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Abstract

In this work, we employ a semi-classical approach to light matter interaction to describe and char-
acterize spin configurations resulting from quantum correlations between electrons created by a
photoemission event and by the following Auger decay. The system studied consists of three atomic
levels and two continua. Initially, an external classical light field, in the form of a narrow Gaussian
packet, perturbs the system, and transfers the density of charge, corresponding to one electron (the
photoelectron), from the core level to the continuum. The Auger decay then occurs, whereby an
electron from either of the valence levels decay to the core while, at the same time, another electron
(the Auger electron) is emitted to the continuum. The description of the system is performed in the
time domain, by time-evolving the many-particle wave function. Tracking the density of charge
in the atomic levels and the continuum levels allows for a description of the dynamics of photoe-
mission and Auger decay. Calculating the concurrence, as measure of entanglement, between the
photoelectron and the Auger electron, gives insight about the correlation between their spins.

We consider two scenarios; altering the relative strengths of the matrix elements responsible for
anti-parallel and parallel spin configuration while keeping the interaction between the photoelectron
and the Auger electron fixed, and secondly varying the interaction while keeping all the matrix
elements fixed. The effect of increasing the strength of the parallel-spin configuration can be seen
in the concurrence decreasing, diminishing the correlation between the spin of the photo- and the
Auger electron. Furthermore, we find that the interactions between the electrons in the continuum
strongly affect the modality of entanglement.

While giving a rather simplistic description of a realistic atomic system, our results support
the scope of the model to give valuable conceptual insight, into novel qualitative aspects of the
temporal dynamics of the Auger decay.
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Chapter 1

Introduction and Motivation

Photo emission is a fundamental process in quantum mechanics, and was in part responsible for
the birth of the subject. The 19th century provided evidence of a seemingly odd behavior of bound
electrons being excited by light [1]. According to classical Maxwell theory, the energy of an
electromagnetic field is proportional to the square of the field strength [2], hence if the energy of
the field exciting a bound electron exceeds the binding energy of the electron one would expect
that, no matter the color of the light, raising the intensity to some threshold intensity would be
sufficient to ionize electrons. This turned out not to be the case as Philipp Lenard found [1] that it
instead and in fact depended on the color ( an anachronism for ”frequency”).

At the turn of the century Max Planck postulated, as a mathematical trick, that light was not a
field in the Maxwell sense, but quanta of energy[3]. This led to the solution of not one, but two
paradoxes of that time; the ultraviolet catastrophe and frequency depending light in contrast with
Maxwell. Albert Einstein took this idea of quanta of energy, photons, and formalized a theory of
the photoelectric effect[4].

With this new theory of light and with quantum mechanics on the rise it became possible to
study the inner workings of atoms more closely and accurately. One such investigation was per-
formed, in parallel, by Lise Meitner[5] and Pierre Auger[6], Auger credited with the name although
Meitner discovered it first. They found that if a core electron is ionized from an atom, a Coulombic
readjustment of electrons can occur where one electron fills the hole which leads to the emission of
another.

The study of the kinetic energy of Auger electrons is referred to as Auger electron spectroscopy
and, together with photoemission, Auger electron spectroscopy provides the tools to study core hole
dynamics in atoms and core hole localization in molecules [7]. Furthermore, as the progress in ultra
short laser pulses is advancing, systems that can undergo Auger decay are suitable for studies of
ultrafast atomic processes as well as pioneering research about the Quantum Zeno Effect, QZE[8].

In the case of materials, the photoelectric and Auger effects have been used extensively since
the middle of the 20th century, when technology to resolve electron energies became good enough,
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to perform chemical analysis of complex compounds, e.g. solid surfaces, adsorbates and alloys by
analyzing the photoelectrons and especially the Auger spectra (the latter containing energies which
are fingerprint of the specific transition occurred, and thus of the type of atomic element involved
[9]).

There is however something else that these two effects can be used to study, that is more appli-
cable and highly relevant for many current research ares in physics: entanglement. One talks about
entanglement when the state of a system cannot be decomposed into its subsystems, i.e. when the
state vector cannot be factorised into a tensor-product of states of each subsystem. Entanglement
can lead to non-classical correlations and these correlations can be used to perform ultra fast prob-
ings of core hole localization[7], and is also a basic resource for realizing quantum computers[10].
It is hence of use, and possible, to study entanglement, and systems that bring about entangled pairs
of electrons.

For this reason, this thesis is designed to perform a theoretical investigation into an atomic
model system that undergoes photoemission followed by an Auger decay. We study the real time
dynamics of these processes and calculate the entanglement between the final state photoelectron
and Auger electron using concurrence, which is a widely used indicator of entanglement.

