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Abstract

Neurodegenerative diseases such as Parkinson’s can be treated with stem-cell derived

specialized neurons. In order to achieve precise directed neural differentiation in vitro

we need to understand the gene regulatory mechanisms behind in vivo neural tube

patterning. We implement a 3D computational model of brain patterning to simulate

this process. The mathematical model is set up by unifying two existing gene regulatory

network models for patterning of the dorsoventral and rostrocaudal axes on the basis

of WNT-signaling. A custom Python-based simulation tool was implemented in order

to accurately simulate reaction-diffusion equations and signaling secretion sources. We

discuss the validity of the implemented model and explore its properties in two different

geometries. We find a possible correlation between dorsoventral patterning and vesicle

formation as well as a segment in which fore-, mid- and hindbrain expression are stacked

dorsoventrally. Furthermore, we identify a need for an adaption of one of the networks

to signal exposure time. While it is hard to make any specific predictions for in vitro

differentiation at this point, we have created a working fundament for future insights

using our simulation tool and a more extensive mathematical model.
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Popular Science Summary

In this work we simulate an important process of early embryonic neural development

in three dimensions using gene regulatory networks (GRN). A GRN describes the in-

teraction of chemical switches that keep a cell in its state or make it specialize to a

specific type, e.g. neurons, using differential equations. Our aim is to make predictions

on how we can direct neural cell specialization in the lab based on this model and the

simulation tool we developed. These specialized cells can be used in various medical

applications, for example to treat neurodegenerative diseases like Parkinson’s. Com-

putational and mathematical modelling and simulation comes with the advantage of

reduced cost in comparison to experiments and it also allows us to understand the logic

behind biological activities. The latter would not be possible without computational

aid, since such processes often involve millions of molecules and even more complicated

interactions. In this project we implement a 3D simulation program that models the

GRN involved in early neural tube formation.

Populärwissenschaftliche Zusammenfassung

In dieser Arbeit simulieren wir einen wichtigen Prozess der frühen neuralen Embryona-

lentwicklung in drei Dimensionen mithilfe von genregulierenden Netzwerken (GRN).

Ein GRN beschreibt die Wechselwirkung zwischen chemikalischen Schaltern, welche die

Zelle in ihrem Zustand halten oder sie zu einer Spezialisierung, z.B. zum Neuron, veran-

lassen, unter Nutzung von Differentialgleichungen. Unsere Hoffnung ist, dass mithilfe

des von uns entwickelten Modells sowie des Simulations-Tools in Zukunft Vorhersagen

darüber getroffen werden können, unter welchen Bedingungen Zellen sich im Labor

zur neuralen Spezialisierung veranlassen könnten. Solch spezialisierte Zellen können in

verschiedenen medizinischen Gebieten Anwendung finden, z.B. um neurodegenerative

Krankheiten wie Parkinson zu behandeln. Numerisches und mathematisches Model-

lieren und Simulieren hat einen deutlichen wirtschaftlichen Vorteil im Vergleich zur

Laborarbeit und erlaubt uns außerdem, die biologischen Prozessen zugrunde liegende

Logik zu verstehen. Letzteres wäre ohne die Hilfe eines Computers nicht möglich, da

solche Vorgänge oft Millionen von Molekülen und noch mehr komplizierte Interaktio-

nen involvieren. In diesem Projekt implementieren wir ein 3D Simulations-Programm,

welches die an der frühen Formation des Neuralrohrs beteiligten GRN modelliert.
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1 Introduction

”What is found in biology is mechanisms,

mechanisms built with chemical components and that are

often modified by other, later, mechanisms added to the

earlier ones.”
—Francis Crick

Of all the cell types found in the human body, neurons display the greatest diversity

of structures, function and genetic makeup [1]. In fact, the multitude of neural vari-

ants just in the brain is so vast that biologists are still struggling to devise an adequate

classification system [2]. Unfortunately, it is with this incredible variety that science is

also faced with a great amount of devastating neurological disorders and illnesses, such

as Alzheimer’s disease, multiple sclerosis or Parkinson’s disease; many of which were

deemed incurable for a long time [3]. In 1981, the first identification and successful

culture of mouse embryonic stem cells offered a new solution [4]. Stem cells are self-

renewing cells that can give rise to any other type of cell in the body [5]. This makes

them incredibly well suited as candidates for a treatment of neurological, especially

neurodegenerative, disorders: a transplantation of new, healthy neurons generated in

vitro, possibly even from the patient’s own stem cells, could replace what was lost to

the illness.

Today, almost 40 years later, several research groups have indeed successfully achieved

partial recovery e.g. in parkinsonian monkeys and rats using exactly this method [6] [7].

There are however still some obstacles preventing us from safely translating the proce-

dure from animal models to clinical application. One of the main issues is the reliable

specialization, or differentiation, of stem cells into the required cell type. For exam-

ple, in Parkinson’s disease, the dopamine-producing (dopaminergic) neurons from the

substantia nigra of the brain undergo pathological deterioration. A successful therapy

approach would therefore entail directed differentiation of stem cells into dopaminergic

neurons. While experimental protocols to this end have been implemented already [8],

they still suffer from issues such as sample impurity [9]. This is because the compli-

cated underlying epigenetic processes of neural differentiation are not yet fully known

– only when we really understand the mechanisms that we find in vivo will we be able

to accurately implement and modify them.

This thesis aims to improve our understanding of one of the very early, but very im-

portant cell specification activities: the early patterning of the anterior human neural

tube into different brain cell progenitors. The neural tube is - as the name suggests -

a tubular structure that forms around three weeks post fertilization in the vertebrate

7



embryo [5]. Cells at the head end of the tube are responsible for giving rise to all

types of brain cells during further development – including e.g. the aforementioned

dopaminergic neurons. In order to control this complex but nonetheless self-organizing

process from early on, cells are predisposed towards their respective developmental

paths. This predisposition is mainly controlled by cell position, which is why we subdi-

vide the brain into fore-, mid- and hindbrain. For example, cells that acquire forebrain

progenitor identity will not give rise to dopaminergic neurons, but midbrain progenitor

cells will [8]. Progenitor character does not necessarily have to show under a microscope

as a change of structure of the cell, but can just mean the expression of certain genes.

Figure 1: Human embryo
at 24 days (dorsal view),
clearly showing the neural
tube along the length of
body [10].

This process of predisposition according to location

is what we call patterning. Since cells have no di-

rect way to ’see’ their positional information, na-

ture often utilizes the release of protein signals from

some source. Such a signal can diffuse through

the tissue and thereby form a concentration gradient.

Within each cell, a system regulating genetic expres-

sion and thus protein synthesis then reacts according

to the signal concentration, and patterning is achieved

[5].

The exact mechanisms of genetic regulation and signal-

ing involve millions of molecules and are thus impossible

to comprehend on that level of detail. We can however

model the underlying logical circuits using ordinary dif-

ferential equations. In this project we will combine two

previously suggested models of gene expression along dif-

ferent axes of the neural tube and simulate the resulting

patterning in three dimensions.

Our main objective is to build a model that makes accurate predictions on the dif-

ferentiation behaviour of neural tube cells and hence helps us find new experimental

protocols for that purpose, e.g. in order to be able to cultivate purer dopaminergic

neuron transplants. To that end, we need to find a connecting element between existing

models and explore how the simulated behaviour of the unified system compares to in

vivo observations.

The second main goal of the project is the development of a computational tool to

simulate the processes described above. This program needs to be able to take three-

dimensional shapes as well as specific secretion locations as input and numerically solve
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reaction-diffusion equations within these boundaries. In the future, this could possi-

bly be applied to many of the various different patterning processes found in biology [5].

