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Abstract

Prostate cancer is one of the most common types of cancer for men, making
proper diagnostic essential. Using machine learning as a tool to help in digital
pathology has become increasingly popular and helps to limit the high intra
observer variability between pathologists. Due to the many cases of prostate
cancer and the large differences between tumours, treatments have to be indi-
vidualized for each patient. The Active Surveillance was introduced for pa-
tients with low risk prostate cancer were treatment in the form of surgery or
radiation was deemed too invasive for the cancers current state. Instead the
progression is supervised and when, if ever, a certain threshold is surpassed
further treatment is discussed.

In this thesis it is investigated if a Convolutional Neutral Network (CNN) can
be trained to find high risk patients before pathologists can see cancer progres-
sion and if benign tissue holds vital information about future development. A
CNN was trained on two different datasets, the first containing all of the avail-
able data and the second only including the biopsies from the latest examina-
tion in a patient’s timeline.

The results indicate that the problem is hard and the biggest struggle has been
to limit the data without introducing new biases. The variability within each
class was seemingly large in relation to the possible underlying patterns con-
taining clues about the cancer making the accuracy low. Generalization was
overall bad but it was found that when combing the results to make a patient
grading, instead of grading individual biopsies, accuracies increased. Peak
performance was found when only training on the last biopsies and was for
the patient grading 67%. Although no outstanding results were found further
research has to be done in the area of predictive prostate cancer classification
in order to draw any final conclusions.

Keywords: Prostate Cancer, CNN, Deep Learning, PRIAS, Active Surveillance, Dig-
ital Pathology





Klassificering av högrisk-prostatacancer med hjälp av maskininlärning

Figur 1: Exempelbild p̊a hur de olika vävnadstyperna i datasetet
kan se ut. Med börjar uppe till vänster inneh̊aller bilderna;
bindväv, körtlar, cancer med Gleason grad 3 samt cancer med
Gleason grad 4.

Prostatacancer är den näst vanligast förekommande
typen av cancer för män i världen. Att ha tillg̊ang
till ordentliga och tillräckliga diagnostiseringsverktyg är
därför en avgörande faktor för hur väl v̊arden kan han-
tera och behandla patienterna. Idag används Gleason
gradering for att bedöma hur allvarlig cancern är. Meto-
den introducerades p̊a 60-talet och g̊ar ut p̊a att granska
hur välstrukturerade cellerna är och därmed definiera
stadiet av tumören.

För att undvika överklassificering av cancern och
därmed introduktion av invasiva och onödiga behand-
lingar finns det en studie som övervakar sv̊arigheten av
tumören. Patienter som bedöms ha en l̊agrisk cancer
som växer l̊angsamt och inte riskerar att sprida sig eller
bidra med sv̊ara symptom f̊ar vara med i en s̊a kallad
Active Surveillance (AS) där de f̊ar komma p̊a uppre-
pade besök och lämna biopsiprover. Om cancern sedan
bedöms ha utvecklats för mycket och medför en risk för
spridning f̊ar patienterna vidare behandling.

Sk̊anes Universitets Sjukhus har under tio år sam-
lat in ett dataset över patienter som medverkar i AS.
Målet med arbetet var att ta reda p̊a om det g̊ar att
använda maskininlärning för att prediktivt hitta pati-
enterna som löper större risk att utveckla värre cancer
och därmed även undersöka om den friska vävnaden in-
neh̊aller information kring hur cancern stagnerar.

Sedan idén att modelera den mänskliga hjärnan introducerades har metoderna och användningsomr̊adena
m̊angfaldigats. I takt med att datorerna förbättrats har maskininlärningen utvecklats och även blivit populär inom
medicinsk analys. Speciellt applicerbart för bildanalys är ett s̊a kallat Convolutional Neural Network (CNN) som
tar hänsyn till den spatiala strukturen i bilder. Det enda som behövs för träning av nätverket är ett dataset med
bilder samt deras förbestämda klass. Träningen utförs sedan genom optimering av de variabler som nätverket byggs
upp utav för att den slutgiltiga klassificeringen ska ligga s̊a nära den ursprungliga som möjligt.

Ett CNN har i detta arbete tränats p̊a urklipp med storlek 500×500 RGB-pixlar fr̊an n̊albiopsier tagna av
patienter med prostatacancer. Urklippen delades först upp i tv̊a olika klasser, de som fortfarande är aktiva i studien
och de som blivit exkluderade p̊a grund av att cancern försämrats. Tv̊a olika dataset har använts för att träna och
testa nätverket, först urklipp fr̊an alla tillgängliga biopsier och sedan enbart fr̊an de biopsier som togs vid varje
patients senaste provtillfälle.

Modellerna som presenteras i rapporten hade stora problem med att generalisera klassificeringen och hitta
relevanta drag i bilderna som skulle kunna beskriva framtida utvekling av cancervävnaden. N̊agra problem som
belyses i rapporten är sv̊arigheten i att begränsa datasetet s̊a att det inneh̊aller relevant information utan att bli
för partiskt samt hur tidsaspekten p̊a bilderna ska tas hänsyn till.
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LU Lund University
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Introduction

Prostate cancer was one of the most common types of cancer found amongst men world-
wide in 2018, as well as one of the types with the highest mortality rate [3]. Given these
statistics it becomes evident that fully functioning diagnostic tools are crucial for patholo-
gists when determining the appropriate treatment for each individual patient. However, it
has been concluded by several studies that the variability between pathologists’ classifica-
tions is large, leading to possible under- or over-grading of the malignant tissue and hence
assignment to the wrong treatment [26, 21, 6].