It is worthwhile at this point to the emphasize the high degree of novelty of our study. Time-
dependent studies of the Auger decay are still rare, and often require a number of approximations
to be made in the treatment. One such approximation (and a rather common one) is to leave out an
explicit description of the photoelectron in the continuum, under the assumption that this electron
is very fast (due to the high frequency of the light) and interacts negligibly with the system left
behind. While this considerably simplifies the description, it also automatically excludes the pos-
sibility to study the interaction between the photo- and the Auger electron, and a characterization
of entanglement becomes not possible. With the method introduced here, this relationship between
the two electrons, albeit in an oversimplified model system and with an approximation in the treat-
ment, is accessible, and its dynamical emergence/establishment can be characterized in the time
domain.
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Chapter 2

Atoms and Electron Spectroscopy

We provide here a short conceptual background to Auger and photoelectron spectroscopies.

2.1 Photoelectric effect and photoemission spectroscopy

The Photoelectric effect describes the process where a highly energetic photon is absorbed by an
atom, leading to the emission of an electron. In Einstein’s work on the photoelectric effect, it is
proposed that the energy of a photon is proportional to the frequency of the light[4]:

Eγ = hν. (2.1.1)

When the energy of the photon exceeds the binding energy of an electron in an atom, also referred
to as the ionization potential I , the electron will be released into a continuum of states with a kinetic
energy corresponding to the difference between the photon energy and the ionization potential. The
maximum kinetic energy of an photoemitted electron is thus:

Ek = hν − I (2.1.2)

Hence, by exposing a material to monochromatic light of frequency ν and measuring the energy
of the electrons, one can determine the binding energies of electrons, from equation 2.1.2, and thus
study the electronic structure of matter. The study of the kinetic energy of the electron as a result
of photoemission is referred to as electron spectroscopy and since the middle of the 19th, electron
spectroscopy has been extensively employed to investigate atomic and molecular orbitals and in
general electronic properties of condensed matter [11].

In order to understand the rate of transition from an initial state, |i〉, to a final state, |f〉, we turn
to a semi-classical approach where the interacting electromagnetic field is taken to be classical. In
this approach the light field continuously transfers the density of charge, i.e. the population, of
an electron to the continuum, as opposed to quantized light that promptly creates a hole, a quasi-
particle corresponding to the lack of an electron, in the initial state.
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Under the assumption that the intensity of the light field is weak enough, one can treat the field
as a perturbation to the system and thus calculate the transition probability, Pi→f , for a transition
between the initial state, |i〉, to the final state, |f〉, within a perturbation theory. In the Göbbert
Mayer gauge, and dipole approximation, the interaction Hamiltonian, in the second quantization
formalism[12], is given by[13]:

HI(t) = −d ·E cos(ωt)(a†fai + H.c.) = Mif cos(ωt)(a†fai + H.c.) (2.1.3)

where ω = ν/2π , ν is taken to be close to the resonance frequency of the transition and Mif =

−〈i|d · E |f〉 represents the dipole matrix element between the initial and final state. In more
general instances where the initial state is coupled to a continuum of levels, the interaction Hamil-
tonian couples the initial state to all the continuum levels in the same manner as in equation 2.1.4:

Hph(t) =
∑
q

Mq cos(ωt)(a†fqai + H.c.) (2.1.4)

where the fq represent a continuum level of energy εq and the set {|i〉 , |fq〉 ; q = 1, 2, ...N} form a
complete set of states for the Hilbert space of dimension N + 1. Finally, the transition probability
between two configurations of states |i〉 and |fq〉, with the distinction that now |fq〉 refers to the
states with an electron in the continuum with energy εq, is given by:

Pi→f (ω) =
∑
q

2π

~
|Mq|2ρ(Ei − Efq − ~ω) (2.1.5)

2.2 The Auger Effect and Auger Electron Spectroscopy

When the energy of the light used to ionize an atom is high enough, a deeply bound electron (a core
electron) may be emitted, resulting in the atom being left out of equilibrium with a hole in the core
level. A valence level electron can then relax to the core, transferring, nonradiatively, its excess
energy to another electron in the atom. If the energy provided to the second electron is greater than
the ionization potential of the ion, that electron is emitted from the atom with energy:

εA = εg − εvivj , (2.2.1)

where εg is the energy of the ground state and εvivj represents the energy of the state with vacancies
in valence levels i and j, including any inter-/intrashell interactions/relaxations. This expression
can be made more explicit looking separately at different contributions, and considering explicitly
the core/Auger channels involved[14, 15]. In a more rigorous description, the Auger decay corre-
sponds to a transition (mediated by the Coulomb interaction) between an initial two-hole state (one
in the core and one in the continuum) to a final state with two vacancies in the higher energy levels
of the atom.
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The Auger process is a common occurrence in lighter elements, while for heavier elements a
dipole transition dominates, where a valence electron relaxes to the hole emitting its excess energy
as light[11].

