
Mechanical properties of SiC nanowires
with polytypes

Anders Vesti

Thesis submitted for the degree of Master of Science
Project Duration: 5 months

Supervised by

Jonas Johansson and
Per Hansson

Department of Physics
Division of Solid State Physics

May 2019





Abstract

In this report, we model the mechanical properties and fracture behavior of SiC nanowires
with different polytypes using Molecular Dynamics (MD) simulations. The mechanical
properties investigated are the Young’s modulus, the maximum tensile stress and the
fracture strain. The three polytype tested are SiC (3C), (2H) and (4H). Tensile tests
are performed on bulk and nanowire samples using three commonly know inter-atomic
potentials: the Tersoff, the Vashishta and the MEAM potential. Our report finds large
differences in how the potentials predict the mechanical properties and fracture behavior
of the SiC structures.

Using the MEAM potential, we perform tests on two similar sized nanowires with
different side facets: one with {11-2} surfaces and one with {1-10} surfaces. The surface
energies of the two surface types are estimated. Our studies find that the type of surfaces
will affect the mechanical properties of the nanowire.

The mechanical properties of the three SiC polytypes are obtained at four different
temperatures. A dependence of the Young’s modulus on the hexagonality of unit cell is
found, a dependence also reported for diamond polytypes. We further find that increasing
temperatures will lower the values of the mechanical properties.

Lastly, two nanowire heterostructures are constructed using diamond cubic Si and
either SiC (3C) and SiC (2H). The potential energy of the interface is estimated and
compared to the Si and SiC (3C)/(2H) sections of the heterostructure. We find that
due to dislocations the energy is highest at the interface. The dislocation pattern of the
interface is analyzed, and edge dislocations of the type 1

2
〈110〉 and 1

6
〈11-2〉 are found.
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BOA Born-Oppenheimer Approximation

DFT Density Functional Theory
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Introduction

The developments in the semiconductor industry and semiconductor device fabrication
continues to grow with an incredible speed. The advancements in nanoscale device fabri-
cation and the ever present demand of new solutions from the industry compel researchers
to explore new semiconductor materials and device structures to create evermore special-
ized semiconductor devices.

A nanoscale structure that has sparked a lot of interest in recent years is the nanowire.
Due to their low-dimension properties, it has been shown that nanowire based devices may
bring several advances in various types of fields, for example as field effect transistors and
optoelectronic devices.[1]

When it comes to the implementation of new semiconductor materials, Silicon car-
bide (SiC) posses physical properties that make it a strong candidate for creating highly
specialized devices. Already now SiC has been used for making high power devices and
devices that can withstand extreme temperatures. Furthermore, studies has shown that
SiC nanowires can be grown using techniques already present in the semiconductor in-
dustry.[2] By producing SiC nanowires, we can combine the abilities of bulk SiC with the
low-dimension properties of nanowires and thereby open the door to a whole new set of
specialized devices.[2]

What further makes SiC an interesting material is that it exists as several polytypes.
These polytypes do not only have different crystal structures, they also posses very differ-
ent electronic properties. If scientist are able to fully control the formation of polytypes
in SiC, it would allow us modify the electronic band structure of our devices using just
one type of material; something that normally requires either adding a dopant or creating
a heterostructure of two different types of materials.

In order to fully utilize SiC nanowires in future devices, scientists need to know their me-
chanical properties. Due to their small sizes, the mechanical properties of SiC nanowires
are hard to obtain experimentally. Instead computer simulations are used, which allows
us to test single polytype structures in a controlled and reproducible environment.

In this report we will use the computational method of Molecular Dynamics (MD)
simulations to obtain the mechanical properties of the SiC nanowires. MD simulation is
a technique that allows us to simulate the individual motion of each atom in a confined
system.

The first computational MD simulations were carried out in the 1950’s by researchers
at Lawrence Livermore National Laboratory, where the trajectories of hundreds of hard
sphere particles were computed using a simple square-well potential as inter-atomic poten-
tial.[3] Since then, the capabilities of MD simulations have grown as fast as the advance-
ments in computer power, and today systems of many millions of atoms can be modeled.
We will use the open-source software LAMMPS to perform the MD simulations, which is
specialized in modeling solid materials.[4]
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CHAPTER 1. INTRODUCTION

In MD simulations an inter-atomic potential needs to be specified. It is from this
potential all the forces acting on each atom will be computed. This also indicates the
limitations of MD simulations, since the results obtained are only as accurate as the inter-
atomic potential. In our report we will test three commonly used inter-atomic potentials
and compare the results with what is found in the literature to determine which potential
is best suited for our studies.

SiC has more than 170 known polytypes.[5] These can be divided into groups depending
on their hexagonality. We will limit ourselves to study three polytypes: SiC (3C) which
has a cubic unit cell meaning 0% hexagonality, SiC (2H) which has a unit cell of 100%
hexagonality, and SiC (4H) which can be seen as a mixture of the two former and has
a hexagonality of 50%. Though these polytypes all exist in SiC nanowires, they are not
necessarily commonly found.[6][7] However, we have chosen the polytypes not based on
their prevalence but because of their scientific importance, since by choosing these three
polytypes we capture the whole range of hexagonality from the highest to the lowest and
one intermediate value.

Due to limited computational power available, we can only model nanowires of a
limited diameter. The largest nanowires we simulate in this report have a diameter of
∼5 nm, while nanowires grown in the laboratory typically have diameters that are 10-20
times larger.[2] The smaller nanowires may cause any surface effects to be more prominent
than nanowires of larger diameter.

The mechanical properties we obtain and compare for each SiC polytype are: the
Young’s modulus, the maximum stress and the fracture strain. Using the visualization
tool Ovito, we are able to investigate the fracture behavior of the SiC nanowires. We will
test the polytypes at four different temperatures to find the thermal dependency of the
mechanical properties.

In this report, we will also create Si-SiC heterostructures and analyze the type of disloca-
tions forming at the interface. Dislocations in nanowire heterostructures has previously
been studied using other computational modeling methods, for example in the 2006 paper
by F. Glas.[8] Here, it has to be assumed what type of dislocations will form. The advan-
tage of MD simulations is that we do not need to make any assumption of what type of
dislocations will form. We simply build the heterostructure and let it relax according to
the inter-atomic potential.

This report will start by introducing the compound SiC and the three selected poly-
types in Chapter 2. Chapter 3 is dedicated to introducing the theory behind and method
of MD simulations, while Chapter 4 will introduce the three inter-atomic potentials: the
Vashishta, the Tersoff, and the MEAM potential.

Chapter 5 will briefly introduce the different softwares used and show excerpts of our
script developed to obtain the mechanical properties using MD simulations.

Our results are presented in Chapter 6 and lastly our conclusions, a discussion on the
limitations of MD simulations, and an outlook for future work are presented in Chapter
7.

The three appendices contain non-crucial information for the results, but should give
the reader the information needed to replicate our experiments, if so desired.
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Introduction to Silicon Carbide

2.1 Properties of SiC

Silicon carbide (SiC) is a semiconductor compound consisting of the group IV elements
silicon (Si) and carbon (C). Though SiC has been known as a semiconductor material
since 1907, it was first widely known for its extreme hardness and its high thermal and
chemical stability. With these properties, SiC has found many uses, for example as
crucibles for melting metals, as a substitute for diamond in diamond-cutting tools, and
even for producing car brakes and bullet-proof wests.[9, pp 6][10][11]

SiC became interesting as a semiconductor material, when researchers in the late
1950’s found methods for growing large single polytype crystals.[9] The semiconducting
properties of SiC are very different from Si (see table [2.1]), which is still the most used
material in the semiconductor industry.

Though its carrier mobility is lower than that of Si, SiC has other properties that make
it a good material for highly specialized devices: SiC has a high breakdown field, a large
electron drift velocity, and a high thermal conductivity. Furthermore, due to its thermal
stability it is able to operate at very high temperatures. Another great advantage of SiC
is that its native oxide is SiO2 which makes it highly compatible with Si based devices.[2]

Today, SiC is used for building high power devices and for devices which need to op-
erate under extreme temperatures.[2]

SiC exists as several polytypes. These polytypes do not only have different crystal struc-
tures, their semiconductor properties, such as the electron band gap, vary greatly for each
polytype, as seen table 2.1[9]. Researchers are now investigating which growth conditions
favor which polytype and how to control the polytype formation. This is highly relevant
since today’s semiconductor device research is particularly focused on creating devices

Si 3C SiC 4H SiC 6H SiC

Band gap at room temperature [eV] 1.1 2.3 3.2 3.0
Breakdown field [MV/cm] 0.6 >1.5 3 3.2
Saturated electron drift velocity [10ˆ7cm/s] 1 2.5 2 2
Electron mobility [10ˆ3cmˆ2/Vs] 1.1 0.75 0.80 0.37
Hole mobility [cmˆ2/Vs] 0.4 0.04 0.1 0.09
Thermal conductivity [W/cmK] 1.5 5.0 4.9 4.9
Maximum operating temperature [K] 600 1200 - 1580

Table 2.1: Electronic and thermal properties of SiC polytypes compared to Si. Table
reproduced from [9, pp 8].
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CHAPTER 2. INTRODUCTION TO SILICON CARBIDE

(a) Stacking pattern of (111)-surface. (b) 2H (c) 3C (d) 4H

Figure 2.1: The three polytypes of SiC tested in this report. The periodic sequence is
marked in red.

with optimized electron band structures. If we gain control of the governing process of
polytypism, we would be able to create a whole new series of electronic devices.

2.2 Polytypism of SiC

Polymorphism is the ability of certain materials to exist in different crystal structures.
Polytypism is a special case of polymorphism where the structures only vary in one di-
rection. When growing semiconductor nanowires, this direction is the growth direction;
in this report the [111]-direction for cubic crystal structures or, equivalently, the [0001]-
direction for hexagonal structures.

SiC nanowires are typically grown epitaxially, for example by the vapor-liquid-solid
mechanism which is a layer-by-layer type of growth method.[2] Here, differences in the
stacking sequence are what distinguish the polytypes from each other. Figure 2.1 illus-
trates how the difference in stacking sequence results in different crystal structures. In
figure 2.1a we see the (111) surface of a SiC bi-layer which is situated at stacking sites
A. The next bi-layer of atoms can either choose stacking sites B or C. Depending on the
periodicity of how the bi-layers stack on top of each other, different polytypes are formed.
In the figures 2.1b-2.1d the three polytypes used in this report are shown.