In the course of this thesis, we will at first give a more detailed introduction to the bi-

ological background and the two models used in section 2. The main results, including

the simulation tool, the unified model and simulations with two different geometries,

are discussed in section 3 and a conclusion is given in chapter 4. We will then explain

the computational and physical methods used in the simulation in chapter 5. Some

acknowledgements can be found in section 6. Finally, additional information as well as

supplementary figures can be found in appendix 7.
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2 Background

One of the greatest wonders of biology is how entire organisms can emerge from just

the combination of a sperm and an egg. The sheer complexity of the human body

shows us that this must require a great amount of organization and structuring even

from the earliest stages of embryonic development on. The cellular system that we

model in this thesis, the neural tube, is an important part of the vertebrate embryo

and responsible for the formation of the central nervous system (CNS). To achieve

the best understanding of the involved biophysical processes, we are going to outline

the very early stages of in vivo human prenatal development with emphasis on neural

tube formation. All developmental stages will be specified by an approximate number

of days (d) after conception (which might vary between embryos) according to [11],

[12] and [13]. Nomenclature guidelines from [14] are followed - gene symbols will be

written in italic (Shh), protein symbols are non-italicized (Shh) and symbols will be in

uppercase if they are human-specific (e.g. SHH or SHH).

2.1 Early Human Embryogenesis and Neural Tube Formation

From the egg to the neural tube

In order to understand the process of neural tube formation one has to begin by ex-

ploring early human embryogenesis, which begins with fertilization (0d) and ends with

the formation of the neural tube (26d).

17 days after fertilization, following days of cleavage and implantation, the embryo

undergoes a major change: the formation of the three germ layers, also called gas-

trulation. During this process, the embryonic disk divides into three layers (ecto-

derm,endoderm,mesoderm) responsible for giving rise to different types of tissue during

further development. The top layer, the ectoderm, is responsible for the formation of

skin and the central as well as peripheral nervous system and thus of most relevance

for this thesis [5].

After germ layer formation, the neural plate is formed during a process called neural

induction (18d, see Figure 2). The neural plate appears as a kind of thickened oval part

of the ectoderm and consists of a morphologically homogeneous sheet of epithelial cells.

On around the 20th day, neurulation begins: a furrow – the neural groove – appears on

the neural plate and starts to deepen, while the surrounding neural plate tissue folds

upwards until the left and right side meet to form a hollow tube which we call the

neural tube [15]. (In the human embryo, this complicated, failure-prone closure process

happens at different times for different locations and takes up until day 28. Closure
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defects can lead to serious conditions such as spina bifida.) On a cellular level, the cells

change from a cuboidal shape to elongated, pseudostratified neuroepithelial cells [5].

Figure 2: Formation of the neural tube from an infolding of the neural plate. The
directional terms are indicated in red. Taken from [16].

On directions in the neural tube

In all following descriptions, it will be important to give directional information. We

will term the future brain end of the neural tube the rostral end (Lat. rostrum - beak)

and the future spinal cord end the caudal end (Lat. cauda - tail). Accordingly, the

axis along the length of the neural tube (even under deformation and bending) will be
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described as the rostrocaudal axis.

The cross-sectional profile will be labeled dorsal (Lat. dorsum - back) at the part that

resides near the ectoderm directly after neurulation, and ventral for those cells closer

to the endoderm. Again, these terms will still be used under future deformation of the

surroundings and the axis describing this transversal profile will be termed dorsoventral.

The directional terms are also indicated in the last image of Figure 2.

The neural tube after closure

During further development, cells at the most dorsal and most ventral poles along the

tube differentiate into floor plate (ventral) and roof plate (dorsal) cells (from 17d on)

[15]. As we will explain in the next section, both plates function as signaling sources

for the differentiation of cells along the dorsoventral axis. Along the rostrocaudal axis,

spatially heterogeneous cell proliferation, arising constrictions in the tube wall as well

as different signals cause the formation of three distinct brain vesicles (Figure 4) [1]

: the forebrain (prosencephalon), the midbrain (mesencephalon) and the hindbrain

(rhombencephalon). Cells from these vesicles are the ancestors of the adult (fore-, mid-

and hind-) brain tissue. For a long time it was believed that the caudal neural tube

will give rise to the spinal cord. However, substantial evidence pointing towards dis-

tinct origins for spinal cord and rostral neural tube cells has accumulated [17]. During

further development, the tube does not keep its shape but undergoes a number of con-

formational changes such as different flexures and formation of varicosities [5].

The formation and subdivision of the neural tube is the result of a network of intracel-

lular signals that are released across the tube and the location-specific reaction of cells

to these signals. We are going to set up a simple model of this system. The current

knowledge on its details will be summarized in section 2.3.
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Figure 3: Subdivisions and derivatives of the neural tube. We are going to simulate
the part indicated in red - the brain. Taken from [18].

2.2 Gene Regulatory Networks and Morphogen Gradients

In order to understand neural tube subdivision there are some elementary questions

we need to answer first. How do single cells control their genetic expression and their

phenotype? And how do they ’know’ in what way they should exert this control?

The following paragraphs will elucidate the biological mechanisms that solve these

problems.

2.2.1 Transcriptional Regulation and Gene Regulatory Networks

The fundamental carriers of all our genetic material are deoxyribonucleic acid molecules

or DNA. All hereditary information on the structure and organization of our bodies is

encoded in our DNA. According to the central dogma of molecular biology, cells follow

this ’blueprint’ by firstly trancsribing the encoded information into mRNA (messen-

ger ribonucleic acid) and secondly by translating the mRNA, synthesizing the encoded

protein which can go on to e.g. be used as a building block for the cell [5].

The multitude of different cell functions and phenotypes in our organism could provoke

the thought that each cell must possess an individual building plan, meaning individual

DNA – this is however not the case: all cells within an organism carry the same DNA.

Instead, the DNA encodes information on all cells and the readout of that information

is controlled by transcriptional regulation: only certain genes (sequences of DNA) are
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read out and translated into proteins, i.e. expressed. Cell specialization (or differen-

tiation) results from the specific combination of upregulated and downregulated gene

expression [19].

Figure 4: Simplified visualization of transcriptional regulation. RNA polymerase reads
the coding region of a gene and transcribes it into mRNA (transcription). Information
from mRNA is then decoded to synthesize a protein (translation). Depending on the
protein it will either go on to fulfill other, e.g. structural, purposes in the cell or act
as a transcription factor and regulate the expression of downstream genes. Taken from
[19].

This process is controlled by transcriptional regulators called transcription factors

that can activate or repress the readout of genes by docking to the DNA (see Figure

4). They are also proteins that are encoded in genes and built by transcription and

translation, which means that the expression of one gene can regulate the expression

of another or even itself.

Gene expression is thus subject to often highly complex orchestration systems of ac-

tivation and repression circuits which we call gene regulatory networks (GRN). We

can model these networks using ordinary differential equations and experimental data,

allowing us to understand the logic behind the differentiation process. Two of these

mathematical models will be used in this project.

2.2.2 Morphogen Gradients

Some transcription factors function as signaling molecules that diffuse or are actively

transported across many cells from a localized source, leading to gradient-dependent

different responses. These signaling molecules are called morphogens [5]. Morphogen

gradient controlled gene expression is one of the main processes responsible for tis-

sue patterning, not only in embryonic but also in adult development. Often, multiple

overlapping gradients basically create a coordinate system where different spatial com-

ponents are identified and influenced by the combination of morphogen concentrations
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and the duration of exposure to them in that location [20]. For example, in neural in-

duction alone, the morphogens noggin, chordin, follistatin and fibroblast growth factors

(FGF) are involved.

Interestingly, there are certain proteins that will be used repeatedly in different de-

velopmental patterning processes at various time points, often as part of a modular

circuit with a conserved working principle [21]. The most commonly found morphogens

in embryonic as well as adult tissue development are FGF, bone morphogenic protein

(BMP), members of the hedgehog family (in case of this thesis, sonic hedgehog (SHH) ),

WNT (a concoction between Drosophila Wingless and mammalian Int1 proto-oncogene

protein)) and retionic acid (RA) [5]. Both SHH and WNT will reappear in the GRN

models discussed below.

