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Abstract 
In a world where the concept of just-in-time has been lifted outside of the manufac-

turing world and onto the market, the increasing demand of luxury wares like cars is 

accompanied only by tougher industrial conditions and no room for error.  Loss of 

productivity and decrease in efficiency can be devastating to any manufacturing 

company in today’s market climate.  One of the largest causes of these issues is 

production downtime due to machine breakdown or unexpected failure.  

To prevent such events from happening, Volvo Cars has decided to investigate the 

possibility of using vibration analysis for predictive maintenance and condition mon-

itoring of presses used to manufacture sheet-metal car body components.  

 

Although the concept of using vibration analysis for predictive maintenance is not 

new and the positive effects have been established, uses in complex machinery with 

intermittent cycles as mechanical presses have at the time of this thesis not been 

widely studied. This thesis aims to research if vibration analysis is a useable tool for 

predictive maintenance in mechanical presses and what information it might provide.  

 

Vibration analysis is a wide field of technology and there are endless tools and meth-

ods to perform analysis. This thesis mainly focuses on the possibilities in using 

Power Spectral Density (PSD), Fast Fourier Transform (FFT) and statistical param-

eters like Root Mean Square (RMS) and Kurtosis. These are used in many applica-

tions and there are many companies that are familiar with implementing these tools, 

making them suitable to research.  

 

After a thorough investigation of the use of PSD, FFT, RMS, and Kurtosis on the 

main components of the press crown and driving system, it is possible to conclude 

that vibration analysis is useable when using predictive maintenance on a press. 

Some configuration of PSD, FFT, and RMS gives the most benefits in detecting and 

analysing faults and issues. However, more data must be collected to establish when 

alarms must be issued to the maintenance crew and to build thorough models that 

provide enough information for making informed diagnosis and decisions based on 

vibration analysis.    

 

Keywords: Vibration analysis, Predictive maintenance, Condition monitoring, Me-

chanical press, Press maintenance, PSD, DFT/FFT, RMS, Kurtosis 
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Sammanfattning 
I en värld där begreppet ”just-in-time” är lika relevant på marknaden som inom till-

verkningsindustri så kommer en ökande efterfrågan på lyxvaror som bilar med allt 

tuffare krav inom industrin och mindre utrymme för misstag.  

Produktivitetsförlust och nedsatt effektivitet kan vara förödande för vilket tillverk-

ningsföretag som helst i dagens marknadsklimat.  En av de största orsakerna till 

dessa problem är oplanerade stillestånd orsakade av maskinhaveri. För att förhindra 

att detta inträffar har Volvo Cars valt att undersöka möjligheten att använda vibrat-

ionsanalys för prediktivt underhåll på de pressar som används för att tillverka plåt-

komponenter till bilar.  

 

Att använda vibrationsanalys för prediktivt underhåll är inget nytt koncept och de 

positiva effekterna är redan bevisade, men användningen i komplext maskineri med 

intermittent verkan, som mekaniska pressar, har i skrivande stund inte blivit studerat 

i detalj. Detta arbete ämnar undersöka om vibrationsanalys är användbart för predik-

tivt underhåll av mekaniska pressar och vilken sorts information analysen kan förse.  

 

Vibrationsanalys är ett brett område av teknologi och det finns oändligt med verktyg 

och metoder att använda för analys. Detta arbete fokuserar på möjligheten att an-

vända Power Spectral Density (PSD), Fast Fourier Transform (FFT) samt statistiska 

mått som kvadratiskt medelvärde (RMS) och kurtosis. Dessa verktyg används i ett 

flertal applikationer och implementationen är beprövad, vilket gör det passande att 

vidare undersöka dess användbarhet i även denna tillämpning.  

  

Efter noggrann granskning utav användningen av PSD, FFT, RMS och kurtosis för 

analys av huvudkomponenterna i pressens krona och drivsystem så kan det konsta-

teras att vibrationsanalys är ett användbart verktyg för prediktivt underhåll av meka-

niska pressar. Någon konstellation av PSD, FFT och RMS ger störst fördelar i att 

upptäcka och diagnostisera fel och problem. Dock måste mer data samlas in och 

analyseras för att kunna sätta passande gränser för då alarm ska utfärdas till under-

hållspersonalen. Samt för att kunna bygga utförliga modeller som tillhandahåller till-

räcklig information för informerande beslut och för diagnostisering genom vibrat-

ionsanalys.   

 

Nyckelord: Vibrationsanalys, Prediktivt underhåll, Tillståndsövervakning, Meka-

nisk press, Press-underhåll, PSD, DFT/FFT, RMS, Kurtosis
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Ger pressar dig bra vibrationer? 

Idag är allt från kaffemaskiner och 

gräsklippare till krutpistoler och bilar 

uppkopplade och kan närsomhelst ge 

oss en statusrapport genom bara ett 

par klick i en app. Vi kan med mobi-

len kolla bilens bränslenivå, geogra-

fiska position eller om vi glömt att låsa 

på väg in från parkeringen. Så varför 

skulle inte statusen på utrustningen 

som används för att tillverka bilen 

vara lika enkel att kontrollera? 

Tillståndsövervakning är en viktig del av 

prediktivt underhåll. Sensorer av olika 

slag används för att samla in data om ut-

rustningen som annars skulle gå förlo-

rad. Genom att jämföra nya och histo-

riska data kan försämrade tillstånd och 

fel upptäckas i god tid innan följdfel och 

långa stillestånd blir ett faktum.   

 

Vibrationsövervakning har länge an-

vänts för att bestämma tillståndet på en-

klare utrustningar. Med goda resultat bör 

tilläggas. Användningen av vibrationer 

för att bestämma tillståndet på komplex 

utrustning är däremot inte lika beprövat 

och är det ämnet som diskuteras och prö-

vas i examensarbetet ”Vibration analy-

sis for condition monitoring of 

mechanical presses”.   

 

Volvo Cars är allmänt kända för att till-

verka bilar som ligger i framkant av in-

novation och säkerhet som gynnar inte 

bara förare och passagerare men även de 

som befinner sig utanför bilen. Utöver 

uppkopplade bilar och oöverträffad sä-

kerhet så levererar Volvo bilar som san-

nerligen är en fröjd för ögat. Med bilar 

som är designade inte bara för att attra-

hera blickar, skapa körglädje eller göra 

bilresan till mataffären mindre riskfylld 

men också för att tillverkas i stort antal 

och i hög takt. Karosseridetaljerna till-

verkas genom pressning i den lilla pitto-

reska staden Olofström i södra Sverige. 

Härifrån levereras plåtdetaljer till hela 

världen ingen ensam detalj är viktigare 

än någon annan i slutmonteringen av en 

sprillans ny V90 eller XC40.  

 

Det föga förvånande att efterfrågan på 

Volvos bilar är hög men det sätter även 

högt tryck på fabriken i Olofström att 

pressa fram detaljer i ett jämnt tempo. 

Fabriken omfattar totalt 27 presslinjer 

med 5–6 pressar vardera. Om någon av 

dessa pressar skulle haverera så kan det 

resultera i kostsam förlust av viktig pro-

duktionstid och genom tillämpning av 

prediktivt underhåll kan denna risken re-

duceras. Det är här vi återkommer till 

komplex utrustning och tillståndsöver-

vakning. En press är komplex på det vi-

set att det finns många variabler som på 

olika sätt påverkar varandra och det är 

därför inte självklart att vibrationsöver-

vakning kan tillämpas med samma goda 

resultat som på en enklare utrustning.  

 

Av examensarbetet ”Vibration analysis 

for condition monitoring of mechanical 

presses” så kan det konstateras att det 

visst går att tillämpa vibrationsövervak-

ning på en press och på så sätt göra till-

verkningen av karosseridetaljer lika till-

förlitlig som den där kaffemaskinen som 

räddar så många av oss varje morgon.  

 

Julia Runesson, 2019
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1 Introduction 

1.1 Company description 
Volvo car group (Volvo Cars) is a manufacturer and developer of passenger cars [1]. 

The company was founded in Gothenburg, Sweden and began manufacturing in 

1927. Today Volvo Cars is an international actor working and delivering award-

winning cars worldwide.  

Volvo Cars’ aim is to continue being global leaders in automotive safety, electrifi-

cation, and autonomous drive and are already offering a wide range of hybrid cars. 

38 000 employees worldwide help drive the development of Volvo Cars forward and 

into the future. 

With sales in over 100 countries, the company sold 642 000 cars in 2018 that were 

all developed, manufactured and assembled within the company’s worldwide busi-

ness. 

Manufacturing plants are situated in Sweden, Belgium, USA and China. The manu-

facturing in these plants is characterized by attention to quality, safety and environ-

mental responsibility [1]. 

1.2 Background 
Most of the metal body components that are used in cars made by Volvo are manu-

factured by means of sheet metal forming in Olofström, Sweden. This includes for 

example doorframes, exterior doors, and several different beams; all crucial to the 

final car produced. Every car body component requires several dedicated press tools 

to be manufactured. These press tools are made to fit a certain line of machinery with 

little to no flexibility.  

Mechanical presses are often used for mass production making standstills expensive 

due to loss of productivity. As spare parts are often large and non-standard, stand-

stills due to unexpected breakdown tend to lengthen in time as spare parts are being 

delivered. This project investigates the use of vibration analysis in order to catch the 

need for maintenance of a press before anything fails and causes lengthy downtimes. 

Having vibration analysis as a complement to ocular inspections that are carried out 

by maintenance may help catch hidden faults before they lead to failure.  

During 2018 accelerometers were placed on several different but corresponding po-

sitions/components of two presses in the same press line. The placement is presented 

in 4.1. Vibrations were recorded during certain times with the presses being in three 

different conditions: 

• Bad condition (in need of refurbishment) 

• Decent condition 

• Good condition (newly refurbished) 

However, all three conditions were not recorded in both presses respectively. Con-

ditions ‘bad’ and ‘good’ were recorded in one press and the other press has only been 

recorded in what is assumed ‘decent’ condition. Because of this, the data from the 
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two presses will have to be compared to see if the same vibrational behaviour can be 

observed in similar components but in two different machines.  

During the analysis of the data, suitable segments of the press cycle have been 

cropped out to make the signal more reliable and minimize errors due to aperiodic 

impulses. Furthermore, all measurements were recorded while manufacturing the 

same type of detail to eliminate variations caused by running conditions.  

1.3 Objectives 
This project aims to further investigate the possibility of using vibration analysis as 

a complement to ocular inspection for predictive maintenance and condition moni-

toring on mechanical presses used for sheet metal forming.  

Via analysis of collected vibration data the following is discussed: 

- Can vibration analysis be used for predictive maintenance of a mechanical press 

in the sense of fault detection and fault analysis (explained further in 2.4)? 

- Which type of analysis provides necessary information about the condition of 

different components? 

- How to interpret collected vibration data in an analysis. 

- How much information will vibration analysis provide about the condition?  

- Is vibrational information exchangeable between corresponding components on 

different equipment? 

The possibility of using machine learning to predict the condition of the press will 

also be briefly examined.  

In addition to answering these questions, this thesis explains some of the basics of 

vibration analysis and machine learning so that the reader can grasp the content of 

this thesis without any prior knowledge within the field. While also providing foun-

dational knowledge for future thesis works. 

1.4 Delimitations 
The focus of this thesis is to understand if and how vibration analysis might be use-

able in condition monitoring of mechanical presses. Both detection of faults and di-

agnosis is discussed. The methods used for analysis are chosen based on their com-

putational simplicity and that they are available in the software presently used in this 

application at Volvo Cars.  

For most of the analysed components the condition at the time of measurement is 

not known. Because of this, conclusions regarding condition and/or diagnosis of both 

past and present measurements are only assumptions and will have to be confirmed 

to make reliable conclusions.  

The prospect of using machine learning for implementation will be briefly discussed 

but the subject of data processing or -handling needed to create an automatic condi-

tion monitoring system will not be discussed in detail. 
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1.5 Resources 
Resources for this thesis have been available in the form of:  

- Data available through accelerometers previously mounted on several deliber-

ately and professionally chosen positions on the concerned equipment.  

- Help to get going with data acquisition and using the present software by a rep-

resentative from the company that performed initial vibration analysis and imple-

mentation. 

- Student license version of Matlab for analysis. 

- Executive supervisor with extensive experience with vibration analysis and ma-

chine learning. 

1.6 Confidentiality 
Volvo Cars has decided that the information found in thesis is to be regarded as 

general knowledge and is not viewed as confidential company information.  

However, … 

• The make and exact configuration of the presses involved is not disclosed.  

• Nor is the exact positioning of the accelerometers which is only described 

generally.  

• Current maintenance practices are not described in detail.  

• Exact dates and times of the measurements is not included in this thesis. 

• Neither is the Matlab code. 

1.7 Target audience 
The target audience of this master thesis is first and foremost the people implement-

ing technologies like vibration analysis and other means of data collection/analysis 

while working with mechanical presses and other complex machines. This thesis also 

aims to act as an initial look into using vibration analysis for those working with 

maintenance at Volvo in Olofström.  

1.8 Disposition 
• Introduction Gives a background to the company, what has previously been 

done within the area at the company and what the company stands to gains 

with this thesis. This chapter also contains the outlining objectives and de-

limitations as well as a description of the target audience and the confiden-

tiality applied to the report. 

