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Abstract

A star forms with a surrounding protoplanetary disk after the collapse of a molecular cloud
core. Subsequently, over a period of several Myr this protoplanetary disk of dust and gas
is accreted onto the host star. We model the formation and evolution of such a protoplan-
etary disk using a one-dimensional numerical model. We find that disks form on a time
scale of less than 1 Myr and that the size and mass of the disk at the end of formation
depend on the angular momentum of the molecular cloud core, which may explain the
large diversity in observed disk masses and radii. The initial disk size subsequently sets
its viscous lifetime. In order for the star to accrete the disk within 5 Myr we find that
disks need to form very compact (within about 3 au). Dust disk lifetimes are investigated
assuming that particles sizes are held constant by the combined effects of coagulation,
bouncing and fragmentation. For dust sizes of 0.1 and 0.01 cm we find that the dust disk
drains significantly faster than the gas disk, having lifetimes that are at least 2-3 Myr
shorter than the 5 Myr simulation. For 0.001 cm sized dust, the dust disk only begins
to rapidly drain inwards towards the end of the 5 Myr simulation, but maintaining such
small particles would require very low coagulation efficiencies in the outer disk. For these
particles with fixed sizes, we find that pebbles can pile up and could form planetesimals
though the streaming instability early in the disk evolution at a wide range of orbital radii.
With this in mind, we also briefly look into the potential of planet formation via pebble
accretion, starting with embryos placed in these streaming instability active regions. We
find that giant planets cores of about 10 Mg can emerge after the disk formation phase
has ended in a timespan of about 0.25 Myr yr for 0.1 cm sized pebble at an orbit of about
10 au. For 0.01 c¢m sized pebbles we find that planets are able to grow to masses from a
few Mars masses to a few Earth masses, both in the inner disk (< 5 au) and the outer disk
(2 10 au).
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Popularvetenskaplig beskrivning

De forsta idéerna om hur planeterna i solsystemet bildades harstammar fran den franske
filosifen René Descartes pa 1600-talet. Den teori som forskare tror pa idag kan spara sitt
ursprung till mitten av 1700-talet, fran den svenske forskaren Emanuel Swedenborg och
den tyske filosofen Immanuel Kant. Deras hypotes kallas Solnebulosan. Den foreslar att
solens planesystem bildades fran en disk av gas och stoft som omringade solen nar den var
ung.

Pa 6ver 250 ar har Swedenborg och Kants teori, i grunden, férandrats forvanandsvart lite.
Vi tror fortfarande att planeter bildas fran en disk av damm och stoft, vilket idag kallas
for en protoplanetar disk.

Aratal av forskning kring d&mnet har avsljat att det finns flertalet utmaningar att Gverkomma
for att bygga planeter - dar manga av dessa utmaningar éverkommits. En metod som har
varit vanlig att anvdnda ar att man utgar fran en fardigbildad disk designad sa att den
innehaller tillrackligt mycket gas och stoft for att kunna bilda solsystemet. Innan vi kande
till fler planetsystem an vart eget var detta kanske inte en dum idé, men idag kanner vi till
tusentals, och upptécker nya i en rasande fart. Genom dessa upptackter har det visat sig
att vart solsytem faktiskt skiljer sig en hel del ifran manga av dessa andra planetsystem.
En model baserad pa solsystemet kan saledes anses vara bristande i grunden.

Utgar man ifran en fardigbildad disk tar man inte hansyn till det stadie da stjarnan och
disken bildas. Stjarnor bildas namligen ifran stora moln av gas och stoft som kollapsar
under sin egen gravitation. I denna process kommer en del av gasen och stoftet att landa
sa att det bildar en disk runt stjarnan, och det ar detta som bildar den protoplanetara

disken.

I detta projekt vill vi utveckla en modell dar vi inkulderar hur stjarnan och den proto-
planetara disken bildas. Genom att anvéanda datorsimuleringar kommer vi undersoka hur
det kollapsande molnets egenskaper, sa som rotation och massa, paverkar hur disken bildas
och utvecklas. Vi vill &ven undersoka ifall detta kan paverka hur planeter bildas.
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Chapter 1

Introduction

1.1 Star formation

Stars are formed within giant molecular clouds (GMCs), which are over-dense regions of gas
and dust in the ISM. As the name suggests, GMCs are dominated by molecular hydrogen
gas, rather than atomic gas. GMCs are not homogeneous structures. They contain dense
filaments, clumps and cores. Clumps are the regions where stellar clusters form. The most
dense regions within clumps are the cores, which is the birthplace of individual star or small
star systems (McKee & Ostriker|2007). A core forms a star by collapsing gravitationally.
Due to conservation of angular momentum, some of the infalling material will settle onto
a disk surrounding the star.

The density profile of molecular cloud cores has been shown to be consistent with that of a
Bonnor-Ebert sphere (Alves et al.2001; Kandori et al.[2005; Kirk et al.|2005; Teixeira et al.
2005). A Bonnor-Ebert sphere is a self-gravitating symmetric sphere under hydrostatic
equilibrium, in a pressurised medium, with the maximum mass it can have before becoming
gravitationally unstable (Bonnor||1956; |[Ebert||1957). A supercritical Bonnor-Ebert sphere
has a density such that hydrostatic equilibrium will break.

Very young stars, often called young stellar objects (YSOs), are divided into classes based
on slope of the spectral energy distribution in the mid infrared. This is done because the
dust in the disk around the star is much cooler than the star so it produces an infrared excess
in the spectral energy distribution. The classification is thought to follow the evolutionary
stages of a YSO. The classes are as follows. Class 0 YSOs are the youngest object and
have no infrared excess. These objects still embedded in their envelope, that is some of
the molecular cloud core has not yet collapsed onto the star and disk, instead surrounding
it as an envelope. Class I objects are still embedded, but have formed a circumstellar disk
so they show an infrared excess. Class Il objects are no longer embedded and have formed
a substantial disk. They therefore show a strong infrared excess. These are the typical
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T-Tauri stars. Class I1I stars have lost most of their circumstellar disk, so they show little
infrared excess. A sketch of these stages can be seen in Figure [1.1.1]

An early proposal for how stars can form
within molecular cloud cores is the inside
out collapse scenario (Shu/1977). The phys-
ical state of this collapse is that the collaps-
ing core initially starts out in hydrostatic
equilibrium. At some point, the central
density of the core is increased by some per-
turbation. The outer regions of the core are
not immediately affected by this, as they
feel the same gravitational pull as before.
However, the shell closest to the core breaks
hydrostatic equilibrium and starts to grav-
itationally collapse. As one shell has col-
lapsed, the next one loses its pressure sup-
port from below and begins to collapse, and
so on. [Shu (1977) approximates the pre-
collapse density profile of the cloud with
a singular isothermal sphere, which goes
as r~2. It can be shown that this den-
sity profile leads to a constant mass accre-
tion rate onto the disk. In this project we
will consider the same inside out scenario,
but we will use a Bonner-Ebert sphere den-
sity profile as in Takahashi et al. (2013),
rather than the r=2 profile used by |Shul
(1977). This will lead to a collapse where
the mass accretion rate onto the disk is not
constant.

Magnetism in GMC cores affect the forma-
tion of disks. Under ideal MHD conditions,
formation of disks can be suppressed. In
these conditions, the magnetic field lines
are frozen into the cloud core. Because of
this, as the core collapses it leads to a situ-
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Figure 1.1.1: Illustration of the four stages
of young stellar objects (YSOs). In the class
0 stage the YSO is still embedded in its sur-
rounding envelope and radiates no excess in
the infrared. Class I objects have disk but are
still embedded in the envelope. They show
an infrared excess. Class II objects are not
embedded, have substantial disks and show a
strong excess infrared radiation. By stage III
most of the disk has been lost, so the infrared
excess is low. Credit: (Isella/2006))

ation where the magnetic field strength increases rapidly with decreasing radius. As such,
material falling through the collapsing cloud eventually becomes dominated by the mag-
netic field from the star. The magnetic field is able to strip the collapsing material of
angular momentum, stopping the inflow of material onto the disk. This is the 'magnetic
breaking catastrophe’ (Galli et al. 2006). Since we do observe disks around protostars,
something is lacking from this picture. There are a number of proposed solutions to this

4
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issue, including e.g., non-ideal MHD, magnetic field rotation misalignment and turbulence
(Li et al.|2014). However, the effect of the magnetic field on the collapse is beyond the
scope of this project, and will therefore not be considered.

1.2 Protoplanetary disks

The classical protoplanetary disk model is the minimum mass solar nebula (MMSN)
(Hayashi|[1981). This is a model derived from the solar system. It is constructed by taking
all the solids in the solar system, that is rocks and ice, and distributing them according to
a power law, extending out to 36 au. This outer radius comes from the assumption that
the solids grew into the planets in the solar system with a minimum radial displacement.
It is then assumed that there is 100 times more gas than solids in this disk, since that
is approximately the dust-to-gas ratio in the interstellar medium. It is further assumed
that the dust is evenly spread in the disk. However, one can criticise this model on several
ground. First, while it was reasonable to construct a model based on the Solar system in
1981, before other planetary systems had been discovered, today we know thousands of
such systems. Using the Solar system as an archetypical planetary systems, even though
there is a vast diversity in known exoplanetary systems is somewhat arbitrary. It is also a
model which has no time evolution (although one can of course evolve a MMSN through
time e.g. viscous evolution), but protoplanetary disk must evolve with time, since they
dissipate at some point.

1.2.1 Observational constraints

Protoplanetary disks are short lived on an astronomical time scale. The typical lifetime
of a disk is on the order of a 2-3 million years with an upper limit of about 10 million
years (Fedele et al.[2010; Haisch et al.[[2001). The main process of dissipating the disk is
through accretion onto the star. The material accreted onto the disk emits light in the
UV range, which then creates an excess of UV emission. It is by measuring this UV excess
that accretion from the disk to the star is measured. The observed accretion rate from
protoplanetary disks onto protostars are in the range 107! — 1077 Mg yr~! (Hartmann
et al.[|1998, 2016; [Manara et al.|[2016). Other processes which dissipate the disk include
the formation of giant planets and the final clearing of gas by photoevaporation (Owen
et al.|2012} 2011}, 2010). Examples of observed protoplanetary disks can be seen in Figure
21

Najita & Bergin (2018) compared the sizes of class I and class II YSOs and found that class
IT object have consistently larger radii, as measured by gas tracers, than class I sources.
Decreasing disk masses and increasing disk sizes for older objects is consistent with viscous
evolution of the gas disk, in which gas can be accreted onto the star by transporting
angular momentum outwards in the disk. The physical mechanism behind transporting
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the angular momentum could not be determined from the study, but it argues for disks
evolving viscously.

Observationally, gas masses are believed to be in the range 107° — 10! M, (Ansdell et al.
2016; Bergin et al. 2013; McClure et al.|[2016; Miotello et al.| 2017} |Pascucci et al.|2016]).
However, Galvan-Madrid et al. (2018)) investigated the effect of self-obscuration in proto-
planetary disks. They found that current estimates of disk masses can be underestimated
by as much as a factor 10. Disk masses between Mp;g = 0.01 —2M were needed to repro-
duce observed spectral indices. |Ballering & Eisner (2019)) also found that disk masses were
underestimated. They fitted radiative transfer models to spectral energy distributions of
132 disks and found that masses were underestimated by a factor of ~ 1 — 5 when using
(sub-)millimetre measurements, compared to their results.

Manara et al. (2018) compared the total mass of known exoplanetary system to that of
known protoplanetary disks, which are 1-3 Myr old. What they find is that the exoplan-
etary systems are equally, or more, massive than the most massive protoplanetary dust
disks. To explain this, Manara et al.| (2018]) suggest two solutions. The first solution pro-
poses that planetary cores form early, before these disks are observed. Disk masses tend to
decrease with age, it is therefore possible that young disks (< 1 Myr) were massive enough
to form the observed exoplanet population. The other solutions is that the disk is refilled
with material from the ISM, either continuously or in episodically.

1.2.2 Theoretical work on protoplanetary disk evolution

Protoplanetary disks form together with the star as the rotating molecular cloud core
collapses. The cloud core contains too much angular momentum for all of it to be deposited
on the star. If angular momentum is conserved, material will therefore land in a disk
surrounding the star. A parcel of gas will fall onto a radius in the disk where the Keplerian
angular momentum is the same as the angular momentum it had in the rotating cloud.
The parcel with highest angular momentum will fall the furthest out at a radius called
the centrifugal radius. Each consecutively collapsing spherical shell will have a larger
centrifugal radius and the final centrifugal radius will be set by the total angular momentum
budget of the cloud core.

Gas being accreted onto the star is losing angular momentum. In order to conserve an-
gular momentum of the system, the angular momentum from the accreted gas must be
transported somewhere via some mechanism. One such mechanism is turbulence. The tur-
bulence in the disk can acts as a viscosity, making the disk undergo viscous evolution. In
this process, the bulk of the gas is being transported inwards in the disk. Simultaneously,
angular momentum is transported outwards. One mechanism of creating turbulence in the
disk is the so called magneto-rational instability (MRI) (Balbus & Hawley (1991). They
found that disks becomes unstable and turbulent even under a weak magnetic field.

Recent works have however questioned if the MRI is a viable mechanism for angular mo-
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mentum transport in protoplanetary disk, as ionisation levels in the disk may be to low.
Work by Bai & Stone| (2013) has shown that the MRI might be suppressed in the disk.
They include the non-ideal MHD effect of Ohmic resistivity and ambipolar diffusion. The
results are that the MRI is completely suppressed in the disk. Instead, a magnetocentrifu-
gal wind is created. This wind carries away angular momentum efficiently enough that
observed accretion rates onto stars can be explained.

The main component of a protoplanetary disk is the gas disk, but it also contains a dust
component. These two components evolve differently, because they are affected by different
processes in the disk. There is a pressure gradient present in the disk which the gas is
affected by. This gives the gas additional support against the gravitational pull of the star.
As a consequence, the gas is able to orbit with a sub-Keplerian velocity and still maintain
a stable orbit. The dust disk does not feels this pressure support. If the dust is very small
it will be tightly coupled to the gas and follow the gas streamlines. As the dust grows to
become larger pebbles, it will begin to decouple from the gas. Because it does not feel the
pressure support, it orbits with a Keplerian velocity, i.e. faster than the gas. Due to the
difference in velocity, the larger dust particles experience a head wind from the gas. This
robs the dust particles of angular momentum, causing them to rapidly drift inwards to the
star (Weidenschilling||1977).

It has been shown that the growth and drift time scales of dust in protoplanetary disks are
very rapid. Dust grows in size until it reaches a point where it starts drifting radially faster
than it grows, at which point it quickly drifts onto the star on time scales of 100-1000 yr
(Weidenschilling||1977). This is dubbed the radial drift barrier (Blum & Wurm|2008; Zsom
et al.[[2010). Particle growth is also limited by collisional fragmentation (Blum & Wurm
2000; Blum et al.|1998; [Poppe et al.[1999) and bouncing (Blum & Wurm|2008; Zsom et al.
2010) to mm-cm size. These effects combine into making dust disk lifetimes short, and
collisional particle growth to planetesimal sizes of km or more difficult.

The rapid loss of pebbles is problematic. From a theory standpoint it means that planet
formation must also be a very rapid process, since the pebbles are the building block from
which planetesimals and planets form. More importantly, from observations it appears that
the dust is present much longer than the growth and drift suggests, e.g. (Andrews et al.
2016). Something therefore appears to be lacking in our understanding of dust growth and
drift.
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(a) HL Tau (ALMA Partner-| (b) TW Hydrea (Andrews (c) HD163296 (Isella et al.
ship et al./[2015) et al.|2016) 2016)

Figure 1.2.1: Examples of observed protoplanetary disks. The left panel shows the young
system HL Tau. The middle panel shows TW Hydrae which may be as old as 10 Myr. The
right panel shows HD163296. These disks are observed in mm emission and what is seen
is the dust component of the disk. Clearly visible are ringed structures in the disk, which
could be a signature of planet formation.

