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Abstract

This thesis was carried out at CellaVision, a company within digital blood anal-
ysis, with the aim of investigating the possibility of autovalidation of blood cells
using neural networks. The thesis started with preparing a dataset for training and
validation, including cell features and binary labels indicating if the cell is easy or
di�cult to classify. This dataset consisted of 122 227 cell images. The binary labels
were generated through several di↵erent methods such as using neural networks,
statistics from CellaVision’s system’s classification result and manual classification
by a morphology expert.

Three kinds of neural networks were tested with the aim of separating easy cells
from di�cult ones: a binary Artificial Neural Network (ANN), an autoencoder for
anomaly detection and a Self-Organizing Feature Map (SOFM) visualizing the po-
sition of di�cult cells in clusters. The methods were compared and the performance
were evaluated. It was found that the ANN was not useful for this task, while the
autoencoder could be used for successfully autovalidating 74% of the cells. With
better labeling techniques for the dataset, the performance could potentially be im-
proved. The SOFM was not used for anomaly detection in this study, but for visual
analysis of the clusters and labels. However, it may become relevant in the future
to look further into this method’s possibility of anomaly detection, as patterns in
the clusters were apparent.
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Popular science summary

Blood cell autovalidation-
will machines replace humans in the future?

We’re about to enter an excit-
ing time where autovalidation will
change the game of industries, be-
come a part of the technologies we
use in our everyday life and a↵ect
the whole society. Artificial Intel-
ligence (AI) have already changed
the map of where tech can replace
human minds and no one knows the
limits of what the future holds. One
area where AI has begun to conquer
land is the di�cult, time consuming
and vital analysis of blood samples
done at hospitals. Will AI machines
be able to do the job of humans in
blood analyzes in the future?

The implementation of autovalidation
means that processes which are normally
analyzed and controlled by humans can
instead be validated by a machine. This
can lead to major savings in time and
costs, especially in pressured areas like
the healthcare sector, while providing
unbiased results based on statistics and
experience.

CellaVision is a company which have
taken blood analysis towards a digital
transformation. They now want to an-
swer the question if it is possible to au-
tovalidate the digital blood cell analysis
using AI-methods. Applying autovalida-
tion to the systems of CellaVision would
mean that some analyzes can be com-
pletely done by computers, resulting in

improved e�ciency and savings in time
and cost at hospitals and laboratories
around the world. If created and imple-
mented correctly, this type of technology
could save lives.

Several di↵erent types of AI-methods
were tested for autovalidation of blood
cells. The task for the model was to sep-
arate easy cells from di�cult ones, which
is the first step in autovalidation. We
found that the most successful method
was a module detecting abnormal pat-
terns among cells. It could be used for
successfully autovalidating 74% of the
cells. It is also probable that the result
could have been even better if a better
technique had been used to label the cell
images which the module was trained on.

In the end of the study, an algorithm
arranging cells with similar appearance
in clusters was used for visualizing the
results. It would definitely be interesting
to look further into this technique in the
future to see if it could be used for au-
tovalidation itself. You could already see
patterns of how the di�cult cells were
located among the normal cells, which
makes this approach very promising.

All in all, the results indicates a promis-
ing future. Who knows, maybe one day
the machines will have replaced the hu-
mans when it comes to blood analysis?
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Glossary
Batch A set of patches/inputs
Epoch One epoch is completed when all batches have been

passed through the model
SOM/SOFM A type of ANN
Label The class of the object
Supervised Learning Training performed with access to labels
Unsupervised Learning Training performed without access to labels
Loss Another word for error
Accuracy Proportion of data with the same predicted label

as the validation label
Specificity Probability of a negative test that the test truly is

negative
Sensitivity Probability of a positive test that the test truly is

positive
Miss-rate Probability of a negative test being truly positive
Internal labeling Assigning the task of labeling data to an in-house

team
Data programming Assigning a task to be solved by a computer with

a programmed software
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Acronyms
CBC Complete Blood Count
ANN Artificial Neural Network
NN Neural Network
ReLU Rectified Linear Unit
SOFM Self-Organizing Feature Map
BMU Best Matching Unit
AE Autoencoder
PCA Principal Component Analysis
PRC Precision-Recall Curve

7



Contents

1 Introduction 11
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.1 CellaVision’s History and Aim . . . . . . . . . . . . . . . . . . 11
1.1.2 Using CellaVision’s System . . . . . . . . . . . . . . . . . . . 11
1.1.3 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Theoretical Background 15
2.1 Blood Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Artificial Neural Networks (ANN) . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Training the Network . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Generalization, Overfitting and Underfitting . . . . . . . . . . 17
2.2.3 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Self-Organizing Feature Maps (SOFM) . . . . . . . . . . . . . . . . . 19
2.4 Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Autoencoder for Dimensionality Reduction . . . . . . . . . . . 21
2.4.2 Autoencoder for Anomaly Detection . . . . . . . . . . . . . . 21

2.5 Pre-Processing of Data . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Methodology 23
3.1 General Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Building Neural Networks . . . . . . . . . . . . . . . . . . . . 27
3.1.3 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . 27

3.2 Phase 1 - Generating Labels . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1 Several Experts . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Several Variations of ANN . . . . . . . . . . . . . . . . . . . . 30
3.2.3 CellaVision Expert- Binary Classification . . . . . . . . . . . . 32
3.2.4 CellaVision Expert Re-Classification . . . . . . . . . . . . . . 32
3.2.5 CellaVision Classification Probabilities . . . . . . . . . . . . . 32
3.2.6 SOFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Labeling Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.1 Internal Labeling . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Data Programmed Labels . . . . . . . . . . . . . . . . . . . . 34

3.4 Phase 2 - Autovalidation Model . . . . . . . . . . . . . . . . . . . . . 35
3.4.1 Binary ANN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.2 Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

8



3.5 Analyzing Phase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Results 39
4.1 Autoencoder to Reduce the Dimensionality . . . . . . . . . . . . . . . 39
4.2 Phase 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Several Experts . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.2 Several Variations of ANN . . . . . . . . . . . . . . . . . . . . 41
4.2.3 CellaVision Expert- Binary Classification . . . . . . . . . . . . 41
4.2.4 CellaVision Expert Re-Classing . . . . . . . . . . . . . . . . . 42
4.2.5 CellaVision Classification Probabilities . . . . . . . . . . . . . 43
4.2.6 SOFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Labeling Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.1 Expert Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.2 Data Programmed Labels . . . . . . . . . . . . . . . . . . . . 45

4.4 Phase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.1 Binary ANN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.2 Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Analyzing Phase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Discussion 53
5.1 General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Data Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.2 Building Neural Networks . . . . . . . . . . . . . . . . . . . . 54
5.1.3 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . 54

5.2 Phase 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.2 Labeling Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Phase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.1 Binary ANN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.2 Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.3 SOFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4.1 Future Improvements . . . . . . . . . . . . . . . . . . . . . . . 61
5.4.2 Future Work and Usage . . . . . . . . . . . . . . . . . . . . . 62

5.5 Ethical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Conclusions 63

9



10



Chapter 1

Introduction

1.1 Motivation

1.1.1 CellaVision’s History and Aim

CellaVision was founded in 1994 by Christer F̊ahraeus with the aim of developing
an instrument for automated blood analysis replacing the use of the manual micro-
scopes. The year of 2001, the first instrument of CellaVision was sold in Europe.
CellaVision o↵ers digital solutions for medical microscopy, replacing the traditional
microscopes with instruments based on digital image analysis, artificial intelligence
and IT. The digital microscopy enhances diagnostics while streamlining the work
flow and lowering costs (1, p. 8).

1.1.2 Using CellaVision’s System

When a patient is suspected to su↵er from a hematological disease, a complete blood
count (CBC) is often the first test ordered by the health care. The CBC is one of
the most common diagnostic tests in the world, used routinely to get an overall sta-
tus of the di↵erent cells present in the blood of the patient. The analysis provides
information about the distribution and morphology of the blood cells, such as size,
color and shape (2). It is estimated that four billion CBC analyses are performed
in the world each year, and approximately 15% of these requires further analysis.
This is where CellaVision’s system enter the process.

CellaVision’s analysis is often required because of the presence of immature or sick
cells in the patient’s blood. This could be the case for hematological diseases such
as anemia, lack of platelets, leukemia or various tumor diseases e.g. lymphoma. The
systems of CellaVision are developed with these particular tests in mind. The result
of the analysis, including images of the white blood cells, is presented to the user
on a screen. The instruments includes applications for analysis of blood and other
body fluids, and software enabling examination of analysis results remotely.

CellaVision has not yet reached a completely automatic system, which was the goal
from the start. Today it is used as a decision support for diagnosis. To move towards
the goal, CellaVision wants to find a way to create an autovalidating system instead
of a decision support system.
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1.1.3 Previous Work

Autovalidation is the automatic release of test results into the patients record with-
out any manual intervention (3). The results are only released if they meet the
criterias defined by the lab, otherwise manual verification is done. The autovalida-
tion process can be explained as a rule-based system for validation of laboratory test
results, with an algorithm based on clear rules of decision-making from the labora-
tory (4). The system makes the validation of the result more uniform and objective
as long as the rules are clearly and unambiguously stated. The use of autovalidated
processes are becoming more and more important as the requests of laboratory test
increases and due to the chance of minimizing the risk of human errors (4).

Autovalidation is used for several processes in clinical chemistry today. One example
where the use is well-established is when performing complete blood counts (CBC).
In a study from 2014, it was concluded that the use of autovalidation in CBC pro-
cesses decreased the workload by 7.7 - 11.6 hours per 3 000 test results (5). In this
study the autovalidation was done by the laboratory information system according
to set criterias, meaning that the critical values for the results was known from the
start.

Since the 1960’s, numerous projects have attempted to develop computer assisted
and autovalidation techniques for the aim of screening women for cervical cancer.
The developed techniques has been able to recognize cells and smears as normal or
abnormal, which have been found to e↵ectively reduce the workload in the labora-
tories. The developed techniques uses image analysis approaches based on manual
feature extraction. These features are often mathematical features determining the
morphology, texture, intensity, borders or the neighbouring area around a pixel (6, p.
1-6) (7, p. 1-2, 6-11). These projects have been successful in detecting abnormal
cells and smears through image analysis, although feature detection and analysis
completely performed by neural networks has not been used for these projects. It
would thereby be interesting to test the use of neural networks on projects combin-
ing image analysis and autovalidation.