• Theoretical background Gives the reader a theoretical background on pre-

dictive maintenance and why it is important. Also discussing the tools and 

methods used for vibration analysis and how to interpret the result. Parts of 

the theoretical background may provide important information for imple-

mentation and future work. 
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• Similar applications and implementation This chapter accounts some 

similar applications of vibration analysis that have been successfully imple-

mented. The basics of machine learning and similar applications of vibra-

tion analysis with machine learning is also discussed.  

• Data analysis Results of the analysis and further assumptions are simulta-

neously presented and discussed in this passage.  This chapter also contains 

a description of the analysis method applied in this thesis. 

• Discussion Concludes the most important take-aways of the analysis while 

thoroughly discussing the objectives formulated in the introduction. 

• Conclusion Concludes the work done in this thesis and gives recommenda-

tions on future actions and thesis work.  

• Appendix A Shortcut guide to diagnosing common faults through spectral 

analysis  
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2 Theoretical background 

2.1 Anatomy of a mechanical press 

 

Figure 1. Schematic overview of the driving element of a mechanical press (minus tooling) [2] 

The principal of a mechanical press is basic. Rotating motion is transferred from a 

motor through a series of shafts and gears finally generating a linear up-and-down 

motion of the slide. The press tool is split in two halves, a top and a bottom, the top 

half moves up and down with the slide and the bottom half is held in place on top of 

the press bed.  

Figure 1 is a schematic overview of what a mechanical press with an eccentric wheel 

may look like. When the tool goes down the clutch is engaged and the motor brings 

torque to a flywheel, often done via a pulley. The flywheel is used to conserve and 

balance kinematic energy and is what helps the slide go upwards again. The flywheel 

is controlled by the clutch and a break that stops the press at the top where it pauses 

between strokes. During the paus the clutch is not engaged, and the motor runs freely 

[2]. 

Torque is then lead from the flywheel/clutch to the small gear, the pinion, of the 

gearbox which then exchanges torque to a larger gear. The larger gear is connected 

to a shaft called the secondary shaft. The secondary shaft exchanges torque to an 

eccentric wheel that controls the crank motion of the crank shaft. The crank brings 

motion to the connecting rod that makes the slide go up and down. Some of the shafts 

use bearings or bushings to be able to rotate without resistance within their fasten-

ings, making the process more stable and more energy efficient [2]. 

Oftentimes there are two shafts and connecting rods that control the slide in parallel, 

this helps keep the slide aligned throughout the stroke [3]. 
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One up-down-up motion of the slide equals one press stroke and one 360 degrees 

rotation of the crank that controls the motion of the connecting rod. Often one stroke 

is counted as 360 degrees with 180 degrees being when the press is in its’ lowest 

position, the bottom dead centre (BDC) [4].  

The force and impact on the tooling and machinery is largest just before-to the BDC 

of the stroke when the tool is in engagement causing high peaks of vibrations 

throughout the equipment [4]. 

Mechanical presses are complex in nature. All components in the machinery will in 

some way affect each other and the resulting product. As the number of variables 

large, any analysis of the machinery will in turns be complex if the number of vari-

ables is not reduced in any way possible.   

2.2 Predictive maintenance 
There are different models for planning when and how maintenance is performed. 

One method is “run-to-failure” which is a method that allows the equipment to fail 

before performing any maintenance. This requires fast repairs and readily available 

spare parts in order not to impact productivity [5]. Another method is preventative 

maintenance which implies that maintenance is scheduled after a certain number of 

operating hours. Planning using this method may result in equipment being replaced 

despite being fully operably or in unexpected failure prior to planned maintenance. 

A third model is proactive maintenance which means that sources of failure are re-

designed or designed out to prevent the same sort of failure to be repeated. Using 

this model, maintenance is often scheduled in a way like preventative maintenance. 

The model is hard to use efficiently when failures are caused by critical components 

that most often fail from wear [5] [6]. 

Predictive maintenance is a fourth option that differs a bit from run-to-failure and 

preventative/proactive maintenance as the method requires regular and direct moni-

toring of the equipment [5]. Using careful condition-monitoring of concerned equip-

ment to identify trends that indicate wear, like strange noises, then maintenance can 

be planned accordingly and be performed when most convenient. Using data-driven 

methods for condition-monitoring also reduces the need for physical and ocular in-

spections and helps pinpoint specific faults which helps make the maintenance-pro-

cess quicker and more efficient. Critical spare parts with long delivery times can be 

ordered ahead of time without risking unnecessary tied-up capital. Predictive mainte-

nance may also help extending intervals between repairs [5] [6]. 

There are several different ways of monitoring the condition of equipment. Vibration 

monitoring, acoustic emission analysis, oil analysis, corrosion monitoring, process 

parameter/performance monitoring, thermography, tribology, and visual inspection 

are often used as they are all non-intrusive. Vibration monitoring is most common 

and an effective tool to use with mechanical equipment [5] [6]. 

Predictive maintenance has been found to reduce direct costs for maintenance by 20-

25% while also increasing productivity by minimizing downtimes and often even 

improving overall product quality [5, p. 5]. To get the optimum result with predictive 
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maintenance the method must be expanded to include more than condition-monitor-

ing. It must be applied on a larger scale. 

In An Introduction to Predictive Maintenance, the author Mobley states predictive 

maintenance may help optimize total plant operation; “Including predictive mainte-

nance in a comprehensive maintenance management program optimizes the availa-

bility of process machinery and greatly reduces the cost of maintenance. It also im-

proves the product quality, productivity, and profitability of manufacturing and pro-

duction plants.” [6, p. 5]. 

2.3 Vibration analysis 
Rotating machine element create vibrations that are a function of machine dynamics. 

Vibration analysis enables the ability to tell if there is a misalignment or unbalance 

of an axle, deteriorating or defective bearings and gears or if vibrations in certain 

machine elements are amplified by resonance. This is done through the analysis of 

amplitudes at certain frequencies or trends in statistical measures. Analysis of trends 

in data may also reveal improper maintenance practices such as poor installation and 

replacement of bearings or poor alignment of rotors and shafts [7]. 

Vibrations are physical quantities that be either periodic like a pendulum, or stochas-

tic (random) like the vibrations of a car driving on a gravel road [8]. 

Vibrations in mechanical components are of a non-stationary stochastic nature. This 

means that the signal characteristic may be changing and drifting over time and can-

not always be expected to follow a statistical pattern [9].  

 

Figure 2. The vibration analysis process using sensors. [7]  
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Monitoring vibrations requires the use of sensors and most often accelerometers 

are used. The vibration analysis process using sensors is described in Figure 2 

above. This thesis will focus around the last 3 steps, found after the red line in 

Figure 2:  

- Frequency analysis,  

- measurement data processing, 

- and graphing (/making plots) [7].    

2.3.1 Time-domain analysis  

Time-domain analysis is based on different statistical parameters connected to the 

amplitude of the displacement, velocity or acceleration of the vibrations. Parameters 

like minimum value, maximum value, mean value, variance, standard deviation and 

root-mean-square (RMS) are called dimensional parameters and are related to oper-

ating conditions. Parameters like kurtosis (the number of transients in the signal), 

shape factor, peak value (the maximum level recorded during the concerned interval 

of time) and crest factor (the ratio between RMS and peak value) are called non-

dimensional and might be more accurate for abrupt failure diagnosis or analysis of 

strong transient impulses [10, pp. 26-34]. 

Vibration data in the time-domain is plotted as overall vibration amplitude versus 

time. Vibrations can be analysed with respect to displacement, velocity and acceler-

ation, all directly dependent on the time series. Analysis of these parameters are of 

varying importance to different failure modes but are all of relevance when deciding 

vibration amplitudes [7]. This type of analysis is useful in studying changes in con-

ditions since historical data collected at the same running speed and load is directly 

comparable. However, this makes the method sensitive to variations in running speed 

and load. Also, this type of analysis is difficult to use for close-detail analysis as the 

amplitude of all data in the signal is summed up and will represent the total amplitude 

for a given interval of time [6, p. 118]. 

Analysis of displacement may be important when looking at vibrations in a brittle 

structures and materials like cast iron that are sensitive to crack-formation [7]. The 

root-mean-square (RMS) is a measure of the energy content of the vibrations which 

in some cases is an important angle of analysis.  Measurement of acceleration is 

equal to measurement of force. High forces on bearings and bushings may lead to 

faults like insufficient lubrication that may cause failure. A load of 10% more than 

the bearing’s designed static load may overtime cause dynamic forces that lead to 

failure [7].  

The range of frequencies in the signal may otherwise help determine if acceleration, 

velocity or displacement should be used for analysis. Recommendations for different 

ranges of frequencies can be found in Table 1 below. This is also applicable to fre-

quency domain analysis [7].  
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Table 1. Recommendation of parameter for analysis corresponding to range of frequency. [7] 

FREQUENCY RANGE RECOMMENDED PARAMETER 

<10 HZ Displacement 

10-1000 HZ Velocity 

>1000 HZ Acceleration 

2.3.1.1 Root Mean Square (RMS) 

As previously mentioned, the Root Mean Square (RMS) is related to the energy con-

tent of the signal. An increase of RMS indicates that the overall vibration level has 

increased, and a defect might be present [7].  

The International Standards Organisation (ISO) has developed a standard regarding 

machine vibrations in non-rotating parts like bearings on for example motors: SS-

ISO 10816-3 “Mechanical vibration – Evaluation of machine vibration by measure-

ments on non-rotating parts - Part 3: Industrial machines with nominal power above 

15 kW and nominal speeds between 120 r/min and 15 000 r/min when measured in 

situ” [11]. 

SS-ISO 10816-3 covers criteria for assessing machine vibrations caused by the ma-

chinery itself and not outside sources. Based on the amount of information accessible 

about the actual condition of the machine two different criterion can be used. First 

criterion requires thorough knowledge of the condition and considers the magnitude 

of observed vibrations. Second criterion requires only a well-defined baseline mag-

nitude and considers the change of magnitudes observed.  

When applying the first criterion the standard divides vibration severity into four 

different zones A-D: 

- Zone A: Levels of vibrations of newly commissioned machines.  

- Zone B: Levels of vibrations considered acceptable for long-term operation.  

- Zone C: Levels of vibrations considered unacceptable for long-term operation.  

Machinery may be run within this zone a limited period before taking remedial 

action.  

- Zone D: Levels of vibrations considered harmful to the health of the machinery. 

[11] 

When using the second criterion all machines should be regarded individually, and 

the base level-amplitude of vibration should be decided separately for each machine. 

However, SS-ISO 10816-3 provides numeric guidelines for the zonal limits based 

on the machine characteristics. Medium-sized machines with rated power above 15 

kW up to and including 300 kW and electrical machines with shaft height 160 mm 

≤ H < 315 mm and rigid support (like the motors regarded in this thesis) have the 

following limits: 

- Limit zone A/B: RMS displacement = 22µm, RMS velocity = 1,4mm/s 
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- Limit zone B/C: RMS displacement = 45µm, RMS velocity = 2,8mm/s 

- Limit zone C/D: RMS displacement = 71µm, RMS velocity = 4,5mm/s [11] 

SS-ISO 10816-3 provides recommendations for setting the alarm- and trip-level 

(when immediate action should be taken to prevent serious damage) for both crite-

rion (specifics can be found in [11, p. 8]).  

The limits should be adjusted according to the vibration levels of the concerned 

equipment and the corresponding characteristics. When monitoring new or newly 

repaired machinery, the limits should be revised. [11] 

2.3.1.2 Kurtosis 

Kurtosis is a non-dimensional statistical measurement of the number of outliers in a 

distribution. In terms of vibration analysis kurtosis is corresponding to the number 

of transient peaks. A high number of transient peaks and a high kurtosis-value may 

be indicative of wear. For example, a good bearing with no flaws that cause impulses 

to the signal will have a kurtosis-value ~3 and in general a kurtosis-value above 4 is 

a sign of a bad condition [12, pp. 499-500].  

Kurtosis is not sensitive to running speed or load, however, as a fault merges from a 

localized fault to a distributed fault, the impulsive content of the signal will decrease, 

causing the kurtosis-value to go down. In other words, the effectiveness of kurtosis 

is dependent on the presence of significant impulsiveness in the signal and is there-

fore most effective in finding newly sprung issues that have not yet subsided into 

distributed damage [13, pp. 499-500]. 

2.3.2 Frequency domain analysis 

Frequency domain (or spectral) analysis is used to investigate the level of vibrations 

at narrow bands of frequencies, unlike time domain analysis and measures like for 

example RMS that regard the overall vibration level across a broad band of frequen-

cies. This makes it possible to distinguish between different sources of vibrations 

and the characteristic frequencies of different defects. The possibility to differentiate 

between both different components and different faults will help decrease the amount 

of measuring equipment and time needed to diagnose faulty machinery [13].  

The frequency-domain is an important angle of analysis. The frequency might ex-

plain what the issue is, and the amplitude will explain the severity. As a fault devel-

ops the amplitude of the frequency associated with the fault will increase. Although 

the level of this certain frequency is increasing, the overall vibration level or maxi-

mum peak level might be unaffected with regards to the time-domain. Using the 

frequency-domain will in this case make it possible to detect and possible diagnose 

the fault earlier [14]. The basis of frequency domain analysis is illustrated in Figure 

3 below. 
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Figure 3. Illustrated explanation of the view of vibration in the time-domain (bottom left) and the fre-

quency-domain (bottom right) [5, p. 56] 

2.3.2.1 Fourier transform 

The Discrete Fourier Transform (DFT) is used to transform analog signals from the 

time-domain to the frequency-domain. DFT will separate the various frequencies 

and amplitudes that make up a discrete signal (signal that is limited in length/time). 

