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Abstract

We study orthogonal decompositions of complex special linear Lie algebras or,
in other words, linear spaces consisting of complex matrices with zero trace.
The conjugacy of the component subspaces give rise to change of basis matrices
with a particular form that we, for the moment, call nice. We prove a necessary
and sufficient condition for this form, which allows us to characterize orthog-
onal decompositions as a finite set of matrices: namely, the change of basis
matrices from the standard diagonal component subspace to each of the other
n component subspaces. We develop a basic theory for nice matrices, and then
present methods to construct known orthogonal decompositions in terms of the
aforementioned characterization of them.
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Chapter 1

Introduction

The work presented in this thesis has been done as a degree project for the
master programme in computer science and engineering at the Faculty of Engi-
neering of Lund University. The purpose has been to develop deeper knowledge
on the subject of matrix theory, which is itself an advanced theoretical compo-
nent of the computer graphics specialization.

To this end, the problem of constructing orthogonal decompositions of special
linear spaces (consisting of complex matrices with zero trace) has been studied.
In particular, this problem has been framed in a way that makes the matrix
theory perspective especially relevant, namely by focusing on the change of basis
matrices that connect the subspace components of an orthogonal decomposition.

While the problem of orthogonal decompositions originally comes from the sub-
ject of Lie algebras, it is not necessary to be familiar with it in order to un-
derstand or think about the problem. In fact, the presentation in this thesis
is geared towards readers that are familiar with linear algebra and matrix the-
ory. Even some finer details of these two subjects will be repeated to increase
accessibility of the material.

Before this introduction chapter ends we will have described what orthogonal
decompositions are, as well as provided the basics that will be used in the rest
of the report. In the second chapter we will describe the special form that the
change of basis matrices take in an orthogonal decomposition. Then in the third
chapter, methods of constructing orthogonal decompositions in terms of these
change of basis matrices will be presented.
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1.1 Notation and basics

Subscript, Ai, always implies that A is a container of some sort (for example
a sequence, vector or matrix, depending on the index and element types) and
that we are accessing an element at position i from it. It’s never used as a part
of the name of a variable.

Indices may start counting from either 0 or 1 for sequences in general, but
specifically for matrices and vectors they will always start counting from 1.
Vectors should be interpreted as column vectors unless otherwise stated. For
matrices, Ai,j denotes the element at row i and column j in the matrix A.

Any operation (for example, exponentiation) on the same syntactic level as the
subscript will apply to the accessed element, and not to the container as a whole.
For example A−1i,j means the reciprocal of an element in the matrix A, and not

an element in its inverse matrix (which is instead denoted by (A−1)i,j).

The imaginary unit is written with the Greek letter ι (iota), and should not be
confused with i or j which are always used as index variables.

The terms ‘linear space’, ‘vector space’ and ‘matrix space’ are essentially syn-
onymous, and only differ in connotation regarding what kind of elements it
consists of. These spaces will be especially important:

1. The linear space of complex n× n matrices with trace zero:
sln(C) = {A ∈ Cn×n | trA = 0}

2. The linear space of complex n× n diagonal matrices with trace zero:
sdn(C) = {A ∈ diag(Cn) | trA = 0}

Componentwise multiplication of two vectors u and v is denoted by u� v.

We will also make use of the triangular numbers:

4n =

n∑
k=1

k =

(
n+ 1

2

)
=
n(n+ 1)

2

1.2 Orthogonal decompositions

In order to understand orthogonal decompositions, we first need to understand
decompositions in general. The idea with a decomposition is that we want to
reconstruct a large object in terms of smaller independent objects (elements). A
probably familiar example is how we might decompose an integer into a product
of its primes, or even just smaller factors. In this thesis we are specifically
looking at decompositions of linear spaces (e.g. vector spaces and matrix spaces)
by this definition:
Definition 1. A decomposition of a linear space L is a sequence V of subspaces
of L, such that L =

∑
i Vi and all subspaces in V are linearly independent in

the following sense:

∀vi ∈ Vi.

(∑
i

vi = 0⇒ ∀i. vi = 0

)

4



Because the independence condition is equivalent to the condition necessary
and sufficient for the subspace sum L =

∑
i Vi to be direct (namely that

Vi ∩ (
∑
j 6=i Vj) = {0}), we will use the direct sum notation L =

⊕
i Vi to

denote a decomposition. For finite-dimensional spaces, which is the only kind
we will work with in this thesis, the independence condition may be equivalently
and more concisely restated as: dimL =

∑
i dimVi.

We should now be ready to define an orthogonal decomposition. The term
could apply to linear spaces in general, but we will specifically look at only the
traceless matrix spaces sln(C) and make the definition accordingly.
Definition 2. A decomposition of sln(C), given by sln(C) =

⊕n
i=0 Vi, is said

to be an orthogonal decomposition when:

1. Subspaces are conjugate:
Vi = S−1i V0Si

2. Subspaces are diagonalizable:
V0 = sdn(C)

3. Subspaces are pairwise orthogonal:
∀i 6= j. Vi ⊥ Vj

Strictly speaking, orthogonality is not yet defined for the subspaces since we
have not specified sln(C) as an inner product space or even as a space with a
bilinear form. For clarity, the following definition of orthogonality is used:
Definition 3. Two matrix subspaces Vi and Vj are orthogonal (Vi ⊥ Vj) when:

∀A ∈ Vi, B ∈ Vj . tr(AB) = 0

This is consistent with equipping the space with the bilinear form 〈A,B〉 =
tr(AB). Note however that this bilinear form is not an inner product, so some
properties of orthogonality that can be assumed in the context of real vectors
with dot product may not hold for matrices in sln(C) with the given bilinear
form. For example tr(A2) = 0 does not necessarily mean that A is the zero
matrix, so some non-zero matrices are actually orthogonal to themselves!

Another thing is worth pointing out here, namely that any sequence V of n+ 1
subspaces that satisfy the three listed requirements in definition 2 will in fact
form a decomposition in the first place. This is not immediately obvious because
the way the definition is stated it seems to imply that we must first know, as a
precondition (or zeroth requirement), that the subspaces form a decomposition
at all, before being able to even consider whether it is an orthogonal one.

The main reason this precondition is not really necessary is that orthogonality
of subspaces (as provided by the third requirement) implies independence of
them1. Thus they have a direct sum and must be a decomposition of something.
Furthermore, the second requirement implies that V0 has dimension n− 1, and
the first requirement implies that all other Vi have that same dimension by
conjugacy. The direct sum then has dimension (n + 1)(n − 1) = n2 − 1, and
the only such dimensioned common superspace is the total space sln(C), which
must thus be the thing being decomposed, as expected.

1The proof is beyond the scope of this thesis, but it’s not difficult to adapt a proof of the
same statement regarding vectors.
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1.3 Prior work

The problem of orthogonal decompositions of (simple) Lie algebras was first
posed and considered in full generality in [2]. A following paper [3] focused
more specifically on the problem of orthogonally decomposing Lie algebras of
type An, and this is in essence the same problem as introduced in definition 2
because the matrix space sln(C) happens to be a Lie algebra of type An−1.

The papers cited above are written for a quite advanced level. For a more ac-
cessible introductory text on Lie algebras and their orthogonal decompositions,
another Lund University master’s thesis [1] is a recommended read.