It is important to note that cell fate is also the result of present external factors

such as tissue stiffness and cell-specific factors that depend on the cell’s history. For

example, a cell that had a prior exposure to a morphogen might have synthesized

different surface receptors and could thus react differently to a signal than one that

did not get exposed. In this way, cells possess a kind of memory of earlier signals and

can even react differently to the same signal just depending on time of exposure.

2.3 Neural Tube Patterning Networks

The discovery and application of molecular markers exposed a spatial heterogeneity in

genetic expression across the neural tube that occurs during development long before

a change in phenotype can be observed. We call the process of development of this

heterogeneity the patterning process. It is the fundament for later differences in neu-

ronal cell morphology, axonal trajectory, neurotransmitter content, synaptic specifity,

surface labels and synaptic connection [15].

Rostrocaudal neural axis polarity is established very early in embryonic develop-

ment: the endoderm releases anteriorizing signals even before gastrulation [15], and

some sources even argue that fore-, mid- and hindbrain progenitors are visible already

before neurulation [13]. It is confirmed that shortly after neural induction, the meso-

dermal and endodermal cells surrounding the neural groove release a number of signals

to initiate the formation of regionally appropriate progenitor cells of the brain vesicles

as well as the spinal cord. After neural tube closure, signals are also released from the

floor or the roof plate within the tube. With further development even more locally

released gradients define additional specification. We are going to focus our model on
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the formation of the functionally specific domains for the brain shortly after neural

tube closure, at the beginning of the fourth week after fertilization (around day 23).

Research has shown that patterning occurs along the rostrocaudal and the dorsoventral

axis and that cell identity is fairly uniform along the third axis [15], which is why it

will not be discussed in the following paragraphs.

2.3.1 Rostrocaudal Patterning

When the neural tube is fully formed, secondary sources within the tube help to refine

the pattern. The MHB is one of them, as well as the Anterior Neural Ridge (ANR) at

the head of the embryo and the Zona limitans intrathalamica halfway in between the

two (see figure 5 B). The MHB releases WNT and FGF, where WNT stimulates cell

division and maintains FGF expression [1], while FGF induces midbrain and forebrain

identity. FGF is also secreted from the ANR. The ZLI, just as the floor plate, emits

SHH, yielding different rostrocaudal responses due to the prepatterning. This is the

process we are going to simulate. Our description includes only the main signaling

agents. A more detailed tabular overview is given the appendix 7.1.1.

While this part will not be included in our model, it is very important to state that

rostrocaudal patterning starts already with neurulation. Initially, the neural plate cells

all possess rostral forebrain character [22]. Patterning of the neural groove along the

rostrocaudal axis is first initialized by signals from mesodermal and endodermal tissues

siding the groove [1]. The caudal mesoderm releases WNT, while the rostral mesoderm

cells secrete WNT inhibitors, building up a rostrally decreasing WNT-gradient along

the tube. Together with anti-BMP agents also emitted from the caudal mesoderm,

posterior neural fate is induced according to the gradient [15]. This prepatterns the

groove with distinct transcription factor domains (OTX2 for future forebrain and mid-

brain, GBX2 for the hindbrain, see Figure 5 A) and establishes the midbrain-hindbrain

boundary (MHB or Isthmic Organizer), where Engrailed (EN) is expressed [1].
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Figure 5: Signaling sources in rostrocaudal patterning [23]. A. Signaling from sur-
rounding tissue leads to distinct gene expression and thus predestination of prospective
brain and spinal cord cells. B. The most noteworthy morphogen sources involved in
rostrocaudal patterning of the closed neural tube. The briain regions are marked: FB
- forebrain, MB - midbrain, HB - hindbrain.

In 2012, Kirkeby et al. ([8]) succeeded in deriving neural progenitors from all sec-

tions of the rostrocaudal axis by inhibiting GSK3, which can equate to either activation

of WNT or FGF signaling [24]. On the other hand, it has been shown that FGF con-

centration has very little effect on brain patterning in human embryonic stem cells

[25] [26]. The conclusion is that among the different morphogens mentioned above,

rostrocaudal patterning is mainly determined by WNT signaling [27].
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2.3.2 Model For A Rostrocaudal Patterning Network

Figure 6: Proposed model for a simple regulatory network describing rostrocaudal
patterning by Balaskas et al.. Arrows denote activation, T-shapes suppression. Taken
from [28].

A simple mathematical model for an early rostrocaudal brain patterning GRN was

proposed by Brambach et al. [28] in 2018 to explain the effects of GSK3-inhibition

explored by Kirkeby et al. [8]. The model evaluated the formation of mid-, fore- and

hindbrain cells (characterized by the gene expression of FOXG1 (forebrain - FB), EN1

(midbrain - MB) and HOXA2 (hindbrain - HB) respectively) in reaction to GSK3-

suppression by CHIR99021 (CT). Representative genes were chosen according to the

correlation of their expression over varied levels of CT. After optimizing network topol-

ogy (the result, a tristable switch, is displayed in Figure 6) as well as parameters to fit

experimental gene expression levels from human embryonic stem cells, they found the

following set of ordinary differential equations:

d[FB]

dt
=

c1[GSK3]n1

1 + c1[GSK3]n1 + c2[MB]n2 + c3[HB3]n3
− δ1[FB]

d[MB]

dt
=

c4[MB]n4

1 + c4[MB]n4 + c5[FB]n5 + c6[HB]n6 + c7[GSK3]n7
− δ2[MB]

d[HB]

dt
=

c8[HB]n8

1 + c8[HB]n8 + c9[FB]n9 + c10[MB]n10 + c11[GSK3]n11
− δ3[HB]

d[GSK3]

dt
=

c12[GSK3]n12

1 + c12[GSK3]n12 + c13[CT]n13

d[CT]

dt
= 0

(2.1)
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The parameters ci, δi, ni were fitted to experimental data and can be found in appendix

section 7.2.

2.3.3 Dorsoventral Patterning

Patterning along the dorsoventral axis (Figure 7) is mainly controlled by opposing

signaling gradients of WNT/BMP from the roof plate and SHH from floor plate cells.

Research has shown that retinoic acid signaling from surrounding tissue is also involved

to some degree [29]. Floor plate signaling is first induced by external SHH-signaling

from the notochord, a thin cylindrical structure along the midline of the embryo ventral

to the neural tube. So far, eleven different resulting progenitor cell types have been

identified by their genetic makeup [30].

Figure 7: Dorsoventral patterning of the neural tube. Morphogen gradients from roof
plate (RP) floor plate (FP) and Notochord (N) as well as retinoic acid (RA) signals
from surrounding tissue control the patterning into eleven neural progenitor subtypes.
Taken from [29].
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2.3.4 Model For A Dorsoventral Patterning Network

(a) (b)

Figure 8: a: Proposed model for a regulatory network defining the dorsoventral pattern-
ing by Balaskas et al. Arrows denote activation, T-shapes suppression. b: Expected
patterning of the network. Both taken from [31].

In 2012, Balaskas et al. suggested a GRN to explain Shh-guided ventral progenitor

domain formation in the neural tube. They used an in vivo reporter for Gli transcrip-

tion factors (which are the intracellular signaling effectors of Shh, see section 7.1.3) in

mouse embryonic stem cells to monitor the influence on domain development. Three

domains, marked by the expression of their characteristic genes, were taken into ac-

count: the p3 domain (high Nkx2.2 expression - N), the pMN domain (Olig2 - O)

and the p2 domain (Pax6 - P). The resulting network structure (figure 8a) was again

obtained by fitting and optimizing the reporter fluorescence intensity and is described

by a set of ordinary differential equations:

dP

dt
=

α

1 +

(
N

NcritP

)h1

+

(
O

OcritP

)h2
− k1P

dO

dt
=

βG

1 +G
· 1

1 +

(
N

NcritO

)h3
− k2O

dN

dt
=

γG

1 +G
· 1

1 +

(
O

OcritN

)h4

+

(
P

PcritN

)h5
− k3N

(2.2)
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Parameters were fitted to experimental data and can be found in appendix section

7.2.
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3 Results And Discussion

3.1 Unifying The Networks

Figure 9: Patterning of the neural tube along both axes. WNT is a common node for
both patterning processes. Taken from [27].