Commonly when speaking of Fourier transforms, the Fast Fourier transform (FFT) 

is mentioned. FFT is an algorithm used to calculate the DFT of a signal and is popular 

due to calculation speediness. The length of the FFT is a power of two (N2) and this 

property is what makes the FFT especially ‘fast’ [15, pp. 130-132]. 

The Root Mean Square (RMS) amplitude between two frequencies f1 and f2 can be 

calculated as: 

√2∑ |𝑋(𝑓)|2
𝑓2
𝑓1

   (Eq.1) [16] 

 

Where X(f) is the absolute value of the complex components of the DFT at each 

spectral line (/frequency f). 

If one wishes to calculate the RMS of the entire spectrum the frequency limits ap-

plied should be f1 = 0 and f2 = fs/2, where fs is the signals sampling rate [16].  
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2.3.2.2 Power Spectral Density 

The Power Spectral Density (PSD) is a kind of histogram that represents how the 

power of a signal is distributed over a spectrum of frequencies.  PSD is calculated as 

the mean-square average of the FFT over a band of frequencies and will therefore 

have a unit like e.g. g2/Hz (when the amplitude of FFT is in g’s) [17]. 

PSD may be useful in fault detection in condition monitoring of complex machinery. 

RMS and kurtosis are traditionally used for fault detection but are only truly reliable 

for simple components so a better option might be using PSD for spectral compari-

son or -trending [13].  

Spectral comparison uses a baseline power spectral density that has been taken at 

well-defined normal working conditions. Using the baseline as reference, increases 

of power at any interval can be tracked by performing new measurements at similar 

working conditions. An increase of ~6-8 dB is considered enough to raise alarm and 

~20 dB is regarded as serious.  

Spectral trending involves trending the level of vibrations at all or a few select spec-

tral lines (/frequencies). This works best for simple machines that have fewer signif-

icant spectral lines than complex machinery.  Using to many spectral lines might 

cause data overload [13]. 

2.3.2.3 Windowing 

When performing a frequency domain analysis, continuous signals need to be 

cropped into discrete segments of a limited time-interval. When cropping there is an 

issue with not knowing how the start and end of the signal continues outside of the 

selected interval. This issue might cause an offset to the entire signal. One way to 

surpass this is making the edges of the signal zero by multiplying the signal with a 

function that is zero at the ends and larger in the middle. This forces the analysis to 

ignore the edges and focus on the middle part. A function like this is called a win-

dow-function and the application of one such function on a signal is called window-

ing  [18, pp. 36-37].  

There are several different window-functions that amplify the middle section of the 

signal in different formations. One of the most common is called the Hanning win-

dow and can be used with stochastic signals. However, the Hanning window is not 

suitable when looking at transient events like shocks. For transient events a rectan-

gular window should be used. A rectangular window does not affect the signal shape 

in a varying way like a Hanning window which is shaped like a haystack / a normal 

distribution curve. [18, pp. 36-37]  

2.3.3 Time-frequency domain analysis 

There is a third angle of vibration analysis called the time-frequency domain. The 

analysis methodology in the time-frequency domain is like the frequency-domain 

but the signal length is cropped down even further to investigate how the frequency 

content of the signal changes over time [10].  

The time-frequency domain will not be investigated in this thesis.  
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2.4 Fault detection and diagnosis 

2.4.1 Fault detection  

The most basic method of monitoring vibrations is trending the overall vibration 

level over time. Often this is done using peak and/or RMS value with increasing 

values regarded as a sign of deteriorating conditions.  

RMS is preferred over peak value due to the peak value’s sensitivity to noise. Use 

of RMS is also the method described in SS-ISO 10816-3. However, as previously 

mentioned, overall vibrations do not provide information about the vibration source. 

Furthermore, to get a noticeable difference in RMS it may require significant in-

crease of the overall vibration level, to the point that localized faults may have caused 

serious secondary damage and catastrophic failure [13, p. 61].  

Waveform metrics like kurtosis is also used to detect faults in machine conditions. 

As kurtosis is a measure of the signal waveform, corresponding to the spikiness of 

the signal, an increasing value is regarded as sign of a worsening condition. The issue 

with using kurtosis for fault detection is the same reason as with RMS with the ad-

dition of the decreasing behaviour of kurtosis when a localized fault becomes dis-

tributed (described in 2.3.1.2). [13, p. 61] 

Fault detection accuracy may improve by focusing the analysis to a narrower band 

of frequencies and using spectral comparison or spectral trending (described in 

2.3.2.2) [13, p. 61]. 

2.4.2 Fault diagnosis 

Fault diagnosis can be very difficult and to simplify the diagnostic process only fre-

quencies that have significant changes in amplitude are analysed in detail. Distrib-

uted faults that cause an increase of the amplitude of some discrete frequencies, like 

unbalance or eccentricity, are easiest to diagnose. While localized faults like a 

cracked tooth is hard to diagnose and might only be detectable as a transient peak in 

the raw time domain signal [13, pp. 69-70].   

2.4.3 Vibrations in different components 

Different faults that may arise in machinery often generate vibrations with different 

spectral signatures. These signatures are often harmonics of the rotational speed, 

sidebands and/or high frequency noise. In terms of spectral analysis, the feature cor-

responding to the rotational speed of the component in question is referred to as first 

order (1x). Harmonic features corresponding to two times the rotational speed is re-

ferred to as second order (2x), and so on.  

A guide to diagnosis of common faults using spectral features can be found in Ap-

pendix A.  

2.4.3.1 Gears 

Gears will normally generate peaks at both low and high frequencies (see Figure 4). 

First and second order rpm peaks will always be present in the spectral representation 
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(e.g. DFT) of any gearbox. There will also be a peak at the Gear Mesh Frequency 

(GMF = number of teeth on gear x gear rpm). Also, there might be sidebands around 

the GMF spaced with the gear rpm. All these peaks are naturally occurring at low 

amplitudes but if the amplitude increases significantly alarm should be raised [5, pp. 

115-116].  

Distributed faults like eccentricity or gear misalignment will generally cause high 

amplitude harmonics or sidebands close to the GMF while localized faults like a 

cracked tooth will cause sidebands that are more widely spread across the spectrum 

[5, pp. 115-116]. 

 
Figure 4. The normal spectrum of gears [5, p. 116]  

2.4.3.2 Bearings 

There are some fundamental bearing frequencies which will always be visible in the 

velocity spectrum possibly along with harmonics. These are the Ball Pass Frequency 

Inner (BPFI), Ball Pass Frequency Outer (BPFO), the Ball Pass Frequency (BPF) 

and the Fundamental Train Frequency (FTF) [19]. 

BPFI can be estimated as:0.6 x N x f, where N is the number of rolling elements and 

f is the rpm. BPFO can similarly be estimated as: 0.4 x N x f. BPF is estimated as: 

0.2 x N x f and FTF as 0.4 x f.  

In addition to the fundamental frequencies there are naturally occurring bearing res-

onances between 3-50 kHz. [19] 

Bearing faults most often start showing as high frequency noise that will develop a 

noise-floor resembling a haystack in the spectrum. As the fault develops the noise-

floor will widen and get higher in amplitude. There are 4 stages of bearing wear and 

the spectral properties of these are described in Appendix A table. 
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2.4.3.3 Axles 

Like many other components, axles can be subject to for example looseness, misa-

lignment or rotor rub. The spectral signatures associated with these issues can be 

found in Appendix A table 1. 

When monitoring both the driving and the non-driving side of an axle the signal will 

most likely have the same signature and should in best case be the same amplitude. 

One might expect the driving side to have a slightly higher amplitude, as this side 

will to a larger extent be affected by adjacent components.  

Determining alarm- and trip-levels for axles is best done by assuming a level based 

on prior measurements at a well-defined condition. If the current level turns out to 

be several times lower than the assumed alarm-level, then the level should be low-

ered. If it is not lowered, substantial increases in vibrations that might be critical, 

may go unnoticed.  
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3 Similar applications and implementa-
tion 

3.1 Similar applications of vibration analysis 

3.1.1 Stamping tools 

To avoid expensive tool replacements, poor part quality, machine downtime and un-

scheduled maintenance, Ubhayaratne et al. suggest using audio signal analysis to eval-

uate tool wear that is not visible to the naked eye [20].  

During trials a combination of procedures trimming, stamping and piercing was observed 

simultaneously throughout a series of 1500 parts. In order to analyse the different proce-

dures separately a data extraction algorithm was developed. Vibration data was recorded 

and then analysed by evaluating the magnitude of the vibrations in the entire bandwidth 

and that of limited frequency bands. The analysis was done in both the time and the 

frequency domain also including an analysis of the RMS and peak-values of the signal.  

In the study Ubhayaratne et al. [20] found that there was significant correlation between 

the recorded audio signal and tool wear. They could identify a specific frequency band 

that gave valuable information about the state of wear, making signs of wear detectable 

a significant amount of time before the wear has become severe and before failure. How-

ever, analysis of RMS and peak-value was found not to provide enough information to 

make conclusions of the tool wear [20]. 

3.1.2 Car body assembly Volvo Torslanda 

At Volvo cars plant in Torslanda the company SPM Instrument AB has successfully 

implemented condition monitoring of two bolting stations used for assembling the 

car body to car platform [21].  

A combination of vibration-monitoring using accelerometers and the shock pulse 

method (SPM) is used to determine the lubrication and mechanical condition of two 

axial bearings with adjoined ball screws on each bolting station. The measurements 

are performed continuously and when reaching unacceptable levels an alarm is is-

sued directly to the equipment PLC. Each operation takes about 4 seconds, putting 

the measuring equipment under great strain. 

In early January of 2019 the monitoring solution enabled the maintenance depart-

ment to pre-schedule the change of a close to failure ball screw during scheduled 

downtime. An operation that usually takes 7 hours and could affect productivity [21]. 

3.1.3 Driveline Volvo CE 

In the driveline of heavy construction equipment such as those manufactured by 

Volvo CE, there are many crucial components. The driveline enables torque to be 

transferred from the engine to the wheels via components like a torque converter, 

gearbox, clutches, bearings and axles. If any of these components fail it will render 

the equipment non-operational with costly downtimes as a result. When there is a 

failure the on-board diagnostic system will generate one or several failure codes 
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based on simple rules and decision maps. This simplistic diagnostic tool is often not 

enough to find the root-cause of the problem and substantial manual inspection is 

needed as well, requiring skilled technicians and engineers [9].  

To reduce unnecessary downtimes and facilitate easy and preventative maintenance, 

a methodology for using primarily vibration signals to monitor the health of the dif-

ferent components has been developed by Elisabeth Källström of Luleå University 

of Technology [9]. 

3.1.4 Cold roll press for aluminium 

Dai et al. [14] has researched the use of vibration and sound emission monitoring of 

a cold roll press for aluminum. The objective was to achieve fault detection and di-

agnosis while using less measuring equipment and less time for measuring and data 

analysis. Dai et al. used a combination of sound intensity, statistical measures and 

FFT to determine the source of vibrations and the nature of damage. The ability to 

monitor the development of damage in complex machinery the authors say might 

help increase machine utilization rates and product output quality [14].  

3.1.5 Paper industry 

Two of the largest pulp mills in the world, Södra cell Värö, Sweden and Södra cell 

Mönsterås, Sweden has chosen to use vibrations for online monitoring of the me-

chanical condition of some crucial equipment. As part of a large investment in in-

dustry 4.0 the wire, press and dryer section at the plant in Värö and the woodchipper 

at the plant in Mönsterås have/will be fitted with several accelerometers that measure 

vibrations. The collected data is then digitally analysed in an online system that alerts 

operators and maintenance personnel when readings are high. The main objective of 

the investment is maximizing equipment availability [22] [23]. 

3.2 Implementation using machine learning 

3.2.1 Basics of machine learning 

Human brains can analyse and find patterns in data and use it to make qualified de-

cisions but when the amount of data reaches a certain level the human brain cannot 

effectively comprehend all that data. What machine learning does is learn computers 

to draw conclusions similarly to a human by using historical data to train algorithms. 

A computer can store and analyse a higher volume of data in a much shorter time 

than any human [24].  

The workflow of developing a predictive maintenance model using machine learning 

is can be summarized in 5 steps: 

1. Data acquisition: The initial step is acquiring the necessary data. The model 

input and output and may come from many different sources in and around 

the modelled equipment.  

2. Pre-processing of data: The acquired data then needs to be pre-processed to 

remove noise, handle outliers and to combine data from different sources.  
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3. Feature extraction: Instead of running an entire set of features and extreme 

amounts of data through the machine learning model, feature extraction is 

applied to identify features that carry a high level of information. This way 

high-dimensional problems can be reduced to a few features that carry most 

of the information needed to understand the predictive model.  

4. Training: The model can be trained using either supervised or unsupervised 

learning. Using supervised learning means telling the model if the data is 

good/bad, setting thresholds for different conditions, and/or giving the 

model estimations of the equipment’s actual remaining useful life. Unsuper-

vised learning means the model itself finds hidden patterns or intrinsic struc-

tures in data that is later classified using different classification methods.  

5. Deployment: The final step is to let the model start working by deploying it 

to the platform where it will be used [25] [24]. 