The most important point to take from these accounts is that there are known to
exist orthogonal decompositions when n is a prime power. However, even for the
first example which is not a prime power, n = 6, no orthogonal decomposition
has ever been found. In fact, there is a standing conjecture called the Winnie-
the-Pooh problem that there is no orthogonal decomposition at all for this size.
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Chapter 2

Nice matrices

The primary subject of this thesis is the form of the change of basis matrices Si
that an orthogonal decomposition will give rise to.

Let’s begin by only looking at the condition V0 ⊥ S−1V0S. In other words, we
look at a special case of the third requirement for an orthogonal decomposition
(with i = 0 and j > 0). By definition, this is equivalent to the condition that
tr(AB) = 0 given any A ∈ V0 and B ∈ S−1V0S.

Because V0 = sdn(C) we know that an arbitrary A can be written as A = diag(a)
for some a ∈ Cn with trA =

∑
i ai = 0. Likewise, we also have that any B can

be written as B = S−1 diag(b)S for some b ∈ Cn with tr(diag(b)) =
∑
i bi = 0.

We would like to expand tr(AB) =
∑
k(AB)k,k. In elementwise description

(AB)i,j =
∑
k Ai,kBk,j . However, only elements Ai,i = ai are nonzero which

permits k = i, so that (AB)i,j = aiBi,j . To expand further, we need Bi,j =
(S−1 diag(b)S)i,j =

∑
k(S−1)i,k(diag(b)S)k,j =

∑
k(S−1)i,kbkSk,j . Putting all

this together, we get the complete expansion:

tr(AB) =
∑
i

aiBi,i =
∑
i

ai
∑
j

bj(S
−1)i,j(S)j,i

Under what conditions on the elements of S is this trace equal to zero for any
valid assignments of vectors a and b? We begin by looking only at

∑
i aizi with

zi = Bi,i. In general the only z such that this is zero for arbitrary a, is when
zi = 0. However, now we also know that

∑
i ai = 0 so it is also permitted

that z is elementwise constant (zi = c for some c ∈ C), since we then have∑
i aizi = c

∑
i ai = c · 0 = 0.

We thus know the trace is zero if and only if the sum Bi,i =
∑
j bj(S

−1)i,j(S)j,i is

a constant. Let’s write it as
∑
j bjzj with zj = (S−1)i,j(S)j,i. The only constant

possible for this expression (for arbitrary b satisfying
∑
i bi = 0) is zero, which

again is when z is elementwise constant: zj = ci (it may theoretically be a
different constant for different i, since there is a separate z for each iteration).
Thus it is necessary that (S−1)i,j(S)j,i = ci, or equivalently, (S−1)i,j = ci(S)−1j,i .
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However, we also know that S−1S = I. Elementwise the left hand side is
(S−1S)i,j =

∑
k(S−1)i,k(S)k,j =

∑
k ci(S)−1k,i(S)k,j . Comparing with the iden-

tity matrix along the diagonal we have that
∑
k ci(S)−1k,i(S)k,i =

∑
k ci = nci =

1, which means that ci = n−1. In conclusion, the necessary and sufficient con-
ditions we sought on S is that (S−1)i,j = (nS)−1j,i .

We are now also interested in knowing for which conditions on Si and Sj we
satisfy the other cases of the third requirement for an orthogonal decomposition.
Namely, that S−1i V0Si ⊥ S−1j V0Sj (for i > 0, j > 0 and i 6= j), which by

definition is equivalent to tr(S−1i ASiS
−1
j BSj) = 0 given any A and B in V0.

Here we can use that tr(AB) = tr(BA), and thus find the trace in question to be
equal to tr(ASiS

−1
j BSjS

−1
i ) = tr(AT−1BT ) with T = SjS

−1
i . So an equivalent

condition is that V0 ⊥ T−1V0T , and we already know from before how to find
simple conditions on T from that.

We collect these results in a definition and a theorem.
Definition 4. An n × n matrix A is nice when it is invertible and its inverse
satisfies:

(A−1)i,j = (nA)−1j,i

Theorem 1. In any orthogonal decomposition and only in them, every change
of basis matrix Si will be nice, as well as SiS

−1
j when i 6= j.

The conclusion is that we can construct and describe orthogonal decompositions
from nice matrices alone since there is an exact correspondence. We don’t need
to keep track of n-many subspaces each with (n−1)-many basis matrices, which
is a quadratically increasing amount of information. It is sufficient with the
linearly increasing amount of n-many nice matrices. Most importantly, we may
look at the problem from just a matrix theory perspective, and do not have to
think about Lie algebras or linear spaces as objects themselves.

2.1 Basic properties

While the defining property of nice matrices is a lot easier to work with than the
orthogonality conditions directly, it’s sometimes inconvenient when it requires
expressing the entries of A−1 in terms of entries in A (for example using minor
determinants). The following theorem gives an equivalent condition which does
not require knowing an expression for the inverse matrix. After that a series of
theorems will show how the niceness property is preserved by various operations,
which give very powerful methods for deciding whether a complicated matrix is
nice or not, by reducing it to a simpler one.
Theorem 2. A matrix A is nice if and only if, for any i and j such that i 6= j,
the following holds: ∑

k

Ai,k
Aj,k

= 0,
∑
k

Ak,i
Ak,j

= 0

(Trivially, when i = j, both sums equal n for any A whether nice or not.)
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Proof. When A is nice, then (AA−1)i,j =
∑
k
Ai,k
Aj,k

= Ii,j . Likewise (A−1A)j,i =∑
k
Ak,i
Ak,j

= Ij,i. Looking only at i 6= j, then both sums equal Ii,j = Ij,i = 0.

Conversely, we apparently have a matrix B such that Bi,j = A−1j,i and AB =
BA = nI (this is just a more concise way of stating all the assumptions). This
means that n−1B is an inverse of A. Since every matrix has only at most one
inverse it must be the same as A−1. We have (A−1)i,j = (n−1B)i,j = (nA)−1j,i
which means that A is nice.

Theorem 3. If a matrix A is nice, then so is its inverse A−1.

Proof.

(A−1)i,j = (nA)−1j,i ⇔
(A−1)−1i,j = nAj,i ⇔
(nA−1)−1i,j = Aj,i ⇔

(nA−1)−1i,j = ((A−1)−1)j,i

Theorem 4. If a matrix A is nice, then so is A scaled by a nonzero factor c.

Proof.

((cA)−1)i,j = c−1(A−1)i,j = c−1(nA)−1j,i

= (ncA)−1j,i

Theorem 5. If a matrix A is nice, then so is its transpose AT.

Proof.

(A−1)i,j = (nA)−1j,i ⇔
(A−1)j,i = (nA)−1i,j ⇔

((A−1)
T

)i,j = (nAT)−1j,i ⇔

((AT)−1)i,j = (nAT)−1j,i

Theorem 6. If a matrix A is nice, then so is A modified by row or column
exchange.

