
Signal and background discrimi-
nation for two-electron events in
LDMX using a Boosted Decision
Tree

Jessamy Mol

Thesis submitted for the degree of Master of Science
Project duration: 10 months

Supervised by Ruth Pöttgen and Torsten Åkesson

Department of Physics
Division of Particle Physics

May, 2019

Signal and background discrimination in two-electron
events in LDMX using a Boosted Decision Tree

Jessamy Mol

May 29, 2019

Abstract

The Light Dark Matter Experiment (LDMX) is a fixed target experiment that will
search for dark matter, but is still in the development phase. An important aspect for
the experiment is the discrimination of signal and background events. Here this signal
and background discrimination is inspected using a machine learning technique called a
Boosted Decision Tree (BDT). This is done using Monte Carlo simulations of signal and
background events, where two electrons hit the target. The signal sample used contains
events where one electron undergoes a signal interaction in the target creating a dark
matter mediator of a mass of 10 MeV, while the second electron can have any possible
interaction (except for a signal interaction). The background sample contains events
where one electron loses at least 1.5 GeV of energy by radiating a photon due to a
bremsstrahlung interaction. This photon then has a photo-nuclear reaction in the
Electromagnetic Calorimeter (ECal), while the second electron can again have any

possible interaction. To train the BDT a number of features based on the information
from the ECal are used. The distribution of these features is shown for the signal and
background samples. The samples are divided into subsets of data, the training data,
test data and independent test data. A BDT is trained on the training data and tuned
using the performance on the test data. To get a unbiased measure of the performance
of the BDT the independent test data is used. The BDT has an Area Under Curve
(AUC), for a Receiver Operating Characteristic (ROC) curve, of 0.998981 on the test

data and an AUC of 0.998720 for the independent test data. For a background rejection
of 99% the signal efficiency is 97% with a BDT threshold of 0.7.

Keywords: Light Dark Matter Experiment, Boosted Decision Tree, machine learning,
Dark Matter.

Contents

1 Introduction 1

2 Validation of simulation samples 7

2.1 Introduction . 7

2.2 Energy and transverse momentum distribution 7

2.3 Boosted Decision Tree features . 10

3 Boosted decision tree 20

3.1 Introduction . 20

3.2 Method . 25

3.3 Results . 27

4 Conclusion 38

5 Outlook 39

Acronyms 40

Appendix A Python script BDT 42

Appendix B Python submission script 52

Bibliography 53

i

1 | Introduction
Dark matter has long been a mystery in astronomy as well as in particle physics. When
Zwicky [1] was observing galaxy clusters in 1933 he made the discovery that in order to
explain the gravitational motion there had to be a large amount of unseen mass. Since this
matter does not emit light he referred to it as dark matter. However, the first evidence
for dark matter was found as early as 1930 by Lundmark [2].

The building blocks of our universe

The amount of dark matter is actually much larger than the amount of baryonic matter
("normal" matter such as protons and neutrons) which only constitutes 5% of the total
mass-energy, while dark matter makes up approximately 27% [3, 4]. The remaining 68%
is dark energy, which is thought to accelerate the expansion of the universe. Thus far
particle physics can describe baryonic matter with the so-called Standard Model (SM).
The particles contained in the Standard Model can be seen in figure 1.1. It is divided into
two major groups, the force carriers called bosons, for instance the photon for electro-
magnetic force, and the fermions. The fermions are again subdivided into quarks, these
are the building blocks for protons and neutrons, and leptons, such as the electron.

Figure 1.1: The particles in the standard model. Image from [5].

1

Chapter 1. Introduction

Dark matter does not fit within this model and would be something new. However, dark
matter might be a particle or a set of particles which we would be able to discover.

Arguments for the existence of dark matter

Which reasons are there to believe that dark matter actually exists other than the already
discussed observations by Zwicky? A number of astrophysical observations have been
conducted and have lead to the acceptance of the existence of dark matter. A few of the
most important ones will be outlined.

The rotation of stars around the galactic centre has been measured for a number of spiral
galaxies. The velocity is expected to decrease as the distance increases. However, the
resulting rotational curves look different than expected, they remain fairly flat instead
of showing this expected fall. The presence of dark matter would be able to explain the
observations [6]. The observed rotational curves as well as an illustration of the observed
compared to the expected curve can be seen in figure 1.2.

Figure 1.2: On the left the observed rotational curves of 21 spiral galaxies can be seen.
On the right an illustration of the expected rotational curve, if there was no dark

matter, is shown by the dotted line A, the solid line B shows the observed result. Images
from [6] and [7].

Another argument for dark matter is presented by the mass reconstruction of an interact-
ing galaxy cluster, a system with merging subclusters of galaxies, by a technique called
gravitational lensing. Very heavy objects can bend the light in their vicinity. When a
galaxy is hidden behind such a heavy object, its light will bent around the object and
reach the Earth. For us on Earth the hidden galaxy can be seen to appear around the
heavy object as, for instance, a ring. How much the light is bent depends on the mass of
the massive object. A clear example of gravitational lensing is shown on the left in figure
1.3, the principle of gravitational lensing is shown on the right of the figure.

The mass construction of the interacting cluster 1E 0657-558, containing two merging
subclusters, shows that the mass derived from the gravitational lensing effect is much
higher than the mass which can be inferred from the emitted light, which indicates the
presence of dark matter in the cluster [10].

There are many more observations which prove the presence of dark matter in the universe,
such as the comparison of the centre of gravitational mass to the centre of visible mass
in the Bullet cluster [11], as well as measurements of the cosmic microwave background
radiation by the Planck mission [12].

2

Chapter 1. Introduction

Figure 1.3: On the left an image from the Hubble telescope of a ring due to
gravitational lensing is shown. Here the central object causes the galaxy hidden behind
it to appear as a ring around it. The image on the right shown an illustration of how

gravitational lensing works. Images from [8, 9].

Hypothesis for dark matter particles

There are a number of different candidates for dark matter particles, but all have the
general properties expected for dark matter particles [13]:

1. non-baryonic

2. no electric charge

3. no electromagnetic interaction (i.e. no interaction with photons)

4. non-relativistic and therefore not massless

5. stable (or very long lived)

One of the most popular hypothesis is that dark matter consists of Weakly Interacting
Massive Particles (WIMPs), which is a general hypothesis that leaves room for different
possible particles having other properties [13]. It is a type of thermal relic, where the
dark matter is produced in the early universe when the system is in thermal equilibrium.
After a "freeze out" the current abundance of dark matter should be left [14]. There has
been a focus of research on WIMPs with a mass above ∼10 GeV, but nothing has been
found so far, causing the exclusion of a large portion of the parameter space [15, 16].
This motivates the search for light dark matter in the sub-GeV mass range, a range in
which a lot of the Standard Model particles are present. The specific model which we are
interested in, which is a type of thermal relic light dark matter, states that there will be
a new mediating particle (like the SM bosons) which would be the connection between
the SM particles and the dark matter particles. This mediating particle is called the dark
photon and would be able to interact with SM particles, but also decay into dark matter
particles [17].

3

Chapter 1. Introduction

LDMX experiment

The Light Dark Matter Experiment (LDMX) is still in its development phase and will look
for dark matter in the MeV-GeV mass range. It will do this using the missing momentum
technique, where the momenta of the outgoing particles that have been measured are
compared with the momentum of the ingoing particle. A discrepancy between the two
indicates an unseen particle. Neutrinos are an example of particles that can be measured
using the missing momentum technique. The experiment requires an electron beam which
will hit a thin fixed target after which the energy of the (visible) outgoing particles will be
measured. The production of dark matter will be similar to bremsstrahlung known from
baryonic matter. One type of bremsstrahlung is the production of an energetic photon due
to the interaction of a charged particle, in this case an electron, with the electromagnetic
field of a nucleus. The dark matter equivalent is called dark bremsstrahlung, here a dark
photon (dark matter mediator) is emitted after interaction of the electron with the fixed
target [17]. The dark photon is not detected and carries off energy, it can therefore be
noticed as missing momentum. See figure 1.4 for the diagram of dark bremsstrahlung.

Figure 1.4: On the left the diagram of the radiation of a dark matter mediator (A′)
from a electron (e−) due to the interaction with an atom (Z) in the target is shown.

The right side shows the successive decay of the dark photon into dark matter particles
(χ and χ̄). Image from [14].

A dark matter production signature does not only involve a large energy loss by the 4 GeV
beam electron, but also a non-zero transverse momentum of the electron and the lack of
other visible final state particles that could explain the energy loss. To be able to have
a successful detection of dark matter, all the kinematic components of the electron need
to be measured. To do this a recoil tracker and Electromagnetic Calorimeter (ECal) are
present, see figure 1.5. The recoil tracker measures the impact position of the electron at
the target and the momentum and direction after the target. The ECal, a high granularity
Si-W sampling calorimeter consisting of 32 Silicon layers with hexagonal sensors, enables
not only the measurement of the total energy deposition, but also the characterisation of
showers. The target is made of a thin tungsten foil with a thickness of about 10% of the
radiation-length. Before this target a tagging tracker is placed to measure the momentum
of the beam electrons to ensure they have the desired 4 GeV and arrive perpendicular to
the target. It also measures the position of impact to the target which can be compared
to the same measurement by the recoil tracker. It uses a magnetic field of 1.5 T to reject
low energy stray particles from the beam halo. Because it is important to measure all
visible final state particles that can carry away energy and some of these do not deposit

4

Chapter 1. Introduction

energy in the ECal a second calorimeter is needed. The Hadron Veto Calorimeter (HCal)
will identify hadrons not measured in the ECal, such as energetic neutrons from a photo-
nuclear reaction in the ECal. The different elements of the LDMX detector are shown in
figure 1.5. A more detailed description of the experiment and detector is available in [14]
and [17].

Figure 1.5: Schematic depiction of the LDMX detector design. Image from [14].

In the case of one electron hitting the target and being detected at the time, the selection
of interesting events is simpler than when several electrons hit the target at the same time.
However, several simulation electrons are needed to be able to get sufficient statistics, even
though this will make the selection of a possible dark matter event more complicated. For
the optimisation of the LDMX experiment, the study of multi-electron events is therefore
an interesting and important topic.

Signal and background discrimination

Since the creation of dark matter would be a very rare event, a lot of events will need to
be measured. This creates a lot of data and makes it important to select the interesting
events. Most events will be background events, where no dark matter is created, and are
therefore not interesting, while a fraction of the events appear to be signal events, where
dark matter is created, and merit further investigation. To study the performance and
for further development of the LDMX detector, Monte Carlo simulations have previously
been performed by the LDMX collaboration of both signal events as well as different types
of background events.

Some of the background processes to consider are beam-related background, brems-
strahlung followed by a photo-nuclear interaction or photon conversion to muons and
neutrino production in the target. Most of the beam electrons do not interact with the
target and just pass through, but this is not a real background since the electron did not
lose a lot of energy and therefore does not seem like a signal. However, when a beam
electron has a low energy (significantly less than the expected 4 GeV), it will result in

5

Chapter 1. Introduction

a low momentum recoil electron and thus mimic a possible signal. Therefore a tagging
tracker is placed before the target, which ensures that all incoming electrons have the
desired momentum and any beam-related background events can then easily be removed.
The most common interaction of a beam electron with the target is bremsstrahlung. For
some of these events the electron will have lost a large amount of energy to the photon.
This bremsstrahlung background can be recognised by identifying both the electron and
the photon in the ECal. However, if the photon has a photo-nuclear (PN) reaction in the
ECal, it will in some cases deposit very little energy and be harder to detect, especially
when the reaction products are neutral particles. The HCal is used to identify hadrons
produced in the interaction. The photon can also convert to a pair of muons. This pro-
cess can be recognised by on or two tracks in the ECal. For the scope of LDMX neutrino
production processes in the target are so rare that they are negligible. Figure 1.6a shows
a schematic depiction of a signal event process, while figure 1.6b shows the depiction of
some background processes in the detector.

(a) signal event (b) some background events

Figure 1.6: Schematic depiction of a signal event (on the left in 1.6a) and some
background processes (on the right in 1.6b) in the detector. Images from [14].

The focus of the research for this project is the use of machine learning to make a dif-
ferentiation between signal and PN background events. Specifically, a type of supervised
machine learning called a Boosted Decision Tree (BDT) will be used. A Boosted Decision
Tree has already been studied for events where one electron hits the target [14]. Here
the performance of a BDT for signal and background differentiation using Monte Carlo
simulations samples where two electrons hit the target will be investigated.