3.2.1.1 Feature extraction 

Features are also called condition indicators and can be described as alternative ways 

to observe data to easier differentiate good and bad conditions and sources of vibra-

tions. To further understand the concept; imagine a cone and a cylinder, while both 

look like circles when observed from the top, there is a difference between the two 

when looking at them from the side that allows us to draw the conclusion that one is 

a cone and the other a cylinder.  

When observing data in the time-domain it can all seem a bit messy and data seems 

similar but when using different condition indicators to look at it, information may 

become clearer. In machine learning different features can simultaneously be used 

to train the model which may be beneficial when differentiating different fault types 

or conditions [26].  

There are different condition indicators that can be used depending on if the data is 

viewed from the time-/frequency/time-frequency domain. Examples of different fea-

tures used in different domains can be found in Table 2 below. [26] 

Table 2. Condition indicators used in different domains [26] 

Time domain Frequency domain Time-frequency do-

main 

- Mean 

- Standard deviation 

- Skewness 

- Root-mean-square 

(RMS) 

- Kurtosis 

- … 

- Power bandwidth 

- Mean frequency 

- Peak values 

- Peak frequencies 

- Harmonies 

- … 

- Spectral entropy 

- Spectral kurtosis 

- … 
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3.2.1.2 Supervised and unsupervised learning 

Supervised learning trains the model by supplying it with historical input and la-

belled output data. With supervised learning the model is told what the output or the 

label of the data is for a certain input and the algorithm learns by comparing the input 

to the actual output.  

There are two main paths to supervised learning: regression and classification [24]. 

If the output is not known, then unsupervised learning can be used. Unsupervised 

learning is used to find patterns within un-labelled data and to make clusters of data 

with similar patterns.  

Clustering is the main method used to classify data when using unsupervised learn-

ing [24].  

3.3 Similar applications of vibration analysis with 
machine learning 

3.3.1 Cutting tools 

In metal cutting processes the specific cutting energy will affect not only the surface 

integrity but also the process sustainability. The present way of measuring the spe-

cific cutting energy is limited and complex. Ziye Liu and Yuebin Guo [27] suggest 

using a combined approach of machine learning and process mechanics to predict 

the specific cutting energy in milling. This data driven machine learning approach 

proved to predict the specific cutting energy better than the traditional mechanics 

models [27].  

3.3.2 Gas and Oil Extraction Equipment 

The international oil field service company Baker Hughes has several extraction sites 

where oil is tapped around the clock. On the sites, large trucks equipped with pumps 

are used to tap the oil wells. At times as many as 20 trucks are pumping oil simulta-

neously [28].  

Within the pumps are valves, seals, plunges and more that may cause damages be-

yond repair if worn to the point of failure. To prevent costly failures and inactive 

wells, Baker Hughes can have spare trucks on site or perform preventative mainte-

nance. In attempt to bypass these options, engineers at Baker Hughes has used 

Matlab and data analytics to develop predictive maintenance software for monitoring 

pump health. They used several sensors to monitor different parameters and could 

later determine that the most important condition indicators for health monitoring of 

pumps are pressure, vibration, and timing. The data was used to create and train a 

data driven model that was later validated using data collected after the model was 

built [28]. 
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4 Data analysis  
The analysis will be segmented based on the analysed component and on which press 

this component is situated. Any similarities between the corresponding components 

on the different presses will be discussed as it appears. So will any assumptions 

about the measurement’s conditions and any diagnostics.  

The ISO 10816-3 guideline RMS-limit of 4,5 mm/s will be used continuously as a 

reference limit for all components even though this limit is applicable only to motors. 

All code used for analysis can be found in Appendix A.  

4.1 Sensor placement 
The placement of the accelerometers in this thesis is as stated in Table 3 below. In 

Figure 5 the placement of each sensor 1-10 can be seen on the schematic overview 

of a basic mechanical press. 

 

Table 3. Placement of sensors. 

SENSOR  PLACEMENT 

1 Motor axle, driving side (front) 

2 Motor axle, non-driving side (back) 

3 Pulley wheel, side facing away from motor (front) 

4 Pulley wheel, side facing motor (back) 

5 Gearbox axle in (front) 

6 Gearbox axle in (back) 

7 Secondary axle, side by eccentric wheel (left crank) 

(front) 

8 Secondary axle, side by gearbox (left crank) (back) 

9 Secondary axle, side by eccentric wheel (right crank) 

(front) 

10 Secondary axle, side by gearbox (right crank) (back) 
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Figure 5. Placement of sensors 1-10 on a schematic overview of the press. 

4.2 Vibration analysis in Matlab 
To reach a conclusion whether vibration analysis is a helpful tool for predictive 

maintenance on a mechanical press, data must be analysed to find reoccurring pat-

terns and increasing trends in the frequency and amplitude of vibrations. In this thesis 

Matlab will be used to make such analysis. The work done in Matlab will follow the 

structure of the 4 latter steps in Figure 2; frequency analysis (digital filtering, Fast 

Fourier Transform), measurement data processing and graphing. The methodology 

is further explained in 4.2.1.  

A combination of power spectral density (PSD), fast Fourier transform (FFT) and 

the statistical measures RMS and kurtosis are used for this analysis.  

PSD is chosen as it is a useable tool for trending the distribution of vibrations in 

different bandwidths and is therefore good for spectral trending and comparison. 

FFT is used as it is the quickest way to separate the frequencies of the signal which 

may help with diagnosis. RMS and kurtosis are both traditional and basic ways of 

condition monitoring and as these require little computer power, they are interesting 

from an implementation point-of-view as well. Furthermore, RMS is the ISO-rec-

ommended condition monitoring measure for motors etc.  

Components are separated into two cases depending on if their real condition is 

known or not. The cases are described as following: 

1. Conditions corresponding to previously recorded data is known and/or dif-

ferent conditions of the components has been captured 

2. Condition is not known and/or has not changed.  

1 2 3 4 

5 6 

8 (10) 7 (9) 
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If the case is number 1 then the data is labelled with conditions (output) ‘good’, 

‘decent’ or ‘bad’ and both the PSD and the DFT along with statistical measures for 

data of different conditions are manually compared to find certain features or pat-

terns that characterize different conditions and that could be used for spectral com-

parison and/or -trending. This should make it possible to differentiate between con-

ditions in new data based on how well the new data matches features and patterns of 

old data. Meaning it should also be possible to use classification and machine learn-

ing.  

However, if the case is instead case number 2, sorting based on patterns and peaks 

is more difficult. In this case the output is initially assumed to be constantly ‘decent’ 

and the PSD along with statistical measures are analysed and compared manually to 

see if there is data that shows peculiar behaviour, for example if there are clusters of 

peaks that deviate from the normal pattern, or if there is an increasing trend in PSD 

level or RMS. The assumed condition may be changed based on the findings to see 

if differences resound in all 4 analysis measures.   

4.2.1 Analysis methodology 

An overview of the analysis methodology can be found in Figure 6 below. 

 

 

 

Figure 6. Flowchart of the general analysis methodology. 

4.2.1.1 Feature extraction 

Measurements from the front sensor (driving side) of the motor on press 2 will be 

used as an example of how feature extraction and analysis is done in this thesis. This 

component has no known/no change of condition (output) and is therefore classified 

as case 2.  

Features are extracted only from the velocity PSD/FFT and not the acceleration 

PSD/FFT. This is done based on the assumption that the frequencies of most interest 

are within the range of 10-1000 Hz and velocity is therefore preferable due to 

reasons discussed in 2.3.1. The reason frequencies are assumeably within this 

Extract raw data

Filter and integrate 
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output

Compile features
Graph and 

compare features
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interval is the size of the components is question. As these are large in mass, they 

will have  a large moment of inertia and are therefore more suseptable to low 

frequency vibrations. However, with components like bearings, high frequencies are 

of great interest for fault detection which should be included in future 

implementations but is excluded in this thesis.  

Furthermore RMS is calculated in the interval of 20-2000Hz besause of the 

previously stated reasons.  

The data used in the Matlab analysis is extracted from the software which is currently 

being used for this application at Volvo. The segment of the signal being used is 

either from idle operation when the slide is at the top, the clutch is not engaged and 

the motor/pulley rotates freely (for sensors on motor and pulley), or tool down when 

the clutch is engaged and the slide goes down (for all other sensors).  

After importing the raw acceleration data, the first step of the Matlab analysis is 

filtering, integrating the acceleration to velocity and filtering again to get the filtered 

velocity. The filtered velocity is then used to generate the power spectrum density 

(PSD). The time domain velocity signal can be seen in the top figure of Figure 7 and 

the PSD in the lower figure. The blue signal is unfiltered velocity and the red is the 

filtered velocity.  

 
Figure 7. Time domain signal (top) and power spectrum denisty (bottom)  of unfiltered (blue) and 

filtered (red) velocity. Both figures show the signal from the front (driving side) sensor on the motor of 

press 2. 
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Note that a segment at the beginning of the velocity signal has been cropped out and 

is not used (see top Figure 7). This has been done due to some transient behaviour. 

Possible causes and solutions to this issue will be discussed further in section 0.  

Discussion. 

The first 25 peaks of the velocity PSD is extracted into an array of the 

corrensponding amplitudes and frequencies of the peaks (see Figure 8. The red is the 

PSD of all measurements and the black is circles around the first 25 peaks of each 

measurement). The statistical time domain measurements (velocity RMS and 

kurtosis) are compiled together with the previously extracted peaks and every 

measurement’s corresponding output, to form a large table of features. The velocity 

RMS has been calculated from the FFT using Eq. 1 and the frequency-limits f1 ≈ 20  

Hz and f2 ≈ 2000 Hz. Kurtosis is calculated from the filtered velocity.  

 
Figure 8. Identification of the first 25 peaks in the filtered velocity PSD. Red is PSD of all measure-

ments, black is circles around the first 25 peaks of each measurement. The signal is from the front 

(driving side) sensor on the motor of press 2. 

The same procedure is repeated for the DFT of the signal using FFT with a Hanning 

window and extracting the first 25 peaks in the spectrum as features for each meas-

urement.   

All of the features (RMS, kurtosis, peaks from FFT and PSD) will be investigated 

to find if they can be used to represent the condition of the press and if so, which 

ones best represent the condition.  

4.2.1.2  Feature analysis 

This component has no known/no change of condition (output) and all measurements 

are therefore initially assumed ‘decent’.  

 

Initially the previously extracted PSD peaks are investigated. This is to identify any 

clear differences or increasing levels that may indicate separate conditions. All 

measurements are plotted in the same window (see Figure 9 below).  
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Judging from the resulting PSD-peaks there are no clear differences to be found 

between measurements. The peaks at each frequency seem to lie within a span of 

about ±10-15 dB which exceeds the increase of ~6 dB that is recommended to cause 

alarm and the level of some measurements does differ a bit more around 1500 Hz 

and there some higher peaks at 3000 Hz but there are no clear outliers in the data. If 

there was several different conditions it would be easier to compare the levels, 

especially if there was measurements from a clearly defined ‘normal’ condition that 

could be regarded as a base level for spectral comparison.  

 
Figure 9. Distribution of PSD peaks for different conditions. All measurements are from the front sen-

sor on the motor of press 2. 

Also looking at the FFT peaks in Figure 10 below, it is difficult to draw any 

conclusions about the condition or diagnosis of the motor. There are rather high 

amplitudes at 25 Hz and also at 50 and 75 Hz (assumed corresponding to 1x, 2x and 

3x as the motor rpm is 1350rpm/22.5 Hz according to the rating plate but might differ 

a bit from real life), but it is hard to tell how serious these levels are as there is 

nothing to compare to.  

 
Figure 10. Distribution of FFT peaks. All measurements are from the front sensor on the motor of press 

2. 

When looking at the statistical features RMS of velocity and kurtosis (Figure 11 

below), there are clearly some variation. The dotted line in the upper figure of Figure 

11 is the ISO 10816-3 guideline limit  of 4,5mm/s between zone C (levels of 
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vibrations considered unacceptable for long-term operation) and zone D (levels of 

vibrations considered harmful to the health of the machinery). Measurements 30-44 

and measurement 16 are all above this limit. Measurements 30-44 have high RMS, 

indicating that the overall vibration-level is dangerously high. It is not really possible 

to read out any information about the condition from the kurtosis.  

 
Figure 11. Statistical features for each measurement of the front sensor on the motor of press 2. Upper 

figure: RMS of velocity. Dashed line in figure is the ISO-limit 4,5 mm/s. Lower figure: Kurtosis. 

New conditions are assigned the different measurements to investigate any patterns 

of PSD and FFT that are recurring for different levels of RMS. All measurements 

above the dotted line are changed to ‘bad’, measurements 13-15 and 17-26 changed 

to ‘decent’ and the rest to ‘good’ (for reference see Figure 14). The result of PSD 

and FFT can be seen in Figure 12 and Figure 13.  

Regarding the PSD in Figure 12 below there are some things that seem reoccuring 

for ‘bad’ conditions. For example the level at ~1500 Hz is higher than that of ‘decent’ 

and ‘good’ condition. However, the PSD pattern of ‘decent’ and ‘good’ are quite 

similar.  