Proof. The conditions in theorem 2 don’t depend on the ordering of rows and
columns in A. They apply to all pairs of rows (first condition) and pairs of
columns (second condition), and those complete sets of pairs are the same re-
gardless of which order we select them. Likewise, row and column exchange
may reorder the terms in the sums (over iterations k), but the sums stay the
same due to commutativity.
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Theorem 7. If a matrix A is nice, then so is A modified by row or column
scaling with a non-zero factor c.

Proof. Since scaling of a column is the same as a scaling of a row in the transpose
matrix, through theorem 5 it is enough to prove for the case when row l in A is
scaled.

The requirements in theorem 2 on the modified matrix are the following:

∑
k

CiAi,k
CjAj,k

= 0,
∑
k

CkAk,i
CkAk,j

= 0, where Ci =

{
c, if i = l

1, if i 6= l

These hold from the assumption that A is nice:∑
k

CiAi,k
CjAj,k

=
Ci
Cj

∑
k

Ai,k
Aj,k

= 0⇔
∑
k

Ai,k
Aj,k

= 0

∑
k

CkAk,i
CkAk,j

=
∑
k

Ak,i
Ak,j

= 0

2.2 Examples

At this point we know a lot about nice matrices in general, but we haven’t
actually seen one yet. Here we introduce the two most important classes of nice
matrices.

Hadamard matrices

For the case n = 2 it’s not difficult to find an example of a nice matrix. We
already know that we may normalize the first entry to 1 on each row and column
due to theorem 7. Once that is done on a 2× 2 matrix there is only one entry
left to fill in and we find that the value −1 makes the matrix nice.

(
1 1
1 −1

)
Such a matrix is an example of a Hadamard matrix: square matrices which by
definition only have entries in −1,+1 and all rows (or equivalently: columns)
are mutually orthogonal. A Hadamard matrix H will have the property that
H−1 = n−1HT, which looks very similar to that which defines nice matrices.

It’s just that a nice matrix will have an inverse which is proportional to the
transpose of the elementwise inverse; not just the transpose directly. However,
the difference is immaterial when the entries are their own inverse which is the
case for −1 and +1 in C. With that we have proved:
Theorem 8. All Hadamard matrices are nice.
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Fourier matrices

Hadamard matrices present some examples of nice matrices, but by no means
all of them. It is known from the theory of Hadamard matrices that the size
of a Hadamard matrix must be 1, 2 or a multiple of 4. It is not even known
whether all multiples of 4 has a Hadamard matrix of that size. On the other
hand, it is known that there is an orthogonal decomposition for all n = pm, and
thus there have to be examples of nice matrices for at least all such sizes.

A natural generalization of Hadamard matrices are Fourier matrices (in partic-
ular, the 2×2 Fourier matrix is a Hadamard matrix). Like Hadamard matrices,
a Fourier matrix F will have an inverse equal to n−1Fn

H. Should these be nice
also, then we have a method of constructing nice matrices of any size since
Fourier matrices exist in all sizes. As it happens, it is in fact so:

Theorem 9. The Fourier matrices Fn, defined by (Fn)i,j = ε(i−1)(j−1) with
ε = exp( 2π

n ι), are nice.

Proof. We know that F−1n = n−1Fn
H. Furthermore, the complex conjugate of

an element of Fn is in fact just its inverse: ε(i−1)(j−1) = exp(− 2π
n ι(i−1)(j−1)) =

ε−(i−1)(j−1) = (ε(i−1)(j−1))−1. Thus we have that (F−1n )i,j = n−1(Fn)j,i =
(nFn)−1j,i which means Fn is nice.

2.3 Equivalence classes

From theorems 6 and 7, we learnt that the niceness property is preserved when
exchanging rows and columns, and also when scaling them by a nonzero scalar.
But these operations are the same as multiplying to the left or right (affecting
rows and columns, respectively) with permutation matrices and nonzero diag-
onal matrices. Furthermore, an arbitrary product of these kinds of matrices is
always a monomial matrix 1. We may thus capture both these theorems in one
that states that LAR is nice if and only if A is, given monomial matrices L and
R. This means that in the following definition, both A and B are nice if one of
them is.
Definition 5. A matrix A is monomial-equivalent to B when A = LBR,
for some monomial matrices L (“left-monomial”) and R (“right-monomial”).
More specifically, left-monomial-equivalent implies R = I while right-monomial-
equivalent implies L = I.

That this really is an equivalence relation is not difficult to see. Identity matrices
are monomial which gives the reflexive property. Monomial matrices are invert-
ible which gives the symmetric property. Finally, the set of monomial matrices
(of a certain size) is closed under matrix product, which gives the transitive
property.

With an equivalence relation in hand, it is now natural to ask: what equivalence
classes does it have in the context of nice matrices?

1Also known as a generalized permutation matrix : a matrix with exactly one nonzero entry
in each row and column, but it does not have to be 1 as in a standard permutation matrix.
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For the case n = 2 we have actually already found the one and only equivalence
class, where the Hadamard matrix given previously (also equal to the Fourier
matrix F2) is a representative. We first used theorem 7 to normalize the first
entry to 1 on every row and column. Any matrix of any size, whether nice or not,
is monomial-equivalent to such a normalized matrix, so there is no reason not
to begin with this step when classifying nice matrices by monomial-equivalence.
Then we found that setting the final entry to the value −1 makes the matrix
nice. In fact, theorem 2 makes it clear that this is the only value which makes
it nice, and consequently the equivalence class is unique.

As for n = 3, we again begin by normalizing the first entry on each row and
column. Then we repeatedly use theorem 2 on various pairs of rows and columns
to get more and more information about the remaining entries. We eventually
reach the result below and the fact that x2 + x + 1 = 0, which has the two
solutions x = ε and x = ε2.

 1 1 1
1 x y
1 z w

→
 1 1 1

1 x y
1 y w

→
 1 1 1

1 x y
1 y x

→
 1 1 1

1 x −(1 + x)
1 −(1 + x) x


We may choose x to be any of the two solutions but we should not conclude
that each choice result in a representative for one distinct equivalence class each.
Note that −(1+x) is the other of the two solutions, and by row exchange (alter-
natively column exchange) both solutions actually result in monomial-equivalent
matrices. In other words, there is a unique equivalence class and not two. Fur-
thermore, with the solution x = ε it is clear that a possible representative for
the equivalence class is the Fourier matrix F3.

We have now seen that there is only one single monomial equivalence class for
n = 2 and n = 3 which has the Fourier matrix Fn as a natural representative.
This may lead one to entertain the idea that this will generalize to arbitrary n.
It would indeed be a very useful thing, making it possible to represent any nice
matrix as a pair of monomial matrices. Unfortunately, it is not possible in
general. Already n = 4 will make a counterexample, as demonstrated below.


1 1 1 1
1 x y z
1
1

→


1 1 1 1
1 x −1 −x
1
1

→


1 1 1 1
1 x −1 −x
1 −1 −1
1 −x x

→


1 1 1 1
1 x −1 −x
1 −1 1 −1
1 −x −1 x


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Chapter 3

Constructions

We will now look at constructing orthogonal decompositions of sln(C) for var-
ious values of n, by applying the knowledge we have collected regarding nice
matrices. The general procedure will be to construct nice matrices that satisfy
the conditions of theorem 1.

3.1 Case n = 2

In order to construct an orthogonal decomposition for n = 2, we are looking for
two nice matrices S1 and S2 such that also S2S

−1
1 is nice.