The polytypes are named using the Ramsdell notation[12]: ”XN”, where the number
X is the number of bi-layers in the unit cell, and the letter N is either ”C” for cubic
structures or ”H” for hexagonal structures.[9] The three polytypes are as follows: SiC
(3C), SiC (2H), and SiC (4H). Each polytype is characterized by their stacking sequence
and the hexagonality of their unit cells.

The unit cell of SiC (2H) has stacking sequence AB and is commonly known as
Wurtzite (wz). The wz structure can be seen as two hcp lattices, one for Si-atoms and
one for C-atoms, shifted by a fraction 3

8
of the unit cell length, c, in the [0001]-direction.

The SiC (2H) polytype has 100% hexagonality.
The unit cell of SiC (3C) has stacking sequence ABC and is commonly known as Zinc-

blende (zb). Similarly to wz, the zb structure can be as two fcc lattices that are shifted
with respect to each other by a fraction 1

4
of a unit cell in the [111]-direction. The SiC

(3C) polytype has 0% hexagonality.
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CHAPTER 2. INTRODUCTION TO SILICON CARBIDE

(a) Wurtzite (2H) (b) Zinc-blende (3C)

(c) 4H

Figure 2.2: Unit cells of the three polytypes tested in this report.

The unit cell of SiC (4H) has stacking sequence ABAC and has no commonly known
name. It can be seen as an equal mixture of the (2H) and (3C) polytypes. It has a
hexagonality of 50%.

The unit cells of the investigated three polytypes are shown in figure 2.2.
All the polytypes are found in SiC nanowires, albeit (2H) are rare.[6][7] However, we

did not select these polytypes because they are common, but because they represent
the range of hexagonality found in SiC polytypes. We choose polytypes of different
hexagonality, because we assume the difference in crystal structure will cause differences
in the mechanical properties.

11



Theory of Molecular Dynamics Simu-
lations

3.1 Molecular Dynamics simulations

Molecular Dynamics (MD) simulations are a computational method of simulating the
movement of each individual atom or molecule in a large system containing hundreds of
thousands to several millions of atoms or molecules. MD simulations can be used to model
systems in gaseous, liquid, and, as we will do in this report, solid phases.[4, p 5]

In a crystal solid, the atoms are hold together in the crystal lattice by the valence elec-
trons forming bonds with the neighboring atoms. Electrons are inherently non-classical
particles and the bonds formed by the valence electrons exhibit very complex quantum
mechanical behavior which is hard to model accurately.[3, pp 237-238]

Using quantum mechanical modeling methods, such as density functional theory (DFT),
researchers are able to accurately model small systems of maximum a thousand atoms for
a timescale of up to 10 picoseconds with only few approximations.[3, table 5.2, p 281] But
to model large systems of millions of atoms using quantum mechanical methods is simply
not feasible with today’s technology.

Instead, MD simulations treat the atoms as classical particles obeying Newtonian me-
chanics. The motion of each atom is found by solving Newtons second law of motion:

mα~aα = ~fα (3.1)

Here mα is the mass of atom α, ~aα is the acceleration, and ~fα is the force acting on atom
α. The force ~fα is given by the interaction potential V , which needs to be specified for
the system:

~fα = −~∇αV (~r) (3.2)

In general, the interaction potential consists of two parts: an external potential, Vext,
originating from external fields and constraints acting on the system, and an internal
inter-atomic potential, Vint, which incorporates all the energy contributions arising from
interactions between atoms and electrons inside the system.[3, p 492]

It is the inter-atomic potential, Vint, that has to replace the valence electrons role of
forming bonds in the crystal structure. The justification for replacing the valence electrons
with an effective potential is found in the Born-Oppenheimer approximation (BOA). In
the BOA the movement of the electrons is assumed instantaneous on the timescale of
the nucleus due to the large difference in mass. This means that at any time, for any
configuration of the atoms in the system, the electrons can be assumed to have found their
ground state characterized by the ground state energy Eg. A good inter-atomic potential,

12



CHAPTER 3. THEORY OF MOLECULAR DYNAMICS SIMULATIONS

Figure 3.1: Flow chart showing the structure of a typical MD simulation. (Reproduced
from Modeling Materials by E. Tadmor and R. Miller[3, Fig 9.2 p 496])

Vint, is able to approximate the energy contribution of the elections as accurately as
possible. [3, p 241]

In this report, we will use three different inter-atomic potentials and compare how
they predict the mechanical properties and the fracture behavior of SiC nanowires. As
the results will show, the different potentials produce different outcomes.

The steps of a MD simulation are graphically depicted in figure 3.1, which we reproduce
from: [3, p 496]. The steps are as follows:

In the initialization step (0), the general system is set up, which includes specifying the
initial dimensions of the system, the boundary conditions, the type of crystal structure,
the type of atoms and their position in the unit cell. By specifying a temperature we can
assign velocities to the atoms according to the temperature.

In step (1), the energy, forces, and temperature are computed according to the atom-
istic model chosen.

In step (2), the spatial coordinates and velocities of each atom are computed and
updated via numeric integration of the equation of motion 3.1. The time increases by
one time step. Choosing the right size of the time step is crucial for MD simulations.
Essentially, the time step decides the resolution of the simulation. Small time steps give
a high resolution, but also make the simulation very time consuming. When modeling
solids, the resolution needs to be high enough to capture the vibrational motion of the
atom. That requires a time step of 1 femtosecond or smaller.[3, pp 504]

Before obtaining our data, we need to ensure that the system is in equilibrium. There-
fore an equilibration step is included in the flow chart. The steps (1) to (2) are repeated
until some specified equilibrium criterion has been fulfilled. Only then we proceed to step
(3).

In step (3) we obtain our data and write it to an output file. It is often not needed
to save the data of every time step, since the changes in the system will only vary a little
between each time step. In order to avoid unnecessary large output files of hundreds of
gigabytes, the data is sampled when a specified number of time steps have passed. The
steps (1) to (3) are repeated until the time has reached the specified number of time steps
(t = tmax).

13



Theory of Inter-atomic Models

In this section we will introduce the three inter-atomic models used in this report. The
models can be divided into two groups, depending on how they evaluate the potential
energy of the system. The two groups are called cluster potentials and cluster functionals.

4.1 Cluster potentials

It can be mathematically shown that the exact potential energy of a many-body system
containing N atoms can be expressed as an N-term series in the following form:[3, p 247]

V = φ0 +
N∑
i=1

φ1(ri) +
1

2!

N∑
i,j
i 6=j

φ2(ri, rj) +
1

3!

N∑
i,j,k
i 6=j 6=k

φ3(ri, rj, rk) + ... (4.1)

Here each function φn is an n-body potential depending on a cluster of n atoms, and ri

is the position of atom i with respect to an origin O. The functions φn are required to
be symmetric with respect to any permutation of their arguments: φ2(ri, rj) = φ2(rj, ri).
Another requirement is that φn will approach zero whenever one of its atoms is moved
to infinity, since the n-body cluster should represent the ”add-on” energy of the system
after all the interactions of a smaller cluster of n-1 atoms has been calculated.

The first term in the series, φ0, is the reference energy of the system and is given by
the sum of the energies of the individual atoms in isolation from each other.[3, p 249]

φ0 =
N∑
i=1

Efree(Z
i) (4.2)

Here Efree(Z) is the energy of an isolated atom of atomic number Z.
The second term,φ1, is a one-body term which represents the energy related to the

atom interacting with an external potential, Vext, outside the system.

Vext =
N∑
i=1

φi(r
i) (4.3)

If we ignore the external potential for a moment, we can focus on the internal inter-
atomic potential Vint. It has been proven that an inter-atomic potential must fulfill the
requirement of translational, rotational and parity invariance. This is called the basic
representation theorem, and the consequence of this is that internal potential energy can
only be a function of relative inter-atomic distances rij.[3, pp 243-244]

Since SiC is a compound, the n-body potentials φn will depend on the type of atoms
in the interaction. We remember this by explicitly writing the atoms into the subscript,
e.g.: φij.

14



CHAPTER 4. THEORY OF INTER-ATOMIC MODELS

Using this notation, we write the internal inter-atomic potential as:

Vint = φ0 +
1

2!

N∑
i,j
i 6=j

φij(r
ij) +

1

3!

N∑
i,j,k
i 6=j 6=k

φijk(r
ij, rik,jk ) + ... (4.4)

Inter-atomic models using this formalism are called cluster potentials.
Since N is an incredibly large number, the exact potential which is a series of N terms

would be an impossible task to evaluate. Therefore, it is assumed that an approximate
model can be created by terminating the series at a small, but sufficiently large order of
n.

For covalent materials, such as SiC, the atomic bonds are highly directional and the
angle between two bonds will have great influence on the energy of the system. In order
to evaluate the angles, the cluster potential series needs to go to the order of n = 3 to
include a three-body term, since three atoms are needed to describe the angle between
atoms.

Including angles in the potential is not a violation of the basic representation theorem,
since an angle, θijk, between two bonds i− j and i− k can be expressed as a function of
the inter-atomic distances rij,rik,rjk:[3, p 250]

cos θijk =
(rij)

2 + (rik)
2 − (rjk)

2

2rijrik
(4.5)

4.1.1 The cut-off distance

As mentioned earlier, we require the potentials, φn to tend to zero when one of the atoms
is moved to infinity. In practice it is often needed to have the φn’s tend to zero after a
finite ”cut-off” distance, rcut, in order to reduce the computational time.[3, pp 245-246]
This truncation can be implemented in various ways. The Vashishta potential is designed
to tend to zero when the inter-atomic distance approaches rcut.[13] For the Tersoff and
the MEAM potential a cut-off function, fcut is used:[14][15]

fcut(r
ij) =


1 , if rij ≤ rcut − ∆r

2

fc(r
ij) , if rcut − ∆r

2
< rij < rcut + ∆r

2

0 , otherwise

(4.6)

The cut-off function is designed so it tends to zero within a specified length scale of ∆r.
The exact formulations of the fc(r

ij) are given in the sections explaining the Tersoff and
MEAM potentials.