The dynamics of photoemission followed by Auger decay can be treated in a one-step or two-
step approach. In the two-step approach, the photoemission is not affected by the Auger decay.
Firstly, photoemission is treated, with an interaction Hamiltonian as in equation 2.1.4. Once the
density of charge in the continuum corresponds to that of one electron, a second step is considered
using the final state of the photoemission as initial state for the Auger decay. The second part of
the process is induced by the Auger interaction Hamiltonian:

HA =
∑
k

Mk(a
†
ca
†
kaiaj + H.c.), (2.2.2)

where Mk is the matrix element of the Coulomb interaction between the initial and final state,
and as before, |fk〉 represents a state with an electron in the continuum with energy εk, (a complete
discussion of the atomic Auger matrix elements can be found in [16]). Equation 2.2.2 then describes
the process of an electron relaxing from a valence level to the core while an electron simultaneously
is emitted into the continuum.

In a two-step description, the transition probability of the Auger decay can be computed as:

Pi→f =
∑
k

2π

~
|M ′

k|2δ(Ei − Ef ) (2.2.3)

This expression makes it evident that the approach decouples the two processes from one an-
other, with the core hole fully relaxing before the Auger decay occurs. It is reasonable to apply
this strategy to situations where the laser pulse is ultra short, i.e. interacts with the core hole on a
timescale shorter than the Auger decay one.

However, in this work we are interested in the regime where the laser pulse is short but where
its interaction with the core level is comparable to the Auger decay timescales. One then needs to
consider the one-step approach, where the two events are not assumed to occur separately.

There are many interesting situations where the one-step treatment needs to be applied, for ex-
ample resonant Auger decay, Auger-photoemission coincidence spectroscopy (APECS) and Auger
decay from transition metals (where incomplete screening occurs) to mention a few. The theory be-
hind the one-step approach is considerably more advanced than the two-step treatment. In a rather
general form, it was discussed by Almbladh[17] and Gunnarson and Schönhammer[18]. One way
to proceed is through the quadratic response formalism, which is naturally expressed in Green’s
functions language in the frequency domain. However, knowledge and use of Green’s functions as
a theoretical tool is beyond the scope of this bachelor thesis, and a description of the one-step ap-
proach based on them will not be pursued. Given that this thesis deals with a real-time description
of the Auger decay, such omission is of little consequence.
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2.2.1 Energy vs Time Domain

Indeed, a real-time formulation as given here, where one is describing how the state of the system
evolves in time, can be advantageous over a standard energy-picture one-step description: it ac-
counts seamlessly, completely, and in an equal-footing way for all excitation and incomplete screen-
ing mechanisms (e.g. shake-up and shake-down contribution, excitonic and plasmonic screening)
which occur during the Auger process. This is especially important if one wishes to describe time
resolved pump and probe experiments, or specific modulations of the photo-excitation field (e.g.
considering train of pulses versus single pulse or constant fields, etc.).

And, ultimately, the standard description of the Auger decay in the energy domain can be
recovered by a Fourier analysis of the results obtained in the time domain.
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Chapter 3

Time-Dependent Wavefunctions and
Computational Real-Time Dynamics

We provide a short background to time-dependent quantum mechanics and numerical integration
methods for the Schrödinger equation for systems out of equilibrium. These notions are preliminary
ingredients for a real time description of the Auger decay in terms of many-body wavefunctions.

3.1 Exact Diagonalization

The time-dependent Shrödinger equation reads:

H |ψ〉 = i
d

dt
|ψ〉 . (3.1.1)

If H , the Hamiltonian, is time-independent, the solution is given by[19]:

|ψ(t)〉 = e−iHt |ψ0〉 (3.1.2)

Furthermore, with a complete set of basis states in the inherent Hilbert space one can use the
completeness relation:

1 =
∑
λ

|λ〉 〈λ| , (3.1.3)

and insert a complete set of eigenstates of H in equation 3.1.2:

|ψ(t)〉 = e−iHt1 |ψ0〉 =
∑
λ

e−iHt |λ〉 〈λ| |ψ0〉 =
∑
λ

e−iEλt|λ 〉〈λ|ψ0〉 (3.1.4)

Thus one can determine the time dependent state vector |ψ(t)〉 in terms of the eigenstates of
H and the corresponding eigenvalues. Although straightforward, this method involves the diago-
nalization of the matrix H; if dim(H), for a particular system, is very large this process becomes
time-consuming and ineffective.
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If, additionally, the Hamiltonian is time-dependent, then equation 3.1.4, and hence the evolu-
tion, must be made recursive and discrete. The state at time t+ dt is obtained from the state at time
t using equation 3.1.4 with H ≡ H(t + dt/2), valid when dt is small enough so that H(t) is close
enough to H(t+ dt):

|ψ(t+ dt)〉 =
∑
λ

e−iEλ(t+dt/2)dt |λ〉 〈λ|ψ0〉 (3.1.5)

As with the case of time-independent Hamiltonians this procedure too becomes very expensive,
in fact even more so, for large systems and/or long time propagation since this method involves
diagonalizing the Hamiltonian at each time step.