From last chapter we know that we can write S1 = L1F2R1 and S2 = L2F2R2,
where L1, L2, R1 and R2 are monomial matrices and F2 is the Fourier matrix
of size 2. Without loss of generality we may even assume that R1 and R2 are
(invertible) diagonal matrices. Because if they had a non-identity permutation
factor (there is only one such when n = 2) it would exchange the columns of
F2, which can also be accomplished by scaling the second row by −1, which
corresponds to a modification of the opposite monomial matrix (L1 or L2).

With this rewrite, we have that S2S
−1
1 = L2F2R2R

−1
1 F−12 L−11 . The inverse of

F2 is again F2 but scaled by 1/2, and there are matrices to the sides, L2 and
L−11 , which are monomial. These factors do not affect the niceness of S2S

−1
1 ,

and thus it is enough to look only at when F2R2R
−1
1 F2 is nice.

When that matrix is nice it should also be rewritable as a monomial equivalent
to F2. So clearly we must find an invertible diagonal matrix X = R2R

−1
1 such

that F2XF2 = L′F2R
′ for some monomial matrices L′ and R′. Once we have

found X, we may easily decompose it by setting R1 to an arbitrary invertible
diagonal matrix and then calculate R2 = XR1.

Let X = diag(x) and set L′ and R′ such that (L′)−1F2XF2(R′)−1 is normalized
in the first entry on all rows and columns.
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(
x1 + x2 x1 − x2
x1 − x2 x1 + x2

)
→

(
1 1

1 (x1+x2)
2

(x1−x2)2

)

In order for this to equal F2 according to the condition above, the final entry
must equal −1. However, we also need to keep in mind that both x1 + x2
and x1 − x2 must be nonzero since we inverted them when performing the
normalization. The complete system we need to solve is this:

x1 + x2 6= 0

x1 − x2 6= 0

(x1 + x2)2 + (x1 − x2)2 = 0

The final equation is equivalent to x21 +x22 = 0 and x1 = 1, x2 = ι is one possible
solution that also satisfies the inequations. In fact, for any t 6= 0 there is a
solution in the form of x1 = t, x2 = tι, and this gives us a way to completely
parameterize all orthogonal decompositions for n = 2. We are satisfied with the
one solution though, and after arbitrarily setting L1 = L2 = R1 = I we can
easily calculate S1, R2 and then S2:

S1 = L1F2R1 = IF2I = F2

R2 = XR1 = XI = X

S2 = L2F2R2 = IF2X = F2X

S1 =

(
1 1
1 −1

)
, S2 =

(
1 ι
1 −ι

)

3.2 Case n = 3

We need to find three matrices, S1, S2 and S3, such that S1S
−1
2 , S2S

−1
3 and

S1S
−1
3 are also nice. Similar to the case n = 2 we assume that Si = LiF3Ri,

where F3 is the Fourier matrix of size 3 and Li and Ri are monomial matrices.
Furthermore, also like the previous case, Ri may even be assumed to be invert-
ible diagonal matrices, because all permutations of columns in F3 can instead
be equivalently performed1 with a modification to Li.

We also find again that the left-monomials are completely unimportant because
they do no affect the niceness of SiS

−1
j = LiF3RiR

−1
j F−13 L−1j . In fact, this

always holds for any n and we could safely drop them entirely without losing

1One can easily verify this since there are only five cases, namely the 3! − 1 different non-
identity permutations of the columns. They are all equivalently realized by scaling the bottom
two rows by ε and ε2 in some order, and/or exchanging them.
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generality. However, they have been very useful to allow us assume a more
simple shape on the right-monomials as we have done now for both n = 2 and
n = 3. Still, at the end of the day we have no reason not to set Li = I.

We let X = diag(x) = R1R
−1
2 , Y = diag(y) = R2R

−1
3 and note that XY =

diag(x � y) = R1R
−1
3 . Thus we are looking for X and Y such that all of the

following matrices are nice: F3XF3, F3Y F3 and F3XY F3. We will proceed by
finding the solution space for X alone, which is clearly also the solution space
for Y and XY alone. Then we take particular solutions for X and Y such that
XY also happens to be inside the solution space.

We will be interested in the elements of F3XF3 in terms of x.

F3XF3 =

 x1 + x2 + x3 x1 + εx2 + ε2x3 x1 + ε2x2 + εx3
x1 + εx2 + ε2x3 x1 + ε2x2 + εx3 x1 + x2 + x3
x1 + ε2x2 + εx3 x1 + x2 + x3 x1 + εx2 + ε2x3


Using theorem 2 with normalization of the fractions, we construct a polynomial
system for the niceness of F3XF3:

χ1 = x1 + x2 + x3 6= 0

χ2 = x1 + εx2 + ε2x3 6= 0

χ3 = x1 + ε2x2 + εx3 6= 0

χ2
1χ3 + χ2

2χ1 + χ2
3χ2 = 0

χ2
1χ2 + χ2

2χ3 + χ2
3χ1 = 0

Simplification of the two equations gives the following equivalent:

x31 + εx32 + ε2x33 = 0

x31 + ε2x32 + εx33 = 0

With a couple of substitutions and simplifications we furthermore find the two
equations to be equivalent to x31 = x32 = x33. For those conditions alone, we
have a solution precisely when the x-values are a third root of unity (power of
ε) multiple to each other. The inequality conditions further require them to be
not all equal nor all different. In conclusion, for every t 6= 0 we have solutions
x = (εt, t, t) and x = (ε2t, t, t), as well as permutations of these.

Setting x = (ε, 1, 1) and y = (1, ε, 1) we get x�y = (ε, ε, 1). These are all in the
solution space and thus make sure that all of F3XF3, F3Y F3 and F3XY F3 are
nice. We can now find R1, R2 and R3 by setting one of them to an arbitrary
invertible diagonal matrix and calculating the other two from X and Y . For
example, we set R2 = I which means R1 = X and R3 = Y −1. Now it’s only a
simple matter of calculating S1, S2 and S3:

S1 =

 ε 1 1
ε ε ε2

ε ε2 ε

 , S2 =

 1 1 1
1 ε ε2

1 ε2 ε

 , S3 =

 1 ε2 1
1 1 ε2

1 ε ε


15



3.3 Case n is prime

The methods we have been using up to now start to become impractical when
generalized to n > 3. We will find that we cannot assume without loss of
generality that the right-monomials are diagonal, because some permutations
won’t be equivalently representable with a modification to the left-monomial.
This means we need to consider all remaining permutations which in worst
case are factorially many. It does not help that the number of constraints that
need to hold simultaneously, namely that SiS

−1
j should be nice for all i > j,

is increasing quadratically. This quadratic amount acts as an exponent in the
complexity measure since we need to consider all combinations of permutations
from different right-monomials.

While n = 4 might be barely possible to do by hand if one had the patience
(and luck in testing options in the right order), any larger size would almost
surely be beyond even the fastest computers. Especially in worst case runtime
which would happen if there is no orthogonal decomposition for a certain size
n. It does not even seem like the method would be any more advantageous than
a more direct approach. Each permutation would ask the computer to solve a
polynomial system, but we could have provided it with a single such system by
never decomposing the S-matrices into monomial equivalences in the first place.