 
Figure 12. Distribution of PSD peaks with adjusted output. All measurements are from the front sensor 

on the motor of press 2. 
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Looking at the FFT in Figure 13 below, we see that for ‘good’ condition the 1x peak 

at ~25 Hz is much lower than the 1x peak for ‘decent’ condition. So the RMS level 

seems to be somewhat reliable for condition monitoring of motors. Confirming the 

method recommended in ISO 10816-3, although the appropriate ALARM-level of 

this component is not known nor is it certain that these assumed conclusions are 

correct as the actual condition is not known. 

 
Figure 13. Distribution of FFT peaks with adjusted output. All measurements are from the front sensor 

on the motor of press 2. 

 
Figure 14. Statistical features with adjusted output for each measurement of the front sensor on the 

motor of press 2. Upper figure: RMS of velocity. Dashed line in figure is the ISO-limit 4,5 mm/s. Lower 

figure: Kurtosis. 

4.3 Motor 

4.3.1 Front sensor 

4.3.1.1 Press 2 

See 4.2.1.2 Feature analysis. 
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4.3.1.2 Press 4 

This component has no known/no change of condition (output) and all measurements 

are therefore initially assumed ‘decent’.  

The pattern of PSD and FFT at the front of the motor of press 4 (seen in Figure 15 

and Figure 16 below) is more consistent and the peaks are generally lower in ampli-

tude than at the front of the motor on press 2. One difference that should be noticed 

is the pattern of peaks at ~41- 42 Hz in the FFT (Figure 16 below). This is at approx-

imately 1.5x and might indicate slight internal assembly looseness or rotor rub.   

 

Figure 15. Distribution of PSD peaks. All measurements are from the front sensor on the motor of press 

4. 

 
Figure 16. Distribution of FFT peaks. All measurements are from the front sensor on the motor of press 

4. 
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RMS amplitude at the front end of the motor on press 4 is significantly more con-

sistent than that on press 2 but the kurtosis is irregular. It is at a level that is assumed 

indicatory of ‘good’/’decent’ condition (compare Figure 14 above and Figure 17 be-

low). 

 
Figure 17. Statistical features for each measurement of the front sensor on the motor of press 4. Upper 

figure: RMS of velocity. Dashed line in figure is the ISO-limit 4,5 mm/s. Lower figure: Kurtosis.  

4.3.2 Back sensor 

4.3.2.1 Press 2 

This component has no known/no change of condition (output) and all measurements 

are therefore initially assumed ‘decent’.  

Compared to the front sensor on the motor of press 2, the general PSD-level is lower 

at the back (compare Figure 9 above and  

Figure 18 below). This is not unexpected as the front side is the driving side and will 

be affected by vibrations of the connected components (pulley) to a greater extent.  

 

Figure 18. Distribution of PSD peaks. All measurements are from the back sensor on the motor of press 

2. 
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Regarding the FFT, peaks are like the peaks at the front and correspond to 1x, 2x 

and so on (see Figure 19 below).  

 
Figure 19. Distribution of FFT peaks. All measurements are from the back sensor on the motor of press 

2. 

Regarding RMS and kurtosis; RMS is once again high for measurements 30-44 

(taken at the same time as measurements 30-44 at the front), indicating that any pre-

sent fault is not only localized to the front of the motor. Kurtosis does not seem to 

provide any straightforward information. Once again, the measurements above the 

4,5 mm/s RMS limit are assigned the condition ‘bad’ and the other measurements 

are classified accordingly (see Figure 20 and adjusted result in Figure 23 below). 

 
Figure 20. Statistical features for each measurement of the back sensor on the motor of press 2. Upper 

figure: RMS of velocity. Dashed line in figure is the ISO-limit 4,5 mm/s. Lower figure: Kurtosis. 
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Like with the adjusted output of the measurements from the front side of the sensor, 

the pattern of PSD and FFT for different conditions in Figure 21 and Figure 22 be-

low, seem to match well and once again the amplitude of the FFT 1x peak is the main 

difference between ‘good’ and ‘bad’.  

The high PSD around ~3000 Hz is caused to some haystack-behaviour around this 

frequency. What is causing this is unknown but might be indicating a bad condition 

bearing. 

 
Figure 21. Distribution of PSD peaks with adjusted output. All measurements are from the back sensor 

on the motor of press 2. 

 
Figure 22. Distribution of FFT peaks with adjusted output. All measurements are from the back sensor 

on the motor of press 2. 
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Figure 23. Statistical features with adjusted output for each measurement of the back sensor on the 

motor of press 4. Upper figure: RMS of velocity. Dashed line in figure is the ISO-limit 4,5 mm/s. Lower 

figure: Kurtosis. 

4.3.2.2 Press 4 

This component has no known/no change of condition (output) and all measurements 

are therefore initially assumed ‘decent’.  

Similar conclusions to the front sensor measurements of the the motor of press 4. 

Once again the measurements at the back (Figure 24, Figure 25 and Figure 26 below) 

are smaller than at the front which is the driving side (see Figure 15, Figure 16 and 

Figure 17 above), which is expected.  

 

Figure 24. Distribution of PSD peaks. All measurements are from the back sensor on the motor of press 

4. 
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Figure 25. Distribution of FFT peaks. All measurements are from the back sensor on the motor of press 

4. 

 
Figure 26. Statistical features for each measurement of the back sensor on the motor of press 4. Upper 

figure: RMS of velocity. Dashed line in figure is the ISO-limit 4,5 mm/s. Lower figure: Kurtosis. 

4.4 Pulley 

4.4.1 Front sensor 

4.4.1.1 Press 2 

The front sensor measurements of this component have known/different conditions 

(outputs) and all measurements are therefore initially labelled accordingly. 

This is one of the components with the most recorded conditions. It is assumed that 

the condition of the pulley is ‘decent’ during the period prior to refurbishment of the 

press performed during summer 2018. Furthermore, the condition is assumed as 

‘bad’ for measurements 30-44 that are taken just before the pulley breaks down due 

to bearing-failure. All measurements after this are assumed to be of a ‘good’ condi-

tion. Which bearing (front or back) that was the reason of failure has not been con-

firmed.  



 

35 

 

It is possible to tell the difference between different conditions by looking at the PSD 

in Figure 27 below. ‘Good’ condition is easiest recognizable by a lower level at 

around 2500 Hz. It is more difficult to distinguish ‘bad’ from ‘decent’, but it seems 

that a ‘bad’ condition will generally have a higher level of PSD at 600-800 Hz and 

at ~1400 Hz.  

 

Figure 27. Distribution of PSD peaks for different conditions. All measurements are from the front 

sensor on the pulley of press 2. 

Looking at the distribution of FFT peaks in Figure 28 below it is quite easy to deduct 

some characteristic behaviours associated to the conditions ‘bad’ and ‘decent’ re-

spectively. Peaks at ~25Hz are recurring for both conditions, which is unsurprising 

as this is corresponding to the motor’s rotational velocity of 1350 rpm which is pre-

sumably driving the pulley at the same speed. However, the amplitude at ~25Hz is 

generally higher for the ‘decent’ condition than the ‘bad’ (compare Figure 28 D).  

Looking at the 2x and 3x peaks at ~50Hz and ~75Hz, the amplitude is significantly 

higher for the ‘bad’ condition, especially the 3x peak. There is also an occurrence of 

peaks at ~37,5Hz and ~62,5Hz which is the order 1,5x and 2,5x. Although these 

peaks are mostly noticeable in ‘good’ condition and have a relatively low amplitude, 

they may be indications of misalignment or looseness.  

 

Figure 28. Distribution of FFT peaks for different conditions. All measurements are from the front 

sensor on the pulley of press 2. 
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Looking at RMS (upper graph in Figure 29 below) it is seen that the assumed 

conditions do not correspond well with the amplitude of RMS. The RMS of peak 13 

to 26, which are assumed as ‘decent’ condition are at the same level or above that of 

peak 30 to 44 which are assumed ‘bad’, also noting that the only measurement with 

RMS above the ISO-recommended level of 4,5 mm/s is in this interval. Although 

noting that the 4,5 mm/s guideline is not necesserily applicable on this specific 

component nor pulleys in general. Furthermore, peak 1-12 and 27-29 which are 

assumed ‘decent’ are on a level below peak 45 to 50 which are ‘good’. This is also 

reflected in Figure 28 D) above where we see that the peaks of some of the ‘decent’ 

measurements are very similar in amplitude to the ‘good’ measurements, especially 

with regards to amplitude of the peak at ~25Hz which is uncharacteristically low. If 

the assumed condition of measurements 1-12 and 27-29 is changed from ‘decent’ to 

‘good’, the distribution of peaks and statistical measurements instead look like in 

Figure 31 and Figure 32 below. 

 
Figure 29. Statistical features for each measurement of the front sensor on the pulley of press 2. Upper 

figure: RMS of velocity. Dashed line in figure is the ISO-limit 4,5 mm/s. Middle figure: Kurtosis. Lower 

figure: Mean absolute acceleration.  
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With the adjusted output the distribution of FFT peaks seems to make more sense. 

The amplitude and pattern of measurements changed from ‘decent’ to ‘good’ appear 

to match well with the measurements initially assumed ‘good’. This is also an indi-

cation that RMS works well to tell whether a measurement is good but it not enough 

to differentiate between ‘decent’ and ‘bad’ as this requires further investigation of 

for example FFT peaks. With that said, the adjusted condition does not match up 

well with the other peaks when looking at PSD in Figure 30 but either way the ‘bad’ 

condition is distinguishable.  Regarding kurtosis, the level does not provide any def-

inite conclusions about the condition. It rather seems that kurtosis is contradictory at 

times. The guidelines previously discussed in 2.3.1.2 that specify kurtosis above 4 is 

sign of bad conditions is not applicable either.  

If the bearing is a rolling element bearing it is possible to investigate to amplitude of 

the BPFI and BPFO (ball pass frequency inner/-outer) by FFT. An increase of these 

levels is indicative that failure is near. To do this it is necessary to know the number 

of rolling element and then the approximations BPFO ~0.4 x N x F and BPFI ~0.6 x 

N x F can be made. In this thesis these things are not known. 

 
Figure 30. Distribution of PSD peaks with adjusted output for different conditions. All measurements 

are from the front sensor on the pulley of press 2. 

 
Figure 31. Distribution of FFT peaks with adjusted output for different conditions. All measurements 

are from the front sensor on the pulley of press 2. 
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Figure 32. Statistical features with adjusted output for each measurement of the front sensor on the 

pulley of press 2. Upper figure: RMS of velocity. Dashed line in figure is the ISO-limit 4,5 mm/s. Lower 

figure: Kurtosis.  

With bearings the high frequency noise-floor widens and increases in amplitude 

when failure is close. This behaviour can be confirmed by looking at the complete 

FFT of ‘good’ and ‘bad’ measurements (see Figure 33 below). 

 
Figure 33. Comparison of noise-floor between ‘bad’ measurements 30-44 (left) and ‘good’ measure-

ments 45-50 (right) 
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4.4.1.2 Press 4 

This component has no known/no change of condition (output) and all measurements 

are therefore initially assumed ‘decent’.  

From  the results in Figure 34, Figure 35 and Figure 36 below it is possible to make 

the conclusion that the condition of the pulley on press 4 is much more stable than 

that of the pulley on press 2. Judging by the amplitude of peaks from PSD/FFT and 

RMS, a ‘decent’ condition seems like a good assumption. Some irregularities are 

present like the splay of the peaks above ~2000 Hz in PSD. This may be due to 

outside noise. Also, the reason behind the irregular pattern of kurtosis is unclear.  

 
Figure 34. Distribution of PSD peaks. All measurements are from the front sensor on the pulley of press 

4. 

 
Figure 35. Distribution of FFT peaks. All measurements are from the front sensor on the pulley of press 

4. 
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Figure 36. Statistical features for each measurement of the front sensor on the pulley of press 4. Upper 

figure: RMS of velocity. Dashed line in figure is the ISO-limit 4,5 mm/s. Lower figure: Kurtosis.  

4.4.2 Back sensor 

4.4.2.1 Press 2 

The back sensor of this component has no known/no change of condition (output) 

and all measurements are therefore initially assumed ‘decent’.  

All measurements from the back sensor on the pulley of press 2 are taken prior to 

refurbishing in summer 2018, when the pulley condition was assumed ‘decent’. 

However, with the adjusted conditions from the previous analysis of the front pulley 

measurements one can assume the same change of condition is noticeable by the 

back sensor too as the bearings on which the sensors measure is connected by the 

same axle. Noting that all 29 measurements at the back sensor are taken at the same 

time as the first 29 measurements at the front found in section 4.4.1.1.  

With this adjustment the resulting distribution of PSD, FFT and statistical features 

can be seen in Figure 36, Figure 37 and Figure 38 respectively. The adjustment of 

conditions appears to correspond well to both the amplitude of FFT and the velocity 

RMS in the same way it did for the front sensor of the pulley.  

There are no clear patterns in the PSD of this data (see Figure 36 below). Only major 

difference visible in Figure 37 is the level around 25 Hz.  
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Figure 37. Distribution of FFT peaks with adjusted output for different conditions. All measurements 

are from the back sensor on the pulley of press 2. 

With the FFT (see Figure 37 below), peaks are prevalent at 25 Hz and the amplitude 

of the ‘bad’ measurements are much higher than the ‘good’ at this frequency.  