Another problem to tackle is the sheer amount of data that the pathologists have to go
through on a daily basis in order to find the suspicious sections of the biopsies. For a
standard diagnostic procedure a total amount of 10 needle biopsies are taken, only a couple
of these contain cancer cells and the malignant tissue cover only parts of the samples
making the pathologists spend a lot of time looking at benign tissue. Figure 1.1 shows
an example of a whole biopsy as well as an enlargement of it to illustrate the amount of
data in one needle biopsy of prostate cancer. Litjens et al. [25] introduced deep learning
as a tool to lighten the workload of pathologist by excluding images that did not contain
cancer cells with the help of machine learning, giving themmore time to focus on correctly
diagnosing the malignant tissue. They concluded that up to 40% of the biopsies containing
only benign tissue could be automatically identified.

Neural networks, because of their ability to study large amounts of data in a seemingly
short time, are helpful tools when it comes to classifying objects, specifically images [22].
Machine learning is a collective name wherein Artificial Neural Networks (ANNs) are a
subgroup. The main idea is that the network trains itself based on given data and opti-
mizes it’s parameters in comparison to predefined outputs. Incorporating machine learn-
ing in medical analysis has thus become popular and can hopefully, if used correctly, help
regulate data that has to be manually inspected and reduce inconsistency in diagnostic.
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1. Introduction

1.1 Background

The Prostate Cancer Research International Active Surveillance (PRIAS) study was intro-
duced in 2006 with the aim of reducing over-treatment of prostate cancer by supervising
patients with tumours that grow slowly yielding none to mild symptoms. Patients that are
classified with this type of low risk cancer can take part in an Active Surveillance (AS)
where they are scheduled for regular biopsies to monitor the state of their cancer. The goal
with the AS is to find anomalies in the tumours as quickly as possible without introducing
unnecessary and invasive treatments [2].

A research collaboration between Skåne Univerity Hospital (SUS) and Lund University
(LU) is in progress at writing time where the scope is to investigate how digital image
analysis can be used for optimization of Gleason grading, the leading diagnostic tool used
for prostate cancer. For SUS the project is denoted Digital Pathology for Optimized Glea-
son Score (DOGS-2) and is the latest of two projects sponsored by Vinnova. At LU the
project is a part of a collective base, Analytic Imaging Diagnostics Arena (AIDA), and
is called Decision Support for Classification of Microscopy Images in Digital Pathology
Using Deep Learning Applied to Gleason Grading. As a side study to this collaborative
project, SUS has collected a PRIAS cohort since 2007 resulting in a dataset containing
needle biopsies from 180 patients participating in an AS. Because of the long scope of the
study ground truth over how the patients’ cancer have progressed and whether they needed
treatment or not can be retrieved with approximate certainty. Since the labels of the data
correspond directly to the cancer progression, detailed annotations from pathologists are
not needed thus reducing the screening time for each patient.

A Convolutional Neural Network (CNN) is a type of Artificial Neural Network (ANN) that
is specialized in classifying images. Given a set of images and their respective labels the
network is trained to mimic the label given any of the input images. During the training,
like humans, the network finds features in the images that help them create knowledge over
how a certain type of image should look. The training is well defined using mathemati-
cal formulas, which are described in Section 2.4, and have the sole purpose of trying to
minimize the miss-classification. Because of the mathematical optimization the features
might be different from what we humans believe are good cues. Incorporating deep learn-
ing as a diagnostic tool might therefore help find features that are not yet used in cancer
classification but that contain significant information in the development of the tumours.

As previously described the AS was introduced to help diagnose high risk cancer in an
early stage to prevent eventual spreading and progression as soon as possible. Since it
is yet debated amongst pathologists whether cancer cells of Gleason grade 3 can have
metastases or not it is important to find the high risk patients as soon as possible to reduce
cancer spread without introducing unnecessary treatments.

This thesis aims to identify high risk prostate cancer in an earlier stage than only AS can by
predicting future development of the cancer using deep learning in the form of a CNN, i.e.
investigating if the seemingly benign tissue holds any vital information about the cancer.
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1.2 Previous Work

1.2 Previous Work

Previous work in the field of digitized medical image analysis of prostate cancer has been
focused on improving existing diagnostic tools by introducing automated Gleason grad-
ing in different forms. In 2007 Doyle et al. [6] published a paper stating that with the
use of a support vector machine classification of the four classes; benign stroma, benign
epithelium, Gleason grade 3 and Gleason grade 4, could be determined with up to 92.7%
accuracy. The extracted features for the model was based on textural patterns and graphs
over nuclear structures.

Källen et al. [19] and Gummeson et al. [14, 15] both used CNNs for automated Gleason
grading with increasingly accurate results, the scope focused on introducing interactive
tools for pathologists for lower inter observer variability. In [25] Litjens et al. introduced
deep learning as a tool to pre-process whole biopsy samples in order to automatically
exclude images containing all benign tissue.

Furthermore, Lee et al. [24] and Cordon-Cardo et al. [4] have studied how to incorporate
digital pathology in recurrence prediction after Radical Prostatectomy (RP). They both
concluded that benign tissue surrounding malignant areas held crucial information about
the progression of the cancer.
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1. Introduction

Figure 1.1: Comparison between a full needle biopsy sample
from the prostate and an enlarged section wherein the cellular
structures can be properly seen. The enlarged section contains
cancer cells of Gleason grade 3.
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2

Deep Learning

Deep learning is a collective name for all types of machine learning that is considered
deep i.e. that has multiple layers that are hidden from the user and contributes to the so
called "black-box" behaviour. This chapter aims to describe the relevant theory behind
the machine learning methods used in this thesis. Initially the more general models in-
cluded in ANNs will be described before more specific theory about how CNNs are built
is introduced.

2.1 Artificial Neural Networks

The idea behind machine learning is that, using some dataset, an artificial structure can be
taught to replicate outputs correlated with the individual inputs in the dataset. An ANN
is built up by perceptrons that contain weights determining the behaviour of the network
and that during training are optimized to label the data.