Still, it is known that there are, at least, orthogonal decompositions for any
prime power n, and we should be able to find sets of nice matrices that corre-
spond to these known decompositions. In Per-Anders Andersson’s thesis [1] a
construction is presented in terms of bases for the subspaces Vi, which is more
specifically proven correct for any prime n (not prime power). What follows here
is an adaptation of this result which presents an equal construction in terms of
nice matrices.

Andersson’s construction is built on a basic kind of matrix called nearly diagonal,
which is a diagonal matrix whose entries have been shifted, with wrap-around,
a number of steps to the left.

NDh(a) =



a1
. . .

ah
ah+1

. . .

an


More precisely, its elementwise definition is:

(NDh(a))i,j =

{
ai, if j = i− h (mod n)

0, otherwise

Then together with the fixed diagonal subspace V0, the following subspaces Vk
for 1 ≤ k ≤ n (with prime n), are claimed to form an orthogonal decomposition:
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Vk =
〈
NDh(εkh, . . . , εnkh) | 1 ≤ h < n

〉
,where ε = exp(

2π

n
ι)

The proof by Andersson is quite elegant, but we will not repeat it here. Instead
we will discover an alternate proof when we extract, from this construction, the
change of basis matrices Sk and then proceed to show that they indeed satisfy
the conditions of theorem 1, when n is a prime.

One of the necessary conditions for an orthogonal decomposition is that Vk =
S−1k V0Sk = S−1k sdn(C)Sk, but this is just another way of saying that all matri-
ces in Vk should be simultaneously diagonalizable. The columns of S−1k become
the common eigenvectors, and the eigenvalues for each matrix in Vk are taken
from a corresponding diagonal matrix in sdn(C).

We defer the issue of simultaneous diagonalizability for a while, and begin with
just extracting a candidate for Sk. While we could do this by taking an arbitrary
matrix in Vk and calculate its eigenvectors using standard methods, there is a
simpler way if we choose to use specifically the first basis matrix (h = 1) given
above: ND1(εk, . . . , εnk). The specific diagonalization is then:

ND1(εk, . . . , εnk) = S−1k ΛSk, Λ = diag(λ) ∈ sdn(C)

We now multiply with Sk to the left on both sides, and look at each element of
this matrix equation.

(Sk ND1(εk, . . . , εnk))i,j = (ΛSk)i,j ⇔∑
l

(Sk)i,l(ND1(εk, . . . , εnk))l,j =
∑
l

Λi,l(Sk)l,j ⇔

(Sk)i,j+1ε
(j+1)k = λi(Sk)i,j ⇔

(Sk)i,j+1 = λiε
−(j+1)k(Sk)i,j

A prototype for a recurrence relation is becoming apparent. Given that we
eventually show Sk to be nice, then knowing that the columns of S−1k are the
eigenvectors we would expect the rows of Sk to be the elementwise inverse of
the eigenvectors divided by n. These rows are precisely what the recurrence
relation is generating.

Since any scaled version of an eigenvector is also an eigenvector, we may nor-
malize all of their first coordinates which gives natural initial conditions, namely
that (Sk)i,0 = 1. Furthermore, since the ordering of eigenvectors is not impor-
tant, we are free to reorder the rows of Sk as well, or equivalently, we don’t have
to mind which eigenvalue is assigned to which λi.

2

In order to complete the recurrence relation, we will now calculate the eigen-
values λi from the characteristic equation. With the exception for the top-right

2As an interesting sidenote, these properties of eigenvectors can be related to left-
monomials in the sense that replacing any Sk with something left-monomial-equivalent will
not produce a different orthogonal decomposition.
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element, the matrix ND1(εk, . . . , εnk)− λI is lower triangular. This makes the
Gaussian elimination method for calculating the determinant particularly suit-
able since in this special case it is enough with 2(n− 1) row operations.

The row operations we perform are given by this algorithm: For each row i
starting from the bottom and ending at the second row, we scale the first row
by λ and then add to this the row i multiplied by the value in column i on the
first row. The reader is encouraged to check that this works. Below is presented
the first and final step of the Gaussian elimination.



−λ εk

ε2k −λ

ε3k
. . .

. . . −λ
εnk −λ

→


(
∏
i ε
ik)− λn
ε2k −λ

ε3k
. . .

. . . −λ
εnk −λ



The determinant of the triangular result is ((
∏
i ε
ik)−λn)(−λ)n−1, but we also

need to divide by λn−1 to get the determinant of the original matrix, because
(n−1)-many times we scaled a row with the factor λ. In conclusion, we find that

the characteristic equation is equivalent to λn =
∏
i ε
ik = ε(

∑
i ik) = ε

n(n+1)
2 k.

When n is odd (n = 2ñ+1), the right hand side simplifies to εn(ñ+1)k = ε0 = 1,
and when n is even (n = 2ñ) it simplifies to ε

n
2 (n+1)k = εñnk+

n
2 k = ε

n
2 k = (−1)k.

We capture both of these cases with λn = (−1)k(n+1), and thus λi should be each

nth root of this. One way to describe these is λi =
n
√

(−1)k(n+1)εi−1, which is
easily verified by raising it to the power of n again. For sake of presentation,
we note that

n
√

(−1)k(n+1) = ε
1
2 (k(n+1) mod 2) which will be shortened to εφ(k).3

Now we have everything necessary to fully evaluate the recurrence relation:

(Sk)i,j = λj−1i

j−1∏
l=1

ε−(l+1)k = λj−1i ε(
∑j
l=1−lk)εk =

ε(j−1)φ(k)ε(i−1)(j−1)ε(1−4j)k

The fact that each Sk is nice is not difficult to see since they are, with exception
for column scaling, the Fourier matrix of size n given in theorem 9. The niceness
of Sk1S

−1
k2

for k1 6= k2 is a bit more difficult to deduce. The expression for it
(given below) does not make it immediately obvious it is any form of nice matrix
that we know of. Of course, it might not even be nice in general so we may now
have to make use of the assumption that n is prime.

3The reader is reminded that the following reduction, while tempting, is incorrect:

n
√

(−1)k(n+1) =
n
√

ε
n(n+1)

2
k .