Before using the simulation samples for BDT studies it is important to validate the sim-
ulations. It is therefore relevant to plot a number of known distributions, as well as the
variables which will be used to train the BDT.

In this thesis we will first look at the Monte Carlo simulations in chapter 2. The appli-
cation of a BDT for signal and background differentiation will be discussed in chapter
3.

6

2 | Validation of simulation samples

2.1 Introduction

To study the performance of the detector and improve the design, Monte Carlo simulations
have previously been performed by the LDMX collaboration. The propagation of particles
through the detector and their interaction with the material are simulated with the LIGT
framework [14]. This is a custom LDMX interface to the GEANT4 [18] Toolkit. As a closer
inspection of the samples resulting from the simulation of signal and background events,
some distributions will be plotted. The simulations studied are mostly where two electrons
hit the target and some 1-electron samples for reference. In the 2-electron signal samples
one electron is required to have a signal interaction, while the other electron is ’inclusive’,
which means that it can have all possible interactions except for a signal interaction, but
will almost always not interact in the target. The 2-electron background samples contain
at least one electron which interacts in the target to create bremsstrahlung followed by
a photo-nuclear interaction in the ECal, while the second electron is also inclusive. A
trigger cut is performed on the 2-electron background simulations samples. It requires
that at least one electron has lost a minimum of 2.5 GeV to be able to mimic a signal
event, which means that the maximum total energy of the electrons in the simulation
events is 5.5 GeV (1.5 + 4.0 GeV). The 2-electron signal samples with a mediator mass of
0.01, 0.1 and 1 GeV contain 72436, 39530 and 77142 events respectively. The 2-electron
PN background sample contains 81734 events. For the plots shown in this chapter event
weights have been applied for the background samples and all curves are normalised to
an area of 1.

2.2 Energy and transverse momentum distribution

We will first look at the energy and transverse momentum distributions of 1-electron
and 2-electron samples and compare them, because they are the main discriminators
between signal and background events. The energy of the recoil electrons, the electrons
after the target, in the 1-electron samples is plotted in figure 2.1a for both signal and PN
background samples. The different masses for the different signal samples refer to different
hypotheses for the mass of the dark matter mediator A′. The transverse momentum
distribution of the recoil electrons is shown in figure 2.1b for 1-electron background and
signal samples.

7

2.2. Energy and transverse momentum distribution

(a) 1e energy (b) 1e momentum

Figure 2.1: Normalised histogram of the energy (on the left in 2.1a) and the transverse
momentum (on the right in 2.1b) of the recoil electron for different dark mediator (A′)
masses (0.01, 0.1 and 1.0 GeV) and the PN background. These plots are done using

1-electron (1e) samples. The dotted black line in 2.1a is at 1.5 GeV.

The plots shown in figure 2.1 look similar to those in Fig 10 in [14] and are as expected.
When the mediator (A′) has a larger mass it will carry away more energy when it is
radiated by an electron. The recoil electron will then be left with less energy, this can be
seen in figure 2.1a where for the curves with a larger mass the maximum energy is lower.
The recoil electron can have a maximum energy of 4 GeV minus the mass of the mediator
particle it radiates, for a mediator mass of 1 GeV the maximum energy of the recoil e is
3 GeV. When the mediator mass is higher it can also give a larger "kick" to the electron
resulting in a larger maximum transverse momentum, as can be seen in figure 2.1b. The
black dotted line in the energy plot (figure 2.1a) is at 1.5 GeV and marks the last bin for
the PN background. This is the trigger for the 1-electron background. The recoil electron
in the background can have a maximum of 1.5 GeV, anything above is already rejected,
because it does not mimic a signal.

The same energy and transverse momentum distribution for the 2-electron signal and PN
background samples are shown in figure 2.2, which has an entry for each of the electrons
in the event (i.e. two entries per event).

The energy distributions for the 2-electron samples shown in figure 2.2a look different
from those for the 1-electron samples (figure 2.1a). The energy distribution curve for the
2-electron signal samples increases for high energies, while for the 1-electron signal samples
it decreases with energy. However, for both the 1-electron as the 2-electron samples there
is an increase of events for low energies. This part of the 2-electron energy distributions is
therefore caused by the electron undergoing a signal interaction. The second electron also
has a clear influence on the 2-electron energy distributions. Since this second electron does
not undergo a signal interaction, but instead can undergo all other possible interactions, its
distribution is different from that of an electron undergoing a signal interaction. The most
likely to occur is that the second electron does not interact in the target and maintains
its energy of 4 GeV. The most common interaction in the target is that the electron
radiates a photon through bremsstrahlung. The probability of radiating a photon with

8

2.2. Energy and transverse momentum distribution

(a) 2e energy (b) 2e momentum

Figure 2.2: Normalised histogram of the energy (on the left in 2.2a) and the transverse
momentum (on the right in 2.2b) of the recoil electron for different dark mediator (A′)
masses (0.01, 0.1 and 1.0 GeV) and the PN background. These plots are done using

2-electron (2e) samples.

very little energy is much higher that the probability that it radiates a photon with a lot
of energy. This means that the energy distribution curve of the second electron increases
with energy. The combination of the energy distribution of an electron undergoing a signal
interaction and the energy distribution of an electron undergoing background processes
therefore creates the distribution curves shown in figure 2.2, where there is an increase of
events both for low energies as well as for high energies. The energy distribution for the
2-electron PN background sample seems to show a substructure. This will be looked at
later by splitting up the background into different parts.

The distributions for the transverse momentum also differ for the 2-electron and 1-electron
signal samples. The 2-electron distributions have more electrons with a low transverse
momentum compared to the distributions for the 1-electron samples. To get a more
accurate comparison, the transverse momentum distributions for both the 1-electron and
2-electron signal samples are plotted in figure 2.3a.

Based on the most common interactions of the second electron it is most likely to have
a small transverse momentum. The addition of the second electron therefore results in a
distribution with more electrons with lower values of the transverse momentum. This can
most clearly be seen when comparing the distributions for 1-electron and 2-electron signal
samples for mediator mass of 1 GeV (see figure 2.3a). The distribution curve for the 1-
electron sample decreases at small transverse momenta, while the curve for the 2-electron
sample increases for small transverse momenta. The 2-electron distribution curves are
all a little below the 1-electron distribution curves for larger transverse momenta. This
is because each distribution is individually normalised and the 2-electron curves have
additional electrons with a small transverse momentum from the second electron in each
event, which means that these distributions will have a lower percentage of electrons with
larger transverse momenta. However, for the 2-electron and 1-electron background the
distribution of the transverse momentum is very similar, as is shown in figure 2.3b.

9

2.3. Boosted Decision Tree features

(a) 1e and 2e signal momentum (b) 1e and 2e background momentum

Figure 2.3: Normalised histogram of the transverse momentum of the recoil electron
for the 1-electron and 2-electron signal samples (on the left in 2.3a) and PN background

samples (on the right in 2.1b).

In the 2-electron PN background sample (shown in figure 2.2) at least one of the electrons
produces a direct PN reaction, where the electron radiates a photon (a daughter particle)
which has a PN reaction in the ECal. However, it is also possible that both electrons
produce a direct PN reaction. The electrons are split up into different classes based
on whether they produce a direct PN reaction and on whether the other electron in
the event also does this. If both electrons in the event produce a direct PN reaction,
then both electrons are classified as PN both in figure 2.4 (approximately 9000 events
corresponding to ∼11%). If only one electron in the event has a daughter which has a
PN interaction while the other electron does not, the electrons are divided into different
classes (approximately 71000 events corresponding to the other ∼89%). The electron that
does not produce a direct PN reaction is classified as non PN, while the electron which
produces the direct PN reaction is classified as PN once. The energy distribution for the
2-electron background divided into these three classes is shown in figure 2.4.

The energy distribution for electrons that do not cause a PN through a daughter particle
looks as expected (see non PN curve in figure 2.4). It decreases as the energy decreases,
since it is more likely that the electron loses a little bit of energy rather than a lot of
energy. The electron that produces a direct PN reaction while the other electron in the
event does not (PN once curve) has a maximum energy of 1.5 GeV, like for the 1-electron
background, due to the energy requirement in the simulation. This energy requirement
also shows in the PN both curve where the step at 1.5 indicates that one electron has less
than 1.5 GeV while the other electron can have any energy between 0 and 4 GeV.

2.3 Boosted Decision Tree features

Training a Boosted Decision Tree (BDT) requires a number of input variables, so-called
features. A BDT has previously been trained on 1-electron data using 10 features. In
chapter 3 a BDT will be trained on 2-electron samples using the same features. Here we
will first have a look at the distribution of the variables as they are defined in [14], which

10

2.3. Boosted Decision Tree features

Figure 2.4: Normalised histogram of the energy of the recoil electron for 2-electron
background events where the daughter of the recoil e does no PN interaction (non PN)
and events where one (PN once) or two (PN both) of the electrons has a daughter which

produces a PN reaction.

will later be used as features and the difference between the 1-electron and 2-electron
samples.

All the variables used are calculated using the (simulated) data from the ECal. The
variables are based on the energy deposition in the ECal as well as the longitudinal and
transverse energy distribution in the ECal. Events where the electron misses the ECal
are therefore excluded. To determine whether the electron will end up in the ECal, a
so-called fiducial region is defined. Any position within 5 mm of an ECal cell centre is
defined to be inside the fiducial region, as shown in figure 2.5.

Figure 2.5: The fiducial region covers the area shown in white and red, where the ECal
cell centres are indicated by the red dots. The blue area is outside the fiducial region.

Image from [14].

For events where the electron is not within the fiducial region it is not expected to hit the

11

2.3. Boosted Decision Tree features

face of the ECal and therefore not used when plotting the distributions. When using the
2-electron samples both electrons are required to be inside the fiducial region.

Number of readout hits

The number of readout hits is defined as the total number of hits in the ECal that are
above the readout threshold, which is the energy threshold for reading out an ECal cell.
The number of readout hits for 2-electron signal and background samples is shown in
2.6a. For comparison both the 1-electron and 2-electron distributions are plotted in 2.6b.

(a) 2e (b) 1e and 2e

Figure 2.6: Normalised histogram of the total number of readout hits in the ECal for
different dark mediator (A′) masses and the PN background for events where all of the
electrons are within the fiducial region. On the left the distributions are shown for the
2-electron samples, while on the right the distributions for both the 1-electron and

2-electron samples are shown.

There is a good separation between signal and background for the 2-electron distributions
of the number of readout hits in the ECal, since only a small fraction of the curves overlap
(see figure 2.6a). Compared to the 1-electron distribution, the 2-electron curves are shifted
to the right towards a higher number of readout hits, as shown in figure 2.6b. This is
because when two electrons enter the ECal instead of one, there are at least two showers
which result in more hits. The shapes of the 1-electron and 2-electron curves look fairly
similar, but the separation between the signal and background curves appears to be better
for the 2-electron samples.

Total energy deposited

The total energy deposited is the sum of the energy of all the hits above the threshold
in the ECal. In figure 2.7a the total energy deposited is plotted for 2-electron signal and
PN background samples. The 2-electron distributions are plotted together with those for
the 1-electron samples in figure 2.7b to be able to compare them.

One striking feature in figure 2.7a is that the energy sum exceeds the expected 8 GeV limit
and that the distribution for the background is very different from the distributions for
the signal samples (is at much higher energies). Since there are two beam electrons each

12

2.3. Boosted Decision Tree features

(a) 2e (b) 1e and 2e

Figure 2.7: Normalised histogram of the total energy deposited in the ECal for
different dark mediator (A′) masses and the PN background for events where all of the
electrons are within the fiducial region. On the left the distributions are shown for the
2-electron samples, while on the right the distributions for both the 1-electron and

2-electron samples are shown.

with an energy of 4 GeV, it is not possible to have more than 8 GeV in the ECal. However,
the calculation of the total energy deposition in the ECal from the readout energy of the
individual cells is based on a calibration. This calibration is not yet fully developed and
only done for electrons and not hadrons. It also has a number of assumptions. One of
these assumptions is that the particle enters perpendicular to the face of the ECal, which
will often not be the case. In the calibration each layer in the ECal is given a weight.
These layer weights are given below starting from the weight for the first layer in the front
of the ECal and ending with the weight for the last layer at the end of the ECal.