As shown in the sections on rostrocaudal and dorsoventral patterning, WNT signaling is

a common denominator in both processes. We wish to model the patterning behaviour

in 3D where both networks react to the same secreted WNT signals (figure 9).

Since there are currently no GRN models on rostrocaudal patterning of the entire length

of the neural tube, we are only going to focus on early brain patterning. Dorsoventral

patterning is highly conserved along the entire length of the tube [15]. The decision

to only focus on the brain is also supported by recent evidence saying that spinal cord

progenitor cells seem to have distinct origins from brain progenitor cells [17]. Research

has also suggested that signals other than WNT seem to be of higher importance for

spinal cord patterning [27]. The caudal end of the neural tube is also prepatterned

differently even before neurulation [1] and receives further patterning signals only from

exterior sources [15]. This collective evidence points to stark differences between spinal
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cord and brain cell progenitors, arguing against an inclusion in our simulation.

The task at hand is now to integrate a node for WNT in both networks. In the following

we will argue that this is possible without changing the networks’ parameters.

Brambach et al.’s GRN was constructed in response to CT, a GSK3-inhibitor, which is

evidently not WNT. However, looking at the canonical WNT pathway (see appendix

7.1.2) we can see that GSK3-suppression hinders formation of the axin degradasome,

which is exactly what WNT does in the canonical cascade. By this argument we will

replace the CT-node in the given network by a WNT-node with the same parameters.

Balaskas et al.’s model explains ventral domain formation due to a SHH signal, which

was quantified by the amount of Gli activity in the cells (see appendix 7.1.3). However,

Gli proteins are also affected by WNT signaling [32] – in fact, it has been proposed

that antagonistic actions of WNT over SHH on Gli determine dorsoventral patterning

[29]. According to this argument, we will introduce two nodes for SHH (activator) and

WNT (repressor) into the network.

The full network is shown in Figure 10.

Figure 10: The unified network. The CT-node in Brambach et al.’s network is directly
replaced with WNT.

We now have to introduce a 4th equation describing the time evolution of Gli under

suppression of WNT and activation of SHH to equations 2.2:

dG

dt
=

δS

1 + S
· 1

1 +

(
W

WcritG

)h6
− k4G (3.3)
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WNT- and SHH-concentrations (not in the points of secretion) will both be de-

scribed by a diffusion equation with a degradation term:

d[WNT]

dt
= DWNT 4 [WNT]− δWNT [WNT] (3.4)

d[SHH]

dt
= DSHH 4 [SHH]− δSHH [SHH] (3.5)

We achieved the best patterning results for the set of parameters displayed in Table

1, their derivation is explained in section 5.3. Calculation of the diffusion coefficients

is discussed in 5.2.

δ h6 WcritG δWNT δSHH WNT0 SHH0 DSHH DWNT

5.0(1.0) 1.0 1.0 0.1 0.002 2.0 1.0(5.0) 133.4 150.7

Table 1: Working set of parameters for equations 3.3 - 3.4 as well as maximum secretion
levels WNT0 and SHH0.

3.2 Simulation Tool

All following results were obtained using the developed simulation tool, which was

written in Python using mainly the Numpy and Matplotlib library modules. The

simulator was designed to work in conjunction with MagicaVoxel [33], a free voxel editor

software. This allows us to replicate reaction-diffusion mechanisms on an arbitrary

three-dimensional volume with user-defined locations of signal secretion. In preparation

of a simulation, the intended shape is created with MagicaVoxel and the desired points

of secretion are either painted or added to the surface of volume, where the colour’s

value regulates the relative level of secretion (see Figure 11). One can then export

the data point cloud (.ply format) and read it into the python program, in which

equations, parameters and the secretion times are defined. The program outputs 3D

Numpy arrays that are turned into 3D plots as well as 2D slice plots of morphogen

level and gene expression.
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3.3 Simplified Tube Model

(a) (b)

Figure 11: A simple model of the anterior neural tube and most relevant secretion
points, including floor plate (bottom green rod), roof plate (top blue rod), midbrain-
hindbrain boundary (blue O-shape) and Zona Limitans intrathalamica (green triangle
shape). a: Neural tube with secretion areas. b: Only secretion areas (Green - SHH,
Blue - WNT). Images created using [33].

As explained above, we identified four signaling sources that are most relevant in

patterning the anterior neural tube: floor plate cells, ZLI, roof plate cells and midbrain-

hindbrain boundary, where the former two secrete SHH and the latter two release

WNT. We designed a simplistic model (Figure 11) that includes these areas, combining

findings from sources cited in the background as well as some preliminary tests for the

specific locations. Each voxel represents a cell of length 10µm - it is however sufficient

to downscale the model by 50% for our purposes, as demonstrated in Figure 12. This

reduces computation time significantly. Scaling was done in MagicaVoxel using the

built-in function scale with a factor of 0.5 and applied in all following results.
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Figure 12: Comparison of patterning between the original (1:1) and the downscaled
(1:2) model with reference parameters. The relevant results are conserved. (The 1:1
model might appear darker due to the higher voxel density.)

3.4 Simulation With Simplified Tube Model

For best visibility, the voxel 3D graphs in the following only display the gene most

expressed in each voxel, while the 2D slices also take the level of that expression into

account. For the slices, normalization is done according to the maximum level of

the specific gene (and happens after comparison between the different genes). Three-

dimensional plots of the dorsoventral network will be displayed from the normal per-

spective as well as mirrored on the xy-plane for easier evaluation.
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Dorsoventral Patterning

Figure 13: Early dorsoventral patterning. The pattern is established within few sec-
onds.

Dorsoventral patterning establishes very quickly within less than a minute of model

time (Figure 13) and stabilizes within a few minutes (Figure 14). The balancing process

can be compared to in vivo gene expression (Figure 15): In both cases, the O-domain

shrinks over time due to the antagonistic action of the opposing gradients of SHH and

WNT. The time scale of the natural process seems however to be a lot higher, namely

in the order of hours, compared to minutes in our simulation (unfortunately there is

no literature available on patterning experiments with such a high time resolution).
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Figure 14: Dorsoventral patterning at different time points. The reduction of width of
the O-domain over time can also be observed in vivo, see Figure 15.

(a) (b)

Figure 15: a: In vivo change of N- and O-expression at different time points (hph =
hours post headfold). b: In vivo change of P-expression (red) and Gli activity (green)
at different time points. Taken from [31].
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The time development for dorsoventral patterning is shown in a 3D plot in Figure

16. The combination of antagonistic signaling from zona limitans intrathalamica and

the midbrain-hindbrain boundary results in an interesting variation of the width of

N- and O-domains, where the pattern is almost pinched off at the midbrain-hindbrain

boundary and flares out in the midbrain. This is strongly resemblant of brain vesi-

cle restriction structure. We conclude that, counterintuitively, dorsoventral patterning

might be one of the directing factors in brain vesicle restriction formation along the

rostrocaudal axis.
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Figure 16: Dorsoventral patterning at different time points. For better visibility, the
tube is also displayed mirrored in the xy-plane.

The presence of WNT does not only regulate the size of the O-, and, very lighty,

the N-domain. Due to the geometry of the tube we also observe a rounding effect on

the domain shape (Figure 17) in that the domains near the tube outside boundary are
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pushed further ventrally than the domains near the tube lumen.

Figure 17: Influence of WNT on dorsoventral patterning.