=
√

ε(n+1)k =
√

εnk+k =
√

εk

The argument fails where there is a dot over the equality sign, because for complex values it
is not generally the case that (zw1 )w2 = zw1w2 .
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(Sk1S
−1
k2

)i,j =

n∑
l=1

(Sk1)i,l(S
−1
k2

)l,j =
1

n

n∑
l=1

(Sk1)i,l(Sk2)j,l =

1

n

n∑
l=1

ε(l−1)φ(k1)ε(i−1)(l−1)ε(1−4l)k1ε−(l−1)φ(k2)ε−(j−1)(l−1)ε−(1−4l)k2 =

1

n

n∑
l=1

ε(l−1)(φ(k1)−φ(k2))ε(4l−1)(k2−k1)ε(i−j)(l−1)

Almost directly from the definition of nice matrices, in order for Sk1S
−1
k2

to be
nice it is sufficient that:

n2(Sk1S
−1
k2

)i,j(Sk2S
−1
k1

)j,i = n

Expansion of the left hand side gives:

n2(Sk1S
−1
k2

)i,j(Sk2S
−1
k1

)j,i =
n∑

l1=1

n∑
l2=1

ε(l1−1)(φ(k1)−φ(k2))ε(4l1−1)(k2−k1)ε(i−j)(l1−1)

ε(l2−1)(φ(k2)−φ(k1))ε(4l2−1)(k1−k2)ε(j−i)(l2−1) =
n∑

l1=1

n∑
l2=1

ε(l1−l2)(φ(k1)−φ(k2))ε(4l1−4l2 )(k2−k1)ε(i−j)(l1−l2)

We can easily see that n of these n2 terms equal ε0 = 1, namely when l1 = l2.
That means that the other n2−n terms have to sum to 0, in order for the whole
sum to be n. Due to the presence of φ(k) which is sometimes one half, all terms
are (2n)th roots of unity. However, that is only the case when k is odd and n
is even, because otherwise φ(k) = 0. From our assumption that n is prime we
may check the only even prime separately, and then deal with odd primes where
φ(k1) and φ(k2) are zero and hence all terms become prime nth roots of unity
which greatly simplifies analysis.

The case n = 2 can be straightforwardly, but tediously, verified with case analy-
sis, evaluation and comparison, but some simplifications save many calculations.
For example, note that 4l1 −4l2 = 0 (mod 2) for all l1 and l2. Furthermore,
without loss of generality we may assume k1 < k2 and consequently k1 = 1,
k2 = 2 and then φ(k1) − φ(k2) = 1

2 . With these simplification taken into ac-

count, the terms are (−1)(
1
2+i−j)(l1−l2) and hence on the form (±

√
−1)(l1−l2)

for all i and j. Because the multiplicative inverse of the imaginary unit is also
its additive inverse, we easily see that the sum of all terms is n = 2 as expected.

The case of odd prime follows. In general m > 1 roots of unity sum to zero if
and only if they are equally spaced and m is a divisor of the root degree. Since
the degree is prime n, we have to identify (n− 1)-many sets of n terms (among
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those where l1 6= l2) where each set contains all roots of unity. One such set can
be found along each “diagonal” l2 = l1 + x (mod n) for nonzero x.

Since 4a+b = 4a + 4b + ab, the exponents along a diagonal are (4l1 −
4(l1+x))(k2 − k1) + (i − j)(l1 − (l1 + x)) = (−4x − xl1)(k2 − k1) + −(i − j)x.
This is just a linear function in l1 with x, k1, k2, i and j as parameters to the
coefficients. Note that the linear coefficient is never zero, because k1 6= k2 and
x 6= 0. In a finite field every such linear function will be bijective, so every value
on l1 (which selects a term in the set of terms represented by x) will produce a
different exponent and thus make sure the set contains all roots of unity.

At this point we have, in terms of nice matrices by theorem 1, a complete
constructive proof of an orthogonal decomposition of sln(C) for every prime n.
We summarize this result in the following theorem.
Theorem 10. For every prime n, the below given n × n matrices Sk (for
1 ≤ k ≤ n) form a complete set of change of basis matrices for an orthogonal
decomposition of sln(C).

(Sk)i,j = ε(j−1)φ(k)ε(1−4j)kε(i−1)(j−1)

where φ(k) =
1

2
(k(n+ 1) mod 2)

As promised we should also find an alternate proof that Andersson’s construc-
tion is correct. The remaining issue, which we deferred previously, is showing
that all matrices in Vk, and not just ND1(εk, . . . , εnk), are simultaneously diago-
nalizable with the change of basis S−1k . In other words, for all matrices M ∈ Vk,
we must show that SkMS−1k is diagonal4.

All linear combinations of simultaneously diagonalizable matrices are also simul-
taneously diagonalizable with the same change of basis. Thus it is enough to ver-
ify the condition for every basis matrix of Vk, namely M = NDh(εkh, . . . , εnkh).

(Sk NDh(εkh, . . . , εnkh)S−1k )i,j =∑
l1,l2

(Sk)i,l1(NDh(εkh, . . . , εnkh))l1,l2(S−1k )l2,j =

∑
l

(Sk)i,l+hε
(l+h)hk(S−1k )l,j = n−1

∑
l

(Sk)i,l+h(Sk)−1j,l ε
(l+h)hk =

n−1
∑
l

εhφ(k)ε(4l−4l+h)kε(i−1)(l+h−1)ε−(j−1)(l−1)ε(l+h)hk =

n−1
∑
l

εhφ(k)ε−(4h+lh)kε(i−j)(l−1)ε(i−1)hε(l+h)hk =

n−1εhφ(k)ε(h
2−4h)kε(i−1)h

∑
l

ε(i−j)(l−1)

It is clear that this is diagonal. When i 6= j, the final sum is over every nth root
of unity so its total is 0, and when i = j all terms are 1 and so the sum is n.

4Which is then necessarily in sdn(C), because all matrices in Vk have zero trace.
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3.4 Case n is prime power

A common operation to construct larger matrices from smaller ones is the Kro-
necker product. It’s actually defined for non-square matrices in general, but for
our purposes it’s sufficient with square matrices. Given a matrix A of size n×n
and a matrix B of size m×m, the Kronecker product A⊗B is a matrix of size
nm×nm. We describe row indices of a Kronecker product using pairs of values
(i1, i2), with i1 ∈ {1, . . . , n} and i2 ∈ {1, . . . ,m}, which can be understood as a
shorthand for the ‘real’ index (i1− 1)m+ i2. The same thing applies to column
indices (j1, j2). Note that in a Kronecker product of more than two operands,
the row and column indices will in general be tuples.

The defining property of Kronecker product is:

(A⊗B)(i1,i2),(j1,j2) = Ai1,j1Bi2,j2

The operator is associative, bilinear and non-commutative. We will furthermore
make use of the following two properties:

(A⊗B)−1 = A−1 ⊗B−1

(A⊗B)(C ⊗D) = (AC)⊗ (BD)

We will now investigate whether this can be used to construct orthogonal de-
compositions from smaller ones. We have at least this result:
Theorem 11. Given two nice matrices A and B, the Kronecker product of
them (A⊗B) is also nice.

Proof. We let the size of A be n and the size of B be m.

(A−1 ⊗B−1)(i1,i2),(j1,j2) = (A−1)i1,j1(B−1)i2,j2 =

(nA)−1j1,i1(mB)−1j2,i2 = (nA⊗mB)−1(j1,j2),(i1,i2)
=

(nm(A⊗B))−1(j1,j2),(i1,i2)

A reasonable idea now is that we can, maybe, construct orthogonal decompo-
sitions of prime power sizes by performing tuplewise Kronecker product of the
nice matrices given by theorem 10 and then invoke theorem 1. For example,
for n = pm with m = 2, we would use T(k1,k2) = Sk1 ⊗ Sk2 as change of basis
matrices, where Sk are given by theorem 10. These would be nice according to
theorem 11, but can the same be said of T(i1,i2)T

−1
(j1,j2)

for all (i1, i2) 6= (j1, j2)?

Unfortunately not. In particular there is T(i,k)T
−1
(j,k) = SiS

−1
j ⊗ I, which cannot

be nice since it has elements with value zero.