[1.641, 3.526, 5.184, 6.841, 8.222, 8.775, 8.775, 8.775, 8.775, 8.775, 8.775, 8.775, 8.775,
8.775, 8.775, 8.775, 8.775, 8.775, 8.775, 8.775, 8.775, 8.775, 12.642, 16.51, 16.51, 16.51,
16.51, 16.51, 16.51, 16.51, 16.51, 16.51, 16.51, 8.45]

The weights towards the back of the ECal are higher than those in the first layers. Since a
PN background event will deposit energy deeper in the ECal than signal events (as shown
in figures 2.10 and 2.11), these weights could explain the fact that the background curve
in 2.7a has higher energies than the signal curves.

Figure 2.7a shows that there is a possibility for discrimination between the signal and
background samples, but the signal and background curves still overlap quite a bit. When
comparing the 1-electron and 2-electron distributions shown in figure 2.7b, the 2-electron
distributions are again shifted to the right towards higher energies. This is because for
the 2-electron samples two beam electrons with 4 GeV are used, which means that there
is up to 8 GeV of energy rather than just 4 GeV, which is the case for the 1-electron
samples. The 1-electron signal distributions are accumulated at zero, but the separation
between signal and background is similar for the 2-electron and 1-electron samples.

13

2.3. Boosted Decision Tree features

Total tight isolated energy deposited

The shower centroid is calculated by an energy-weighted average of the (x,y) positions
of all hits in the ECal in an event. For 1-electron events this will give the centre of
the shower, however, for 2-electron events there are two showers and the shower centroid
most likely gives a position between these showers. A ring is then defined to be the
neighbouring cells in the same plane as the cell with the shower centroid. The energy of a
hit is considered isolated when the neighbouring cells in the same layer are not above the
readout threshold. The energy for all isolated hits in the ring is summed up to form the
total tight isolated energy deposited in the ECal. Figure 2.8 shows the total tight isolated
energy deposited in the ECal for the 2-electron samples as well as both the 1-electron and
2-electrons samples.

(a) 2e (b) 1e and 2e

Figure 2.8: Normalised histogram of the total tight isolated energy deposited in the
ECal for different dark mediator (A′) masses and the PN background for events where
all of the electrons are within the fiducial region. On the left the distributions are shown
for the 2-electron samples, while on the right the distributions for both the 1-electron

and 2-electron samples are shown.

Figure 2.8a shows that there is a decent separation between the signal and background
distributions. The 2-electron distributions are again shifted towards higher energies com-
pared with the 1-electron distributions (see figure 2.8b). This is because the shower
centroid, around which the total tight isolated energy is calculated, is most likely between
the two showers for 2-electron samples in an area at the edge of the showers, where the
density of hits is lower, which means that there is more tight isolated energy. There is also
more energy coming in to the ECal for the 2-electron samples. The separation between the
signal and background distributions seems to be slightly better for the 2-electron samples.

Highest energy in a single cell

The highest energy in a single cell is simply the maximum energy that is deposited in
a single ECal cell. The distributions for the 2-electron samples as well as for both the
1-electron and 2-electron samples are shown in figure 2.9.

The separation between the 2-electron signal and background distributions of the highest
single cell energy, as shown in figure 2.9a, is very minimal, only for the high energy

14

2.3. Boosted Decision Tree features

(a) 2e (b) 1e and 2e

Figure 2.9: Normalised histogram of highest energy in a single cell in the ECal for
different dark mediator (A′) masses and the PN background for events where all of the
electrons are within the fiducial region. On the left the distributions are shown for the
2-electron samples, while on the right the distributions for both the 1-electron and

2-electron samples are shown.

tail a clear distinction can be made (only part of the background distribution). As for
the other energy-related variables, the 2-electron distributions are shifted towards higher
energies compared to the 1-electron distributions (see figure 2.9b). The separation between
the signal and background distributions is somewhat smaller for the 2-electron samples
compared to the 1-electron samples.

Deepest layer hit

The deepest layer hit is the highest layer number where a hit above the readout threshold
has occurred. The variable can have values in the range [0,32] corresponding to the layer
number in the simulation, with 0 in front of the ECal and layer number 32 at the end of
the ECal. In figure 2.10 the distributions are shown for the 2-electron samples as well as
for both the 1-electron and 2-electron samples together.

The PN background has the deepest layer hit mostly at the end of the ECal in the layers
20 to 32 and increases strongly with layer number, while the signal distributions are wider
and flatter (see figure 2.10). The distributions for the PN background look similar for
1-electron and 2-electron samples. However, the distributions for the 1-electron signal
samples are a lot wider, extending to lower layer number, than the distributions for the
2-electron signal samples. This is because for the 2-electron the distribution is the sum
of the distribution of an electron which has a signal interaction, like the 1-electron signal
samples, and the second inclusive electron, which most of the time does not interact in the
target and will have an energy of 4 GeV or only lose a little energy through bremsstrahlung
and will then have an energy close to 4 GeV. This second electron causes the bump around
layer 23 in the distributions for the signal samples.

15

2.3. Boosted Decision Tree features

(a) 2e (b) 1e and 2e

Figure 2.10: Normalised histogram of deepest layer hit in the ECal for different dark
mediator (A′) masses and the PN background for events where all of the electrons are
within the fiducial region. On the left the distributions are shown for the 2-electron
samples, while on the right the distributions for both the 1-electron and 2-electron

samples are shown.

Average layer hit

The average layer hit is a layer number calculated by taking the energy weighted average of
the layer numbers of all the hits above the readout threshold in an event, also in the range
[0,32]. Figure 2.11a shows the distributions for the 2-electron samples. The distributions
for the 1-electron samples are shown in figure 2.11b.

(a) 2e (b) 1e

Figure 2.11: Normalised histogram of the average layer hit in the ECal for different
dark mediator (A′) masses and the PN background for events where all of the electrons
are within the fiducial region. On the left the distributions are shown for the 2-electron

samples, while on the right the distributions for the 1-electron samples are shown.

There is almost no separation between the 2-electron signal and background distributions,
but the background goes up to a higher average layer hit (see figure 2.11a). The separation
between signal and background is much larger for the 1-electron samples, as shown in

16

2.3. Boosted Decision Tree features

figure 2.11b. The distributions are also wider for the 1-electron samples. The second
inclusive electron is responsible for the fact that the signal and background distributions
are much closer together for the 2-electron samples. The electron that has undergone a
signal interaction deposits energy mostly in the front of the ECal, having already lost
energy. For an event where the electron causes a PN reaction, the energy deposition will
be deeper in the ECal. The second electron that has mostly likely had no interaction
in the target or has only lost a little energy through bremsstrahlung will deposit energy
further in the ECal than the electron which has had a signal interaction, since it most
often has an energy of around 4 GeV, which is more than the signal electron. However,
it does not have the characteristics of the energy deposit from a PN interaction and will
therefore deposit most energy between the single electron signal and background curves,
as shown in figure 2.11b, which moves the signal and background curves closer together
for the 2-electron samples, as shown in figure 2.11a. Because the average layer hit is
energy weighed, this also makes the distributions more narrow.

Standard deviation of layer hits

The standard deviation of layer hits is calculated by taking the standard deviation of the
energy weighted layer numbers for all hits in an event. The distributions for the standard
deviation of layers hit are shown in figure 2.12a for the 2-electron samples and in figure
2.12b for the 1-electron samples.

(a) 2e (b) 1e

Figure 2.12: Normalised histogram of standard deviation of layers hit in the ECal for
different dark mediator (A′) masses and the PN background for events where all of the
electrons are within the fiducial region. On the left the distributions are shown for the
2-electron samples, while on the right the distributions for the 1-electron samples are

shown.

There is a small separation between the 2-electron signal and background distributions,
where the PN background extends to higher layer numbers. Similar to the distributions
of the average layer hit, the distributions of the standard deviation of layers hit are more
narrow and the distributions of signal and background are closer together for the 2-electron
samples (figure 2.12a) compared to the 1-electron samples (figure 2.12b).

17

2.3. Boosted Decision Tree features

Transverse RMS

The transverse RMS is the two-dimensional energy weighted Root Mean Square (RMS) of
the shower (or showers, no distinction is made for the case of more than one shower) in the
ECal centred on the shower centroid, which is calculated by an energy weighted average
of the (x,y) positions of all hits in an event. In figure 2.13 the distributions are shown for
the 2-electron samples as well as for the 1-electron and 2-electron samples together.

(a) 2e (b) 1e and 2e

Figure 2.13: Normalised histogram of the transverse RMS for different dark mediator
(A′) masses and the PN background for events where all of the electrons are within the
fiducial region. On the left the distributions are shown for the 2-electron samples, while
on the right the distributions for both the 1-electron and 2-electron samples are shown.

The separation between the distributions of the 2-electron signal samples with a dark
mediator mass of 0.01 GeV and 0.1 GeV and the PN background is quite decent, as shown
in figure 2.13a. However, the distribution for the signal sample with a mediator mass of 1.0
GeV is much wider than for the other signal samples, making it harder to distinguish from
the background. The distributions of the 1-electron and 2-electron signal samples look
similar. The distribution for the 1-electron background on the other hand is a lot broader
than that of the 2-electron background. The distribution for the 2-electron background
is also closer to the signal distribution than the 1-electron background distribution.

Standard deviation of x and y positions

The standard deviation of the x and y positions is calculated by taking the energy-weighted
standard deviations of the x and y positions of all the hits in the event. The distributions
of the standard deviation of the x position for 2-electron samples and the distributions
for both the 1-electron and 2-electron samples are plotted in figure 2.14. The same plots
for the distributions of the standard deviation of the y position are shown in figure 2.15.

The distributions of the standard deviation of the x and y position as well as the transverse
RMS all look similar (figures 2.13, 2.14 and 2.15). For all of these distributions the
distribution for the 2-electron signal sample with a mediator mass of 1.0 GeV is a lot
wider, extending up to higher values, making it harder to separate from the background.
For each of the variables the distribution for the 2-electron background is closer to the

18

2.3. Boosted Decision Tree features

(a) 2e (b) 1e and 2e

Figure 2.14: Normalised histogram of the standard deviation of x position for different
dark mediator (A′) masses and the PN background for events where all of the electrons
are within the fiducial region. On the left the distributions are shown for the 2-electron

samples, while on the right the distributions for both the 1-electron and 2-electron
samples are shown.

(a) 2e (b) 1e and 2e

Figure 2.15: Normalised histogram of the standard deviation of y position for different
dark mediator (A′) masses and the PN background for events where all of the electrons
are within the fiducial region. On the left the distributions are shown for the 2-electron

samples, while on the right the distributions for both the 1-electron and 2-electron
samples are shown.

distributions for the signals and is more narrow than the distribution for the 1-electron
background, while the distributions for the signal samples are all similar.

19

3 | Boosted decision tree

3.1 Introduction

Machine learning plays an important role in the analysis of particle physics data [19].
Here we will look at a type of supervised machine learning called a Boosted Decision Tree
(BDT) to distinguish 2-electron signal and background events making use of the Python
library XGBoost [20]. For supervised machine learning the computer is provided with
both the data as well as labels for this data, these labels are in essence the answer that
you want the program to learn. In our case this means that we use a number of variables
from the ECal as data (features) and label every event as either a signal or a background
event. This data is than split up into two parts, the training sample which will be used
for training the BDT and the testing sample which is used to monitor the performance
of the BDT for data it has not been trained on.

The classification of events as either signal or background is done based on the different
features (variables from the ECal) of the event. The machine learning program first starts
with one feature and finds the value of that feature which best separates the signal and
background event when the training sample is split into two parts, where the goal is to
get as many signal events in one part and as many background events in the other part
of the data (somewhat simplified explanation based on [21]). Then it finds an optimal
splitting value for every feature and picks the feature with the splitting value that gives
the best separation between signal and background events. This is then used to split the
events into two so-called branches. This process of improving the separation is repeated
to create a tree structure until no further improvement can be made to the purity or a
predetermined depth is reached. At this point no further divisions will be made and a
leaf is created. In figure 3.1 a schematic representation of an example (from a different
experiment) of a decision tree using event hit multiplicity, energy and reconstructed radial
position as features for signal and background distinction is shown.

For finding the optimal splitting value and feature, a quantification of how well the sep-
aration is for a certain split is needed. In the end we also want to know how well the
decision tree classifies signal and background events. To do this, the objective function
is defined, which consists of two parts, the training loss L and the regularisation term Ω
(see equation 3.1) [22, 23]. This objective function is minimised during training.

obj = L+ Ω (3.1)

20

3.1. Introduction

Figure 3.1: Schematic representation of a decision tree showing the tree structure and
indicating the signal to background ratios at each point. The leaves are shown by boxes.