In 2016, a study was done trying to use neural networks as a method of autoverifying
the results in a biochemistry laboratory (8). The method included building a neural
network model which was able to create a decision algorithm. This algorithm would
signal when the results in a test indicated that a patient was sick. The data for the
study consisted of laboratory test results from patients which gave several parame-
ters for each patient. Examples are the level of glucose, level of sodium or the age
of the patient. Altogether the parameters represented the well-being of the patient.
These parameters had pre-determined critical values and the aim of the project was
to find a model which could identify the cases when the values were critical and the
result indicated that the patient was sick. The neural network model could thereby
train on the parameters with known critical values.

There is a big di↵erence in the purpose of autovalidation for previous studies and
this. In the previous ones, autovalidation is used as a way of finding tests with
alarming results, or results which are very ”o↵”, indicating a sick patient or a broken
machine. These kind of alarming result have specific critical values in the parame-
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ters. This study aims to create an autovalidation as a way of finding results where
the system is potentially wrong in its conclusions, specifically to find events where
a cell has a risk of being classified into the wrong cell class. These results do not
have specific critical values in the same way, and are therefore more di�cult to get
at. The results will not be ”alarming” in any way; it will look like a normal result
but will be wrongly concluded. In this case, the parameters used are features from
cell images, which are extracted from neural networks. It is not possible to know its
critical values, and the model therefore has to do the autovalidation without known
limits.

To be able to do the autovalidation the study aims for, the system should determine
which results the system is sure of, and which might be faulty and thereby needs
to be manually re-evaluated. For CellaVision, this means that the autovalidation
algorithm needs to find which cells are ”easy to classify” and which are ”di�cult to
classify”.

A study in Dordrecht used the probabilities from CellaVision’s image classification
as critical values of where to draw the line for the need of manual re-evaluation.
These probabilities were extracted directly from the neural network model, and the
critical value of these probabilities were decided based on certain percentages of the
resulting probabilities. This method turned out to work well in Dordrecht, but it
was found that the same critical values did not give good results in other labora-
tories. For this to work, new critical values needed to be calculated specifically for
each laboratory. That would imply uneccessary work and resources. A more general
method to find critical values was needed.

Based on our search of the literature, a general autovalidation method for blood cell
classification has not yet been tested using the ANN approach.

1.2 Aim

The aim of this thesis is to investigate the possibility of creating a binary classi-
fying module. It should be able to separate white blood cells which are easy to
classify from those that are di�cult, with the purpose of autovalidating the easy
cells. This by building di↵erent ANN’s and training them on data from CellaVi-
sion’s database. The module should be independent of which hospital has made the
blood cell preparation.

1.3 Outline of the Thesis

In this report, the chapters Methodology, Results and Discussion are divided into
two di↵erent phases, referred to as phase 1 and phase 2, see figure 1.1. The results
and conclusions from section 1 have been used as the input data for phase 2, and it is
therefore recommended to read all three chapter’s sections related to phase 1 before
continuing with phase 2. How phase 1 and phase 2 are connected in the project is
described in the flowchart in figure 3.1 on page 23. There are also two flowcharts
further explaining the two separate phases and the relations between their di↵erent
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sections and subchapters: figure 3.3 on page 29 describes phase 1 and 3.6 on page 35
describes phase 2.

Database

Phase 1: Generating Labels

Phase 2: Creation of Autovalidation Model

Final Result

Figure 1.1: An overview of the general structure of the study.
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Chapter 2

Theoretical Background

2.1 Blood Cells

The blood consists of plasma and cells, where the plasma constitutes 60% of the
blood while white blood cells (WBCs), red blood cells (RBCs) and platelets to-
gether constitutes 40% of the blood. These blood cells are all formed in the bone
marrow where they develop from stem cells into WBCs, RBCs or platelets. White
blood cells can be divided into three main categories: lymphocytes, monocytes and
granulocytes. The granulocytes can further be divided into neutrophils, eosinophils
and basophils (9). The neutrophils can be seen in two stages, band neutrophil,
where the nucleus is one intact band, and segmented neutrophil, where the nucleus
has separated into several segments. These cells are displayed in a-f in figure 2.1.
Mature red blood cells in mammals lacks nucleus, since this provides the cell with
more room to store the oxygen-binding protein hemoglobin (9). Nucleated red blood
cells called erythroblasts (10) and greatly enlarged platelets called giant thrombo-
cytes (11) can also be present in the blood. These cells are displayed in g-h in
figure 2.1. There could also be a wider range of maturation or variants of these cells
present in the blood.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.1: Examples of cell classes included in the dataset: (a) Lymphocyte, (b) Mono-

cyte, (c) Band Neutrophil, (d) Segmented Neutrophil, (e) Eosinophil, (f) Basophil, (g)

Erythroblast and (h) Giant Thrombocyte.

15



2.2 Artificial Neural Networks (ANN)

Artificial neural networks (ANN) is a branch of machine learning algorithms inspired
by the human brain (12, p. 3). ANN’s consists of layers of connected neurons, where
the input layer and output layer is connected with one or more layers, called hidden
layers. The idea is that the ANN should be able to take input data and, by prop-
agating it through the network, learn to interpret and map this input into outputs
(13, p. 2-3). Haykin (14, p. 24) uses the following definition for ANN’s:

”A neural network is a massively parallel distributed processor made up of sim-
ple processing units that has a natural propensity for storing experimental knowledge
and making it available for use. It resembles the brain in two aspects:

1. Knowledge is acquired by the network from its environment through a learning
process.

2. Interneuron connection strengths, known as synaptic weights, are used to store
the acquired knowledge.”

Figure 2.2: A neuron, which is the basic element of all ANN.

Figure 2.2 shows a neuron, which is the basic element of all ANN’s. The output
y is calculated according to equation (2.1). The neuron in the ANN calculates a
weighted sum of it’s input and sends a new output forward through the activation
function,

PX

k=1

wkxk + b,

y = '(a).

(2.1)

By connecting several neurons with each other, a neural network is created.

There are few guidelines on how to build the best-performing neural network ar-
chitecture for a specific problem. Therefore using systematic experimentation is a
common way to discover what architecture seems to perform well for that specific
problem and set of data (15).
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2.2.1 Training the Network

When training an ANN, the most common case is to use data (e.g. features) and
corresponding labels. This type of training, i.e. with labels, is called supervised
learning. The opposite, called unsupervised training, is training without access to
labels and thus without answer of what is the correct solution (12, p. 3). Unsu-
pervised training thus focuses on finding common patterns and trends in the data.
During supervised training, the model computes the error of it’s output. This is the
di↵erence between the output labels of the model compared to the input labels and
is commonly referred to as loss. The aim of the training is to minimize the loss.
This is achieved by using the computed error to modify the weights between the
connected neurons in the network (12, pp. 23-24, 27) (16, p. 200). The accuracy is
the proportion of the data which was predicted to the same label as the input label,
therefore a high accuracy is desired.

2.2.2 Generalization, Overfitting and Underfitting

When working with neural networks it is important that the model performs well not
only on the training data but also on new, previously unseen data. The measurement
of the performance on this type of data is known as the generalization of the model
(16, p. 108). In the case of this thesis, the training data consists of features from the
cell images and their corresponding labels being the name of the cell class. After
training the model, it is tested on previously unseen data, referred to as validation
data. Since the model has not trained on the validation dataset, this test will provide
an indication of the model’s ability to generalize (16, p. 108)(12, pp. 44-45). When
training an ANN using Keras, a deep learning library, a useful tool is available
which splits the training dataset into a set for training and a set for testing. This
tool allows the user to track the training-loss and the test-loss at the same time,
where the test error is an approximation of the validation loss. An example of what
these plots can look like is displayed in figure 2.3.

(a) (b)

Figure 2.3: Examples of the plots simultaneously describing the performance of the model

on both training and test data: (a) An example of training and test accuracy; (b) An

example of training and test loss.

To ensure that a model will be able to generalize well, it is of importance to keep
the training loss small while keeping the gap between training and test loss small.
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This is strongly related to the concepts of overfitting and underfitting. If the model
cannot achieve a low enough training loss, the model is said to be underfitted. If the
model has achieved a low enough training loss but the gap between the training loss
and the test loss is too large, the model is said to be overfitted (16, pp. 109-110). An
exemple of an overfitted model is shown in figure 2.4 and an illustration of the be-
havior of the loss and accuracy during overfitting is provided in figure 2.5. Note that
these are two separate plots only illustrating the behaviour of the curves, generated
from two di↵erent models. Overtraining is another common word for overfitting.

Figure 2.4: The left plot is an example of overfitting, while the right plot is generalizing

well (12, p. 45).

(a) (b)

Figure 2.5: An illustration of the behaviour of the loss and accuracy in an overfitted model:

(a) Training and test accuracy at overfitting; (b) Training and test loss at overfitting.

2.2.3 Regularization

Regularization is a term occurring when talking about ways to combat the problem
of overfitted models. Goodfellow, Bengio and Courville (16, p. 117) uses the follow-
ing definition: ”Regularization is any modification we make to a learning algorithm
that is intended to reduce its generalization error but not it’s training error.” In
figure 2.5(b), the overfitting occurs around epoch 200 when the two curves diverge.
An easy way of avoiding overfitting the model is called ”early stopping”, where the
technique is to simply stop training before overfitting occurs. The point where to
stop can be found by finding the minima of the test loss curve (12, p. 50-51). Again,
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note that the loss and accuracy curves in figure 2.5 are not generated from the same
model and thus the minimum test loss does not occur at the same epoch as the
maximum test accuracy.

(a) (b)

Figure 2.6: An illustration of the e↵ect of applying dropout to the layers of a network: (a)

A network before applying dropout; (b) A network after applying dropout.

Another regularization technique is called ”dropout regularization”. This technique
works by temporarily removing nodes in a network. When defining dropout in a
network, a dropout probability p is defined. This probability is the probability of
staying, so p = 0.3 will result in the node being temporarily removed in 70% of the
times, while p = 0.8 will result in the node being temporarily removed in 20% of
the times. This will prevent the nodes in the network from being fully dependent
on each other, reducing the network’s ability of training on very complex patterns
(which is characteristic for noise) and instead encouraging the network to be good at
generalizing on the data. Dropout can be present in all layers of a network, except
in the final output layer. The technique is only used during training to prevent
overfitting, so while performing validation tests all nodes will be kept as usual (12,
p. 51). An image from (17) showing the e↵ect of applying dropout on the layers in
a network can be seen in figure 2.6.

