docs.opencv.org/trunk/d7/d8b/tutorial_py_lucas_kanade.html
https://devblogs.nvidia.com/an-introduction-to-the-nvidia-optical-flow-sdk/
https://www.tensorflow.org/
https://keras.io/
https://docs.microsoft.com/en-us/cognitive-toolkit/

[47] Theano, http://deeplearning.net/software/theano/ [Accessed 2019-
04-26]

[48] OpenCV, https://opencv.org/ [Accessed 2019-04-26]

[49] Serpa MS, Krause AM, Cruz EHM, Navaux POA, Pasin M and Felber
P. Optimizing machine learning algorithms on multi-core and many-core
architectures using thread and data mapping. EMPDP, pp. 329-333, 2018.

[50] Sethi A. Multicore processor technology- advantages and challenges. Inter-
national Journal of Research in Engineering and Technology. v.4, n.9, pp.
87-89, 2015.

[51] Scikit-learn, https://scikit-learn.org/stable/ [Accessed 2019-05-08

[52] Keras feature extraction example, https://keras.io/applications/

#classify-imagenet-classes-with-resnet50 [Accessed 2019-04-30]

[53] Keras ResNet50 preprocessing, https://github.com/keras-team/

keras-applications/blob/master/keras_applications/resnet50.py

[Accessed 2019-04-30]

[54] Keras preprocess input source code, https://github.com/keras-team/

keras-applications/blob/master/keras_applications/imagenet_

utils.py [Accessed 2019-04-30]

[55] Terashima M, Kaneda H and Suzuki T. The Role of Optical Coherence
Tomography in Coronary Intervention. The Korean Journal of Internal
Medicine 27, pp. 1-12, 2012.

[56] Sharma S, Rijal J and Dahal K. Optical coherence tomography guidance
in percutaneous coronary intervention: a meta-analysis of randomized con-
trolled trials. Cardiovascular Intervention and Therapeutics 34, pp. 113-121,
2019.

[57] Longobardo L, Mattesini A, Valente S and Di Mario C. OCT-Guided Percu-
taneous Coronary Intervention In Bifurcation Lesions. Interventional Car-
diology Review, vol. 14, n.1, pp. 5-9, 2019.

[58] Tran K. Heart surgeon and researcher in vascular surgery at Sk̊anes Uni-
versitetssjukhus. Study visit and personal interview, 2019-04-24.

[59] Cardiac Catheterization
https://www.heart.org/en/health-topics/heart-attack/

diagnosing-a-heart-attack/cardiac-catheterization [Accessed
2019-04-09]

[60] Zhou K, Qiao Y, Xiang T. Deep reinforcement learning for unsuper-
vised video summarization with diversity-representativeness reward. Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

52

http://deeplearning.net/software/theano/
https://opencv.org/
https://scikit-learn.org/stable/
https://keras.io/applications/#classify-imagenet-classes-with-resnet50
https://keras.io/applications/#classify-imagenet-classes-with-resnet50
https://github.com/keras-team/keras-applications/blob/master/keras_applications/resnet50.py
https://github.com/keras-team/keras-applications/blob/master/keras_applications/resnet50.py
https://github.com/keras-team/keras-applications/blob/master/keras_applications/imagenet_utils.py
https://github.com/keras-team/keras-applications/blob/master/keras_applications/imagenet_utils.py
https://github.com/keras-team/keras-applications/blob/master/keras_applications/imagenet_utils.py
https://www.heart.org/en/health-topics/heart-attack/diagnosing-a-heart-attack/cardiac-catheterization
https://www.heart.org/en/health-topics/heart-attack/diagnosing-a-heart-attack/cardiac-catheterization

8 Appendix

Tool 1

0 00:21:25 00:42:50 01:04:15 01:25:41
1

2

3

4

5

 C
lu
st
er

k-means++: video 7, 5 clusters, specific features

0 00:21:25 00:42:50 01:04:15 01:25:41
1

2

3

4

5

 C
lu
st
er

(fi
lte

re
d)

0 00:21:25 00:42:50 01:04:15 01:25:41
Time (hh:mm:ss)

1

2

3

4

5

 C
lu
st
er

(s
or
te
d)

Figure 27: The upper plot is the output from k-means++ clustering on specific
features of video 7 with 5 clusters. In the center plot the output has been
filtered to remove noise. The lower plot is the final output from tool 1, where
the clusters have been sorted.