2.1.1 Simple Perceptron

As can be heard from the name, ANNs are constructed as to imitate the neural structure in
the human brain [13, p. 165]. Subsequently, the simplest part of a neural network, called a
perceptron, show close resemblance to actual neurons, both of which consists of an input
layer, some activation and an output layer.

Because of the complexity of the biological neuron the structure of the perceptron has
been simplified down to a straight forward mathematical formula, which can be seen in
(2.1). Hence, the output, y, is a combination of weighted inputs, xi, with wi being the
corresponding weight, evaluated with some activation function, ψ. The activation function
is most commonly a non-decreasing function that can be bound either from below or in
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2. Deep Learning

both directions. Since different neurons might have individual constant values, a bias is
introduced. To incorporate this in the summation in (2.1) we can denote x0 = 1.

y = ψ(
N∑

i=0

wi · xi) (2.1)

Figure 2.1 shows a graphic representation of the formula in (2.1), where the flow goes
from left to right.

1

w
1

y1

x2

x1

x3

w
2

w
0

w
3

ψ

OUTPUT

INPUT

Figure 2.1: A schematic representation of a simple perceptron
including bias and activation function.

2.1.2 Multilayer Perceptron

The Multilayer Perceptron (MLP) is a combination of multiple layers of simple percep-
trons, a schematic can be seen in Figure 2.2. Increased complexity in the architecture com-
bined with using non-linear activation functions is a way to model more involved functions
[12, p. 2628].

INPUT

HIDDEN LAYERS

OUTPUT

Figure 2.2: A fully connected MLP with two hidden layers.

The activation function determines the behaviour of the neuron. For description of non-
linear correlations between input and output, the activation function has to be non-linear
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2.2 Convolutional Neural Networks

as well. Since CNNs became popular, it has been concluded that Rectified Linear Unit
(ReLU), ψ(x) = max(0, x) is an efficient choice for hidden layers [22, p. 439] [5, p. 8610].

2.2 Convolutional Neural Networks

A CNN is a type of ANN that considers spatial dependencies in the different layers, mak-
ing it perfect for image analysis. In 1989 LeCun et al. introduced a method for digital
classification of the MNIST dataset, a collection of handwritten digits from 0 to 9 [23],
increasing the exposure of CNNs. Combined with the development in performance and
memory size for computers it became possible to train neural networks with deeper ar-
chitectures and higher complexity, giving birth to the new name deep learning. To better
understand how a CNN processes images, theory about the three primary layers of such
a network will be described; the convolutional layers, pooling layers and the final dense
layer.

2.2.1 Convolutional Layer

The convolutional layers of a CNN are used for extracting features from the input. Images
are essentially arrays with high spatial dependencies, meaning that if a pixel in an image
belongs to a tree it is likely that neighbouring pixels also belong to a tree as opposed to
a dog or a car. To exploit this characteristic filters, or kernels as they are also called, are
used in the convolutional layer and are essentially sparsely connected MLPs with shared
weights.

Multiple kernels of a smaller size than the input image, usually 3 × 3 or 5 × 5 pixels,
are moved across the input, i.e. convolved, to create a set of new images to be processed
by the next layer. For a deep system these convolutional layers are combined in order to
create larger structures of features. As described by LeCun, Bengio & Hinton [22] the first
layer often detects edges in different directions, the second layer then combines edges in
order to construct parts of objects. Further convolutional layers are used to assemble more
complex structures in hopes of finally separating images of different classes.

Mathematically the convolutional layers are 2-dimensional discrete convolutions, as can
be seen in (2.2). Here g and f represents the input and filter respectively and the indexation
represents the pixel in row i and column j [14, 22, 13].

yi j =
∑

m

∑
n

fi−m, j−ngm,n (2.2)

From this we can describe how the filtering works, namely, for every pixel in the input
image a kernel is multiplied with pixels in a neighbourhood of the original. The filter
size determines the neighbourhood which should be considered. As can be seen from
the summations in the equation, the filter is not directly multiplied with the image but
first flipped in both directions. However, for our intuition about filtering this holds no
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2. Deep Learning

significance, especially since an image of a dog is still an image of a dog even if it is
flipped upside down and left to right. Figure 2.3 shows a schematic over how the kernel is
convoluted with the original image.
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Figure 2.3: Example of a convolutional layer with no padding.
The represented filter is flipped in the schematic.

As previously described, a CNN is essentially a sparsely connected MLP where the spatial
dependency of the input images determines the connectivity of the network. This feature
reduces the parameters that need to be trained and reduces the risk of over-training.

The idea of using a CNN is that instead of manually constructing kernels, the network
itself can better determine the optimal values for the filters by training on a given dataset.
Specifying the location of a feature too precise will have no effect on the final classifi-
cation which is why filters of much lower dimensions than the input image are used [23,
p. 542]. To further generalize the exact position of a component, a pooling layer is used to
complement the convolutional layer described in this section.

2.2.2 Pooling Layer

Some generalization of object position is an important detail for image classification using
CNNs since a small tilt or zoom on the image should not change the results. However,
keeping the relative distances between features are of utmost importance since they later
make upmore complex structures deeper into the network [27, p. 94]. To utilize the images
spatial dependence without emphasizing exact locations a max-pooling layer is used.

Application of this layer entails an image reduction, defined by the size and spacing of
the pooling [22, p. 439]. The output is simply the maximum value encountered in the
neighbourhood where the pooling filter was applied.
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2.3 Classification
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Figure 2.4: Example of a 2 × 2 max-pooling layer.

2.2.3 Dense Layer

The final step of the CNN consists of a dense layer, i.e. a MLP that is fully connected.
Because the dense layer is added to the end of the network to classify the input, the number
of hidden layers and neurons will be decided by the complexity of the images. However,
constructing a more intricate network will make it more prone to over-fitting since the
CNN then adapts too well to the training set, making it bad at generalizing. Over-fitting is
a serious problem with deep learning, but can be avoided with the use of e.g. dropout [5],
this technique will be described in more detail later.