 

Figure 38. Distribution of FFT peaks with adjusted output for different conditions. All measurements 

are from the back sensor on the pulley of press 2. 
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The level of RMS is slightly higher for this side of the pulley and some measure-

ments do surpass 4,5 mm/s which is the ISO-standard reference (see Figure 38 be-

low). This is not surprising as the back of the pulley is the side connected to the 

motor and is therefore affected by the motor vibrations to a greater extent. Kurtosis 

does seem to follow the different condition but in the opposite way of what is ex-

pected with ‘good’ measurements having high kurtosis and ‘bad’ measurements hav-

ing low kurtosis.  

 
Figure 39. Statistical features with adjusted output for each measurement of the back sensor on the 

pulley of press 2. Upper figure: RMS of velocity. Dashed line in figure is the ISO-limit 4,5 mm/s. Lower 

figure: Kurtosis. 
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4.4.2.2 Press 4 

This component has no known/no change of condition (output) and all measurements 

are therefore initially assumed ‘decent’.  

The amplitude of the FFT peaks at 25 Hz seen in Figure 41 below are quite high, 

higher than most ‘bad’ peaks at the back of the pulley on press 2. Along with a high 

level of RMS and PSD (Figure 40 and Figure 42 below) this implies that the 

condition is ‘bad’ for all measurements taken. Albeit again kurtosis does not provide 

any real information.  

 
Figure 40. Distribution of PSD peak. All measurements are from the back sensor on the pulley of press 

4. 

 
Figure 41. Distribution of FFT peaks. All measurements are from the back sensor on the pulley of press 

4. 
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Figure 42. Statistical features for each measurement of the back sensor on the pulley of press 4. Upper 

figure: RMS of velocity. Dashed line in figure is the ISO-limit 4,5 mm/s. Lower figure: Kurtosis.  

4.5 Gearbox 

4.5.1 Front sensor 

4.5.1.1 Press 2 

This component has known/different conditions (outputs) and all measurements are 

therefore initially labelled accordingly. 

The PSD in Figure 43 below shows a large gap between the level of ‘good’ and ‘bad’ 

measurements. The increase is rather significant, being almost 50 dB in some places. 

However, there are some measurements that lie in the space between the ‘bad’ and 

the lower ‘good’, these are adjusted to a ‘decent’ condition to test if this matches 

well with the FFT and statistical measurements (see adjusted results in Figure 44, 

Figure 45 and Figure 46 below).  

 
Figure 43. Distribution of PSD peaks for different conditions. All measurements are from the front 

sensor on the gearbox of press 2. 
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Figure 44. Distribution of PSD peaks for different conditions with adjusted output. All measurements 

are from the front sensor on the gearbox of press 2. 

Looking at the plots in Figure 45 below it seems it was correctly assumed that the 

different PSD levels and assumed conditions correlates to different patterns of the 

FFT. These patterns and peaks may tell what the issue is with the gearbox at the time 

the ‘bad’ measurements were taken. For example, a peak at ~132 Hz is prevalent for 

a ‘bad’ condition. There are peaks around this frequency for both ‘good’ and ‘decent’ 

condition too, indicating that the peak has something to do with the running speed 

of the pinion. There are also harmonics of this frequency at ~264 Hz and ~396 Hz 

that are clearly visible on the graph of the ‘decent’ condition (Figure 45 B) below) 

and are also present for ‘bad’ condition. If the assumption that the 132 Hz peak is 

corresponding to the running speed, then the high amplitude at 1x might mean un-

balance or an eccentric rotor. It is known that there were brass shavings from a bush-

ing found in the crown during inspection before overhauling, there might be a con-

nection.  Large peaks might also be connected to the gear mesh frequency but (de-

pending on the number of teeth) these tend to be at a higher frequency. 

 
Figure 45. Distribution of FFT peaks with adjusted output for different conditions. All measurements 

are from the front sensor on the gearbox of press 2. 
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Also, the RMS shows a slight difference for the different conditions. Although the 

limit should be lowered to a much lower amplitude (Figure 46 below).  

 
Figure 46. Statistical features with adjusted output for each measurement of the front sensor on the 

gearbox of press 2. Upper figure: RMS of velocity. Dashed line in figure is the ISO-limit 4,5 mm/s. 

Lower figure: Kurtosis. 

4.5.1.2 Press 4 

This component has no known/no change of condition (output) and all measurements 

are therefore initially assumed ‘decent’.  

Compared to the front of the gearbox on press 2 the PSD (compare Figure 47 above 

and Figure 49 below) and the FFT (compare Figure 48 above and Figure 50 below) 

are at low levels.  

 
Figure 49. Distribution of PSD peaks. All measurements are from the front sensor on the gearbox of 

press 4. 
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Surprisingly there is no clear peak in the FFT at around ~135 Hz as one would expect 

but there are ones around 37.5 Hz. This might mean that the sensors have been mixed 

up in processing and this data is from the back of the gearbox, or the sensors have 

been reversed on press 2.  

 
Figure 50. Distribution of FFT peaks. All measurements are from the front sensor on the gearbox of 

press 4. 

RMS is at a low and steady level (Figure 51 below) but kurtosis is at alarming levels. 

This may be due to issues when measuring the vibrations, causing disturbances in 

the signal or issues with calculations.  

 
Figure 51. Statistical features for each measurement of the front sensor on the gearbox of press 4. 

Upper figure: RMS of velocity. Dashed line in figure is the ISO-limit 4,5 mm/s. Lower figure: Kurtosis.  
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4.5.2 Back sensor 

4.5.2.1 Press 2 

This component has known/different conditions (outputs) and all measurements are 

therefore initially labelled accordingly. 

The measurements from the back sensor of the gearbox on press 2 are not all taken 

at the same time as those on the front. There are also no measurements of a ‘decent’ 

condition.  

From the PSD in Figure 52 below we can gather that the general level of ‘good’ is 

lower than ‘bad’ between 1000-1500 Hz although the entire curve is higher in level 

than that on the front, which is also reflected in the RMS (Figure 55 below) where 

the ‘bad’ measurements are at the same level as the ‘good’ measured at the front. 

 
Figure 52. Distribution of PSD peaks for different conditions. All measurements are from the back 

sensor on the gearbox of press 2. 

  



 

49 

 

The ‘good’ measurements at the back also seem to be at approximately the same 

level as the ‘bad’ which is not surprising when looking at the FFT in Figure 53 below. 

The ‘good’ peaks are similar in pattern to the ‘bad’ and once again there are clear 

peaks at ~132 Hz and the harmonics ~154 Hz and ~402 Hz. The amplitude of these 

are generally higher than those at the front.  

There is also reoccurring peaks at ~37.5 Hz. This might be the output (large gear) 

RPM. 

 
Figure 53. Distribution of FFT peaks for different conditions. All measurements are from the back 

sensor on the gearbox of press 2. 

Kurtosis in Figure 54 below is generally somewhat lower for ‘good’ measurements 

but should not be solely relied upon as it is irregular.  

 
Figure 55. Statistical features for each measurement of the back sensor on the gearbox of press 2. 

Upper figure: RMS of velocity. Dashed line in figure is the ISO-limit 4,5 mm/s. Lower figure: Kurtosis.  

4.5.2.2 Press 4 

No measurements from this sensor exists at the time of the initial analysis.  
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4.6 Secondary axle back 

4.6.1 Left side 

The secondary axle is the only component that is entirely within the press crown. 

This component is very hard to inspect using ocular methods as the visibility is low. 

It is therefore of the outmost interest to see if vibration analysis is useful for condi-

tion monitoring of the secondary axle.  

4.6.1.1 Press 2 

This component has known/different conditions (outputs) and all measurements are 

therefore initially labelled accordingly. 

The pattern of the PSD on the left secondary axle of press 2 is very similar to the 

pattern of the PSD for the front sensor on the gearbox of press 2 (compare Figure 42 

above and Figure 56 below). Although the PSD of the axle seen below shows higher 

levels. Once again there is also some measurements that lie inbetween the ‘bad’ and 

the lower pattern of ‘good’.  

The condition of these is adjusted to ‘decent’ (see adjusted PSD in Figure 57). 

 
Figure 56. Distribution of PSD peaks for different conditions. All measurements are from the back 

sensor on the left secondary axle of press 2. 
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Figure 57. Distribution of PSD peaks for different conditions with adjusted output. All measurements 

are from the back sensor on the left secondary axle of press 2. 

Now looking at the adjusted FFT and RMS/Kurtosis (Figure 58 and Figure 59 below) 

the adjusted output seems to make sense as the adjusted measurements have a dif-

ferent pattern of peaks in FFT and the RMS is slightly higher than the ‘good’. The 

level of kurtosis does follow the different conditions quite well but should not be 

solely relied upon as it is irregular. Although, the average level of kurtosis for the 

different conditions do seem to create different levels, meaning that kurtosis should, 

if used, be used as the average of several measurements.  

The FFT is very similar to the front gearbox FFT and so is the RMS. This might 

mean that these two sensors are picking up the same things. 

 
Figure 58. Distribution of FFT peaks with adjusted output for different conditions. All measurements 

are from the back sensor on the left secondary axle of press 2. 
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Figure 59. Statistical features with adjusted output for each measurement of the back sensor on the left 

secondary axle of press 2. Upper figure: RMS of velocity. Dashed line in figure is the ISO-limit 4,5 

mm/s. Lower figure: Kurtosis.  

4.6.1.2 Press 4 

This component has no known/no change of condition (output) and all measurements 

are therefore initially assumed ‘decent’.  

The PSD on the left secondary axle on press 4 (Figure 60 below) is very similar to 

the ‘decent’ measurements on the same position in press 2 (Figure 57 above).  

 
Figure 60. Distribution of PSD peaks. All measurements are from the back sensor on the left secondary 

axle of press 4. 
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However, the FFT is slightly different (compare Figure 58 above and Figure 61 be-

low). The amplitude seen in Figure 61 is generally not higher than for press 2 but 

there are harmonic peaks of that are not present on press 2.  

 
Figure 61. Distribution of FFT peaks. conditions. All measurements are from the back sensor on the 

left secondary axle of press 4. 

The RMS is again low and even, but kurtosis is rather high and irregular with some 

rouge measurements (see Figure 62). In combination with the harmonics present in 

the FFT, high levels of kurtosis might mean that there are shocks present in the signal 

caused by localized faults on a gear, bearing or axle. These faults may be present and 

causing shocks without really starting to affect the overall vibration level (RMS). 

 
Figure 62. Statistical features for each measurement of the back sensor on the left secondary axle of 

press 4. Upper figure: RMS of velocity. Dashed line in figure is the ISO-limit 4,5 mm/s. Lower figure: 

Kurtosis.  

4.6.2 Right side 

4.6.2.1 Press 2 

This component has known/different conditions (outputs) and all measurements are 

therefore initially labelled accordingly. 
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On the right side secondary axle the same thing is happening as on the right. Some 

‘good’ measurements have a higher level PSD at around 500-1000 Hz (Figure 63 

below). These are adjusted to ‘decent’ (see Figure 64).  

 
Figure 63. Distribution of PSD peaks for different conditions. All measurements are from the back 

sensor on the right secondary axle of press 2. 

 
Figure 64. Distribution of PSD peaks with adjusted output for different conditions. All measurements 

are from the back sensor on the right secondary axle of press 2. 
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The results of the FFT and RMS in Figure 65 and Figure 66 below almost look cop-

ied from the back of the left secondary axle seen in Figure 57 and Figure 58. Once 

again raising suspicion that the sensors on the back of the secondary axle may be 

picking up on the same thing as the sensor on the front of the gearbox.  

 
Figure 65. Distribution of FFT peaks with adjusted output for different conditions. All measurements 

are from the back sensor on the right secondary axle of press 2. 

Once again some ‘bad’ measurements have a kurtosis level above the recommended 

limit of 4 but the measures are not consistent enough to make any conclusions. 

 
Figure 66. Statistical features with adjusted output for each measurement of the back sensor on the 

right secondary axle of press 2. Upper figure: RMS of velocity. Dashed line in figure is the ISO-limit 

4,5 mm/s. Lower figure: Kurtosis.  

4.6.2.2 Press 4 

This component has no known/no change of condition (output) and all measurements 

are therefore initially assumed ‘decent’.  

The same conclusions can be made for the measurements from this sensor as the 

ones in 4.6.1.2 regarding PSD and RMS/kurtosis seen in Figure 67 and Figure 69 

below. 
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Figure 67. Distribution of PSD peaks for different conditions. All measurements are from the back 

sensor on the right secondary axle of press 4. 

FFT shows some interesting peaks that are probably harmonics of some sort at ~39, 

78, 117, 156, 195, 234, 273 and 312 Hz (see Figure 68). Harmonics in this number 

may mean that something is wrong. In this case it might be angular misalignment 

(see Appendix A). 

 
Figure 68. Distribution of FFT peaks with different output for different conditions. All measurements 

are from the back sensor on the right secondary axle of press 4. 
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Figure 69. Statistical features for each measurement of the back sensor on the right secondary axle of 

press 4. Upper figure: RMS of velocity. Dashed line in figure is the ISO-limit 4,5 mm/s. Lower figure: 

Kurtosis.  

4.7 Secondary axle front 
This sensor is placed on the front end of the secondary axle near the eccentric wheel. 

The sensor does not necessarily pick up vibrations from the eccentric wheel, but it 

might be a possibility. 

4.7.1 Left side  

4.7.1.1 Press 2 

This component has known/different conditions (outputs) and all measurements are 

therefore initially labelled accordingly. 