3.2 Iterated Lanczos Algorithm

One can work around the problem previously mentioned by means of the iterated Lanczos algorithm[20].
This algorithm is similar to the power method for finding extreme eigenvectors and eigenvalues but
uses the Lanczos basis, the basis of the highest order Krylov subspace that is not invariant, to tridi-
agonalize the matrix A. The definition for a Krylov subspace of rank m, to the range of A with
seed v0 is:

Km(v0) = span{v0, Av0, A2v0, ..., A
k−1v0}.

3.2.1 Procedure

Given a starting vector (the seed), v0 of norm 1 and a hermitian matrix A, multiplying v0 by A will
produce, in general, a new vector q̃1. Using the Gram-Schmidt process to orthogonalize q̃1 and v0
one gets:

q̃1 = Av0, q1 = q̃1 − 〈v0|Av0〉 v0 = q̃1 − α0v0.

After normalizing q1 we have the second basis vector, v1, in the Lanczos basis. Multiplying v1
again by A we get a new vector that we orthogonalize against the previous ones:

v1 =
q1
β1
, β1 = ‖q1‖

q̃2 = Av1, q2 = q̃2 − 〈v1|Av1〉 v1 − 〈v0|Av1〉 v0 = q̃2 − α1v1 − β1v0.

Again, normalizing q2 and we have the third basis vector of the Lanczos basis, v2.

v2 =
q2
β2
, β2 = ‖q2‖.

This time around, when producing q3, something peculiar happens:

q3 = Av2 − α2v2 − β2v1 − 〈v2|Av0〉 v0.
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But we know that v2 has no components parallel to v0 and v1 because of the step involving the
Gram-Schmidt process, orthogonalizing v2 to v0 and v1, and hence the projection of Av0 along v2
is zero:

q3 = Av2 − α2v2 − β2v1 → v3 =
q3
β3
.

This procedure is entirely general and so we get a recursion formula for the vectors in the Lanczos
basis:

vn+1 = Avn − αnvn − βnvn−1 (3.2.1)

αn = 〈vn|Avn〉 (3.2.2)

βn = ‖qn‖ = 〈vn−1A|vn〉 (3.2.3)

If the rank of the matrix A is M , then the maximum number of Lanczos vectors is M . If the
Krylov subspaces starts becoming invariant for some smaller j < M , i.e. Kj(v0) = Kj+1(v0),
then the algorithm should stop as the following α’s and β’s will be trivially equal to 0 implying
that the algorithm will produce undefined behavior when normalize the next vector. The resulting
tridiagonal matrix T in the Lanczos basis {v0, v1, v2, v3, ..., vk} is then:

T =



α0 β1 0 0 · · · · · ·
β1 α1 β2 0 · · · · · ·
0 β2 α2 β3 · · · · · ·
0 0 β3 α3 · · · · · ·
...

...
...

... . . .
...

...
...

... . . .


If the order of the Krylov space is equal to the rank of the original matrix then the eigenvalues

of T are exactly those of A since eigenvalues are independent of the basis, and for lower orders the
extreme eigenvalues can be obtained to good accuracy. The eigenvectors v of A can be expressed
as eigenvectors, vl, of T through a change of basis back to the original one:

vi = Qvli, (3.2.4)

where Q is the M × j matrix with the Lanczos vectors as columns.

3.2.2 Connection to Exact Diagonalization

From equation 3.1.2 we see that the state vector of the system evolves as an exponential matrix
times the ground state. An exponential matrix is defined as:

e−iAt =
∑
k

(−it)k

k!
Ak (3.2.5)
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This implies, along with equation 3.1.2:

|ψ(t)〉 = e−iHt |ψ0〉 =
∞∑
k=0

(−it)k

k!
Hk |ψ0〉 (3.2.6)