Image from [21].

The training loss measures how well the predictions from the decision tree (also called the
model) fit the desired outcome (labels) on the training data. This means that for each
event the model predicts the probability that it is a signal event, this prediction is then
compared to the label for that event which is either signal or background. The regularisa-
tion term controls the complexity of the model and is used to prevent overtraining, which
will be discussed later. An example of a training loss function is the cross entropy error
function, also called the logistic loss function,

L =
∑
i

[yi ln(1 + e−ŷi) + (1− yi) ln(1 + eŷi)] (3.2)

where yi is the label for event i (either yi = 1 for signal or yi = 0 for background) and ŷi
is the prediction for event i [23, 24].

To improve the resulting model, multiple trees can be used in training in a process called
boosting. Here the second tree tries to correct the misclassifications by the first tree. This
can be done for a predetermined n iterations resulting in a Boosted Decision Tree. Each
event is than run through all the trees and assigned a value depending on which leave
of the tree it lands in. Taking into account the values it got from the trees, the event
is given a final score. For the classification of signal and background, there are only two
classes (called binary classification), this score is a probability, i.e. a value between 0 and
1. This can then be transformed into class labels by introducing a threshold value, for
instance 0.5, where all events with a score lower than the threshold value get class label 0
(background) and all events with a score above the cutoff value get class label 1 (signal).

The BDT is trained on the training set, but will also need to be able to correctly classify
new data, that it has not been trained on, such as the test data. When the model is too
simple, both the training and test error will be high and undertraining (or underfitting)

21

3.1. Introduction

occurs. However, when the model is too complex, the test error will be much larger than
the training error and overtraining (or overfitting) occurs [25]. An overtrained model
learns specific characteristics of the training sample that are not necessarily present in
the test data, such as for example statistical fluctuations. This is illustrated for the fitting
of a parabolic curve to data points in figure 3.2.

Figure 3.2: A schematic representation of underfitting (left) and overfitting (right)
compared to the desired curve (middle) when fitting a parabolic curve to data points.

Image from [26].

Whether overfitting occurs depends on the complexity of the model, where for example a
BDT containing 100 trees with 20 branches each is more complex than a BDT containing
only 5 trees with 3 branches each. The complexity can be controlled by the values of
certain variables and regularisation, but also by the number of iterations (number of
trees). Figure 3.3 shows the training and test error as a function of the model complexity.

Figure 3.3: A schematic plot of the training and testing error of a machine learning
model as a function of the model complexity. The ideal complexity is marked with a red
dotted line. Left of the line undertraining occurs while right of this line overtraining

occurs. Image from [26].

The best complexity is at the minimal of the test error, before it starts to increase, as
shown in figure 3.3. When training the BDT this is when we want to stop adding more
trees to the model.

Regularisation is also a way to optimise the performance on the test set and prevent
overtraining. One type of regularisation is the L2 norm,

1

2
λ

T∑
j=1

w2
j (3.3)

where λ is a parameter that will be tuned later, T is the number of leaves and wj is the

22

3.1. Introduction

score on the jth leave [23, 24]. The total regularisation term (part of equation 3.1) also
takes into account the number of leaves and is defined as,

Ω = γT +
1

2
λ

T∑
j=1

w2
j (3.4)

where γ is a parameter that will be tuned later [22].

Another way to prevent overfitting is to add randomness to the model, because this can
improve the performance on new data. One possible approach to adding randomness is
to only use a certain percentage of the events for the training of a tree in the BDT and
randomly selecting these events for each tree. Another method is to only use number of
the features for the training of a tree and randomly select which features are used for each
tree.

A BDT will be trained using the XGBoost library for python. To get the best performance
the best BDT model needs to be found. This is done by tuning a number of BDT
parameters. The variables that will be used in the tuning of the model are briefly explained
below, where the default values in XGBoost and the total range of the variables are also
given (see the XGBoost documentation [20, 27, 28] for more details).

eta This is also called the learning rate and controls the amount
of correction done in the next boosting round. It can control
how conservative and therefore how complex a model will be.
A smaller value leads to a more conservative model.
Default = 0.3
Range: [0,1]

min_child_weight The minimum sum of weights needed in a child (a possible leaf
on a branch after making a split). This means that no further
splits will be made if sum of weights is less than min_child_weight
and a certain purity has been reached. For larger value the
model will be more conservative and this parameter can there-
fore be used to prevent overfitting.
Default = 1
Range: [0,∞]

max_depth The maximum depth of a tree. Larger values lead to a more
complex model and overfitting is more likely. Tuning this pa-
rameter can therefore be used to prevent overfitting.
Default = 6
Range: [1,∞]

gamma The minimum loss reduction required to make a split. A larger
value will result in a more conservative model. This parameter
corresponds to γ in equation 3.4.

23

3.1. Introduction

Default = 0
Range: [0,∞]

subsample The fraction for random sampling of the data. Each iteration
a tree will be trained using this randomly drawn fraction of the
data (events). This adds randomness to the process and can
therefore prevent overfitting.
Default = 1
Range: (0,1]

colsample_bytree The fraction for random sampling of the features. Each itera-
tion a tree will be trained using this randomly drawn fraction
of the features. Similarly to subsample will this parameter also
add randomness to the process and can therefore prevent over-
fitting.
Default = 1
Range: (0,1]

lambda Controls the amount of L2 regularisation (for lambda=0 no L2
regularisation is present). Increasing this value for the regular-
isation will make the model more conservative. It corresponds
to λ in equations 3.3 and 3.4.
Default = 1

num_boost_round The number of boosting iterations. This is equivalent to the
number of trees used in the model.
Default = 10

early_stopping_rounds When this variable is set (to a value for the number of rounds
instead of None) early stopping is used. When the test error
does not decrease for the specified rounds the training will stop,
no more trees will be added, to prevent overtraining. This is
an automatic method for finding the right number of iterations
during training (the red dotted line of best complexity in figure
3.3).
Default = None

scale_pos_weight When there are a lot more events of one class than the other,
unbalanced classes, this parameter can be used for balancing
the classes by changing the weights. A typical value is (number
of events of class 0)/(number of events of class 1).
Default = 1

Using these parameters a BDT will be trained to distinguish signal and background events,
as described in the next section.

24

3.2. Method

3.2 Method

A BDT will be trained using the Python library XGBoost on the 2-electron Monte Carlo
samples, a PN background sample and a signal sample for a dark mediator with a mass
of 10 MeV (0.01 GeV). Only events where both of the electrons are inside the fiducial
region are used. For the background sample there are 78187 of such events and the signal
sample has 56355 of such events. Each event has a value for the 10 ECal features listed
below (for plots and description of the features see section 2.3).

0. Number of readout hits

1. Total energy deposited

2. Total tight isolated energy deposited

3. Highest energy in a single cell

4. Transverse RMS

5. Standard deviation of x position

6. Standard deviation of y position

7. Average layer hit

8. Deepest layer hit

9. Standard deviation of layers hit

The early stopping built into XGBoost (early_stopping_rounds) will be used to prevent
overtraining and to find the best number of iteration. However, this procedure uses the
test error which causes the test data to be biased, since it is used in the tuning of the
model. To make an unbiased estimate of the performance of the best model that has been
found after the tuning procedure, a separate data set is used, the independent test data.
To get these three different sets of data the samples are first split into two, where 20% of
the events will be used for the independent test and the other 80% is used in the tuning.
This 80% is then split into 20% test data and 80% training data.

The distinction between signal and background is a classification problem. The BDT
will use logistic regression for this binary classification (the objective) with a logistic loss
function (see equation 3.2). For this type of classification the output of the BDT for each
event will be a score between 0 and 1. This is the probability that the event is a signal
event. This can be transformed to two class labels by using a threshold value where events
with a score above the threshold are classified as signal and events with scores below the
threshold are classified as background. The objective and a number of other parameters
are kept constant for the tuning procedure shown in the list below.

– objective = ’binary:logistic’

25

3.2. Method

– seed = 5

– silent = 1

– verbosity = 1

– early_stopping_rounds = 10

– num_boost_round = 1000 (called num_round in the script shown in appendix A)

– eval_metric: [’rmse’, ’error’, ’logloss’, ’auc’],

The seed is used for random number generation, for instance for the implementation of
subsample and colsample_bytree. Keeping the seed constant means that the same
numbers will be generated every time, that way when running the code several times
the resulting BDT will remain the same (as long as all parameters values are kept con-
stant) and not have random variations. By putting both silent and verbosity to 1 the
program will print warnings and errors, but no extra running messages. The parameter
early_stopping_rounds is kept constant at 10, which means that if the test error does
not decrease for 10 rounds an early stop will occur and it will return the performance of
the model for the best iteration. To allow the early stopping mechanism to determine the
best iteration, num_boost_round is set to a high value. Only once the tuning is done and
the best model is found will the value of num_boost_round be changed to the optimal
value. The error metric used to determine the test error used for early stopping is the
last item in the list eval_metric, which is ’auc’. The ’auc’ metric is the Area Under
Curve (AUC) for a ROC curve, which plots the true positive rate as a function of the
false positive rate. The other metrics in the list are used for comparison. The ’rmse’ is
the Root Mean Square Error (RMSE), ’error’ is the classification error for a threshold of
0.5 and ’logloss’ is the negative log-likelihood [27].

A BDT is trained using the script shown in appendix A for a set of values for each of
the parameters that require tuning. The tuning is done in several rounds, where in each
round for one or two parameters the optimal value is determined. This optimal value is
then used in the following tuning rounds. Before the parameters are tuned they are set
to the default value from XGBoost. For each tuning round a submission script is written
which runs the BDT script (appendix A) multiple times. An example of such a submission
script is shown in appendix B. The ranges of values for which the parameters are tuned
is shown below for each round.

1. (a) eta: [0.01, 0.05, 0.1, 0.2, 0.3]

(b) eta: [0.02, 0.03, 0.04, 0.06, 0.07, 0.08, 0.09]

2. (a) min_child_weight: [1, 3, 5, 7, 9] and max_depth: [3, 5, 7, 9]

(b) min_child_weight: [6, 7, 8] and max_depth: [1, 2, 3]

3. gamma: [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]

4. (a) subsample: [0.5, 0.6, 0.7, 0.8, 0.9, 1.0] and colsample_bytree: [0.5, 0.6, 0.7,
0.8, 0.9, 1.0]

26

3.3. Results

(b) subsample: [0.85, 0.95] and colsample_bytree: [0.60, 0.7, 0.8]

5. (a) lambda: [0.0, 0.3, 0.7, 1.0, 1.5, 2, 5]

(b) lambda: [0.8, 0.9, 1.1, 1.2, 1.3, 1.4, 8, 10, 15]

(c) lambda: [13, 14, 16, 17, 18, 19, 20, 25, 30, 40, 50, 100]

(d) lambda: [32, 34, 36, 38, 39, 41, 42, 44, 46, 48, 500, 1000]

(e) lambda: [45, 47]

6. scale_pos_weight: [True, False]

Each parameter is tuned using an initial range of values. If, based on the result of that
first tuning round, the range of values needs to be expanded to determine the optimal
value more accurately, a second tuning round is done for that parameter with additional
values around the optimal value found in the initial tuning of the parameter (round b
in the list above). To determine the optimal value the AUC (of the ROC curve) for the
test set is used, where the value for the parameter with the highest AUC is considered
optimal. A number of parameters are tuned together in the same round. This is done to
get the best combined values for those parameters. Ideally all parameters would be tuned
in a single round, because the order in which the parameters are tuned has an influence on
which optimal value is found for the parameters. However, not all parameters are tuned
simultaneously, since the number of combinations for the values of the parameters would
be so large that it would take too long to get a tuned model. Therefore a maximum of
two parameters are tuned in the same round. The parameters min_child_weight and
max_depth are tuned together because both these parameters control the complexity of
the model. Since subsample and colsample_bytree are the parameters to introduce
randomness into the model these are also tuned simultaneously.

When the optimal values for the parameters have been found, the best model using these
optimal values is trained. The performance of the BDT will than be evaluated on new
data, the independent test set, that has not been used in the tuning procedure and is
therefore unbiased. The error metric used for the evaluation of the performance of the
BDT is AUC (for the ROC curve), which is also the metric used to determine the optimal
values in the tuning of the model as well as for the early stopping, where a higher AUC
is a better performance.