2.3 Classification

By adding the previously described layers together in different formations we can construct
a CNN. With each layer the intention is to reduce the dimensions necessary to describe
the input, from e.g. 500×500 RGB-pixels down to a single variable used for classification
of the images. Because of the complexity of the network and the non-linear activation
functions the input is transformed into a space wherein the classes can be linearly sepa-
rable. For a binary classification problem the sigmoid function, y(x) = 1

1+e−x [13, p. 65],
is used as output function and represents a probability of the input to belong to one of
the two classes, P(class 1). The probability for the other class can then be calculated as
P(class 2) = 1 − y(x). It is also worth to mention that it is possible to classify more than
two classes without much alteration. The biggest change is in the choice of output- and
loss-function, which will not be more thoroughly described.
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2. Deep Learning

2.4 Back-Propagation

The idea of modelling the learning process of the human brain has been around for many
decades but it was not until the introduction of back-propagation that ANNs became espe-
cially useful [27]. Back-propagation is an algorithm that is used during training to optimize
the network parameters to best describe the input data. For a CNN, in each training cycle
a number of images are sent through the network with randomly initiated weights return-
ing some output, y(xi), i indexes the input images and labels. After N images has been
evaluated by the network the results are compared to the ground truth labels, yi, via a loss
function. The loss is then back-propagated through the network to optimize the weights
and find better representations of the images [12, 22].

2.4.1 Loss Function

The binary cross entropy function, L(x), is a loss function that can be used to determine
the loss of a network, where x is the list of all images used for training, see equation 2.3
[20].

L(x) = −
1
N

N∑
i=1

yi log (y(xi)) + (1 − yi) log (1 − y(xi)) (2.3)

Since the goal is to minimize the loss function it becomes evident that the classification
y(xi) should be as close to 1 as possible if the true label is yi = 1 and close to 0 if the label
is yi = 0. N describes the number of images used in the current training batch and is used
for normalization of the loss [22].

2.4.2 Optimizer

The purpose of the optimizer is to change the weights of the network in a direction that
minimizes the loss function. The optimizer determines how the loss function should be
used for minimization of the error and therefore somewhat defines the properties of the net-
work. One of the simplest models for optimization is called Stochastic Gradient Descent
(SGD) and had been used diligently since the introduction of back-propagation [22, 13].

Stochastic Gradient Descent

Optimizing over all of the available training samples simultaneously has proven inefficient
and the stochastic approach of the gradient descent is therefore used. In this case stochastic
means that the training data is split into smaller batches and the optimization is done once
for each batch. A full epoch has run when every image in the training folder has been
evaluated once and the batch split is randomized for every epoch [13, ch. 8].
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2.4 Back-Propagation

The base of the SGD algorithm is simple, it uses the gradient of the loss function with
respect to the internal weights, θ j , to determine the direction in which the loss function
has the steepest descent. The weights are then updated and moved some small step in
that direction. The size of the step depends both on the learning rate, ε , and the gradient,
∆θ j,k. The algorithm is described in Table 2.1.

Table 2.1: Stochastic Gradient Descent

SGD Algorithm
Initial parameters θ j,0
Iteration index k = 0
For each batch in the epoch:

Sample mini-batch xk = {x1, x2 · · · , xN }

Compute gradient estimate ∆θ j,k = − 1
N

N∑ δE(xk)
δθ j,k

Update iteration k = k + 1
Update weights θ j,k ← θ j,k−1 − ε · ∆θ j,k

Here θ j,k represents the weights for layer j at iteration k and ε is the learning rate. The
error function for each layer is represented by E(x) where the output of the previous layers
has been put into the activation function of the current layer. The gradient for the binary
cross entropy loss function can be seen in equation 2.4. For each layer in the network the
gradient will be increasingly complex and the chain rule for derivation has to be utilized.

∇L(x) = −
1
N

N∑
i=1

(
yi

y(xi)
+

yi − 1
1 − y(xi)

)
y′(xi) (2.4)

A non-adaptive learning rate is used for simplicity but this is not feasible for applied opti-
mization since the method then would have trouble with convergence due to the vanishing
gradient close to the minima [13].

Other Optimizers

Other optimizers include Root Mean Square Propagation (RMSprop) and Nadam which
both are methods with adaptive learning rates. RMSprop keeps a running average of the
squared gradients for each weight to make the learning rate adaptive. Nadam is Adamwith
Nesterov momentum and works similar to RMSprop but additionally keeps track of past
gradients [7]. The momentum term keeps the algorithm going more or less in the same
direction as previously, this to prevent it from oscillating in a valley perpendicular to the
optimal descent direction. They both work well for image classification but Nadam tends
to find less extreme optimums because of its momentum term.
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2. Deep Learning

2.5 Regularization

As previously stated, over-fitting is a problem when the network or model becomes too
complex in relation to the available data. The relationship between the input and output
becomes reliant on measuring noise in the training set making the generalization to un-
seen images very poor. Regularization is a process where the relationship between input
and model is randomly changed to prevent over-fitting. Following are three regularization
methods used in this thesis.

2.5.1 Dropout

Dropout is a regularization method that removes a node in a hidden layer with the probabil-
ity p, example given in Figure 2.5. For each new training epoch random nodes are dropped
with the given probability and the thinned network is optimized [28]. The method can also
be seen as a type of ensemble technique where the output of multiple thinned networks is
used to approximate the input.

In a CNN dropout is only used for the MLP since the convolutional layer has substantial
weight sharing, reducing the over-fitting of the filters. For a CNN, Dahl et al. [5] describes
that dropout is best used in combination with the ReLU activation function for the hidden
nodes.

INPUT

HIDDEN LAYERS

OUTPUT

Figure 2.5: An example of a thinned network after applying
dropout with p = 0.5 to a fully connected MLP.