Overall, we have confirmed the network defined in section 3.1 works very well as

a stable model for dorsoventral patterning, even when extended to incorporate WNT

and SHH signaling. The temporal stability we detected in particular was something

Balaskas et al. explicitly optimized for by incorporating cell sensitivity change due

to exposure time. The model does, however, only include three of the eleven known

progenitor subtypes along the dorsoventral axis. In order to achieve an even more

accurate view of the system and to be able to make predictions on in vitro differentiation

it would be of great interest to extend the model to include more types.
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Rostrocaudal Patterning

Figure 18: Rostrocaudal patterning at different time points. The patterning does not
reach a stability due to the low WNT-degradation. However, low WNT-degradation
was needed to achieve mid- and hindbrain patterning in the first place.
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The results of the patterning process along the rostrocaudal axis are shown in Figure

18. The caudal end of the tube (left in the pictures) can be neglected since we do not

include any more caudalizing signals. As discussed in section 5.3, in order to achieve a

realistic patterning it was necessary to set the WNT-degradation rate very low. As a

consequence, the ratio between secretion and degradation is slightly imbalanced toward

the former. This is why, even though correct patterning is achieved at t = 800s, the

process does not reach stability.

There are different conclusions we can draw from this: One possibility is that the

neural tube boundaries are permeable so that WNT does not accumulate inside the

tube. However, this would entail WNT signaling outside the tube, possibly disturbing

other processes. While we could not find any evidence supporting such a process or

permeability in the literature, this might be worth researching experimentally in the

future.

Another option would be to adapt Brambach et al.’s network to time of exposure,

which has not been done so far. One could also argue that since both SHH and WNT

morphogens have very similar parameters (see section 5.2) and serve a similar function,

the degradation coefficients should also be alike. In that case, an adaptation of the

rostrocaudal network would also be necessary, since the right patterning is not achieved

by changing other parameters (section 5.3). On the other hand, a WNT-degradation

coefficient similar to that of SHH would also mean a neglibile influence of WNT on

ventral patterning. This contradicts evidence for a dominance of WNT in dorsoventral

patterning [29].

Finally, we cannot neglect that the processes we are modelling are biological. There

may be hidden variables that we have not included in our framework, for example, it is

possible that cells start to produce morphogen-destructor proteins at a certain exposure

level or that they release domain-retaining signals. Furthermore, there are important

variables we actually do know of but which we disregard, such as the prepatterning

explained in section 2 or other signaling factors such as BMP. In order to control for

these problems, it would be important to acquire exact in vivo rostrocaudal patterning

images with a high time resolution.

For the reasons discussed above, we can conclude that the Brambach et al. model part

of our network is valid for only a restricted amount of model time.
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3.5 Simulation With Realistic Tube Model

(a) (b)

Figure 19: A more realistic model of neural tube geometry. a: Neural tube with
secretion areas. b: Only secretion areas (Green - SHH, Blue - WNT). Images created
using [33].

In order to study the effects of tube geometry on patterning, we also repeated the

simulation on a more realistic tube model shown in Figure 19. The structure was

designed after a lifelike three-dimensional embryonic model [11].
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In the case of dorsoventral patterning, depicted in Figure 20, we observe a pro-

nounced rounding effect on the N- and O- expression domains for the areas in which

the ventral tube side is thicker. Aside from that, just as in the simplistic model, the

patterning remains conserved along the whole tube. The vesicle-reminiscent structur-

ing seems slightly less pronounced, which could be explained by the fact that the model

geometry already includes beginnings of vesicle formation.

Figure 20: Dorsoventral patterning with the realistic model.
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In rostrocaudal patterning, shown in Figure 21, the curved geometry impacts mainly

the hindbrain domain structure. In contrast to the simplistic model, hindbrain gene

expression is maintained almost up to the rostral end of the tube. This could be a

physical reason for the flexures of the neural tube mentioned in section 2. It is also

very interesting to note that the curving achieves a dorsoventral patterning with mid-,

hind- and forebrain genes in a part of the rostral tube. Circling back to the application

in in vitro cell differentiation, this could be a very important result determining the

combination of genes we need to express in order to produce e.g. dopaminergic neurons.

Figure 21: Rostrocaudal patterning in the realistic model.
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4 Conclusion

In this project, we have successfully implemented a three-dimensional model of neural

tube patterning. We achieve patterning within a restricted timeframe and are able to

hypothesize several interesting ideas on this basis. We identified a possible correlation

between dorsoventral patterning and vesicle formation as well as some areas in which

fore-, mid- and hindbrain expression are actually stacked dorsoventrally. In order to

confirm these hypotheses, more experimental data with better time-resolution is needed

on neural tube patterning. This would also be beneficial for setting up a temporally

adapted version of the rostrocaudal network which is most definitely necessary. The

dorsoventral part of the networks could be extended to include more of the 8 remaining

dorsoventral progenitor types. Before the implementation of these measures it is not

easy to make predictions on in vitro differentiation behaviour.

Future steps for optimizing the computational model could entail for example to include

finite voxel volume (so that signaling levels cannot become indefinitely high) or cell

migration, apoptosis and division. In its current state, the program is however already a

useful tool in determining the influence of secretion and geometry on reaction-diffusion

processes.
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5 Methods

5.1 Computational Methods

5.1.1 Discretized Laplace Operator

To solve the diffusion part (see 5.1.2) of the GRN equations numerically, it is necessary

to find a discretized approximation for the Laplacian

4Nu(x1, ..., xN) =
N∑
i=1

∂2u

∂x2
i

(5.6)

Where 4N is the N-dimensional laplacian and u is some function, e.g. a concentration,

depending on the position (x1, ..., xN) (a scalar field). For the simplest case of only one

dimension (N = 1), Taylor expanding u(x) to second order yields

u(x+ a) = u(x) + a
∂u

∂x
+

1

2
a2∂

2u

∂x2
+O(a3) (5.7)

Also,

u(x− a) = u(x)− a∂u
∂x

+
1

2
a2∂

2u

∂x2
+O(a3) (5.8)

By neglecting the higher order terms and adding 5.8 and 5.7 we can find the finite

difference approximation for the Laplacian in one dimension:

41u(x) =
∂2u

∂x2
≈ u(x− a)− 2u(x) + u(x+ a)

a2
(5.9)

If we discretize the function u(x) on a mesh of lattice constant a, so that x = ja

for every point x (where j is some integer) and consequently u(x) = u(ja) =: uj, we

can express 5.9 as

41u|j≈
uj−1 − 2uj + uj+1

a2
(5.10)

In two dimensions, the Taylor expansion looks like this:

u(x+ ax, y + ay) ≈ u(x, y) + ax
∂u

∂x
+ ay

∂u

∂y
+

1

2
a2
x

∂2u

∂x2
+

1

2
a2
y

∂2u

∂y2
+ axay

∂2u

∂x∂y
(5.11)
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Which yields the discretized Laplacian for N = 2:

42u|j,k≈
uj−1,k − 2uj,k + uj+1,k

a2
x

+
uj,k−1 − 2uj,k + uj,k+1

a2
y

(5.12)

If we choose a square lattice for the discretization, ax = ay = a this becomes

42u|j,k≈
uj−1,k + uj+1,k + uj,k−1 + uj,k+1 − 4uj,k

a2
(5.13)

By analogous reasoning, in three dimensions we have

43u|j,k,l≈
uj−1,k,l + uj+1,k,l + uj,k−1,l + uj,k+1,l + uj,k,l−1 + uj,k,l+1 − 6uj,k,l

a2
(5.14)

[34]

5.1.2 Matrix Method and Sparse Matrix Handling

The equations one wishes to model in this project are reaction-diffusion type equations

of the form

du(x)

dt
= D43 u(x)︸ ︷︷ ︸

Diffusion part

+ f(u(x), v(x), ...)︸ ︷︷ ︸
Reaction part

(5.15)

within a certain constricted volume (where u and v are different reactants). The shape

of the volume does not affect the reaction part as it is not influenced by any spatial

component other than that exactly in x. However, it is evident that the diffusion

into one compartment will be influenced by the surrounding compartments, a process

which we approximated in equation 5.14. We will therefore treat the diffusion part of

the equation on its own in the following and discuss how to model an arbitrary shape.