4.1.2 The Vashishta potential

The Vashishta potential is a cluster potential developed by P. Vashishta et al., and it
has been used to model semiconductor materials, ceramics, and inorganic compounds.[16]
Relevant for this report is the 2007 paper by P. Vashishta et al., where the potential is
adapted to model SiC of both zinc-blende and wurtzite structures.[13] The potential used
in this report is adapted from the 2007 paper.

The Vashishta potential is based upon the well-known Stillinger-Weber potential[4, p
1913] and combines repulsive, screened Coulombic, screened charge-dipole, and dispersion
interactions with bond angle energy.[16][4, p 1954]

15



CHAPTER 4. THEORY OF INTER-ATOMIC MODELS

The Vashishta potential is very computationally demanding, so in order to reduce the
computational time we choose a method which tabulates the analytical values of 100,000
points between a radius Rinnercut = 2.5 Å to the cut-off radius Rcut = 2.9 Å. This increases
the speed with very little loss of accuracy.[4, p 1955]

In the Vashishta potential, the interaction energy is given by the sum of a two-body
and a three-body term:

Vint =
N∑
i

N∑
j>i

φij (rij) +
N∑
i

N∑
j 6=i

N∑
k>j,k 6=i

φijk (rij, rik, θijk) (4.7)

The two body term is given by:

φij(r) =
Hij

rηij
+
ZiZj
r

exp (−r/λ1,ij)−
Dij

r4
exp (−r/λ4,ij)−

Wij

r6
, r < rc,ij (4.8)

The three body term depends on the bond angle θijk relative to the reference bond angle
θ0ijk, and is given by:

φijk (rij, rik, θijk) =Bijk
[cos θijk − cos θ0ijk]

2

1 + Cijk [cos θijk − cos θ0ijk]
2×

exp

(
γij

rij − r0,ij

)
exp

(
γik

rik − r0,ik

)
, rij < r0,ij, rik < r0,ik

(4.9)

The values and meaning of the fitting parameters: Hij, η, Zi, Zj, λ1, λ4, rc, r0, γ, Dij,
Wij, Bijk, Cijk, cos(θ0ijk) are given in appendix B.1.

4.2 Cluster functionals

In the previous section we described cluster potentials in which the inter-atomic potential
is constructed as a series of n-body terms. It was assumed that the interaction could be
accurately approximated by terminating the series at a small, but sufficiently high order
of n. However, for some materials this conversion is slow, and higher order n-body terms
must be included. This increases the computational time dramatically.[3, pp 267-268]

To overcome this, cluster functionals were developed. A cluster functional consists of
a simple pair potential term, as well as a functional term which represents the electron
environment of the atom. The functional is designed to replace the high order n-terms
and thereby save computational time. Cluster functionals also have the advantage that
the formulation is more general than cluster potentials and therefore are able to model a
broader range of atomic configurations[3, p 283], as will be discussed in section 7.2.

In order to model covalently bonded materials, the functional needs to incorporate a
three-body term. This allows for taking into account the directionality of the covalent
bonds, as described earlier.

In this report we will use two well-known cluster functionals: the Tersoff potential and
the MEAM potential.

4.2.1 The Tersoff potential

The Tersoff potential is a cluster functional developed by J. Tersoff in the years 1986
to 1989.[3, p 269] Originally designed to model the covalent bonding of Si[14], J. Tersoff
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CHAPTER 4. THEORY OF INTER-ATOMIC MODELS

expanded the model in 1989 to incorporate compounds like SiC.[17] The model of the
1989 paper by Tersoff is used in this report.

In the Tersoff potential, the inter-atomic potential is given by:

V int =
1

2

∑
i,j
i 6=j

fc(r
ij)
[
φR(rij) + b(zij)φA(rij)

]
(4.10)

Here fc is a cut-off function, which will be explained below, φA and φR are two pair
potentials modeling attractive and repulsive interactions respectively. They are given by:

φR(rij) = A exp−λ1r
ij

(4.11)

φA(rij) = −B exp−λ2r
ij

(4.12)

Here A, B, λ1, and λ2 are fitting parameters, and rij is the distance between atom i and
atom j. The attractive pair potential is modified by the three-body functional term b(z):

b(zij) = (1 + (δijzij)n)−1/2n (4.13)

Here δij and n are fitting parameters. The coordinate function zij is given by:

zij =
∑
k

k 6=(i,j)

fc(r
ik)g(θijk) expλ

3
3(rij−rik)3 (4.14)

The coordinate function depend on the bond angle θijk, which is quantified through the
function g:

g(θijk) = 1 +
c2

d2
− c2

d2 + (cos(θ0ijk)− cos(θijk))2
(4.15)

Here c and d are fitting parameters, and cos(θ0ijk) is the optimal bond angle.
The cut-off function,fc, is given by:

fc(r
ij) =


1 , if rij < R−D
1
2
− 1

2
sin(π

2
rij−R
D

) , if R−D ≤ rij ≤ R +D

0 , if rij > R +D

(4.16)

Here the cut-off parameters R and D determine the region in which the cut-off function
approaches zero.

In total the Tersoff potential has twelve fitting parameters: A,B,λ1,λ2,λ3,δ,n,R,D,c,d
and cos(θ0ijk). All the parameters are given in the appendix B.2.

4.2.2 The MEAM potential

The Modified Embedded Atom Method (MEAM) potential was developed by Basker et
al. in the years 1989 to 1992. The MEAM potential is a modified version of the EAM
potential, which is commonly used to model metals[4, pp 1677]. In both potentials the
energy is given by a pair potential term, φij, and an embedding energy functional term Fi,
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which represents the energy of embedding the atom in an environment of electron density
ρi:

E =
∑
i

Fi (ρi) +
1

2

∑
j(6=i)

φij (rij)

 (4.17)

The modification of the MEAM potential with respect to the EAM potential comes from
the way the electron density is calculated; instead of just having the spherically-averaged
zeroth order term ρ

(0)
i , the MEAM potential adds three additional terms: ρ

(1)
i ,ρ

(2)
i , and

ρ
(3)
i . These terms are included in order to simulate the directional dependence of the

electron density.[3, p 277] The MEAM potential is therefore used to model materials with
highly directional bonding, such as covalent materials[4, p 1793].

We implement the formalism described by Gullet et al.[15]. The complete formalism
of the MEAM potential is rather lengthy, therefore we move it to appendix A.

The cut-off function is given by:

fcut(x) =


1 x ≥ 1

[1− (1− x)4]
2

0 < x < 1
0 x ≤ 0

(4.18)

Where x is equal to: x =
rcut−rij

∆r
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Method

5.1 List of softwares

To perform the MD simulation, we use the software LAMMPS. The name is an acronym
and stands for ”Large-scale Atomic/Molecular Massively Parallel Simulator”. It is an
open-source code developed by Sandia National Laboratories designed to perform molec-
ular dynamics simulations with special focus on material modeling.[4]

To operate LAMMPS, an input file is created with all the commands LAMMPS needs
to execute. In the next section, we will show excerpts of such an input file and explain
the commands essential for our studies.

LAMMPS has a built-in library of inter-atomic models with fitting parameters for a
list of selected materials. The potentials for SiC used in this report are all found in the
LAMMPS library.

The output file of LAMMPS is a long .txt file containing the x, y, and z-coordinates,
the potential energies, and the stress for each atom at each time step. To visualize all
this data, we use the open-source program Ovito.[18] Using this software allows us to
investigate the output data in various ways: we can examine the nanowires at every time
step to visually determine the fracture behavior, we can also assign colors to each atom
depending on their potential energy or the stress acting on it, and thereby form 3 dimen-
sional maps of the potential energy and stress distribution in the structure. Ovito also
includes a dislocation analyzer tool, called DXA, which we will use for the dislocation
analysis.[19]

For plotting, fitting, and various computations we use the program Matlab 2016b,
which is a commonly used software in academia.[20]

5.2 Excerpts of an input file

To run LAMMPS, an input file needs to be created. In the appendix C, an example of the
full input file is shown. In the following section, we will restrict ourselves and only explain
the most crucial parts of the input file. Please note that lines starting with a ”#” are not
read by LAMMPS and are intended to make the file more easily interpreted by the reader.

The input file starts by defining the units of the system, the dimensionality (3D), and the
boundary conditions, as shown in the box below. We choose periodic boundary conditions
in all three directions. This will allow us to perform the isobaric relaxation later on.

units metal

dimension 3
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Figure 5.1: The system simulated. The edges of the simulation box are marked with black
lines. Inside is a SiC (3C) nanowire. Red atoms are Si and blue atoms are C.

boundary p p p

atom_style atomic

Next we create the simulation box. The box defines the size of our system, and its
surfaces are the periodic boundaries of the system. The length scale of the box is the
lattice parameter latconst a, which is the length size of the polytype unit cell.

#---Create simulation box---

lattice fcc ${latconst_a}

region simbox block -5 5 -5 5 -0.01 ${height}

create_box 2 simbox

In the following section, we create the nanowire by merging four prisms of equal heights
and lengths but with different orientation. This creates the hexagonal cross section of
the nanowire. The height of the nanowire is the same as the simulation box, while the
diameter of the nanowire is two unit cells smaller than the width of the simulation box.
This ensures there is no interaction across the periodic boundaries in the xy-plane while
having interaction across the boundaries in the z-direction. What we create is a nanowire
which can be seen as a small section of an infinitely tall, free standing nanowire.

When we later on simulate bulk SiC, we will not create this nanowire region, but have
the crystal lattice fill the entire simulation box.

#---Defining nanowire ---

region nprism1 &

prism 0 ${rad_p} -0.01 ${SiC_yp} -0.01 ${height} ${SiC_xn} 0 0

region nprism2 &

prism ${rad_n} 0 -0.01 ${SiC_yp} -0.01 ${height} ${SiC_xp} 0 0

region nprism3 &

prism ${SiC_xn} ${SiC_xp} ${SiC_yn} -0.01 -0.01 ${height} ${SiC_xn} 0 0
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region nprism4 &

prism ${SiC_xn} ${SiC_xp} ${SiC_yn} -0.01 -0.01 ${height} ${SiC_xp} 0 0

region nanowire union 4 nprism1 nprism2 nprism3 nprism4

In the section below, we create the Zinc-blende unit cell found in SiC (3C) polytypes. The
z-axis is aligned with the [111] crystal orientation. The x- and y-axis alignment shown
below will create a nanowire with surfaces of type {1-10}. Surfaces of type {11-2} can
also be created by rotating the crystal lattice 30◦ around the z-axis.

