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A form is a sum of expressions of the type axk11 · · ·xkmm , where a is a given number and x1, . . . , xm
are unknowns, and the sum of the exponents k1 + · · · + km is the same for each term. For example,
x3 + 3xyz + 7xz2 is a form where x, y and z are the unknowns. In this thesis, we will study equations
where a form should be equal to an integer, for example x3 + 3xyz + 7xz2 = 5.





Abstract

In this thesis, we will study the structure of equations of the type F (x1, . . . , xm) = a, where F is an
irreducible decomposable form, x1, . . . , xm are unknown integers and a is a given integer. We will
see that the form F can be written as the norm of some unknown µ, which is an element of a finite
extension of Q and which has a one-to-one correspondence with the unknowns x1, . . . , xm.
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1 Introduction

Consider the equation
x2 − 2y2 = 7 (1.0.1)

where x and y are unknown integers. The main purpose of this thesis is to find the structure of the
set of solutions to this kind of equation (note that this is not the same thing as how to compute these
solutions in practice).

In this thesis, most results and proofs are from [1]. Some definitions and results about algebraic
structures and group theory are from [2], and definitions 2.2 to 2.6 are from [3]. Definition 2.1 is from
[4], Definition 3.2 is from [5] and Definition 6.17 is from [6].

The first step to finding the structure of the set of solutions to equation (1.0.1) would be to
factorize it. However, this equation can’t be factorized over the set of rational numbers Q. In order to
solve this, we will need to introduce an extension of Q also containing

√
2. We will later see that such

an extension can be denoted Q[
√

2]. In Q[
√

2], equation (1.0.1) can be factorized as

(x+ y
√

2)(x− y
√

2) = 7. (1.0.2)

In order to define extensions such as Q[
√

2] formally, we will need to define algebraic structures such as
groups, rings and fields. Once we will have the necessary definitions, we will study the structure of these
extensions of Q in order to be able to prove Theorem 7.6, which will give us the structure of the set of
solutions to these kinds of equations.

1.1 Forms

The first thing to do is to clearly define what kinds of equations we’re interested in. To do this, we need
the following definition:

Definition 1.1. A form F (x1, . . . , xm) of degree n ∈ N over Q is a sum of expressions of the type
axk11 · · ·xkmm where a ∈ Q, k1, . . . , km ∈ N and k1 + · · ·+ km = n.

In this thesis, we’re interested in equations of the type

F (x1, . . . , xm) = a (1.1.1)

where F is a form over Q, x1, . . . , xm ∈ Z are unknown integers and a ∈ Z is a given integer.

In the example in equation (1.0.1), F (x, y) = x2 − 2y2, and a = 7.

We will also require that the form F is decomposable, which means that it can be factorized
over some extension of Q, and that it’s irreducible, which means that it can’t be factorized over Q. As
we will prove in Theorem 3.18, all two-variable forms are decomposable over some extension of Q.

2 Algebraic Structures

In order to formally define extensions of Q and other concepts that we will need, we need to define basic
algebraic structures such as groups, rings and fields. Once we have defined these concepts, we will prove
some basic theorems related to extensions of Q.

2.1 Groups, Rings and Fields

Definition 2.1. A set G with an operation ∗ : G2 → G is called a group if the following conditions are
satisfied for all a, b, c ∈ G:

1. Associativity: (a ∗ b) ∗ c = a ∗ (b ∗ c)

2. Existence of neutral element: ∃e ∈ G such that e ∗ a = a ∗ e = a (if ∗ is an addition the neutral
element is usually denoted 0 and if ∗ is a multiplication the neutral element is usually denoted 1)
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3. Existence of inverse element: ∃a−1 such that a ∗ a−1 = a−1 ∗ a = e (if ∗ is an addition the inverse
element of a is usually denoted −a)

The operation ∗ is called the group law of G. If ∗ is an addition G is called an additive group and if ∗
is a multiplication G is called a multiplicative group. Additive groups are usually commutative, which
means that a+ b = b+ a ∀a, b ∈ G.

Definition 2.2. An additive group R with an addition + : R2 → R and a multiplication · : R2 → R is
called a ring if the following conditions are satisfied for all a, b, c ∈ R:

1. Associativity of addition: a+ (b+ c) = (a+ b) + c

2. Commutativity of addition: a+ b = b+ a

3. Existence of neutral element for addition: ∃0 ∈ R such that a+ 0 = a

4. Existence of additive inverse: ∃ − a such that a+ (−a) = 0

5. Associativity of multiplication a(bc) = (ab)c

6. Distributivity: (a+ b)c = ac+ bc and a(b+ c) = ab+ ac

Definition 2.3. A ring R is commutative if ab = ba ∀a, b ∈ R.

Definition 2.4. An element 1 ∈ R is called a unity if a · 1 = 1 · a = a ∀a ∈ R. It’s easy to prove that if
a unity exists, it is unique.

Definition 2.5. Let R be a ring with unity 1. Then an element a ∈ R is invertible if ∃a−1 ∈ R such
that aa−1 = a−1a = 1.

Definition 2.6. A ring F is called a field if it is commutative, has a non-zero unity and all non-zero
elements of F are invertible.

Definition 2.7. If F and G are fields and F ⊆ G, then F is called a subfield of G and G is called an
extension of F .

Example 2.8. C is an extension of R and R is an extension of Q.

2.2 Algebraic Extensions

Definition 2.9. Let K be a field, k be a subfield of K, and α ∈ K. Then α is algebraic over k if ∃n ∈ N
and ∃a0, . . . , an ∈ k such that an 6= 0 and p(α) = 0 where p(x) = anx

n + · · · + a1x + a0. The monic
polynomial p over k of the lowest degree such that this holds is called the minimal polynomial of α.

Example 2.10.
√

2 is algebraic over Q because
√

2
2 − 2 = 0. The minimal polynomial of

√
2 over Q is

p(x) = x2 − 2.

Definition 2.11. Let K be a field, k be a subfield of K, and α ∈ K. We denote k[α] ⊆ K the ring such
that z ∈ k[α] ⇐⇒ ∃n ∈ N and ∃a0, . . . , an ∈ k such that anα

n + · · ·+ a1α+ a0 = z.
By setting n = 0 and letting a0 vary, we can get any element in k, so k ⊆ k[α].

Example 2.12. Q[
√

2] = {z ∈ R; z = x + y
√

2, x, y ∈ Q} since
√

2
2

= 2 ∈ Q so all powers of
√

2 are of
that form, so all linear combinations of powers of

√
2 are also of that form.

Example 2.13. C = R[i] because for the same reason as above, all elements in R[i] are of the form
x+ yi, and we know that all complex numbers are also of that form.

Theorem 2.14. If K is a field, k is a subfield of K and α ∈ K is algebraic over k, then k[α] is a field.

Proof. k ⊆ k[α] and k is a field so k contains a unity so so does k[α], and k[α] ⊆ K and K is commutative
so so is k[α], so all we need to prove is that every non-zero element in k[α] is invertible. Let p(x) be the
minimal polynomial of α over k, and let f(x) be a polynomial over k such that f(α) 6= 0. Then p and f
are relatively prime (if they wouldn’t f(α) would be 0 since p(α) = 0), so there exist polynomials g(x)
and h(x) such that

g(x)p(x) + h(x)f(x) = 1. (2.14.1)
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If we plug in x = α, equation (2.14.1) becomes

h(α)f(α) = 1. (2.14.2)

k[α] is defined as all the elements that are of the form f(α) for some polynomial f , and since f in equation
(2.14.2) is an arbitrary polynomial as long as f(α) 6= 0, so for any non-zero element z in k[α], we can
choose f such that f(α) = z, and then h(α)z = 1, so z is invertible.

If k is a field and K is an extension of k, then K can be seen as a vector space over k with dimension n.
If n is finite, K is an n-dimensional extension of k, and if n =∞, K is an infinite-dimensional extension
of k. We denote this dimension n as [K : k].

Example 2.15. [Q[
√

2] : Q] = 2 because since Q[
√

2] = {z ∈ R; z = x + y
√

2, x, y ∈ Q}, 1 and
√

2 can
be seen as basis vectors for Q[

√
2].

Example 2.16. [Q[e] : Q] =∞ because all powers of e are linearly independent, so all numbers en, n ∈ N
can be seen as basis vectors for Q[e] and there are infinitely many of them.

Definition 2.17. Let K be an extension of k. If [K : k] = ∞, K is called an infinite extension of k,
and if [K : k] is finite, K is called a finite extension of k. A finite extension of Q is called an algebraic
number field.

Theorem 2.18. If k is a field and α is algebraic over k, then k[α] is a finite extension of k, and the
dimension of k[α] over k is equal to the degree of the minimal polynomial of α.

Proof. Let p(x) be the minimal polynomial of α over k, and let n be the degree of p. Then by the definition
of the minimal polynomial, p(α) = 0. Therefore, 1, α, . . . , αn are linearly dependent. By Theorem 2.14
k[α] is a field, so αn can be written as a linear combination of 1, α, . . . , αn−1, so [k[α] : k] ≤ n is finite.
Suppose for a contradiction that [k[α] : k] < n. Then 1, α, . . . , αn−1 would be linearly dependent, so
there would exist a non-zero polynomial q(x) of degree strictly less than to n such that q(α) = 0. This
is a contradiction since p (which is of degree exactly n) was defined as the polynomial of lowest degree
such that p(α) = 0. Therefore, [k[α] : k] = n.

Definition 2.19. Let k be a field and f be a polynomial of degree n in k. Then K is a splitting field of f
if f can be factorized into linear terms in K, that is f(x) = c(x−α1) · · · (x−αn) for c ∈ k, α1, . . . , αn ∈ K,
and if K = k[α1, . . . , αn].

Example 2.20. Q[
√

2] is the splitting field of x2 − 2 in Q.

Definition 2.21. Let K be a finite n-dimensional extension of k, and let α ∈ K. Let A ∈ kn×n be the
transformation matrix of the mapping ξ 7→ αξ with respect to any basis for K where ξ ∈ K is seen as a
vector over k. Then the characteristic polynomial of α is defined as φα(λ) = det(λI − A) where I is
the identity matrix, and the trace of α is defined as the trace of A, tr(α) = tr(A).

Lemma 2.22. Let K be a finite n-dimensional extension of k, and let α ∈ K. Then the characteristic
polynomial of α is a power of the minimal polynomial of α.

Proof. Let p(x) = xm+c1x
m−1+ · · ·+cm be the minimal polynomial of α. By the proof of Theorem 2.18,

1, α, . . . , αm−1 form a basis for k[α] over k. Let θ1, . . . , θs be a basis for K over k[α]. Then we can take

θ1, αθ1, . . . , α
m−1θ1, . . . , θs, αθs, . . . , α

m−1θs

as a basis for K over k. Then the matrix for the linear transformation ξ 7→ αξ in this basis where ξ ∈ K
is the following matrix, which is a block-diagonal matrix with s blocks.

0 1 · · · 0 · · · 0 0 · · · 0
...

...
. . .

... · · · 0 0 · · · 0
0 0 · · · 1 · · · 0 0 · · · 0
−cm −cm−1 · · · −c1 · · · 0 0 · · · 0

...
...

...
...

. . .
...

...
...

...
0 0 · · · 0 · · · 0 1 · · · 0

0 0 · · · 0 · · ·
...

...
. . .

...
0 0 · · · 0 · · · 0 0 · · · 1
0 0 · · · 0 · · · −cm −cm−1 · · · −c1


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By definition, the characteristic polynomial of α is the characteristic polynomial of this matrix. By doing
some basic linear algebra, we get that that characteristic polynomial is equal to p(x)s, which proves the
theorem.

Corollary 2.23. Let K be a finite n-dimensional extension of Q, and let α ∈ K. Then the minimal
polynomial of α divides the characteristic polynomial of α.