(In fact, diffusion and reaction can also be implemented as two separate computational

steps within the same simulated time step.)

Consider for the sake of clarity the 2D diffusion case. As we are going to discuss in more

detail in 5.1.3, we are going to apply the explicit Euler method, i.e. we are looking to

compute

un+1(x) = (Dh42 +1)un(x) (5.16)
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with arbitrary no-flux boundary conditions (Neumann boundaries)

uni1,j1 − u
n
i1−1,j1

= 0 (5.17)

uni2,j2 − u
n
i2−1,j2

= 0 (5.18)

uni2,j2−1 − uni2,j2 = 0 (5.19)

... (5.20)

. To this end, it can be useful to transform 5.16 into a matrix equation

un+1 = (1 +
Dh

a2
A)un (5.21)

Where the vector form u = (u1, ..., uNc) should consist of all Nc compartments in the

volume (see Figure 22). The matrix A is then a Nc×Nc matrix where the n-th row gives

the impact of the compartments surrounding compartment un due to the Laplacian.

Figure 22: Arrangement of lattice points uij into a vector u to facilitate matrix calcu-
lations.

For a lattice point that has no Neumann (or other) boundary neighbours, e.g. u4

in the Figures, the Laplacian takes on the discussed form (eq. 5.13) and the 4th row

in A will look like

A =

...1 0 1 −4 1 1 0

...

← 4th row, (5.22)

since the Laplacian stencil (Figure 23a) covers only other neighbouring points within

the volume.
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Figure 23: a: Laplacian stencil in 2D. b: Laplacian applied to a lattice point without
boundary neighbours. c: Laplacian applied to a lattice point with Neumann bound-
aries.

If we consider a compartment near Neumann boundaries, e.g. u3 (Figure 23c), we

find that the boundary conditions

u3↑ − u3 = 0

u3← − u3 = 0

u3↓ − u3 = 0

(5.23)

can be collected in the local diffusion equation (arrows denote the no-flux neighbouring

compartment):

42u3 =
u3← + u4 + u3↑ + u3↓ − 4u3

a2
(5.24)

=
(u3← − u3) + u4 + (u3↑ − u3) + (u3↓ − u3)− (4−NB)u3

a2

5.23
=

u4 − (4−NB)u3

a2
(5.25)

where NB = Nr. of Neumann boundaries = 3 (5.26)

Thus, the 3rd row in A will be

A =

...0 0 −1 1 0 0 0

...

← 3rd row (5.27)

If we follow this scheme for the three-dimensional case, the resulting A will have

−(6 − NBn) as the diagonal element of the nth row (cf. eq. 5.14, in 2D the 6 needs

to be replaced by 2) and a 1 for each neighbouring compartment. Since the total

number of elements in A scales with the number of compartments squared and the

matrix is sparse (not more than 7 nonzero entries per row), it is computationally of
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great advantage to only store the nonzero entries of A with their corresponding indices

(n,m) instead of saving the whole A.

In case the volume is not isolated from its surroundings and we imagine the outside

compartments, e.g. in Figure 23 to have some constant concentrations ci, so u3← = c1,

u3↑ = c2 and u3↓ = c3 in equation 5.24 (Dirichlet boundary conditions), we can collect

these terms in a vector b, so that

un+1 = (1 +
Dh

a2
A)un +

Dh

a2
b (5.28)

Where in this case

A =

...0 0 −4 1 0 0 0

...

 b =

 ...∑3
i=1 ci

...

 ← 3rd row

(5.29)

5.1.3 Explicit Euler and Stability

Computational modelling of the given reacting-diffusion equations equates to the nu-

merical solution of a system of coupled ordinary differential equations (ODEs)

du(x, t)

dt
= fu(4u(x, t), u(x, t), v(x, t), w(x, t), ...)

dv(x, t)

dt
= fv(4u(x, t), u(x, t), v(x, t), w(x, t), ...)

... = ...

(5.30)

where u(x, t), v(x, t), ... are the involved reactants. As we showed above, it is possible

to turn each of these equations into a matrix equation via spatial discretization (see

sections 5.1.1 and 5.1.2), so that we can write e.g.

du(t)

dt
=
D

a2
(Au + b) + f(u,v, ...) (5.31)

One way to find the time evloution of u(t) is now to discretize the time according

to t = nh (so that u(t) = u(nh) =: un), and to then approximate the derivative on the

left hand side by a forward Euler step
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du(t)

dt
=

un+1 − un

h
(5.32)

Since this amounts to just plugging in the definition of the derivative, one might expect

this to be the natural way to go about the numerical solution of 5.31. However, it is

important to first evaluate the stability of this method, i.e. we need to make sure that

errors are not amplified over time. We will now show that this is conditionally true for

the forward Euler (or explicit Euler) method using the von Neumann stability analysis.

Due to the limited precision of computational number storage, any result we obtain

numerically (un) will differ from the exact analytical result (ūn) by a round-off error

εn:

un = ūn + εn (5.33)

Since the time evolution of ūn is given exactly by the forward Euler step, this implies

that the error εn is subject to the same time evolution as the numerical solution un [35].

The von Neumann procedure assumes slow variations of the parameters in eq. 5.31

and periodic boundary conditions, which allows us to write the independent solutions

as [36] [37]

εnj,k,l = ξneiq1j∆xeiq2j∆yeiq3j∆z

= ξneia(q1j+q2k+q3l)
(5.34)

A numerical method is said to be stable if |ξn|≤ 1, so the error does not increase

under time development. For simplification reasons, we will also assume the reaction

part of eq. 5.15 to be zero for the analysis.

du(t, x, y, z)

dt
= D4 u(t, x, y, z)

so

un+1 = (Dh43 +1)un

(5.35)

As discussed above, this also holds true for the error. We can write explicitly
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εn+1
j,k,l =

[
Dh

a2

(
εnj−1,k,l + εnj+1,k,l + εnj,k−1,l + εnj,k+1,l

+ εnj,k,l−1 + εnj,k,l+1 − 6εnj,k,l
)

+ 1

]
εnj,k,l

(5.36)

Plugging in 5.34 we find

ξεnj,k,l =

[
Dh

a2

(
e−iaq1εnj,k,l + eiaq1εnj,k,l + e−iaq2εnj,k,l + eiaq2εnj,k,l

+ e−iaq3εnj,k,l + eiaq3εnj,k,l − 6εnj,k,l
)

+ 1

]
εnj,k,l

(5.37)

Dividing by εnj,k,l yields

ξ =
Dh

a2

(
3∑

s=1

[e−iaqs + eiaqs ]− 6

)
+ 1 (5.38)

Since e−iaqs + eiaqs − 2 = 2(cos(aqs)− 1), we can write this as

ξ =
Dh

a2

(
3∑

s=1

2[cos(aqs)− 1]

)
︸ ︷︷ ︸

:= λ

+1 (5.39)

Each cosine in the sum can be 1 or −1 at maximum or minimum, so that −12 ≤
λ ≤ 0. The stability condition |ξn|≤ 1 implies

1 +
Dh

a2
λ ≤ 1 and − (1 +

Dh

a2
λ) ≤ 1 (5.40)

for all qs and thus for all λ. Both inequalities are satisfied for the trivial case, and

the first one is evidently true for any λ < 0. Thus, we only need to check

−(1 +
Dh

a2
(−12)) ≤ 1

12
Dh

a2
≤ 2

→ h ≤ a2

6D
(5.41)

Therefore, the explicit Euler scheme in three dimensions converges if 5.41 is satis-
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fied, i.e. if we pick a small enough time step h.