We add atoms of type 1 and 2 to the basis of the unit cell and map the Zinc-blende
crystal lattice to the region defined nanowire.

#---Creating the zb lattice (normalized z[111]-direction)

lattice custom ${latconst_a} &

orient x 1 1 -2 orient y -1 1 0 orient z 1 1 1 &

a1 1.0 0.0 0.0 &

a2 0.0 1.0 0.0 &

a3 0.0 0.0 1.0 &

basis 0.0 0.0 0.0 basis 0.0 0.5 0.5 &

basis 0.5 0.0 0.5 basis 0.5 0.5 0.0 &

basis 0.25 0.25 0.25 basis 0.25 0.75 0.75 &

basis 0.75 0.25 0.75 basis 0.75 0.75 0.25

#---Adding atoms---

create_atoms 2 region nanowire &

basis 1 1 basis 2 1 basis 3 1 basis 4 1 &

basis 5 2 basis 6 2 basis 7 2 basis 7 2

group nanowire region nanowire

Next we define the atom types and mass, and choose the inter-atomic potential. In
this case the MEAM potential:

#---Defining Atomic potential---

mass 1 28.085

mass 2 12.011

group Si type 1

group C type 2

pair_style meam/c

pair_coeff * * library.meam Si C SiC.meam Si C

A random number generator assigns velocities to the atoms in the system by sampling
an uniform distribution, which are scaled to match the specified temperature, here: 0.01
Kelvin. The generator uses the same seed of generation (511124) for every simulation,
which allows for reproducible simulations. The total linear and angular momenta of the
generated ensemble of velocities are set to zero:

#---Initial velocities

velocity all create 0.01 511124 rot yes mom yes
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Before obtaining any data, we have an equilibration step where we minimize the energy
of the system. The command box/relax iso 0.0 allows for changing the size and form
of the simulation box during the minimization while keeping a constant isobaric pressure
of 0.0 bar.

The style of minimization is the steepest descent method, and we minimize the struc-
ture for 50000 time steps or until the change in potential energy is below the stopping
tolerance of 10−25 eV.

We choose a rather small time step of 0.1 femtosecond, since the equilibration is a
”fine-tuning” step.

#---Bar stat---

timestep 0.0001

fix RELAXBOX all box/relax iso 0.0

min_style sd

minimize 1e-25 1e-25 50000 100000

unfix RELAXBOX

In the following step, we start the MD simulation. We choose an NVT type of inte-
gration where the number of particles, volume of simulation box, and temperature are
kept constant during the integration step.

The mechanical properties of the SiC samples are obtained through tensile testing,
which is done by expanding the simulation box in the z[111] direction at an engineering
strain rate of ε̇ = 108 s−1. The strain rate in MD simulations is many orders of magnitude
higher than the strain rates used in real life tensile testing experiments. The high strain
rate is not desired, but is a consequence of the timescales (of order picoseconds) used in
MD simulations. We choose a strain rate of 108 s−1 because it is the standard used in
many MD simulation tests.

We choose a time step of 1 femtosecond, which is a standard time step for modeling
solids.[3, p 504] We perform 3 million iterations to reach a final strain of 30%.

#---Timeintegration---

fix NVT all nvt temp 0.01 0.01 0.1

#----Start loading, strain rate 1e8 (1e-4)---

fix LOAD nanowire deform 1 z erate 0.0001 units box

#----MD run (Loading)-------

timestep 0.001

run 3000000
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Results

6.1 Comparison of inter-atomic potentials

Before we start our study of the SiC polytypes, we want to compare the three inter-atomic
potentials: the Vashishta, the Tersoff and the MEAM potential, to see how they predict
the mechanical properties and fracture behavior of SiC. We test the potentials for the
same two structures: a nanowire of diameter 30.8 Å and a bulk structure of dimensions
4x4x6 unit cells (with periodic boundary conditions). The temperature is set to 0.01
Kelvin and the polytype tested is SiC (3C).

The mechanical properties we choose to compare are: the Young’s modulus, the maxi-
mum stress before failure, and the fracture strain which is the strain right before the frac-
turing. Using the software Ovito, we investigate the fracture behavior of the nanowires.

Influence of the cut-off function fcut

All the inter-atomic potentials we test use cut-off methods to lower the computational
time, however for the Tersoff potential we find that the cut-off function will influence the
result of the tensile testing.

In the original 1989 paper by J. Tersoff, the cut-off parameters are: R = 2.36 Å and
D = 0.15 Å. These values are not systematically optimized, but are chosen to include the
interaction for first nearest neighbors only.[17] The short range of the potential reduces
the computational time needed.

However, in our report the original parameters for the cut-off function turn out to
be problematic. When the material is strained due to the mechanical loading, the inter-
atomic distance between the first nearest neighbors will eventually reach the cut-off region
that starts at: R −D = 2.21 Å. When two atoms interact within the cut-off region, the
energy of the bond pair is no longer given by the physically based potential but by the
arbitrarily chosen cut-off function. This leads to an error in the calculated energy and
results in a stress-strain curve that greatly differs from the expected. This can be seen in
figure 6.1b (blue curve). This unwanted influence of the cut-off functions has also been
documented by others and is attributed to a discontinuity of the second derivative of the
cut-off function.[21]

Moving the cut-off region further away by increasing the size of R will solve this, but
we have to be careful when choosing the new cut-off parameters. If we choose an R and
D which place the cut-off region at distances near the third nearest neighbor, we would
have the same problem of interaction in the cut-off region, albeit with a smaller error in
the calculated energy, since the Tersoff potential approaches zero for large distances. The
distance between third nearest neighbors is 3.61 Å for SiC (3C), indicated by the third
arrow in figure 6.1a.

Instead we choose cut-off parameters: R = 3.10 Å and D = 0.15 Å, which moves the
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Figure 6.1: Part a) shows the Tersoff potential for Si - C interactions with the original
cut-off parameters and our choice of the cut-off parameters. Part b) shows a tensile test
performed on two identical nanowires using the potentials shown in a).

cut-off region in between the first and third nearest neighbors. The distance to the second
nearest neighbor does not matter, since these atoms are of the same kind and therefore
interact using a far smaller value of R = 2.86 Å (see appendix B.2). This allows the
material to expand until failure without interaction in the cut-off region (see figure 6.1b,
orange curve). Of course not having the cut-off function at all would be preferable, but
it is not possible since the computational time would be immense.

The cut-off radii of the Vashishta and the MEAM potential are: 7.35 Å and 4.00 Å.
These potentials do not show any issues regarding the cut-off function.

Mechanical properties

In figure 6.2 we see that the three potentials produce different results. The results of the
testing are summarized in table 6.1. The Young’s modulus is found by making a linear
fit in the region 0-1% strain, the uncertainty of the fitting parameter is given in table 6.1.
The maximum stress and fracture strain is read off the graph as indicated by the arrows
in figure 6.2.

The Vashishta potential gives the lowest fracture strain of the three potentials: 10.1%
strain for the nanowire and 14.4% for the bulk structure. It also produces the lowest
Young’s modulus and maximum stress. The Tersoff potential has an intermediate fracture
strain of the three potentials: 16.2% for the nanowire and 21.6% for bulk. It produces the
highest Young’s modulus, but only the second highest maximum stress due to it fracturing
earlier than the MEAM potential, which fractures at 25.3% for the nanowire and 28.7%
for the bulk.

The bulk samples have higher Young’s modulus than the nanowires. This is due to a
higher material stiffness. The free surfaces of the nanowires are less stiff than the bulk
due to the missing neighbors which allow the surface atoms to move more freely. This
lowers the overall stiffness in the nanowires and results in lower values for the Young’s
modulus.

The nanowires consistently show lower fracture strain than the bulk samples. This is
due to the surface atoms having higher potential energies than the bulk atoms (which will
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Figure 6.2: Stress-strain curves for bulk and nanowire samples modeled by the three
inter-atomic potentials.

Polytype Potential
Bulk/

Nanowire
Young’s

modulus [GPa]
Tensile

Strength [GPa]
Fracture

Strain [%]
Bulk 589 ± 0.3 91.1 28.7

MEAM
Nanowire (30.8 Å) 502.4 ± 0.4 74.8 25.3

Bulk 646.8 ± 0.2 88.9 21.6
Tersoff

Nanowire (30.8 Å) 604.7 ± 0.2 69.6 16.2
Bulk 461.1 ± 0.1 53.7 14.4

3C

Vashishta
Nanowire (30.8 Å) 342 ± 0.7 34.7 10.1

Table 6.1: Table of mechanical properties of identical structures modeled using three
different inter-atomic potentials. The nanowires have diameter 30.8 Å and side facet of
the surface type {11-2}.

be shown in section 6.2). Therefore the surfaces function as a catalyst for fracturing.

To evaluate the potentials, we compare with the results of MD simulations of SiC (3C)
found in the literature. However, only a few papers with adequate comparisons could be
found. Those are listed in table 6.2. The Tersoff potential was used in all the papers.

The results obtained in the papers vary, but are within the range of our own results.
The paper that is most comparable with our experiment is the paper by M. A. Makeev
et. al. [22]. Here they simulate nanowires of hexagonal cross-section at 0.1 Kelvin with
mechanical loading along the [111] crystal direction. They find a Young’s modulus that
is closest to the result obtained by the MEAM potential in our experiment.

Fracture behavior

While the shapes of stress-strain curves for the three potentials look similar in the bulk
samples (figure 6.2b), the curves show very different behavior after the initial fracture
for the nanowire samples (figure 6.2a). To explain this, we need to look at the fracture
behavior of the nanowires.