3 Conjugates and Norms

Conjugate functions and norms are very important concepts for studying the structure of the set of
solutions to equation (1.1.1). As we will see in Theorem 3.24, equation (1.1.1) can be rewritten using
norms, which will simplify our calculations in the remaining part of this thesis.

3.1 Homomorphisms and Conjugates

Definition 3.1. Let A and B be rings. Then a function f : A → B is called a homomorphism if the
following conditions are satisfied for all a, b ∈ A:

1. f(a+ b) = f(a) + f(b)

2. f(ab) = f(a)f(b)

3. If 1 is a unity in A, then f(1) is a unity in B.

Definition 3.2. A monomorphism is an injective homomorphism.

Definition 3.3. An isomorphism is a bijective homomorphism.

Definition 3.4. Let k ⊂ C be a field, and let K be a finite extension of k. Then a monomorphism σ
from K to C is called a conjugate function if σ(a) = a ∀a ∈ k. Note that the identity map is always a
conjugate function.

Theorem 3.5. Let k be a field, and let K be a finite extension of k, let σ be a conjugate function from
K to C, and let α ∈ K be algebraic over k. Then σ(α) is a root of the minimal polynomial of α.

Proof. Let p(x) = (x− α1) · · · (x− αn) be the minimal polynomial of α. Since σ is a conjugate function
in K, it’s a homomorphism from K to C and it’s the identity map over k. Therefore for any x ∈ k

σ(p(x)) = σ((x− α1) · · · (x− αn))

= σ(x− α1) · · ·σ(x− αn)

= (σ(x)− σ(α1)) · · · (σ(x)− σ(αn))

= (x− σ(α1)) · · · (x− σ(αn)).

Since p is a polynomial over k, we also have that p(x) ∈ k if x ∈ k, so therefore σ(p(x)) = p(x)
∀x ∈ k. This means that the two polynomials p(x) and σ(p(x)) have the same roots, so
{α1, . . . , αn} = {σ(α1), . . . , σ(αn)} in some order. Since α is a root of p, α = αj for some j, so
σ(α) ∈ {α1, . . . , αn}, so σ(α) is a root of p.

Theorem 3.6. If k is a field and K is an n-dimensional extension of k, then there are exactly n conjugate
functions in K.

Example 3.7. Let k = R and K = C. Then the two conjugate functions are f(z) = z and g(z) = z̄.
Since f(z) = z is a trivial conjugate, we usually think of g(z) = z̄ as the complex conjugate.

3.2 Real and Complex Conjugates

Definition 3.8. Let K be a finite extension of Q, and let σ be a conjugate function of K. If σ(x) ∈ R
∀x ∈ K, σ is called real, otherwise σ is called complex.
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Example 3.9. Let K = Q[ 3
√

2]. Then σ1(x) : Q[ 3
√

2] → Q[ 3
√

2] defined by σ1(x) = x is a real conjugate

and σ2(x) : Q[ 3
√

2]→ Q
[(

1
2 +

√
3
2 i
)

3
√

2
]

defined by

σ2(x+ y
3
√

2 + z
3
√

4) = x+ y

(
−1

2
+

√
3

2
i

)
3
√

2 + z

(
−1

2
−
√

3

2
i

)
3
√

4

is a complex conjugate.

Theorem 3.10. The number of complex conjugates of a given finite extension of Q is even.

Proof. If σ is a conjugate, σ̄ is also a conjugate because the function z 7→ z̄ is a monomorphism and q̄ = q
∀q ∈ Q. Therefore if σ 6= σ̄, the conjugates come in pairs, so the only way there could be an odd number
of complex conjugates is if there exists a complex conjugate σ such that σ = σ̄. But if σ = σ̄, that means
that σ(α) = σ(α) ∀α ∈ K, which means that σ(α) ∈ R ∀α ∈ K, which means that σ is real.

The number of real conjugates of K to a subset of C will be denoted s and half the number of complex
conjugates will be denoted t (note that t is an integer because of Theorem 3.10). The number s+ t− 1
will be denoted as r (this number has some special properties as we will see later).

Theorem 3.11. Let K be a finite extension of Q with dimension n, and let s and t be defined as above.
Then n = s+ 2t.

Proof. There are n conjugates over K, of which s are real and 2t are complex. All conjugates are either
real or complex, so therefore the total number of conjugates n equals the sum of the number of real
conjugates and the number of complex conjugates s+ 2t, so n = s+ 2t.

3.3 Norms

Definition 3.12. Let k be a field, K be a finite extension of k, σ1, . . . , σn be the conjugate functions in
K, and α be an element in K. Then the norm of α is defined as N(α) = σ1(α) · · ·σn(α).

Theorem 3.13. Let K be a finite extension of k with dimension n and let a ∈ k. Then N(a) = an.

Proof. Let σ1, . . . , σn be the conjugate functions of K. Since a ∈ k, by the definition of a conjugate
function σj(a) = a ∀j ∈ {1, . . . , n}. Therefore,

N(a) = σ1(a) · · ·σn(a)

= a · · · a
= an.

Corollary 3.14. N(1) = 1

Theorem 3.15. N(αβ) = N(α)N(β) ∀α, β ∈ K.

Proof. By the definition of a conjugate function, each conjugate function is a homomorphism, so by point
2 in the definition of a homomorphism they’re multiplicative. Therefore

N(αβ) = σ1(αβ) · · ·σn(αβ)

= σ1(α)σ1(β) · · ·σn(α)σn(β)

= σ1(α) · · ·σn(α)σ1(β) · · ·σn(β)

= N(α)N(β).

Theorem 3.16. Let K be a finite n-dimensional extension of k, and let α ∈ K. Then
N(α) = (−1)nφα(0), where φα is the characteristic polynomial of α.
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3.4 Decomposable Forms and Norms

Definition 3.17. A form F (x1, . . . , xm) over a field k is called decomposable if it can be factorized as
a product of linear factors in an algebraic extension of k.

Theorem 3.18. Let F (x, y) = anx
n + an−1x

n−1y + · · · + a0y
n be a two-variable form over Q and let

g(t) = ant
n + · · ·+ a0 be a polynomial with the same coefficients as F . Then F is decomposable.

Proof. Let K be the splitting field of g. By the definition of the splitting field, g(t) = c(t−α1) · · · (t−αn)
for c, α1, . . . , αn ∈ K. If we take t = x

y , we get g(xy ) = c(xy − α1) · · · (xy − αn). By multiplying by yn on
both sides, we get:

F (x, y) = anx
n + an−1x

n−1y + · · ·+ a0y
n

= yn

(
an

(
x

y

)n
+ an−1

(
x

y

)n−1
+ · · ·+ a0

)

= yng

(
x

y

)
= cyn

(
x

y
− α1

)
· · ·
(
x

y
− αn

)
= c(x− yα1) · · · (x− yαn).

Therefore, F can be factorized as a product of linear factors in the splitting field of g which is a finite
extension of Q, so F is decomposable over Q.

Definition 3.19. A form F is called reducible over a ring k if there exist non-constant forms G and H
over k such that F = GH. If this is not the case, F is called irreducible.

Example 3.20. The form x2−2y2 is irreducible over Q since it can’t be written as a non-trivial product
of two other forms over Q. It is however decomposable since it can be factorized into linear factors over
Q[
√

2].

Definition 3.21. Two forms over Q of the same degree are called integrally equivalent if they can be
obtained from each other by a linear change of variables with integer coefficients.

Lemma 3.22. Any form of degree n is integrally equivalent to a form in which the coefficient of the term
xn1 is non-zero.

Lemma 3.23. Let µ2, . . . , µm be algebraic over Q and let K = Q[µ2, . . . , µm]. Then the form
F (x1, . . . , xm) = N(x1 + x2µ2 + · · ·+ xmµm) is irreducible over Q.

Proof. Assume for a contradiction that
F = GH (3.23.1)

where G and H are non-constant forms over Q, and let σ1, . . . , σn be the conjugate functions of K, where
σ1 is the identity map. Let Lj = x1 + x2σj(µ2) + · · · + xmσj(µm) for j ∈ {1, . . . , n}. We know by
assumption that

F (x1, . . . , xm) = N(x1 + x2µ2 + · · ·+ xmµm)

= σ1(x1 + x2µ2 + · · ·+ xmµm) · · ·σn(x1 + x2µ2 + · · ·+ xmµm)

= (x1 + x2σ1(µ2) + · · ·+ xmσ1(µm)) · · · (x1 + x2σn(µ2) + · · ·+ xmσn(µm))

= L1 · · ·Ln. (3.23.2)

Therefore each Lj divides F . Since factorization in polynomial rings is unique, each Lj must divide either
G or H. Let L1 = x1 + x2µ2 + · · ·+ xmµm. By what we just proved, L1 divides either G or H. Since G
and H are interchangeable, we can assume without loss of generality that L1 divides G. Therefore, there
exists a form M1 such that

G = L1M1. (3.23.3)

By taking the image of σj on both sides of equation (3.23.3) for an arbitrary conjugate function σj , we
get σj(G) = Ljσj(M1). Since G is a form over Q, σj(G) = G. By defining Mj as σj(M1), we get:

G = LjMj .
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Therefore, each Lj divides G. Since the σj ’s are distinct and the µk’s are linearly independent over Q, the
forms Lj are pairwise distinct. Since each Lj divides G, this means that their product L1 · · ·Ln divides
G. By equation (3.23.2), L1 · · ·Ln = F , so F divides G. By combining this with equation (3.23.1), we
get that H is constant, which concludes the proof.

Theorem 3.24. Let F be an irreducible decomposable form over Q of degree n. Then the problem from
equation (1.1.1)

F (x1, . . . , xm) = a∗ (3.24.1)

where a∗ ∈ Z can be written as
N(µ) = a (3.24.2)

where a ∈ Q, µ ∈ K is unknown and where K is some finite extension of Q.

Proof. By Lemma 3.22, we can assume that the coefficient of xn1 is non-zero (otherwise we just do a
change of variables and get an equation which is equivalent to the original equation). Because of this and
since F is decomposable, we can factorize F as:

F = c(x1 + β1,2x2 + · · ·+ β1,mxm) · · · (x1 + βn,2x2 + · · ·+ βn,mxm) (3.24.3)

where c ∈ Q the βj,k’s are algebraic over Q. Let µj = β1,j for j ∈ {2, . . . ,m} and consider
K = Q[µ2, . . . , µm]. By Lemma 3.23, the form

F ∗ = N(x1 + x2µ2 + · · ·+ xmµm) (3.24.4)

is irreducible. Let L1, . . . , Ln be defined as in the proof of Lemma 3.23, and in particular

L1 = x1 + x2µ2 + · · ·+ xmµm.

L1 divides both F and F ∗, so there exists a form M1 such that

F = L1M1.

By using exactly the same reasoning on F as we did on G in the proof of Lemma 3.23, we get that F ∗

divides F . By assumption, F is irreducible, so therefore

F = cF ∗ (3.24.5)

where c ∈ Q is a constant. If we let µ = x1 + x2µ2 + · · · + xmµm and combine equations (3.24.4) and
(3.24.5), we get:

F = a∗ = cN(µ)

⇐⇒ N(µ) = a

where a is defined as a = a∗

c .
Since 1, µ2, . . . , µm are linearly independent over Q, there is a one-to-one correspondence between the
unknown µ in equation (3.24.2) and the unknowns x1, . . . , xm in equation (1.1.1).

Example 3.25. The problem in equation (1.0.1) can be written as N(µ) = 7, where µ ∈ Q[
√

2] is
unknown. Here µ = x+ y

√
2.

From now on we will work with equation (3.24.2) instead of equation (1.1.1), since Theorem 7.6 (which
is the main theorem of this thesis) is easier to formulate and to prove if the problem involves equation
(3.24.2).