In equation 3.2.6 we can see that the space of states is spanned by the infinite sequence:
{|ψ0〉 , H |ψ0〉 , H2 |ψ0〉 , H3 |ψ0〉 , ...}, but from the Lanczos algorithm we found an orthonormal
sequence that spanned the same space. So in the Lanczos basis, equation 3.2.6 becomes:

|ψ(t)〉 =

ML∑
k

|vk〉 〈vk| e−iHLt |v0〉 , (3.2.7)

where HL is the tridiagonal matrix obtained from the Lanczos algorithm, ML is the order of the
maximum Krylov subspace and the vk’s are the Lanczos vectors. ML is less than or equal to M ,
the dimension of the Hilbert space, but could still be very large so inserting a complete set of
states in equation 3.2.6 does not necessarily make the problem any smaller, but considering that
the Lanczos algorithm approximates extreme eigenvalues well, a good approximation to equation
3.2.6 is to limit the dimensions of the Lanczos Hamiltonian to some K. This K would have to be
determined through trial and error by checking when the results it produces converges to machine
accuracy. OnceK is chosen, inserting a complete set of eigenstates {|λ〉} in this smaller space with
Hamiltonian H(K)

L :

|ψ(t)〉 =
K∑
k

|vk〉 〈vk| e−iH
(K)
L t |v0〉 =

K∑
k

∑
λ

|vk〉 〈vk| e−iH
(K)
L t |λ〉 〈λ|v0〉 = (3.2.8)

=
K∑
k

∑
λ

|vk〉 〈vk|λ〉 e−iEλt 〈λ|v0〉 (3.2.9)

3.3 Concurrence

For pure states, states that correspond to vectors in the Hilbert space[19], entanglement is the
notion of the state being inseparable into tensor-products of substates[19]. For mixed states being
statistical mixtures of pure states the notion is extended as follows: if the pure states, that make
up the mixed state are inseparable, i.e. entangled, then so is the mixed state. Mixed states are
described by the density operator[19] which can be generically written as:

ρ̂ =
∑
i

|ψi〉 〈ψi| (3.3.1)

A convenient measure of the separability of a state is that of concurrence, C[21], defined as:

C(ρ) = max(0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4) (3.3.2)
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where the λi are the decreasing eigenvalues of the 4× 4 matrix formed by ρρ̃ and ρ is the reduced
density matrix given by:

ρ = 〈a†iσa
†
jσ′akσ′′alσ′′′〉 (3.3.3)

for fixed i, j, k, l. and ρ̃ is the spin-flipped reduced density matrix:

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy) (3.3.4)

C can then be interpreted as a measure of inseparability with values varying between 0 for parallel-
spin |↑↑〉, being unentangled and completely separable, and 1 for anti parallel-spin configurations:
(|↑↓〉 − |↓↑〉)/

√
2 which are maximally entangled.
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Chapter 4

System and Observables

In this work we investigate a six-electron model of an atomic system that can undergo Auger decay,
a minimal model to address and study the coexistence of anti parallel- and parallel- Auger+photoelectron
spin configurations. The system consists of three atomic levels |c〉 , |v1〉 , |v2〉, each with s-
symmetry, and two continua, X and A both also with s-symmetry. The Hamiltonian for the sys-
tem in presence of an external light field, in the second quantization formalism, of the system is:
H(t) = H0 +H1(t), where:

H0 =
∑
σ

[
ε0n̂0σ + ε1n̂1σ + ε2n̂2σ

]
+

2∑
i,j=0,σσ′

′
Uijn̂iσn̂jσ′ (4.0.1)

+
∑
q∈X,σ

εqn̂qσ +
∑
k∈A, σ

εkn̂kσ +
∑
qk,σσ′

Ukqn̂kσn̂qσ′ +
2∑

i, j=1,σσ′

′
Mkij(a

†
kσa
†
0σ′aiσ′ajσ + H.c.).

Here, the indices 0, 1, 2, label the core level, valence level 1 and valence level 2 respectively,
labeling the atomic levels while k and q label the levels in the Auger continua and photo continua,
respectively. Also, n̂iσ = a†iσaiσ is the number operator for state i with spin projection σ, and
the creation/annihilation operators a†i/ai have their usual meaning. The εi’s are the energies of
the levels. H0 describes the internal atomic system, the continua and the interactions Mkij which
henceforth, as an approximation, are taken to be independent of k: Mij . Finally, a phenomenolog-
ical interaction, Ukq = K/(

√
εk −

√
εq)

2, is introduced between the photoelectron and the Auger
electron where εq and εk are their respective energies. The primed sums indicate that terms with
i = j and σ = σ′, simultaneously, are excluded.

In the occupation number picture, a general basis state vector, for this model, is given by
|ψ〉 = |i1, i2, i3; j1, j2, j3〉 where each of the i’s labels a generic (either discrete or continuum)
one particle state in i with spin projection +1

2
and the j’s states with spin projection −1

2
. The state

are conventionally ordered in ascending order. In short,

|i1, i2, i3; j1, j2, j3〉 ≡ a†i1↑a
†
i2↑a

†
i3↑a

†
j1↓a

†
j2↓a

†
j3↓ |vac〉 .
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H1(t) describes the time-dependent (laser) light field that couples the core level to the X-continua:

H1(t) = e−
(t−t0)

2

2c2 cos(ωt)
∑
q∈X, σ

Aq(a
†
qσa0σ + H.c.), (4.0.2)

where the Gaussian prefactor shapes the pulse in the interval t ∈ [0, 2t0] andAq governs the strength
of the coupling which is taken to be q independent and identically equal to AX . The frequency
ν = 2πω is assumed to be the close to the frequency corresponding to the ionization potential of
the atom.