Figure 6.3 shows the structures immediately after the fracture for both the bulk and

25



CHAPTER 6. RESULTS

Structure
Loading
direction

Strain rate
[s−1]

Temperature
[Kelvin]

Young’s
modulus [GPa]

Max tensile
stress [GPa]

Fracture
strain [%]

ref.

block
22x22x70 [Å]

[001] 3e10 10 440 86 32.5 [23]

cylinder
25-50 Å

(diameter)
[110] 1e10 300 442 88.8 34 [24]

nanowire
89Å-356Å
(diameter)

[111] - 0.1 520.2-537.4 - - [22]

bulk [100] 1e8 300 495.7 78.1 32 [25]

Table 6.2: Values for the MD simulations of SiC (3C) found in selected literature. The
Tersoff potential was used in all cases.

the nanowire samples. For the bulk samples, the fractures behave similarly for all three
potentials. This falls in line with the similar shaped stress-strain curves in figure 6.2.

For the nanowires, however, the Vashishta and Tersoff potentials produce quite differ-
ent results compared to the MEAM potential. All the potentials show mode I fractures:
the fracture develops at the surface where the potential energy is higher (as will be proven
in the following section) and the planes of the fractured surfaces are normal to the loading
direction.

However, in the cases of the Vashishta and Tersoff potentials, the nanowire does not
fracture at once. Instead, on the three silicon rich surfaces of hexagon cross-section,
the surface atoms form ”bridges” which connect the two parts of the nanowire. This is
most clearly seen in the case of the Tersoff potential (figure 6.3). When the structures
are strained further, these bridges will stretch and hold the two pieces of the fractured
nanowire together. This is why the stress-curves in figure 6.2a never go to zero but stay
at a small positive value for the cases of the Vashishta and Tersoff potential.

Since the Si atoms have lower potential energy than the C atoms (see section 6.2), it
makes sense if the Si rich surfaces break less easily than the C rich surfaces. However,
the formation of ”bridges” is not explained and no previous examples of this was found
in the literature. The MEAM potential does not form any bridges, but we do see clear
displacements of the Si-atoms on the Si rich surfaces (see figure 6.3 (f)).

Since the potentials do not show this behavior in the bulk cases, it must be a surface
effect of the nanowires.

For the next series of simulations, we will continue using just one of the three poten-
tials. The MEAM potential shows the most predictable behavior: the stress-strain curve
is shaped as how we would expect for a brittle material, the mechanical properties are
similar to what is found in literature (see table 6.2), and the fracturing is a mode I fracture
with no unexplained surface effects. The Tersoff potential is the most used potential in
the literature, but since its behavior is sensitive to the choice of cut-off parameters (see
figure 6.1) and due to the unexplained surface effects during the fracture, we refrain from
using it. The Vashishta potential was not chosen either, because it produces mechanical
properties which are lower than what is found in the literature and also shows the un-
explained fracture behavior. Therefore we choose the MEAM potential for our further
studies.
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(a) bulk - Vashishta (b) bulk - Tersoff (c) bulk - MEAM

(d) nanowire - Vashishta (e) nanowire - Tersoff (f) nanowire - MEAM

Figure 6.3: Fracturing of bulk and nanowire SiC (3C) samples using the three different
inter-atomic potentials. Nanowires are shown with the [1-10] direction pointing out of the
page, meaning that two different surfaces are shown: the C rich on the left and the Si
rich on the right (this is not obvious from the pictures).

6.2 Crystal surfaces

The nanowires tested in this report are oriented with the growth direction [111] along the
z-axis, for which we will use notation: z[111]. A hexagonal cross section of the nanowire
can be created in two ways: either by aligning the 〈1-10〉 or the 〈11-2〉 crystal directions
along the diagonals of the hexagon. With the notation ”〈· · · 〉” we mean any direction of
this family which also is orthogonal to the growth direction z[111].

The two orientations differ by a 30◦ rotation about the z[111] axis. The first orientation
results in side facets of the type {11-2}, seen in figure 6.4a and 6.4c. The second orientation
results in side facets of the type {1-10}, seen in figure 6.4b and 6.4d.

These two types of surfaces are known to have different chemical properties, for ex-
ample the {11-2} surfaces are slightly polar, meaning that three of the surfaces have a
higher ratio of Si to C atoms than the other three. The {1-10}-surfaces do not have this
polarity.

Using MD simulations, we want to test if the two surface types will effect the me-
chanical properties of a nanowire of the same dimensions. We also want to compare the
surface energy of the two surface types.
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(a) {11-2}: top view (b) {1-10}: top view

(c) {11-2}: 3D view (d) {1-10}: 3D view

(e) {11-2}: Cut-through (f) {1-10}: Cut-through

Figure 6.4: Map of potential energy per atom as coloring. The structures are SiC (3C)
with {11-2} surfaces (left) and {1-10} surfaces (right). Please note the orientation varies
on each image.

28



CHAPTER 6. RESULTS

Surface energy

Before comparing the surface energy of the two surface types, we ensure that the structures
are in their thermodynamic equilibrium by minimizing the potential energy using the
minimization method described in the method section. Figure 6.4 shows the potential
energy of the two structures after minimization. By comparing figures 6.4c and 6.4d, we
immediately see the structural difference of the two surface types. The polarity of the
{11-2} surface can also be seen; due to different atomic numbers, the C atoms have a
higher potential energy, and in the figure they appear more yellow than the Si atoms.

The bright red atoms, which can be seen on both structures, are Si atoms situated at
stacking site C in the ABC stacking sequence. On the {11-2} facets these atoms displace
in order to minimize the potential energy, and the center atom is left without a partner.
On the {1-10} facets the red atoms are situated at the corners of the hexagon shape. Due
to their positions these atoms protrude the most from the surface and therefore have the
highest potential energy.

For both structures, we see that the surface atoms have higher energies than their bulk
counterparts. This is a known effect and is due to the missing neighbors of the surface
atoms. The unpaired electrons, in some literature called ”dangling bonds”, will increase
the energy of the surface atoms compared to the bulk atoms.

In table 6.3, we show the average potential energy per atoms for both surface atoms
and bulk. We define the surface atom as the outermost complete layer of atoms. In
figures 6.4a and 6.4b, the surface atoms are seen as those of different color than their
bulk counterpart. We estimate the surface energy as the difference between the average
potential energy of surface and bulk atoms. When assuming a surface thickness of 1 Å,
we find the surface energy per area: γ. These surface energies are listed in table 6.3.
In the paper by E. Abavare et al.[26] the surface energy of SiC (3C) (111) surfaces was
estimated using DFT and found to be in the range: 2446-2856erg/cm2 depending on the
method of calculation. The estimates used in our method are very close to these values.

Surface
type

Average Epot
per surface atom

[eV/atom]

Average Epot
per bulk atom

[eV/atom]

Surface energy
[eV/atom]

γ
[erg/cm2]

{11-2} -4.72 -6.43 1.71 2630
{1-10} -4.58 -6.43 1.85 2720

Table 6.3: Potential and surface energy of the two surface types.

Mechanical properties

To investigate how the surface type affects the mechanical properties, we perform tensile
testing similarly to the section above. Figure 6.5 shows how the relative stress is dis-
tributed in the two structures at a strain of 15%. LAMMPS is able to compute the stress
on each atom in the structure. However, since the volume of an atom is not well defined
in MD simulations (assumed to be point particles), we cannot give a precise value of the
stress on each individual atom, only on the structure as a whole, which has a well defined
volume. That is why figure 6.5 shows the relative stress and not the actual stress.

By comparison, we see that structures with {1-10} surfaces distribute the stress more
equally between surface and bulk atoms compared to the structure with {11-2} surfaces.
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(a) {11-2} (b) {11-2}

(c) {1-10} (d) {1-10}

Figure 6.5: Stress distribution at 15% applied strain for SiC (3C) nanowires of surface
type {11-2} and {1-10}.

The difference in stress is due to the different stiffness in the structure. The higher
the stiffness, the higher the stress under the same applied strain. Due to the missing
neighbors, the surface atoms can move more freely and are therefore less stiff than the
bulk. From figure 6.5 we learn that surfaces of type {1-10} have higher stiffness than
{11-2}surfaces.

Figure 6.6 shows the stress-strain curves of the tensile testing. We see that surfaces
of type {11-2} give rise to higher Young’s modulus and maximum tensile strength, but
lower fracture strain compared to surfaces of type {-110}.

We hypothesize that the lower fraction strain might be due to the surface structure.
By comparing figure 6.4e with 6.4f, we see the difference in the structure of the surfaces.
The {11-2} surfaces contain more dents and protrusions, which might serve as sites for
which the fracture can develop, resulting in a lower fraction strain.

For the next series of tests, we will continue using nanowires with side facets of the
surface type {11-2}. The reason being that it has the lowest surface energy and therefore
it might be more likely to find in nature.
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Figure 6.6: Stress-strain curves for SiC (3C) of the two surface types. The Young’s
modulus is shown in the graph.

6.3 SiC polytypes and temperature dependence

Next we create nanowires of similar dimensions with different polytypes: (2H), (3C), and
(4H). We want the diameter of the nanowires to be a integer number of unit cells. Due
to the size difference in the unit cells of the three polytypes, we cannot get the nanowire
diameters to be the exact same (see 6.4). To minimize the difference we choose to create
fairly wide nanowires of 50-52 Å diameters, resulting in a difference of 4%.

We find and compare the mechanical parameters of each polytype at four different
temperatures. We will also investigate if there is any difference in the fracturing of the
polytypes. Since SiC is a known brittle material, we expect to see brittle fractures. At
high temperatures some brittle materials will change behavior and become ductile[27].
The transition temperature is called the brittle-ductile temperature: TBDT . For SiC (4H)
the TBDT is found to be around 1600 Kelvin.[28] We will test the nanowires at 1600 Kelvin
and see if we can see any ductile behavior such as necking and dislocations before failing.
Ductile fracturing is interesting to study, because by analyzing the dislocations we can
obtain knowledge about the slip systems in the material.

At high temperatures, the atoms will show random fluctuating motions due to the
high kinetic energy. To make the interpretation of the results easier, we will filter out this
random motion by performing a time average on the atoms. We sample the atoms at 100
time steps and print the mean values of their position, stress, and potential energy to the
output data file. By doing this, we can simulate systems at high temperatures, while only
investigating the consistent changes in positions, stress and potential energy due to the
applied mechanical loading.