2.3 Self-Organizing Feature Maps (SOFM)

Self-Organizing Feature Map is a type of ANN which trains unsupervised (without
labels) and uses competitive learning to improve its result (12, p. 122). It is pre-
sented as a grid with nodes representing the input data visually.

The process of training a SOFM is iterative competitive learning. Every iteration
starts with choosing a random input vector and finding the node on the grid with
a weight vector most alike the input vector, the winning node. This is called the
best matching unit (BMU). The next step is to move the BMU closer in space to
the input vector. After this, the neighbours of the BMU are identified and moved
closer to the input vector as well, but not as much as the BMU. The last step of the
iteration is to update the learning rate, before the process starts over with a new
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random input vector and its BMU (18, p. 5).

When the training is finished, the result is a grid with nodes representing the input
data. Data points which are similar have moved close to each other in the grid,
while data points which are di↵erent have moved further away from each other. An
image from (12, p. 134) showing an example of a SOFM can be seen in figure 2.7.

Figure 2.7: An example of a SOFM where the input x is mapped on a grid with nodes y.

When training a machine learning process it is almost always important to pre-
process the data by normalizing it, to avoid some dimensions to dominate. This is
especially important for SOFM’s, which trains and performs better with data scaled
between zero and one (18, p. 4).

2.4 Autoencoder

An autoencoder is a special kind of ANN which has the same number of outputs as
inputs. This is important, since the main idea of an autoencoder is that the output
should predict the input. The model can have several hidden layers. The middle
hidden layer, called the bottleneck, always has a smaller size than the input layer.
The fact that it is smaller means that the model have to represent the input nodes
in a lower dimensionality, namely the dimensionality of the bottleneck. The part of
the model before the bottleneck is called the encoder and is used for transforming
data of high-dimensional space into features of low-dimensional space. The part af-
ter the bottleneck is called the decoder, and is thus used to reconstruct the original
high-dimensional data from the features of low-dimensional space. The autoencoder
do not need any labels, since its answer is the input data itself (12, p. 112) (19,
p. 121) (20, p. 3). The accuracy of the autoencoder is calculated just as for a
regular ANN, by comparing the predicted labels with the validation labels. For the
autoencoder, this means that the accuracy would be the amount of reconstructed
features which are identical to the input data. Hence, a high accuracy would be
expected only for identical output, and not similar, and therefore it does not make
sense to use this as a reflection of the model’s performance when a similar output is
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su�cient. A more useful value to measure and minimize is the loss, since it reflects
on the potential di↵erences between the reconstructed output of the model and the
original input (12, p. 113).

The image in figure 2.8, from (12, p. 112) shows an example of a small autoencoder.

Figure 2.8: An example of a small autoencoder.

2.4.1 Autoencoder for Dimensionality Reduction

When an autoencoder has been trained such that the loss has become small, i.e.
the di↵erence between the reconstructed data and the original data is very low, the
autoencoder can be used for dimensionality reduction. Since the first part of the
autoencoder encodes the input data into a lower-dimensionality representation, this
means that the important information from the input data is represented in the bot-
tleneck layer. A representation of the data in a lower dimensionality will thereby be
available simply by saving the output from the bottleneck layer of the autoencoder
(21).

2.4.2 Autoencoder for Anomaly Detection

Using dimensionality reduction, such as the autoencoder, as a way of detecting
anomaly is a common method. It is based on the assumption that the features of
normal data correlate. This means that it is possible to find a subspace which can
describe normal data. Data which is not normal would give a large reconstruction
loss and can therefore be detected (22, p. 1). The autoencoder is therefore only
trained on what is considered normal data, and will thereby become very good at
reconstructing it. The large reconstruction loss will appear when the autoencoder
is asked to reconstruct anomaly data since the autoencoder has not trained on this.
When running a dataset consisting of both normal and anomaly data through the
trained autoencoder, a reconstructed data point with a low reconstruction loss will
indicate the data point being normal while a data point with a high reconstruction
loss will indicate the data point being anomaly (23) (20, p. 4).
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2.5 Pre-Processing of Data

Before inputting the data into an ANN, it is common to pre-process it. Pre-
processing can be done in various ways and to varying degrees, depending on the
data itself (12, p. 66). The goal is to improve the result by having a better input.
One way of pre-processing data is to reduce the dimensionality, a process which
was mentioned earlier in the context of autoencoder. Another way of pre-processing
data is to normalize it. There are several ways of normalizing data, where using
L1- and L2-norm are two ways. A norm is in short the magnitude of a vector (24),
which can be used in normalization by dividing each component of the vector with
the norm. Doing this with several vectors in a set gives them the the same length,
but di↵erent directions, which makes them easier to compare (25). The equations
for deriving L1-norm and L2-norm are shown in equation (2.2) and (2.3), where a
and b are elements in the vector x. The norms are calculated by

L1� norm : ||x||= |a|+ |b| , (2.2)

L2� norm : kxk =
q

|a|2 + |b|2. (2.3)
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Chapter 3

Methodology

3.1 General Methodology

A previously mentioned, the study was divided into two phases. The general idea
of the study was to, as a first phase, use di↵erent methods to generate training and
validation labels to the cell images with the value ”easy to classify” or ”di�cult
to classify”. The methods were analyzed and the most suitable label vectors for
training and validation data was determined. The chosen vectors were used for
training networks in predicting easy and di�cult cells, which implied moving into
the second phase of the study.

Database CellaVision class. prob.

CellaVision expert- binary

CellaVision expert re-class.

Internal

labeling

Several experts

Dimensional

down-sizing
Several variations of ANN

SOFM

Data

programmed

labels

LabelPhase 1Data

Big autoencoder

Binary ANN

Expert autoencoder

Final analysis

SOFM

Phase 2 Result

Figure 3.1: A flow chart of all sections in the study, describing how they connect with each other.
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The second phase included testing of two methods to build a general model in finding
easy and di�cult cells. To validate the results of the methods, the validation labels
as well as the positioning of the cells in an SOFM was used to compare and confirm
the classification. An overview of the methodology can be seen in figure 3.1.

3.1.1 Data

The data used were 122 227 feature vectors from CellaVision’s system, generated
from images of cells. These originated from a database at CellaVision and were
raw images in bmp format and of size 256x256 pixels. Ten randomly chosen images
from this dataset are displayed in figure 3.2. The 122 227 images were run through
CellaVision’s classifying neural network and their features were extracted from a
hidden layer just before the last neuron layer. This hidden layer had 13 800 nodes,
which resulted in every image being represented by a feature vector of 13 800 ele-
ments. Therefore, the networks in this study were easily trained on the classification
of cells since the distinctive features for the cells were already found by CellaVision’s
network.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.2: Ten randomly chosen cell images from the dataset. The images were labeled

as following: (a) Segmented Neutrophil, (b) Basophil, (c) Band Neutrophil, (d) Smudge

Cell, (e) Lymphocyte, (f) Eosinophil, (g) Blast Cell, (h) Thrombocyte Aggregation, (i)

Erythroblast and (j) Monocyte.

For the two di↵erent phases of this project, in figure 1.1 referred to as ”Phase 1”
and ”Phase 2”, di↵erent types of data was required. During the first phase the task
was to perform di↵erent kinds of classifications, thereby data consisting of cell fea-
tures and corresponding labels stating the cell class was needed. During the second
phase, the focus was instead to detect easy and di�cult cells. Thereby cell features
on the same format as in the first phase was of interest while the corresponding
labels should instead be binary, stating if the cell was easy or di�cult. Because of
this, two di↵erent kinds of data labels were generated - one including cell class labels
and one with binary labels.

In the original dataset, the cells were labeled by a number between 0 - 88. It turned
out that this wide range of numbers were derived from di↵erent standards of how
to label cells at CellaVision during di↵erent periods of time. The number of unique
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Original label New label Amount Cell class
0 11 Unidentified
1 0 99 455 Segmented neutrophil
2 1 11 864 Eosinophil
3 2 5 160 Basophil
4 3 33 040 Lymphocyte
5 4 29 071 Monocyte
6 5 8 676 Band neutrophil
8 6 2 174 Promyelocyte
9 7 8 880 Myelocyte
10 8 5 079 Metamyelocyte
11 9 11 219 Blast
12 55 Prolymphocyte
13 10 2 467 Plasma cell
14 17 Large granular lymphocyte
19 157 Promonocyte
21 11 18 816 Smudge cell
23 12 8 165 Erythroblast
24 13 8 319 Artefact
25 14 2 447 Giant thrombocyte
26 95 Megakaryocyte
27 15 2 104 Not classed
29 16 2 544 Thrombocyte aggregation
73 237 Other
85 17 9 855 Reactive lymphocyte
86 18 11 147 Abnormal lymphocyte
87 19 13 959 Large thrombocyte

Table 3.1: Translation of numbers indicating cell labels.

labels used were in fact 26, which can be seen in table 3.1 column 1. To make an
e�cient classifier of these di↵erent labels, it was required to translate these numbers
into a range of 0 - 25 since this allowed the ANN to have 26 output nodes instead
of 88.

Furthermore, the network of CellaVision was currently able to detect 19 types of
cell classes, these are displayed in table 3.2.
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Label Name
0 Segmented Neutrophil
1 Band Neutrophil
2 Eosinophil
3 Basophil
4 Lymphocyte
5 Monocyte
6 Reactive Lymphocyte
7 Abnormal Lymphocyte
8 Promyelocyte
9 Myelocyte
10 Metamyelocyte
11 Blast
12 PlasmaCell
13 Erythroblast
14 Large Thrombocyte
15 Giant Thrombocyte
16 Smudge Cell
17 Artefact
18 Thrombocyte Aggregation

Table 3.2: Cells detectable by CellaVision’s system.
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When compared to 3.1 this means that there were 7 cell classes present in the dataset
which could not be detected by CellaVision’s system. These were:

• Unidentified

• Prolymphocyte

• Large granular lymphocyte

• Promonocyte

• Megakaryocyte

• Not classed

• Other

The class ”not classed” included cells which the morphology expert had found extra
di�cult to class, and therefore these cells could be included in the binary dataset
used during the second phase as examples of di�cult cells. The cells from ”not
classed” were labeled as di�cult cells. Since it would be interesting to see how the
networks would class these previously not classed cells, they were also kept in the
classification dataset under the label ”not classed”. The six other classes were re-
moved from both datasets. The classes in the classification dataset were given new
class labels of 0 - 19. These can be seen in table 3.1 column 2.