3.3 Results

The different values for eta used in the tuning procedure together with the AUC for the
test set for the resulting BDT are shown in table 3.1a, where the results for both round 1a
and 1b are shown (see section 3.2). The values of the other parameters are kept constant,
while eta is tuned and are shown in table 3.1b. Before these values are tuned they are
set to the default value (as defined in XGBoost).

The optimal value of eta from the tuning results (see table 3.1) is 0.08. For this value of
eta the AUC for the test set is 0.99892, while for the default value of eta it is 0.998856.

27

3.3. Results

Table 3.1: Tuning results for eta. In (a) the different values of eta are shown with the
AUC of the resulting BDT. The values in bold indicate the best values resulting from
the tuning. In (b) the values of the other parameters that are kept constant during this

tuning round are shown.

(a)

eta AUC
0.01 0.99872
0.02 0.998886
0.03 0.998917
0.04 0.998897
0.05 0.998904
0.06 0.99891
0.07 0.998912
0.08 0.99892
0.09 0.998899
0.1 0.998902
0.2 0.998886
0.3 0.998856

(b)

max_depth = 6
min_child_weight = 1

gamma = 0
subsample = 1

colsample_bytree = 1
lambda = 1

The results, of both round 2a and b (see section 3.2), of the simultaneous tuning of
max_depth and min_child_weight are shown in table 3.2a. The values for the other
parameters that are kept constant are shown in table 3.2b, now with the tuned value for
eta.

The optimal values resulting from the tuning (shown in table 3.2) are max_depth = 7 and
min_child_weight = 2. Tuning these parameters increases the AUC slightly to 0.998931.

The results of the tuning of gamma are shown in table 3.3a. The values of the other
parameters are shown in table 3.3b, with the tuned values for eta, max_depth and
min_child_weight.

The optimal value of gamma is found to be the default value of 0 as shown in table 3.3.
This means that the AUC is not increased in this tuning round.

The results of the simultaneous tuning of subsample and colsample_bytree are shown
in table 3.4. Where the initial tuning round (4a, see section 3.2) is shown in table 3.4a
and the second round (4b, see section 3.2) is shown in table 3.4b. The values of the other
parameters are given in table 3.4c.

The optimal values resulting from the tuning are subsample = 0.9 and colsample_bytree
= 0.7 (see table 3.4). The tuning of these parameters improves the AUC slightly to a
value of 0.998951. Since there are only 10 features colsample_bytree, is tuned to an
accuracy of one decimal. The second tuning round (shown in table 3.4b) attempts to
tune subsample more accurately, but no better value than the one resulting from the first
tuning round is found.

The tuning results for lambda are shown in table 3.5. The first three tuning rounds (a-c in

28

3.3. Results

Table 3.2: Tuning results for max_depth and min_child_weight. In (a) the different
values of max_depth and min_child_weight are shown with the AUC of the resulting
BDT. The values in bold indicate the best values resulting from the tuning. In (b) the
values of the other parameters that are kept constant during this tuning round are

shown.

(a)

max_depth min_child_weight AUC
3 1 0.99884
3 3 0.998839
3 5 0.998842
3 7 0.998839
3 9 0.998838
5 1 0.998892
5 3 0.998871
5 5 0.998884
5 7 0.998898
5 9 0.998905
6 1 0.99892
6 2 0.998901
6 3 0.998894
7 1 0.998927
7 2 0.998931
7 3 0.998914
7 5 0.998911
7 7 0.998888
7 9 0.998918
8 1 0.998881
8 2 0.998864
8 3 0.998858
9 1 0.998841
9 3 0.998849
9 5 0.998858
9 7 0.998784
9 9 0.998865

(b)

eta = 0.08
gamma = 0

subsample = 1
colsample_bytree = 1

lambda = 1

section 3.2) are shown in table 3.5a, while the last two rounds (d and e in section 3.2) are
shown in 3.5b. The values of the other already tuned parameters that are kept constant
are shown in 3.5c.

The optimal value of lambda resulting from the tuning is 46 improving the performance
to AUC = 0.998981 (as shown in table 3.5). Since lambda is the variable that determines
the amount of regularisation it has a large range of possible values. A larger number of
tuning rounds were therefore performed.

The number of signal events is not equal to the number of background events and such
unbalanced classes can influence the learning of the BDT. Therefore a rescaling of the
weights that will balance the classes is tested to see if it improves the performance of

29

3.3. Results

Table 3.3: Tuning results for gamma. In (a) the different values of gamma are shown
with the AUC of the resulting BDT. The values in bold indicate the best values
resulting from the tuning. In (b) the values of the other parameters that are kept

constant during this tuning round are shown.

(a)

gamma AUC
0.0 0.998931
0.1 0.998906
0.2 0.998913
0.3 0.998913
0.4 0.998921
0.5 0.998875

(b)

eta = 0.08
max_depth = 7

min_child_weight = 2
subsample = 1

colsample_bytree = 1
lambda = 1

the BDT where all the other parameters are already tuned. When scale is set to False,
the parameter scale_pos_weight is set to 1 (the default value) and no rescaling is done.
However, when scale is set to True, the parameter scale_pos_weight is set to the typ-
ical value of (number of events of class 0)/(number of events of class 1), where class 0
corresponds to background and class 1 corresponds to signal. The results of comparing
the performance of a BDT for these values of scale_pos_weight are shown in table 3.6.

The classes are not unbalanced enough for the rescaling of the weights by scale_pos_weight
to improve performance (see table 3.6).

The resulting values for the parameters after the tuning procedure are summarised below.
The BDT using these values has a AUC = 0.998981 for the test data.

– eta = 0.08

– max_depth = 7

– min_child_weight = 2

– gamma = 0

– subsample = 0.9

– colsample_bytree = 0.7

– lambda = 46

– scale_pos_weight = 1 (scale = False)

The AUC given is for the best iteration as found using early_stopping_rounds = 10.
This best iteration corresponds to num_round = 197. The best model is the BDT trained
with the variables resulting from the tuning procedure (including num_round = 197). To
make sure that the number of boosting iterations selected by the early stopping procedure
is accurate and no overfitting (or underfitting) occurs, the AUC for the test and train data

30

3.3. Results

Table 3.4: Tuning results for subsample and colsample_bytree. In (a) and (b) the
different values of subsample and colsample_bytree are shown with the AUC of the
resulting BDT for respectively the first and second tuning round. The values in bold

indicate the best values resulting from the tuning. In (c) the values of the other
parameters that are kept constant during this tuning round are shown.

(a)

subsample colsample_bytree AUC
0.5 0.5 0.998862
0.5 0.6 0.998901
0.5 0.7 0.998902
0.5 0.8 0.998906
0.5 0.9 0.99892
0.5 1.0 0.998905
0.6 0.5 0.998905
0.6 0.6 0.998891
0.6 0.7 0.998929
0.6 0.8 0.998935
0.6 0.9 0.998921
0.6 1.0 0.998915
0.7 0.5 0.998892
0.7 0.6 0.998904
0.7 0.7 0.998928
0.7 0.8 0.998934
0.7 0.9 0.99889
0.7 1.0 0.998946
0.8 0.5 0.998858
0.8 0.6 0.998897
0.8 0.7 0.998909
0.8 0.8 0.998918
0.8 0.9 0.99891
0.8 1.0 0.998878
0.9 0.5 0.998801
0.9 0.6 0.998881
0.9 0.7 0.998951
0.9 0.8 0.998905
0.9 0.9 0.998924
0.9 1.0 0.998915
1.0 0.5 0.998872
1.0 0.6 0.998894
1.0 0.7 0.998919
1.0 0.8 0.99889
1.0 0.9 0.998876
1.0 1.0 0.998931

(b)

subsample colsample_bytree AUC
0.85 0.6 0.998901
0.85 0.7 0.998915
0.85 0.8 0.998917
0.95 0.6 0.998897
0.95 0.7 0.998885
0.95 0.8 0.998917

(c)

eta = 0.08
max_depth = 7

min_child_weight = 2
gamma = 0

lambda = 1

of a BDT using all the tuned values for the parameters, but with num_round = 600 is
shown in figure 3.4.

31

3.3. Results

Table 3.5: Tuning results for lambda. In (a) and (b) the different values of lambda
shown with the AUC of the resulting BDT for respectively the first three and last two
tuning rounds. The values in bold indicate the best values resulting from the tuning. In
(c) the values of the other parameters that are kept constant during this tuning round

are shown.

(a)

lambda AUC
0.0 0.998862
0.3 0.998875
0.7 0.99891
0.8 0.99894
0.9 0.998941
1.0 0.998951
1.1 0.998915
1.2 0.998919
1.3 0.998934
1.4 0.998923
1.5 0.998935
2 0.998923
5 0.998921
8 0.998947
10 0.998948
13 0.998951
14 0.99896
15 0.998962
16 0.998955
17 0.99894
18 0.998942
19 0.998959
20 0.998945
25 0.99895
30 0.998962
40 0.998976
50 0.998958
100 0.998965

(b)

lambda AUC
32 0.99896
34 0.998962
36 0.998951
38 0.998978
39 0.998951
41 0.998971
42 0.99896
44 0.998977
45 0.998961
46 0.998981
47 0.998965
48 0.998977
500 0.998915
1000 0.998877

(c)

eta = 0.08
max_depth = 7

min_child_weight = 2
gamma = 0

subsample = 0.9
colsample_bytree = 0.7

The learning curve (see figure 3.4) shows that it is reasonable to stop training around
num_round = 197, because at that point the AUC for the test data no longer increases
and for a higher number of boosting iterations the AUC for the test data slowly starts to
decrease. Note that this plot is similar to the illustration in figure 3.3, but mirrored on
the y-axis in the sense that the AUC should be maximised, while the error in figure 3.3
should be minimised.

To get an unbiased estimate of the performance of the tuned BDT (the best model), it
is tested on the independent test data set. The performance on the test data is biased,
since it is used to determine the optimal value of the parameters in the tuning procedure,
as well as the value for num_round.

32

3.3. Results

Table 3.6: The AUC of the BDT with using rescaling of weights (scale = True setting
scale_pos_weight = (number of events of class 0)/(number of events of class 1)) and
without rescaling (scale = False setting scale_pos_weight = 1). The values in bold
indicate the best values resulting from the tuning. In (b) the values of the other

parameters that are kept constant during this tuning round are shown.

(a)

scale AUC
False 0.998981
True 0.998954

(b)

eta = 0.08
max_depth = 7

min_child_weight = 2
gamma = 0

subsample = 0.9
colsample_bytree = 0.7

lambda = 46

Figure 3.4: The AUC or the test and train data plotted as a function of the boosting
iteration (also called epoch).

The resulting AUC value of the tuned BDT on the independent test set is given below.

– AUC = 0.998720

A number of other performance measures are also used to get a more complete image
of the performance of the BDT on the independent test set. Those are all based on
a threshold value of 0.5, where events with a score above 0.5 are classified as signal
events and those with a score below 0.5 are classified as background events. Using this
classification the accuracy gives the fraction of correctly classified events by dividing the
sum of true positives and true negatives by the sum of all events. The precision is given by
dividing the number of true positives by the sum of the true positives and false positives.
The recall gives the True Positive Rate calculated by dividing the number of true positives
by the sum of the true positives and false negatives. The True Negative Rate is given by
the specificity which is calculated by dividing the number of true negatives by the sum of

33

3.3. Results

the true negatives and the false positives. The corresponding equations are given below
for clarification,

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Specificity =
TN

TN + FP

where TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives and FN is the number of false negatives. The values for these
performance measures of the tuned BDT on the independent test set are given below.

– accuracy = 0.984280

– precision = 0.978814

– recall = 0.983764

– specificity = 0.984653

The ROC curve corresponding to the AUC for the BDT on the independent test set,
which is independent of the choice of the threshold value, is shown in figure 3.5.

Figure 3.5: The ROC curve for the trained BDT on the independent test data on
double logarithmic scale. The corresponding AUC value is also shown.

The ROC curve shows the True Positive Rate (the recall) as a function of the False Positive
Rate. The False Positive Rate is calculated by dividing the number of false positives by

34

3.3. Results

the sum of false positives and true negatives, which is equal to 1 minus the specificity
(True Negative Rate). Each point on the curve corresponds to the True Positive Rate
and False Positive Rate for a specific threshold, which is varied to create the curve.