2.5.2 Image Augmentation

Another way to prevent a network from becoming over-trained is to introduce augmenta-
tion on the training images so that each epoch a new version of the same image is seen.
This includes rotations, mirroring and shifts in height and width. Figure 2.6 shows an
example from the dataset.

12



2.5 Regularization

Figure 2.6: Example of how one image from the dataset might
be augmented during training. The first row corresponds to the
4 rotations with 90 degree angle and the following row contains
mirrored representations.

2.5.3 Early Stopping

A third way of preventing over-fitting and keeping the model generalized is the incorpo-
ration of early stopping. To utilize this tool a validation set has to be included during
training in addition to the training dataset. After each training epoch the validation dataset
is sent through the network and the loss and accuracy is measured. If the loss for the train-
ing data keeps descending each epoch while the validation loss starts to increase it is a
sign that the model has become too closely fitted with the specifics in the training set and
training should therefore be stopped even if the desired number of epochs has not been
executed. Afterwards one can restore the weights of the model where the network was not
yet over-trained in order to obtain the best configuration.
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3

Cancer Diagnostic

Prostate cancer was the second most common form of cancer for men in 2018 [3]. Com-
bined with the increase in patient specific treatments and images containing non-malignant
tissue highly increases the work load for the pathologists [25] making it desirable to au-
tomate the process. This section will describe current diagnostic tools and connect tradi-
tional and digital pathology.

3.1 Gleason Grading

Classification of prostate cancer has been done more or less the same since the 1960s when
the Gleason grading first was introduced. The grading is based on architectural patterns of
the malignant tissue samples, where a higher grade indicates less structure in the cellular
patterns and a maximum of 5 can be given. Since its introduction it has been concluded
that Gleason grades 1 and 2 cannot properly be determined through needle biopsy and is
therefore considered as benign tissue [8, 10]. Figure 3.1 shows a schematic over how the
cellular structures are divided for the different grades.

The final Gleason score for the entire biopsy sample is given as a sum of the two primary
patterns which are: the most common type of cancer cells and the highest occurring Glea-
son grade different from the primary grade. If the biopsy only contains one pattern or the
second composes less than 3% of the sample the primary score is doubled [18]. Since this
method leads to a Gleason score between 6 and 10 for all cases it was in 2014 proposed that
the grading should be divided into 5 groups that better differentiated the scoring [9, 11],
Table 3.1 shows the updated grading groups ranging from 1 to 5.

Table 3.1: The updated grading groups based on Gleason grading

Group 1 Group 2 Group 3 Group 4 Group 5
total sum of 6 or less 3+4 4+3 total sum of 8 total sum of 9-10
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3. Cancer Diagnostic

Figure 3.1: Schematics for the updated Gleason grading system
done in 2005, demonstrates the cellular structures for the five grad-
ing stages where the darker parts have higher nuclei density. Image
modified from [1].

3.2 Hematoxylin-Eosin Staining

Themost commonway to visualize the cellular components of the biopsies is byHematoxylin-
Eosin (H&E) staining before the microscopic analysis [16]. Hematoxylin stains the nuclei
blue whereas eosin stains the cytoplasm and connective tissue pink making the classifica-
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3.3 Cancer Recurrence

tion into Gleason scores possible. However, even if H&E is a proven method, variations
in saturation, tissue sample and staining duration change the appearance of the samples
complicating automation of the classification process [15]. Figure 3.2 shows examples of
how the staining might differ both in the gland structure and stroma.

Figure 3.2: Example of how the H&E staining differs in the
dataset.

3.3 Cancer Recurrence

Another part of cancer diagnostic is determining the risk for cancer recurrence after even-
tual treatment. Radical Prostatectomy (RP) is an operation to remove the entire prostate
and closely surrounding tissue. As many as 40% of patients with a successfully performed
RP will experience some sort of recurrence; rise in Prostate-Specific Antigen (PSA) level,
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3. Cancer Diagnostic

local, or distant recurrence and cancer death. Lee et al. [24] preformed a preliminary study
in 2017 where they used machine learning to try to predict the recurrence rate based on
biopsy samples, PSA levels, Gleason grade etc. They concluded that the best predictive
model did not only consider tissue samples with malignant cells but incorporated benign
tissue surrounding the cancer to better estimate the recurrence rates.

Similarly, Cordon-Cardo et al. [4] performed a study where they used random forest clas-
sification in order to determine recurrence rates. In their research they included graphs
over nuclei positions for best prediction and reached a concordance index of 0.82 in the
validation set. The concordance index is a measure used in survival analysis and logistic
regression, also known as area under the ROC curve, where a score of 1 indicates that the
model fits the test data perfectly and 0.5 indicates randomized outputs [17, p. 161-164].

3.4 Digital Pathology

The inter observer variability between the Gleason grading of different pathologist has
proven to be high and is thus a problem when it comes to assignment to the correct treat-
ment [21, 26]. Variability in classification combined with huge amounts of data, in the
forms of images, makes the process especially desirable to automate. Researchers have
investigated how CNNs can be incorporated in the grading to reduce miss-classifications
and lighten the workload for pathologists. Litjens et al. [25] concluded that as many as
40% of the benign biopsy samples could be excluded from inspection with the use of a
neural network.

Similarly, Gummeson et al. [15] and Källen et al. [19] presented results that supported
the usage of machine learning as a tool for prostate cancer classification. Their respective
networks reach a peak performance at 92.3% and 89% in correlation with the assigning
pathologist. These accuracies can be compared to results presented by Lattouf et al. [21]
where the accuracy between pathologists when comparing Gleason scores from needle
biopsies with scores of the entire prostate after RP stayed at 48.2%. However, note that the
presented numbers should be considered carefully since the results are based on limited
datasets and might not generalize to new data.
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4

Dataset

The dataset is a PRIAS study [2] aimed to better generalize low and high risk cancer by
followingmen with early-stage cancer under AS and is supplied by SUS. For a patient to be
eligible for AS there can be cancerous tissue in no more than 2 biopsies with a maximum
classification of Gleason group 2, see Table 3.1. If the cancer has grown in following
biopsies the patient is excluded from the cohort and gets further treatment in the form
of radiation therapy or surgery (RP). The study has been approved by the Local Ethics
committee at Lund University no. 708/2008. This includes the use of the dataset for the
present study.