The data now consisted of 122 227 unique cell images which had been classed by
experts 2 to 15 times each. This equals a dataset of 294 441 unique classifications
of the 122 227 unique cells. The dataset was split into 133 sets, each containing
919 unique cells and all their di↵erent classes. The sets were divided into training
and validation data, where the training data consisted of set 0 - 99 (75%) and the
validation data consisted of set 100 - 132 (25%).

3.1.2 Building Neural Networks

When building the networks in this thesis, systematic experimentation with i.e.
depth, number of neurons in the hidden layers, dropout rate, optimization techniques
and activation functions were used to find the best performing architecture in terms
of the lowest loss and highest accuracy.

3.1.3 Dimensionality Reduction

To be able to train the networks fast enough, it was necessary to reduce the dimensi-
nality of the features extracted from CellaVision’s network. In order to do this two
methods were compared using literature studies; principal component analysis, or
PCA, and the use of an autoencoder. It was decided to use an autoencoder since
more information remains in the data compared to PCA and since this method gives
higher accuracy for larger data sets (26).

After implementing an autoencoder, it was of interest to test the performance of
an ANN trained on the original feature-dimensions and compare it with an ANN
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Table 3.3: Architectures of the ANN’s used to evaluate the dimensionality reduction.

ANN for full-sized data:
Dense Units: 1 380 Activation fun.: ReLU Input dim.: 13 800

Dropout: 50%
Dense Units: 800 Activation fun.: ReLU

Dropout: 50%
Dense Units: 200 Activation fun.: ReLU

Dropout: 50%
Dense Units: 20 Activation fun.: Softmax

ANN for dimensionality reduced data:
Dense Units: 80 Activation fun.: ReLU Input dim.: 100

Dropout: 50%
Dense Units: 60 Activation fun.: ReLU

Dropout: 50%
Dense Units: 40 Activation fun.: ReLU

Dropout: 50%
Dense Units: 20 Activation fun.: Softmax

trained on the dimensionality-reduced feature vectors generated by the autoencoder.
This comparison would show how the performance of the ANN would be a↵ected
when reducing the dimensionality of the features. This test would thereby provide
an indication whether this reduced dataset is suitable to perform the further classi-
fication tests on. An ANN was trained on a set of 22 541 images with the original
feature dimension of 13 800 features, while another ANN was trained on the same
set of images but where the autoencoder had been used for dimensionality reduc-
tion. Both datasets were scaled between 0 and 1 and L2-normalized over the feature
vectors. Since the dimensionality of the features di↵ered, the architecture of the
two networks could not be identical but of similar proportions. The architectures of
both networks were chosen to be what was considered as the best performing archi-
tecture found for these datasets. Both networks were trained on their data during
500 epochs and the accuracy, loss and resulting classification was observed.

3.1.3.1 Visual Evaluation Using SOFM’s

The result of reducing dimensionality was tested using SOFM’s. Two di↵erent
SOFM’s with alike architectures were built. It was decided to let the models train
during 10 epochs, which took 12 hours for the SOFM training on the original data
and one hour for the SOFM trained on dimensionality reduced data. For further
details of how the SOFM’s were built, see section 3.2.6.
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3.2 Phase 1 - Generating Labels

Di↵erent methods of generating labels for training and validation data were tested
and evaluated. A flowchart describing the relation between the di↵erent sections in
phase 1 can be found in figure 3.3. The labels were binary, consisting of 0’s and
1’s, where a 0 indicated that the cell was easy while a 1 indicated that the cell was
di�cult.

Database CellaVision class. prob.

CellaVision expert- binary

CellaVision expert re-class.

Internal labeling

Several experts

Dimensional down-sizing Several variations of ANN

SOFM

Data programmed labels

LabelMethodData

Figure 3.3: A flow chart showing an overview of the sections in phase 1: Generating Labels.

3.2.1 Several Experts

In this method, CellaVision’s data classified to cell classes by morphology experts
was used to generate labels indicating if the cell was easy or di�cult to class. The
data consisted of class labels from several experts which had classed the same cell
image. In the case that all of the experts had chosen the same class label for the
cell, the binary label was set to easy to classify. In the case that the experts had
disagreed, in other words chosen di↵erent classes for the same cell, the binary label
was set to di�cult to classify.
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3.2.2 Several Variations of ANN

Three di↵erent ANN’s were created for the aim of generating 1) a binary label vector
for the validation dataset and 2) binary labels for the training dataset. The task
for the networks were to class cells into cell classes. Their results was compared,
enabling the creation of binary labels describing cells as easy if all networks agreed
on a cell class or di�cult if they has classed the cell di↵erently. The networks were
built by composing di↵erent architectures of the hidden layers. These architectures
were tested to perform equally well, while processing the data di↵erently because of
the di↵erences in architecture, activation functions, dropout rate etc. The di↵erent
ANN’s were trained on di↵erent parts of the datasets for further variation of the
networks. Since the networks were to be trained on data of equal dimensions and
perform classifications of equal numbers of categories, the number of input nodes,
input dimension and output nodes were the same for all networks. The architectures
of the ANN’s are described in figure 3.4.

3.2.2.1 Generating Binary Labels for Validation Data

The three di↵erent ANN’s, whose architecture is described in figure 3.4, were first
trained on di↵erent parts of the training data in three rounds while always validat-
ing on the same validation set. How this training and validation were performed is
described in detail in table 3.4. This layout thereby resulted in 9 di↵erent classi-
fications of the validation set, one for each ANN and round. These classifications
were compared by checking for which cells the networks had agreed by classing the
same class, and for which cells the networks disagreed. The cells which the networks
agreed on were labeled as ”easy” while the cells where the networks disagreed were
labeled as ”di�cult”.

3.2.2.2 Generating Binary Labels for Training - Cross Validation

The same network architectures were then used for performing a cross validation for
the training set. The layout of the cross validation is described in table 3.4. The cross
validation thereby resulted in each network classing all cells in the training dataset
twice, resulting in 6 unique classifications of the training dataset while avoiding
using the same data for both training and validation in the same round. From this
data, the classifications were compared and each cell was labeled as easy or di�cult.
This labeling were performed by the same approach as for the validation dataset,
where the cells which the networks agreed on were labeled as ”easy” while the cells
there the networks disagreed were labeled as ”di�cult”.

Table 3.4: The layout of the training and cross validation performed.

Round 1 Round 2 Round 3
Training Trained on: 10 - 39 40 - 69 70 - 99

Validated on: 100 - 132 100 - 132 100 - 132
Cross Trained on: 10 - 39 40 - 69 70 - 99

Validation Validated on: 40 - 99 10 - 39, 70 - 99 10 - 69
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(a) Network architecture of ANN1

(b) Network architecture of ANN2

(c) Network architecture of ANN3

Figure 3.4: Illustration of the architectures of the three di↵erent ANN’s used for image

classification in the ANN-part of phase 1.
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3.2.3 CellaVision Expert- Binary Classification

Images of the data were shown to a morphology expert who marked the cell ”easy
to classify” or ”di�cult to classify” according to it’s experience of classing cells.

3.2.4 CellaVision Expert Re-Classification

Images were run through CellaVision’s network to be classified. After this, a mor-
phology expert looked at the result. If the expert wanted to re-class the cell into a
di↵erent class, it was labeled ”di�cult”. Otherwise, it was labeled ”easy”.

3.2.5 CellaVision Classification Probabilities

When cell images are run through CellaVision’s network, they come out with prob-
abilities for each cell class. This was used in a way that if the highest probability
(and thereby the class which the cell was classified into) was below a certain value,
0.999, the cell was classified as di�cult. If the probability was equal to or above
this certain value, it was classified as easy.

3.2.6 SOFM

As input to the SOFM the feature vector’s of cell images which had been run through
CellaVision’s network and then reduced the dimensionality of was used. The vectors
were scaled to a 0 - 1 number and L2-normalized over the feature vectors before put
into the SOFM.

The SOFM was created using NeuPy, which is a python library for building di↵erent
neural networks, such as SOFM, using Tensorflow as a computational back-end (27).

The network was trained on 199 574 images, corresponding to training on set 2 -
101. After the training was completed, 2 757 validation images (set 130 - 132) were
run through the network, which predicted the position for these images in a grid.

The result of the clustering was plotted in matrices where a data point on a cer-
tain node was represented with a square of a color corresponding to the cell class
of that particular data point. The matrix was configured such as if several cells
(data points) were located on the same node, the square corresponding to that node
was divided into smaller squares together representing all the cells placed on that
particular node, appearing in the same order as in which they were placed on the
node. This plotting is illustrated in figure 3.5.

The result of the SOFM was evaluated by visual analysis, meaning how easily clus-
ters could be found and defined in the grid.
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Figure 3.5: An illustration of how a SOFM was plotted.

3.3 Labeling Data

The possible labels were evaluated for the di↵erent applications later in the project.
It was found in literature that internal labeling is more desirable compared to labels
made from data programming if it is possible considering time and resources (28).
For the methods autoencoder and binary ANN in phase 2, labels were needed for
both training and validation. For the SOFM method, labels were only needed for
the validation data.

To evaluate the di↵erent methods, the accuracy, sensitivity, specificity and miss-
rate was derived for each resulting label vector. The equations used are described in
(3.1). Positives are the cells which are labeled di�cult in the data set, and negatives
are the ones labeled easy. True positives are the cells which are di�cult according
to the validation label and also labeled as di�cult by the method. False positives
are cells which are easy according to the validation label, but labeled as di�cult by
the method. In the same way, true negatives are labeled as easy both according to
the validation labels and the method, and false negatives are labeled as di�cult by
the validation labels but as easy by the method. A false negative occurs when the
method misses to identify a di�cult cell, this behaviour can be measured using a
miss-rate (29, p. 2-3).