The distribution of the output score of the BDT, the probability that the event is a signal
event, for the independent test data is shown for the signal and background events in
figure 3.6.

Figure 3.6: A histogram of the normalised number of signal and background events as
a function of the probability that the event is a signal event as predicted by the tuned

BDT for the independent test data.

Most events are correctly classified with a BDT score close to 0 or 1 for background and
signal events respectively (see figure 3.6). However, a number of events are misclassi-
fied and can have value up to 1 for background events and down to 0 for signal events.
The threshold used to convert the probability to the two different classes therefore also
determines the trade-off between background rejection and signal efficiency. A high back-
ground rejection is preferred over a high signal efficiency, since any signal that would
possibly be detected will have to be confirmed with a large certainty. For a background
rejection of 99% (corresponding to a False Positive Rate of 0.01) the signal efficiency is
97% (corresponding to a True Positive Rate of 0.97) with a threshold of 0.70.

The BDT previously trained on a mixture of 1-electron events for 4 different mediator
masses (0.001 GeV, 0.01 GeV, 0.1 GeV and 1 GeV) in [14], had signal efficiencies of 60% to
80% for the different mediator masses (about 77% for 0.01 GeV) for a background rejection
of 99% with a threshold of 0.94. The performance of the BDT trained on 2-electron data
(in this thesis) appears to be much better. However, there were some unphysical events
present in the 1-electron data used to make that performance estimate. These type of
events are no longer present in the 2-electron samples due to a modification of GEANT4.
The performance of the BDT from [14] is also given for events where these unphysical
events have been removed, which is a better performance estimate for comparison. For the
same threshold of 0.94 the signal efficiency remains between 60% and 80% for the different
mediator masses (about 77% for 0.01 GeV), but the False Positive Rate is reduced to
3 ·10−4 (99.97% background rejection) [14]. The BDT trained here on 2-electron data has

35

3.3. Results

a signal efficiency of 62% and a threshold of 0.998 for a False Positive Rate of 3·10−4. This
is a lower signal efficiency and a higher threshold than the 1-electron BDT for the same
background rejection. For a threshold of 0.94 the 2-electron BDT has a signal efficiency
of 93% and a False Positive Rate of 3.2 · 10−3. The performance of the 1-electron BDT
seems to be somewhat better although there are some differences between the BDTs even
though the same features are used. The 1-electron BDT was trained on a mixture of
events for different mediator masses, while the 2-electron BDT was only trained on events
for a mediator mass of 0.01 GeV, which makes comparing them a little harder.

This difference in performance could (partially) be due to the difference in signal and
background separation of the features for 1-electron and 2-electron samples (as discussed
in section 2.3), since the features were originally selected for the training of a BDT on
1-electron samples. The importance of the features in the training of the BDT on the
2-electron events is shown in figure 3.7.

Figure 3.7: The feature importance in the BDT for all the 10 features used. See text
for the features corresponding to the feature numbers.

The features with their corresponding number are shown below in order of importance
(most important first, see figure 3.7).

– f5: Standard deviation of x position

– f3: Highest energy in a single cell

– f1: Total energy deposited

– f6: Standard deviation of y position

– f0: Number of readout hits

– f2: Total tight isolated energy deposited

– f7: Average layer hit

36

3.3. Results

– f9: Standard deviation of layers hit

– f4: Transverse RMS

– f8: Deepest layer hit

The importance of a feature (called the F score) is based on how often the feature is used
to make a split and how much it improved the performance of signal and background
separation. The distributions of these features are shown in section 2.3. The difference in
the importance in not that large for most features, but there are some notable aspects of
the ranking. The highest energy in a single cell seemed to give a poor separation between
signal and background (see figure 2.9a), but has the second largest importance. The
transverse RMS appears to have a decent separation of signal (with a mediator mass of
0.01 GeV) and background events (see figure 2.13a), but is the second lowest importance.
A possible explanation for this is that events that are separated by the transverse RMS
have already been separated using other features, such as the standard deviation of the x
and y positions, since these features are related, making the feature transverse RMS less
important. The highest energy in a single cell possibly separates some events that are not
really separated by the other features, making it more important. The other features that
appeared to give a good separation, from looking at their distribution in section 2.3, are
all in the top part of the importance ranking, while those that appeared to give a poor
separation are in the bottom part of the importance ranking.

Another reason for the decrease in performance of the 2-electron BDT compared to the
1-electron BDT is that the second electron in the 2-electron samples does not add any
discrimination power, but only makes the differentiation between signal and background
more difficult. However, having two electrons simultaneously hitting the target also has
advantages. The biggest advantage of the 2-electron case is that it has twice as many
electrons on target, which means that probability of a dark matter event is much larger
within the same amount of measuring time compared to the 1-electron case. This advan-
tage outweighs the slight reduction in performance of the BDT.

37

4 | Conclusion

The energy and transverse momentum distributions are shown for 2-electron signal simu-
lation samples for a mediator mass of 0.01 GeV, 0.1 GeV and 1 GeV as well as for the PN
background simulation samples. For these samples the distributions of the features used
to train the BDT are also shown and compared to the distributions for the 1-electron
signal and background samples. For most of the features the separation between the dis-
tributions for the signal and background samples is fairly similar between the 1-electron
and 2-electron samples. However, for the average layer hit and the standard deviation of
layer hits the separation between distributions for signal and background samples is a lot
smaller for the 2-electron samples compared to the 1-electron samples, due to the effect
of the energy deposit of the second electron.

A BDT was trained on the 2-electron signal simulation sample for a mediator mass of
10 MeV (0.01 GeV) and a 2-electron PN background sample. After tuning a number of
parameters the BDT has a performance of AUC = 0.998981 on the test data. The unbiased
measure of the performance of the BDT on the independent test set is AUC = 0.998720.
The BDT gives a signal efficiency of 97% with a threshold of 0.7 for a background rejection
of 99% (corresponding to a False Positive Rate of 0.01). The performance of the BDT
trained on 1-electron data in [14] is slightly better than the 2-electron trained in this
thesis, because the 1-electron BDT has a signal efficiency between 60% and 80% for the
different mediator masses (about 77% for 0.01 GeV) and a threshold of 0.94 for a False
Positive Rate of 3 · 104 (99.97% background rejection), while the 2-electron BDT has
a signal efficiency of 62% and a threshold of 0.998 for the same background rejection.
However, the 1-electron BDT was trained on a mixture of events for different mediator
masses, while the 2-electron BDT is trained solely on events for a mediator mass of
0.01 GeV. This difference in methods makes comparing them more difficult. One of the
possible reasons for the difference in performance of the 1-electron and 2-electron BDTs
is that the features that are used for both were originally selected based on the 1-electron
samples. Another reason for the decrease in performance is that the second electron adds
no the discrimination power, but only complicates the differentiation between signal and
background events. However, the 2-electron case has twice as many electrons on target,
which is a big advantage that outweighs the slight decrease of performance for the BDT.

38

5 | Outlook

As shown in section 2.3 (figure 2.7a), the sum of energy deposited in the ECal is larger
than 8 GeV, which is the maximum energy that could be deposited (from two 4 GeV beam
electrons). This motivates the need for a better energy calibration of the ECal.

To improve the performance of the BDT other features, more specialised for 2-electron
data, should be explored. Especially features which are not calculated using the whole
ECal, but are more shower-specific, since 2-electron events have multiple showers in the
ECal. Ideally, features that are good discriminators for all multi-electron events (n elec-
trons) should be found. A BDT could also be trained on signal simulations samples for
different mediator masses or on a combination of events for different mediator masses to
make it less dependent on the hypothesis of the mediator mass.

39

Acknowledgements

First of all I would like to thank my supervisor Prof. Torsten Åkesson for making this
thesis possible. I would like to thank my daily supervisor Dr. Ruth Pöttgen for the great
guidance she has provided during the project. I would also like to thank the Lund LDMX
group for the useful discussion and suggestions and the entire LDMX collaboration for
their input. Lastly I would like to thank everyone from the particle physics department
for making me feel at home with (among other things) the weekly fika.

40

Acronyms

AUC Area Under Curve.

BDT Boosted Decision Tree.

ECal Electromagnetic Calorimeter.

HCal Hadron Veto Calorimeter.

LDMX Light Dark Matter Experiment.

PN photo-nuclear.

RMS Root Mean Square.

RMSE Root Mean Square Error.

ROC Receiver Operating Characteristic.

SM Standard Model.

WIMPs Weakly Interacting Massive Particles.

41

A | Python script BDT

1 #!/usr/bin/env python
2

3 import numpy as np
4 import xgboost as xgb
5 import ROOT as r
6 import os
7 import sys
8 import time
9 from sklearn.metrics import precision_score

10 from sklearn.metrics import accuracy_score
11 from sklearn.metrics import recall_score
12 from sklearn.metrics import confusion_matrix
13 from sklearn import metrics
14 import argparse
15 import matplotlib
16 matplotlib.use(’Agg’) #needed when running with bsub
17 import matplotlib.pyplot as plt
18

19

20 #---- From bdtTreeMaker.py -----
21 cellMap = np.loadtxt(’cellmodule.txt’)
22 ecalFaceZ = 223.8000030517578
23 cell_radius = 5
24

25 def CallX(Hitz , Recoilx , Recoily , Recoilz , RPx , RPy , RPz):
26 Point_xz = [Recoilx , Recoilz]
27 #Almost never happens
28 if RPx == 0:
29 slope_xz = 99999
30 else:
31 slope_xz = RPz / RPx
32

33 x_val = (float(Hitz - Point_xz [1]) / float(slope_xz)) + Point_xz [0]
34 return x_val
35

36 def CallY(Hitz , Recoilx , Recoily , Recoilz , RPx , RPy , RPz):
37 Point_yz = [Recoily , Recoilz]
38 #Almost never happens
39 if RPy == 0:
40 slope_yz = 99999
41 else:

42

42 slope_yz = RPz / RPy
43

44 y_val = (float(Hitz - Point_yz [1]) / float(slope_yz)) + Point_yz [0]
45 return y_val
46 #--------------------------------
47

48 # Both electrons inside fiducial region or not
49 def InFiducialTwo(event):
50 insideEcal = False
51

52 mom = []
53 pos = []
54

55 #find momentum of largest hit of recoil e in first ecal scoring plane
56 for particle in event.SimParticles_sim:
57 if (particle.getPdgID ()==11) & (particle.getParentCount ()==0):
58 momentum = []
59 position = []
60 max_p = 0. #for finding the hit with largest momentum
61 for hit in event.EcalScoringPlaneHits_sim:
62 if hit.getSimParticle () == particle:
63 #only look at front plane Ecal
64 if hit.getPosition ()[2] > 219.85 and hit.getPosition

↪→ ()[2] < 220.05:
65 pvec = r.TVector3(hit.getMomentum ()[0],hit.

↪→ getMomentum ()[1],hit.getMomentum ()[2])
66 p = pvec.Mag()
67 if max_p < p and hit.getMomentum ()[2] > 0:
68 max_p = p
69 momentum = [hit.getMomentum ()[0],hit.

↪→ getMomentum ()[1],hit.getMomentum ()[2]]
70 position = [hit.getPosition ()[0],hit.