There are other numerical schemes that are unconditionally stable, such as the

implicit Euler scheme, in which a backwards Euler step is used for the time derivative:

un − un−1

h
=
D

a2
Aun → un+1 = (1− Dh

a2
A)−1un (5.42)

However, these implicit schemes require inversion of A, which becomes computa-

tionally expensive quickly for large matrices. We will therefore only make use of the

explicit Euler method.

5.2 Diffusion Coefficients For Signaling Proteins

5.2.1 Estimation Of Radius Of Gyration From Protein Length

There is no literature available on the diffusion coefficients of the signaling proteins

involved in our model. It is therefore necessary for us to estimate them. Fortunately,

He and Niemeyner proposed an estimation based on the radius of gyration RG (see

below) of the protein. Unfortunately there is also very little information available on

these radii. We will therefore make use of the following general estimation formula

based on Hong and Lei [38] for physiological conditions:

RG ≈ 3N
2
5 Å (physiological conditions) (5.43)

where N is protein chain length (number of amino acids). Inserting the protein

lengths NWNT = 370 [39] and NSHH = 462 [40] yields

RWNT ≈ 32Å = 3.2nm and RSHH ≈ 35Å = 3.5nm (5.44)

5.2.2 Estimation Of Diffusion Coefficient From RG

He and Niemeyner [41] proposed the following equation to estimate protein diffusion

coefficients based on RG and M the molecular mass:

D =
6.85× 10−15T

η ·
√
M

1
3 ·RG

(5.45)

where D is in m2·s−1, T is the temperature in K, η the viscosity of the surround-

ing medium, M the molecular mass in kg·kmol−1 and RG the radius of gyration in

Ångström.

Inserting the molecular masses MWNT = 40.98kDa = 40980 kg
kmol

[39] and MSHH =
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49.61kDa = 49610 kg
kmol

[40] as well as conditions the for the inside of the human body

T=37◦C = 310K and η = 0.75cP = 7.5 ·10−4Pa·s [28] yields together with the gyration

radii from above

DSHH = 133.4µm2s−1 and DWNT = 150.7µm2s−1 (5.46)

5.3 Parameter Tuning

In order to achieve the best possible patterning result, we performed an analysis on

the system using a set of testing parameters. These initial parameters were educated

guesses or based on preliminary tests and are displayed in Table 2.

δ h6 WcritG δWNT δSHH WNT0 SHH0 DSHH DWNT

1.0 1.0 1.0 0.1 0.1 2.0 1.0 133.4 150.7

Table 2: Testing parameters for equations 3.3 - 3.4 as well as maximum secretion levels
WNT0 and SHH0.

Initial expression levels for the network part of Balaskas et al. were directly adopted

from the paper. For the rostrocaudal network (Brambach et al.), FB expression was

set high due to the initial forebrain character of all cells as discussed in section 2.3.1

while MB and HB levels were set to minimal value. SHH and WNT levels were taken

to be zero except in the points of secretion. A summary of all initial values can be

found in Table 3. The standard maximum model time for one simulation run (800.0s)

was picked in order for most systems to attain steady state or to at least display a

definitive trend based on preliminary tests.

FB MB HB P O N G SHH WNT
1 0.001 0.001 0 0 0 3.0 0 0

Table 3: Initial values for the involved genes and proteins.

5.3.1 Starting Parameters

The results for a simulation run with just the testing parameters are shown in Figure

24 and 25. The morphogen levels quickly reach a steady state after less than 50s model

time (see Appendix 7.3.1) in which secretion and degradation are balanced. Similarly,

the network described by Balaskas et al. quickly switches from its initial O-expression

to an almost finished patterning after only 17s. The only further change is a further

retreat of the O-expression, after which a steady state is reached here as well (cf. Ap-

pendix 7.3.1).
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The patterning and temporal behaviour are in good agreement with in vivo observa-

tions depicted in Figure 15. While there is a small but significant difference in the

extent of the N-expressing area, the main deviation is in the timescale difference - the

model achieves patterning within a minute, where it seems to be an hour-spanning pro-

cess in vivo (there is currently no literature on smaller timescale experiments available).
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Figure 24: Evolution of dorsoventral patterning for reference parameters. Voxel 3D
graphs only display the gene most expressed in each voxel. 2D slices show nuanced
expression normalized to the maximum expression of the specific gene. The results are
in good agreement with in vivo observations (Figure 15).

The simulated evolution of rostrocaudal patterning (Figure 25) is however substan-
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tially different from the expected patterning. An unrealistic behaviour towards the

caudal end (left in the pictures) can be neglected, since we are only considering ge-

netic markers up to the hindbrain. For the end anterior to the midbrain-hindbrain

border (right in pictures), a steady-state tripartition into the (approximately equal-

sized) brain regions would be the expectation. In silico, the hindbrain and especially

the midbrain part remain extremely small. Furthermore, the system is not reaching a

steady state while reacting to a steady-state signaling gradient on this timescale (see

Appendix 7.3.1) and the midbrain remains small even for long times of exposure.

Figure 25: Evolution of rostrocaudal patterning for reference parameters. Voxel 3D
graphs only display the gene most expressed in each voxel. 2D slices show nuanced
expression normalized to the maximum expression of the specific gene. The results are
not in good agreement with in vivo observations due to the thin MB and HB domains.

We have thus identified three issues with the parameters chosen for the reference

simulation:

� Small HB- and especially MB-domain (rostrocaudal)

� Small N-domain (dorsoventral)

� No steady-state development in rostrocaudal network on this timescale
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In the course of the following sensitivity analysis, we will explore possible sources of

these problems.

5.3.2 Levels Of Signal Secretion (WNT0, SHH0)

One might speculate that larger expression domains for MB, HB and N could be

achieved by increasing the morphogen secretion levels. Figure 26 shows however that

while there is a domain-broadening effect, it is mostly impacting the cells close to the

secretion sources: while HB- and N-expressing areas do become wider for higher secre-

tion levels and narrower for lower ones, the extent of the MB- and O-domains remains

about the same due to the expression thresholds of the involved networks.

(a) SHH level impact

(b) WNT level impact

Figure 26: Patterning for different levels of WNT and SHH at the secretion sources.

Figure 27 illustrates another (or possibly the underlying) issue: we do not see a
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difference in dorsoventral patterning between a simulation with no WNT involved and

that with a high level of WNT secretion. This means that while the two networks are

coupled via the equations, either the coupling of Gli to WNT is too weak (or that to

SHH too strong) to affect the patterning or the range of WNT is too short to actually

have a significant influence.

Figure 27: Dorsoventral patterning does not change for different WNT-secretion levels
- the influence or the range of WNT is too insignificant with the reference parameters.

5.3.3 SHH-Gli Coupling (δ)

Let us first examine the coupling of SHH to Gli, where the magnitude of activation

is controlled by parameter δ. Variation of δ yields the patterning pictured in Figure

28. Since an increase in δ corresponds to a lowering of the ’threshold amount’ of SHH

needed for the network to react to the signal, it is not surprising that the resulting

patterning is very similar to the one obtained from raising SHH-secretion level. Since

SHH and WNT are antagonists in their action on Gli, it is important to note that

varying δ and SHH0 are nevertheless not the same thing. We have thus found two

different methods to increase N-domain size.
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Figure 28: Dorsoventral patterning for varying values of δ, i.e. different strengths of
SHH-Gli coupling.