Accuracy =
True positives + True negatives

Positives + negatives

Sensitivity =
True positives

Positives

Specificity =
True negatives

Negatives

Miss� rate =
False negatives

Positives

(3.1)
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3.3.1 Internal Labeling

It was possible to generate labels by internal labeling for a small part of the dataset,
which would be used for the SOFM and for verification of the autoencoder. There
were two possible ways to generate these, the ”CellaVision expert- binary classifica-
tion” and ”CellaVision expert re-classing” from phase 1, two methods which were
made only from an expert without adjustments or processing afterwards. Both alter-
natives were used as the answer for the other methods and the results were compared
by calculating the accuracy, sensitivity and specificity. This comparison was done
for set 132 including 919 images. It was decided to use ”CellaVision expert- binary
classification” as validation labels. The labels were created for set 130 - 132, thus
for 2 757 cell images.

3.3.2 Data Programmed Labels

The labels for the binary ANN and the autoencoder was required to be generated
in the same way for both training and validation data. Since this covers a large
amount of data, using internal labeling by CellaVision’s expert was ruled out due
to lack of resources. Instead, it was decided to use data programmed labels.

To measure the quality of the methods ”Several experts”, ”Several variations of
ANN” and ”CellaVision classification probabilities”, the accuracy, sensitivity, speci-
ficity and miss-rate were derived using ”CellaVision expert- binary classification” as
the answer. The parameters were also derived for the merge of the three methods
where the methods had to agree on a cell being easy for it to be labeled as easy,
otherwise it was labeled as di�cult. This quality measurement was done for set 132
including 919 images. The binary labels were generated for set 0 - 132, thus for
122 227 cell images.
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3.4 Phase 2 - Autovalidation Model

A flowchart describing the relation between the di↵erent sections in phase 2 can be
found in figure 3.6.

Data programmed labels

Internal labels

Big Autoencoder

Expert Autoencoder

Binary ANN

Final analysis

SOFM

Label Method Result

Figure 3.6: A flow chart showing an overview of the sections in phase 2: Autovalidation model.

3.4.1 Binary ANN

An ANN for binary classification was built for the purpose of classifying data into
easy and di�cult. Several di↵erent architectures were tested for the model and the
best performing architecture, displayed in figure 3.7, was chosen. For both training
and validation, labels from section 3.3.2 was used. The network trained 2 000 epochs
on the training data and made a prediction of the validation data.

At this point the data was highly unbalanced since di�cult cells accounted for only
18.2% of the training data and 18.0% of the validation data. To test what impact
this imbalance had on the model, another test- and validation dataset was generated
consisting of 50% easy cells and 50% di�cult cells, i.e. 30 124 cells for training and
10 979 cells for validation. The architecture of the network was kept the same. The
network trained 2 000 epochs on the balanced training data and made a prediction
of the balanced validation data.
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Figure 3.7: The architecture of the binary ANN used for classifying images as easy or

di�cult in the ANN used during phase 2.

3.4.2 Autoencoder

Figure 3.8: The architecture of the autoencoder used for anomaly detection.

An autoencoder was built to train on only easy classified cells from the merged data-
programmed labels, see section 3.3.2. This autoencoder was called ”Big-AE”. The
cells classified as ”not classed” were removed from the training data since this cell
class in itself indicated that the cell is di�cult. The training dataset consisted of
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cells from set 0 - 99, including 64 644 easy cells. The architecture of the autoencoder
were chosen by systematic experimentation of the hyper-parameters and finally de-
ciding on the model which demonstrated the lowest loss for a certain number of
epochs. The architecture is described in figure 3.8.

The output of the autoencoder was a vector consisting of the recreation-errors per
feature of each image in the validation dataset. L1- and L2-normalization was tested
and the results were compared. L2-normalization was chosen as the best result and
the normalized error vector was summed into a total recreation-error for each im-
age. All the recreation-errors of the validation images were scaled between 0 - 1
and compared with the validation labels. This showed which cells in the validation
dataset the autoencoder could recreate well i.e. with a low error, and which cells
the autoencoder could not recreate so well i.e. with a high error. The sensitivity,
specificity, miss-rate, accuracy and number of found di�cult cells were calculated.
Using these measurements of the model, several di↵erent autoencoders were trained
and the best performing autoencoder was chosen.

The measurements were calculated for di↵erent delimiter values, and an optimal
value was chosen. Recreation-errors below this value was converted into 0 (labeling
the cell as easy) while errors above it were converted into 1 (labeling the cell as
di�cult).

A second autoencoder was built using identical architecture as the first one, see
figure 3.8. This autoencoder was trained on the easy cells according to the internal
labels generated in section 3.3.1, and thereby called ”Expert-AE”. This training
data consisted of set 130 and 131, thus 1 684 easy cells. Set 132 was used for valida-
tion. The output was normalized and measurement were calculated as for the first
autoencoder.

The results of the two autoencoders were compared.

3.5 Analyzing Phase 2

The binary ANN and the autoencoder resulted in a label vector of zeros and ones
representing the easy and di�cult classed cells. These vectors were compared to
the validation label vector generated for the binary ANN and the autoencoder, see
section 3.3.2. From this comparison, several parameters were calculated - the ac-
curacy, sensitivity, specificity and miss-rate of this result. Confusion matrices were
generated for both methods for comparison.

Several SOFM’s were built as described in 3.2.6 and used to visualize the validation
labels, see section 3.3.1, and the labels from the autoencoder. The SOFM’s were
trained on data features with reduced dimensionality from set 2 - 102 for 500 epochs
and predicted the data from set 130 - 132. The di↵erent nodes were colorized
according to cell class, see figure 3.5, and marked by coloring half of the cell’s
corresponding square black if they had been classified as di�cult by the labels. This
way of marking the cells are illustrated in figure 3.9. By being able to visualize
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where the di�cult cells were located in the grid of cell clusters, the autoencoder’s
result could be compared to the validation labels and thereby better understood.

Figure 3.9: An illustration of how a di�cult cell was marked by coloring half of the cell’s

corresponding square black. The numbers in the brackets are the labels, 0 meaning easy

and 1 meaning di�cult.
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Chapter 4

Results

4.1 Autoencoder to Reduce the Dimensionality

An ANN was trained both on data with reduced dimensinality and on the original
data. This resulted in plots of the accuracy and loss 4.1 and confusion matrices 4.2.
Two SOFM’s were trained on 9 190 cell images each during 10 epochs and displayed
in figure 4.3 where 4.3(a) was trained on dimensionality reduced data to 100 features
while 4.3(b) was trained on the original data of 13 800 features.

(a) Accuracy, original data. (b) Accuracy, dimensionality reduced data.

(c) Loss, original data (d) Loss, dimensionality reduced data.

Figure 4.1: Plots comparing the accuracy and loss for the ANN trained on original data

versus dimensionality reduced data after 500 epochs.
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(a) Original data, 13 800 features.

(b) Dimensionality reduced data, 100 features.

Figure 4.2: Confusion matrices comparing the performance of the ANN for original data

versus dimensionality reduced data. The models are trained 500 epochs.
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(a) Dimensionality reduced data. (b) Original data.

Figure 4.3: Comparison of the clustering performance of a SOFM for original data versus

dimensionality reduced data. Both maps are trained on 9 190 images during 10 epochs.

Figure 4.3 displays the clustering of 919 cell images from the validation dataset in
an dimensionality reduced format, figure 4.3(a), versus the original format, figure
4.3(b). The cell classes are represented according to table 4.6.

4.2 Phase 1

For an overview of the di↵erent methods in phase 1 and how they connect with each
other and the result, see figure 3.3.

4.2.1 Several Experts

The comparison of several di↵erent expert’s cell classifications resulted in an array
with labels where each cell had a label of ”easy” or ”di�cult” for the entire data set
of 122 227 images.

4.2.2 Several Variations of ANN

Examples of plots displaying the performance of the three ANN’s are found in figure
4.4. Since each of the three models were trained on three di↵erent datasets, this
in fact generated 18 plots all displaying an accuracy in the range 0.9 - 0.95 and a
loss in the range 0.25 - 0.3. Here only one plot displaying the accuracy and one
plot displaying the loss per model is presented, together covering the three di↵erent
training datasets.

4.2.3 CellaVision Expert- Binary Classification

The images which were classified as ”easy” or ”di�cult” by an expert resulted in an
array with the labels belonging to each image. This was done for the datasets 130
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(a) Accuracy of Model 1, trained on set 10 - 39 (b) Loss of Model 1, trained on set 10 - 39

(c) Accuracy of Model 2, trained on set 40 - 69 (d) Loss of Model 2, trained on set 40 - 69

(e) Accuracy of Model 3, trained on set 70 - 99 (f) Loss of Model 3, trained on set 70 - 99

Figure 4.4: Examples of the plots generated from the training of the three networks.

- 132, which means that it resulted in one label each for 2 757 images.

4.2.4 CellaVision Expert Re-Classing

The result of the images, which were run through CellaVision’s network and then
reclassified by an expert if needed, was an array with labels. Each cell had a label
of ”easy” or ”di�cult”. This was done for the dataset 132 including 919 images.
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(a) Model 1 (b) Model 2

(c) Model 3

Figure 4.5: Normalized confusion matrices displaying the classification performance of the three

ANN’s used in section 4.2.2

.

4.2.5 CellaVision Classification Probabilities

After running the entire data set of 122 227 images through CellaVision’s network,
extracting the di↵erent probabilities of each class and comparing them, the result
was an array of binary labels for all of the images.
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4.2.6 SOFM

It was discovered that the clustering performance of the SOFM was strongly corre-
lated to the size of the dataset which the SOFM was trained on. Figure 4.6 displays
this result by comparing three SOFM’s trained on di↵erent amount of data sampled
from the same dataset. 4.6(a) was trained on 919 cell images, 4.6(b) was trained
on 9 190 cell images and 4.6(c) was trained on 91 900 cell images. All three models
were trained 100 epochs.

(a) SOFM trained on 919

cell images

(b) SOFM trained on 9 190

cell images

(c) SOFM trained on 91 000

cell images

Figure 4.6: Three SOFM’s trained on di↵erently sized datasets sampled from the same

original dataset.
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4.3 Labeling Data

4.3.1 Expert Labels

The use of the two options of validation labels resulted in parameters according to
table 4.1 and 4.2.

Table 4.1: Result of phase 1 using ”CellaVision expert- binary classification” as validation

labels. This label vector includes 111 di�cult labels.

Method No. di�cult Accuracy Sensitivity Specificity
Several exp 75 0.847661 0.207207 0.935643
Several ANN 94 0.837867 0.252252 0.918317

Class probabilities 9 0.873776 0.018018 0.991337

Table 4.2: Result of phase 1 using ”CellaVision re-classing” as validation labels. This

label vector includes 48 di�cult labels.