1.3 Planet formation

The classical model for the formation of giant planets is the so called core accretion scenario
(Pollack et al.[1996)). In this model, the giant planet core initially grows by acccreting km-
sized planetesimals. This process halts once the core reaches its planetesimal isolation
mass. Then, the core accretes gas to form a gaseous envelope. At some point, the mass of
the gas envelope becomes higher than the mass in the solid core. When this occurs runaway
gas accretion begins and the planet is quickly able to accrete a massive gas envelope.

The step of how mm-cm sized pebbles grow to planetesimals is not certain. The currently
most promising mechanism is the streaming instability. If enough pebbles are located
together, they can start to push on the slower-rotating gas around them. This causes the
gas to orbit faster than its previous sub-Keplerian velocity. Pebbles that drift into this
region then no longer feel as much gas drag and stick there, further pushing on the gas,
increasing its orbital velocity and reducing the drag even more. This can cause a runaway
process where enough pebbles become concentrated such that they gravitationally collapse
to form planetesimals (Johansen et al.[2007; [Youdin & Goodman![2005)).

However, core accretion by planetesimal accretion is unsuccessful at explaining the forma-
tion of giant planet at large orbital radii (Pollack et al.|1996]). This is because the accretion
rate of planetesimals decreases rapidly will increasing orbital radius. The formation time
scale of Uranus or Neptune like planets becomes longer than the typical time scale of a
MMSN-like protoplanetary disk.
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A mechanism of growing giant planets which solves the issue with slow planetesimal accre-
tion is the pebble accretion scenario (Lambrechts & Johansen 2012, 2014). This scheme
is similar to the core accretion scenario, but instead of accreting km sized planetesimals,
the planetary embryo accretes mm-cm sized pebbles. This results in higher mass accretion
rate onto the forming planet, allowing it to form within the lifetime of a protoplanetary
disk.

1.4 Purpose of this work

In this work we will investigate the formation and evolution of protoplanetary disks start-
ing from the collapse of a molecular cloud core. This will be done by constructing a
one-dimensional numerical model. Using this model we will investigate how the angular
momentum budget of the molecular cloud core affect the evolution and formation of pro-
toplanetary disks. We will explore how changing rotation rate and mass of the cloud core
affects the disk mass, radius and the accretion rate onto the star from the disk. With our
disk formation and evolution model we then want to understand how the distribution of
dust in the disk is affected by the disk evolution.We assume dust that is of constant size
everywhere, and explore the effects of changing the size of the dust. Finally, we will use the
dust evolution model to find the implications of our work on the formation of planetesimals
and planets.



Chapter 2

Theory

In this chapter we will go through the theory of how we model the molecular cloud core
using a Bonnor-Ebert sphere and how it collapses to form a star and protoplanetary disk.
From there we will discuss how the protoplanetary disk evolves. The gas disk will evolve
viscously, and the dust will evolve via two processes. By drifting due to gas drag and by
advecting with the gas due to being coupled to it. We will then give a description of how
we model planet formation via pebble accretion and how we model planet migration in
the type 1 regime. Finally, we will discuss the angular momentum of the cloud core. We
look at observational and numerical constraints on the specific angular momentum of cloud
cores, and explain how we use these to determine the rotation rate of the cloud core.

2.1 Bonnor-Ebert sphere

The Bonnor-Ebert sphere (Bonnor [1956; Ebert| [1957)) is a solution to the Emden equa-
tion,

1 d /r*dP

where r is the radius of the sphere, p the density, P the pressure and G the gravitational
constant. The Bonnor-Ebert solution to Equation has the boundary conditions that
the central density is finite, and that the density gradient at the outer radius of the cloud
is 0. Using the ideal gas law as the equation of state, Equation for an isothermal
sphere can be written in terms of density as

1i<r2dp) MG

r2dr ;5 c?

P, (2.2)
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where ¢g is the sound speed. From this one can solve for the density profile. Under
the approximation that the central density is infinite, the solution can be determined
analytically and is the singular isothermal sphere (SIS) (Chandrasekhar||1957; Shul|1977)).
This has the density profile

2
Cs 9

p(r) = QWSGT . (2.3)

This sphere extends infinitely far out in space.

As mentioned the Bonnor-Ebert sphere has a finite central density. This complicates the
solution and unfortunately an analytical solution to Equation (2.2)) does not exist in this
case, and it must be solved numerically. How this is done is discussed in Section [3.1}

2.2 Disk formation

The protoplanetary disk forms around the host star as a molecular cloud core collapses.
Due to conservation of angular momentum, some of the infalling material will fall onto the
protostar, and some onto the disk. This formation scenario is the collapse of a molecular
cloud core modelled by a super-critical Bonnor-Ebert sphere, following the [Takahashi et al.
(2013)) prescription. Collapse of the sphere is induced by increasing the density of the cloud
core by a factor f, breaking the hydrostatic equilibrium in the Bonnor-Ebert sphere. The
innermost shells of the cloud core now begins collapses inwards. The collapse front then
expands inside out as pressure support from below is lost, causing more and more of the
cloud core to fall towards the star and disk system. Below is a description of how the disk
forms.

2.2.1 The collapse of a single shell

The collapsing cloud is divided up into shells. A shell starts with a certain initial radius
Tini, and begins to fall once the collapse front radius, rcp, reaches the shell. Each collapsing
section of the shell lands where its angular momentum matches that of the disk, since the
collapse obeys conservation of angular momentum. An illustration of this collapse scenario

is shown in Figure [2.2.1]

The velocity of each collapsing shells, u, follows

Du ¢ dp _ GM;,

— = 2.4

Dt por r? (24)
Cg GMin

= SR - S, (25)

11
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Figure 2.2.1: This illustration shows a single shell of the molecular cloud core collapsing
onto the protoplanetary disk. The cloud core is in solid rotation with rotational velocity
o, and the collapse obeys conservation of angular momentum. A collapsing parcel of gas
(red box) starts out at radius of the collapse front, rgr, and angle # from the rotation axis.
The parcel will land at a radius in the disk where the parcels angular momentum is the
same as the Keplerian angular momentum around the star.

where cg is the sound speed of the cloud, which is constant due to the cloud having constant
temperature. p is the density of the cloud, G is the gravitational constant, r the current
radius of the shell and M;, is the mass interior to the collapsing shell. The function
F(r) = r/p dp/or is introduced here. For a Bonnor-Ebert sphere this is of order unity.
Further, this is approximated as F/(r) = F(rcp) = constant, where rcp is the radius of a
shell as it beings to collapse. The justification of this is that each shell will spend most of its
time at this radius since the collapse phase of each shell is relatively short. In hydrostatic
equilibrium F(r) is given by

Fr) = == (2.6)

2
T

To break hydrostatic equilibrium, the mass of the sphere is increases by a factor f = 1.4.
Therefore, before the mass is increased by the factor f, hydrostatic equilibrium for a shell
gives F(rcr) as

G M,;

F(TCF) = fCQTCF .

(2.7)

12
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The acceleration, a, that parcel of gas feels is given by

GMin Cz
a=-——5+ ?F(TCF) (2.8)

= —GM,, ( ! L 1) (2.9)

72 f rep T

The acceleration can also be written in terms of the velocity, u, as

_du_dudr_ %_ld_qﬂ
T a2 ar

Using this and Equation (2.9)), we get the velocity as

1 1 1 r
o) ot (1= Ls (), )

With w = dr/dt this is set up as an differential equation and solved to find the infall time,
the time it takes for a shell to reach » = 0. The variable substitution R = r/rcp is also
made. The infall time then becomes

g = 1| G2 [ L J (2.12)
infall — Mjn 2G \/ .
f

(2.10)

In R+——1

Sy
/

In R+——1

Joining all constant into one as

8= \/;J\/ , (2.14)

I R+——1

gives the final expression for the infall time for a shell at initial radius rcr as

TCF TCF
1nfa11 T 5 (215)
\| M. \/SOCF 2712 p(

From Equation ([2.15) we can also get the expansion of the collapse front per unit time as

d?”CF/dt.

13
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2.2.2 Mass infall rate

It is assumed that all sections of a shell collapses onto the disk at the same time and that
angular momentum is conserved during the collapse. Each parcel of gas will therefore land
on the disk where its angular momentum matches that of the disk. This is the point where
the centrifugal and gravitational forces are in balance.

The mass contained within a spherical shell of radius rcrp and thickness per unit time
drerp/dt is given by 4dmpripdrep/dt. This gives the amount of mass swept up per unit time
as the collapse front expands, which is also the amount of mass which lands on to the disk
per unit time.

2 dT’ CF
CF™ 7, dt :
To find a full expression for this we need an expression for drgg/dt. This can be found by
differentiating Equation ([2.15)) with respect to r¢p, giving

d 2 2
roF _ rorf ' (2.17)
dt 3tp%2 — 27t3p(rer)
In this system the mass accretion onto the disk is dependant on time. This is different
from the singular isothermal sphere (SIS) of (Shu/[1977)). The SIS is a Bonnor-Ebert sphere

approximated as having an infinite central density. The resulting density profile is

Mingan = 47pr (2.16)

2

c
= —3 2.18
PsIs (i ( )
Using Equation (2.13)), the infall time for the SIS is
re
Linfall SIS = <k J (2.19)
2 TCF 2 - -
G, 27r Gr2 \/ R+ —1
rct
- o J (2.20)
\/ —InR + — -1
From this one can then find drcp/dt as
—1
drop/dt[sis = 2'7%¢ - (2.21)

fl dR

1 1
0
"R+ ——1
\/ JUUTR
Now, using Equations ([2.16]), (2.18)), and (2.21]), the mass accretion rate for a SIS in this

collapse scenario is

Mys = 1.02 & (2.22)

leoo
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2.3. DISTRIBUTION OF MASS ACROSS THE DISK CHAPTER 2. THEORY

2.3 Distribution of mass across the disk

To get the mass infall rate per unit disk radius, a, the variable is changed from disk radius
a, to angular momentum j, and then from angular momentum to the angle 6, as seen in
Figure 2.2.1L The infall rate per unit disk radius can then be expressed as

aA]\‘Ia,infall -9 a]\‘/[a,infall % a_]
oa B 00  djda

(2.23)

Ma7infall is the total mass that lands on the disk within radius a. The factor 2 comes from
the fact that material falls onto the disk both sides of the disk. The small parcel of gas
with the same angular momentum in Figure 2.2.1] has the thickness drcp and width dé.

The mass of this parcel is given by
dMa = 271',0 : (sin@ TCF) : (TCF d@)dT’CF (224)

Differentiating this with respect to t, one can show that the infall rate per unit angle, i.e.
derivative of Equation (2.16)) with respect to 0, is

a M a,infall M

With this, the infall rate per unit radius is
OMy ingal - 000j
———— = Msinf——. 2.26
da S} %a (2:26)

The angular momentum of a parcel in the shell at radius rcr and angle 6 from the rotation
axis of the cloud is given by

j = (repsind)’ Q. (2.27)

Solving this for sin? @ and differentiating with respect to j one finds

0 1 1 i\
— = 1-— ) 2.28
5] sin 9 QQOT%F ( Q0T%F> ( )

Inserting this into Equation ([2.23)), one gets the mass infall rate per unit radius as

6Ma,infall _ Mingan _J 12 5_]

da 2Q072 5 Qorép or

This is also the mass infall rate that Takahashi et al. (2013) arrives at. {2y is the angular
frequency of the rotating molecular cloud, r¢ is the initial radius of the currently collapsing

shell, and j is the angular momentum of the collapsing gas parcel. We can convert the
source term in Equation (2.29) to a surface density source by dividing it by 1/27a,

¥ 1 OMy inan 1 Mingan 1 20y
Qorée or

(2.29)

- - 2.30
ot 2ma  da 2mr 2Qorée (2:30)
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2.3.1 Formulation in terms of the centrifugal radius

The angular momentum of a collapsing parcel, j, is given by Equation (2.27)). Since angular
momentum is conserved, this equals the Keplerian angular momentum in the disk where
the parcel lands. Therefore, j is also

j=(GMa)"?. (2.31)

Here, M is the mass contained in the disk within the radius a. One can now identify that
the Qorép term in Equation is the maximum angular momentum in the currently
collapsing shell, i.e. where # = 90° and sinf = 1. This will have the same value as the
angular momentum at the outer most radius where material lands on the disk, which is
the centrifugal radius, R.. Equating these two gives

Qorip = (GMR)Y?. (2.32)

Using these two equations in Equation ([2.30)), one finds the source term as

—-1/2

0% Mg [ 7\ r\ "
=% = \r) |'\&

This is also the source term that [Hueso & Guillot| (2005) derived for their model for the
formation of a protoplanetary disk.

(2.33)

2.4 Evolution of protoplanetary disk

2.4.1 Viscous evolution of the gas disk

The turbulent viscosity, v, of the disk is parametrized using the « disk model prescription
by [Shakura & Sunyaev| (1973)). In this prescription v takes the form

v = aHyc, (2.34)

where H, is the scale height of the disk, given by

Cs
H, = =, 2.35

g 9 ( )
where ) the Keplerian angular velocity. The sound speed is coupled to the temperature
and the method used to calculate this is discussed in Section [3.4 « is a parameter < 1.
From observations and theoretical work, a values in the range 1073 —10~! have been found

(Hartmann et al.||1998; Pinte et al.||[2016)).
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2.4. EVOLUTION OF PROTOPLANETARY DISK CHAPTER 2. THEORY

In the growth phase the disk it is expected to becomes massive relative to the star and
possibly become gravitationally unstable. Angular momentum can then be transported
in the disk via gravitational torques (Zhu et al.|2010). This can happen if the Toomre
parameter is,

QO
k<9 (2.36)

QZ?TGZN ’

This would effectively give a higher o value. « from the gravitational torque can be
modelled as

ag = exp [-Q*], (2.37)

Takahashi et al| (2013); Zhu et al| (2010). The viscosity that does not arise from the
gravitational torque is denoted as a,,. The total value of « is then given by

a = ag + . (2.38)

Pringle (1981) expresses the viscous time evolution of the surface density, X, in an accretion

disk as

0%y 30 12 0 12
% = lr . (VEgT ) (2.39)

Here, r is the radius in the disk and v is the turbulent viscosity. This expression comes from
the continuity equation and angular momentum conservation. In cylindrical coordinates,
the continuity equation is

0%, 10

— = ——— (rXyv;), 2.40

ot ror (r¥gvr) (240)

where v, is the radial velocity. Conservation of angular momentum leads to the following
equation,

0, 10 1 oG
— (r*QX - (2, Qn,) = ——. 241
ﬁt(r g)+r§r( g" U) 2mr or (2.41)
Q) is the angular frequency, and the torque G is given by
dQ
G = 2mr- I/Egrg ST (2.42)

Under the assumption of a point mass Keplerian potential, the angular frequency is pro-
portional to the radius as Qocr=%2. Using this, Equations (2.40]) and (2.41)) combine into
Equation ([2.39).