The cohort on which the network was trained contains H&E stained needle biopsies from
79 patients with about 10 biopsy samples per test and between 1 and 7 recurrent tests during
the years 2007-2018. For this project the images have been saved at 10x enlargement with
a resolution of 500×500 RGB-pixels. Up to five images has been retrieved from every
biopsy and the total number of available biopsies was 2300. Each patient belonged to
one of two classes depending on if they were still active in the AS or not and the data
was labeled accordingly. 39 patients were active in the AS and 40 were excluded, thus
classified as high risk patients. Figure 4.1 shows examples of the most common cellular
patterns that can be found in the dataset.
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4. Dataset

Figure 4.1: Images from the dataset with different types of cel-
lular patterns included. Top left; benign stroma, top right; benign
glands, bottom left; Gleason grade 3, bottom right; Gleason grade
4.
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5

Method

Because of the large amount of biopsies available the first step was to decide how to ap-
proach the data. This step was important because we did not want to introduce any new
biases by showing the network what to focus on but at the same time the data had to contain
relevant information for the problem at hand. For all of the following datasets the chosen
biopsies were sent through a script where a maximum of five patches of size 500 × 500
RGB-pixels were extracted. The extraction was solely chosen based on thresholding to ex-
clude images with too large white areas as well as images where the staining had become
too faded in relation to other biopsies.

We ended up testing two different datasets. Firstly, the network was trained on all the
available data where no images were discriminated based on where in the patients timeline
they were taken. The second try was based on data only from each patient’s latest available
biopsies. These images are namely the basis for the pathologists when choosing to give
some patients further treatment and the classification is thus known to be feasible.

5.1 Network Training

Before training the network each dataset was split into three subsets: train, validation and
test. The purpose of splitting the dataset was to make sure that the model did not over-train
and to test the generalization of the network. During training the train dataset was used
when optimizing the loss function and the final loss and accuracy of an epoch is a weighted
sum of each of the batch optimizations. The validation set was sent through the network
at the end of each epoch to validate that the optimization has not biased too much on the
train-images and early stopping was used.

After patch extraction on the full biopsies the only pre-processing that was done was image
augmentation and colour normalization. The patches in the train and validation dataset
were augmented. For the first dataset the patches were randomly mirrored horizontally
and vertically before each epoch and for the second dataset each patch was additionally
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5. Method

rotated four times each with 90 degree angles. Colour scaling was done from (0, 255),
which is the colour range for an RGB-image, down to (0, 1), i.e. division with 255.

5.1.1 Network Architecture

The CNN used for classification of the images belonging to one of the two following
classes, active (denoted as class 0) and excluded (denoted as class 1), was constructed with
Keras, an open source library implemented in Python [20]. When designing the network
the number of convolutional and max-pooling layers was altered as well as the number of
kernels in each layer and the optimizer.

5.2 Post-processing

After the network was trained, prediction and evaluation was performed on the test images.
Further post-processing was done to better estimate the progression for each patient. Since
each biopsy had multiple patches the full biopsy score was determined as an average of
the predicted labels for the patches belonging to that biopsy. Finally a patient grading was
done where the grade was an average based on the biopsies.

5.2.1 Accuracy Measures

In order to understand the importance of the results a few additional accuracy measures
are introduced. For binary classification one can use the following terms to describe the
two classes:

• True Positive (TP) correctly classified 1

• False Positive (FP) classified as 1 but belongs to class 0

• True Negative (TN) correctly classified 0

• False Negative (FN) classified as 0 but belongs to class 1

Accuracy

The accuracy is determined as the sum of correctly classified cases divided with the total
number of tested images.

Accuracy =
TP + TN

TP + FP + TN + FN
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5.2 Post-processing

Confusion Matrix

An important feature to illustrate during testing is the miss-classification for each of the
classes. The rows of the confusion matrix represent the two actual classes and the columns
specify the label as supplied by the network. Optimally, the matrix would therefore have
all non-zero elements on the diagonal.

Predicted class

True class TP FN
FP TN

Precision and Recall

The precision and recall measures the relevancy of the predictions. Precision can be de-
scribed as: fraction of the selected instances that are relevant, and recall as: fraction of
relevant instances that are selected. For measures for class 1 the positive and negative
terms change positions.

Precision =
TP

TP + FP

Recall =
TP

TP + FN
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6

Results

The architecture for all of the presented networks is the same and can be seen in Figure 6.2.
There are 6 sections of convolutional and max-pooling layers followed by a sparsely con-
nected MLP with dropout and finally the net is flattened and fully connected with the
output node. The kernels for the convolutional layers has size 3 × 3 except for layer C8
where the kernel is of size 1 × 1. Max-pooling was done over a region of 2 × 2 pixels.
ReLU was used as an activation function for all layers except for the output which has a
sigmoidal function for classification and the loss function used was binary cross entropy.
The training batches were of size 32 patches. There were a total of 150 353 trainable pa-
rameters in the net. Early stopping was used for all models with a patience of 15 epochs
where after the best network was restored.

6.1 Networks

Two separate experiments were performed with different datasets, the first containing
patches from all available images, hereon referred to as all images, and the second only
containing patches from the latest available biopsies of that patient, referred to as last
biopsy.