Method No. di�cult Accuracy Sensitivity Specificity
Several exp 75 0.890098 0.229167 0.926521
Several ANN 94 0.862894 0.166667 0.901263

Class probabilities 9 0.940152 0.020833 0.990815

4.3.2 Data Programmed Labels

The derivation of parameters for the di↵erent methods resulted in table 4.3.

Table 4.3: Result of phase 1. The label vector (”CellaVision binary class.”) includes 111 di�cult labels.

Method No. di�cult Accuracy Sensitivity Specificity Miss-rate
Several exp 75 0.847661 0.207207 0.935643 0.792793
Several ANN 94 0.837867 0.252252 0.918317 0.747700

Class probabilities 9 0.873776 0.018018 0.991337 0.981981
Merged methods 162 0.800870 0.405405 0.855120 0.594595
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4.4 Phase 2

To get an overview of the di↵erent methods in phase 2 and how they connect with
each other and the result, see figure 3.6.

4.4.1 Binary ANN

The performance during training of the ANN for binary classification of the original
imbalanced dataset is displayed in figure 4.7 while the prediction is presented in a
confusion matrix in figure 4.8(a). The performance of the network during training
on the balanced dataset is displayed in figure 4.9 while the prediction is presented
in a confusion matrix in figure 4.8(b).

(a) Accuracy (b) Loss

Figure 4.7: Accuracy and loss during 2 000 epochs for the binary ANN trained on the

labels ”easy” and ”di�cult” from the original imbalanced dataset.

(a) Original imbalanced dataset (b) Balanced dataset

Figure 4.8: Two confusion matrices from validation of the binary ANN trained on the

labels ”easy” and ”di�cult” from two di↵erent datasets.

46



(a) Accuracy (b) Loss

Figure 4.9: Accuracy and loss during 2 000 epochs for the binary ANN trained on the

balanced dataset.

4.4.2 Autoencoder

Results of two autoencoders using di↵erent delimiters and normalization methods
are shown in table 4.4, where the chosen method is highlighted in yellow.

Table 4.4: Result of the two autoencoders for di↵erent normalization methods and delimiters.

Model Norm. Delimiter Accuracy Sensitivity Specificity Miss-rate
Big-AE L1 0.300 0.826887 0.345670 0.933137 0.654330
Big-AE L2 0.300 0.822633 0.357885 0.925248 0.642115
Big-AE L2 0.270 0.784647 0.415497 0.866154 0.584503
Big-AE L2 0.260 0.764335 0.438469 0.836285 0.561531
Big-AE L2 0.25 0.740067 0.463628 0.801103 0.536372
Big-AE L2 0.240 0.714116 0.493163 0.762902 0.506837
Big-AE L2 0.230 0.685330 0.525251 0.720675 0.474749
Big-AE L2 0.010 0.181125 1.0 0.000322 0.0

Expert-AE L2 0.250 0.428726 0.810810 0.376237 0.189189
Expert-AE L2 0.113 0.177366 1.0 0.064356 0.0

The performance of two chosen autoencoders at two delimiter values is displayed
in the confusion matrices in figure 4.11, and the training losses in figure 4.10. A
Precision-Recall Curve (PRC) is an optimal way of analyzing a binary classification
of unbalanced data (30). It plots the recall (the amount of all target cells which
were found) on the x-axis and the precision (the proportion of the found target cells
which were correctly classified) on the y-axis. Therefore such plots was generated
for the autoencoders, seen in figure 4.12 and figure 4.13. Both for analyzing the
classification of easy cells, and for analyzing the classification of di�cult cells.
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(a) (b)

Figure 4.10: Plots demonstrating the loss during the training of the two autoencoders on

reconstructing easy cell features, both trained 500 epochs: (a) the loss of Big-AE; and, (b)

the loss of Expert-AE.

(a) (b)

(c) (d)

Figure 4.11: Confusion matrices of the performance of the two autoencoder at di↵erent

delimiters: (a) Big-AE for delimiter 0.250; (b) Big-AE for delimiter 0.010; (c) Expert-AE
for delimiter 0.250; and, (d) Expert-AE for delimiter 0.113.
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(a) Easy cells (b) Di�cult cells

(c) Easy cells (d) Di�cult cells

Figure 4.12: PRC’s of the performance of the chosen Big-autoencoder: (a) and (b) at

delimiter 0.250 and (c) and (d) at delimiter 0.010.

(a) Easy cells (b) Di�cult cells

(c) Easy cells (d) Di�cult cells

Figure 4.13: PRC’s of the performance of the chosen Expert-autoencoder: (a) and (b) at

the delimiter 0.250; (c) and (d) at the delimiter 0.113.
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4.5 Analyzing Phase 2

Table 4.5 displays the results from the ANN and the autoencoder for comparison.

Table 4.5: Resulting parameters for the two models tested in phase 2.

Method Norm. Delimiter Accuracy Sensitivity Specificity Miss-rate
ANN - - 0.819138 0.0 1.0 1.0
Big-AE L2 0.250 0.740067 0.463628 0.801103 0.536372

Figure 4.14 shows a SOFMwith colors representing classes according to 4.6 where the
di�cult cells, according to the validation labels, have got half of their corresponding
node colored black.

Table 4.6: Colors in SOFM.

Cell class
Segmented Neutrophil
Eosinophil
Basophil
Lymphocyte
Monocyte
Band Neutrophil
Promyelocyte
Myelocyte
Metamyelocyte
Blast
Plasma Cell
Smudge Cell
Erythroblast
Artefact
Giant Thrombocyte
Thrombocyte Aggregation
Reactive Lymphocyte
Abnormal Lymphocyte
Large Thrombocyte]
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(a)

(b) (c)

Figure 4.14: SOFM trained 500 epochs on 91 900 cell images, with colors representing the

classes and black halves representing the di�cult cells: (a) validation labels according to

3.3.1, (b) labels from the result of the autoencoder with delimiter 0.25, see table 4.4, (c)

labels from the result of the autoencoder with delimiter 0.30, see table 4.4.
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Chapter 5

Discussion

5.1 General Discussion

A di�cult aspect of the study has been the decision of what is easy to classify and
what is not. This is because the answer often lies in the eye of the beholder. The
divisions of cell classes are not distinctive and the classification of them often de-
pends on the surrounding cells and not only the visual appearance of the cell itself.
It is therefore di�cult to decide which cells are di�cult to classify only based on it’s
own visual appearance. An expert can can include many aspects in the classification
of the cell. With many years of experience, it becomes easier to classify cells both
based on morphology but also on qualified intuition. This is the reason that an
expert have been used to create validation labels, see 3.3.1.

Since the aim of the project was to find true easy cells, it was decided early in the
project that cells labeled as easy should, without any doubt, be easy. This resulted
in that all methods in phase 1 used for generating the training and validation labels
had to label a cell as easy for it to be classed as easy, otherwise it was classed as
di�cult. This made sure that the binary ANN and the autoencoder in phase 2
would only consider clearly easy cells as easy and everything else as di�cult. These
models were thereby exposed to minimal risk of learning patters of di�cult cells and
recognizing these patterns as patterns of easy cells. The models would thereby be
expected to detect di�cult cells, as all patterns which were not found on easy cells
were recognized as di�cult during training.

5.1.1 Data Selection

The results in figure 4.6 shows that the more data used, the better clustering in the
SOFM. Figure 4.7 demonstrates the accuracy and loss for a network trained on a
larger amount of data, while figure 4.9 demonstrates the accuracy and loss for the
same network trained on a smaller amount of data derived from the same database.
By comparing these figures, it can be seen that the accuracy is clearly higher while
the loss is lower for the network trained on more data. This is generally the case for
neural networks, and it would therefore be interesting to use an even larger data set
in future tests and see if the results could be improved.

The dataset consisted of unevenly sized cell classes. This can be seen in table 3.1 by
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comparing the amount of present cells. This distribution derives from natural blood
samples from a wide range of patients and the distribution thereby reflects well on
the common case for blood analysis on a normal patient. However, this provides the
algorithm with less data for rare cell classes and it would thereby be less expected
to provide confident analyses for these classes compared to more common classes.
It would therefore be interesting to perform similar simulations for a larger dataset
where all cells are represented to an equal amount.

As demonstrated in figure 4.1(a), 4.2(a) and 4.3(b), the networks in this study per-
formed well on the original sized data. This is seen by a high training accuracy, well
performed classification and clears clusters. However, a lot of time was required for
training on this data. With more time and/or more powerful computational sys-
tems, it would be interesting to perform all tests from phase 2 on the original sized
dataset and compare the result.

The division of the dataset during phase 1 resulted in a section of normal, easy cells
and a section of more di�cult cells. Because of the large size of this dataset while
having limited access to morphology experts, it has not been possible to verify that
this division was fully accurate. This means that there is a possibility of some easy
cells being labeled as di�cult and some di�cult cells being labeled as easy. This
might have influenced the model’s capability of detecting the subtle patterns which
separates easy cells from di�cult. In the dataset, the cells marked as easy were very
likely to be easy while the cells marked as di�cult were not as likely to be di�cult.
This favored the model’s capacities of labeling easy cells correctly, while being less
confident in labeling di�cult cells.

5.1.2 Building Neural Networks

Since all networks in this thesis were built using systematic experimentation, it is
likely that the longer time spent on experimenting with architecture the better net-
work architectures could probably have been found. Thereby, the performance of
the networks was a trade-o↵ between performance and time spent on this experi-
mentation.

5.1.3 Dimensionality Reduction

The comparison of the two methods PCA and autoencoder for dimensionality re-
duction was only based on literature, which stated that the autoencoder was better
for large data sets since it retained all input information and had higher accuracy
than PCA (26). A more thorough comparison of the methods would have been
interesting if there were more time.

The architecture of the ANN’s which are testing the e↵ect of dimensionality re-
duction could not be exactly equal, due to di↵erent input sizes, see table 3.3. For
example for the full-sized dataset, the largest amount of nodes in the first dense
layer that the computer could handle was 1 380 nodes, which corresponds to 10% of
the 13 800 input features. For the dimensionality reduced dataset of 100 features, an
amount of 80 nodes in the first dense layer were considered as the best performing
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architecture for the network. This corresponds to 80% of 100 features. Because of
this, the model comparison cannot reflect on the best possible performance of the
two models but rather on the best available performance for these computers.