Such a disk evolves by gas being accreted towards the central object, the protostar in
the case of a protoplanetary disk. As this gas moves inwards in the disk, it will lose
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2.4. EVOLUTION OF PROTOPLANETARY DISK CHAPTER 2. THEORY

angular momentum. Because the angular momentum of the system must be conserved,
this accretion of gas onto the star is accompanied by a simultaneous flow of gas outwards in
the disk. This gas gains angular momentum, conserving it as a whole. The mass accretion
rate through the disk is given by

Maccrete = SWVZg. (243)

The accretion rate through the disk is constant. This rate is therefore also the rate at
which mass is accreted from the disk onto the star. Equation can be combined with
the source term from the collapsing cloud core. This is done through simple addition of
the two parts,

e 80 [nl
ot ror or

(VEgT1/2)] + S(r,t). (2.44)

2.4.2 FEvolution of the dust
Particle drift

A drifting dust particle in a protoplanetary disk moves with the radial velocity given by
Equation (2.45)) (Nakagawa et al.|1986)

27’f
1+ 77

1 Uk (2.45)

vy =
where 77 is the Stokes number, a measure of how aerodynamically coupled a particle is to
the gas, € is the dust-to-gas ratio, vy is the Keplerian velocity and 7 is a dimensionless

parameter which gives the pressure support of the gas. This equation is valid as long as
€ << 1, otherwise the 1 in the denominator is replaced by (1 + ¢)2. It is given by

1 (H\*0lnP
- (£ : 2.46
7 ( ) dlnr (2.46)

In this equation, d1In P/dInr = —2.75, for a disk with a temperature structure that goes
as v~/ and a radial surface density slope of —1. This approximation hold well for most of
the disk, during most of the evolution. However, in the early times and the outer parts of
the gas disk, the radial surface density slope can be steeper than —1 due to the exponential

oln P

edge of the disk, which gives a large pressure gradient and has a larger absolute

nr
value. We will nevertheless use a fixed value for dln P/0Inr in our numerical simulation

in order to prevent issues near the edge of the disk, which causes the dust surface density
to become negative just outside the edge of the dust disk.

The formula for calculating the Stokes number depends on in which drag regime the par-
ticles are. It will depend on the mean free path of the particles, Apg,. In the mid-plane of
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2.5. GIANT PLANET FORMATION CHAPTER 2. THEORY

the disk it is given as

. Ro 2 . Ro . 4
Pe ey = YTP if Amgp > ~ R,
S e Xy i J (2.47)
AR p. ARZp, (2m) 7" 4
Qk = if /\mfp < —R.,
9)\mfpp07gcs 9)\mfp Eg 9
(Youdin 2010), where one uses that the gas surface density is given by
Y = V2mpoHy. (2.48)

The first case, when A > 4/9R, is called the Epstein regime and the second case is called
the Stokes regime. The mean free path is given by

mg

)
OmolPg

/\mfp = (249)

where my is the molecular gas mass and oy, = 2.0 - 1071 cm? is the molecular collision
cross section.

Dust surface density

The dust surface density evolution can be evolved through the following continuity equa-
tion,

0%q 10

= T (P, 2.50

ot ror (r¥av) (2:50)

Y4 is the dust surface density, r the radius in the disk, and v, the radial velocity of the
dust. For dust particles v, is given by Equation (2.45]). Dust particles that are completely
or partially coupled with the gas will also feel the additional contribution from the radial
gas flow.

2.5 Giant planet formation

2.5.1 Pebble accretion

The cores of giant planets can grow by accreting dust pebbles entering within approximately
the Hill sphere of the core. When the radius within which pebbles are accreted onto the
planet core is smaller than the dust scale height, pebble accretion proceeds in the 3D
regime. In this case the accretion rate onto a planet core can be given by

24

M ore — mt ricGMcore—7 2.51
o = L 251)
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2.6. CLOUD CORE ANGULAR MOMENTUM CHAPTER 2. THEORY

(Lambrechts et al.|2019). M q. is the mass of the planet core, Hy is the scale height of the
dust, which is assumed to be Hqy = 0.01H,. The motivation for this choice is that in the
observed young disk HL Tau, the dust appears to be well settled towards the mid plane
(Pinte et al.|2016). tgie is the friction time, given by

pelia

PoCs

trie = (2.52)

R, is the radius of the dust particles, p, is the particle density, which is taken as p, = 1.6
g cm™? (Birnstiel et al.|[2012), and py is midplane density.

2.5.2 Planet migration

Planets embedded in a protoplanetary disk will create spiral density waves outside and
inside the planet. These density waves will exert a torque on the planet. The torques are
not of equal strength, with the outer density wave exerting a stronger torque. The net
effect of this is that the planet loses angular momentum and migrates inwards (Goldreich
& Tremaine||[1980; |Ward|1997). This is the so-called type 1 migration. A planet undergoing
this type of migration moves at a rate which can be expressed as

dr M, S,r% (H\?
a_ 2 2.
at M. M, (7“) Vk (2:53)

(Lambrechts & Johansen 2014} |Paardekooper et al. 2010)). Here, ¢ is a parameter whose
value depends on the pressure and temperature gradients in the disk. In the isothermal
regime this can be taken to be ¢ = 2.8 (Paardekooper et al.[2010).

2.6 Cloud core angular momentum

The specific angular momentum of the molecular cloud core is the ratio of angular mo-
mentum to mass,

J o IQ
VoM (2.54)
M is the mass of the cloud core and J is the angular momentum. This is in turn determined
by the moment of inertia, I, and the rotation rate, which we assume to be uniform, €2y of the
cloud core. It has been shown by from observations and numerical simulations of molecular
cloud cores that the specific angular momentum scales with the core radius as ~ R¥?, with
a large spread, e.g. (Burkert & Bodenheimer| 2000; (Goodman et al.||1993). Figure
shows this relation from the observed molecular cloud cores of (Goodman et al.| (1993). The
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Figure 2.6.1: Specific angular momentum of molecular cloud cores observed by |Good-
man et al.| (1993). The dots are observed cloud cores and the curve is comes from that
J/MxQoR?, and, from fitting their observations, that QqocR7%%. The specific angular
momentum scales with radius as R*. Image credit: Goodman et al.| (1993).

dots are the observed cloud cores. The curve comes from the relation J/MocQyR? and
from fitting their observations Goodman et al| (1993) found Qqoc R~%4.

Burkert & Bodenheimer| (2000) modelled turbulent molecular cloud cores and found that
the specific angular momentum of cloud cores have an average value of

J R 3/2
7= 70 10%° (Ol—pc> em? 57 (2.55)

but with a large spread. Similarly, (Goodman et al.[1993)) found that the specific angular
momentum scales as

J 21 R\ 2 —1
i 1.5-10 (0'1 pc) cm” s . (2.56)
This results in a faster rotation rate than in Equation . Both of them already give
high rotation rates. The J/M relation from (Burkert & Bodenheimer|[2000) is used, since
it results in a centrifugal radius which seems more reasonable at ~ 280 au, rather than
~ 1100 au, as the relation from van Dishoeck et al. (1993)) does. Using Equation ([2.55))
and , the rotation rate of the cloud core can be found as

Qg =—70-102° —— 2 g1 2.57
°T T <O.1 pc) s (2:57)

For a 1 Mg cloud core, with a 0.01 Mg protostar seed giving a total mass of 1.01 Mgy,
modelled by Bonnor-Ebert sphere with a radius of 7.4 kpc, the rotation rate becomes

Qo1mg = 6.07-107 s (2.58)
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Chapter 3

Method

In this chapter we will go though the numerical methods used in our model. We will
describe how we find the Bonnor-Ebert sphere density profile and the discretization scheme
we use in the model for the disk evolution and formation. The temperature structure of
the disk is also explained. In the final section we test the code using a singular isothermal
sphere and discuss how the Bonnor-Ebert sphere differs from the singular isothermal sphere.
We also discuss some numerical issues that we find and how we solve some of them and
why others are not a major problem.

3.1 Bonnor-Ebert sphere

3.1.1 Solving for the density profile

Solving for the density profile of an Bonnor-Ebert sphere is done numerically. We change
variables from radius and density to the a-dimensional variables

r
T = — 3.1
Rc ? ( )
p
y=—. (3.2)
Pc
pe is the central density and R, is the characteristic radius of the sphere, given by

Cs
RC = W (33)

If we then write u = Iny, Equation (2.1 in terms of these a-dimensional variables is

1d odu
- ) = —e 4
22 dx (a: dx) < (34)
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3.1. BONNOR-EBERT SPHERE CHAPTER 3. METHOD

with boundary conditions

u(0) = 0, (3.5)
du
— =0. 3.6
o (3.6)
Equation (3.4]) can be expressed as a system of two first order differential equations,
d
é = —2%e", (3.7)
du z
— = —. 3.8
dr a2 (38)
The boundary conditions for these two equations are
2(0) =0, (3.9)
u(0) = 0. (3.10)

This can then be solved with a standard ODE solver. A curve of the resulting density
profile is shown in Figure |3.1.1

10°F

Y = P/Pc

1O_l_l N A | N PR | N N ......I_
107! 10° 10! 102
X = 1/1e

Figure 3.1.1: The blue curve shows the density profile of a Bonnor-Ebert sphere, in the
a~-dimensional quantities x = /R, and y = p/p..
3.1.2 Mass, radius and central density

For a Bonnor-Ebert sphere of mass Mgg, there exists a critical minimum radius for which
the sphere is stable. If this radius shrinks, or the mass within increases, the sphere becomes
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unstable and collapses. This radius is given by

Rpg = . (3.11)

This radius is also given by
Lerit Cs

~ Var VG

Terit = 6.9 is the critical radius at which the Bonnor-Ebert sphere is stable towards collapse
expressed in the dimensionless variable x. p. is the central density of the sphere. From
this one can solve for the central density as

Rgg (3.12)

2 2
o Terit C_s 1

o JaieG 1 3.13
P 47 G Rig (3.13)

To induce gravitational collapse of the Bonnor-Ebert sphere the mass of the sphere is
increased by a factor f > 1. We select the desired final mass Mgg, divide this by f. We
then use this divided mass with Equation to find the corresponding radius. With
this radius we then use Equation to find the central density of the sphere. To get
the sphere back up to the desired mass we then increase the density by the factor f. The
protostar is initialized with a seed with a mass that is 1/100 of the cloud core.

3.2 (as surface density

The surface density evolution and equation takes the form of

. _ -1/2
0%y _ 30 1/2 0 1/2 Mutan (7 372 T 12
ot ror lr T stR2 \ R, D 314

from combining Equation (2.44) and (2.33)). In the first step of solving this equation, it is
rewritten following the prescription by Bath & Pringle (1981). By making the substitution
X =2rY% and S = XY, Equation (3.14) can be rewritten as

. _ —1/2
oS 12 o2 X My ( X2\ 2 X2\ 2
2o () Sl 1— (3.15)
ot X20X? srk2 \ AR, AR,

) X2 1/2

MInfall( )
X208 @2 R,

< a0 PR (310
6rX [4—2
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3.2. GAS SURFACE DENSITY CHAPTER 3. METHOD

This equation is solved numerically using a one-dimensional finite volume scheme. The
integration domain is divided into N cells of equal logarithmic size. The centre of a cell
is X;, and the edges are X;_;, and X/, separated by the distance h;. In the one-
dimensional finite volume scheme, the value of a function in each cell is approximated by
the average over the entire cell as follows:

X?20S 1 (%nz X208
2 h T2 X 3.17
12 ot h; fXj_w 12 ot (3.17)
. 2\ 1/2
M, i
1 Xjt1/2 82 1 Xjt1/2 Infall (R )
=0 SOV dX + —J s dx 3.18
hi Jx, 0X? hi Jx, 1) 2\ 12 1/2 (3.18)
6mX | 4—2 ( )
R,
. 1727 Xi+1/2
1 0 S| 0 S| N 1 | Mingan 49 X2\ /2
R s T R,
=F(Xj41/2) =F(X;_1/2) Xj-1/2
(3.19)
: 1727 Xi+1/2
1 1 | Mgan X2\ "2
= 7 (F(Xjup2) — F(X- = 4-2 3.20
h; ( ( ]+1/2> ( J 1/2)) + h, 6 < (Rc ( )
X172

F(Xjip) = %Su\xﬂm is defined as the flux over edge X 1/5. F(Xjt1/2) being the

derivative of Sv with respect to X, is approximated by

SV|XJ.+1 — SV‘X].

hi

F(Xji2) = (3.21)

h; is the distance between the center of cell j and 5 + 1. The evolution of S can then be
written as

O B LR ) - F(Xn) + Mg (4o (X2 e
ot X?h, i-1/2 IR X2 | e R.
Xi—1/2
(3.22)

Substituting back X, for S gives the final form of the surface density equation as
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X,
ang B 12 1 (F(X ) F(X )) . 12 1 Mlnfall Lo X2 1/2 1/2 J+1/2
ot X3h; Iz IR X5 | 6 R,
X172
(3.23)

3.2.1 Boundary conditions
Outer boundary

The boundary condition at the outer edge is set up so that the surface density follows an
exponential continuation of the two outer cells. That is, since the grid is logarithmic, the
surface density between cell N and N + 1 has the same ratio as that of cell N —1 and N.
The surface density in the boundary cell is then given by

Z97N

Eg,N—l

SNl = g (3.24)

An exponential continuation of the surface density profile is used as the outer boundary
condition because the solution to Equation (3.14)) naturally leads to an exponentially de-
caying profile. This profile comes from an analytical solution to Equation (3.14]), which
can be found under certain conditions (Pringle||1981)).

Inner boundary

At the inner edge of the disk, the boundary condition was set up so that the mass accretion
through the inner boundary cell is the same as though cell 1. This is the mass that is
accreted onto the star. All mass that leaves cell 1 through its inner edge, is accreted onto
the star.

The mass accretion is given by

M =%, 3. (3.25)

If M is the same for cell 0 and 1, this gives

2970 : 37Tl/() = Eg,l : 37TV1 (326)
=%y0 = Zgar (3.27)
Lo
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3.3 Dust surface density

The dust surface density is modelled both by advecting the dust with the gas, and by
letting it drift through the disk. To advect the dust it is treated as if it were perfectly
coupled to the gas and evolved as a tracer of the gas. We define the dust surface density
as €X = X - €, where € is the dust-to-gas ratio and Y, the gas surface density. Following
the method used for the gas evolution, the flux of dust over the cell edges is € times the
flux of gas, F', given by Equation (3.21)). The dust flux is now

el'=¢.F. (3.28)

The gas advection component of the dust evolution is then given by

aEZAdV,’ 12 1
S S (F(Xjo1) — F(Xjiap) (3:29)
J

The drift component of the dust evolution is solved from Equation (2.50)) using an upwind
scheme. The change in cell 7 is given by

O€X D, j 11
th T Ar (74124, 410r 541 — T525d,5Vr) (3.30)
J

Where v, is given by Equation ([2.45]).
The complete dust evolution is then obtained by combining Equation (3.29) and (3.30))

with the dust source term. The dust source term is taken as 1/100 of the gas source
term, as this is roughly the dust-to-gas ratio of the interstellar medium (Goldsmith et al.
1997)).

S, = —L (3.31)

The complete dust evolution is now

oeX _ 662Adw n aEEDrift,j

ot o ot + Sy (332)

3.3.1 Dust boundary conditions
Outer dust boundary

The outer dust boundary is set up in the same way as for the gas, i.e. the exponential
continuation. The surface density of the outer boundary cell, that is cell N + 1, is then
given by

Yd.N

San1 = - SaN- (3.33)

YdN-1
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As opposed to the gas surface density, this is not a natural effect of the solution to the
surface density evolution equation. However, the dust disk is unlikely to extend all the
way to the edge of the integration domain since the dust drifts inwards in the disk. The
outer edge is therefore only affected by the initial, practically empty, disk that is created
for numerical reasons, and this does follow an exponential decay.

Inner dust boundary

The inner boundary conditions is set up so that the mass accretion rate of dust is the same
in the inner boundary cell and cell 1. This mass accretion rate is given by

M27rSu,. (3.34)

If we equate these for the inner boundary cell and cell one we get

271'7"02(1701)7,70 = 271'7“12(1711)7,71 (335)
= Yo = 5, nL, (3.36)
To Ur,0

3.4 Temperature structure

The disk is set up as an isothermal disk following the MMSN prescription of [Hayashi
(1981)). In this model the disk is assumed to be optically thin, and the only heating source
is radiation from the star. The temperature is then given by a balance of incoming and
outgoing radiation. The resulting temperature profile is given by

L.\ V4
280 [ = 2K, T >10K
T - L@

10 K, else

(3.37)

L, is the luminosity of the star. This is approximated with the luminosity of an equivalent
main sequence star through the relation

L, M\
£- ()

(Duric|[2004)), which approximately holds in the mass range 0.5 Mg < M < 2.0 Mg that
is investigated in this project. From the temperature, the sound speed, ¢, is calculated
from
kT
2 M
LN

(3.39)
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where k is the Boltzmann constant, m;, the mass of a hydrogen atom and pu = 2.34 is the
mean molecular weight (Hayashi 1981). Note that this is a crude approximation for an
forming and evolving disk. The real temperature structure will be a balance of external
radiation, both from the central star and external stars, viscous heating, heating due to
infalling material and the energy that the disk radiates away.