Other attempts at defining T(k1,k2) in terms of matrix products, Kronecker prod-
ucts and the nice matrices given by theorem 10 will fail as well. In fact, theo-
rem 11 is applicable for matrices A and B which are not necessarily of the same
size. Although our current goal is only to construct orthogonal decompositions
of prime power sizes, we would also get general composite sizes for free. Even if
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there might exist orthogonal decompositions of general composite sizes, it’s at
least unlikely they could be found this easily.

In [3], a construction for the prime power case (n = pm) is given in terms of
bases for the decomposition subspaces. The basis matrices are given as very
specific combinations of m-ary Kronecker products of the matrices Ja,b given
below.

Ja,b = DaP b, D = diag(ε0, . . . , εp−1), P = ND1(1, . . . , 1)

Note here that ε = exp( 2π
p ι) (pth root of unity; not nth) which will be the case

for the rest of this chapter. Furthermore, Dp = P p = I so we assume a, b ∈ Zp.

First find an irreducible m-degree polynomial Q = θm +
∑m−1
d=0 tdθ

d ∈ Fp[θ] to
make the finite field Fpm = Fp[θ]/〈Q〉. This finite field is also an m-dimensional
linear space over Fp and we will need bases σ and τ , defined by σi = θi−1 +∑i−1
l=1 tm−lθ

i−1−l and τi = θm−i (for 1 ≤ i ≤ m). Then together with the fixed
diagonal subspace, the below defined subspaces Vα (with α ∈ Fpm) will form an
orthogonal decomposition of slpm(C):

Vα = 〈Jαβ,β | β 6= 0 ∈ Fpm〉

where Ju,v =

m⊗
i=1

Jai,bi given u =
∑
i

aiσi and v =
∑
i

biτi

We would like to make an equivalent construction in terms of nice matrices just
like we did for the prime case previously. Unfortunately, the usage of non-prime
finite field arithmetic, and the difficulty of finding irreducible polynomials for
constructing these finite fields, poses problems for analyzing the construction
with generality. We can at least look at specific small cases though, and we will
do so for n = 4 = 22 later in this section.

One thing we can recognize in this construction for the prime power case is that
the matrices Ja,b for b 6= 0 are, up to scaling, the same as the nearly diagonal
basis matrices used in the prime case construction, denoted by Mk,h below for
the hth basis matrix in the kth subspace. In summary, the following holds:

Mk,h = S−1k Λk,hSk = NDh(εkh, . . . , εpkh) = (εD)khPh = εkhJkh,h

1 ≤ k ≤ p, 1 ≤ h < p

Here Sk are the nice matrices given by theorem 10 for n = p and Λk,h are
the diagonal matrices in sdn(C) found in the discussion about simultaneous
diagonalization at the end of last section. The function k 7→ kh is bijective
(modulus p) so collectively Jkh,h will indeed denote the same matrices as Ja,b
for b 6= 0, just in a different order.

Likewise, the remaining Ja,b when b = 0 form a basis for diag(Cn), the space
of all diagonal complex matrices (with arbitrary trace). More specifically when
a 6= 0 and b = 0 they form a basis for sdn(C) or, in other words, the default
zeroth subspace of every orthogonal decomposition.

22



Now imagine that the construction for n = p2 calls for some basis matrix of
some subspace to be Ja1,b1 ⊗ Ja2,b2 with b1, b2 6= 0 so we can rewrite it as
Jk1h1,h1 ⊗Jk2h2,h2 . Scaling basis elements will not alter the space, so we choose
to instead use εk1h1Jk1h1,h1 ⊗ εk2h2Jk2h2,h2 = Mk1,h1 ⊗Mk2,h2 . We may easily
calculate its diagonalization:

Mk1,h1 ⊗Mk2,h2 = S−1k1 Λk1,h1Sk1 ⊗ S
−1
k2

Λk2,h2Sk2 =

(S−1k1 ⊗ S
−1
k2

)(Λk1,h1
⊗ Λk2,h2

)(Sk1 ⊗ Sk2)

Furthermore, it is clear that Jk1,1⊗Jk2,1, and thus also Mk1,1⊗Mk2,1, have to be
in different subspaces for different (k1, k2) pairs. Ostensibly this would imply
that Sk1 ⊗ Sk2 are, after all, nice change of basis matrices of an orthogonal
decomposition for n = p2. We have already shown that this is not possible
though, so there is some detail we are missing. That detail is the fact that
Mk1,1 ⊗ Mk2,1 will potentially have eigenvalues with multiplicity larger than
one. In fact, the diagonal of Λk1,1 ⊗ Λk2,1 will contain p copies of all pth roots
of unity (sometimes scaled by ι when p = 2).

What this means is that the columns of S−1k1 ⊗S
−1
k2

, which are the eigenvectors,
may be modified according to elementary columns operations as long as they
are associated with the same eigenvalue. Furthermore we can reorder them as
long as we also reorder the same columns in Λk1,1⊗Λk2,1. This gives us a range
of possible diagonalizations and we must, actually, specifically find the diago-
nalization that simultaneously diagonalizes all matrices in the same subspace,
not just Mk1,1 ⊗Mk2,1. In order to do that, we might also need to find which
subspaces the other Kronecker products Ja1,b1 ⊗ Ja2,b2 should go, and that is
not trivial for previously mentioned reasons.

However, as said before we could at least look at a specific case, and we will do so
now. When p = 2 and m = 2, we have the irreducible polynomial Q = θ2 +θ+1
which lets us construct the finite field F22 . The bases σ and τ are then given
by σ1 = 1, σ2 = θ + 1, τ1 = θ, τ2 = 1. For each non-diagonal subspace α of the
orthogonal decomposition there are 22−1 = 3 basis matrices indexed by β (with
β 6= 0). All the calculated basis matrices are presented in the tables below.

α β Jαβ,β
0 1 J0,0 ⊗ J0,1
0 θ J0,1 ⊗ J0,0
0 θ + 1 J0,1 ⊗ J0,1
1 1 J1,0 ⊗ J0,1
1 θ J1,1 ⊗ J1,0
1 θ + 1 J0,1 ⊗ J1,1

α β Jαβ,β
θ 1 J1,0 ⊗ J1,1
θ θ J0,1 ⊗ J1,0
θ θ + 1 J1,1 ⊗ J0,1
θ + 1 1 J0,0 ⊗ J1,1
θ + 1 θ J1,1 ⊗ J0,0
θ + 1 θ + 1 J1,1 ⊗ J1,1

J0,0 =

(
1 0
0 1

)
, J1,0 =

(
1 0
0 −1

)
J0,1 =

(
0 1
1 0

)
= S−12

(
1 0
0 −1

)
S2, S−12 =

1

2

(
1 1
1 −1

)
J1,1 =

(
0 1
−1 0

)
= S−11

(
−ι 0
0 ι

)
S1, S−11 =

1

2

(
1 1
−ι ι

)
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In order to construct the nice change of basis matrices Tα we need to simulta-
neously diagonalize the three basis matrices associated with α in the table (one
for each β). The general idea is to parameterize all possible diagonalizations
(represented by X, Y and Z below) for each basis matrix individually, in line
with the discussion about multiplicity of eigenvalues, and then find instances
where these diagonalizations are equal. We will do so for α = 1 as an example.