When plotting the accuracy and loss for the two networks, it was clear that the
network trained on 13 800 dimensions had been overtrained already at epoch 30 of
500. This was considered early, since the network trained on only 100 dimensions
showed no signs of overtraining after 500 epochs. Since overtraining occurs when
the model starts to train on noise in the data (12, p. 45), this may indicate that a
large amount of the 13 800 data points for each image are noise. It is believed that
when using the AE to compress the data points from 13 800 to 100, these 100 data
points are to the vast majority general properties while containing a small amount of
noise. The network trained on the autoencoded features was better at generalizing,
while the network trained on 13 800 dimensional features was trained on noise and
thereby lost the ability of generalizing.

The time aspect of training the models was also important in this study. Consider-
ing that the network which trained on fewer dimensions finished 500 epochs in 10
minutes while the network trained on full-sized dimensions finished in 2 hours, it
was therefore decided to continue with the dimensionality reduced data.

Testing the e↵ect of dimensionality reduction using SOFM gave an unexpected re-
sult. The SOFM trained on the original dataset, see figure 4.3(a), displayed a better
clustering of the cells compared to the SOFM trained on the dimensionality reduced
features, see figure 4.3(b). The expected result was that the SOFM trained on the
original features would have performed worse since the original data was suspected
to be filled with unnecessary information and noise due to the performance of earlier
ANN’s during the previous tests.

5.2 Phase 1

To get an overview of the di↵erent methods in phase 1 and how they connect with
each other and the result, see figure 3.3.

5.2.1 Methods

5.2.1.1 Several Experts

Removing all cells which had only been classed once by one morphology expert
ensured that the cells had to be classed at least twice. These classifications were
compared and the cells could be labeled as easy or di�cult. Most of the cells in this
dataset had been classed twice, while some cells was classed by up to 15 experts.
This implies a certain imbalance in the dataset since one divergent classification of
a cell will corresponds to a higher or lower percentage of the di↵erent classifications
depending on the amount of experts who had classed that particular cell. It could
be discussed whether a cell which for example was classed by 15 experts where
14 agreed on the cell class ”Lymphocyte” while one claimed it was an ”Abnormal
Lymphocyte” should be considered as easy or di�cult, since 93,3% of the experts
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in fact agreed on the cell class. However, in this project it has been of importance
to ensure that all cells which are labeled as easy are very easy while all ambiguous
cells are labeled as di�cult. Therefore, the decision to label all cells where at least
one of the morphology experts classifications disagreed with the others is a decision
consistent with the aim of the project.

5.2.1.2 Several Variations of ANN

The performance of all three networks were very even, with an approximate accuracy
of 92.5% and a loss at 27.5%. This was considered as a good enough performance.
Which level of performance to aim for when creating these networks was a trade-o↵
between performance and resulting classification, since an accuracy of 100% and a
loss of 0% for all networks would have resulted in all networks classing the validation
equally and correct. Hence, the networks would not have disagreed on any cells,
resulting in this method not generating a vector of di�cult cells. Also the other way
around, a very low accuracy and a high loss would probably have resulted in the
networks classing most of the cells di↵erently and wrong, would have resulted in a
vector containing an unreasonably large amount of di�cult cells.

5.2.1.3 CellaVision Expert Re-Classing

The result from using a morphology expert from CellaVision reclassing the cells was
good. However, since it was better to use the result of an expert classing easy or
di�cult right away (4.1) and it takes too much time and resources to get enough
data from this method, it was not used to generate training data in phase 1.

5.2.1.4 CellaVision Classification Probabilities

Since all probabilities of CellaVision’s classification algorithm were very high, it
was hard to make the decision on where to draw the line between what should be
considered as easy or di�cult. The probability value chosen as the delimiter was
0.999, see section 3.2.5. The fact that values below of a delimiter this high could
still be considered as the di�cult cells, shows that CellaVision’s network was very
sure of it’s own classification.

5.2.1.5 SOFM

The importance of training a SOFM on a large dataset was discovered during early
tests. When comparing the figures 4.6(a), 4.6(b) and 4.6(c), it was clearly seen that
a better clustering is achieved when training the SOFM on a larger dataset in figure
4.6(c). The SOFM trained on 91 900 images were found to perform best, and it
was thereby decided to further train all SOFM’s on such large datasets to ensure a
reasonably good test result.

The initial idea was to use the SOFM as a way to find which cells were easy to
classify and which were not. If a cell was visualized in the middle of a cluster on
the SOFM-grid, the thought was that this cell would be easy to classify versus a
cell which was visualized between clusters. The distance between the neurons would
therefore be a measure of how easy the cell was to classify. However, as can be seen

56



in figure 4.14 where the di�cult cells are visible in the same grid as the clusters,
the probability of a cell image being di�cult does not seem to relate only to the
distances from the cluster centers, but also very much to the cell type. Therefore, it
was decided that the SOFM would not be used as a way to find if a cell was di�cult
or easy to classify, but rather to analyze the other methods.

5.2.2 Labeling Data

A SOFM performs its training process without labels and is therefore only dependent
on having access to labels during validation, which makes the amount of required
labels relatively low. It was thereby possible to use labels generated by a morphology
expert at CellaVision for this task, which was desired since these kind of labels are
of high quality (28). An ANN for classification on the other hand requires access to
labels during training, and the labels should be generated before splitting the dataset
into training and validation for the result to make any sense (31). The autoencoder
in particular do not require labels during its training but, in this research, labels were
required for generating the dataset which the autoencoder would train on. Therefore
it would not make sense to use the CellaVision expert’s labels for validation of the
binary ANN or the autoencoder, since the labels which these methods were build
upon would not have been generated in the same way as the labels for the training
data.

5.2.2.1 Internal Labeling

Looking at table 4.1 and 4.2, it can be seen that the specificity in general was higher
for 4.1. The sensitivity was higher in 4.1 for ”Several ANN” but lower for the other
two methods. This is related to that this method found more di�cult cells than the
other two methods. Finding too many di�cult cells is better than finding too few
di�cult cells, which makes this high number a good thing as long as it is within a
reasonable range. 111 di�cult cells would be considered reasonable. The accuracy
is rather similar for both methods, even though the second method do have better
values. All together, the di↵erence in sensitivity and number of found di�cult cells
outweighs the di↵erence in other aspects, and the first option, ”CellaVision expert-
binary classification” is chosen as the validation labels to be used when mapping
where di�cult cells are placed in the SOFM.

5.2.2.2 Data Programmed Labels

The validation labels for the binary ANN and the autoencoder had to be generated
in the same way for both training and validation, which means that labels were
needed for a very large amount of data. The alternative of using CellaVision’s mor-
phology expert was therefore ruled out due to lack of resources. The labels were
generated for a large dataset, which enhanced the training of the models, although
labels generated by data programming tends to be of a lower quality (28).

When analyzing the three methods separately, it was found that the method ”Clas-
sification probability” had the best accuracy and specificity. However, it had low
sensitivity compared to the other two methods. This implied that the method la-
beled di�cult cells as easy, which was an unwanted behaviour. The methods ”Several
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experts” and ”Several ANN” were of equal performance in accuracy and specificity,
although ”Several ANN” had higher sensitivity and lower miss-rate. It is also the
method which found the highest number of di�cult cells. This is an advantage since
it is better to classify too many cells as di�cult than too few.

It was found that the three methods identified di↵erent kinds of di�cult cells. It
was therefore decided to merge these, generating a fourth label vector. The derived
parameters for this label vector is seen as ”Merged methods” in figure 4.3. When
merging the methods, the resulting sensitivity was highly increased since all pre-
viously di�cult labeled cells are added together in this method. This was a much
better result than the methods one by one. The specificity was decreased, which also
is a result of the higher number of di�cult labeled cells. Even though this decrease
was a deterioration, the overall parameters for the merge was the best obtained
result and chosen to use in phase 2.

It should be pointed out that the sensitivity is rather low for all the methods. This
is hard to get around, since the answer used is a subjective answer from the expert.
The problem lies in the study area itself, since there is no objective answer to what
is a di�cult cell, which has been discussed, see section 5.1.

5.3 Phase 2

To get an overview of the di↵erent methods in phase 2 and how they connect with
each other and the result, see figure 3.6.

5.3.1 Binary ANN

As seen in figure 4.8(a) and 4.8(b), the binary network could not detect any di�-
cult cells neither when trained on the original imbalanced dataset nor the balanced
dataset. However, the performance of the model during training on the original
imbalanced dataset was good, as seen in figure 4.7. The accuracy was high and the
loss relatively low for both training and test data, although the test performance
was somewhat unstable for both accuracy and loss. The performance of the model
during training on the balanced dataset was not as good, see figure 4.9. For the
original data the training accuracy was high (87%) and the loss relatively low (28%)
while both being unstable for the balanced data where the accuracy varied between
65% to 80%, and the loss between 50% and 60%.

When looking at the plots from the model trained on the original imbalanced data,
the measurements from the model indicates that the model should perform quite
well - while it in fact guessed all cells to be easy and no cells to be di�cult. This
indicates that the properties that makes the cell di�cult is very individual from cell
to cell. The model has not been able to detect any general patterns for what makes
a cell di�cult, it has only learned what was di�cult for the di�cult cells in the
training data. The fact that the model labeled all cells as easy indicates that the
di�cult cells in the validation dataset displays tendencies and properties of easy cells.
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When instead looking at the plots from the model trained on the balanced dataset
with a much higher presence of di�cult cells, the unstable plots indicates a di�cult
learning process for the network. Since the test loss does not increase while the
training loss decreases as seen in figure 2.5, we can draw the conclusion that the
poor performance is not related to the model being overfitted to the training data.
This unstability could instead be a result of a higher presence of di�cult cells,
resulting in the model making wrong classifications of the di�cult cells more often
since they now correspond to 50% of the dataset.

5.3.2 Autoencoder

As seen in figure 4.10(a), the loss of the big autoencoder is very low (0.015%) when
trained on reconstructing the easy cells. As seen in figure 4.10(b), the loss of the
expert autoencoder is also low (0.05%). The low losses can be considered as indica-
tions of both autoencoders performing well as reconstruction models.