Mechanical properties of the polytypes

Figure 6.7 shows the stress-strain curves obtained from the tensile testing. Table 6.4 lists
the mechanical properties obtained from the testing. Comparing these values with what
is found in the literature is not easy, because no studies on the mechanical properties of
SiC (2H) and (4H) nanowires could be found. However, the Young’s modulus for bulk
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Figure 6.7: Stress-strain curves for the three polytypes at different temperatures. Please
note that a smoothing function is used to smoothen out the high temperature curves.

SiC (2H) and SiC (4H) have been calculated using first principles and were found to be
441 GPa and 444 GPa[29], which is fairly close to the values obtained in this report.

In figure 6.8a, we see how the Young’s modulus of each polytype depends on the tem-
perature. We see that the Young’s modules lower as the temperature increases. This
is a known effect and is due to the fact that most materials loose stiffness at high tem-
peratures.[30] Furthermore, we see that the (3C) polytype (0% hexagonality) has the
highest Young’s modulus, while the (2H) polytype (100% hexagonality) has the lowest
values. Interestingly, the (4H) polytype (50% hexagonality), which can be seen as a fifty-
fifty mixture of the (3C) and (2H) polytypes, lies roughly in middle of the two other
polytypes. If more polytypes of different hexagonality had been simulated, it would be
interesting to see if they lie in between the (3C) and (2H) polytypes according to their
hexagonality. A study by B. Wen et al. confirms that this kind of dependency on the
hexagonality exists in diamond polytypes.[31]

In 6.8b, we see a similar pattern: the maximum tensile stress before fracture decreases
as the temperature increases, and the maximum stress of the (4H) polytype lies in between
the (3C) and (2H) polytype.

When comparing the fracture strain (see figure 6.8c), we find that the (4H) polytype
fractures at the lowest strain, while polytypes (2H) and (3C) have the highest and second
highest fracture strain respectively. Looking at figure 6.9 (a-c), we see the difference
in surface structure between the polytypes. We hypothesize that the zig-zag pattern of
the (4H) polytype offers more sites of which fractures can occur, and therefore has a
lower fracture strain. This fits with our discussion on the lower fracture strain of {11-
2} surfaces compared to {1-10} surfaces, where the multiple dents and protrusions are
thought to make it easier for fractures to occur.
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Figure 6.8: Young’s modulus, maximum stress, and fracture strain for the three polytypes
at different temperatures.

Potential
Polytype
/Radius

Temperature [K]
Young’s
modulus [GPa]

Tensile
Strength [GPa]

Fracture
Strain [%]

0.01 381.1 ± 0.3 60.2 26.1
300 347.3 ± 0.5 56.3 23.6
1000 328.3 ± 1.2 46.4 19.2

2H/
26Å

1600 296.7 ± 2.0 36.6 16.6
0.01 493 ± 0.6 73.5 25.4
300 461 ± 0.7 66.3 23.3
1000 454.6 ± 1.8 55.0 19.9

3C/
25Å

1650 434.7 ± 2.8 41.6 16.03
0.01 444.9 ± 0.3 63.6 21.8
300 418.8 ± 1.1 58.7 19.7
1000 388.6 ± 1.5 49.7 17.8

meam

4H/
26Å

1600 364.0 ± 1.9 40.6 16.14

Table 6.4: Mechanical properties for the three polytypes at different temperatures.

33



CHAPTER 6. RESULTS

Fracture behavior of the polytypes

We want to examine if there is any difference in the fracture behavior of the three different
polytypes. Figure 6.9 shows a side by side comparison of the fracturing of the polytypes
at 1000 Kelvin. It can be seen that all polytypes show mode I fractures: as the crack
propagates through the nanowire, we see a cleavage parallel to the direction of the applied
tensile stress (see e.g. figures j-l) and the plane of the crack is normal to the applied stress.
Mode I fracturing are a characteristic of brittle materials.

From figure 6.9, we see that from the fracture starts and until we have a fully fractured
nanowire, only 0.015%-0.020% strain needs to be applied. This leads us to believe that
the SiC nanowire exhibits unstable crack growth, meaning that the energy released by
the initial fracture is higher than the energy required to create two surfaces. This will
cause a chain reaction resulting in a complete rupture of the nanowire as soon as the first
crack appears. Unstable crack growth is also a sign of a brittle material.

At all the temperatures we tested, the polytypes showed brittle fracture behavior.
There were no signs of necking in the wires and no dislocations occurring before the
fracturing, which would have been signs of a ductile fracture. Due to the limited time
available for this work, we were not able to perform new tests at higher temperatures.

6.4 Interfaces of SiC on Si in nanowire heterostruc-

ture

In many semiconductor devices today, heterostructure components, where two semicon-
ductor materials with different capabilities are grown together, play a major role. Het-
erostructures are found in various devices, such as transistors and semiconductor lasers.
If the difference in lattice parameters of the two materials is too large, misfit dislocations
will occur. Since dislocations generally will lower the performance of the device, it is an
important research topic for scientists.

Misfit dislocations in nanowire heterostructures have previously been studied, for ex-
ample in the 2006 paper by F Glas.[8] In this report we will use MD simulations to
simulate a Si-SiC heterostructure with misfit dislocation. We make two heterostructures,
one with SiC (3C) polytype and one with SiC (2H) polytype.

We construct the nanowire heterostructure such that the diameter is the same in both
halves of the structure. Due to the difference in lattice parameters, the interface will be
incoherent, meaning that it will contain a different number of atoms on each side. This
creates misfit dislocations in the interface.

Using the minimization method described in the method section, we will ensure that
the nanowire is in equilibrium before we start the analysis. We want to compare the
potential energy of the interface to the two single crystal parts of the nanowire and
analyze the dislocations forming at the interface.

Potential energy of the heterostructure

To compare the potential energy in the heterostructure, we take samples in three regions:
one sample in the SiC material, one in the Si material, and one in the interface between
the two materials. The regions are roughly illustrated in figure 6.10a. The regions of the
SiC and Si samples cover one unit cell, since the potential energy might vary for each
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(a) 2H 19.230% strain (b) 4H 17.320% strain (c) 3C 19.965% strain

(d) 2H 19.238% strain (e) 4H 17.324% strain (f) 3C 19.970% strain

(g) 2H 19.240% strain (h) 4H 17.326% strain (i) 3C 19.972% strain

(j) 2H 19.242% strain (k) 4H 17.328% strain (l) 3C 19.974% strain

(m) 2H 19.244% strain (n) 4H 17.330% strain (o) 3C 19.976% strain

(p) 2H 19.248% strain (q) 4H 17.332% strain (r) 3C 19.980% strain

Figure 6.9: Mode I fractures of SiC (2H), (4H), and (3C) nanowires at 1000 Kelvin.
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Figure 6.10: Part (a) shows a nanowire heterostructure of Si and SiC (3C). The three
rectangles marks the regions: Si, interface, and SiC (3C) where the average potential
energy was sampled. Part (b) shows the average potential energy per atom in each region
for both SiC (3C) and SiC (2H) heterostructures.

bi-layer of atoms, but remain the same for each unit cell. For the interface sample, the
region covers the first layers of atoms in the Si and SiC materials.

The average potential energy obtained is shown in figure 6.10 for both Si-SiC (3C) and
Si-SiC (2H) heterostructures. The interface has higher potential energy than both the Si
and SiC sections of the structures. This is explained by the misfit dislocations occurring
at the interface.

In figure 6.11, cross sectional views of the interface are shown. Figures on the left show
the SiC side of the interface, while figures on the right show the Si side of the interface.
A periodic pattern in the atoms of higher potential energy is seen.

We see that the six-fold rotational symmetry in the radial direction is broken at
the interface. In the SiC (3C) interface (figure 6.11a), we see a three-fold rotational
symmetry: if we situate ourselves at the center of the hexagon looking towards one of the
side facets, we would have to rotate 120◦ about our own axis to see the same potential
energy landscape. For the SiC (2H) interface the rotational symmetry is completely
broken. Instead we see a pattern of horizontal lines, where not even two fold symmetry
is present due to one misaligned atom.

Since the symmetries in crystal structures affect the electron band structure, we would
expect differences in band structure of the interfaces compared to the pure material sec-
tions of the heterostructure. To investigate the full consequences of this is beyond the
scope of this report.

Dislocations in the heterostructure interface

Using the dislocation analyzer tool, DXA, in Ovito, we analyzed both the crystal structure
and dislocation types forming in the interface of a heterostructure. Figure 6.12 illustrates
how the DXA tool works. The figure shows a cut-through of a Si-SiC(2H) nanowire.
The orange color indicates Wurtzite crystal structure and the blue color indicates dia-
mond cubic/Zinc-blende crystal structure. The gray color indicates atoms for which no
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(a) Interface - SiC (3C) (b) Interface - Si (3C)

(c) Interface - SiC (2H) (d) Interface - Si (2H)

Figure 6.11: Cross sections of the interface showing the potential energy.

periodic crystal structure could be found. The surface atoms are gray due to their miss-
ing neighbors, but also in the interface gray atoms are present as a result of the misfit
dislocations.

Figure 6.13 shows a cross sectional view of the interface. Again, orange particle color
represents Wurtzite crystal structure, blue is Zinc-blende, and gray is for atoms that do
not match a periodic crystal structure.

The green and blue lines are the dislocation lines. Green lines represent dislocations
of the type 1

6
〈11-2〉 Shockley partial dislocations and blue lines are 1

2
〈1-10〉 perfect dis-

locations. Both dislocation types are known to appear in material of diamond crystal
structures.[32] We see multiple cases of perfect dislocations dissociating into two partial
dislocations, which is a known effect.[32] Red lines are dislocations that could not be
matched to any known dislocation type. These appear only at the edges and could be
because the diameters of the two parts of the heterostructure do not match perfectly.

In the 2006 paper by F. Glas, the formation of misfit dislocations in nanowire het-
erostructures is studied. Here it was assumed that 60◦ dislocation would form at the
interface since it is a common dislocation type in fcc materials. 60◦ dislocations are char-
acterized by the Burgers vector forming a 60◦ angle with the direction of the dislocation
line.