J1,0 ⊗ J0,1 = (I ⊗ S
−1
2 )


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 (I ⊗ S2) =

X
−1


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

X, X
−1

=
1

2


x1 x3 x5 x7
x1 −x3 −x5 x7
x2 x4 x6 x8

−x2 x4 x6 −x8



J1,1 ⊗ J1,0 = (S
−1
1 ⊗ I)


−ι 0 0 0
0 ι 0 0
0 0 ι 0
0 0 0 −ι

 (S1 ⊗ I) =

Y
−1


ι 0 0 0
0 −ι 0 0
0 0 ι 0
0 0 0 −ι

Y , Y
−1

=
1

2


y4 y1 y6 y7
y3 y2 y5 y8
ιy4 −ιy1 ιy6 −ιy7

−ιy3 ιy2 −ιy5 ιy8



J0,1 ⊗ J1,1 = (S
−1
2 ⊗ S

−1
1 )


−ι 0 0 0
0 ι 0 0
0 0 ι 0
0 0 0 −ι

 (S2 ⊗ S1) =

Z
−1


−ι 0 0 0
0 −ι 0 0
0 0 ι 0
0 0 0 ι

Z, Z
−1

=
1

4


z1 + z2 z7 + z8 z5 + z6 z3 + z4

ι(−z1 + z2) ι(−z7 + z8) ι(z5 − z6) ι(z3 − z4)
z1 − z2 z7 − z8 z5 − z6 z3 − z4

ι(−z1 − z2) ι(−z7 − z8) ι(z5 + z6) ι(z3 + z4)



Note how we reorder the eigenvalues for two of the Kronecker products in order
to get independent diagonal matrices, which is necessary since these must form
a basis of sdn(C). Now it’s only a simple matter of solving the linear system
from T−11 = X−1 = Y −1 = Z−1 with any nondegenerate solution. For example:

x1 = 1/2, x2 = ι/2, y3 = 1/2, y4 = 1/2,

z1 = (1 + ι)/2, z2 = (1 − ι)/2,

x3 = −ι/2, x4 = −1/2, y1 = −ι/2, y2 = ι/2,

z7 = (−1 − ι)/2, z8 = (1 − ι)/2,

x5 = 1/2, x6 = ι/2, y5 = −1/2, y6 = 1/2,

z5 = (1 + ι)/2, z6 = (1 − ι)/2,

x7 = −ι/2, x8 = −1/2, y7 = −ι/2, y8 = −ι/2,
z3 = (−1 − ι)/2, z4 = (1 − ι)/2,

=⇒ T−11 =
1

4


1 −ι 1 −ι
1 ι −1 −ι
ι −1 ι −1
−ι −1 ι 1


We repeat this whole procedure for the other subspaces to also find the remain-
ing three change of basis matrices. Actually we have found their inverses, but
inverting them again is easily accomplished since they are nice. In conclusion,
the following four matrices are nice change of basis matrices for the subspaces
of an orthogonal decomposition when n = 4.

T0 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 , T1 =


1 1 −ι ι
ι −ι −1 −1
1 −1 −ι −ι
ι ι −1 1



Tθ =


1 ι −1 ι
1 −ι 1 ι
1 −ι −1 −ι
1 ι 1 −ι

 , Tθ+1 =


1 ι ι −1
1 −ι ι 1
1 ι −ι 1
1 −ι −ι −1


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Chapter 4

Conclusion

We have shown that it is possible to describe and work with orthogonal de-
compositions by their change of basis matrices (Si) instead of their component
subspaces (Vi). This gives us another perspective on the problem where ma-
trices, rather than linear spaces, are the principal objects we deal with. Not
only is this representation more compact, but it can be argued that individual
matrices are more intuitive and easier to work with than linear spaces of them.

The change of basis matrices will have a form which we call nice. We have
proved several basic properties that this form has and provided Hadamard and
Fourier matrices as examples. Furthermore, we have defined an equivalence
between nice matrices that only differ by monomial matrix factors, and shown
that up to this equivalence all nice matrices of size 2 and 3 are the Fourier
matrix of that size.

Finally we have provided constructions of orthogonal decompositions in terms
of the change of basis matrices. For prime sizes (n = p) we have even given
a general method. Designing a similar general method for prime power sizes
(n = pm), which would cover all known orthogonal decompositions, appeared
to be much more difficult. However, we looked at a specific example of such
a size (namely n = 22) which gives some insight into how the change of basis
matrices for orthogonal decompositions of size n = pm can in principle be built
from corresponding matrices of size n = p.

4.1 Acknowledgements

Some of the results given in chapter 2 are also found in [3]. This was not known
at the time of writing and for this reason it is presented as independent work.
The basic idea that change of basis matrices in an orthogonal decomposition will
be nice was, however, presented by supervisor Victor Ufnarovski in conversation.

The construction attributed to Andersson [1] in section 3.3 is also given in an
equivalent form in the original source by Kostrikin et al [3]. It’s the presentation,
and not the original idea, which is attributed to Andersson.
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4.2 Future work

Three suggestions for future investigations have been identified.

Simplified construction for the case n is prime

The construction given in theorem 10 is quite complicated and inelegant, which
can be attributed to the fact that it is just a reframing of another construction
which primarily had in mind a simplicity for the basis matrices of the component
subspaces. Is it possible to make a similarly neat construction in terms of
the change of basis matrices? In particular, are the instances of φ(k) and 4j
necessary or can they be replaced with something that is easier to work with?

Exhaustive search for orthogonal decompositions

In the first two sections of chapter 3 we found relatively simple constraints
by exploiting symmetries in nice matrices which allowed us to find orthogonal
decompositions for sizes n = 2 and n = 3. Our current tools developed in
chapter 2 are, however, not enough to provide as simple constraints for larger n.
For example, we can not anymore assume that right-monomials are diagonal.

With more extensive tools we might learn about more symmetries which could
allow us to significantly decrease the time-complexity of an algorithm that looks
in the complete search space of orthogonal decompositions and thus verifies
whether one exists or not for a given size. Perhaps this could be made practical
for n = 6 which could finally solve the Winnie-the-Pooh problem.

One thing in particular that seems to be unanswered in prior work is whether
the subspaces of an orthogonal decomposition (and thus their change of basis
matrices) need to be solved for simultaneously, or if they may be produced one
at a time as is the case when producing orthogonal vectors. It would greatly
decrease its time-complexity if it is possible to prove that a searching algorithm
need not backtrack from a partial orthogonal decomposition.

General method for the case n is prime power

Although we dismissed it as too difficult, it should in principle be possible to
give a general method to construct any orthogonal decomposition of prime power
size in terms of change of basis matrices. We already know that the Kronecker
products of J?,1 matrices need to be in different subspaces, but we also need to
find the right diagonalization (that implicitly also simultaneously diagonalizes
everything else in the same subspace).

This can perhaps be accomplished like this: The general idea is again to pa-
rameterize all possible diagonalizations for each Kronecker product. One would
then solve for appropriate values to the parameters so that the conditions given
by theorem 1 are satisfied. When expressing these values, it would probably be
necessary to assume access to the coefficients of the irreducible polynomial Q.
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