Together, H0 and H1(t), describe the dynamics of photoemission followed by an Auger decay.
In this framework, the time-dependent Shrödinger equation is solved, with the help of iterating the
Lanczos Algorithm, for the time-dependent densities of the atomic levels; n0σ(t), n1σ(t), n2σ(t)

as well as the populations in the continua: A(εq, t), A(εk, t).

In general, the size, i.e. the number of configurations, of this problem is
(
NX+NA+3

3

)
2 which

quickly becomes quite unmanageable in terms of computer power and time. In order to proceed,
we consider an approximation where only configurations that have at most two electrons in the
continua, specifically at most one in the photo-continuum and at most one in the Auger-continuum.
One can justify this approximation in cases where the laser pulse is ultra short so that the electron
that fills the core hole as a result of the Auger decay is not affected by the laser. Figure 3.1-3.3
show the states that are allowed and those that are discarded as a result of this approximation. The
ground state is obvious, 6 electrons in the atomic part of the system with 0 in either of the continua.
For a state with 5 electrons in the atom, the free electron can only be in the photo-continua since
the final state of a photoemission leaves one electron in the X-continuum, and one electron in the
Auger continuum is not allowed since photoemission must have occurred before. A state with two
free electrons must have one electron in the photo-continuum and one in the Auger-continuum.
However, the atomic part cannot be arbitrary, for example a state with no electrons in the core
level is out of the game because the probability of a double ionization is very low, especially
considering a short pulse. After further deduction (see the figures), the states that are allowed in
this approximation are reported next using three different notations, with a total number of states:
Nstates = 10NXNA + 2NX + 1. The leftmost expressions will be used henceforth.
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Figure 4.0.1: Possible states with 6 atomic
electrons and 0 in either continua, respec-
tively 5 electrons in the atom and 1 in the
photo-continua.

Figure 4.0.2: Possible states with 4 atomic
electrons and 2 in the continua.

Figure 4.0.3: All allowed states and number of permutations allowed for each configurations.
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Accordingly, we can label the full set of retained states as (see Figures 4.0.1-4.0.3),

|0〉 = |ψ0〉 = |0, 1, 2; 0, 1, 2〉 = a†0↑a
†
1↑a
†
2↑a
†
0↓a
†
1↓a
†
2↓ |vac〉

q ∈ X :

|q↑〉 = |1, 2, q; 0, 1, 2〉 = a†1↑a
†
2↑a
†
q↑a
†
0↓a
†
1↓a
†
2↓ |vac〉

|q↓〉 = |0, 1, 2; 1, 2, q〉 = a†0↑a
†
1↑a
†
2↑a
†
1↓a
†
2↓a
†
q↓ |vac〉

q ∈ X, k ∈ A :