3.5 Code testing

3.5.1 Singular isothermal sphere tests

This test were performed for the singular isothermal sphere approximation of the Bonnor-
Ebert sphere. In this case the mass infall rate is constant (Shul{1977)) and given by Equation
(2.:22). The disk a value was a = 1072 ,the angular frequency of the cloud core was
Q = 107*, and the temperature of the cloud core was T.q = 10 K. The disk was also
assumed to be isothermal, with the temperature structure given by Equation . These
tests were performed partially as a test of the core, and partially to better understand how
a singular isothermal sphere differs from a Bonner-Ebert sphere.

In this test we vary the seed and cloud masses, but keep the sum of the two constant. We
ran two cases, one with a seed mass of 0.1 Mg and a cloud mass of 1.0 My, and second
with a seed and cloud mass of 0.4 Mg and 0.7 Mg, respectively. Each case simulated 5-10°
yr of disk evolution.

The surface density profile after 5 - 10° yr of both cases is shown in Figure Both
cases have an almost identical final state. From this it appears that it is the total mass
of the system that matters for the final state. How it is distributed between the seed and
cloud matters less for the final surface density.
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Figure 3.5.1: The final gas surface density after 5- 10° yr. The two cases have the same
total seed plus cloud mass, but different individual masses of the seeds and clouds. The
final surface density differs very little for the two cases.

The initial distribution of mass in the seed and cloud is not without consequence. Figure
[3.5.2] shows the accretion rate onto the star from the disk as a function of time. One can
see that the lower mass seed case has a higher accretion rate through the entire simulation.
There are also two clear regimes in the accretion rate. At first, the accretion rate is nearly
constant with time, and after some point it shows a power law shape. The change between
the two regimes happens when the cloud collapsing onto the disk has been emptied of
material. That is, as long as material keeps falling on to the disk, the accretion rate onto
the star remains relatively constant. After this the accretion rate drops as the surface
density of the disk decreases.

Figure m shows the disk and stellar mass over the 5 - 10° yr period for the same cases.
The dashed lines are the disk masses, and the solid lines represent the stellar masses. The
disks grow in mass at a different pace, with the higher mass seed case growing faster, but
they reach very similar maximum masses. The situation is much the same for the stellar
masses. The high seed mass case has a faster evolution than the low seed mass case.
Starting with a more massive seed, and less massive cloud, is similar to starting at a later
time.

3.5.2 Comparing the BE-sphere and the SIS

A comparison of the disk mass infall rate for the collapsing BE-sphere and the collapsing
singular isothermal sphere (SIS) is shown in Figure [3.5.4] The collapsing BE-sphere with a
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Figure 3.5.2: Accretion rate onto the star from the disk over a 5 - 10° yr period. The
initially lower mass seed (black curve) accretes at a higher rate at all times. This is likely
due to the higher viscosity caused by the lower mass seed.

mass of 1 Mg and a temperature of 10 K. One can see that the disk fed by the BE-sphere
initially accretes roughly ~ 2 order of magnitude slower, but after ~ 8 - 10* yr (~ 1/3
of the collapse phase time of the BE-sphere) it overtakes the singular isothermal sphere.
Note that in the SIS the disk needs to accrete for a bit more than 3 times longer than the
BE-sphere to accrete 1 Mg,.

3.5.3 Mass loss

While testing the effects of varying the seed and cloud mass, we noticed an issue where
the final mass of the star and disk did not add up to the total mass of the seed and the
cloud. Investigating this loss of mass, we found that the total mass added per unit time
by the source term was lower than the mass infall rate, M. This issue was present also
with the time dependent mass infall rate. Figure|3.5.5{shows the accretion rate, both from
the expected M that is calculated from the shell collapse, and what the actual infall rate
from the source term is. Figure |3.5.5] also illustrates that the source term appears to be
quite numerically unstable. Sometimes the accretion rate is too high, and sometimes too
low. The source of this is that the simulated grid only extends from 0.1 au outwards. Any
material that would fall onto the disk within 0.1 au was not captured. To confirm that
this was the case we set up an additional grid, extending from 10~7 au to 0.1 au. In this
grid material was added from the source term, but not viscously evolved. The sum of the
infall rate onto this inner grid, and the main outer grid indeed adds up to the mass infall

31



3.5. CODE TESTING CHAPTER 3. METHOD

1.2_|--"|""|""|""|""|_

—_
=]
T
1

o
)
|

—Mseed =01 Mg, Mcioud=1.0M,
—Mseed= 04 Mg, Mcioud=0.7M

Mass [M]
()
=

— Star mass ]

- --Disk mass -

0'2:_ S \:::1111\_ 7]

oo T

-0 1.x10% 2.x10° 3.x10° 4.x10% 5.x10°
Time [yr]

Figure 3.5.3: Disk (dashed curves) and stellar (solid curves) masses over the 5 - 10% yr
period for the case of a 0.4 Mg seed with a 0.7 Mg cloud and a 0.1 Mg seed with a 1.0 Mg
cloud. One can see that the two cases reach similar final stellar masses and have a similar
maximum disk mass. The higher seed mass case (gray curve) evolves faster than the low
seed mass case (black curve).

rate M , confirming the suspicion that the missing inner part of the disk was the source of
the mass loss.

This could be fixed by extending the grid inwards, but this becomes computationally
expensive and therefore undesirable. Also, protoplanetary disks are not expected to extend
all the way to the star, as magnetic fields from the star will transport material away from
the disk onto the star. This inner edge of the disk is believed to be at ~ 0.1 au (Hartmann
et al.|2016)). Instead, we set up an inner grid extending out to 0.1 au. We calculate how
much mass would land on this inner grid, and add it to the star. This is justified since
any material drifting through the inner edge of the main grid is treated as being accreted
onto the star. Any material landing inside it should therefore also be accreted by the star.
Figures shows the infall rate onto this inner disk, as well as the outer disk and the
sum of the two, over 5-10% yr. The sum is generally closer to the expected value. Figure
shows the total mass of the system over 5-10% yr. The blue curve is the expected
mass, and the dashed red the actual mass. The two match very well, confirming that the
inner grid fixed the mass loss issue.
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Figure 3.5.4: Comparison of the disk mass infall rate for a 1 M Bonnor-Ebert sphere
(black curve) and the singular isothermal sphere (grey curve). The disk in the singular
isothermal sphere accretes at a constant rate, set by the temperature of the cloud. During
the initial stages of the collapse the Bonnor-Ebert solution accretes ~ 2 orders of magnitude
slower, increasing with time. At ~ 8- 10* yr it overtakes the singular isothermal sphere
and accretes roughly and order of magnitude faster for the remainder of the collapse.
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Figure 3.5.5: What the mass accretion onto the disk should be (black), and what is
actually added through the numerical procedure. The mass infall rate onto the disk is
sometimes underestimated, and sometimes overestimated. This suggests that it is numer-
ically unstable. Still, the total mass which lands on the disk+star is consistent with what
is expected, see Figure W
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Figure 3.5.6: Expected total mass (black) and actual total mass (dashed orange) of the

disk and star system. The two masses are almost identical throughout the simulation of
5-10° yr, even though the accretion rate shows some instability, see Figure W
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Chapter 4

Results

This chapter will present the results of our numerical simulations. In section we will
go through a reference simulation of a 1 Mg collapsing to form a disk and star. We will
examine how both the gas and dust disk forms and evolves, and analyse some of the
properties of the disk. This is done to give us a general understanding of the disk so that
we can compare it to simulations with different initial conditions. After we have looked at
the reference case we move on to Section where we make a parameter space study of
the dust size and the initial conditions of the cloud core. We will begin by investigating
the effect of increasing and decreasing the dust size on the evolution of the dust disk. We
will then move on to how the angular momentum of the cloud core affects the gas and dust
disk formation and evolution. We do this by changing the rotation rate and mass of the
cloud core.

4.1 Reference simulation

In this section we present the results of simulating a reference case, named refrun. In
Section we will explore the dependency on various model parameters. This simulation
of the formation of the protoplanetary disk through the collapse of a Bonnor-Ebert sphere,
and subsequent evolution, was made with the cloud and disk parameters shown in Table
4.1l The molecular cloud core is assumed to be isothermal and have a temperature of 10
K (van Dishoeck et al.|[1993). The evolution of the protoplanetary disk was simulated for
5-10° yr.
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Table 4.1: Disk and cloud parameters used in all the cases explored. Note that the
R. vax = 1 au case was only used to further explore the parameter range in Figure m

Run Mg Qo [s7!] Tea [K] am  Remax [au]  Dust size [cm]
refrun 1.0 6.07-107% 10 0.01 276.6 0.01

Reyax =1 au | 1.0 3.65-107% 10 0.01 1.0 0.01

Low—{) 1.0 6.07-107% 10 0.01 2.8 0.01

Re wax = 50 au | 1.0 2.58-107% 10 0.01 50.0 0.01
Low-mass 0.5 8.55-107" 10 0.01 69.5 0.01
High-mass 2.0 4.27-107% 10 0.01 1111.7 0.01
Large-dust 1.0 6.07-107" 10 0.01 276.6 0.1
Small-dust 1.0 6.07-107% 10 0.01 276.6 0.001

4.1.1 The gas disk

The rate at which material falls onto the disk during the formation phase varies with time.
This can be seen in Figure [£.1.1], which shows the disk mass infall rate as a function of
time. The entire formation phase last ~ 2.5 - 10° yr, and during this time the infall rate
varies by several orders of magnitude. During the first half of the formation phase the
infall rate increases from ~ 1078 Mg yr=! to ~ 107 Mg yr~!. After this initial phase, the
infall rate remains almost constant for the remainder of the formation phase.
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Figure 4.1.1: Infall rate of gas onto the disk during the formation phase of the refrun.
During the first 1.25 - 10° yr the infall rate grows to a peak value of ~ 107° Mg yr~!. For
the remaining time of the formation phase the disk accretes mass at a high rate of almost

~ 107> Mg yr 1.
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Figure [4.1.2] shows the gas surface density at a number of snap shots in time, lighter
coloured lines show earlier times. The dashed black line shows the final centrifugal radius.
The first snap shot shows the disk after 5-10* yr. This is during the first half of the
formation phase of the disk. The disk has started to build up in the inner parts (< 3 au),
while simultaneously evolving viscously. At this point the viscous evolution of the disk is
quite prominent. An explanation for this disk profile can be found in the infall rate onto
the disk. At 5-10* yr the infall rate onto the disk is quite low, therefore, viscous evolution
should be the dominant process determining the shape of the surface density profile. The
formation phase ends at ~ 2.5 - 10° yr. At this time, the outer regions of the disk become
Toomre unstable, causing the viscosity parameter « to increase as described in Section [2.4
In this region gas will therefore be transported away more efficiently. One can see this in
the profile of surface density. The outer parts of the disk have a steeper slope than the
inner parts. The disk also has a sharper outer edge than at other times. Figure shows
the Toomre ) value at the same snap shots in time as the gas surface density plot. At the
end of the formation phase the Toomre Q is () ~ 1.2 at radii > 3 au, showing that it is
gravitationally unstable at this time. Mild Toomre instability is present within the final
centrifugal radius up to ~ 7 - 10° yr. However, shortly after the formation phase is over
oy, dominates over . The dashed lines show Q for a model where « is not allowed to
increase as exp [—Q?*]. Since o remains lower, the disk is not drained as quickly, allowing
the surface density to become higher. Therefore Q becomes lower.

After this the disk only evolves viscously. One can see how this evolution proceeds in
Figure 4.1.2] The inner disk is drained by gas being accreted onto the star and the outer
disk grows by the simultaneous outward transport of gas in order to conserve angular
momentum.
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Figure 4.1.2: Surface density of the gas disk at different snap shots in time of the refrun.
The dashed black line shows the final centrifugal radius and the dashed blue line shows
the minimum mass solar nebula model of Hayashi| (1981). One can see how the disk builds
up during the formation phase. During most of this phase the infall onto the disk is the
dominant factor determining the profile of the disk. After the formation phase the disk
takes on the shape of a viscously evolving disk.

The dashed blue line in Figure [4.1.2] shows the profile of the minimum mass solar nebula
model of Hayashi| (1981)). The similarities between the MMSN and the refrun are limited.
At 10° yr the two disks does have similar gas surface densities at the edge of the MMSN
disk, but other than that the similarities are lacking. There is a difference in the slope of
the profile. The MMSN has a -3/2 slope in the gas surface density, whereas we find a disk
that eventually settles into a slope closer to -1, as ones expects from a viscously evolving
disk. The gas disk we find also extends significantly further out than the MMSN disk at
all times.
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Figure 4.1.3: Toomre Q value at different snap shots of the refrun. The solid lines shows
the Q value when « is allowed to change as describes in Section At the late stages of
the formation phase the Q value drops below 2, as can be seen in the 2.5 - 10° yr curve,
showing that the disk is becoming gravitationally unstable. Comparing the dashed and
solid curves, one can see how the prescription for increasing o with decreasing () prevents
Q from becoming very low.

We now consider the evolution of the total mass budget of the disk. During the formation
phase (< 2.5-10° yr) the stellar mass accretion rate grows with the increasing disk mass
until the collapse is finished. This can be seen in Figure where the accretion rate
onto the star (black curve) and onto the disk (grey curve) is plotted versus the disk mass.
The behaviour of the stellar accretion rate closely mimics that of the disk infall rate. The
stellar mass accretion rate depends on the surface density and the viscosity. As the star
grows in mass the viscosity drops as

-1
vo O = < Mt—G> (4.1)

a3

which gives a change of about 1 order of magnitude over the 5-10° yr simulation. But, the
surface density, and thus the disk mass, grows due to the infall of gas onto the disk. This
balance between decreasing viscosity and increasing surface density causes the growth of
the accretion rate to slow down and eventually turn in to a decrease. Once the formation
phase is over, the infall from the cloud core no longer replenishes the gas which is accreted
onto the star. The disk mass then decreases, which results in a lower surface density and
a drop in the accretion rate. We also find that at times > 5 - 10° yr after the end of the
formation phase the accretion rate onto the star scales with time as Mcerete ¢ t~¢ Where
¢ = 1.2 in the refrun case.
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Figure 4.1.4: Stellar mass accretion rate and disk infall rate as a function of the disk
mass in the refrun. In the first 10° yr the stellar mass accretion rate grows quickly as the
disk begins to form close to the star. The stellar accretion rate profile mimics that of the
disk infall rate closely. Once the formation phase is over at 2.5-10° yr, the stellar accretion
rate drops steadily with the decreasing disk mass.
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Figure 4.1.5: The left figure shows the mass of the star (black curve) and the disk (grey
curve), and the right figure shows the ratio of the disk and star mass. During the formation
phase (< 2.5-10° yr), the gas disk mass grows faster than the stellar mass. The mass ratio
reaches peaks at the end of the formation phase with a value of Mpjg/Msggar = 0.97. The
disk then drops in mass as the infall has stopped and the star accretes gas from the disk.
At the end of the 5 - 10° yr period the disk mass is still significant, with a mass ratio of
0.17.

Panel (a) in Figure shows the star and disk mass as a function of time, and panel
(b) shows the ratio of the disk and star mass. In the first 1.5 - 10° yr, the ratio of the
masses increase quickly as the disk grows faster than the star. After 1.5 - 10° yr the disk
and star have similar masses, giving a ratio that is ~ 0.95. Once here, the disk no longer
outgrows the star and the ratio remains nearly constant until the end of the formation
phase, where the disk starts to be drained. This peak coincides with the disk becoming
gravitationally unstable. This increases the viscosity, thus driving up the stellar accretion
rate, causing the star to grow faster. At the end of the 5- 10 yr period, the mass ratio is
Mpigk/ Mgtar = 0.17.