6.1.1 All images

The best performing network during training of all images is denoted Net 1 and Table 6.1
shows the accuracymeasures for this model. Themodel was first optimized with RMSprop
and finally fine-tuned with Nadam. 816 patches were used in the train set and 260 in the
validation set. Testing was done on two datasets, the first containing images from the
same biopsies that were included in the training set, consisting of 271 patches, and the
second only containing images from unseen biopsies, a total of 1400 patches. Figure 6.1
displays the loss and accuracy measures for the train and validation dataset during training.
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6. Results

Confusion matrices for the two tests performed on all images can be seen in Table 6.2 and
6.3.

Table 6.1: Measures for network 1 trained on all images. Test 1
contains images from the same biopsies as in the training dataset
and test 2 only unseen biopsies.

Measure Test 1 Test 2
Patch accuracy 0.79 0.47
Loss 0.43 1.46
Precision 1 0.77 0.45
Recall 1 0.68 0.19
Biopsy accuracy - 0.47
Patient accuracy - 0.65

train

val

train

val

Figure 6.1: Loss and accuracy plots for model 1.
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6. Results

Table 6.2: Confusion matrices for net 1 on all images.

Test 1 Predicted class

True class 75 35
22 139

Test 2 Predicted class

True class 133 580
164 523

Table 6.3: Confusionmatrix for test 2 showing the patient grading
for all images.

Test 2 Predicted class

True class 2 4
3 11

6.1.2 Last biopsy

For this experiment the number of patches available for the different datasets were: train
- 1119, validation - 560 and test - 383. Two models are presented to show the results for
the second experiment, Net A and Net B, and their respective accuracy measures can be
seen in Table 6.4. RMSprop was used as an optimizer for both nets. Figure 6.3 and 6.4
show loss and accuracy for the train and validation sets during training. The test set for
all presented results only contain images from unseen biopsies and patients to remove all
bias from individual gland structure of patients. Confusion matrices for patch prediction
and patient grading respectively can be seen in Table 6.5 and 6.6.

Table 6.4: Measures for the networks trained only on last biopsy
images.

Measure Net A Net B
Patch accuracy 0.577 0.551
Loss 0.772 0.682
Precision 1 0.89 0.42
Recall 1 0.53 0.52
Biopsy accuracy 0.595 0.560
Patient accuracy 0.667 0.667

Table 6.5: Confusion matrices for the two models trained only on
last biopsies.

Net A Predicted class

True class 159 19
143 62

Net B Predicted class

True class 75 103
69 136
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6.1 Networks

Table 6.6: Confusion matrices for the final patient grading with
model A and B.

Net A Predicted class

True class 4 0
3 2

Net B Predicted class

True class 1 3
0 5

train

val

train

val

Figure 6.3: Loss and accuracy plots for model A.
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train

val

train

val

Figure 6.4: Loss and accuracy plots for model B.

30



6.2 Layers

6.2 Layers

To illustrate what the kernels in networks A and B focus on, one of the images from the
test set was sent through layer C1 and M1 in the two nets. The original image can be
seen in Figure 6.5. It was chosen since it contains areas of stroma, glands, both semi-
structured and with low structure, as well as background. Furthermore, it represents the
most common staining colours in the dataset. The label for the image is 0.

Figure 6.5: The original image sent through C1 and M1 of net A
and L.

Figure 6.6 and 6.7 shows one of the images in the test set after the first convolutional layers
of network A and B has been applied to it.
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6. Results

Figure 6.6: The first layer convolution from net A applied to one
of the test images. The grey scale has been modified for better
illustration of the features.
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6.2 Layers

Figure 6.7: The first layer convolution from net B applied to one
of the test images. The grey scale has been modified for better
illustration of the features.
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7

Discussion

The general scope of the thesis was to predicatively identify high risk cancer and investi-
gate whether the benign tissue holds any vital information of the progression of the cancer
or not. As the results indicate the classification was not trivial, although the nets seemed to
learn something the models were not good at generalizing. Several tests were performed
but none with results even remotely close to be of clinical use and only a few better than
guessing, making the inter observer variability between pathologist small in relation. So
why is the problem so hard? Is it only due to the difficulty in the dataset or more closely
connected with the model choice and pre-processing of the data?

The first problem was how to handle all the data. Initially, all of the images were used, ran-
domly distributed over a full needle biopsy, with no further weights introduced on where
in the patients timeline they were taken. Because of the progression over time for each
patient the latter images contain more up to date information meaning that they should be
able to become more accurately classified and thus have larger importance during training.
However, this statement is only derived from current diagnostic tools used by pathologists.
Since the scope was to construct a predictive model we wanted to introduce as small a bias
as possible based on current knowledge. The results from the all images dataset, tested
on biopsies from the same biopsies as used for training, reached a maximum accuracy of
0.79. When more test samples were introduced and the test folder no longer contained
patches from the same biopsies the accuracy dropped notably and stabilized around 0.5,
meaning that it performed no better than guessing. An interesting fact can be derived from
this, the staining for each biopsy introduces difficulties when it comes to automation of the
process and that the differences in the cellular patterns of each patient contain variations
that suppress possible cancer progression cues.

Furthermore, when studying the relevancy of the results in Table 6.1 we can see that less
than 20% of the relevant instances of class 1 were correctly classified. This indicates that
certain non-relevant features for the class selection was more prevalent in the training set
for class 1 making the network focus on unwanted class separators. Another reason might
be that the net was only able to find interesting sections in one fifth of the images due to
the many images containing benign tissue far from any cancerous cells, indicating that the
progression could not be seen here. To investigate which of the two possible facts being
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7. Discussion

the underlying reason for the low recall, biopsy and patient grading was introduced.

In Table 6.1 we can see that when combining all of the patches from one biopsy and
averaging the results the accuracy does not change notably. For the patient grading the
accuracy increases slightly but if we analyse Table 6.3 it is clear that the higher accuracy
corresponds to a higher precision and recall for class 0 and not for the class 1 which we
are interested in. Thus, we can conclude that network 1 cannot find any relevant features
for the separation of the two classes if not introduced to the particular patient beforehand.
Consequently, the dataset had to be constrained in some sense before further testing.