|A11; q↑k↓〉 = |0, 1, q; 0, 1, k〉 = a†0↑a
†
1↑a
†
q↑a
†
0↓a
†
1↓a
†
k↓ |vac〉

|A12; q↑k↓〉 = |0, 1, q; 0, 2, k〉 = a†0↑a
†
1↑a
†
q↑a
†
0↓a
†
2↓a
†
k↓ |vac〉

|A21; q↑k↓〉 = |0, 2, q; 0, 1, k〉 = a†0↑a
†
2↑a
†
q↑a
†
0↓a
†
1↓a
†
k↓ |vac〉

|A22; q↑k↓〉 = |0, 2, q; 0, 2, k〉 = a†0↑a
†
2↑a
†
q↑a
†
0↓a
†
2↓a
†
k↓ |vac〉

|A; q↑k↑〉 = |0, q, k; 0, 1, 2〉 = a†0↑a
†
q↑a
†
k↑a
†
0↓a
†
1↓a
†
2↓ |vac〉

|A11; q↓k↑〉 = |0, 1, k; 0, 1, q〉 = a†0↑a
†
1↑a
†
k↑a
†
0↓a
†
1↓a
†
q↓ |vac〉

|A12; q↓k↑〉 = |0, 1, k; 0, 2, q〉 = a†0↑a
†
1↑a
†
k↑a
†
0↓a
†
2↓a
†
q↓ |vac〉

|A21; q↓k↑〉 = |0, 2, k; 0, 1, q〉 = a†0↑a
†
2↑a
†
k↑a
†
0↓a
†
1↓a
†
q↓ |vac〉

|A22; q↓k↑〉 = |0, 2, k; 0, 2, q〉 = a†0↑a
†
2↑a
†
k↑a
†
0↓a
†
2↓a
†
q↓ |vac〉

|A; q↓k↓〉 = |0, 1, 2; 0, q, k〉 = a†0↑a
†
1↑a
†
2↑a
†
0↓a
†
q↓a
†
k↓ |vac〉 ,

Here, in the third subset of basis states, the Aij:s denote the atomic configuration in the final
state (”A” stands for ”atom”), with i and j each denoting a hole in one of the valence levels. So the
notation makes explicit the distribution of electrons between atomic and continua levels. We wish
to stress that in this basis subset, core levels are doubly filled, and their indexes never appear. 1

A general state of the system can thus be written as a linear combination of these states:

|Ψ(t)〉 = α0(t) |0〉+
∑
q∈X

[
αq↑(t) |q↑〉+ αq↓(t) |q↓〉+

∑
k∈A

2∑
i,j=1

b↑↓kq(i, j; t) |Aij; q↑k↓〉+

+b↓↑kq(i, j; t) |Aij; q↓k↑〉+ c↑↑kq(t) |A12; q↑k↑〉+ c↓↓kq(t) |A12; q↓k↓〉
]
,

(4.0.3)

where i and j again label holes in the atomic valence levels 1 and 2.
In this basis, a result of our truncation of the Hilbert space, there are physical states intention-

ally left out. For example, one such state could be where both core electrons are photoemitted
followed by two Auger decays filling the two core holes: this would lead to states like |q↑q↓〉 and
|q↑k↑q↓k↓〉 being included. These states are left out in part because (as was mentioned before) of

1Note that, despite the photoelectron and Auger electron having opposite spin projections they need not be in a
singlet state, for example (|↑↓〉+ |↓↑〉)/

√
2 is a triplet state, but the spin projections are anti parallel.
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their negligible contribution for very short pulses, but also because they expand the Hilbert space
to (NXNA)2 which would quickly scale out of reach.

With the ordering convention used for the states, care must be taken with relative phases, in
particular the signs of the matrix elements must be determined in order to have an accurate model.
The calculations for Mij are hence given below:

M11 〈A11; q↑k↓| a†k↓a
†
0↑a1↑a1↓ |q↑〉 =

= M11 〈A11; q↑k↓|a†k↓a
†
0↑a1↑a1↓a

†
1↑a
†
2↑a
†
q↑a
†
0↓a
†
1↓a
†
2↓|v〉 =

= M11 〈A11; q↑k↓| a†k↓a
†
0↑(−1)4a†2↑a

†
q↑a
†
0↓a
†
2↓ |v〉 =

= M11 〈A11; q↑k↓|(−1)9a†0↑a
†
2↑a
†
q↑a
†
0↓a
†
2↓a
†
k↓ |v〉 = −M11 · 〈A11; q↑k↓|A11; q↑k↓〉 = −M11

(4.0.4)

Similarly, for the other states:

M12 〈A12; q↑k↓| a†k↓a
†
0↑a1↑a2↓|q↑〉 = M12 (4.0.5)

M21 〈A21; q↑k↓|a†k↓a
†
0↑a2↑a1↓|q↑〉 = M21 (4.0.6)

M22 〈A22; q↑k↓|a†k↓a
†
0↑a2↑a2↓|q↑〉 = −M22 (4.0.7)

M12 〈A; q↑k↑|a†k↑a
†
0↑a1↑a2↑|q↑〉 = −M12 (4.0.8)

M21 〈A; q↑k↑|a†k↑a
†
0↑a2↑a1↑|q↑〉 = M21 (4.0.9)

The structure of the calculations for flipped spins is analogous, and since there are no spin-flipping
terms in the Hamiltonian they are not written explicitly here, but are of course included in the cal-
culations. We can see that M11, M12, M21, M22 all contribute to anti parallel-spin configurations
while −M12 +M21 is responsible for parallel-spin configurations.

In order to examine the concurrence in the final state between the photoelectron and the Auger
electron we now turn to the reduced density matrix, ρkq:

ρkq
def
= 〈a†kσ1a

†
qσ2
aqσ3akσ4〉 (4.0.10)

The matrix in 4.0.11 shows how the values of the σi are chosen, the values of σ1 and σ2 change
between rows, and the values of σ3 and σ4 change between columns.



↑↑ ↑↓ ↓↑ ↓↓

↑↑ ρ11 ρ12 . . . ρ14

↑↓ ρ21 ρ22 . . . ρ24

↓↑ ...
... . . . ...