Looking at the state of the disk in the refrun at the end of the 5 - 10° yr simulation, this
disk remains very massive and has a high accretion rate. The final mass of the disk is 0.15
Mg and the accretion rate is 1.3 - 1078 Mg yr!. Generally, one expect disk masses to be
no more than 0.1 Mg at any time of the disk evolution (Ansdell et al.|2016; Bergin et al.
2013; [McClure et al.|[2016; Miotello et al.| 2017} [Pascucci et al.|2016]). Accreting the whole
disk in 5 - 108 yr appears to be difficult for such a large centrifugal radius. The maximum
disk mass is also very high, nearly the same as the stellar mass. This also makes the
approximation that the angular momentum at some radius in the disk is simply given by
the Keplerian angular momentum provided by the star less accurate, since the disk itself
can exert a significant gravitational pull.

After a few million yr of evolution, one also expects photoevaporation to begin to dissipate
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the disk. But photoevaporation typically starts at a rate of ~ 1072 Mg yr=! (Owen et al.
2011)), which is still an order of magnitude lower than the end state accretion through
the disk of the refrun. This seems to show that the centrifugal radius in the refrun is
too large, since both disk mass and accretion rate are tied to it, and remain high at the
end of the 5 - 10° yr simulation. In Section we will run the simulations with different
parameters to see how the disk evolution depends on the initial conditions, and what is
needed to end up with a disk which is more in line with expectations.
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4.1.2 The dust disk
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Figure 4.1.6: Surface density of dust at different snap shots in time of the refrun. After
the formation phase is over, some dust is transported with the gas outwards past the
centrifugal radius (2.5 - 10° yr curve). As the dust drifts inwards, this outer dust acts as a
reservoir which feeds the inner disk. This causes the surface density of dust in the inner
disk to have a very slow decrease as long as the reservoir is able to feed it. This can be
seen in the small change between the 5 - 10° yr curve and the 2 - 10° yr curve. Once the
outer reservoir is empty, the disk begins so drain quickly, as the 3 - 10° yr curve shows.

In this section we examine how the dust disk evolves. The dust used here is of a constant
size 74 = 0.01 cm. Note that it is unlikely that dust would remain at a constant size for the
lifetime of the dust. It is generally believed to initially be ym in size. Quickly though, the
dust will grow to mm-cm size, before the growth stops due to the fragmentation/bouncing
barrier (Blum & Wurm| 2000, 2008; Blum et al.|1998; |[Poppe et al.[1999; |Zsom et al.2010).
More complete codes taking the coagulation and drift of dust into account have been made
by e.g. Birnstiel et al| (2010); Brauer et al.| (2008). Observations of class I protostars
also show that the dust might grow to mm size already in the envelope surrounding the
forming star and disk (Miotello et al. 2014). The 0.01 cm dust size adopted here is a
compromise between the unknown initial and final limiting sizes, since we do not model dust
coagulation. In Section [4.2.1 we will explore the effect of using different dust sizes.

The evolution of the dust surface density is shown in Figure [4.1.6] The snap shot shows
the dust disk during the early part of the formation phase. Here, one can see how the dust
builds up in the innermost part (< 3 au). Outside of this the dust has flowed outwards
by being coupled with the viscously evolving gas. The disk continues to build up during
the rest of the formation phase. Once the formation phase is over, the dust keeps evolving
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Figure 4.1.7: Dust to gas ratio (solid curves) at different snap shots in time of the refrun.
For this size of dust, the dust-to-gas ratio peaks at 1.9-10° yr with a value of € = 0.051. The
dashed lines show the Stokes number of the particles. In the regions where the dust-to-gas
ratio is not insignificantly small, the Stokes numbers are very low and decreasing inwards
due to the increasing gas surface density. At the 2.5-10° yr mark, one can see that in the
innermost parts of the disk, the dust enters the Stokes drag regime. The Stokes number
then goes up with decreasing disk radius.

as described in Section . Notable here is the change between the 5 - 105, 1 - 10°, and
2-10% yr. Between the 5-10% and 1 - 10° yr, the surface density drops in the inner disk,
as the dust in this region drifts inwards. But, between 1-10% and 2 - 10° yr, the surface
density again increases. This happens because while dust is drained from the inner disk,
the outer disk has received enough dust from the viscous evolution that it is able to later
replenish the inner parts with drifting pebbles. In the outer part of the disk this can be
clearly seen. At 2-10° yr the outer disk is being drained, but the inner disk is increasing in
gas in surface density from this gas draining from the outer disk. After the outer reservoir
of dust has been depleted, the remaining dust disk depletes quickly. From 2 - 10° to 3 - 10°
yr the surface density has dropped more than two orders of magnitude.

The evolution of the dust-to-gas ratio, €, is perhaps more interesting than the evolution of
the dust itself. This can be seen in Figure Initially, the dust-to-gas ratio is 1/100,
which is the ratio between the dust and gas source terms. The dust-to-gas ratio changes
very little during the first 10° yr. During this phase Stokes numbers are very small, and the
dust almost completely coupled to the gas. Viscous evolution of the dust dominates over
the drift, causing the dust to follow the gas very closely. This causes the dust-to-gas ratio
to remain very close to 1/100. However, once the dust disk goes into the phase of being
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drift dominated the outer disk replenishes the inner disk, and the dust-to-gas ratio begins
to increase. It reaches a maximum value of € = 0.051 at 1.9-10° yr. This behaviour occurs
because while the inner gas disk is drained by the accreting star, it has no outer reservoir
which replenishes it at the same rate as the dust has. Therefore, the gas surface density
drops faster than the dust surface density. This causes the dust-to-gas ratio to increase
during this period. Once the outer disk has been depleted of dust, the dust surface density
drops quickly as the dust drift drains the inner disk. The dust-to-gas ratio then also drops
quickly, as can be seen in the 3 - 10° yr curve of Figure . Since the gas disk remains
significant until the end of the 5-10® yr period simulated, the dust disk lifetime is shorter
than the gas disk lifetime by at least 2 - 10° yr.

If the dust-to-gas ratio is sufficiently high, coupled with large enough Stokes numbers, the
protoplanetary disk can be come streaming instability active. For a given Stokes number,
there is a critical dust-to-gas ratio, €., for which the streaming instability becomes active.
This is given by Equation (4.2) (Yang et al.|2017).

log(e.) = 0.10 (log(7s))* + 0.20log(7;) — 1.76 (17 < 0.1), (4.2)

This gives the condition that the streaming instability can be active if

o (4.3)

€c

In the refrun, the streaming instability is active in the very early phases of the disk,
beginning at 1.5 - 10 yr at an orbital radius of ~ 1 au. The streaming instability region
remains active for another 1.5-10% yr, moving out to ~ 4.2 au at the end of this phase. This
can be seen in Figure [4.1.8) which show contour plots of dust-to-gas ratio and the critical
dust-to-gas ratio over time and disk radius. At 8.6 - 10° yr, the disk becomes streaming
instability active again, this time at an orbital radius of ~ 150 au. The streaming instability
remains active in the disk until a time of ~ 1.95 - 10° yr. Over this period, the region in
which it is active expands and moves through the disk.
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Figure 4.1.8: Contour plots of the dust-to-gas ratio (panel a) and the ratio between the
dust-to-gas ratio and the critical dust-to-gas ratio needed for the streaming instability to
becomes active (panel b). The dust-to-gas ratio increases at times between 10° and 2 - 10°
yr in the inner parts of the disk, reaching its maximum in the innermost parts. In panel b
one can see that the streaming instability condition is reached at very early times in the
disk at a radius of a few au, and between 10° and 2 - 10° yr at orbits of 10-150 au.
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4.2 Exploring parameter space

4.2.1 Dust size
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Figure 4.2.1: Snap shots in time of dust surface density for different dust sizes at 1.0-10°,
5.0 -10%, 1.0 - 10%, and 5.0 - 10° yr. Panel (a) shows the dust surface density near the mid
point of the formation phase. At this time the dust surface densities are near identical,
except for in the outermost part of the disk. The largest dust (green curve) has the largest
Stokes number and becomes drift-dominated first. This can be seen in panel (c), where
the large dust has drained from the outer disk. The inner disk is replenished with dust,
increasing the surface density in the inner disk. The two smaller dust cases have not yet
begun to experience significant drift, and surface densities are relatively unchanged from
previous times. At 5.0-10° yr, the large dust and reference case have both been completely
drained, but the small dust size case has not.

In this section we will explore how different dust sizes affect the evolution of the dust disk.
Since larger dust are more affected by the gas drag it drifts faster than the smaller dust.
Therefore, it will not be as long lived. How this affects the dust-to-gas ratio is not as
obvious however. We will compare the results of using dust of sizes 0.1, 0.01, and 0.001
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cm. The other run parameters are kept the same as in the refrun case, and can be seen
in Table 411

During the initial part of the formation phase, dust surface densities are similar in all three
cases. Panel (a) of Figure shows this at 1.0-10° yr. In the very outer parts of the disk
one can see that the largest dust case (green curve) does not as much follow the viscous
evolution of the gas disk as the other two cases, due to it being less coupled to the gas.
As time goes on, this case is drained faster than the other two cases for this reason. It
takes ~ 1.0-10° yr to drain this disk, whereas the refrun case takes ~ 2.8-10° yr to drain
completely and the small dust case drains very little in the 5.0 - 10° yr simulation. This
can be seen in Figure 4.2.2] which shows the total mass in the dust disk, and the mass

outside of 100 au.
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Figure 4.2.2: Dust masses in the whole disk (solid curves) and outside of 100 au (dashed
curves). The 0.1 cm size dust case (green curves) drains the outer disk in ~ 6-10° yr and
the whole disk in ~ 1.0 - 10% yr. The 0.01 cm case (yellow curves) drains the outer disk
in ~ 2.1-10% yr. The whole disk is drained in about 10® yr later. The smallest dust case
retains its dust disk for the entire 5 - 10 yr period, and the outer disk contains 55 % of it
even at the end of the 5 10° yr period.

We now explore how the dust-to-gas ratio evolves differently for the three dust size cases.
Figure shows the dust-to-gas ratio at 2.5 - 10°, 5.0 - 105, 2.0 - 10°, and 4.5 - 10° yr
in panel (a), (b), (¢), and (d) respectively. As discussed previously, the largest dust does
not build up an outer reservoir of dust since it is more dominated by drift than viscous
evolution. Therefore the largest dust drains the fastest, meaning that the dust-to-gas ratio
also reaches its peak the fastest. The r, = 0.1 cm case reaches a peak dust-to-gas ratio of
€ = 0.062 at the time ¢t = 6.8 - 105 yr. The smallest dust case on the other hand is very
well coupled to the gas and drift only begins do dominate over viscous evolution at times
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> 4-10% yr. This small dust reaches it peak dust-to-gas ratio at the end of the 5.0 - 10°
yr period simulated. It reaches a value of € = 0.044, however, since it is at the very end
of the simulation it would most likely keep increasing to a higher value if the simulation
lasted longer. Panel (a) in Figures [4.2.4] and |4.2.5| shows contour plots of the dust-to-gas
ratio over radius and time in the entire disk.
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Figure 4.2.3: Maximum dust-to-gas ratio for different dust sizes, at four snapshots taken
at 2.5-10°%, 5.0 - 10°, 2.0 - 10°, and 4.5 - 10° yr. The large dust size case does not couple
to the gas as strongly as the smaller dust cases. Therefore it does not viscously evolve as
much, and is not able to build up a reservoir of dust in the outer disk. The large dust size
disk thus drains faster than the other cases. The smallest sized dust is well coupled to the
gas, and only drifts very little. The dust-to-gas ratio therefore remains close to 1/100 for
a long time. Only, towards the end of the simulation does this disk begin to drain, and it
reaches its maximum dust-to-gas ratio at 5 - 10° yr.

All three disks with different dust sizes become streaming instability active at some point.
As mentioned in Section [4.1.2] the refrun case becomes streaming instability active be-
tween 1.5-10* — 3.0 - 10* yr and 8.5-10°% — 1.95 - 10° yr. The large dust case has streaming
instability regions active between ~ 3-10° yr and ~ 8-10° yr, at radii between 100 au and
30 au the small dust has active regions from ~ 3 - 10° yr to the end of the simulation at
5-10° yr. This can be seen in panel (b) of Figure |4.2.4 and 4.2.5|
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Figure 4.2.4: Panel (a): Contour plots of the dust-to-gas ratio for dust of size r, = 0.001
cm. There is small pile up of pebbles around 10 au early in the disk, and a grater pile
up across most of the disk starting after a few 10° yr. Panel (b): Contour plots of the
streaming instability condition for dust of size 7, = 0.001 cm. This condition is met at
radii near 100 au towards the end of the 5 - 10°% yr simulation.
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Figure 4.2.5: Panel (a): Contour plots of the dust-to-gas ratio for dust of size r, = 0.1
cm. A pile up occurs after a few 10° yr in the inner 10 au of the disk. Panel (b): Contour
plots of the streaming instability condition for dust of size r, = 0.1 cm. The streaming
instability condition is met at radii of a few to a few tens of au between ~ 3 -10° and
~ 8-10° yr.
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4.2.2 Influence of the cloud rotation on the gas disk

In this section the effect of the cloud core rotation rate on the disk is explored. From
Equation (2.32)), the centrifugal radius, R. in the disk as a function of the initial collapsing
shell radius, rcr, is given by

7“4 QQ
R, =220 4.4
elvi (4.4)
The maximum centrifugal radius therefore scales with core rotation rate as
RC,MaX oC Qg (45)

The reference case is compared to two other cases. One where the rotation rate has
been decreased by an order of magnitude, and one more case which was set up to have a
maximum centrifugal radius of 50 au. The run parameters are shown in Table We
can the specific angular momentum of these cases to observations and simulations. Figure
shows the specific angular momentum of observed and simulated cloud cores as a
function of cloud core radius. In the lower left of this figure our three rotation cases are
shown by the black dots. This shows that these three rotation cases we investigate span
the range of specific angular momenta expected for a core of this size.

Since angular momentum is assumed to be conserved during the collapse, increasing the
rotation rate above the refrun leads to disks which are significantly more massive than the
star. Then the approximation that the angular momentum in the disk is purely Keplerian
breaks down. Therefore, this range of parameter space cannot be explored accurately in
this model.

The rotation rate of the cloud core does not affect the mass infall rate onto the disk, but it
causes the infalling material to be more spread out, which will change the surface density
profile. This change can be seen in the maximum centrifugal radius in Table 1.1 The
surface densities of gas at 5-10°, 2-10°, 3-10°, and 5 - 10® yr for the three cases is shown
in Figure Considering panel (a), one sees that in the inner parts of the disk the
surface density of the refrun is lower compared to the lower €2y cases at the early times,
because the disk extends further out than in the other cases. At later times, panels (b),
(c), and (d), the viscous evolution of the disks causes the surface density in the inner disks
to decrease as gas is accreted onto the star. The slower the core was rotating, the faster
this decrease in surface density is. A disk from a slower rotating core essentially evolves
faster than a disk from a faster rotating core. At the inner edge, the Low {2y case changes
its surface density by roughly 3 orders of magnitude from the end of the formation phase
to the end of the 5 - 10° yr integration period. The refrun case changes about 2 order of
magnitude in the same time span.

We now examine how gravitational instability affects the different disks. The effect of this
can be seen as the two sloped profile in panel (a) of Figure [4.2.7 The slowest rotating
case reaches a minimum Toomre @) of QuinLow o = 2.16, and the criterion for instability
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Figure 4.2.6: Specific angular momentum of observed (black and white symbols) and
simulated (coloured symbols) molecular cloud cores as a function of cloud core radius.
The three black dots in the lower left indicate the position of the tree rotation rate cases
explored here. As can be seen they span the range of expected specific angular momenta
for a cloud core of this size. Credit:

is Q < 2. This disk only ever becomes slightly unstable.