The amplitude of the PSD is rather high, especially around 100-200 Hz (see Figure 

70 below). This is accompanied by a high peak in the FFT at ~132 Hz (Figure 71 

below). This peak also had a clear presence by the gearbox of press 2 (see Figure 45 

and Figure 53 above).  

 
Figure 70. Distribution of PSD peaks. All measurements are from the front sensor on the left secondary 

axle of press 2. 
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Figure 71. Distribution of FFT peaks. All measurements are from the front sensor on the left secondary 

axle of press 2. 

RMS is higher than 1 (see Figure 72 below) which it has not been for any previously 

observed ‘good’ or ‘decent’ measurements of the secondary axle. Kurtosis is lower 

than 4 for almost all measurements which might mean that the fault has become 

distributed and judging by the FFT the fault might be caused the high amplitude peak 

at ~132 Hz.  

 
Figure 72. Statistical features for each measurement of the front sensor on the left secondary axle of 

press 2. Upper figure: RMS of velocity. Dashed line in figure is the ISO-limit 4,5 mm/s. Lower figure: 

Kurtosis. 

4.7.1.2 Press 4 

This component has no known/no change of condition (output) and all measurements 

are therefore initially assumed ‘decent’.  

All measures in Figure 73, Figure 74 and Figure 75 seemseem to be quite low 

compared to press 2 and are similar to the equivalent back sensors on the secondary 

axle.  
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Figure 73. Distribution of PSD peaks. All measurements are from the front sensor on the left secondary 

axle of press 4. 

 
Figure 74. Distribution of FFT peaks. All measurements are from the front sensor on the left secondary 

axle of press 4. 

 
Figure 75. Statistical features for each measurement of the front sensor on the left secondary axle of 

press 4. Upper figure: RMS of velocity. Dashed line in figure is the ISO-limit 4,5 mm/s. Lower figure: 

Kurtosis.  
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4.7.2 Right side  

4.7.2.1 Press 2 

This component has known/different conditions (outputs) and all measurements are 

therefore initially labelled accordingly. 

The output conditions are adjusted to match the conditions of the front sensor on the 

secondary axle as the measurements of this sensor are of the same component and 

taken at the same time.  

The measurements are again similar to the secondary axle but the PSD level is higher 

around 100-200 Hz (see Figure 76).  

 
Figure 76. Distribution of PSD peaks with adjusted output for different conditions. All measurements 

are from the front sensor on the right secondary axle of press 2. 

The peak in FFT at ~132 Hz is also present confirming that the fault is not localized 

to the back of the secondary axle but affects also the front sensor by the eccentric 

wheel (compare Figure 64 above Figure 77 below). However, the amplitude of the 

peak is higher by the eccentric wheel, maybe due to outside the fault being nearer 

this end of the axle, also making the RMS higher (see Figure 78 below). 

 
Figure 77. Distribution of FFT peaks with adjusted output for different conditions. All measurements 

are from the front sensor on the right secondary axle of press 2.  
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Kurtosis does not provide any direct information about the condition. Just as on the 

left side the low level of kurtosis for ‘bad’ measurements may be due to localized 

fault becoming distributed. This also means that the level of kurtosis might have 

been  higher levels in earlier measurements before dropping to the level seen in Fig-

ure 78 below. 

 
Figure 78. Statistical features for each measurement of the front sensor on the right secondary axle of 

press 2. Upper figure: RMS of velocity. Dashed line in figure is the ISO-limit 4,5 mm/s. Lower figure: 

Kurtosis. 

4.7.2.2 Press 4 

This component has no known/no change of condition (output) and all measurements 

are therefore initially assumed ‘decent’.  

All measures in Figure 79, Figure 80 and Figure 81 seem to be quite low compared 

to the corresponding measurements on press 2 and are similar to the equivalent back 

sensors on the secondary axle found in 4.7.2.2. 

 
Figure 79. Distribution of PSD peaks. All measurements are from the front sensor on the right second-

ary axle of press 4. 
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Figure 80. Distribution of FFT peaks. All measurements are from the front sensor on the right second-

ary axle of press 4. 

 
Figure 81. Statistical features for each measurement of the front sensor on the right secondary axle of 

press 4. Upper figure: RMS of velocity. Dashed line in figure is the ISO-limit 4,5 mm/s. Lower figure: 

Kurtosis.  

4.8 Comparison with new measurements 
Some new measurements from March/April 2019 are compared to the initial meas-

urements from earlier in this chapter.  This comparison will act as an initial verifica-

tion of some prior assumptions with regards to the usefulness of vibration analysis 

in these applications. Not all components will be compared this way, instead only 

some of the components that provided much information during initial analysis and 

its counterpart on the other press, will be compared.  

4.8.1 Motor front/back 

Does not contain useful information, excluded from report. 
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4.8.2 Pulley front 

4.8.2.1 Press 2 

As this sensor has previously recorded many different conditions, it is interesting to 

see if any new measurments follow the same pattern. Judging from Figure 82, Figure 

83 and Figure 84 below the new measurments do correspond well to the pattern of a 

‘good’ condition. Unfortunately this does not answer the question of different faults 

show different spectral signatures in the PSD or FFT.  

 
Figure 82. Comparison of the distribution of PSD peaks for different conditions. All measurements are 

from the front sensor on the pulley of press 2. New measurements in black. 

 
Figure 83. Comparison of the distribution of FFT peaks for different conditions. All measurements are 

from the front sensor on the pulley of press 2. New measurements in black. 
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Figure 84. Comparison of the distribution of statistical measures RMS (upper figure) and kurtosis 

(lower figure) for different conditions. All measurements are from the front sensor on the pulley of press 

2. New measurements in black. 

 

 

4.8.2.2 Press 4 

Does not contain useful information, excluded main report. 

4.8.3 Pulley back 

4.8.3.1 Press 2 

There are currently no new measurements. 

4.8.3.2 Press 4 

Does not contain useful information, excluded from report. 

4.8.4 Gearbox Front 

4.8.4.1 Press 2 

Does not contain useful information, excluded from report. 

4.8.4.2 Press 4 

Judging from the results in Figure 85, Figure 86 and Figure 87 below the condition 

at the front of the gearbox on press 4 is worse than it was when the first measure-

ments were taken. The overall level of PSD and RMS has significantly increased and 

the FFT shows very irregular peaks which might be indicating internal looseness or 

be due to gearing issues.  
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Figure 85. Comparison of the distribution of PSD peaks. All measurements are from the front sensor 

on the gearbox of press 4. New measurements in black. 

 
Figure 86. Comparison of the distribution of FFT peaks. All measurements are from the front sensor 

on the gearbox of press 4. New measurements in black. 
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Figure 87. Comparison of the distribution of statistical measures RMS (upper figure) and kurtosis 

(lower figure). All measurements are from the front sensor on the gearbox of press 4. New measure-

ments in black. 

4.8.5 Gearbox back  

4.8.5.1 Press 2 

Does not contain useful information, excluded from report. 

4.8.5.2 Press 4 

There are no previous measurments from the back of the gearbox on press 4 but 

levels in Figure 88, Figure 89 and Figure 90 below are generally high. Judging from 

prior results from the gearbox on press 2, the vibrations at the front and back of a 

gearbox seem to follow eachother quite well and it is theefore not surprising that the 

new measurements at the front and back seem to indicate that something is wrong 

even though the fault might be localized.   

 
Figure 88. Comparison of the distribution of PSD peaks. All measurements are from the back sensor 

on the gearbox of press 2. All new measurements. 
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Figure 89. Comparison of the distribution of FFT peaks. All measurements are from the back sensor 

on the gearbox of press 4. All new measurements. 

 

 
Figure 90. Comparison of the distribution of statistical measures RMS (upper figure) and kurtosis 

(lower figure). All measurements are from the back sensor on the gearbox of press 4. All new measure-

ments. 

4.8.6 Left Secondary axle front 

4.8.6.1 Press 2 

There are currently no new measurements. 
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4.8.6.2 Press 4 

As with the new measurements of the gearbox on press 4 the general level in Figure 

91, Figure 92 and Figure 93 below is higher than before. The level of RMS has not 

increased as much but as the RMS alarm-level for this components has yet to be 

established (the dotted line at 4,5 mm/s is just a point of reference and there are no 

specific ISO-guidelines for this component at this time), the slight increase might be 

enough to raise alarm. The increase might also imply that the general level of noise 

in the crown of press 4 has increased.  

 
Figure 91. Comparison of the distribution of PSD peaks. All measurements are from the front sensor 

on the left secondary axle of press 4. New measurements in black. 

 
Figure 92. Comparison of the distribution of FFT peaks. All measurements are from the front sensor 

on the left secondary axle of press 4. New measurements in black. 
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Figure 93. Comparison of the distribution of statistical measures RMS (upper figure) and kurtosis 

(lower figure). All measurements are from the front sensor on the left secondary axle of press 4. New 

measurements in black. 

4.8.7 Left secondary axle back 

4.8.7.1 Press 2 

Does not contain useful information, excluded from report. 

4.8.7.2 Press 4 

Does not contain useful information, excluded from report. 

Same conclusion as the front sensor on the same component found in 4.8.6.2. 

4.8.8 Right secondary axle front 

4.8.8.1 Press 2 

Does not contain useful information, excluded from report. 

4.8.8.2 Press 4 

Does not contain useful information, excluded from report. 

Same conclusion as the corresponding sensor on the left secondary axle found in 

4.8.6.2. 

4.8.9 Right secondary axle back 

4.8.9.1 Press 2 

Does not contain useful information, excluded from report. 
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4.8.9.2 Press 4 

Does not contain useful information, excluded from report. 

Same conclusion as the corresponding sensor on the left secondary axle found in 

4.8.6.2. 

4.9 Machine learning trial  
Using measurements from the front sensor of the pulley of press 2 where there are 

many different outputs, it is possible to use supervised learning and classification to 

test if machine learning is suitable for implementation.  

It is possible to choose which features that should be included when training the 

model. If the amplitude of the first two peaks of the FFT and the RMS is used for 

training, the model accuracy may reach 100%.  Using this model when classifying 

the new data from 4.8.2.1 it will classify all new measurements as ‘good’ which does 

seem accurate based on the result in Figure 82-83. When running measurements from 

the front sensor of the pulley on press 4 the predicted output does not correspond as 

well with previous assumptions.  

Using only the two first FFT peak amplitudes as predictive features also generates a 

100% prediction accuracy and ‘good’ predictions of the new measurements. Mean-

ing the model might be over defined when also using RMS as a predictive feature. 

Only using the RMS however does only reach 90% model accuracy meaning the 

model is underdefined. 

Training a model using the amplitude of the first peak collected from the PSD and 

the RMS generates 98% prediction accuracy, with one ‘decent’ measurement being 

classified as ‘bad’. But all new measurements are classified as ‘good’ as with using 

FFT-predictors. It is difficult using any other PSD-peaks than the first one at this 

stage as the peaks have not been sorted so all the peak values in the same feature 

correspond to the same frequency. If the peaks are extracted in a different way, for 

example peaks are extracted for certain frequencies or sorted based on the frequen-

cies, then it might be better using PSD- than FFT-peaks as predictive features. As it 

is now, the FFT is better to use as it seems to generate peaks at recurring frequencies.  

Repeating the same procedure using the measurements from the front sensor on the 

right secondary axle of press 2, it is possible to get 100% accuracy using the second 

and fourth peak level of the PSD. Using this model, the new measurements are clas-

sified as ‘good’ or ‘decent’ and the measurements from the corresponding sensor on 

press 4 are classified similarly to what was previously assumed. The new measure-

ments on press 4 are classified mostly as ‘bad’ which also resonates with assump-

tions.  

Using the amplitude of the fifth and seventh FFT-peaks as predictive features it is 

also possible to get 100% accuracy and the classification of the new measurements 

and measurements from press 4 is like the earlier results when using PSD-features 

to train the model.  
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5 Discussion  
- Can vibration analysis be used for predictive maintenance of a mechanical press 

in the sense of fault detection and fault analysis? 

Judging from the extensive analysis performed in the previous chapter, vibrations 

can be used for fault detection by monitoring the overall vibration level through RMS 

or using frequency domain measures like PSD to monitor the increase of vibrations 

in certain frequency intervals. Yet both these methods will require a baseline value 

be set to which all new measurements can be referred.  

Regarding fault diagnosis; the assumptions regarding diagnosis made in the previous 

chapter will have to be confirmed to say whether diagnosis using FFT is possible in 

this case. Establishing the actual diagnosis may also provide information about 

which peaks in the FFT are caused or heightened by that particular fault, which may 

enable FFT to be used for more precise condition monitoring and diagnostics on that 

component in the future.  

Assumptions regarding past conditions might be difficult to confirm but the present 

condition of for example the gearbox or the left secondary axle of press 4 have new 

measurements with high level vibrations and the present condition can be checked 

to see if it correlates to the analysis.  

Also, based on similar applications found during theoretical research, the application 

of vibration analysis on complex machinery has been proved possible for example 

on cold roll presses for aluminium and in the paper industry.  

- Which means of analysis provides necessary information about the condition of 

different components? 