4 Group Theory

In order to prove some theorems later on in this thesis, we will need several definitions and theorems
related to group theory, such as factor groups and theorems related to finite groups.
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4.1 Equivalence Classes and Generalized Congruences

Definition 4.1. A relation ∼ on a set A is said to be an equivalence relation if the following conditions
are satisfied for all a, b, c ∈ A:

1. Reflexivity: a ∼ a

2. Symmetry: a ∼ b ⇐⇒ b ∼ a

3. Transitivity: a ∼ b and b ∼ c =⇒ a ∼ c

Definition 4.2. Let ∼ be an equivalence relation on a set A, and let x ∈ A. We define the equivalence
class of x to be [x] = {y ∈ A;x ∼ y}. An element y ∈ [x] is called a representative for [x].

In the remaining part of this section, we will suppose that all groups are additive unless stated otherwise
in order to simplify the notation. However, the same theory works for any commutative group with group
law ∗ by replacing x+ y by x ∗ y, x− y by x ∗ y−1 and 0 by the neutral element.

Definition 4.3. Let G be a group and H be a subgroup of G. Two elements of x, y ∈ G are said to be
congruent mod H if x− y ∈ H. This is denoted x ≡ y (mod H).

Example 4.4. If G = Z and H = nZ where n ∈ N∗, then x ≡ y (mod nZ) if n|(x− y). This congruence
is the one that is commonly used in number theory and is commonly denoted x ≡ y (mod n).

Theorem 4.5. Let G be a group, let H be a subgroup of G, and let a, b, c, d ∈ G. Then a ≡ b (mod H)
and c ≡ d (mod H) =⇒ a+ c ≡ b+ d (mod H).

Proof. We know that a−b ∈ H and c−d ∈ H. Since H is a group, (a−b)+(c−d) = (a+c)−(b+d) ∈ H,
so a+ c ≡ b+ d (mod H).

Theorem 4.6. Let G be a group and let H be a subgroup of G. Then the relation of congruence mod H
is an equivalence relation.

Proof. For any a, b, c ∈ G:

1. Reflexivity: a− a = 0. Since H is a group 0 ∈ H so a ≡ a (mod H).

2. Symmetry: Suppose a ≡ b (mod H). Then a − b ∈ H. Since H is a group and a − b ∈ H,
−(a− b) ∈ H. −(a− b) = b− a, so b ≡ a (mod H).

3. Transitivity: Suppose a ≡ b (mod H) and b ≡ c (mod H). Then a − b ∈ H and b − c ∈ H. Since
H is a group, this means that (a− b) + (b− c) ∈ H. (a− b) + (b− c) = a− c, so a ≡ c (mod H).

4.2 Factor Groups

Definition 4.7. Let G be a group and let H be a subgroup of G. Then the factor group of G and H
is defined by G/H = {[x];x ∈ G} where [x] is the equivalence class of the congruence relation mod H.

Example 4.8. If G = Z and H = 5Z where n ∈ N∗, then Z/5Z is Z5.

Theorem 4.9. Let G be a group, let H be a subgroup of G and let G/H be their factor group. Then for
x, y ∈ G the addition + : (G/H)2 → G/H defined as [x] + [y] = [x+ y] is well-defined.

Proof. Let [x], [y] ∈ G/H, let x1, x2 ∈ G be representatives for [x] and let y1, y2 ∈ G be representatives
for [y]. We know that x1 ≡ x2 (mod H) since they’re in the same equivalence class and y1 ≡ y2 (mod H)
for the same reason. Therefore x1 +y1 ≡ x2 +y2 (mod H), so no matter which representatives of [x] and
[y] we choose their sum is in the same equivalence class, so the addition over G/H is well-defined.

Theorem 4.10. G/H with the addition defined as in Theorem 4.9 is a group.

Proof. First, we need to prove that the addition is closed over G/H. If [x], [y] ∈ G/H, [x + y] ∈ G/H
because if x is a representative of [x] and y is a representative of y, then x + y has an equivalence
class which also is in G/H, so the addition is closed over G/H. We also need to prove that the three
conditions in the definition of a group are satisfied. For this, let [a], [b], [c] ∈ G/H and let a, b, c ∈ G be
their representatives:
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1. Associativity: ([a] + [b]) + [c] = [a+ b] + [c] = [a+ b+ c] = [a] + [b+ c] = [a] + ([b] + [c])

2. Existence of neutral element: Let 0 be the neutral element in G. Then [a] + [0] = [a+ 0] = [a], so
[0] is a neutral element in G/H.

3. Existence of inverse element: Let −a be the inverse of a. Then [a] + [−a] = [a− a] = [0] and [0] is
the neutral element, so [−a] is the inverse of [a].

4.3 Finite Groups

Definition 4.11. A finite group G is said to be cyclic if ∃a ∈ G such that ∀x ∈ G ∃n ∈ N such that
x = na.

Definition 4.12. Let G be a finite group and let a ∈ G. Then the order of a is defined as the smallest
strictly positive integer n ∈ N∗ such that na = 0.

Theorem 4.13. Let G be a finite group with n elements. Then the number of elements of any subgroup
H ⊆ G divides the number of elements in G.

Proof. Consider all the elements a1, . . . , an ∈ G, and consider the congruence classes [aj ] modH as defined
above. Let x ∈ [aj ] ∩ [ak]. Then aj ≡ x ≡ ak (mod H), so [aj ] = [ak], so all the [aj ]’s are either equal or
pairwise disjoint. Also, since any element in G is an aj , the [aj ]’s cover G entirely. Now we want to prove
that all the [aj ]’s contain equally many elements. To do so, consider two of these congruence classes [aj ]
and [ak]. The function f(x) = ak − aj + x has a well-defined inverse function f−1(y) = aj − ak + y so
it’s a bijection and if x ∈ [aj ] then x ≡ aj (mod H) so f(x) = ak − aj + x ≡ ak − aj + aj = ak (mod H),
so it maps any element of [aj ] onto an element of [ak]. Therefore f is a bijection from [aj ] to [ak], so [aj ]
and [ak] must have the same number of elements, call this number m. Since the [aj ]’s cover G and are
pairwise disjoint, n = lm where l is the number of distinct classes [aj ], so m|n. Since H = [0], H is itself
one of the [aj ]’s, so H has m elements, which proves the theorem.

Theorem 4.14. Let G be a finite group and let a ∈ G. Then the order of a divides the number of
elements in G.

Proof. Let n be the number of elements in G and let m be the order of a. Consider the set
H = {x ∈ G;∃j ∈ N, x = ja}. H contains m elements because for j ≥ m, if j = qm+ r where 0 ≤ r < m,
ja = (qm + r)a = qma + ra = 0 + ra = ra. ja + ka = (j + k)a ∈ H, so addition is closed on H. It’s
obvious that addition is associative on H since it’s associative on G and H ⊆ G. 0 ∈ H because 0 = ma.
Any element ja ∈ H has an inverse element in H because ja + (m − j)a = ma = 0, and (m − j)a ∈ H
for j ≤ m, and any element in H is of the form ja where j ≤ m. Therefore H satisfies all the conditions
for being a group, so H is a subgroup of G. H has m elements so by Theorem 4.13, m|n. Since m is the
order of a, this proves the theorem.

Lemma 4.15. Let G be a finite multiplicative group. Then if G contains at least one element with order
m and at least one element with order n, it contains at least one element whose order is the least common
multiple of m and n.

Proof. Let x, y ∈ G, let m be the order of x and let n be the order of y. Let p1, . . . , pk be the prime
numbers that are part of the prime factorization of either m or n (if m = n = 1, let k = 1 and p1 be any
prime number). Then

m = ps11 · · · p
sk
k

n = pt11 · · · p
tk
k

for some s1, . . . , sk, t1, . . . , tk ∈ N (the sj ’s and tj ’s are allowed to be 0). Let

uj =

{
sj if sj ≥ tj
0 otherwise

vj =

{
tj if sj < tj

0 otherwise
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Let m0 = pu1
1 · · · p

uk
k , n0 = pv11 · · · p

vk
k , m1 = m

m0
and n1 = n

n0
. Then gcd(m0, n0) = 1. xm1 has order m0,

yn1 has order n0, and xm1yn1 has order m0n0, where m0n0 is the least common multiple of m and n.
Therefore, if G contains elements with order m and n, it contains at least one element whose order is the
least common multiple of m and n.

Theorem 4.16. Let F be a field and let G be a finite multiplicative subgroup of the multiplicative group
F ∗. Then G is always cyclic.

Proof. Let g be the number of elements in G and let m be the maximum of the orders of elements in G.
Since the order n of an element a is defined as the smallest n ∈ N∗ such that an = 1, no order can be
greater than g because by Dirichlet’s box principle, there exist j, k ∈ {1, . . . , g + 1} such that aj = ak

with j < k, so then ak−j = 1 where k − j ≤ g, so the order of a is less than or equal to g. Therefore
m ≤ g. Also, the order of any element in G divides m because if it wouldn’t, there would be an order n
of an element in G such that the least common multiple of m and n is strictly greater than m, but since
m and n are orders of elements in G, by Lemma 4.15, so is their least common multiple, and no order
is greater than m, which would be a contradiction. So since the order of any element a ∈ G divides m,
am = 1 ⇐⇒ am − 1 = 0, so any element in G is a root to the polynomial xm − 1, so this polynomial
has g roots. This polynomial can’t have more than m roots, so g ≤ m. But we also have that g ≥ m, so
g = m. If a is the element with order m = g, ak takes g distinct values for k ∈ {1, . . . , g}, so any element
x ∈ G is of the form x = ak, so by definition this means that G is cyclic.

5 Geometric Methods

5.1 Modules

Definition 5.1. Let K be an algebraic number field of dimension n and let µ1, . . . , µm ∈ K. Then the
set M of integral linear combinations c1µ1 + · · ·+ cmµm where c1, . . . , cm ∈ Z is called a module in K.
Such a module is denoted M = {µ1, . . . , µm}. The numbers µ1, . . . , µm are called the generators of the
module M .

Definition 5.2. Let K be a finite extension of Q with dimension n. Modules with n linearly independent
elements over Q are called full modules, and other modules are called non-full.

Definition 5.3. Let K be an algebraic number field, let M = {µ1, . . . , µm} and let α ∈ K. Then αM
denotes the module {αµ1, . . . , αµm}.

Theorem 5.4. Any module M = {µ1, . . . , µm} is an additive group.

Proof. Associativity holds for any elements in K, so it obviously also holds for any elements in M ⊆ K.
So we need to prove that 0 ∈M , that α ∈M =⇒ −α ∈M and that M is closed under addition.
0 = 0µ1 + · · ·+ 0µm so 0 ∈M .
If α ∈M , then ∃c1, . . . , cm ∈ Z such that α = c1µ1+· · ·+cmµm. If c1, . . . , cm ∈ Z, then −c1, . . . ,−cm ∈ Z,
so −α = −c1µ1 + · · ·+−cmµm ∈M .
Suppose α = c1µ1 + · · ·+ cmµm ∈M and β = d1µ1 + · · ·+ dmµm ∈M , with c1, . . . , cm, d1, . . . , dm ∈ Z.
Then (c1 + d1), . . . , (cm + dm) ∈ Z, so α+ β = (c1 + d1)µ1 + · · ·+ (cm + dm)µm ∈M .

Corollary 5.5. If M is a module, then −M = M .

Definition 5.6. Two modules M1 and M2 are similar if ∃α ∈ K∗ such that M1 = αM2.

Definition 5.7. Let M be a module over K. Then α ∈ K is called a coefficient of M if αM ⊆ M , or
equivalently, ∀ξ ∈M , αξ ∈M .

Theorem 5.8. The set of coefficients DM of a given module M = {µ1, . . . , µm} forms a ring with unity.
This ring is called the ring of coefficients of M .