↪→ getPosition ()[1],hit.getPosition ()[2]]
71 mom.append(momentum)
72 pos.append(position)
73

74 insideBoth = []
75

76 #see if recoil e inside fiducial region , for both e’s
77 for i in range(len(mom)):
78 insideSingle = False
79

80 #only for events where a hit with positive z momentum is found
81 if len(mom[i]) > 0:
82 #use real z position hit , not scoringPlaneZ = 220
83 recoilfX = CallX(ecalFaceZ , pos[i][0], pos[i][1], pos[i][2],

↪→ mom[i][0], mom[i][1], mom[i][2])
84 recoilfY = CallY(ecalFaceZ , pos[i][0], pos[i][1], pos[i][2],

↪→ mom[i][0], mom[i][1], mom[i][2])
85

86 if not pos[i][0] == -9999 and not pos[i][1] == -9999 and not

43

↪→ mom[i][0] == -9999 and not mom[i][1] == -9999 and not
↪→ mom[i][2] == -9999:

87 for x in cellMap:
88 xdis = recoilfY - x[2]
89 ydis = recoilfX - x[1]
90 celldis = np.sqrt(xdis **2 + ydis **2)
91 if celldis <= cell_radius:
92 insideSingle = True
93 break
94

95 insideBoth.append(insideSingle)
96

97 #return true if both e’s inside the Ecal
98 if insideBoth [0] and insideBoth [1]:
99 insideEcal = True

100

101 return insideEcal
102

103

104 ##
105 class prepSample:
106 def __init__(self , fn, trainFrac , isSig):
107 #bool to distinguish bkg file from sig file
108 self.isSig = isSig
109

110 self.fn = fn
111 self.trainFrac = trainFrac
112

113 #to store events and their relevant features
114 self.events = []
115

116 def createEventsArray(self):
117 #get tree from file
118 f = r.TFile(self.fn)
119 tree = f.Get("LDMX_Events")
120

121 #loop through events to same relevant variables
122 for event in tree:
123 #only look at events where both e’s are within fiducial

↪→ region
124 if not InFiducialTwo(event): continue
125

126 temp_evt = []
127

128 #------------- FEATURES (same as slac example)--------------
129 temp_evt.append(event.EcalVeto_recon [0]. getNReadoutHits ())
130 temp_evt.append(event.EcalVeto_recon [0]. getSummedDet ())
131 temp_evt.append(event.EcalVeto_recon [0]. getSummedTightIso ())
132 temp_evt.append(event.EcalVeto_recon [0]. getMaxCellDep ())
133 temp_evt.append(event.EcalVeto_recon [0]. getShowerRMS ())
134 temp_evt.append(event.EcalVeto_recon [0]. getXStd ())

44

135 temp_evt.append(event.EcalVeto_recon [0]. getYStd ())
136 temp_evt.append(event.EcalVeto_recon [0]. getAvgLayerHit ())
137 temp_evt.append(event.EcalVeto_recon [0]. getDeepestLayerHit ())
138 temp_evt.append(event.EcalVeto_recon [0]. getStdLayerHit ())
139 #---
140

141 self.events.append(temp_evt)
142

143 #convert list of lists to nd numpy array
144 self.events = np.array(self.events)
145

146 #shuffle order (only in 0th, vertical axis)
147 self.events = np.random.permutation(self.events)
148

149 print "shape of data array:", np.shape(self.events)
150

151 def createTrainTestArrays(self):
152 #only use 80% of data to have 20% of data left for independent

↪→ test
153 data_using = self.events [0:int(len(self.events)*0.8)]
154 self.indep_test_x = self.events[int(len(self.events)*0.8):]
155

156 self.train_x = data_using [0:int(len(data_using)*self.trainFrac)]
157 self.test_x = data_using[int(len(data_using)*self.trainFrac):]
158

159 self.train_y = np.zeros(len(self.train_x)) + self.isSig
160 self.test_y = np.zeros(len(self.test_x)) + self.isSig
161

162 ###
163

164 class mergeSigBkg:
165 def __init__(self , sig , bkg):
166 #create a training set with both sig and background
167 self.train_x = np.vstack ((sig.train_x , bkg.train_x))
168 self.train_y = np.append(sig.train_y , bkg.train_y)
169

170 #create a testing set with both sig and background
171 self.test_x = np.vstack ((sig.test_x , bkg.test_x))
172 self.test_y = np.append(sig.test_y , bkg.test_y)
173

174 print "shape training data , x and y (sig+bkg):", np.shape(self.
↪→ train_x), np.shape(self.train_y)

175 print "shape testing data , x and y (sig+bkg):", np.shape(self.
↪→ test_x), np.shape(self.test_y)

176

177 #create xgb Dmatrices of data
178 self.dtrain = xgb.DMatrix(self.train_x , self.train_y)
179 self.dtest = xgb.DMatrix(self.test_x , self.test_y)
180

181 ###
182

45

183 def getDataBDT(trainFraction):
184 #prepare data signal sample
185 sig = prepSample(sigFile , trainFraction , isSig=True)
186 sig.createEventsArray ()
187 sig.createTrainTestArrays ()
188

189 #prepare data bkg sample
190 bkg = prepSample(bkgFile , trainFraction , isSig=False)
191 bkg.createEventsArray ()
192 bkg.createTrainTestArrays ()
193

194 #merge sig and bkg events
195 events = mergeSigBkg(sig , bkg)
196

197 return events
198

199 def train(events , params , num_round , stopping_rounds , name_model):
200 # to watch performance during learning
201 evallist = [(events.dtrain ,’train’), (events.dtest ,’eval’)]
202 learning = dict()
203

204 #train bdt
205 bst = xgb.train(params , events.dtrain , num_round , evallist ,

↪→ early_stopping_rounds=stopping_rounds , evals_result=learning)
206

207 try:
208 #find out if early stopping occured
209 if bst.best_iteration != (num_round -1):
210 early_stop = True
211 else:
212 early_stop = False
213 except:
214 early_stop = False
215

216 #save model to file
217 bst.save_model(os.path.join(folder ,"%s.model" %name_model)) #model
218 bst.dump_model(os.path.join(folder ,"dump.raw.txt")) #structure of

↪→ trees
219

220 if early_stop:
221 return bst , learning , early_stop , bst.best_score , bst.

↪→ best_iteration
222 else:
223 return bst , learning , early_stop , np.nan , np.nan
224

225 def predict(bst , events):
226 #predict the test values (gives probability for class 1)
227 preds = bst.predict(events.dtest)
228

229 #get classes from probability
230 preds_bool = preds > 0.5 #0.5 cutoff , decision boundary

46

231 classes = preds_bool.astype(int)
232

233 precision = precision_score(events.test_y , classes)
234 print "prediction precision:", precision
235 accuracy = accuracy_score(events.test_y , classes)
236 print "prediction accuracy:", accuracy
237 recall = recall_score(events.test_y , classes)
238 print "prediction recall:", recall
239

240 tn, fp, fn, tp = confusion_matrix(events.test_y , classes).ravel()
241 specificity = float(tn) / (tn+fp)
242 print "prediction specificity:", specificity
243

244 #separate probability predictions of sig and bkg events
245 probs_sig_events = preds[np.where(events.test_y ==1)]
246 probs_bkg_events = preds[np.where(events.test_y ==0)]
247

248 return preds , probs_sig_events , probs_bkg_events , (precision ,
↪→ accuracy , recall , specificity)

249

250

251 def plot_probs(probs_sig , probs_bkg):
252 #plot predicted probalities
253 binwidth = 0.005
254 binrange = np.arange(0, 1 + binwidth , binwidth)
255

256 np.savetxt(os.path.join(folder ,"probability_hist_sig.csv"), np.
↪→ transpose(probs_sig),delimiter=",", header="probability signal ,
↪→ probability bkg")

257 np.savetxt(os.path.join(folder ,"probability_hist_bkg.csv"), np.
↪→ transpose(probs_bkg),delimiter=",", header="probability signal ,
↪→ probability bkg")

258

259 plt.hist(probs_sig , bins=binrange , histtype=’step’, label=’signal ’,
↪→ density=True)

260 plt.hist(probs_bkg , bins=binrange , histtype=’step’, label=’background
↪→ ’, density=True)

261 plt.ylabel("Normalised number of events")
262 plt.xlabel("Probability of signal event")
263 plt.yscale(’log’)
264 plt.legend(loc=’best’)
265 plt.savefig(os.path.join(folder , "probability_hist.png"),format=’png’

↪→)
266 plt.close()
267

268 def plot_roc(test_y , preds):
269 #plot ROC curve
270 fpr , tpr , thresholds = metrics.roc_curve(test_y , preds)
271 auc = metrics.auc(fpr , tpr)
272

273 np.savetxt(os.path.join(folder ,"ROC_curve.csv"), np.transpose ([fpr ,

47

↪→ tpr , thresholds]), delimiter=",", header="false positive rate ,
↪→ true positive rate , thresholds")

274

275 plt.plot(fpr , tpr , label="AUC = %0.5f" %auc)
276 plt.xlabel("False positive rate")
277 plt.ylabel("True positive rate")
278 plt.xscale(’log’)
279 plt.legend(loc=’best’)
280 plt.savefig(os.path.join(folder , "ROC_curve.png"),format=’png’)
281 plt.close()
282

283 return auc
284

285 def plot_learning(results , error_type):
286 x = np.arange(len(results[’train’][error_type]))
287

288 np.savetxt(os.path.join(folder ,"learning_curve_%s.csv" %error_type),
↪→ np.transpose ([x, results[’train’][error_type], results[’eval’][
↪→ error_type]]), delimiter=",", header="epoch , training error ,
↪→ test error \n error metric: %s" %error_type)

289

290 plt.plot(x, results[’train’][error_type], label="Train")
291 plt.plot(x, results[’eval’][error_type], label="Test")
292 plt.xlabel("epoch")
293 plt.ylabel(error_type)
294 plt.legend(loc=’best’)
295 plt.savefig(os.path.join(folder , "learning_curve_%s.png" %error_type)

↪→ ,format=’png’)
296 plt.close()
297

298 ###
299

300 def main(args , sigFile , bkgFile):
301

302 print "Executing main() in BDT1.py"
303 #--------------------------- BDT VARIABLES ------------------------
304 trainFraction = 0.8
305 seed = 2
306

307 params = {"objective": "binary:logistic",
308 "eta": args.eta ,
309 "max_depth": args.max_depth ,
310 "min_child_weight": args.min_child_weight ,
311 "gamma": args.gamma ,
312 "subsample": args.subsample ,
313 "colsample_bytree": args.colsample_bytree ,
314 "lambda": args.reg_lambda ,
315 "eval_metric": [’rmse’, ’error’, ’logloss ’, ’auc’],
316 "seed": 5,
317 "silent": 1,
318 "verbosity": 1}

48

319

320 num_round = args.num_round #number of training iterations (determines
↪→ number of boosters)

321 early_stopping_rounds = args.early_stopping_rounds #make None to
↪→ deactivate early stopping

322 #--
323

324 #to get identical result with same data and variables
325 np.random.seed(seed)
326

327 #----- BDT -----
328 events = getDataBDT(trainFraction)
329

330 if args.scale:
331 params["scale_pos_weight"] = float(np.sum(events.train_y == 0))/

↪→ np.sum(events.train_y == 1)
332 print "Using scale_pos_weight"
333

334 bst , learning , early_stop , best_score , best_iteration = train(events ,
↪→ params , num_round , early_stopping_rounds , args.name_model)

335 preds , probs_sig_events , probs_bkg_events , scores = predict(bst ,
↪→ events)

336

337 #----- plotting ------
338 print "plotting"
339

340 plot_probs(probs_sig_events , probs_bkg_events)
341 auc = plot_roc(events.test_y , preds)
342

343 for metric in params[’eval_metric ’]:
344 plot_learning(learning , metric)
345

346 #plot importance
347 ax = xgb.plot_importance(bst)
348 fig = ax.figure
349 fig.savefig(os.path.join(folder ,"importance.png"))
350

351 #----- save parameters used ------
352 with open(os.path.join(folder ,"variables.txt") ,"w") as f:
353 f.write(’CONSTANTS ’ + ’\n\n’)
354 f.write(’training fraction = ’ + str(trainFraction) + ’\n’)
355 f.write(’seed = ’ + str(seed) + ’\n\n’)
356 f.write(’PARAMETERS BDT’ + ’\n\n’)
357 for k, v in sorted(params.iteritems ()):
358 f.write(str(k) + ’: ’ + str(v) + ’\n’)
359 f.write(’\n’ + ’number of rounds = ’ + str(num_round) + ’\n’)
360 f.write(’early stopping rounds = ’ + str(early_stopping_rounds) +

↪→ ’\n\n’)
361 f.write(’RESULTS ’ + ’\n\n’)
362 f.write(’auc = ’ + str(auc) + ’\n’)
363 f.write(’precision = ’ + str(scores [0]) + ’\n’)

49

364 f.write(’accuracy = ’ + str(scores [1]) + ’\n’)
365 f.write(’recall = ’ + str(scores [2]) + ’\n’)
366 f.write(’specificity = ’ + str(scores [3]) + ’\n’)
367 f.write(’metric values of last booster (test):’ + ’\n’)
368 for metric in params[’eval_metric ’]:
369 f.write(’ - ’ + str(metric) + ’: ’ + str(learning[’eval’][

↪→ metric][-1]) + ’\n’)
370 f.write(’\n’)
371 if early_stop:
372 f.write(’EARLY STOPPING OCCURED \n’)
373 f.write(’best score = ’ + str(best_score) + ’\n’)
374 f.write(’best iteration = ’ + str(best_iteration) + ’\n’)
375 f.write(’metric values of best booster (test):’ + ’\n’)
376 for metric in params[’eval_metric ’]:
377 f.write(’ - ’ + str(metric) + ’: ’ + str(learning[’eval