This is because the disk is

centrally located, hence, both €2, and the sound speed are high, which lowers Q. The
intermediate rotating cases reach minimum @) values of Qwin,r.50au = 1.39 and Qutin rer =

1.29 respectively.
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Figure 4.2.7: Panel (a) to (d) shows the gas surface density at 2-10°, 1-10°, 3-10°, and
5-10° respectively. At 2-10° yr, the slowest rotating case (blue curve) have a higher surface
density in the inner disk than the other cases. This is because the lower centrifugal radius
causes more of the gas to be deposited close to the star. The R.u.x = 50 au (yellow) case
sits between the two other cases. As the disks evolve, the slower the core was rotating
the faster the disk is drained. In panel (a) one can also see the effect of the gravitational
instability in the two sloped profile that is present in the two intermediate cases. The
fastest rotating case is so spread out that it never becomes gravitationally unstable. The
slowest rotator on the other hand is to centrally located to become significantly unstable.

The slower rotating cores create disks with lower masses. Panel (a) in Figure shows
the mass of the star (solid curve) and the disk (dashed curve) for the three core rotation
rates studied. The lower rotation rate initially creates a less massive disk because more of
the infalling material lands directly onto the star, rather than landing onto the disk, due
to the lower centrifugal radius. See Section for a discussion on this. The faster the
core rotates, the more of the infalling gas lands on the disk, creating a more massive disk.
The ratio of the disk and star mass as a function of time is shown in Figure [4.2.§| (b). The
Low-{)y case has a maximum gas-disk-to-star mass ratio which is 0.17, which is 18 % of
the refrun maximum mass ratio. The ratio at the end of the 5 - 10° yr period is 0.015,
which is about an order of magnitude lower than the refrun, which has a ratio of 0.17 at
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the end. The R. = 50 au case has a ratio of 0.07 at the end.
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Figure 4.2.8: Panel (a) shows the masses of the stars (solid curves) and the disks (dashed
curves) for the three core rotation rates cases. Panel (b) shows the ratio of the disk to
star mass. A faster rotating core leads to a more massive disk and consequently a higher
gas-disk-to-star mass ratio.

The stellar accretion rate and the disk infall rate as a function of disk mass is shown in
panel (a) of Figure |4.2.9. The point markers show the 10° yr (dark blue), 2.5 - 105 yr
(pink), 2.5 - 10% yr (dark green), and 5 - 10 (black) yr positions. The peak stellar mass
accretion rate increases with decreasing core rotation rate. Here one can also see the faster
evolution of the disk from the Low {2y case (blue curve). From the end of the formation
phase, the pink marker, to the end of the simulation, this disk drops more than three orders
of magnitude in accretion and almost one order of magnitude in disk mass, whereas the
refrun core (green curve) only drops about one order of magnitude less in accretion and a
factor of ~ 3.5 in disk mass. From this one can conclude that disk lifetimes increase with a
faster rotating cloud core, i.e. with a larger angular momentum budget in the cloud core.
Photoevaporation is expected to have a rate of roughly 1072 Mg yr~=' (Owen et al.[2011)
and will become important once accretion rates are similar. The Low () case reaches an
accretion rate of 1072 Mg yr~! so photoevaporation is expected to clear the disk of gas,
whereas the other two cases do not evolve as quickly, and hence they live longer.

Figure also tells us that for a given stellar accretion rate, there is not a single corre-
sponding disk mass. Some accretion rate could even correspond to any of the three disks
in either the formation or evolution phase. However, since the formation phase is much
shorter than the evolution phase, the likelihood of catching a disk in the formation phase is
lower. For a given accretion rate, it is therefore more likely that the disk is in the evolution
phase. Since disks from faster rotating cores evolve slower, and spends more time at a given
accretion rate, it is also more likely that one catches a disk from such a faster rotating core.
By connection points of equal time in panel (a) of Figure one can trace isochrones
over core rotation rates. These are shown in panel (b) of Figure [4.2.9) With these one can
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Figure 4.2.9: Panel (a): Stellar mass accretion rate (solid curves) and disk infall rate
(dashed curves) for the three core rotation cases. The blue dots show the 8.5-10% yr point,
the pink dots the 2.5 - 10° yr (end of the formation phase), and the green and black dots
show the 2.5-10°% and 5-10° yr mark respectively. Slower rotating cores create disks which
evolve faster, decreasing more in both accretion rate and disk mass once the formation
phase is over. The orange curve is a run that was made only to extend the parameter
range explored in this figure and is not included in any other figure. It is discussed in
Section [5.2] Panel (b): Isochrones showing how the accretion rate as a function of disk
mass for a given age varies and evolves with different cloud core rotation rates.

finds that during the later times, the stellar accretion versus disk mass relation becomes
nearly linear for different initial conditions, going as M ocMgiSk, where 5 ~ 0.9 —0.95 from
2-10% yr to the final point of 5.0 - 10° yr.

In terms of how the stellar gas accretion rate scale with time, we find that at times > 5- 100
yr after the end of the formation phase it decreases as Mcerete oct~¢ Where € = 1.7 for the
Low-{)y case and £ = 1.5 in the R; wax = 50 au case. This can be compared with £ = 1.2
in the refrun case.
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4.2.3 Influence of cloud rotation on the dust disk

The run parameters used in these runs are listed in Table [£.1] These are the same as for
the gas disk discussed in Section [4.2.2l The dust is of constant size r; = 0.01 cm in all
cases.
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Figure 4.2.10: Surface density of dust at for the three rotation cases at 2 -10°, 5 - 10°,
1-105, and 2-10° yr. Initially, the slowest rotating case (blue curve) has the highest surface
density in the inner parts of the disk of the three cases, but it is not able to build up a
reservoir of dust in the outer parts of the disk. It therefore drains quickly. The faster
rotating cases are able to build an outer reservoir of dust and can therefore maintain the
surface density in the inner disk as the reservoir feeds it with drifting dust.

The effect of the cloud rotation rate on the dusk disk surface density can be seen in Figure
[4.2.10l The figure shows the disk at 2-10°, 5-10%, 1-10° and 2 - 105 At the 2-10° yr
snapshot, the dust surface density mirrors that of the gas. The Low ) case (blue curve)
has a dust disk with the smallest outer radius, but it has a slightly higher surface density
in the inner disk. The refrun case (green curve) has the lowest surface density in most
of the disk, but it also extends significantly further out. Over the next snapshots one can
see how the refrun case is drained of dust. At 2-10°® yr this disk is drained, the surface
density is now less than 10~ g cm~2 at the inner edge of the disk. The two faster rotating
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cases both still have significant disks left, but are also beginning to be drained. At 3-10°
yr, all three cases have drained their dust disks.
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Figure 4.2.11: Dust-to-gas ratio, €, (solid curves) and Stokes number, 74, (dashed curves)
at 2.5-10%, 5.0 - 105, 1.0 - 10°, and 2.0 - 10° yr for the three rotation cases explored, using
a dust size of 7, = 0.01 cm. In the first 5 10° yr, all disk are dominated by viscous
evolution, keeping o ~ 1/100. With time, the slower rotating case (blue curve) becomes
drift dominated first and drains the fastest. In the final panel the slowest rotating case has
been drained of dust, which is why it is not present

We now consider how the dust-to-gas ratio evolves between the different cases. This is
shown in Figure [£.2.T1] It shows the dust-to-gas ratio and the Stokes number of the dust
at 2.5-10°, 5.0-10°, 1.0 - 105, and 2.0 - 10° yr. In panel (a) and (b) one sees that in the
first 5 - 10° yr, the dust-to-gas ratio changes very little, showing that all three cases are
in the regime where viscous evolution dominates over drift. Stokes numbers are increasing
as the gas surface density drops, pushing the dust towards the drift regime. In panel (c)
the dust to gas ratio of the Low )y case has begun to increase. The Stokes number is now
large enough that this dust disk has now transitioned into the drift dominated regime. The
dust-to-gas ratio in the faster rotating cases have only started to increase slightly near the
edge of the dust disk. At 2-10° yr, both the refrun the Rewax = 50 au case are in the
drift regime. The reference case (green curve), the R.yax = 50 au case (yellow curve),
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and the slowest case (blue curve) reach peak dust-to-gas ratios of € = 0.051, ¢ = 0.045
and € = 0.045 respectively. However, they peak at very different times. The Low (2 case
reaches its peak value at 1.1 -10° yr, R.\ax = 50 au case at 1.7 - 10° yr and the refrun
case does so at 1.8 - 10% yr. The maximum dust-to-gas ratio is taken as the highest value
that any cell in the simulation reaches. This always happens at the innermost cell. But, as

one can see from panel (c¢) and (d) in Figure [4.2.11] the dust-to-gas ratio is almost always
global in the dust disk.
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Figure 4.2.12: Dust disk masses for the whole disk (solid curves) and the outer disk
r > 100 au (dashed curve). The faster the molecular cloud core rotates, the more dust is
deposited in the outer disk, and a larger fraction of the total dust mass is present there.

Due to the larger centrifugal radius of the fastest rotating case, more of the dust is deposited
at very large radii. This coupled with the outward flow of dust due to viscous evolution
creates a large outer reservoir of dust. Figure 4.2.12] shows the total dust disk mass and
the mass of the dust at radii » > 100 au. Here, one can see that the slowest rotating case
(blue curve) has virtually no mass this far out. This is not surprising since the dust disk
never grows this large. In the faster cases the mass in the outer disk contains a significant
portion of the total dust mass. In the refrun case (green curve) one can see how after
~ 1.5 -10° yr, the outer disk is starting to be drained of mass, supplying the inner disk
with new dust, and after ~ 2.6 - 10° yr, the outer disk is completely drained.
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4.2.4 The effect of different masses of cores on the gas disk

In this section we will explore how different masses of the cloud core affects the disk
formation and evolution. We will compare the reference 1.0 Mg case with that of a 0.5
and a 2.0 Mg cloud core. The rotation rate of each cloud core is calculated using Equation
(2.57). While the total angular momentum of a cloud core increases with the mass, the
rotation rate decreases as the mass increases. This decrease happens because the moment
of inertia increases faster with the radius than the specific angular momentum. Therefore,
the rotation rate must decrease. The full run parameters of these cases are shown in Table

4.1l

As with the rotation rate, we first look at how the maximum centrifugal radius scales with
cloud core mass. From Equation (4.4)), the maximum centrifugal radius scales as

4
Ipp

. (4.6)

Rc,MaXOC
Rpg is the radius of a cloud core modelled by a Bonnor-Ebert sphere, and Mg is the mass
of the cloud. The cloud radius scales linearly with the mass, see Section [3.1.2] Therefore
the maximum centrifugal radius scales with the cloud core mass as

Re maxc M. (4.7)

The formation phase of the disk will last longer for more massive cloud cores. The duration
of the formation phase scales approximately linear with the core mass. Figure [4.2.13|shows
the mass infall rate onto the disk for the 0.5, 1.0, and 2.0 Mg cloud cores. The formation
phase last ~ 1.25 - 10° yr for the Low mass case, and ~ 2.5-10° and ~ 5.0 - 10° yr for
the refrun and High mass case respectively. This is linear growth of formation time scale
with the cloud mass is supported by Equation (2.15). Since Rpg o Mg, via Equation
, tinfan ¢ Mpg. The three cases display similar behaviour. There is an initial period
of increasing infall rate for the first half of the phase, and then a period with a very slowly
decreasing infall rate. The three cases also reach a similar peak infall rate ~ 7 - 107°
Mg yr~t. They reach similar peak infall rates because in the outer parts of the Bonnor-
Ebert sphere, the density profile approaches that of a singular isothermal sphere, which
has a constant accretion rate. The latter half of the formation phase with nearly constant
accretion rate corresponds to this part of the Bonnor-Ebert sphere. Thus, the behaviour
of the 2.0 Mg case is much like that of the 0.5 Mg case stretched out over the longer
formation phase.

The evolution of the surface density over times can be seen in Figures [4.2.14] The lower
mass core (blue curve) creates a disk that is both smaller in size and in surface density than
the other cases. However, during the initial formation phase the situation is reversed. At

this time the formation phase of the low-mass case is almost over, and this core has reached
higher infall rates than the other at this time (see Figure [4.2.13)). A significant portion of
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Figure 4.2.13: Disk mass infall rate for a 0.5, 1.0, and 2.0 Mg cloud core over time. Each
of the three cases reach similar peak accretion rates, but the less massive the core is the
shorter the formation phase is. The profiles of all three cases are similar, only stretched
out over the time of their formation phases.

its total mass has been deposited now. Since the final centrifugal radius is smaller, this
mass lands in the inner disk. Therefore, the low-mass case has a higher surface density
than the two other cases at this early time. All disks become gravitationally unstable
towards the end of their formation phases.

Figure (a) shows the evolution of the star and disk masses, and (b) the ratio of the
star and disk mass for the three core masses. A lower mass core creates a disk which is of
lower mass relative to the star. The peak disk-to-star-mass ratio of each case is 0.65, 0.97,
and 1.44 for the 0.5, 1.0, and 2.0 Mg cases respectively. The disk from the 0.5 Mg core
is never more massive than the star, while the 2.0 My core creates a disk which is more
massive than the star for ~ 0.8 - 10° yr. As with the faster rotating cores, the higher disk
mass is caused by the larger centrifugal radius. This in turn causes more of the infalling
material to land on to the disk, rather than directly on to the star.

Considering the ratio of the disk and star mass, the high value of the 2.0 Mg case is of
concern. Such a high ratio makes the approximation of Keplerian rotation in the disk
questionable, as the gravity from the disk becomes significant, which is not included in
this model. The results of this case are therefore not as reliable as the others.

The stellar mass accretion rate as a function of the disk mass is shown in Figure
The overall behaviour of the different curves are very similar to those of the different core
rotation rates in Figure [£.2.9] As with the different rotation rates, there is a degeneracy
between accretion rate and disk mass for different mass cores. A single accretion rate can
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Figure 4.2.14: Gas surface density of the disk for a 0.5, 1.0, and 2.0 My cloud core at
1-10°%, 5-10%, 3-10% and 6 - 10° yr. The lower mass core initially becomes more massive,
since at this time it has had a higher infall rate. At later times, a more massive core also
creates a more massive disk with a larger outer radius.

correspond to different disk masses, depending on the mass of the molecular cloud core
from which the star and disk formed. Notable is that the disk from the lowest mass core
(blue curve) accretes at a slightly higher peak rate during the formation phase. The disk
from a more massive core evolves slower, and hence it live longer. The change from peak
to the lowest accretion rate is smaller the more massive the core was, and the disk mass
similarly decreases less. Therefore, for a given accretion rate, a high-mass disk would be
more likely to be observed, as it evolves slower and therefore spends more time at any given
accretion rate, as with the faster rotating cores. As with the rotation rate, for a given time

the accretion rate versus disk mass relation scales nearly linearly over cloud core masses
) 0.88
as MocMpiy.

For these different mass cases we find that at times > 5-10° yr after the end of the formation
phase the stellar gas accretion rate decreases with time as Meerete € t7¢. € = 1.4 in the
Low-mass case and £ = 1.1 in the High-mass case, compared to £ = 1.2 in the refrun
case. We also find that at a given time after time zero the accretion rate scale with stellar
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Figure 4.2.15: Panel (a) shows masses of the star and disk for a 0.5, 1.0, and 2.0 Mg
cloud core, and panel (b) shows the ratio of the disk and star mass. Since a more massive
core creates a more massive disk, a higher disk-to-star-mass ratio is expected, as we also

see .

mass as Maccrete o MS, where ¢ ~ 2.2, although there is some variation across time, with
¢ = 2.0 at 2.5-10° yr. We note however that if instead of taking equal times after time
zero, one instead uses equal times after the end of the formation phase then changes from

¢ = 1.5 —2.1 between 10° yr and 5 - 10° yr.
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Figure 4.2.16: Accretion rate onto the star and disk infall rate as a function of disk
mass for a 0.5, 1.0, and 2.0 Mg cloud core. The lowest mass case reaches the highest peak
accretion rate towards the end of its formation phase. After the formation phase is over it
evolves the fastest of the three cases, reaching the lowest accretion rate and disk mass. As
with the different rotation rate cases, see Section [£.2.2] there exists a degeneracy between
disk masses for a given accretion rate. a single accretion rate does not correspond to a
single disk mass.