Proof. Associativity, commutativity and distributivity hold for any elements in K, so they obviously also
hold for any elements in DM ⊆ K. So to prove that DM is a ring, we only need to prove that DM is
closed under addition and multiplication, that 0, 1 ∈ DM and that if α ∈ DM , −α ∈ DM .
To prove that 0 ∈ DM , we need to prove that 0 is a coefficient of M , that is ∀ξ ∈M , 0ξ = 0 ∈M , which
is true.
It’s obvious that 1 ∈ DM since 1M = M ⊆M .
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Now let α ∈ DM . Then αM ⊆M , so −αM = (−α)(−M) = αM ⊆M , so −α ∈ DM .
Now let α, β ∈ DM . We want to prove that α+ β ∈ DM and αβ ∈ DM . ∀ξ ∈M , αξ ∈M and βξ ∈M .
Since M is an additive group, (α+ β)ξ = αξ + βξ ∈M , so DM is closed under addition. Since β ∈ DM ,
βξ ∈ M , so let ξ1 = βξ ∈ M . Then (αβ)ξ = α(βξ) = αξ1 ∈ M since α ∈ DM and ξ1 ∈ M . Therefore,
αβ ∈ DM so DM is closed under multiplication.

5.2 Geometric Representations

Definition 5.9. We denote Ls,t the set of all vectors ~x = (x1, . . . , xs, xs+1, . . . , xs+t) where x1, . . . , xs ∈ R
and xs+1, . . . , xs+t ∈ C (these can also be real but they don’t have to be). We define addition and
multiplication over Ls,t componentwise.

Ls,t can be seen as a vector space over R with basis vectors ~e1, . . . , ~es, ~es+1, i ~es+1, . . . , ~es+t, i ~es+t where
~ej is the vector in Rs+t with a 1 in the jth position and zeros everywhere else. This vector space
is of dimension n = s + 2t because that’s how many basis vectors there are. In this vector space,
~x = (x1, . . . , xs, xs+1, . . . , xs+t) has coordinates (x1, . . . , xs,Re(xs+1), Im(xs+1), . . . ,Re(xs+t), Im(xs+t)).
Therefore Ls,t can be seen as Rs+2t.

Definition 5.10. Let ~x ∈ Ls,t. We define the norm of ~x to be N(~x) = x1 · · ·xs|xs+1|2 · · · |xs+t|2.

Theorem 5.11. Let ~x, ~y ∈ Ls,t. Then N(~x~y) = N(~x)N(~y) where ~x~y is the componentwise multiplication.

Proof.

N(~x~y) = x1y1 · · ·xsys|xs+1ys+1|2 · · · |xs+tys+t|2

= x1 · · ·xs|xs+1|2 · · · |xs+t|2y1 · · · ys|ys+1|2 · · · |ys+t|2

= N(~x)N(~y)

Theorem 5.12. Let ~a ∈ Ls,t. Then N(~a) = det(A) where A is the matrix of the linear transformation
f(~x) = ~a~x where ~a~x is the componentwise multiplication.

Proof. Let bj = Re(as+j), cj = Im(as+j), yj = Re(xs+j) and zj = Im(xs+j) for j ∈ {1, . . . , t}, and
consider ~a and ~x to be vectors in Rs+2t as defined above. Then in order to get the matrix A, we
calculate the product ~a~x (this product is the componentwise product over Ls,t, not over Rs+2t). The
first s components are the same over Ls,t and over Rs+2t so they’re easy. For the other components, we
multiply them together in Ls,t and take their real and imaginary parts to get their coordinates in Rs+2t:

A~x = f(~x)

= ~a~x

= (a1x1, . . . , asxs,Re(as+1xs+1), Im(as+1xs+1), . . . ,Re(as+txs+t), Im(as+txs+t))

= (a1x1, . . . , asxs,Re((b1 + ic1)(y1 + iz1)), . . . , Im((bt + ict)(yt + izt)))

= (a1x1, . . . , asxs, b1y1 − c1z1, c1y1 + b1z1, . . . , btyt − ctzt, ctyt + btzt)

=



a1 · · · 0 0 0 · · · 0 0
...

. . .
...

...
...

. . .
...

...
0 · · · as 0 0 · · · 0 0
0 · · · 0 b1 −c1 · · · 0 0
0 · · · 0 c1 b1 · · · 0 0
...

. . .
...

...
...

. . .
...

...
0 · · · 0 0 0 · · · bt −ct
0 · · · 0 0 0 · · · ct bt


~x
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Now we have the matrix A, so we need to calculate its determinant:

det(A) = det



a1 · · · 0 0 0 · · · 0 0
...

. . .
...

...
...

. . .
...

...
0 · · · as 0 0 · · · 0 0
0 · · · 0 b1 −c1 · · · 0 0
0 · · · 0 c1 b1 · · · 0 0
...

. . .
...

...
...

. . .
...

...
0 · · · 0 0 0 · · · bt −ct
0 · · · 0 0 0 · · · ct bt


= a1 · · · as det

(
b1 −c1
c1 b1

)
· · · det

(
bt −ct
ct bt

)
= a1 · · · as(b21 + c21) · · · (b2t + c2t )

= a1 · · · as|as+1|2 · · · |as+t|2

= N(~a)

Definition 5.13. Let K be a finite extension of Q and let α ∈ K. Let σ1, . . . , σs be the real conjugates
over K and let σs+1, σs+1, . . . , σs+t, σs+t be the complex conjugates over K. Then we define the geo-
metric representation of α denoted as x(α) ∈ Ls,t by x(α) = (σ1(α), . . . , σs(α), σs+1(α), . . . , σs+t(α)).

Example 5.14. Let K = Q[
√

2] and let α = 1 +
√

2. The conjugates over K are σ1(z) = z and
σ2(a + b

√
2) = a − b

√
2, so s = 2 and t = 0. So the geometric representation of α = 1 +

√
2 is

x(α) = (1 +
√

2, 1−
√

2).

Example 5.15. Let K = Q[i
√

2] and let α = 1 + i
√

2. The conjugates over K are σ1(z) = z and
σ2(z) = z̄, so s = 0 and t = 1. So the geometric representation of α = 1 + i

√
2 is x(α) = 1 + i

√
2.

Lemma 5.16. The mapping α 7→ x(α) from K to Ls,t of an element onto its geometric representation
is injective.

Proof. Let α, β ∈ K and suppose that α 6= β. Since each σj is a conjugate and therefore a monomorphism,
it is injective, so σj(α) 6= σj(β), which means that x(α) 6= x(β), so the mapping is injective.

Remark: This mapping is not bijective since K has the same set cardinality as Qn which is countable and
Ls,t has the same set cardinality as Rn which is not countable, so there can’t be any bijection from one
to the other. Therefore there exist points in Ls,t that are not geometric representations of any element
in K.

Theorem 5.17. The mapping α 7→ x(α) of an element onto its geometric representation is a monomor-
phism from K into Ls,t.

Proof. By Lemma 5.16, we know that this mapping is injective from K to Ls,t, so all we need to prove is
that it’s a homomorphism from K to Ls,t. This means that we need to prove that it satisfies the three
conditions from the definition of a homomorphism: x(α+ β) = x(α) + x(β), x(αβ) = x(α)x(β) and x(1)
is a unity in Ls,t. Since all σj ’s are homomorphisms, these three conditions hold componentwise and since
addition and multiplication over Ls,t are defined componentwise they hold for the mapping into Ls,t.

Theorem 5.18. Let α ∈ K and let x(α) ∈ Ls,t be its geometric representation. Then N(α) = N(x(α))
where N(α) is the norm over K and N(x(α)) is the norm over Ls,t.

Proof. N(α) is by definition the product of the conjugates of α. If we divide these conjugates up into
real and complex conjugates as above, we get:

N(α) = σ1(α) · · ·σs(α)σs+1(α)σs+1(α) · · ·σs+t(α)σs+t(α)

= σ1(α) · · ·σs(α)|σs+1(α)|2 · · · |σs+t(α)|2

= x1 · · ·xs|xs+1|2 · · · |xs+t|2

= N(x(α)).
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5.3 Lattices

Definition 5.19. Let ~e1, . . . , ~em be linearly independent vectors in Rn. Then the set of integral linear
combinations a1 ~e1 + · · ·+ am ~em, a1, . . . , am ∈ Z is called an m-dimensional lattice in Rn. If m = n, the
lattice is called full, otherwise it’s called non-full. ~e1, . . . , ~em is called a basis of the lattice. The basis
of a certain lattice is not unique.

Theorem 5.20. Let K be a finite extension of Q of dimension n and let M = {µ1, . . . , µn} be a full
module in K. Then the set of geometric representations of elements of M in Rn is a full lattice with basis
x(µ1), . . . , x(µn).

Proof. By Theorem 5.17, the mapping of an element of K onto its geometric representation is a
monomorphism, so we have

x(c1µ1 + · · ·+ cnµn) = c1x(µ1) + · · ·+ cnx(µn) (5.20.1)

for c1, . . . , cn ∈ Z. By the definition of a module, M is the set of elements c1µ1 + · · ·+ cnµn, so the set
of geometric representations of the elements of M is the set of elements of the form x(c1µ1 + · · ·+ cnµn),
c1, . . . , cn ∈ Z. So each geometric representation of an element of M equals an integral linear
combination of x(µ1), . . . , x(µn), and each integral linear combination of these vectors equals the
geometric representation of an element in M , which concludes the proof.

Definition 5.21. Let r > 0. Then the ball U(r) ⊂ Rn of radius r is the set of vectors ~x ∈ Rn such that
||~x|| < r, where ||~x|| is the standard 2-norm.

Definition 5.22. A set S ⊆ Rn is called discrete if ∀r > 0, S ∩ U(r) only contains finitely many
elements.

Theorem 5.23. Any lattice is discrete.

Proof. Any non-full lattice is a subset of a full lattice, so if the theorem holds for any full lattice it holds
for any lattice, so we only need to consider full lattices. Let M be a full lattice, and let ~e1, . . . , ~en be a
basis for M . Consider the system of linear equations

~x · ~e2 = 0
...

~x · ~en = 0

where ~x · ~ej is the standard euclidean scalar product. This system is underdetermined and homogeneous,
so there are infinitely many solutions, so there exists a non-zero solution ~x0. If we add the condition
~x · ~e1 = 0, we get n equations and n unknowns, so the only solution would be the zero vector, so ~x0 isn’t
a solution to ~x · ~e1 = 0 (since it is a solution to the other equations), so ~x0 · ~e1 6= 0 so we can divide by

~x0 · ~e1. Consider the vector ~f1 = ~x0

~x0· ~e1 . We have ~f1 · ~e1 = 1 and ~f1 · ~ej = 0 for j 6= 1. Similarly, for any

integer k ≤ n, we can find a vector ~fk such that ~fk · ~ek = 1 and ~fk · ~ej = 0 for j 6= k.

Now let r > 0 and let ~z = a1 ~e1 + · · ·+ an ~en ∈M ∩ U(r), a1, . . . , an ∈ Z, and consider ~z · ~fk:

~z · ~fk = (a1 ~e1 + · · ·+ an ~en) · ~fk
= a1 ~e1 · ~fk + · · ·+ an ~en · ~fk
= ak ~ek · ~fk
= ak.

By using this together with the Cauchy-Schwartz inequality we get:

|ak| = |~z · ~fk|

≤ ||~z|||| ~fk||

< r|| ~fk||.

Since r|| ~fk|| doesn’t depend on ~z or any aj , this means that with a given r there are only finitely many

ways to choose each ak since ak ∈ Z and |ak| < r|| ~fk||, so there are only finitely many ways to choose a
vector ~z in the set M ∩ U(r), which concludes the proof.
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Definition 5.24. Let M be a lattice with basis ~e1, . . . , ~em. Then the set of vectors of the form
b1 ~e1 + · · · + bm ~em where 0 ≤ bj < 1 is called a fundamental parallelepiped of M . Fundamental
parallelepipeds of a lattice are not unique, they depend on the choice of basis.

Theorem 5.25. Let M be a full lattice in Rn and let T be a fundamental parallelepiped of M . Then the
sets Tz = T + ~z where ~z runs through all elements of M are disjoint and fill the entire space Rn.