↪→ ’][metric][best_iteration]) + ’\n’)
378 f.write(’\n’)
379 else:
380 f.write(’early stop = ’ + str(early_stop) + ’\n\n’)
381 f.write(’INPUT FILES’ + ’\n\n’)
382 f.write(’signal sample file: ’ + sigFile + ’\n’)
383 f.write(’bkg sample file: ’ + bkgFile)
384 #---------------------------------
385 print "Completed main() in BDT1.py"
386

387

388 if __name__ == "__main__":
389 start_time = time.time()
390

391 #load dictionaries (library)
392 r.gSystem.Load("/nfs/slac/g/ldmx/users/jessamy/ldmx_git/ldmx -sw/

↪→ install/lib/libEvent.so")
393

394 #input files
395 sigFile = "../ plotting_2e/Data_2e /4

↪→ pt0_gev_signal_ap_mass_10mev_recon_recon.root"
396 bkgFile = "../ plotting_2e/Data_2e /4

↪→ pt0_gev_2e_ecal_pn_v9_magnet_20180825_1e6_fcbb5f56_tskim_recon_
↪→ merge_recon.root"

397

398 #give variables when running code
399 parser = argparse.ArgumentParser ()
400

401 parser.add_argument(’--eta’, dest=’eta’,type=float , default =0.3,
↪→ help=’Learning Rate’)

402 parser.add_argument(’--max_depth ’, dest=’max_depth ’,type=int ,
↪→ default=6, help=’Maximum depth of trees’)

403 parser.add_argument(’--min_child_weight ’, dest=’min_child_weight ’,
↪→ type=int , default=1, help=’Minimum child weight ’)

404 parser.add_argument(’--gamma ’, dest=’gamma’,type=float , default=0,
↪→ help=’Minimum loss reduction needed for split’)

50

405 parser.add_argument(’--subsample ’, dest=’subsample ’,type=float ,
↪→ default=1, help=’Fraction of events used per tree’)

406 parser.add_argument(’--colsample_bytree ’, dest=’colsample_bytree ’,
↪→ type=float , default=1, help=’Fraction of features used per
↪→ tree’)

407 parser.add_argument(’--lambda ’, dest=’reg_lambda ’,type=float ,
↪→ default=1, help=’L2 regularization factor ’)

408 parser.add_argument(’--num_round ’, dest=’num_round ’,type=int ,
↪→ default =10, help=’Number of booster rounds/number of trees’)

409 parser.add_argument(’--early_stopping_rounds ’, dest=’
↪→ early_stopping_rounds ’,type=int , default=None , help=’Number of
↪→ early stopping rounds ’)

410 parser.add_argument(’--folder ’, dest=’folder ’, default=’Output_bdt ’,
↪→ help=’Name of output folder ’)

411 parser.add_argument(’--subfolder ’, dest=’subfolder ’, default=None ,
↪→ help=’Name of output subfolder ’)

412 parser.add_argument(’--name_model ’, dest=’name_model ’, default=’0001’
↪→ , help=’Name of model’)

413 parser.add_argument(’--scale ’, dest=’scale’, type=bool , default=False
↪→ , help=’Bool for using scale_pos_weights ’)

414

415 args = parser.parse_args ()
416

417 print args.scale
418

419 #create output directory (if not already excisting)
420 if args.subfolder:
421 if not os.path.exists(os.path.join(args.folder , args.subfolder)):
422 os.makedirs(os.path.join(args.folder , args.subfolder))
423 folder = os.path.join(args.folder , args.subfolder)
424 else:
425 if not os.path.exists(args.folder):
426 os.mkdir(args.folder)
427 folder = args.folder
428

429

430 main(args , sigFile , bkgFile)
431

432

433 #calc how long program took
434 time_taken = time.time() - start_time #in seconds
435 hours , rest = divmod(time_taken , 3600)
436 minutes , seconds = divmod(rest , 60)
437

438 print hours , "hours ,", minutes , "minutes ,", seconds , "seconds"

51

B | Python submission script

1 #!/usr/bin/env python
2

3 import subprocess
4 import time
5 import os
6

7 def main():
8

9 print "Running submission.py"
10

11 command = [’bash’, ’-c’, ’source /nfs/slac/g/ldmx/software/setup.sh
↪→ && env’]

12 proc = subprocess.Popen(command , stdout=subprocess.PIPE)
13

14 dir = "/nfs/slac/g/ldmx/users/jessamy/Thesis/SLAC/firstBDT/"
15

16 folder = "tune_gamma"
17 gamma_list = [’0.0’,’0.1’,’0.2’,’0.3’,’0.4’,’0.5’]
18

19 output_dir = dir + folder + ’/’
20

21 for gamma in gamma_list:
22 sub_name = "gamma_%s" %(gamma)
23

24 command = ’python BDT1.py --eta 0.08 --max_depth 7 --
↪→ min_child_weight 2 --gamma %s --subsample 1 --
↪→ colsample_bytree 1 --lambda 1 --num_round 1000 --
↪→ early_stopping_rounds 10 --folder %s --subfolder %s --
↪→ name_model %s’ %(gamma , folder , sub_name , sub_name)

25

26 print ’\n’, command , ’\n’
27

28 batch_command = "bsub -q medium -W 2800 -o %s -e %s %s" %(
↪→ output_dir , output_dir , command)

29 process = subprocess.Popen(batch_command , shell=True)
30 process.wait()
31

32 print "Finished submission.py"
33

34 if __name__ == "__main__" :
35 main()

52

Bibliography

[1] F Zwicky. Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Physica
Acta, 6:110–127, 1933.

[2] Knut Lundmark. Lund Medd., 125:1–10, 1930.

[3] NASA. Dark energy, dark matter. https://science.nasa.gov/astrophysics/
focus-areas/what-is-dark-energy. Accessed: 2018-02-24.

[4] CERN. Dark matter. https://home.cern/about/physics/dark-matter. Accessed:
2018-02-24.

[5] https://commons.wikimedia.org/wiki/File:Standard_Model_From_Fermi_
Lab.jpg. Accessed: 2018-02-24.

[6] V. C. Rubin, W. K. Ford, Jr., and N. Thonnard. Rotational properties of 21 SC
galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to
UGC 2885 /R = 122 kpc/. apj, 238:471–487, June 1980.

[7] https://en.wikipedia.org/wiki/File:GalacticRotation2.svg. Accessed:
2018-02-25.

[8] https://commons.wikimedia.org/wiki/File:A_Horseshoe_Einstein_Ring_
from_Hubble.JPG. Accessed: 2018-02-25.

[9] https://commons.wikimedia.org/wiki/File:Gravitational_lens-full.jpg.
Accessed: 2018-02-25.

[10] Douglas Clowe, Anthony Gonzalez, and Maxim Markevitch. Weak-lensing mass re-
construction of the interacting cluster 1e 0657âĂŞ558: Direct evidence for the exis-
tence of dark matter. The Astrophysical Journal, 604(2):596, 2004.

[11] Douglas Clowe, MaruÅąa BradaÄŊ, Anthony H. Gonzalez, Maxim Markevitch,
Scott W. Randall, Christine Jones, and Dennis Zaritsky. A direct empirical proof of
the existence of dark matter. The Astrophysical Journal Letters, 648(2):L109, 2006.

[12] Planck Collaboration: Ade, P. A. R. et al. Planck 2015 results - xiii. cosmological
parameters. A&A, 594:A13, 2016.

[13] Howard Baer, Ki-Young Choi, Jihn E. Kim, and Leszek Roszkowski. Dark matter
production in the early universe: Beyond the thermal WIMP paradigm. Physics
Reports, 555:1 – 60, 2015.

53

https://science.nasa.gov/astrophysics/focus-areas/what-is-dark-energy
https://science.nasa.gov/astrophysics/focus-areas/what-is-dark-energy
https://home.cern/about/physics/dark-matter
https://commons.wikimedia.org/wiki/File:Standard_Model_From_Fermi_Lab.jpg
https://commons.wikimedia.org/wiki/File:Standard_Model_From_Fermi_Lab.jpg
https://en.wikipedia.org/wiki/File:GalacticRotation2.svg
https://commons.wikimedia.org/wiki/File:A_Horseshoe_Einstein_Ring_from_Hubble.JPG
https://commons.wikimedia.org/wiki/File:A_Horseshoe_Einstein_Ring_from_Hubble.JPG
https://commons.wikimedia.org/wiki/File:Gravitational_lens-full.jpg

BIBLIOGRAPHY BIBLIOGRAPHY

[14] Torsten Åkesson, Asher Berlin, Nikita Blinov, Owen Colegrove, Giulia Collura,
Valentina Dutta, Bertrand Echenard, Joshua Hiltbrand, David G. Hitlin, Joseph
Incandela, John Jaros, Robert Johnson, Gordan Krnjaic, Jeremiah Mans, Takashi
Maruyama, Jeremy McCormick, Omar Moreno, Timothy Nelson, Gavin Niendorf,
Reese Petersen, Ruth Pöttgen, Philip Schuster, Natalia Toro, Nhan Tran, and An-
drew Whitbeck. Light Dark Matter eXperiment (LDMX). arXiv e-prints, page
arXiv:1808.05219, Aug 2018.

[15] J. et al. Alexander. Dark Sectors 2016 Workshop: Community Report. ArXiv e-
prints, August 2016.

[16] Teresa MarrodÃąn Undagoitia and Ludwig Rauch. Dark matter direct-detection
experiments. Journal of Physics G: Nuclear and Particle Physics, 43(1):013001,
2016.

[17] Mans, Jeremiah. The LDMX Experiment. EPJ Web Conf., 142:1020, 2017.

[18] S. Agostinelli et al. GEANT4: A Simulation toolkit. Nucl. Instrum. Meth., A506:250–
303, 2003.

[19] Dan Guest, Kyle Cranmer, and Daniel Whiteson. Deep learning and its application
to lhc physics. Annual Review of Nuclear and Particle Science, 68(1):161–181, 2018.

[20] Xgboost documentation. https://xgboost.readthedocs.io/en/latest/index.
html. Accessed: 2019-04-02.

[21] Byron P. Roe, Hai-Jun Yang, Ji Zhu, Yong Liu, Ion Stancu, and Gordon McGregor.
Boosted decision trees as an alternative to artificial neural networks for particle
identification. Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment, 543(2):577 – 584,
2005.

[22] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system, 2016.

[23] XGBoost documentation. Introduction to boosted trees. https://xgboost.
readthedocs.io/en/latest/tutorials/model.html. Accessed: 2019-04-01.

[24] Tianqi Chen. Introduction to boosted trees. https://homes.cs.washington.edu/
~tqchen/pdf/BoostedTree.pdf, 2014. Accessed: 2019-04-01.

[25] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[26] Julien Despois. Memorizing is not learning! -6 tricks to prevent overfitting
in machine learning. https://hackernoon.com/memorizing-is-not-learning-
6-tricks-to-prevent-overfitting-in-machine-learning-820b091dc42. Ac-
cessed: 2019-04-01.

[27] XGBoost Documentation. Xgboost parameters. https://xgboost.readthedocs.
io/en/latest/parameter.html. Accessed: 2019-04-02.

[28] XGBoost Documentation. Python API reference. https://xgboost.readthedocs.
io/en/latest/python/python_api.html. Accessed: 2019-04-02.

54

https://xgboost.readthedocs.io/en/latest/index.html
https://xgboost.readthedocs.io/en/latest/index.html
https://xgboost.readthedocs.io/en/latest/tutorials/model.html
https://xgboost.readthedocs.io/en/latest/tutorials/model.html
https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf
https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf
http://www.deeplearningbook.org
https://hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-machine-learning-820b091dc42
https://hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-machine-learning-820b091dc42
https://xgboost.readthedocs.io/en/latest/parameter.html
https://xgboost.readthedocs.io/en/latest/parameter.html
https://xgboost.readthedocs.io/en/latest/python/python_api.html
https://xgboost.readthedocs.io/en/latest/python/python_api.html

	Introduction
	Validation of simulation samples
	Introduction
	Energy and transverse momentum distribution
	Boosted Decision Tree features

	Boosted decision tree
	Introduction
	Method
	Results

	Conclusion
	Outlook
	Acronyms
	Appendix Python script BDT
	Appendix Python submission script
	Bibliography