The second experiment was instead performed with patches only extracted from biopsies
from the last available sample series, mainly because these were used by pathologists when
deciding if the patients should be included in the AS or excluded and given further treat-
ment. In other words, current diagnostic tools can spot large enough differences in the
cellular patterns to make informed decisions about the cancer progression in these im-
ages. Using a dataset that was known to be separable into two classes could help us find
important features for this separation. However, as the results indicate the model could not
find any strong correlations even for patient gradings, see Table 6.4.

Since the pathologists use simple count of cancer occurrence in the biopsies as well as
Gleason scores it would be reasonable to believe that it would not be until the final patient
grading that the true score could be determined, particularly for patients with low Gleason
scores that were excluded due to too many biopsies containing malignant tissue. The low
precision and recall measures for class 1 in Table 6.4 indicate that non-relevant features are
found in the dataset and out weight potential progression factors even if we tried limiting
the dataset. Additionally, since patients with higher Gleason scores than 3+4 were all
excluded, i.e. all part of the same dataset, it is evident that the network does not find and
focus on gland structure of the cancerous tissue. Again, restraining the dataset would be
needed in order to find relevant features.

Additionally, if we analyse the accuracy and loss plots for all of the three models the con-
vergence of the curves for the train and especially validation set is highly irregular. This
might suggest over-fitting to the training set and also that there is too little data to create a
model that properly generalizes the classes.

For network 1 we can see that after about 30 epochs the loss function suddenly experiences
a high increase in value. Due to the fact that the model uses smaller batches for optimiza-
tion it is possible that the updated weights are moved in an unlucky direction where the
overall loss increases. The choice of optimizer further determined how well the model
recovers after such an incidence. Here Nadam is used and the momentum term might
decrease the convergence rate so that early stopping comes into play before the loss has
relocated to its lowest value.

Studying Figure 6.6 and 6.7we can seewhat parts of the image the different layers focus on.
Both for network A and B we can see that half or less of the kernels in the first layer focus
on large reoccurring patterns such as stroma, background and gradients. Instead most
kernels target smaller, less prevalent arrangements making a majority of the convoluted
images almost entirely black with a few white dots. When comparing the original image
with the convoluted representations we can see that most of the small patterns are edges
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in certain angles and between strict colour-layers. The strong fixation of particular colour
combinations might be one contributing factor why the network has trouble generalizing,
especially if that exact colour combination was not used during training as it was for the
first test with the all images dataset.

If we compare general patterns in Figure 6.6 and 6.7 we see that network B endorse larger
general patterns whereas net A has a stronger focus on edges in different formations. More-
over, we can see that there are several convoluted images in both nets that are entirely black.
One possible explanation for this is that the network is too large in relation to the dataset
and that it over-trains on non-relevant features in the train set. Additionally, the respective
kernels might be correlated with other colour combinations than the ones present in the
original image in Figure 6.5. Reinforcing this statement is the fact that multiple convoluted
images in Figure 6.6 and 6.7 are sparse and only have very few points with high intensity.
This implies that, although rare in this particular image, there are relevant colour combi-
nations in the train dataset that correspond to these filters making it credible to believe that
there exists multiple such patterns, thus emphasising the importance of coherent staining
when using digital pathology.

The models presented in Chapter 3.3 that were able to predicatively classify cancer recur-
rence after RP only incorporated benign tissue closely surrounding the malignant tissue.
It is possible that progression only can be seen in benign tissue that lie close enough to
the cancer cells both spatially and temporally. When not restricting the patches enough
the in class variability was perhaps too large for the model to be able to find underlying
predictive features for progression.

Following, it might not be appropriate to use randomly extracted patches for classification
but instead focus on interesting areas such as cancerous regions or glandular structures.
To properly determine which sections contain such interesting information it would make
sense to let pathologists study and try to classify these biopsies thus also making the results
comparable with human diagnostics.

Even if the final score of the patients for the second dataset indicate low correlations the
train and test folders should contain more samples in order to produce more substantial
results. As stated in section 2.5 CNNs tend to over-fit if they are given too much room to
bend to the training data but they also rely on the dataset being large and diverse enough in
order to generalize properly. Time was a limiting factor when writing this thesis constrain-
ing the amount of available data to around half the AS cohort from SUS. Incorporating all
180 patients would hopefully make the model fit better hence giving more reliable results.

Conclusively, the presentedmodels were not able to predicatively determinewhich patients
that would in time get high risk cancer progression. Even as Gleason grading has its
restraints and the inter observer variability between pathologists is high this thesis was
not able to find any alternative cellular structures that could be used in clinical medical
analysis to help with diagnostics.
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7. Discussion

7.1 Future work

Since it has not, to the author’s knowledge, been tested to make a predictive model for the
AS cohort there is a lot of research that is still to be done. Firstly, restricting the dataset
to only contain malignant and closely surrounding benign tissue might help the network
focus on relevant patterns to correctly split the classes instead of finding larger patches that
are present in both but favourable for one due to more instances in the training data.

Furthermore, since the introducedmodel did not find Gleason grading of importance when
predicting the outcome it might be fitting to ensemble multiple networks, biased on dif-
ferent things such as Gleason grade, nuclei density and relevancy based on the current
patients timeline, to create a true patient grading.

Finally, it should be investigated how the images could be used in a time series for better
predictions. It is reasonable to believe that how the tumours development over time differs
for high and low risk cancer and that the same tumours could be seen in multiple longitu-
dinal biopsies. However, for this to be possible more test subject need to be included in the
dataset to restrict over-fitting of the available patients. Additionally, detailed annotations
over cancer cells and their positions would be needed.
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