Proof. Let ~e1, . . . , ~en be the basis of M used to construct T . We need to prove that any vector ~x ∈ Rn
belongs to exactly one Tz. Let ~x = x1 ~e1 + · · ·+ xn ~en be an arbitrary vector in Rn. Let ak = bxkc be the
integer part of xk and let bk = xk − ak be the fractional part of xk. Let ~z = a1 ~e1 + · · ·+ an ~en ∈M and
let ~u = b1 ~e1 + · · ·+ bn ~en ∈ T . Since ~x = ~z+~u, x ∈ Tz, so each ~x lies in at least one Tz. Suppose ∃~z′ ∈M
such that ~x also lies in Tz′ , and let ~u′ = ~x− ~z′. Then we have ~u+ ~z = ~x = ~u′ + ~z′ and ~u′ ∈ T . The only
way to get this is if ~z = ~z′, which concludes the proof.

Theorem 5.26. For any r > 0, there are only a finite number of sets Tz such that Tz ∩ U(r) 6= ∅.

Proof. Let ~e1, . . . , ~en be the basis of M used to construct T . If Tz ∩ U(r) 6= ∅, there exists at least one
element ~x in Tz ∩ U(r), which means that Tz contains at least one element ~x such that ||~x|| < r. Let
~u = ~x− ~z = b1 ~e1 + · · ·+ bn ~en. Since ~u ∈ T , |bj | < 1 ∀j ≤ n, so by the triangle inequality:

||~z|| = ||~u− ~x||
= ||b1 ~e1 + · · ·+ bn ~en + ~x||
≤ |b1|||~e1||+ · · ·+ |bn||| ~en||+ ||~x||
< ||~e1||+ · · ·+ || ~en||+ r.

||~e1||+ · · ·+ || ~en||+ r doesn’t depend on ~x or ~z, so ~z ∈ U(||~e1||+ · · ·+ || ~en||+ r). There are only finitely
many such ~z which concludes the proof.

Definition 5.27. An additive group G is called finitely generated if there exist finitely many elements
x1, . . . , xm ∈ G such that any x ∈ G can be written as x = c1x1 + · · · + cmxm where c1, . . . , cm ∈ Z.
x1, . . . , xm are called generators of G.

Lemma 5.28. Let M be a finitely generated additive group without elements of finite order and with m
generators, and let N be a subgroup of M . Then N has a finite basis with l ≤ m elements.

Proof. Let x1, . . . , xm be a basis for M . We will prove by induction on m that N has a basis of the type

η1 = c1,1x1 + · · ·+ c1,lxl + · · ·+ c1,mxm

· · ·
ηl = cl,lxl + · · ·+ cl,mxm.

If m = 0, then M = N = {0}, so then N has a zero-dimensional basis so the theorem holds for m = 0.
Now let m ≥ 1 and assume the theorem holds for m−1. If N = {0}, then N has a zero-dimensional basis
and we’re done, so we can assume that N contains at least one non-zero element α. Since α ∈ N ⊆ M ,
α can be written as

α = c1x1 + · · ·+ cmxm

where c1, . . . , cm ∈ Z. Since we assumed that α 6= 0, at least one of the cj ’s is non-zero. By reordering
the basis, we can assume that c1 6= 0. Let

η1 = c1,1x1 + · · ·+ c1,mxm

be the element in N such that c1,1 > 0 is smallest. Let c1 = c1,1q1 + r1 where q1 ∈ Z and 0 ≤ r1 < c1,1.
We have that

α− q1η1 = r1x1 + r2x2 + · · ·+ rmxm (5.28.1)

for some r2, . . . , rm. Since α, η1 ∈ N , α − q1η1 ∈ N . By the definition of η1, there is no element in N
such that the coefficient of x1 is strictly between 0 and c1,1, and since 0 ≤ r1 < c1,1, this means that
r1 = 0, so c1,1 divides c1.
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Let M0 be the group generated by x2, . . . , xm. N∩M0 is a subgroup of M0, so by the induction hypothesis,
N ∩M0 has a basis of the type

η2 = c2,2x2 + · · ·+ c2,lxl + · · ·+ c2,mxm

· · ·
ηl = cl,lxl + · · ·+ cl,mxm.

Since we proved that r1 = 0, equation (5.28.1) becomes

α− q1η1 = r2x2 + · · ·+ rmxm.

Therefore, α− q1η1 ∈M0 ∩N , so by the induction hypothesis, ∃q2, . . . , qm ∈ Z such that

α− q1η1 = q2η2 + · · ·+ qmηm

⇐⇒ α = q1η1 + q2η2 + · · ·+ qmηm.

Since α was an arbitrary non-zero element of N and η1, . . . , ηm don’t depend on α, any α ∈ N∗ is an
integral linear combination of η1, . . . , ηm. Also, it’s trivial that 0 is an integral linear combination of
η1, . . . , ηm, so any α ∈ N is an integral linear combination of η1, . . . , ηm. Therefore, η1, . . . , ηm form a
basis for N , which concludes the proof.

Theorem 5.29. Any discrete additive group M ⊂ Rn is a lattice.

Proof. Let G be the smallest linear subspace of Rn which contains M , let m be the dimension of G and
let ~e1, . . . , ~em be elements of M which form a basis for G. Let M0 be the lattice spanned by ~e1, . . . , ~em.
Since M is an additive group containing ~e1, . . . , ~em, any integral linear combination of these vectors is
also in M , so M0 ⊆M .
Let T be the fundamental parallelepiped of M0. Then by Theorem 5.25, ∀~x ∈ Rn, ∃~u ∈ T, ~z ∈ M0 such
that ~x = ~u+ ~z. Since ~z ∈ M0 ⊆ M , if ~x ∈ M , then ~u ∈ M since ~x = ~u+ ~z and M is an additive group.
We also know that ~u ∈ T so ||~u|| ≤ r where r = ||~e1||+ · · ·+ || ~em||, so ~u ∈M ∩U(r). Since M is discrete,
there are only finitely many such ~u’s. This means that for a given ~z ∈M0, we can only find finitely many
~x ∈M so the factor group M/M0 is finite.
Let j be the number of elements in M/M0. By Theorem 4.14, the order of any element in M/M0 divides
j, which means that any element in M/M0 multiplied by j is the zero element in M/M0. Let ~x be any
element in M and let [~x] be the congruence class of ~x mod M0. Then [j~x] = j[~x] = [~0] since [~x] ∈M/M0

and j times any element in M/M0 is [~0]. This means that j~x and ~0 are in the same congruence class,
so j~x ≡ ~0 (mod M0), so j~x = j~x − ~0 ∈ M0. This means that j~x is an integral linear combination of
~e1, . . . , ~em, so ~x is an integral linear combination of ~e1

j , . . . ,
~em
j , so M is a subgroup of the lattice with

basis ~e1
j , . . . ,

~em
j , so by Lemma 5.28 M has a basis ~f1, . . . , ~fl where l ≤ m. But M contains m linearly

independent vectors ~e1, . . . , ~em so the dimension of M is exactly m, so M is a lattice.

5.4 Logarithmic Representations

Definition 5.30. Let K be a finite extension of Q, let s be the number of real conjugates from
K to C and let 2t be the number of complex conjugates from K to C, and let ~x ∈ Ls,t such
that xj 6= 0 ∀j ≤ s + t. Then the logarithmic representation of ~x in Rs+t is defined as
l(~x) = (ln |x1|, . . . , ln |xs|, ln |x2s+1|, . . . , ln |x2s+t|).

Theorem 5.31. Let ~x, ~y ∈ Ls,t with all their components non-zero. Then l(~x~y) = l(~x) + l(~y). This
means that the mapping ~x 7→ l(~x) is a homomorphism from the multiplicative group of vectors in Ls,t

with non-zero components to the additive group Rs+t.

Proof.

l(~x~y) = l(x1y1, . . . , xs+tys+t)

= (ln |x1y1|, . . . , ln |xsys|, ln |(xs+1ys+1)2|, . . . , ln |(xs+tys+t)2|)
= (ln |x1y1|, . . . , ln |xsys|, ln |x2s+1y

2
s+1|, . . . , ln |x2s+ty2s+t|)

= (ln |x1|+ ln |y1|, . . . , ln |xs|+ ln |ys|, ln |x2s+1|+ ln |y2s+1|, . . . , ln |x2s+t|+ ln |y2s+t|)
= (ln |x1|, . . . , ln |xs|, ln |x2s+1|, . . . , ln |x2s+t|) + (ln |y1|, . . . , ln |ys|, ln |y2s+1|, . . . , ln |y2s+t|)
= l(~x) + l(~y)
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Theorem 5.32. Let ~x ∈ Ls,t with norm N(~x) 6= 0. Then
∑s+t
k=1 lk(~x) = ln |N(~x)|.

Proof.

s+t∑
k=1

lk(~x) = ln |x1|+ · · ·+ ln |xs|+ ln |x2s+1|+ · · ·+ ln |x2s+t|

= ln(|x1| · · · |xs||x2s+1| · · · |x2s+t|)
= ln |x1 · · ·xs|x2s+t| · · · |x2s+t||
= ln |N(~x)|

Definition 5.33. Let α ∈ K∗ and let x(α) be the geometric representation of α. Then the logarithmic
representation of α is defined as l(α) = l(x(α)).

Theorem 5.34. Let α, β ∈ K∗. Then l(αβ) = l(α) + l(β).

Proof.

l(αβ) = l(x(αβ))

= l(x(α)x(β))

= l(x(α)) + l(x(β))

= l(α) + l(β)

Theorem 5.35. Let α ∈ K∗ and let α−1 be the multiplicative inverse of α. Then l(α−1) = −l(α).

Proof.

l(α−1) = l(α−1) + l(α)− l(α)

= l(α−1α)− l(α)

= l(1)− l(α)

= l(x(1))− l(α)

= l(1, . . . , 1)− l(α)

= (ln |1|, . . . , ln |1|, ln |12|, . . . , ln |12|)− l(α)

= ~0− l(α)

= −l(α)

Corollary 5.36. l(1) = ~0

Theorem 5.37. Let α ∈ K∗. Then
∑s+t
k=1 lk(α) = ln |N(α)|.

Proof.
s+t∑
k=1

lk(α) =

s+t∑
k=1

lk(x(α)) = ln |N(x(α))| = ln |N(α)|

6 Units

By studying the structure of the set of elements with norm ±1, it will be relatively easy to study the set
of solutions to equation (3.24.2). As we will prove in theorem Theorem 6.5, units are elements with norm
equal to ±1, which is why units are important in the main theorem of this thesis.
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6.1 Orders and Units

Definition 6.1. A full module D ⊂ K which is a ring containing the number 1 is called an order of K
(not to be confused with the order of an element of a group in Definition 4.12).

Definition 6.2. Let K be a finite extension of Q, and let D be an order of K. Then an element ε ∈ D
is called a unit of D if ε−1 ∈ D (not to be confused with unity in Definition 2.4).

Lemma 6.3. Let K be a finite extension of Q, and let D be an order of K. Then if α ∈ D, then its
characteristic polynomial has integer coefficients.

Proof. By definition, D is a ring, so if e1, . . . , en is a basis for D, αe1, . . . , αen are all in D. Since e1, . . . , en
is a basis for D and D is a module, each of the numbers αe1, . . . , αen are integral linear combinations of
e1, . . . , en. Therefore the transformation matrix for this linear transformation only contains integers, so
its characteristic polynomial which is also the characteristic polynomial of α has integer coefficients.

Corollary 6.4. Let K be a finite extension of Q, and let D be an order of K. Then if α ∈ D, N(α) ∈ Z.

Proof. By Theorem 3.16, N(α) is plus or minus the characteristic polynomial of α evaluated at 0. By
Lemma 6.3, the coefficients of the characteristic polynomial are integers, so the characteristic polynomial
of α evaluated at 0 is an integer.