In our simulation we do not find any 60◦ dislocations, only edge dislocations where
the Burgers vector form a 90◦ angle with the dislocation line. All Burgers vectors and
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Figure 6.12: Cross section of a nanowire heterostructure of Si and SiC (2H) visualized
using the DXA tool in Ovito. The blue particle color indicates diamond cubic/Zinc-
blende, the orange color Wurtzite structure, and the grey color is atoms that couldn’t be
assigned any know periodic crystal structure. In the interface, dislocation lines can be
seen.

dislocation lines lie in the xy-plane. This is not surprising since the (111) surface is the
plane of highest lattice site density in both Zinc-blende and Wurtzite crystal structures
and is therefore a preferred slip plane.[32]
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(a) SiC (3C) interface: dislocations and crys-
tal structure (b) SiC (3C) interface: dislocation lines

(c) SiC (2H) interface: dislocation and crystal
structure (d) SiC (2H) interface: dislocation lines

Figure 6.13: Dislocation lines and crystal structure in the interface.
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Conclusions and Outlook

7.1 Conclusions

SiC nanowires may prove to be the ideal building block for creating highly specialized
devices. However, in order to fully utilize them, their mechanical properties need to
known.

In this report, MD simulations were used to obtain the mechanical properties of three
SiC polytypes: (2H), (3C), and (4H). A side-by-side comparison was made of three com-
monly used inter-atomic potentials: the Vashishta, the Tersoff and the MEAM potential.
It was found that for the original cut-off parameters in the Tersoff potential the cut-off
function, fcut, would affect the result of the tensile testing. This has been documented by
others as well.[21] Therefore a new, larger cut-off parameter, R, was chosen in order to
avoid interaction within the cut-off region. The Vashishta and the MEAM potentials did
not show this kind of problem.

Tests on samples of bulk and nanowire SiC (3C) were performed in order to com-
pare the mechanical properties predicted by the three potentials. The obtained values
were compared with values found in literature. We also compared how the potentials
predict the fracturing of the samples. For the nanowire samples both the Tersoff and the
Vashishta potentials showed unexplained surface effects. The MEAM potential predicted
mechanical properties that were close to those found in literature and it showed a pre-
dictable fracturing of both the bulk and nanowire sample. Therefore the MEAM potential
was chosen for the following experiments.

By changing the orientation of the crystal lattice, we constructed two similar-sized
nanowires with different side facets: one with {11-2} surfaces and one with {1-10} surfaces.
We found a simple method for estimating the surface energy and compared it to values
found in literature. It was found that the type of surfaces will affect the mechanical
properties of the nanowire. Differences in the surface structure and stiffness were used to
explain this.

Tensile testing of three nanowires with different polytypes was performed at four
different temperatures. The mechanical properties of the polytypes were obtained, and
we found a dependency of the Young’s modulus on the hexagonality of the unit cell. This
dependency has also been documented for diamond polytypes in the literature.[31]

We found that the values of the mechanical properties will decrease as the temperature
increases. The difference between the fracture strain of the three polytypes was decreasing
for high temperatures.

Lastly, two nanowire heterostructures were created using diamond cubic Si and the two
polytypes: SiC (3C) and SiC (2H). We obtained the potential energy of the heterostructure
interfaces and found it was higher than the potential energy of the pure Si and SiC parts of
the nanowire. The occurrence of misfit dislocations in the interface explains this difference.
The dislocation pattern of the two interfaces was analyzed, and we found edge dislocations
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Figure 7.1: Graphical representation of cluster potentials and cluster functionals. The
dashed line is the energy model by DFT. (Reproduced from Modeling Materials by E.
Tadmor and R. Miller[3, Fig 5.7 pp 282])

of the types 1
2
〈1-10〉 perfect dislocations and 1

6
〈11-2〉 Shockley partial dislocations in the

interface. The dislocation lines and their Burgers vectors all lie in the xy-plane. We did
not find any 60◦ dislocations, which otherwise has been assumed to exist in the interface.

7.2 Discussion

It is important to note that the results obtained in MD simulations are only as good as
the prediction of the inter-atomic model. Since most potentials are fitted to model certain
aspects of a material, it is useful to introduce the concept of transferability.

The transferability of an inter-atomic model refers to how well the model is able predict
the behavior of the material outside of the region to which it was originally fitted.[3, p 282-
284] Quantifying the term transferability is not easily done, instead we will illustrate the
concept by reproducing a schematic drawing created by A. E. Carlsson in figure 7.1.[33][3]

In figure 7.1 the energy is shown as a function of the configuration, which is the
spatial positions of each individual atom in the structure. The dashed line represents the
exact energy, as modeled by density functional theory (DFT), and it is a very complex
function of the configuration. Cluster potentials are usually designed to model a small
local configuration of the material, e.g. near the melting point of a solid. As long as they
do not stray too far away form this initial configuration, they can accurately model the
behavior of the material. However, outside the fitted region the result may differ from
the real energy. As the figure illustrates, the same cluster potential fitted at two different
local configurations may differ a lot from each other and therefore predict very different
energies of the same configuration.

Cluster functionals are expressed in a more general formalism than cluster potentials
and are therefore able to model a much broader range of configurations, as seen in figure
7.1.[3, p 283] However it is not likely that a cluster functional is able to reproduce the
exact energy as found by DFT. Cluster functionals are able to provide a good global fit,
but fine details in the energy function will be lost[3, pp283].

This offers an explanation to how the three potentials used in this report can predict
very different mechanical properties even though all of them were fitted to model the
same material. It also raises the question of how we can validate the results predicted by
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the potentials. Comparisons with real-life experiments were not an option for us, since
SiC nanowires are rarely found as single polytypes and tensile testings of nanowires, in
general, are hard to perform due to their small size. Instead, validation was made by
comparing with simulations done by other researchers and by analyzing the behavior of
the nanowires, such as the fracturing, to see if it corresponds to what is found in the
literature.

Even though validation can be difficult, results obtained through MD simulations are
still very useful to the field of material science, because it allows us to perform mechanical
test on systems that otherwise would be impossible to do experimentally. However, it is
important to remember that the results obtained through MD simulations are only as
accurate as the inter-atomic potential allows them to be.

7.3 Outlook

Our report has covered multiple aspects of the three SiC polytype nanowires: we have
obtained mechanical properties, analyzed the fracture behavior, estimated the surface
energies for the two surface types, and created Si-SiC heterostructures. Future work
could therefore take many directions.

An obvious way to go would be to include more polytypes in our tests. Especially the
SiC (6H) polytype, also known as β-SiC would be interesting to include since it is a very
common polytype found in SiC. Its unit cell has a hexagonality of 33.3%. If our theory of
a directed dependency of Young’s modulus and the hexagonality is correct, the Young’s
modulus of SiC (6H) should lie between SiC (4H) and SiC (3C).

If we performed tensile testing at higher temperatures we might be able to see ductile
fracture behavior in the SiC polytypes. Through analyzing the dislocation occurring in
the ductile fracturing, we would obtain knowledge about the slip systems in the polytypes.
By comparing the polytypes, we would see if there is any difference in the preferred slip
planes.

During our studies, we found a simple way of estimating the surface energies. Using
this method to measure the difference in surface energies of the three polytypes would
be interesting, since it might help researchers in their studies on how growth conditions
favors the growth of certain polytypes.

Lastly, an in-depth study of the polytype interfaces in nanowires would be highly
relevant, since SiC nanowires grown today typically exhibit multiple polytypes in the same
nanowire.[6] Using the techniques in this report, we can investigate how the interfaces of
different polytypes will affect the mechanical properties of the nanowires. We could adapt
a quantum mechanical modeling technique, such as DFT, and get a very precise model of
the interfaces between polytypes.
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The MEAM potential

In the MEAM potential, the energy is given by:

E =
∑
i

Fi (ρi) +
1

2

∑
j(6=i)

φij (rij)

 (A.1)

The pair potential φij incorporates the screening function Sij and the embedding function
Fi, which will be described below. The general shape of the pair potential is determined
by the exponential function exp(−a∗ij(rij)) which depends on the normalized distance
function a∗ij(r

ij):

φij (rij) = φij (rij)Sij (A.2a)

φij (rij) =
1

Zij0
[2Eu

i (rij)− Fi (ρ̂i (rij))− Fj (ρ̂j (rij))] (A.2b)

Eu
i (rij) = −E0

ij

(
1 + a∗ij (rij)

)
e−a

∗
ij(rij) (A.2c)

aij (rij)
∗ = α0

ij

(
rij
r0
ij

− 1

)
(A.2d)

The parameters E0
ij, α

0
ij, and r0

ij depend on the elements i and j. The parameter Zij0 is
the first nearest neighbor coordination of the reference structure of the system and the
electron densities, ρ̂, are calculated for the reference structure as well.

The functional term:

Fi (ρi) = AiE
0
i ρi ln ρi (A.3)

ρi =
ρ

(0)
i

ρ0
i

Gi (Γi) (A.4)

Gi =
√

1 + Γi , Γi =
3∑

k=1

t
(k)
i

(
ρ

(k)
i

ρ
(0)
i

)2

(A.5)

ρ0
i = ρi0Zi0Gi

(
Γrefi

)
, Γrefi =

3∑
k=1

t
(k)
i

s
(k)
i

Z2
i0

(A.6)

Where t
(k)
i is a weighting function given by:

t
(k)
i =

1

ρ
(0)
i

∑
j 6=i

t
(k)
0,jρ

a(0)
j Sij (A.7)
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Where t
(k)
0,j is a fitting parameter.

The electron densities are given by:

ρ
(0)
i =

∑
j 6=i

ρ
a(0)
j (rij)Sij (A.8a)

(
ρ

(1)
i

)2

=
3∑

α=1

[∑
j 6=i

ρ
a(1)
j

rijα
rij

Sij

]2

(A.8b)

(
ρ

(2)
i

)2

=
3∑

α=1

3∑
β=1

[∑
j 6=i

ρ
a(2)
j

rijαrijβ
r2
ij

Sij

]2

− 1

3

[∑
j 6=i

ρ
a(2)
j (rij)Sij

]2

(A.8c)

(
ρ

(3)
i

)2

=
3∑

α=1

3∑
β=1

3∑
γ=1

[∑
j 6=i

ρ
a(3)
j

rijαrijβrijγ
r3
ij

Sij

]2

− 3

5

3∑
α=1

[∑
j 6=i

ρ
a(3)
j

rijα
rij

Sij

]2

(A.8d)

The electron densities, ρ
a(k)
i , are a function of the distance from the atom:

ρ
a(k)
i (rij) = ρi0 exp

[
−β(k)

i

(
rij
r0
i

− 1

)]
(A.9)

Where ρi0 and βi are fitting parameters depending on the element.