RMS seem to provide some information about the condition and could possibly be 

used for fault detection. In this thesis the RMS value is calculated from the interval 

20-2000 Hz of the FFT, a larger interval might provide even more information about 

faults that show up as high frequency peaks like issues with gears or bearings.  Also, 

most of the ‘bad’ measurements that have been recorded have been caused by rela-

tively severe faults and components that are very near failure. At this stage it is ex-

pected that the overall vibration level (measured by RMS) is high but for predictive 

maintenance to work the fault need to be caught before the condition is critical. Due 

to not having enough data from a condition that is known to be bad but not critical it 

is hard to say if RMS will give proper warning at that stage.  

Kurtosis generally shows no real reliability in fault detection purposes. The measure 

was calculated from the filtered velocity signal which might contain amplified noise, 

causing irregularities. It should be noted however, that kurtosis does provide some 

useful information in the monitoring of the gearbox, where kurtosis-measures of dif-

ferent conditions seem to gather around different levels. This would mean that to 

monitor kurtosis the mean value of several measurements would have to be trended 

and monitored.  
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Using PSD for condition monitoring does require knowledge about the baseline PSD 

at a well-established normal/good condition OR thorough knowledge about the cur-

rent state of the component. Not to cause data overload by monitoring the entire 

spectra, some specific lines to monitor must be chosen. To decide which spectral 

lines or intervals that need to be monitored, further testing should be done to estab-

lish if different faults will cause heightened levels in the same interval of frequencies. 

Judging from the comparison made with new measurements, new measurements 

have similar PSD patterns. Another possible action is lowering the resolution of the 

PSD to gather information about a wider bandwidth of frequencies at each spectral 

line.  

- How to interpret collected vibration data in an analysis. 

How to interpret the vibrations data has been discussed throughout the analysis. As-

sumptions about what the varying levels and peaks in the PSD/FFT might imply has 

also been discussed but must be confirmed. How to interpret peaks in the FFT can 

be found in Appendix A. 

- How much information will vibration analysis provide about the condition?  

It seems vibration analysis could be used to at least tell if the condition is ‘good’, 

‘decent’ or ‘bad’. If a diagnosis can be made when only provided with vibration data 

is still unknown at this time. For the time being, vibration analysis should only act 

as an extra input to go along with maintenance being performed as it is now. This 

will also mean that the use of vibration analysis will be put through trial-and-error 

and any results of analysis validated.  

- Is vibrational information exchangeable between corresponding components on 

different equipment? 

It is hard to draw conclusions around whether similar component on different 

presses have similar vibration signatures. Looking at the PSD and FFT of the sen-

sors on the secondary axle of press 2 and press 4 these are quite like each other. But 

although patterns and levels may be similar between some corresponding compo-

nents, all should be treated individually to establish that particular component’s 

baseline. Same goes for when a component has been exchanged or thoroughly re-

furbished. As previously mentioned, a mechanical press is a complex machinery 

and there are many things that will affect the emitted vibrations.  

- Also, would it be possible to use machine learning for conditions monitoring in 

this application? 

Initial trials show that using carefully selected predictive features may generate mod-

els that achieve 100% accuracy in training. These models also seem to make realistic 

predictions of new data. Which features are best used as predictors depends on the 

component in question, but PSD, FFT and RMS all seem useful.  

It might be necessary to look at new ways of generating features to get the best result, 

extracting the PSD-level at certain frequencies or sorting the FFT-amplitudes based 

on frequency might prove crucial in making good machine-learning models.  
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- Discussion of further questions: 

Measuring vibrations only when running the same job is probably a good choice. 

When doing so, the average level of the measurements will change more between 

each set of measurements (between each time that job is run) and make it easier to 

distinguish changes. Like the way measurements were analysed in this thesis.  

Another benefit of this approach is that data acquisition and calculations do not have 

to be run simultaneously and continuously. Although a cloud solution might be a 

viable option for data storage and handling in the future it will probably not be nec-

essary during trial-and-error. 

Also, performing measurements only during the same job will eliminate one variable 

that might affect the result, reducing the complexity of the problem. 

It was previously mentioned that a small segment at the start of the raw signal had 

to be cut out when integrating to velocity. When integrating, some irregularities may 

become amplified causing great shocks and high amplitude peaks in the integrated 

signal. When analysing rotating components, the signal behaviour should be peri-

odic, and any shocks due to damage on the rotating component should be present in 

each revolution. In this case there were large aperiodic shocks at the beginning of 

the integrated signal and it therefore had to be cropped out. This behaviour might be 

due to the component not having time to stabilize. For example, the motor is analysed 

during “idle” operation i.e. when the clutch is not engaged but this segment of time 

follows directly after a press stroke when the clutch and brake will affect the motor 

vibrations, causing variations and increases. By cropping out this part of the signal 

the result will be much more reliable as to monitoring the condition of the motor.  
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6 Conclusion 
In this thesis the prospect of using vibrations to analyse the condition and possible 

diagnose mechanical presses was researched. Analysis was done by comparing some 

randomly chosen measurements from different dates and assigning them with one of 

three outputs ‘good’, ‘decent’ or ‘bad’.  

The goal was to establish if the spectral methods PSD and FFT, RMS or statistical 

measure kurtosis would provide information that made each condition distinguisha-

ble.  

The following conclusions were made:  

 Vibration analysis can be used in predictive monitoring of mechanical 

presses. 

 RMS does seem to work for fault detection but should be complemented 

with some form of spectral analysis.  

 Furthermore, RMS should be calculated from the FFT of a carefully 

chosen interval of frequencies and not from the overall time domain 

signal. 

 The usefulness of FFT and spectral analysis for diagnosis needs to be con-

firmed but seems possible. 

 If prior conditions are known, then supervised learning can be used to create 

machine learning algorithms. Unsupervised learning needs to be further re-

searched.  

6.1 Recommendations 
Volvo should implement vibration monitoring as a complement to traditional meth-

ods. By trial-and-error computerized models can be built and deployed. Trial-and-

error is done by collecting new data and then comparing the real condition to what 

can be concluded from that vibration data. The comparison can be made manually 

by comparing new measurements to old measurements like in this thesis, or by set-

ting RMS/PSD/FFT alarm-levels based on previously measured ‘bad’ conditions. 

After this the next step is to implement vibration analysis and have it run inde-

pendently, possibly using machine learning algorithms. Similar implementations are 

being done in for example the paper industry or for gas and oil extraction, these 

might serve as inspiration.  

During trial-and-error, the way all vibrational measures are calculated should also 

be revised to guarantee no information is lost. This includes revising the interval for 

RMS-calculations and choosing if PSD/FFT peaks should be taken at a few set fre-

quencies instead of extracting the 25 first peaks as in this thesis.  

To make the best of predictive maintenance, vibration analysis should be combined 

with process-parameters and quality outputs etc. on a company-wide scale to make 

best practise of predictive maintenance. However, this should be the goal and not the 

next step for Volvo. 



 

76 

 

 

6.2 Future thesis work 
Future work should be mainly focused around the implementation of condition mon-

itoring using vibration analysis. This includes: 

- Implementing computerized monitoring, perhaps with machine learning. Imple-

mentation might be done by creating a machine learning model for fault detection 

using the analysis results of this thesis. This may also include building a model 

that can be used for diagnosis provided that any assumptions regarding diagnosis 

found in this thesis, are confirmed. 

- Establish guidelines for using and interpreting results. 

- Finding ways to store data. 

- Try implementation on other mechanical presses than the two analysed in this 

thesis.  

Also: 

- Investigating the influence of measuring vibrations whilst producing different 

products. 

- Investigating how features are calculated. 
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Appendix A 
Content of Appendix A table 1 and Appendix A table 2, is from chapter 5  “Machin-

ery fault diagnosis using vibration analysis” in the book “Practical Machinery Vi-

bration Analysis and Predictive Maintenance” [5] by Cornelius Scheffer and Paresh 

Girdhar. 

Appendix A table 1. Spectral components (peaks) corresponding to common faults. 

Fault Spectral compo-

nent/-s 

Comment 

Unbalance 1x Amplitude varies 

proportional to 

square of speed 

Eccentric rotor 1x Dominating peak 

corresponding to 

rpm of eccentric 

component 

Bent Shaft 1x, 2x If 1x-peak is dom-

inant the bend is 

near shaft centre. If 

2x-peak is domi-

nant the bend is 

near shaft end  

Angular misa-

lignment 

1x, 2x (also 3x) Severe misalign-

ment may cause 

higher order har-

monics (3x to 8x) 

Parallel misa-

lignment 

1x, 2x (also 3x) 2x is predominant. 

Severe misalign-

ment may cause 

higher order har-

monics (3x to 8x) 

Internal assem-

bly looseness 

0.5x, 1x, 1.5x, 2x, 

2,5x, 3x, etc. 

Looseness often 

causes sub-har-

monic multiples, 

e.g. ½x, 1½x, 

2½x. 

2x is predominant.  

Looseness ma-

chine-to-

baseplate 

0.5x, 1x, 2x, 3x, 

etc.   

2x is predominant 

Structure loose-

ness 

1x  
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Rotor rub 0.5x, 1x, 1.5x, 2x 

(resonance), 2,5x, 

3x, etc. 

1x is predominant 

when the shaft rpm 

is less than the crit-

ical shaft speed. 

Sub-harmonic 

multiples (1/4x, 

1/3x, etc.) increase 

as the running 

speed increases. 

High clearance in 

journal bearings 

1x, 2x, 3x, etc.  Severely damaged 

bearings may have 

harmonics up to 

10x-20x. Similar 

spectrum to me-

chanical looseness 

Rolling elements 

bearings (4 

stages) 

See details in Ap-

pendix A table 2 

See details in Ap-

pendix A table 2 

Gear tooth wear GMF* sidebands, 

excited natural 

gear frequencies  

Increase of ampli-

tude in the GMF 

sidebands, spaced 

by the worn tooth 

running speed 

Gear eccentricity 

+ backlash 

High amplitude 

GMF sidebands, 

excited natural 

gear frequencies 

 

Gear misalign-

ment 

2x GMF with 

sidebands 

Second order 

GMF harmonic 

often has higher 

amplitude than 1x 

GMF 

Gear tooth crack 1x, excited natural 

gear frequencies 

Recognizable as 

spikiness in the 

time domain signal 

Belt – 

worn/loose/mis-

matched 

1-4x belt fre-

quency 

Belt frequency is 

subharmonic and 

can be calculated 

as: 

(Pi x pulley rpm x 

pitch diameter) / 

belt length 
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Belt/sheave misa-

lignment 

1x driver/driven Corresponding 

rpm depends on 

the measurement 

position 

(Belt) eccentric 

sheave  

1x sheave rpm  

Belt resonance 1x rpm with reso-

nance peak close 

to 1x 

May cause har-

monics 

Rotor cracked or 

broken (electri-

cal) 

1x with pole pass 

frequency side-

bands 

 

Eccentric rotor 

(electrical) 

1x, 2x, 3x, 4x etc. 

with pole pass fre-

quency (Fp)** 

sidebands 

 

Loose rotor bar 

(electrical) 

2x and rotor bar 

pass frequency 

with harmonic 

sidebands 

rotor bar pass fre-

quency (RBPF) = 

number of rotor 

bars x rpm 

Stator defects 

(electrical) 

1x, 2FL**, with Fp 

sidebands 

 

Phasing issues 

(electrical) 

2FL with 1/3FL 

sidebands 

 

*Gear Mesh Frequency (GMF) = number of teeth on pinion x pinion rpm 

** FL = electrical line frequency 

FS = slip frequency = (2 x FL) / P - rpm 

FP = pole pass frequency = FS x P 

P = number of poles 

 

Appendix A table 2. Spectral components corresponding to different levels of wear in rolling element 

bearings.  

Level of wear Spectral compo-

nent/-s 

Comment 

Stage 1. No visi-

ble defects to 

bearing, raceway 

may appear dull. 

Indications in the 

ultrasonic fre-

quency ranges 

(~20-60 kHz /120-

360 krpm) 

Uses high-fre-

quency detection 

techniques.  
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Stage 2. Minute 

pits in raceway  

Peaks in ~5-20 

kHz / 30-120 

krpm, with possi-

ble sidebands with 

rpm spacing 

Peaks that show 

up with high fre-

quency detection 

may have doubled 

in amplitude com-

pared to stage 1. 

Stage 3. Larger 

and more visible 

pits in raceway 

extending to-

wards the race-

way edge. Bear-

ing should be re-

placed at this 

stage. 

Peaks at BPFO** 

and BPFI** with 

harmonics and 

sidebands. Also, 

high frequency 

peaks.  

Peaks that show up 

with high fre-

quency detection 

may have doubled 

in amplitude com-

pared to stage 2.  

Stage 4. Pits and 

wear merge to-

gether creating a 

smoother surface 

but with high 

clearance. The 

bearing will be-

come hot and 

noisy. May break 

and cause serious 

damage if not 

proper action is 

taken.  

RPM harmonics 

1x, 2x, 3x will in-

crease. A noise 

floor in the form 

of a haystack of 

random high fre-

quency vibrations 

will appear. Ultra-

high frequencies 

may lesser at the 

end of stage 4. 

The amplitude of 

the broad band of 

noise will initially 

be large but then 

decrease inly to 

increase again 

near to failure.  

*Zone A: machine rpm and harmonics zone 

Zone B: bearing defect frequencies zone (5-30 krpm) 

Zone C: beating component natural frequencies zone (30-120 krpm) 

Zone D: high-frequency-detection (HFD) zone (beyond 120 krpm). 

**BPFI – Ball Pass Frequency – Inner 

BPFO – Ball Pass Frequency – Outer 
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