Theorem 6.5. Let K be a finite extension of Q, and let D be an order of K. Then a number ε ∈ D is
a unit of D if and only if N(ε) = ±1.

Proof. =⇒ : Let ε be a unit of D. Then ∃ε−1 ∈ D such that εε−1 = 1. This means that

N(ε)N(ε−1) = N(εε−1)

= N(1)

= 1.

Since ε, ε−1 ∈ D, N(ε), N(ε−1) ∈ Z, and therefore N(ε) = ±1.

⇐= : Let α ∈ D such that N(α) = ±1. Consider the characteristic polynomial of α

φα(λ) = λn + cn−1λ
n−1 + · · ·+ c0.

By Theorem 3.16, c0 = (−1)nN(α). By Lemma 6.3, c0, . . . , cn−1 ∈ Z. By Corollary 2.23
the minimal polynomial of α divides the characteristic polynomial of α, so φα(α) = 0, so
αn + cn−1α

n−1 + · · · + c1α = (−1)n+1N(α). By dividing by (−1)n+1α on both sides, we get

that N(α)
α is an integral linear combination of powers of α, and therefore N(α)

α ∈ D. Since N(α) = ±1,
1
α ∈ D, so by definition α is a unit of D.

6.2 Associate Elements

Definition 6.6. Two elements in D are called associate if they divide each other in D.

Lemma 6.7. All elements of an order D with a given norm are in one of only finitely many associate
classes. By associate class we mean the equivalence class with respect to the equivalence relation of two
elements being associate (proving that being associate is an equivalence relation is trivial).

Proof. Let w1, . . . , wn be a basis for D and let α, β ∈ D such that |N(α)| = |N(β)| and α ≡ β (mod c)
where c = |N(α)| = |N(β)|. It’s clear that for any α0 ∈ D there exists a unique x = x1w1+· · ·+xnwn ∈ D
where 0 ≤ xj < c ∀j ∈ {1, . . . , n} such that α0 ≡ x (mod c). Therefore D contains cn congruence classes
mod c. Since α ≡ β (mod c), ∃γ ∈ D such that α − β = cγ. By dividing by β on each side and since
c = |N(β)|, we get:

α− β = cγ

⇐⇒ α

β
− 1 =

c

β
γ =

|N(β)|
β

γ.

From the proof of Theorem 6.5, we know that |N(β)|
β ∈ D. Also, γ ∈ D and 1 ∈ D, so α

β ∈ D, which
means that β divides α in D. Similarly, we get that α divides β in D, so α and β are associate. Since
the elements with norm of a given absolute value c must belong to one of the cn congruence classes and
all such elements in a congruence class belong to the same associate class, they must belong to one of no
more than cn associate classes, which proves the theorem.
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Lemma 6.8. If two elements α, β ∈ D are associate, then the absolute values of their norms are equal.

Proof. Let γ1, γ2 ∈ D such that α = γ1β and β = γ2α. Then N(α) = N(γ1)N(β) and
N(β) = N(γ2)N(α). Since γ1, γ2 ∈ D, N(γ1), N(γ2) ∈ Z, so this means that N(α) and N(β)
divide each other in Z. Two integers divide each other if and only if their absolute values are equal,
which proves the theorem.

Corollary 6.9. If two elements α, β ∈ D are associate, then there exists a unit ε ∈ D such that α = εβ.

Proof. Since α and β divide each other in D, ∃γ ∈ D such that α = γβ. Since the norm is multiplicative,
N(α) = N(γ)N(β), and by Lemma 6.8, N(α) = ±N(β), so N(γ) = ±1, so by Theorem 6.5 γ is a
unit.

6.3 Geometric Representation of Units

Lemma 6.10. Let K be a finite extension of Q, let D be an arbitrary order of K and let W be the set
of units ε of D with logarithmic representation l(ε) = ~0. Then W is a cyclic multiplicative group with a
finite and even number of elements.

Proof. First we prove that W is a multiplicative group. It’s obvious that multiplication is associative
over W since it’s associative over K. If α, β ∈W , l(α) = l(β) = ~0, so

l(αβ) = l(α) + l(β)

= ~0 +~0

= ~0

=⇒ αβ ∈W
so W is closed under multiplication. We know that l(1) = ~0, so 1 ∈ W . If α ∈ W , then
l(α−1) = −l(α) = −~0 = ~0, so α−1 ∈ W . Therefore all conditions for W being a multiplicative group are
satisfied, so W is a multiplicative group.
Now we want to prove that the number of elements in W is finite:

α ∈W ⇐⇒ l(α) = ~0

⇐⇒ ln |xk(α)| = 0 ∀k ∈ {1, . . . , s+ t}
⇐⇒ |xk(α)| = 1 ∀k ∈ {1, . . . , s+ t}
⇐⇒ ||x(α)|| =

√
s+ t.

Therefore the norm of x(α) is bounded. Since α ∈ W ⊆ D and D is a module, the set of geometric
representations x(α) of elements α ∈W is a subset of a lattice, and is therefore discrete by Theorem 5.23.
Since x(α) is bounded and is in a discrete set, there are only finitely many possible values x(α). Since
the mapping α 7→ x(α) is injective, this means that there are only finitely many α ∈W .
Since W is a finite multiplicative subgroup of the field K, by Theorem 4.16, W is cyclic.
The multiplicative group {1,−1} is a subgroup of W and has two elements, so the number of elements in
the subgroup {1,−1} divides the number of elements in W , so by Theorem 4.13 the number of elements
in W is even.

Lemma 6.11. Let K be a finite extension of Q, and let D be an order of K. Then an element ε ∈ D
has logarithmic representation 0 if and only if it is a root of 1, that is ∃j ∈ N∗ such that εj = 1.

Proof. Let W be defined as in Lemma 6.10.
=⇒ : Since W is a finite multiplicative group, it immediately follows that if ε ∈ W then ∃j ∈ N∗ such
that εj = 1.

⇐= : Suppose for a contradiction that εj = 1 and ε /∈ W , that is l(ε) 6= ~0. That means
that for some k ∈ {1, . . . , s + t}, ln |xk(ε)| 6= 0 (if k ≤ s this is obvious and if k > s, we get
ln |xk(ε)2| 6= 0 ⇐⇒ 2 ln |xk(ε)| 6= 0 ⇐⇒ ln |xk(ε)| 6= 0). Since εj = 1, xk(εj) = 1 so ln |xk(εj)| = 0.
xk(εj) = σk(εj) and since σk is a conjugate function, it’s a homomorphism so σk(εj) = σk(ε)j . Therefore,

0 = ln |xk(εj)| = ln |xk(ε)j | = j ln |xk(ε)|
⇐⇒ ln |xk(ε)| = 0.

But we chose k specifically such that ln |xk(ε)| 6= 0, which is a contradiction, which proves the theorem.
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Lemma 6.12. Let E ⊂ Rs+t be the set of points l(ε) such that ε is a unit of the order D (not necessarily
in W ). Then E is a lattice of dimension less than or equal to s+ t− 1.

Proof. Consider the numbers ε such that ||l(ε)|| < r for some fixed r > 0. Then ∀k ∈ {1, . . . , s + t},
lk(ε) ≤ |lk(ε)| ≤ ||l(ε)|| < r. By taking the exponential on both sides, we get that |xj(ε)| < er for
j ∈ {1, . . . , s} and |xk(ε)|2 < er for k ∈ {s+ 1, . . . , s+ t}. Therefore the set of x(ε) such that ||l(ε)|| < r
is bounded. We also know from previous theorems that the set of geometric representations x(α) where
α ∈ K is discrete, so the set of x(ε) is also discrete. Since the set of x(ε) such that ||l(ε)|| < r is both
discrete and bounded, there are only finitely many such x(ε), and since the mapping ε 7→ x(ε) is injective,
there are also only finitely many ε such that ||l(ε)|| < r, which means that there are only finitely many
such l(ε), which means that the set E of l(ε)’s is discrete. Also, ~0 = l(1) ∈ E, −l(ε) = l(ε−1) ∈ E (since
(ε−1)−1 = ε ∈ D so ε−1 is also a unit of D) and if l(ε1) and l(ε2) are in D, then l(ε1)+l(ε2) = l(ε1ε2) ∈ E
since (ε1ε2)−1 = ε−11 ε−12 ∈ D so ε1ε2 is a unit. Therefore E is a subgroup of the additive group Rs+t,
and we also proved that E is discrete, so by Theorem 5.29 E is a lattice.
Since ε is a unit of D, N(ε) = ±1, so l1(ε) + · · · + ls+t(ε) = ln |N(ε)| = 0, so E ⊂ L where L is the
hyperplane in Rs+t given by the equation λ1 + · · · + λs+t = 0. The dimension of L is s + t − 1, so the
dimension of E must be less than or equal to s+ t− 1.

Theorem 6.13. Let D be defined as above. Then for some r ≤ s + t − 1, ∃ε1, . . . , εr units of D such
that any unit ε of D can be written as ε = ζεa11 · · · εarr for a unique choice of ζ, a1, . . . , ar where ζ ∈ D is
a root of 1 and a1, . . . , ar ∈ Z.

Proof. Let E ⊂ Rs,t be the set of points l(ε) such that ε is a unit of D and let r ≤ s + t − 1 be the
dimension of the lattice E and let l(ε1), . . . , l(εr) be a basis for E. Then for any l(ε) ∈ E,

l(ε) = a1l(ε1) + · · ·+ arl(εr) (6.13.1)

for a unique choice of a1, . . . , ar ∈ Z. Let

ζ = εε−a11 · · · ε−arr . (6.13.2)

Then l(ζ) = l(ε) − (a1l(ε1) + · · · + arl(εr)) = l(ε) − l(ε) = ~0, so by Lemma 6.11 ζ is a root of 1. By
rearranging equation (6.13.2), we get:

ζ = εε−a11 · · · ε−arr

⇐⇒ ε = ζεa11 · · · εarr . (6.13.3)

So all we have left to prove is that ζ, a1, . . . , ar are unique. Suppose there are ζ̃, b1, . . . , br such that

ε = ζ̃εb11 · · · εbrr (6.13.4)

where b1, . . . , br ∈ Z and ζ̃ is a root of 1. By assumption, ζ̃ is a root of 1, so by Lemma 6.11, l(ζ̃) = 0.
Therefore, by taking the logarithmic representation on both sides of equation (6.13.4), we get:

l(ε) = b1l(ε1) + · · ·+ brl(εr).

Therefore, b1, . . . , br are the coordinates of l(ε) in E with respect to the basis l(ε1), . . . , l(εr). But
according to equation (6.13.1), these coordinates are a1, . . . , ar, so bj = aj for j ∈ {1, . . . , r}.
Now we just need to prove that ζ = ζ̃. Since bj = aj , by replacing each bj by the corresponding aj in

equation (6.13.4), we get equation (6.13.3) but with ζ̃ instead of ζ. Since equations (6.13.3) and (6.13.2)
are equivalent, we can replace ζ by ζ̃ in equation (6.13.2). By doing so, we get ζ̃ = εε−a11 · · · ε−arr . But
εε−a11 · · · ε−arr is the definition of ζ, so ζ̃ = ζ, which concludes the proof.

6.4 Volumes of Fundamental Parallelepipeds

Definition 6.14. Let X ⊆ Rn be measurable. Then the volume of X is defined as

v(X) =

∫
· · ·
∫
X

1dx1 · · · dxn.