53

0 00:12:56 00:25:52 00:38:48 00:51:44
1

2

3
 C

lu
st

er

k-means++: video 1, 3 clusters, specific features

0 00:12:56 00:25:52 00:38:48 00:51:44
1

2

3

 C
lu

st
er

(fi

lte
re

d)

0 00:12:56 00:25:52 00:38:48 00:51:44
Time (hh:mm:ss)

1

2

3

 C
lu

st
er

(s

or
te

d)

Figure 28: The upper plot is the output from k-means++ clustering on specific
features of video 1 with 3 clusters. In the center plot the output has been
filtered to remove noise. The lower plot is the final output from tool 1, where
the clusters have been sorted.

0 00:19:01 00:38:03 00:57:04 01:16:06
1
2
3
4
5
6
7
8
9

 C
lu

st
er

k-means++: video 9, 9 clusters, general features

0 00:19:01 00:38:03 00:57:04 01:16:06
1
2
3
4
5
6
7
8
9

 C
lu

st
er

(fi

lte
re

d)

0 00:19:01 00:38:03 00:57:04 01:16:06
Time (hh:mm:ss)

1
2
3
4
5
6
7
8
9

 C
lu

st
er

(s

or
te

d)

Figure 29: The upper plot is the output from k-means++ clustering on general
features of video 9 with 9 clusters. In the center plot the output has been
filtered to remove noise. The lower plot is the final output from tool 1, where
the clusters have been sorted.

54

Tool 3

0 00:32:38 01:05:16 01:37:54 02:10:32
True

Leave out

0.0

0.5

1.0

Pr
ob
ab
ilit
y OCT predictions for dataset 2

Y_predict
Y_true
Threshold = 0.45

0 00:32:38 01:05:16 01:37:54 02:10:32
Time (hh:mm:ss)

True

Leave out

False

True

Cl
as

sif
ica

tio
n

Y_predict_class
Y_true

Figure 30: The upper plot shows the prediction by the classifier on dataset 2.
The lower plot has a threshold at 0.45 for a positive classification. Both plots
are compared to the annotation of the OCT, which is represented by the blue
lines.

Tool 4

0 00:05:11 00:10:23 00:15:34 00:20:46
0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f m

ov
in
g
pi
xe

ls

Interframe movement in video 6

0 00:05:11 00:10:23 00:15:34 00:20:46
0.0

0.2

0.4

0.6

0.8

1.0

(F
ilt
er
ed

)

0 00:05:11 00:10:23 00:15:34 00:20:46
Time (hh:mm:ss)

Stationary

Movement

Figure 31: Optical flow signal from video 6, which had no camera movements.

55

Master’s Theses in Mathematical Sciences 2019:E25
ISSN 1404-6342

LUTFMA-3383-2019

Mathematics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

	Introduction
	Background
	Scope

	Theory
	Previous work on automatic video summary
	Supervised machine learning
	K-fold cross-validation
	ROC analysis

	Unsupervised machine learning
	Clustering
	k-means++ clustering
	Clustering metrics

	Convolutional Neural Networks
	Data augmentation
	Feature extraction using pretrained convolutional networks
	Residual networks

	ROI-Based Processing
	Optical flow
	Gunnar Farnebäck algorithm (Dense optical flow)

	Software
	Multicore processors

	Data
	Video sources
	Cross-validation datasets for tool 3

	Method
	Tool 1: Unsupervised clustering
	Frame preprocessing
	Feature extraction with ResNet50
	k-means++ clustering
	Median filter
	Sort clusters

	Tool 2: X-ray detector
	Tool 3: Supervised instrument detector
	The Optical Coherence Tomograph - OCT
	Video annotation
	7-fold cross-validation
	Training a CNN
	Validation and predictions

	Tool 4: Camera motion detector
	Farnebäck optical flow
	Distinguishing between local and global motion
	Removing single peaks
	Validating the classifier

	Automatic summary
	Combined timeline
	Short video summary

	Results
	Tool 1: Unsupervised clustering
	Tool 2: X-ray detector
	Tool 3: Supervised instrument detector
	Tool 4: Camera motion detector
	Automatic summary

	Discussion
	Data
	Tool 1: Unsupervised clustering
	Benefit of the ResNet50
	Median filter: Time structure vs visual similarity
	Sorting clusters
	Finding k in k-means

	Tool 2: X-ray detector
	Percentage of active X-ray

	Tool 3: Supervised instrument detector
	Flexibility of tool 3

	Tool 4: Camera motion detector
	Automatic summary

	Conclusions
	Future work
	Investigate what tools are in demand
	Improvements to tool 1
	Improvements to tool 3
	Adapt tool 3 for another instrument
	Improvements to tool 4
	Video summary with reinforcement learning

	Appendix