To decide a delimiter value for the big autoencoder, several di↵erent values were
tested and the resulting parameters values were calculated, which can be seen in
table 4.5. With a high delimiter value, the specificity is high and the miss-rate
increases. With a low value both the miss-rate and the specificity decreases. The
highest risk for the future use of this model would be that the di�cult cells are
identified as easy cells and therefore hidden from the user. This happens when the
miss-rate is high. However, if the specificity is low, the model identifies many easy
cells as di�cult and thereby displays them in the interface. If too many cells are
displayed, there is no point in using the model at all. A high specificity is therefore
needed for the model to become useful for lab personnel. It becomes a trade-o↵
where balancing these two values, the miss-rate and the specificity, is important. A
low miss-rate and high specificity is wanted. It was found that a delimiter at 0.25
displayed a low miss-rate (around 50%) while the specificity was high (80%) e.g.
reflecting on few false positives. This choice of delimiter was a number providing
desirable results for this specific dataset for the big autoencoder.

The di↵erence between using L1- and L2-normalization was small, but since L2 gave
slightly better results it was chosen for this model.

By looking at table 4.5 and figure 4.11, 4.12 and 4.13 the two autoencoders Big-AE
och Expert-AE can be compared. While Big-AE with delimiter 0.25 has a higher
precision for the found di�cult cells than the Expert-AE, it finds fewer and has a
lower precision of the easy cells, figure 4.12(b) and 4.13(b). When comparing the
delimiter value which gave 100% sensitivity for both autoencoders, i.e. predicting all
di�cult cells correctly, it is clear that the Expert-AE has a much higher specificity
than the Big-AE. It finds 56 out of 808 easy cells, while Big-AE only finds 8 out of
24 842 easy. This means that the Expert-AE could be used autovalidate many of the
cells and with the delimiter value 0.113 predict all di�cult cells correctly. However,
finding 56 out of 808 easy cells and hiding these would not decrease the workload
for the lab personnel su�ciently. Besides, the specificity of the Expert-AE is lower
than for Big-AE, see figure 4.5, meaning that the probability of the predicted dif-
ficult cells to truly be di�cult, is lower. This is not desired. Considering that the
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Expert-AE is trained on a much smaller dataset and received a larger loss than the
Big-AE it can also be considered as more uncertain. Therefore, the Big-AE has
been chosen for use in the tests in this study. However, it would definitely be inter-
esting to see how well the Expert-AE could perform when trained on a larger dataset.

Figure 4.11 shows how the Big-AE worked as an anomaly detector. About 46% of
the di�cult cells were found. Figure 4.12(a) shows that the model found about 80%
of the easy cells in the data (recall) while about 90% of the predicted easy cells
were true easy cells (precision). When looking at figure 4.12(b) it can be seen that
the model is better at identifying easy cells than di�cult ones. About 45% of the
di�cult cells were found (recall), while only about 35% of the predicted di�cult
cells were true di�cult cells (precision). This is not surprising, since the di�cult
cells are more unlike each other and therefore more di�cult for the model to find.
It is a benefit that the model is better at identifying the easy cells, since the future
use of the model would imply hiding easy cells from a user interface. It is there-
fore more important to be sure of the classification of the easy hidden cells, than
of the di�cult displayed cells. However, if the model finds 90% correct easy cells
this means that 10% of the hidden cells are in fact di�cult, and would have been
important to display. This number needs to be decreased for the model to be used
in a real application.

Despite the low loss of the autoencoder during training, many of the di�cult cells
could not be detected. This may be a result indicating that some of the di�cult cells
could in fact be semi-easy cells, or that these cells have attributes making them very
alike normal cells. The result supports the theory of di�cult cells being composed
by several separately normal attributes from di↵erent cell classes, making the true
cell class di�cult to decide.

When dividing the dataset into easy and di�cult cells in the setup of this study, it
was decided to make sure that all cells labeled as easy were definitely easy. All cells
displaying any tendency of being di�cult due to any method during phase 1 were
labeled as di�cult. This have a↵ected the autoencoder by enhancing its capability
of reproducing easy cells, while all cells in the borderline between being easy and
di�cult might be harder to recognize as di�cult since these are partially patterns
which the autoencoder was trained on. Therefore it is an expected result for the
autoencoder to display a higher specificity than sensitivity. If the setup of the task
was the opposite, meaning that it was instead required for a cell to be very di�cult
for it to be classed as di�cult while labeling all easy and semi-easy cells as easy,
the autoencoder could instead be expected to display a higher sensitivity since the
patterns of the very di�cult cells might not be present to the same extent in the
easy or semi-easy cells. A disadvantage of this setup would instead be the risk of a
lower specificity, reflecting on an increase of easy cells labeled as di�cult. When us-
ing autovalidation in a real product, the purpose would be to decrease the workload
for the lab personnel by hiding the normal, easy cells which were classed correctly
by the software. Furthermore, since easy patters constitutes for the majority of the
data, it makes sense to approach the problem of autovalidation by being sure of
what is easy rather being sure of what is di�cult.
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5.3.3 SOFM

The resulting SOFM, see figure 4.14, shows clear clustering of the cell classes. This
is a positive result that implies that the SOFM method works well for the cells.
When it comes to identifying the di�cult cells in the clusters, it is not obvious what
conclusions can be drawn from the SOFM. In many cases the di�cult cells seems
to be in the outskirts of the clusters, which makes sense if one assumes that the
di�cult cells are the ones which are most unlike a specific cell type. It indicates
that they are somewhere in between cell classes when it comes to appearance.

However, the di�cult cells are not always positioned in the outskirts, there are cases
seen when the cells are almost in the middle of clusters. It is di�cult to understand
how these cells can be di�cult to label and at the same time looking very much
alike many cells of the same cell class.

Furthermore, big di↵erences can be seen when it comes to the proportion of dif-
ficult cells in di↵erent cell classes. Abnormal lymphocytes, reactive lymphocytes,
myelocytes, monocytes and artefacts are all classes where a large proportion of the
cells are di�cult. It would probably be desired that these cell classes have a higher
chance of being classified as di�cult, since they show this tendency.

5.4 Future

5.4.1 Future Improvements

The parameters in this study have been selected based on the aim, models and time
limits of the study. The parameters in models have been optimized due to the re-
strictions of the project, and the choices which led to these results can many times
be seen as subjective. This means that with other circumstances, such as other
data or time limits, it is possible that improved specificity, sensitivity, miss-rate and
accuracy could be obtained.

The method ”CellaVision classification probabilities” might have been able to give
clearer results if the probabilities had been more separated and evenly spread over
an interval between 0 and 1. In this study the probabilities were all very high,
about 0.9. A further study trying to separate the high numbers would have been
needed. One idea is to use layer normalization for this task. This was something that
this study did not have the time to focus on, but could be an example of future work.

Furthermore, the results showed that the SOFM improved its clustering ability with
a larger dataset. It would therefore have been interesting to see how much the
SOFM could improve with an even larger data set than used in this study, but also
if the result of the other methods would improve with more data.

For future studies, it would be of interest to put more work and detail into deciding
which cells should be considered as easy and which should be considered as di�cult
when preparing the binary labels. Since this question is of a such subjective matter,
it would be interesting to involve more morphology experts and create a larger set of
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internal labels. Another complement to the methodology of preparing the database
could be to perform interviews with morphology experts to get a better understand-
ing of the appearance of di�cult cells. This may result in an improved sectioning
of the dataset, providing the models with better prerequisites and enhancing the
autoencoder’s chances to detect anomalies in data.

5.4.2 Future Work and Usage

Future work would include testing the model by implementing it as a module in the
CellaVision system, where it could be used as a way for the user to hide di↵erent
levels of easy cells. A user study should be carried out to investigate how much this
reduces the work load for the users, as well as a study of how the module would
a↵ect the result of diagnoses made with help from it. An autovalidation module like
this includes risks since cell classification is a↵ected by the appearance of the cells
nearby, which means that a morphology expert often have to view the whole blood
sample to be able to draw conclusions. This is not taken into account in this study.
There is a risk of hiding cells which are needed for the evaluation, which could lead
to that the conclusions of the test might be incorrect. It is therefore important to
do a proper clinical study of the module.

5.5 Ethical Considerations

When performing studies in the medical field, there is an ethical risk to consider
due to patient integrity. In this study blood samples from patients have been used
to generate data. However, it is not the actual blood which have been exposed for
the tests but the images of the cells in the blood. For all samples, the blood have
been anonymized which makes them impossible to trace back to the patients.
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Chapter 6

Conclusions

The aim of this thesis was to investigate the possibility of creating a binary clas-
sifying module able to separate white blood cells which are easy to classify from
those more di�cult to classify. The models were thought to be trained on data from
CellaVision’s database, while being independent of which hospital has made the
blood cell preparation. The results in this research was based on data from blood
smears of di↵erent preparations, which made the model independent corresponding
to the aim. The possibility of creating a binary classifier able to separate easy cells
from di�cult cells has been investigated while achieving indications of both success-
ful and less successful ways of approaching this problem. The conclusions of the
study will be presented in the following sections.

Firstly, the ANN for binary classification turned out not to work for this particular
task of classifying cells as easy or di�cult since no di�cult cells could be detected
with this method.

Secondly, the autoencoder was able to correctly detect 45% of the di�cult cells and
80% of the easy cells. This indicates that the used approach was somewhat success-
ful, although several future improvements was suggested which might improve the
performance to become even better.

Furthermore, it was concluded that it was of importance to train SOFM’s on large
datasets to ensure a good clustering capacity. In the SOFM, the di�cult cells were
often placed on nodes at the outskirts of the clusters, although some di�cult cells
were located in the middle region of the clusters.

Additionally, it was found that reducing the dimensionality of the data with the
use of an autoencoder did not have a negative impact on the performance during
classification or anomaly detection. This since all important information seemed
to be represented in the converted data. When also considering the time aspect
of training networks, using dimensionality reduced features in neural networks and
autoencoders was beneficial.
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Appendix A

Tools Used

All code was written in Python 3.7.1. The main libraries used were Tensorflow (32)
(version 1.13.1), an open source platform for machine learning, Keras (33) (version
2.2.3) a deep learning library enabling fast experimentation, NeuPy (27) (version
0.8.1), a Python library for prototyping and building neural networks, and Scikit-
learn (34) (version 0.20.1), a tool for data analysis. The GPU used was NVIDIA
GeForce GTX 1050 Ti.
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