This volume can be finite or infinite.
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Theorem 6.15. The following properties of the volume can be easily proved using properties of integrals:

1. If X ⊆ X ′, then v(X) ≤ v(X ′).

2. If v(X ∩X ′) = 0, then v(X ∪X ′) = v(X) + v(X ′).

3. If ~z ∈ Rn, then v(X + ~z) = v(X).

4. If a ∈ R, then v(aX) = anv(X).

Lemma 6.16. Let M ⊂ Rn be a lattice, let T be a fundamental parallelepiped of M and let ~e1, . . . , ~en be
the basis of M used to construct T . Then the volume of T is given by:

v(T ) = |det

 | |
~e1 · · · ~en
| |

 |
Proof. Consider the change of variables to x′1, . . . , x

′
n where xj =

∑n
k=1( ~ek)jx

′
k. The Jacobian of this

transformation is the determinant that we want to prove is equal to the v(T ). Since ~e1, . . . , ~en are linearly
independent, d 6= 0. The image of T by this transformation is [0, 1]n. Therefore by applying this change
of variables to the integral in the definition of v(T ), we get:

v(T ) =

∫
· · ·
∫
T

1dx1 · · · dxn

=

∫
· · ·
∫
[0,1]n

|det

 | |
~e1 · · · ~en
| |

 |dx′1 · · · dx′n
= |det

 | |
~e1 · · · ~en
| |

 |∫ 1

0

· · ·
∫ 1

0

1dx′1 · · · dx′n

= |det

 | |
~e1 · · · ~en
| |

 |

Definition 6.17. Let K be an n-dimensional finite extension of Q, and let M ⊂ K be a full module
with basis α1, . . . , αn, and let σ1, . . . , σn be the conjugates over K. Then the discriminant ∆M of the
module M is defined as:

∆M = det

σ1(α1) · · · σ1(αn)
...

. . .
...

σn(α1) · · · σn(αn)


2

Lemma 6.18. Let K be a finite extension of Q with dimension n = s + 2t and let M ⊂ K be a full
module with discriminant ∆M , and let L ∈ Rn be the lattice containing the geometric representations of
the elements of M . Then the volume of any fundamental parallelepiped of L is equal to 2−t

√
∆M .

Proof. Let α1, . . . , αn be a basis for M . Then their geometric representations x(α1), . . . , x(αn) form a
basis for L. Therefore if T is the fundamental parallelepiped of L with basis x(α1), . . . , x(αn), we have:

v(T ) =

∣∣∣∣∣∣det

 | |
x(α1) · · · x(αn)
| |

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det



σ1(α1) · · · σ1(αn)
...

. . .
...

σs(α1) · · · σs(αn)
Re(σs+1(α1)) · · · Re(σs+1(αn))
Im(σs+1(α1)) · · · Im(σs+1(αn))

...
. . .

...
Re(σs+t(α1)) · · · Re(σs+t(αn))
Im(σs+t(α1)) · · · Im(σs+t(αn))



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
i

2
· −2i

)t
det



σ1(α1) · · · σ1(αn)
...

. . .
...

σs(α1) · · · σs(αn)
Re(σs+1(α1)) · · · Re(σs+1(αn))
Im(σs+1(α1)) · · · Im(σs+1(αn))

...
. . .

...
Re(σs+t(α1)) · · · Re(σs+t(αn))
Im(σs+t(α1)) · · · Im(σs+t(αn))



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣
(
i

2

)t∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det



σ1(α1) · · · σ1(αn)
...

. . .
...

σs(α1) · · · σs(αn)
Re(σs+1(α1)) · · · Re(σs+1(αn))
−2iIm(σs+1(α1)) · · · −2iIm(σs+1(αn))

...
. . .

...
Re(σs+t(α1)) · · · Re(σs+t(αn))
−2iIm(σs+t(α1)) · · · −2iIm(σs+t(αn))



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣ i2
∣∣∣∣t
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det



σ1(α1) · · · σ1(αn)
...

. . .
...

σs(α1) · · · σs(αn)
Re(σs+1(α1)) + iIm(σs+1(α1)) · · · Re(σs+1(αn)) + iIm(σs+1(αn))

−2iIm(σs+1(α1)) · · · −2iIm(σs+1(αn))
...

. . .
...

Re(σs+t(α1)) + iIm(σs+t(α1)) · · · Re(σs+t(αn)) + iIm(σs+t(αn))
−2iIm(σs+t(α1)) · · · −2iIm(σs+t(αn))



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

(
1

2

)t
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det



σ1(α1) · · · σ1(αn)
...

. . .
...

σs(α1) · · · σs(αn)
σs+1(α1) · · · σs+1(αn)

−2iIm(σs+1(α1)) · · · −2iIm(σs+1(αn))
...

. . .
...

σs+t(α1) · · · σs+t(αn)
−2iIm(σs+t(α1)) · · · −2iIm(σs+t(αn))



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 2−t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det



σ1(α1) · · · σ1(αn)
...

. . .
...

σs(α1) · · · σs(αn)
σs+1(α1) · · · σs+1(αn)

σs+1(α1)− 2iIm(σs+1(α1)) · · · σs+1(αn)− 2iIm(σs+1(αn))
...

. . .
...

σs+t(α1) · · · σs+t(αn)
σs+t(α1)− 2iIm(σs+t(α1)) · · · σs+t(αn)− 2iIm(σs+t(αn))



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 2−t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det



σ1(α1) · · · σ1(αn)
...

. . .
...

σs(α1) · · · σs(αn)
σs+1(α1) · · · σs+1(αn)

σs+1(α1) · · · σs+1(αn)
...

. . .
...

σs+t(α1) · · · σs+t(αn)

σs+t(α1) · · · σs+t(αn)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 2−t

√
∆M
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Corollary 6.19. The volume of a fundamental parallelepiped T of M depends only on M itself, not on
the choice of T .

Definition 6.20. A set X ⊆ Rn is called centrally symmetric if ∀~x ∈ X, −~x ∈ X.

Definition 6.21. A set X ⊆ Rn is called convex if the line segment between any two points in X is
contained entirely in X.

Lemma 6.22. Let M ⊂ Rn be a full lattice, and let v be the volume of a fundamental parallelepiped
of M . Let X ⊂ Rn be bounded, centrally symmetric, convex and have a volume v(X) > 2nv. Then X
contains at least one non-zero point of M .

Proof. Let Y ⊂ Rn be bounded, and let T be a fundamental parallelepiped of M . By Theorem 5.25, the
sets T − ~z where ~z ∈M are pairwise disjoint and cover the entire space Rn, so Y =

⋃
~z∈M (Y ∩ (T − ~z)).

Since v(Y ∩ (T − ~z)) = v((Y + ~z) ∩ T ), we get:

v(Y ) =
∑
~z∈M

v((Y + ~z) ∩ T ).

If the sets Y +~z are all non-intersecting for ~z ∈M , the sets (Y +~z)∩T are also pairwise non-intersecting.
Since all the sets (Y + ~z)∩ T are contained in T , if the sets (Y + ~z)∩ T are pairwise non-intersecting, we
get that

∑
~z∈M v((Y + ~z) ∩ T ) ≤ v(T ), so therefore v(Y ) ≤ v(T ).

Consider the set 1
2X = {~x ∈ Rn; 2~x ∈ X}. Then by part 4 of Theorem 6.15, v( 1

2X) = 2−nv(X). By
assumption, this is strictly greater than v. If all sets 1

2X + ~z where ~z ∈ M were non-intersecting, then
by what we proved above, v(X) ≤ v(T ) = v. This is not the case, so for ~z1, ~z2 ∈ M , ~z1 6= ~z2, 1

2X + ~z1
and 1

2X + ~z2 have a common point:

1

2
~x1 + ~z1 =

1

2
~x2 + ~z2

⇐⇒ ~z1 − ~z2 =
1

2
~x2 −

1

2
~x1.

Since X is centrally symmetric, − ~x1 ∈ X, and since X is convex, the middle of the line segment between
~x2 and − ~x1, 1

2 ~x2 + 1
2 (− ~x1), is in X. We just proved that this point is equal to ~z1− ~z2 ∈M where ~z1 6= ~z2,

so M and X have a common non-zero point, which proves the theorem.

Lemma 6.23. Let v be defined as above, and let Y ⊆ Rn be such that
⋃
~z∈M Y +~z = Rn. Then v(Y ) ≥ v.

Proof. Let T be a fundamental parallelepiped of M . Since the sets Y + ~z completely fill Rn, the sets
(Y + ~z)∩T completely fill T . Therefore, by using the formula for v(Y ) used in the proof of Lemma 6.22,
we get:

v(Y ) =
∑
~z∈M

v((Y + ~z) ∩ T )

≥ v(T )

= v.

Lemma 6.24. Let M be a full lattice in Rn, let v be the volume of a fundamental parallelepiped in M ,

and let c1, . . . , cs+t ∈ R+ such that
∏s+t
j=1 cj >

(
4
π

)t
v.

Then ∃~x = (x1, . . . , xs, ys+1, zs+1, . . . , ys+t, zs+t) ∈ M\{~0} such that |xj | < cj ∀j ∈ {1, . . . , s} and
y2k + z2k < ck ∀k ∈ {s+ 1, . . . , s+ t}.

Proof. Let X be the set of vectors ~x = (x1, . . . , xs, ys+1, zs+1, . . . , ys+t, zs+t) such that |xj | < cj
∀j ∈ {1, . . . , s} and y2k + z2k < ck ∀k ∈ {s + 1, . . . , s + t}. It’s clear that X is convex and centrally
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symmetric. We calculate the volume of X:

v(X) =

∫
· · ·
∫
X

1dx1 · · · dxsdys+1dzs+1 · · · dys+tdzs+t

=

∫ c1

−c1
dx1 · · ·

∫ cs

−cs
dxs

∫ ∫
y2s+1+z

2
s+1<cs+1

dys+1dzs+1 · · ·
∫ ∫

y2s+t+z
2
s+t<cs+t

dys+tdzs+t

= 2c1 · · · 2csπcs+1 · · ·πcs+t

= 2sπt
s+t∏
j=1

cj

> 2sπt
(

4

π

)t
v

= 2s22tv

= 2nv.

So we can apply Lemma 6.22, which says that X contains at least one non-zero point of M , which proves
the theorem.

6.5 Dirichlet’s Theorem

Lemma 6.25. Let L be a vector space, and let M ⊂ L be a lattice. Then M is a full lattice in L if and
only if there exists a bounded set U ⊂ L such that ∀~x ∈ L, ∃~u ∈ U, ~z ∈M such that ~x = ~u+ ~z.

Proof. =⇒ : If M is full, we can take U to be a fundamental parallelepiped of M . Then by Theorem 5.25
this theorem holds.
⇐= : Suppose that M is not full and let U be an arbitrary bounded set in L. Since U is bounded, ∃r ∈ R
such that ||~u|| ≤ r ∀~u ∈ U . Let L′ be the vector space generated by the vectors in M . Since M is not a
full lattice, L′ ⊂ L (they’re not equal), so there are vectors in L of any length that are orthogonal to L′.
In particular, ∃~y ∈ L orthogonal to L′ such that ||~y|| > r. Suppose for a contradiction that ∃~z ∈M,~u ∈ U
such that ~y = ~u + ~z. Since ~y · ~z = 0, ||~y||2 = ~y · ~y = ~y · ~u ≤ ||~y||||~u|| ≤ r||~y|| ⇐⇒ ||~y|| ≤ r, which is a
contradiction, which proves the theorem.

Theorem 6.26. (Dirichlet’s Theorem) Let K be a finite extension of Q of dimension n = s+ 2t and let
D be an order of K. Then for r = s + t − 1, ∃ε1, . . . , εr units of D such that any unit of D ε can be
written as ε = ζεa11 · · · εarr for a unique choice of ζ, a1, . . . , ar where ζ ∈ D and ζm = 1 for some m ∈ N∗
and a1, . . . , ar ∈ Z. ε1, . . . , εr are called fundamental units of D.

Proof. By Theorem 6.13, the theorem is true for some r ≤ s + t − 1, so we just need to prove that
r = s+ t− 1. Let E ⊂ Rs+t be the lattice containing the logarithmic representations of the units of D,
and let L ⊂ Rs+t be the vector space consisting of vectors (λ1, . . . , λs+t) such that λ1 + · · · + λs+t = 0.
All we need to prove is that E is a full lattice in L.