4.2.5 The effect of different masses of cores on the dust disk

The run parameters of these runs are shown in Table the same as used for the gas disk
results discussed in Section [4.2.4] The dust size was constant at r4 = 0.01 cm.

The evolution of the dust surface density is shown in Figure [£.2.17] It shows the dust
surface density for the three mass cases of 0.5, 1.0, and 2.0 Mg. As for the gas, the
behaviour of the different mass disks is not surprising. The lowest mass core gives a disk
with a higher dust surface density at 1-10° yr. This is caused by the low-mass core having
gone through its phase of the highest infall, whereas the more massive cores have still not
reached that point. After the formation phase of the most massive core is over (~ 5 - 10°
yr), this core has the largest disk with the highest surface density, and vice versa. The
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dust disk from a more massive core is also able to maintain a dust disk for longer, not only
because it has a higher surface density after the formation phase, but also because like the
fast rotators, it is able to build up a reservoir of dust far out in the disk.
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Figure 4.2.17: Surface density of dust at different times for different cloud core masses.
The dust with a constant particle size of 0.01 ¢cm behaves much as one might expect. At
1-10° yr, the dust surface density mirrors that of the gas. The lowest mass core (blue
curve) has had a higher infall rate, giving a larger disk with a higher surface density. With
time, the more massive cores (yellow and green curves) grow larger with a higher surface
density. The most massive core (green curve) has the largest disk with the highest surface
density. The dust also takes a longer time to drain from this disk than the lower core mass
cases.

The mass of the dust in the whole disk and outside of 100 au is shown in Figure
Here, the behaviour is similar to that of the different rotating cases in Figure
although not as pronounced. A more massive core creates a more massive dust disk, with
a larger fraction of the mass in the outer disk. This dust disk is also longer lived as the
outer reservoir is able to feed the disk and keep it around for longer. This disk only starts
to significantly decrease in mass after > 3 - 10° yr, whereas the lowest mass case begins to
rapidly drain after < 1-10° yr, and is completely drained after 1.8 - 10® yr.
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Figure 4.2.18: Dust disk masses for the whole disk (solid curves) and the outer disk
r > 100 au (dashed curve). The more massive the cloud core is, the more massive the disk
becomes, and a larger fraction of the dust is present in the outer disk. Since the High-mass
is more massive, it also takes longer to drain the outer disk of the case. Therefore, its disk
is longer lived compared to the other tow cases.

Snapshots of the dust-to-gas ratio at four different times for the three mass cases can be
seen in Figure . At 2.5-10° yr (panel (a)) all three cases have very similar dust-to-gas
ratio in most of the disk, but the dust disk extends further put in the Low-mass (blue curve)
and the refrun (yellow curve) case. As the disks evolve, the Low-mass case drains its dust
disk faster than the other two cases. At 2.0 -10% yr (panel (d)) it has been completely
drained, which is why the blue curve is not visible there. In panel (d) we can also see that
the dust disk in the refrun has also begun to drain. The High-mass case (green curve)
has not yet begun to drain significantly, even at 2.0-10° yr. The most massive case reaches
a maximum dust-to-gas ratio of € = 0.098, and the reference case and low-mass case reach
€ = 0.58 and € = 0.48 respectively. They do so at 2.9-10°, 2.0-10°, and 1.2-10° yr, with the
most massive case peaking at the latest time. Interestingly, if gravitational instability and
Stokes drag is not included in the simulation, all three cases reach very similar maximum
dust-to-gas ratios.

65



4.2. EXPLORING PARAMETER SPACE

CHAPTER 4. RESULTS

o t=2.5x10° yr t=15.0x10 yr
3 T T T Ty LR AL LR | T T T Ty LIS AL |
F @[ —Mgg = 0.5 M, ) ® —Mgg = 0.5 M,
[ Mgg = 1.0 M Mgg = 1.0 M
i Mgg = 2.0 M i Mgg = 2.0 M ]
S0 — 3 —5 3
— —C
L |---Tr L |---Tr ]
10—4- MEPETTTIT ..’.’.:.I sl ul i .’:..u..l FCATPITETTT R P )
. t = 1x10° yr t =2x10° yr
10 3 T T T T T T T T
F©f —Mgg = 0.5 M @ —Mgg = 0.5 M,
[ Mgg = 1.0 M Mg = 1.0 M
5 Mg = 2.0 M, 5 Mg = 2.0 M ]
- i >t
1072F v 3 1
' -\
[ | —c€ ," \ —c
L |-=-Tf ’ L |---7f i
10—4- " ....l.ﬁf PP | PR | il P el PRI | PR | PR | P
107! 10° 10! 10? 10° 104 107! 10° 10! 10 103
r [au] r [au]

104

Figure 4.2.19: Dust-to-gas ratio at four snapshots in time of the three mass cases. The
dust in the disk from the lowest mass core (blue curve) begins to rapidly drift inwards the
earliest so it is drained the fastest. At 2 - 10° year this dust disk is completely drained,
so it is now present in that snapshot. The more massive cores create dust disks which are
more long lived, with the most massive one (green curve) creating the longest lived dust

disk.
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Chapter 5

Discussion & implications

In this chapter we begin by discussing the results of our parameter space study affects the
gas disk, and compare these to relations measured observationally. We also discuss some
caveats of the model. This is done in section 5.1} In section [5.2] we discuss the implications
of our parameter space study on the dust disk. We discuss dust-to-gas ratios and the
streaming instability active regions we find. Finally, we use these streaming instability
active regions in our model to explore possible planet formation via pebble accretion.

5.1 The gas disk

During the viscous evolution phase we find accretion rates on to the star which range
between 107 — 2 - 107 to Mg yr~!'. The lower range of these are in agreement with
observations, which show accretion rate in the range of 10711 — 10~7 Mg yr~! (Hartmann
et al.|1998| 2016} Manara et al.|2016), see Figure . We however note that the accretion
rates in this model could easily be changed by changing the choice of our viscosity parameter
ay, in the disk, as Mceretecr. From the isochrones in panel (b) of Figure , we can
see that the higher range of accretion rates we find are short lived, and the likelihood of
observing a disk at that stage is therefore low. Even though the dissipation of the disk
in this model is slower than one might expect, the general evolution of the accretion rate
behaves roughly as one expects. Observationally, the decrease with age goes as M oct ¢
with £ ~ 1.5, and the increase with stellar mass goes as MocM¢ with ¢ ~ 1.2 — 3 (Alcald
et al.|[2014; Antoniucci et al. 2014 |[Fang et al. 2009; [Herczeg & Hillenbrand|2008; Manara
et al. 2012; Muzerolle et al|[2003; Natta et al. [2006; |Sicilia-Aguilar et al.|[2010} |Venuti
et al. 2014). We find £ = 1.1 — 1.7 with £ being higher for systems that come from cloud
cores with lower angular momentum budget. For a given time we find { to be in the range
¢ = 1.5 — 2.2, depending on which time one looks at, and if one sets time zero to be
the beginning of the cloud collapse or the end of the formation phase, with generally the
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high values at late times. These values are in good agreement with the observed scaling
relations.
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Figure 5.1.1: Stellar accretion rate as a function of 100 times the dust mass, as a gas
mass proxy. The filled squares are class Il objects and the open circles are transitions disks.
The open squares and triangles are objects observed edge on and those whose accretion
can be explained by chromospheric noise respectively. The red plot is a fit made to the
class II objects and transition disks (disks with an inner cavity). The dashed lines show
different values for Mpjg/Maee, which should be comparable with the system age. Credit:
Manara et al.| (2016).

The disk lifetime in the refrun case is long, even at 5 - 10° yr a significant disk with
significant mass still, which would take several million years to accrete. Observationally,
disks are expected to have lifetimes on the order of ~ 3 -10°% yr, although ages up to
107 have been observed (Fedele et al|2010; Haisch et al.[2001). In order to dissipate the
disk within 5 Myr we need the disk to form very close to the star, with a low centrifugal
radius as in the Low €y case. We can also compare this to Kimura et al. (2016) which
modelled the evolution of protoplanetary disks, also starting at the collapse of a Bonnor-
Ebert sphere. With their model they find disk lifetimes between 2-4 Myr. Their model
includes heating due to the central star, viscous heating and heating from the infalling
material, and photoevaporation. In their reference case they use a rotation rate which is
4.8-107* 57!, compared to 6.07-107* s~! used here. They do also examine rotation rates
as high as 8.1-1071* s7! and as low as 1.6 - 107 s71.

With the long lifetimes of disks we have found in this study in mind, we can discuss the
findings by Manara et al.| (2018) showing that estimated masses of exoplanets in planetary
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system are too large compared to estimates of dust masses in protoplanetary disks. One of
the solutions they proposed to solve this tension was that the disk is refilled with material,
either continuously or episodically. Our results indicates that supplying additional material
to the disk would also increase the lifetime of the disk beyond observed limits. In the
framework of this study, this speculative solution seem unlikely.

Manara et al.| (2016) observed a relation between the disk mass and the stellar accretion
rate. This can be seen in Figure The relation found has a relation of MocM&T 4,
where the gas disk mass was taken as 100 times the measured dust disk massﬂ Using
Figure [£.2.9] one can try to understand where this relation may come from. Looking at
the isochrones in panel (b), the accretion versus disk mass relation is slightly sub-linear at
times ¢ < 10% yr. At the 5-10°% yr mark the relation follows MocME2 .. with the slope
begin slightly shallower at earlier times. The is caused by variations in the rotation of the
collapsing molecular cloud core. A similar relation is also seen when comparing different
masses for the molecular cloud cores. Note that in these runs the cloud core rotation rate
was also changed according to Equation (2.57)). Therefore, what is found is not purely
an effect of increasing the mass, but rather how different masses of stars which follow the
mass-rotation rate relation of Equation behave. At the end of the 5.0- 108 yr run the
accretion versus disk mass relation for the different mass cases goes as MocMES2 . .

From panel (a) in Figure one can see that for a given initial condition for the cloud
core parameters, the relation follows a very steep curve with time. At times > 5 - 105 yr
after the end of the formation phase the reference case scales as MocME2 ... The near
linear relation observed by [Manara et al. (2016) could therefore be explained by varying
initial conditions of the molecular cloud cores, while the vertical spread is due to the age
difference between the systems. One caveat here is that the overlap in parameter space
between our numeric model and the observations by [Manara et al. (2016)) is limited. This
model only probes the upper right corner of parameter space in Figure In light of
this, an additional run was therefore made where the centrifugal radius is set to be 1 au.
The results of this follows the same linear relation between accretion rate and disk mass,
indicating that the behaviour would extend into the parameter space explored by Manara
et al| (2016). Probing further into this parameter space could also be done by reducing
the mass as well as the rotation rate, to further reduce the angular momentum budget of
the cloud core.

Some caveats should be mentioned here, mainly regarding the thermodynamics of the disk.
In this work we do not model viscous heating of the disk, which in a true a-disk model this

1 Although not discussed previously, in our model the dust-togas disk ratio is close to 1/100 for 1.5-10°
yr in the reference case, after which it quickly drops as the dust disk is depleted. Considering this, the
assumption of Manara et al.| (2016) that the gas disk is 100 times more massive than the dusk disk might
not be valid for older disk where the dust has drained. However, considering the problem for theoretical
protoplanetary disk models to maintain dust for the lifetime of the gas, whereas observations seem to
indicate that dust is long lived (e.g. (Andrews et al[2016))), the assumption of Mgas disk = 100Mpust disk
could still be valid. [Manara et al.| (2016) also note that their direct gas disk mass measurements are very
uncertain, which is why they are not used.
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is expected to be important in the inner regions of the disk (Bitsch et al.|2015). However,
since the nature of angular momentum transport in protoplanetary disks is becoming more
uncertain and other means of evolving the disk could be at work (e.g. disk winds (Bai &
Stone |2013))), the effect of viscous heating is uncertain.

When the disk becomes gravitationally unstable towards the end of the formation phase,
the gravitational instability can also act as a heating source in the disk, which we have
also not included. We also do not consider heating due to the infalling material, which is
related to the infall rate of gas and dust onto the disk (Kimura et al. 2016), which also
is high during the later stages of the formation phase. These effects would increase the
disk temperature, increasing the sound speed and therefore the viscosity. However, these
processes will mostly be active during the early formation phase of the disk. Their effect
on the lifetime of the disk could therefore be minor.

We also do not model photoevaporation, which is the effect of X-ray and EUV photons
launching disk winds that transport gas away from the disk (Owen et al|2012, 2011}
2010). Photoevaporation is expected to happen at a rate of ~ 1072 Mg yr~!. Just by
itself, photoevaporation would probably not affect results of the reference case very much,
since this disk only reaches accretion rates of ~ 1078 Mg yr~! and photoevaporation would
be a minor effect compared to this. However, the Low {2y case does reach accretion rates
close to 107 Mg yr~!. For this case photoevaporation could therefore become significant,
and be the mechanism by which finally gets cleared of its gas component.

5.2 Dust evolution

As discussed in Section from theoretical work dust disk lifetimes are expected to
be short, as dust quickly grows to sizes where they drift inwards rapidly. The gas disk is
expected to last a few million years (Fedele et al[2010; Haisch et al.[2001). In the refrun
case of this model fairly long dust lifetimes are found, on the order of a couple of millions
of years for particles of 0.01 cm in size. However, in this case the gas lifetime is longer than
the dust lifetime by a few million years. Therefore the large difference between dust and
gas lifetimes still remains. In the Large-dust case, with 0.1 cm sized dust, the dust disk
is drained in ~ 10 yr. In order to produce dust lifetimes that compare to that of the gas
the dust needs to be very small, as found in the case where the dust size was set to 0.001
cm. However, such a small dust size is unlikely as the dust would grow collisionally until
reaching the fragmentation/bouncing barrier (Birnstiel et al.2010; Blum & Wurm! 2000;
Blum et al.||1998; Brauer et al. 2008; [Poppe et al.[1999)). To remain as small as 0.001 cm
the coagulation efficiency of the dust particles would have to be very low. In order to keep
a reservoir of small dust in the outer disk some mechanism which prevents the dust from
growing large would be needed.

We find that the highest dust-to-gas ratio reached in the disk does not scale strongly with

70



5.2. DUST EVOLUTION CHAPTER 5. DISCUSSION & IMPLICATIONS

the dust size. The reference case, with a dust size of 0.01 c¢m, reached a highest value
of €, — 0.01 em = 0.051. Dust with a size of 0.1 cm reaches the highest dust-to-gas ratio of
€ —0.1 em = 0.062 and the dust with size 0.001 cm reaches a peak of €, —g.001 em = 0.044.
However, as mentioned in Section [4.2.1] the smallest dust reaches this peak at the end of
the 5 - 10% yr simulation and would continue to increase if the simulation ran for longer.
Hence, one sees a small increase in the peak dust-to-gas ratio with dust size, within the
5-10% yr simulation. Similarly, the peak dust-to-gas ratio does not scale strongly with
the cloud rotation rate either. The Low () case and the R; y.x = 50 au case both peak
at € = 0.045, only slightly lower than the refrun. In all of these different cases, the time
at which the disk reaches the peak dust-to-gas ratio is different however. Larger dust and
slower rotation rates peak faster, due to the faster dust drift in the former case and due to
faster disk evolution in the latter case. Panel (a) in Figure shows a contour plot of
the dust-to-gas ratio over time and disk radius for the refrun.