5.3.4 WNT-Gli Coupling (WcritG, h6)

The suppressive influence of WNT on Gli is governed by the parameters WcritG and

h6. The critical value WcritG determines the level of WNT required to induce Gli

suppression and the cooperativity factor h6 controls the abruptness of that change

(the range of values over which suppression varies from light to strong). Figure 29,

displaying the effects of WcritG change demonstrates that, even for very low critical

values, Gli-repression only occurs in proximity to the midbrain-hindbrain border - no

change is visible further away from it. For variation of h6, the changes are minimal

(cf. Appendix 7.3.1). Again, the results are most definitely a consequence of the short

range of WNT morphogen signal. They do however show that the coupling in itself

is working as intended. While it might be possible to achieve further optimization by

varying WcritG and h6 after increasing WNT range, they do not appear to be the most

crucial factor in resolving the issues identified in section 5.3.1.
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Figure 29: Dorsoventral patterning for varying values of WcritG.

5.3.5 Degradation Rates (δWNT , δSHH)

The shape of a morphogen signal gradient is determined by the balance between secre-

tion, diffusion and degradation of the protein. Figure 30 shows the effects of varying

degradation rate δWNT at t = 800.0s on the rostrocaudal network. Both underlying

morphogen gradients and the result for the dorsoventral axis can be found in the Ap-

pendix 7.3.1. In both cases, increasing morphogen range allows for effective control of

intermediary (i.e. MB- and O-) domain sizes albeit accompanied by some growth of

the source domains.
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(a) 3d plot

(b) 2d slices

Figure 30: Impact of variation of WNT-degradation rate δWNT on rostrocaudal pat-
terning. These images are a snapshot at t

This behaviour can be explained by taking into account the concentration-expression

graphs for the uncoupled networks (Figure 31): Only very low concentrations induce

expression of FB or P, and after a certain threshold concentration, expression of HB

or N will always dominate. However, in both cases, the middle state (MB or O) takes
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up a proportionally large amount of the concentration range we are working at. This

is why a degradation rate decrease results in slow growth of the high-concentration

domains (HB and N) and faster growth of the intermediary domains MB and O.

(a) Brambach et al. [28] (b) Balaskas et al. [31]

Figure 31: Expression patterns over linear concentration gradients for the uncoupled
networks.
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7 Appendix

7.1 Background

7.1.1 Signals In Rostrocaudal Patterning

Figure 32: Boundaries involved in rostrocaudal patterning [42].

As a side note, in contrast to the brain, the spinal cord is patterned by signals from

the mesoderm [15].

7.1.2 Canonical WNT Signaling Cascade

Some of the most commonly found signaling proteins are members of the Wnt family.

The Wnt pathway developed early in metazoan evolution and has been conserved

across many species such as Drosophila and humans. The term Wnt was coined as a

blend of names of the Drosophila wingless gene and the verterbrate homolog integrated

(int-1). Wnt signaling has been found to regulate multiple important processes in cell

fate specification, cell migration, cell polarity, embryonic organogenesis and of course

neural patterning. In humans, 19 different Wnt proteins can be found. All of them
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interact with cells by binding to the N-terminal domain of a Frizzled (Fz) receptor

protein (and possible co-receptors, such as LRP5/6) residing in and bridging the cell

membrane. Here, the signal is transferred inside the cell to Dishevelled (Dsh or Dvl),

a cytoplasmic protein. This can trigger at least three downstream cascades – the

canonical, the Planar Cell Polarity and the Wnt/Ca2+ signaling pathway. We will

focus on canonical Wnt signaling.

Simply put, in canonical Wnt signaling, the presence of Wnt prevents the formation

of a destruction complex called the Axin degradasome that is usually responsible for

the degradation of β-catenin. If β-catenin is allowed to accumulate, it will start to

translocate into the cell nucleus where it can act on target genes (see Figure 33).

Figure 33: Canonical Wnt Signaling pathway. In the absence of Wnt signals, GSK3,
CK1, APC and Axin form a destruction complex that induces the degradation of β-
catenin. With Wnt present, the formation of this complex is suppressed and β-catenin
can translocate into the cell nucleus, acting on target genes.Taken from [43].

The destruction complex which forms in the absence of a Wnt signal comprises

mainly of the scaffold protein Axin, the tumour suppressor adenomatosis polyposis

coli (APC) and the two kinases glycogen synthase kinase 3 (GSK3) and casein kinase

1α (CK1α) [44]. When Wnt binds to Fz receptors, Dsh is recruited to the receptor

complex where it aids clustered Fz and LRP5/6 receptors in formation of a signalosome

by dynamic polymerization of one of its domains. This increases Dsh’s avidity for
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Axin and also opens up a docking site for Axin on the signalosome [45]. Thus, the

whole degradasome is tethered to the signalosome. Due to the resulting closeness, the

catalytic pocket of GSK3 is occupied, inhibiting GSK3’s activity. This also promotes

the degradation of Axin, resulting in an accumulation of β-catenin and its translocation

into the nucleus [46]. There, it binds to TCF/LEF factors that are tethered to the Wnt

target genes, thus the signaling cascade is complete. [43]

7.1.3 SHH Signaling Cascade

Another major canonical regulator of cell proliferation, cell differentiation as well as

cell polarity that has been conserved and adapted across many species is the Sonic

Hedgehog (SHH) signaling pathway (Figure 34). The SHH gene is the human homolog

of the Drosophila hedgehog (Hh) gene. SHH signaling is responsible for guiding many

developmental processes in the embryo, including spinal cord and limb bud tissue dif-

ferentiation as well as mid- and forebrain neuronal differentiation. It is also responsible

for cell proliferation in the adult brain [21].

Without any SHH signals (Figure 34 A), translocation of the transmembrane protein

Smoothened (Smo) into the primary cilium (a slim and short protuberance of the cell

mebrane) of the cell as well as its activity are repressed. With no Smo activity, protein

kinase A (PKA) aids the degradation or processing of full-length Gli transcription fac-

tors (Gli2 and Gli3) into Gli repressors (GliR). Gli effectors are a family of zinc-finger

proteins that occur as repressors as well as activators in the SHH pathway. GliR can

then translocate into the cell nucleus and repress SHH target gene expression.

When SHH binds to the transmembrane receptor Patched1 (Ptc1) (Figure 34 B), Smo

can translocate into the primary cilium and repress PKA as well as promote Gli acti-

vator (GliA) formation. On top of that, PKA repression inhibits the degradation and

processing of full length Gli to GliR, so that a majority of Gli will be available in its

active form. GliA can then translocate into the nucleus and activate SHH target gene

expression – target genes include Ptc, Shh and Gli. SHH signaling is also influenced

by other transmembrane proteins, e.g. it is inhibited by Hhip1 and enhanced by Gas1,

Cdo and Boc interception [20].
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Figure 34: SHH signaling pathway. A: Without any SHH signals, Smo activity is inhib-
ited by Ptc1. Protein kinase A (PKA) is free to aid the processing of Gli transcription
factors into repressor form GliR. GliR translocates into the nucleus and represses SHH
target genes. B: SHH binds to Ptc1 and Smo represses PKA production. Gli can now
be transformed into activator form GliA and promote expression of SHH target genes
in the nucleus. Taken from [20].

7.2 Parameters Of Gene Regulatory Networks

Figure 35: Parameters for equations 2.1 proposed by Brambach et al. Taken from [28].
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Figure 36: Parameters for equations 2.2 proposed by Balaskas et al. Taken from [31].
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7.3 Supplementary Figures

7.3.1 Simulation With Test Parameters

Figure 37: SHH-diffusion for standard parameters. SHH levels are normalized to the
level at SHH secretion points.
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Figure 38: WNT-diffusion for standard parameters. WNT levels are normalized to the
level at WNT secretion points.

Figure 39: Rostrocaudal patterning at t = 8000.0s.
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Figure 40: Dorsoventral patterning at t = 8000.0s

7.3.2 WNT-Gli Coupling (WcritG, h6)

Figure 41: Dorsoventral patterning for varying values of h6.
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7.3.3 Degradation Rates

Figure 42: Morphogen levels after 800.0s for varying degradation rates δWNT , δSHH
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(a) 3d plot

(b) 2d slices

Figure 43: Impact of variation of both degradation rates on rostrocaudal patterning.
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