The screening function, Sij, takes values between 1 and 0. If there is a clear line of
sight between two atoms i and j the screening function equals 1. If there is a third atom,
k, in between the two atoms i and j obscuring the line of sight the value is 0. Intermediate
values comes when the atom j is partially obscured by atom k.

The screening function also works as a cut-off function which go to 0 when the inter-
atomic distance, rij, exceed the cut-off radius, rc.

The function Sij is given by:

Sij = Sijfc

(
rc − rij

∆r

)
(A.10a)

Sij =
∏
k 6=i,j

Sikj (A.10b)

Sikj = fc

(
Cikj − Cmin,ikj

Cmax,ikj − Cmin,ikj

)
(A.10c)

Cikj = 1 + 2
r2
ijr

2
ik + r2

ijr
2
jk − r4

ij

r4
ij −

(
r2
ik − r2

jk

)2 (A.10d)

fc(x) =


1 x ≥ 1

[1− (1− x)4]
2

0 < x < 1
0 x ≤ 0

(A.10e)

Where Cmin and Cmax are fitting parameters and ∆r is a length scale which determines
the region in which Sij goes from 1 to 0.

46



Inter-atomic potential parameters

B.1 Vashishta parameters

# DATE: 2015-10-14

#CONTRIBUTOR: Aidan Thompson, athomps@sandia.gov

#CITATION: P. Vashishta, R. K. Kalia, A. Nakano,

#and J. P. Rino. J. Appl. Phys. 101, #103515 (2007).

# Vashishta potential file for SiC, P. Vashishta, R. K. Kalia,

#A. Nakano, and J. P. Rino. J. Appl. Phys. 101, 103515 (2007).

# These entries are in LAMMPS "metal" units:

# H = eV*Angstroms^eta; Zi, Zj = |e| (e = electronic charge);

# lambda1, lambda4, rc, r0, gamma = Angstroms;

# D = eV*Angstroms^4; W = eV*Angstroms^6; B = eV;

# other quantities are unitless

# Note: Value of D here equals D/2 in paper

# element1 element2 element3 H eta Zi Zj lambda1 D lambda4

# W rc B gamma r0 C cos(theta)

C C C 471.74538 7 -1.201 -1.201 5.0 0.0 3.0

0.0 7.35 0.0 0.0 0.0 0.0 0.0

Si Si Si 23.67291 7 1.201 1.201 5.0 15.575 3.0

0.0 7.35 0.0 0.0 0.0 0.0 0.0

C Si Si 447.09026 9 -1.201 1.201 5.0 7.7874 3.0

61.4694 7.35 9.003 1.0 2.90 5.0 -0.333333333333

Si C C 447.09026 9 1.201 -1.201 5.0 7.7874 3.0

61.4694 7.35 9.003 1.0 2.90 5.0 -0.333333333333

C C Si 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

C Si C 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Si C Si 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

Si Si C 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

B.2 Tersoff parameters

# DATE: 2011-04-26

#CONTRIBUTOR: Aidan Thompson, athomps@sandia.gov

#CITATION: Tersoff, Phys Rev B, 39, 5566-5568 (1989)

#DATE: 2019-04-15: Parameter R for SiC interaction modified

#by Anders Vesti

# Si and C mixture, parameterized for Tersoff potential

# this file is from Rutuparna.Narulkar @ okstate.edu

# values are from Phys Rev B, 39, 5566-5568 (1989)

# and errata (PRB 41, 3248)

# Tersoff parameters for various elements and mixtures

# multiple entries can be added to this file, LAMMPS reads the ones

# it needs. these entries are in LAMMPS "metal" units:

# A,B = eV; lambda1,lambda2,lambda3 = 1/Angstroms; R,D = Angstroms

# other quantities are unitless.

# format of a single entry (one or more lines):

# element 1, element 2, element 3, m, gamma, lambda3, c, d, costheta0,

# n, beta, lambda2, B, R, D, lambda1, A

C C C 3.0 1.0 0.0 38049 4.3484 -.57058 .72751

0.00000015724 2.2119 346.7 1.95 0.15 3.4879 1393.6

Si Si Si 3.0 1.0 0.0 100390 16.217 -.59825 .78734

0.0000011 1.73222 471.18 2.85 0.15 2.4799 1830.8

Si Si C 3.0 1.0 0.0 100390 16.217 -.59825 0.0

0.0 0.0 0.0 2.36 0.15 0.0 0.0

Si C C 3.0 1.0 0.0 100390 16.217 -.59825 .787340

0.0000011 1.97205 395.126 3.10 0.15 2.9839 1597.3111

C Si Si 3.0 1.0 0.0 38049 4.3484 -.57058 .72751

0.00000015724 1.97205 395.126 3.10 0.15 2.9839 1597.3111

C Si C 3.0 1.0 0.0 38049 4.3484 -.57058 0.0

0.0 0.0 0.0 1.95 0.15 0.0 0.0
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C C Si 3.0 1.0 0.0 38049 4.3484 -.57058 0.0

0.0 0.0 0.0 2.36 0.15 0.0 0.0

Si C Si 3.0 1.0 0.0 100390 16.217 -.59825 0.0

0.0 0.0 0.0 2.85 0.15 0.0 0.0

B.3 Meam parameters

# DATE: 2007-06-11

# CONTRIBUTOR: Greg Wagner, gjwagne@sandia.gov

lattce(1,2) = ’dia’

Ec(1,2) = 6.4325

alpha(1,2) = 4.37

re(1,2) = 1.8878

rho0(2) = 2.25

rc = 4.0

delr = 0.1

Cmax(1,2,1) = 4.0

Cmax(1,2,2) = 4.0

Cmax(2,2,1) = 4.0

Cmax(1,1,2) = 4.0
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Example of an input file

C.1 SiC (3C) nanowire using MEAM potential

#---Zincblende SiC (3C) nanowire---

units metal

dimension 3

boundary p p p

atom_style atomic

#---Lattice constants

variable latconst_a equal 4.3596

variable latconst_c equal sqrt(3)*latconst_a

variable c_3C equal sqrt(3)

#---Change radius of nanowire---

variable rad_p equal 4.0

variable rad_n equal -1*${rad_p}

variable height equal 6*${c_3C}

#---Geometric constants dependent on radius---

variable SiC_yp equal sqrt(3)/2*${rad_p}

variable SiC_yn equal sqrt(3)/2*${rad_n}

variable SiC_xp equal 0.5*${rad_p}

variable SiC_xn equal 0.5*${rad_n}

#---Create simulation box---

lattice fcc ${latconst_a}

region simbox block -5 5 -5 5 -0.01 ${height}

create_box 2 simbox

#---Defining nanowire ---

region nprism1 &

prism 0 ${rad_p} -0.01 ${SiC_yp} -0.01 ${height} ${SiC_xn} 0 0

region nprism2 &

prism ${rad_n} 0 -0.01 ${SiC_yp} -0.01 ${height} ${SiC_xp} 0 0

region nprism3 &

prism ${SiC_xn} ${SiC_xp} ${SiC_yn} -0.01 -0.01 ${height} ${SiC_xn} 0 0

region nprism4 &

prism ${SiC_xn} ${SiC_xp} ${SiC_yn} -0.01 -0.01 ${height} ${SiC_xp} 0 0
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region nanowire union 4 nprism1 nprism2 nprism3 nprism4

#---Creating the zb lattice (normalized z[111]-direction)

lattice custom ${latconst_a} &

orient x 1 1 -2 orient y -1 1 0 orient z 1 1 1 &

a1 1.0 0.0 0.0 &

a2 0.0 1.0 0.0 &

a3 0.0 0.0 1.0 &

basis 0.0 0.0 0.0 basis 0.0 0.5 0.5 &

basis 0.5 0.0 0.5 basis 0.5 0.5 0.0 &

basis 0.25 0.25 0.25 basis 0.25 0.75 0.75 &

basis 0.75 0.25 0.75 basis 0.75 0.75 0.25

#---Adding atoms---

create_atoms 2 region nanowire &

basis 1 1 basis 2 1 basis 3 1 basis 4 1 &

basis 5 2 basis 6 2 basis 7 2 basis 7 2

group nanowire region nanowire

#---Defining Atomic potential---

mass 1 28.085

mass 2 12.011

group Si type 1

group C type 2

pair_style meam/c

pair_coeff * * library.meam Si C SiC.meam Si C

#---Initial velocities

velocity all create 0.01 511124 rot yes mom yes

#---Compute stress---

compute stress all stress/atom NULL

compute stress3 all reduce sum c_stress[3]

variable stress equal c_stress3

variable volu equal vol

variable Lx equal lx

variable Ly equal ly

variable Lz equal lz

compute epatom all pe/atom

variable epot equal pe

#---Print to screen---

thermo 100

thermo_style custom step vol temp pe lx ly lz pzz c_stress3
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#---Bar stat---

timestep 0.0001

fix RELAXBOX all box/relax iso 0.0

min_style sd

minimize 1e-25 1e-25 50000 100000

unfix RELAXBOX

#---LOADING OF NANOWIRE---

#---Timeintegration---

fix NVT all nvt temp 0.01 0.01 0.1

#----Start loading, strain rate 1e8 (1e-4)---

fix LOAD nanowire deform 1 z erate 0.0001 units box

#---dump data to files----

dump 1 all custom 1000 SiC_3C.relax id type x y z c_stress[3] c_epatom

dump_modify 1 append yes

fix 1 all print 1000 "${stress} ${epot}" file SiC_3C.txt screen no

#----Screen output----

thermo 100

thermo_style custom step vol temp pe lx ly lz pzz c_stress3

#----MD run (Loading)-------

timestep 0.001

run 3000000

# SIMULATION DONE

print "All done"
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