Panel (b) in Figure shows the ratio between the dust-to-gas ratio in the disk of the
refrun, and the critical dust-to-gas ratio needed for the streaming instability to become
active. In this model two generations of planetesimals can be created, one during the early
parts of the disk formation phase, between 1.5 - 10* and 3 - 10* yr, at radii between 1 and
4 au, and another at times 8.5-10° and ~ 2-10° yr at radii between 10 and 150 au.

The reason for why we see the early streaming instability active zone is not entirely clear.
One possible explanation is that at such early times in the disk, the disk is not very massive
and the gas surface densities are very low. Therefore, the Stokes numbers of dust particles
are large, allowing particles to drift inwards efficiently. Meanwhile, material falls in with a
constant dust-to-gas ratio. The combination of infalling material with constant dust-to-gas
ratio and dust drifting inwards drives up the dust-to-gas ratio past the critical value needed
for the streaming instability to become active. The second period of streaming instability
in the disk starts because the dust has now begun to be dominated by drift. As dust
particles with constant size drift inwards, the dust-to-gas ratio in the inner disk increases
past the critical value needed to be come streaming instability active. This mechanism if
dust pile up for constant particle size is the same as described in the semi-analytical model

of [Youdin & Shul (2002).

In the case of the dust with size 7, = 0.1 cm, this disk only becomes streaming instability
active at ~ 3-10° yr at radii of several tens of au, as seen in panel (b) of Figure . This
periods lasts ~ 5-10° yr, at the end of which it covers a radius range from a few to a few tens
of au. The smallest dust case with size r, = 0.001 cm also becomes streaming instability
active, shown in panel (b) of Figure . This case becomes active after ~ 3 - 10° yr at
a few hundreds of au. It remains active until the end of the 5 - 10° yr simulation, and the
regions moves inwards to between ~ 30 and ~ 100 au.
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Table 5.1: Initial time and orbital radius of planetary embryos, and the dust particle size
used for growing each planet.

Dust size [cm| Initial orbital radius [au] Initial time [yr]

0.01 4 3.0-10%
0.01 100 1.0- 108
0.01 40 1.3-10°
0.01 10 1.7-10°
0.1 40 3.0-10°
0.1 10 5.0 - 10°

With the results from the streaming instability condition in mind, a few runs are made
where a planetary embryo of mass 0.01 Mg is inserted into the disk, at radii and times
matching the streaming instability active regions of the simulation refrun and Large-Dust.
It is thus assumed that a planetesimal 100 to 1000 km-sized planetesimal formed by the
streaming instability is able to grow up to our chosen embryo mass through some combina-
tion of collisions and pebble accretion (Johansen & Lambrechts/2017)). We then model the
growth of the embryo via pebble accretion in the 3D regime as in Lambrechts et al.| (2019)
up to a mass of 10 Mg. We do not consider a possible transition to the faster 2D pebble
accretion regime [Lambrechts & Johansen| (2014). Planets then drift via type I migration,
using a prescription from Lambrechts & Johansen| (2014)); |Paardekooper et al. (2010). We
also stop growth if the Stokes number of the dust near the planet core is < 1074, as such
dust would be very well coupled to the gas and should not be swept up by the planet. It
is further assumed that the dust scale height is given by Hyq = 0.01H,. This is motivated
by observations showing that dust disk appear to be flat (Pinte et al.|2016).

The 10 Mg-limit is picked as this is the point where, crudely, the core can start to attract
a gaseous envelope (Pollack et al.[1996) and starts opening a gap in the disk (Lubow
& D’Angelo| 2006]). This represents approximately the end of growth by pebbles and,
approximately, as the core reaches the so-called pebble isolation mass (Lambrechts et al.
2014)). In reality, the latter is a function of the viscosity of the disk, the disk aspect ratio
H /r, the Stokes number of the dust particles and the radial pressure gradient (Bitsch et al.
2018). However, in this work we use the more simple approach of simply looking at how
fast a planet can grow to the point where it can attract a gas envelope. Both the disk
with 0.01 cm sized dust and the one with 0.1 cm sized dust were investigated. The initial
positions and times are shown in Table 5.1} It should be noted here that all these planets
are grown independently of each other, and that the effect of each planet on the pebble
flux through the disk is not taken into account.

An effect of limiting growth when Stokes numbers are smaller than 10~ is that an embryo
formed from the first generation of planetesimals at an orbital radii of a few au in the
refrun grows very slowly. There is a short period before the Stokes number drops below
the growth limit where the embryo can grow. Growth will begin again at later times
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after approximately 10° yr when the Stokes numbers in this region increases to > 10~*
again.

Panel (a) in Figure shows how the mass of the planets accreting 0.01 cm sized pebbles
grows over time. The planet which begins to form at 3-10% yr (red curve), from the early
streaming instability region reaches a mass of 3.8 Mg in ~ 10% yr before the dust disk is
drained. The blue and yellow curves show the two planets which starts to grow at 10°
and 1.3 - 105 yr from the second streaming instability region, at radii of 100 au and 40 au
respectively. The blue case reaches a mass of 1.1 Mg. Interestingly, the yellow case catches
up to the red and follow a mass growth which is very similar, also reaching a final mass of
3.8 Mg, although as seen in panel (b) of Figure , they do so at different orbital radii.
The final case (green curve) starts growing at 1.7 - 10% yr. It only reaches a final mass of
0.4 Mg before the dust disk is drained.

Panel (b) in Figure shows the planet mass as a function of orbital radius. From
this we can see that only the planet which starts to growing from the early generation
of planetesimals (red curve) migrates to the inner edge of the disk. The blue case only
migrates ~ 7 au to an orbital radius of 93 au. The yellow case migrates from an initial
position of 40 au to 20 au after 5- 10 yr. The last planet to start growing (green case)
migrates from 10 au to 8 au during the simulation. It should be noted here that at the
end of the 5 - 10% year run, the gas disk is still significant in this refrun case. Therefore
the planets would likely keep migrating further if the simulation was extended.

Figure [5.2.2] shows the same panels as Figure [5.2.1], but for planets growing with 0.1 cm
sized pebbles. This disk becomes streaming instability active earlier in the outer disk
compared to the 0.01 cm case, so planet formation can start earlier in the outer regions of
the disk. From panel (a) in Figure we see that both planets grow to 10 Mg within
< 10° yr. From panel (b) we can also see that the planets do not migrate significantly
before they reach a mass of 10 Mg, at which point we stop the planets from both growing
and migrating. The planet starting that forms at 40 au (blue curve) migrates in to 37.2
au and the planet starting at 10 au (yellow curve) migrates to 8.4 au.

We thus demonstrate that planets can form within a timespan of less than 10° yr, during
and shortly after the formation phase of the disk. If indeed the observed ring structures
in the young protoplanetary disks are a signpost of embedded giant planets, this appears
to be consistent with our findings. We would thus argue that the presence of giant planets
in the very young (< 10° yr) embedded disk of HL Tau (ALMA Partnership et al.|2015)
should not be excluded based on theoretical grounds.
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Figure 5.2.1: Panel (a): Growth of a planet core growing with 0.01 cm pebbles over
time. The time at which each planet core starts to grow and migrate is shown in Table
The planet starting to grow at 3 - 10* yr (red curve) only starts to grow significantly after
~ 9-10% yr, due to Stokes number begin to low at earlier times. It reaches a final mass
of 3.8 Mg. The next core to form (blue case) reaches a mass of 1.1 Mg. The third planet
which forms (yellow curve) happens to the same final mass as the first, 3.8 Mg. The final
planet (green curve) only manages to reach a mass of 0.3 Mg. What causes the planets to
stop growing in all cases is that the dust disk is drained. Panel(b): Growth tracks of each
planet core showing the mass as a function of radius. Only the first planet which forms
(red curve) migrates to the inner edge of the disk. The other cases migrate from 100 au to
93 au (blue curve), 40 au to 20 au (yellow curve) and 10 au to 8 au (green curve).
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Figure 5.2.2: Panel (a): Growth of a planet core growing with 0.1 cm pebbles over
time. The time at which each planet core starts to grow and migrate is shown in Table
m. Both cores growing from 0.1 cm sized pebbles take < 10° yr to reach a mass of 10 Mg.
Panel(b): Growth tracks of each planet core showing the mass as a function of radius.
Since the planets grow so quickly, neither planet significantly migrates inwards in the disk.
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Chapter 6

Conclusions

In this work we have investigated the formation of a protoplanetary disk from the gravita-
tional collapse of a molecular cloud core, and the subsequent viscous evolution of the disk.
The molecular cloud core was modelled by a Bonnor-Ebert sphere, since observations of
molecular cloud core follow the density profile of such a sphere (Alves et al.[|2001; Kandori
et al|2005; Kirk et al. 2005} [Teixeira et al. 2005). An investigation into how the initial
conditions of the molecular cloud core affect the disk evolution was made.

We find that cloud cores collapse on a time scale of 1 to a few 10° yr. For a given
temperature, the duration of the cloud core collapse scales nearly linearly with the mass
of the cloud core.

The lifetime of the protoplanetary disk is tied to the initial angular momentum budget
of the collapsing molecular cloud core, with higher angular momentum budgets leading to
larger, more massive and longer lived disks. In this model, the produced lifetimes are on
the long end, > 5-10° yr for the reference case. One possible explanation for the long disk
lifetimes is that the centrifugal radius and hence the angular momentum that is deposited
in the disk is overestimated. Shorter lifetimes can be achieved by more slowly rotating
cloud cores and/or angular momentum loss in the collapse.

From the perspective of interpreting observations, we do not identify a single relation
between stellar mass accretion rate and disk mass. Rather, for a given accretion rate the
corresponding disk will depend on the initial angular momentum budget of the cloud, as
this will determine how large a fraction of infalling material lands on the disk, and how
spread out it is. A combination of different ages and different initial conditions is proposed
as an explanation for the spread in accretion rate versus disk mass found by (Manara
et al. 2016)), with the caveat that the explored parameter space only has limited overlap.
Although test made here seem to indicate that the behaviour found in this model would
extend further into the parameter space observed by [Manara et al.| (2016)).

In exploring how the size of the dust affect the evolution of the dust disk it was found that
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the dust size has a minor effect on the highest dust-to-gas ratio reached in the disk, but
it has a significant effect on when the peak is reached. Dust of size 0.1 cm reaches a peak
dust-to-gas ratio of € = 0.062 at t = 6.8 - 10° yr, compared to a peak dust-to-gas ratio
of € = 0.051 at 1.9 - 10° yr for the 0.01 cm sized dust. The dust with a size of 0.001 cm
peaked at € = 0.044 at the end of the 5.0 - 10° yr simulation. Because it peaked right at
the end, it is likely that the dust-to-gas ratio would keep increasing if the simulation ran
for longer.

From the range of dust sizes we explored, between 0.001 cm and 0.1 c¢m, all the cases we
explore become streaming instability active at some point. Due to the different times at
which they reach the peak in dust-to-gas ratio, they becomes streaming instability active at
different times and regions in the disk. In the case with 0.1 cm sized dust, the disk becomes
streaming instability active between ~ 3-10° to ~ 8- 10° yr, at radii between ~ 70 to ~ 1
au. The 0.01 cm sized dust becomes streaming instability active in two generations. The
first occurs in the early parts of the disk formation phase, 1.5 - 10* — 3.0 - 10* yr, at radii
between ~ 1 and ~ 4 au. For the 0.001 cm sized dust the streaming instability becomes
active after ~ 3 -10° yr and remains active until the end of the simulation at 5.0 - 10° yr.
It starts at radii of ~ 300 au, and at the end it is active between ~ 30 — 100 au. We
do however note that these result depend on our assumptions of fixed particle sizes and
that the results are sensitive to the temperature structure of the disk, which we do not
model in detail. Hence, more detailed modelling of the thermodynamics, and including
dust coagulation and fragmentation in the model can shed some more light on the validity
of these results.

Growth of giant planet cores via pebbles accretion can be quite rapid in the refrun case.
Planet cores that grow by 0.1 cm sized pebbles grow to a mass of 10 Mg in a few 10° yr.
Due to the early onset of streaming instability in this disk, the embryo also forms as early
as 3 - 10° yr, creating the potential of forming a giant planet core in < 10° yr. In the disk
with 0.01 cm sized pebbles the streaming instability does become active in the inner disk
earlier. But due the smaller sized dust particles growth is slower and none of the planets
reach 10 Mg before the dust disk is drained. However, we do form a number of planets of
a few Mars masses to a few Earth masses at several different orbital radii.

6.1 Future outlook

In terms of improving this model, its most obvious drawback is the previously mentioned
lack of more detailed thermodynamics. Hueso & Guillot| (2005) used a model where the
midplane temperature of the disk is calculated from the effective temperature of the disk
using irradiation from the central star and viscous heating. They approximate the vertical
radiative transfer though the disk as a combination of optically thin and thick components,
using an expression from Nakamoto & Nakagawa, (1994). As|Hueso & Guillot| (2005)) state,
the temperature evolution is numerically non-trivial since the temperature depends on

76



6.1. FUTURE OUTLOOK CHAPTER 6. CONCLUSIONS

the disk viscosity, which in turn depends on the temperature. However, recent disk wind
models question the efficiency of viscous heating (Mori et al.[2019).

Better modelling of the dust would also be a good improvement. Models that take into ac-
count both fragmentation and coagulation of dust exists (e.g. Birnstiel et al.|(2012); |Brauer
et al.| (2008)). This would allows us to calculate particle sizes in a more self-consistent
manner, taking into account the effects of coagulation, bouncing and fragmentation. Addi-
tionally, the process of particle sublimation is expected to be important near the ice lines,
which are regions in the disk where the various chemical components of the disk transition
from gas to solid, (Ros & Johansen|2013} Schoonenberg & Ormel|2017). The improved dust
modelling would therefore be further improved by more detailed thermodynamics.

Some aspects of parameter space are left unexplored in this work so far. The temperature of
the molecular cloud core will affect its collapse. For a given mass, the radius of the Bonnor-
Ebert sphere shrinks with the sound speed, and thus the temperature, see Equation (3.11]).
Doubling the temperature of the molecular cloud cores shrinks has the same effect as
halving the mass. It also makes the collapse faster. For a 1 M Bonnor-Ebert sphere at
a temperature of 20 K, the collapse phase lasts ~ 0.9 - 10° yr, compared to the ~ 2.5 - 10°
yr for the same case at 10 K. Currently, the streaming instability and planet growth was
only explored for different dust sizes in the reference case. Considering that this gas disk is
very long lived, i.e. it still has a very massive disk at 5 Myr, compared to the expectations
from observations, streaming instability and planet formation should be examined in the
cases with disk lifetimes more in line with these expectations.

Modelling the evolution of lower mass stars would also be interesting, as M-dwarfs are seen
as a promising location for Earth-like planets in the habitable zone, e.g. Trappist 1 (Gillon
et al. 2017). This becomes computationally more expensive however. It would require
extending the integration grid further inwards, which makes the times step small. Such
disks also become more viscous due to the lower stellar mass since the viscosity depends
on the Keplerian frequency as voc{), Yand Qoc M, Y 2, which further reduces the time step,
as it is inversely proportional to the viscosity.

Another direction to go is to trace the chemical evolution in the disk as [Pignatale et al.
(2018)) did. They used a model for protoplanetary disk formation and evolution to trace
the evolution of various chemical species in the disk. With their model they are able to
explain the over-abundance of refractory elements in the outer regions of the Solar system.
They also find that materials with different thermal histories are mixed locally, which agrees
qualitatively with the three main chondrite groups. Setting time zero of the Solar system to
the beginning of the cloud core collapse, the authors also find that calcium-aluminium-rich
inclusions (CAls), whose absolute age can be determined accurately through radioisotope
dating, from abundantly between ¢ ~ 40 kyr and ~ 70 kyr. This agrees very well with the
radio-isotopic dating.
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