Let ~λ = (λ1, . . . , λs+t) be an arbitrary vector in L. Then if ~x = (eλ1 , . . . , eλs , e
λs+1

2 , . . . , e
λs+t

2 ) ∈ Ls,t, then

l(~x) = ~λ, so any vector in L is the logarithmic representation of some vector ~x ∈ Ls,t. By Theorem 5.32,∑s+t
k=1 lk(~x) = ln |N(~x)|, so l(~x) ∈ L if and only if N(~x) = ±1.

Let S = {~x ∈ Ls,t;N(~x) = ±1}, and let X0 be an arbitrary bounded subset of S. Then ∃c > 0 such that
∀~x = (x1, . . . , xs+t) ∈ X0, |xj | < c ∀j ∈ {1, . . . , s} and |xk|2 < c ∀k ∈ {s+ 1, . . . , s+ t}, so lk(~x) < ln(c)
∀k ∈ {1, . . . , s + t}, so l(X0) is bounded. Since the norm is multiplicative, if ~x is an arbitrary vector in
S, then ∀~y ∈ S, ~x~y ∈ S since N(~x~y) = N(~x)N(~y) = ±1 · ±1 = ±1, so therefore

X0~x ⊆ S. (6.26.1)

If ε is a unit of D and x(ε) is its geometric representation, N(x(ε)) = N(ε) = ±1, so x(ε) ∈ S, so by
equation (6.26.1), X0x(ε) ⊆ S.
Let ~y be an arbitrary vector in S and let M ⊂ Ls,t be the lattice containing the geometric representations
of the numbers in the order D. Consider the linear transformation from Ls,t to itself given by ~x 7→ ~y~x
where ~y~x is the componentwise multiplication. The determinant of the matrix of this transformation is

N(~y) = ±1 (6.26.2)
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so the volumes of the fundamental parallelepipeds of M and ~yM are equal. Let v be this volume. Let

c1, . . . , cs+t > 0 such that c1 · · · cs+t >
(
4
π

)t
v and let

X = {~x ∈ Ls,t; |x1| < c1, . . . , |xs| < cs, |xs+1|2 < cs+1, . . . , |xs+t| < cs+t}. (6.26.3)

By Lemma 6.24, ∃~x = ~yx(α) ∈ X\{~0} such that α ∈ D\{0}. Let q = c1 · · · cs+t. By using the fact from
equation (6.26.2) that N(~y) = ±1 and the fact from equation (6.26.3) that |N(~x)| < c1 · · · cs+t = q, we
get

|N(α)| = |N(~y)N(α)|
= |N(~x)|
< q.

By Corollary 6.4, since α ∈ D, N(α) ∈ Z. Since N(α) ∈ Z and |N(α)| < q, there are only finitely many
numbers that N(α) can be equal to. By Lemma 6.7, for each of these possible norms, there are only
finitely many non-associate elements α. Let α1, . . . , αm ∈ D\{~0} be pairwise non-associate such that any
element in D\{~0} with a norm whose absolute value is less than q is associate with one of the αj ’s. In
particular, α is associate with one of the αj ’s, so by Corollary 6.9, αj = αε where ε is a unit in D. So we
get:

~y = ~yx(1)

= ~yx(αα−1)

= ~yx(αα−1j ε)

= ~yx(α)x(α−1j )x(ε)

= ~xx(α−1j )x(ε). (6.26.4)

Let X0 = S ∩
(⋃m

j=1Xx(α−1j )
)

. Since X is bounded, each set Xx(α−1j ) is bounded so X0 is bounded.

S, X and the αj ’s don’t depend on ~y and are completely determined by D, so so is X0. ~y ∈ S, x(ε) ∈ S,
so by equation (6.26.4), xx(α−1j ) ∈ S. Since x ∈ X, this means that xx(α−1j ) ∈ X0. So any arbitrary ~y
belongs to X0x(ε), so the X0x(ε)’s cover S, which by Lemma 6.25 proves the theorem.

7 The Structure of the Set of Solutions to N(µ) = a

Theorem 6.26 gives us the structure of the set of units of an order D, that is the set of elements with
norm ±1. By using this, we can get the structure of the set of units with norm 1 (and not −1), and from
that we will be able to get the structure of the set of elements µ with an arbitrary norm a, which due to
Theorem 3.24 will give us the structure of the set of solutions to equation (1.1.1).

7.1 Algebraic Number Fields with Odd Dimension

Lemma 7.1. Let K be a finite extension of Q with s > 0. Then the only roots of 1 in K are 1 and −1.

Proof. Let σ be a conjugate function from K into R (since s > 0, there exists such a function). Suppose
for a contradiction that ∃ε 6= ±1 such that εm = 1 for some m ∈ N∗. Since σ is a real conjugate function,
all its images are in R, and in particular, σ(ε) ∈ R. Also, if m ∈ N∗ such that εm = 1, then since σ is a
homomorphism and is therefore multiplicative,

(σ(ε))m = σ(εm)

= σ(1)

= 1.

Therefore, σ(ε) ∈ R is a root of 1. The only real roots of 1 are ±1, so σ(ε) = ±1. Obviously, σ(1) = 1,
and since σ is injective and ε 6= 1, σ(ε) can’t be 1, so σ(ε) = −1. But −1 is also a root of 1 which is not
equal to 1, so by the same argument, we can prove that σ(−1) = −1. Since σ is injective, this implies
that ε = −1, but we assumed that not to be the case, which concludes the proof.

Corollary 7.2. Let K be a finite extension with odd dimension n. Then the only roots of 1 in K are 1
and −1.
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Proof. Since n = s+ 2t is odd and 2t is even, s is odd. Therefore s can’t be 0, so Lemma 7.1 applies.

Lemma 7.3. Let K be a finite extension of Q with odd dimension n, and let D be an order of K. Then
D has a set of fundamental units η1, . . . , ηr with norm 1 such that any unit ε with norm 1 can be written
as

ε = ηa11 · · · ηarr (7.3.1)

for a unique choice of a1, . . . , ar ∈ Z.

Proof. By Theorem 6.26, any unit ε of D can be written as

ε = ζεa11 · · · εarr (7.3.2)

for a unique choice of a1, . . . , ar, where ζ is a root of 1. In particular, this holds if N(ε) = 1. Let
ηj = N(εj)εj ∀j ∈ {1, . . . , r}. Then

N(ηj) = N(N(εj)εj)

= N(εj)
nN(εj)

= N(εj)
n+1

= (±1)n+1

= 1.

This holds because n is odd, so (±1)n+1 = 1. Since N(εj) = ±1, 1
N(εj)

= N(εj). Therefore, equation

(7.3.2) can be written as:
ε = ζN(ε1)a1 · · ·N(εr)

arηa11 · · · ηarr . (7.3.3)

By assumption, N(ε) = 1 and we know that N(ηj) = 1 ∀j ∈ {1, . . . , r}, so by taking the norm on both
sides of equation (7.3.3), we get:

N(ζ)N(ε1)a1 · · ·N(εr)
ar = 1. (7.3.4)

Since n is odd, by Corollary 7.2, ζ = ±1. If ζ = 1, then it’s obvious that N(ζ) = 1. If ζ = −1 and
σ1, . . . , σn, then by Theorem 3.13, N(−1) = (−1)n. Since n is odd, this is −1. Therefore, N(ζ) = ζ. By
replacing N(ζ) by ζ in equation (7.3.4) and plugging that into equation (7.3.3), we get equation (7.3.1),
which concludes the proof.

7.2 Algebraic Number Fields with Even Dimension

Lemma 7.4. Let K be a finite extension of Q with even dimension n. Then if ζ is a root of 1, N(ζ) = 1.

Proof. The theorem is obvious for ζ = 1. If ζ = −1 and σ1, . . . , σn are the conjugate functions of K,
then N(−1) = σ1(−1) · · ·σn(−1) = (−1)n. Since n is even, this is 1, so the theorem also holds for −1.
If s > 0, then by Lemma 7.1, the only roots of 1 are ±1, and then we’re done. So the only remaining
case is if s = 0.
If s = 0, then all conjugate functions of K are complex, so they’re divided into pairs σ and σ. Then for
any root ζ of 1,

N(ζ) = σ1(ζ)σ1(ζ) · · ·σt(ζ)σt(ζ)

= |σ1(ζ)|2 · · · |σt(ζ)|2

= 1 · · · 1
= 1.

Lemma 7.5. Let K be a finite extension of Q with even dimension n, and let D be an order of K. Then
D has a set of fundamental units η1, . . . , ηr with norm 1 such that any unit ε with norm 1 can be written
as

ε = ζηa11 · · · ηarr (7.5.1)

where ζ is a root of 1, for a unique choice of ζ, a1, . . . , ar.
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Proof. By Theorem 6.26, any unit ε of D can be written as

ε = ζεb11 · · · εbrr (7.5.2)

for a unique choice of b1, . . . , br, where ζ is a root of 1.
We can reorder the εj ’s such that N(ε1) = · · · = N(εk) = 1 and N(εk+1) = · · · = N(εr) = −1. Let
ηj = εj for j ∈ {1, . . . , k}, ηj = εjεr for j ∈ {k + 1, . . . , r} (note that ηr = ε2r). Then if j ≤ k,
N(ηj) = N(εj) = 1 and if j > k,

N(ηj) = N(εjεr)

= N(εj)N(εr)

= (−1) · (−1)

= 1.

Let aj = bj for j ∈ {1, . . . , r − 1} and a = br − br−1 − · · · − bk+1. Then equation (7.5.2) becomes:

ε = ζεb11 · · · ε
bk
k ε

bk+1

k+1 · · · ε
br−1

r−1 ε
br
r

= ζεa11 · · · ε
ak
k ε

ak+1

k+1 · · · ε
ar−1

r−1 ε
a
rε
ak+1
r · · · εar−1

r

= ζεa11 · · · ε
ak
k (εrεk+1)ak+1 · · · (εrεr−1)ar−1εar

= ζηa11 · · · η
ar−1

r−1 ε
a
r . (7.5.3)

By Lemma 7.4, N(ζ) = 1, and therefore if N(ε) = 1, by taking the norm on both sides of equation (7.5.3),
we get:

1 = N(ε)

= N
(
ζηa11 · · · η

ar−1

r−1 ε
a
r

)
= N(ζ)N(η1)a1 · · ·N(ηr−1)ar−1N(ε)a

= 1 · 1 · · · 1 · (−1)a

= (−1)a.

So since N(ε) = 1, a is even, so there exists ar ∈ Z such that a = 2ar. Therefore,

εar = ε2arr

=
(
ε2r
)ar

= ηarr .

By plugging this into equation (7.5.3), we get equation (7.5.1), which concludes the proof.

7.3 The Structure of the Set of Solutions to N(µ) = a

Theorem 7.6. Let K be a finite extension of Q of degree n = s+ 2t, let r = s+ t− 1 and let M be a full
module in K with coefficient ring D, and let a ∈ Z∗. Then there exist units η1, . . . , ηr of D with norm
1, and there exists a finite, possibly empty set of numbers µ1, . . . , µk each with norm a such that every
solution µ ∈M to the equation N(µ) = a can be written uniquely as

µ = µjη
a1
1 · · · ηarr for n odd (7.6.1)

µ = µjζη
a1
1 · · · ηarr for n even (7.6.2)

where j ∈ {1, . . . , k}, ζ is a root of 1, and a1, . . . , ar ∈ Z.

Proof. By Lemma 6.7, there are only finitely many associate classes that contain elements with norm a.
Let µ1, . . . , µk be representatives of these associate classes, where each µj belongs to a different associate
class. If N(µ) = a, then µ is associate with exactly one µj . Let ε = µ

µj
. Then N(ε) = 1, which by

Lemma 7.3 proves the theorem for odd n and by Lemma 7.5 proves the theorem for even n.
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