↓↓ ρ41 ρ42 . . . ρ44

 (4.0.11)

As is clear from the structure of the Hamiltonian, [H,Sz] = 0 and
[
H,S2

]
= 0, and hence only

elements with σ1 = σ4 and σ2 = σ3, or σ1 = −σ4 and σ2 = −σ3 will give non-zero elements:
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ρ11 = α = 〈Ψ|a†k↑a
†
q↑aq↑ak↑|Ψ〉 = +|c↑↑kq|

2 (4.0.12)

ρ22 = β = 〈Ψ|a†k↑a
†
q↓aq↑ak↓|Ψ〉 = +

2∑
i,j=1

|b↓↑kq(i, j)|
2 (4.0.13)

ρ23 = γ = 〈Ψ|a†k↑a
†
q↓aq↓ak↑|Ψ〉 = +

2∑
i,j=1

|b↓↑kq(i, j)|
2 (4.0.14)

ρ33 = β = 〈Ψ|a†k↓a
†
q↑aq↓ak↑|Ψ〉 = +

2∑
i,j=1

|b↑↓kq(i, j)|
2 (4.0.15)

ρ32 = γ = 〈Ψ|a†k↓a
†
q↑aq↑ak↓|Ψ〉 = +

2∑
i,j=1

|b↑↓kq(i, j)|
2 (4.0.16)

ρ44 = α = 〈Ψ|a†k↓a
†
q↓aq↓ak↓|Ψ〉 = +|c↓↓kq|

2 (4.0.17)

Hence, ρkq is:


α 0 0 0

0 β γ 0

0 γ β 0

0 0 0 α

⇒

α 0 0 0

0 β β 0

0 β β 0

0 0 0 α

 (4.0.18)

As explained in section 3.3, we want the matrix given by ρρ̃:

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy) = ρ =⇒ ρρ̃ = ρ2 (4.0.19)

The general result for the eigenvalues of a matrix such as ρ2 is, by simple pen and paper diagonal-
ization:

λ1 = 4β2, λ2,3 = α2, λ4 = 0. =⇒ (4.0.20)

Ckq(ρkq) = max(0,
2∑

i,j=1

2|b↑↓/↓↑kq (i, j)|2 − 2|c↑↑ /↓↓kq |2) (4.0.21)

Because of the way the parallel-spin configuration is reached, with the matrix element M21 −
M12, the maximum value of it is no greater than either of M12 or M21 and hence:

2∑
i,j=1

|b↑↓/↓↑kq (i, j)|2 ≥ |c↑↑ /↓↓kq |2 (4.0.22)

where i and j label the holes in the valence level of the electron, summing over them because there
are multiple configurations that correspond to anti parallel-spin states but only one parallel-spin
state with S = 1.

17



In this approximation, neglecting the contribution from double photoemission, the maximum
value of the density of either spin channel in the photo-continuum is 0.5, since (assuming no Auger
decay has occurred) the system ends up in a superposition of states corresponding to the either of
the two spin channels.

|ψph〉 =
∑
q

1√
2

(αq↑ |q↑〉+ αq↓ |q↓〉) (4.0.23)

This property will carry through to the final state, since the Auger term in the Hamiltonian does not
affect the photoelectron. That is,

∑
kq

(|c↑↑kq|
2 +

2∑
i,j=1

|b↑↓kq(i, j)|
2) ≤ 1

2
(4.0.24)

∑
kq

(|c↓↓kq|
2 +

2∑
i,j=1

|b↓↑kq(i, j)|
2) ≤ 1

2
(4.0.25)

From equation 4.0.24 we can see that if the final state is in an anti parallel-spin configuration, i.e.
|c↑↑/↓↓kq |2 = 0, the concurrence is equal to 1 indicating that the photoelectron and Auger electron are
maximally entangled in accordance with what is expected.
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Chapter 5

Results

This thesis is designed to be an exploratory investigation in the time domain of the Auger decay for
a simple model atomic system, particularly about the entanglement of photo- and Auger electrons.
The dynamics will be tracked by calculating the various atomic densities as well as the continua
electron densities. Furthermore, concurrence is calculated at the end of each calculation. The
result will be structured into two parts, one where Ukq (the Coulomb interaction between photo-
and Auger electrons) is kept fixed and the matrix elements M12 and M21 are varied and the second
where the matrix elements are fixed and Ukq varies.

Not considering the parallel-spin contribution (M12−M21)
2 to the transition rate (which clearly

depends on the relative value ofM12 andM21), the total Auger rate is given by: M2 = M2
11+M2

22+

M2
12 +M2

21. That is then divided into two parts: M2

2
= M2

11 +M2
22 and M2

2
= M2

21 +M2
12.

Since it is the particular combination M21 −M12 of the matrix elements M12, M21 which is
responsible for the parallel spin contribution, M11 and M22 will be kept fixed with their sum equal
to M2/2 throughout while M12 and M21 will be the ones varied. Table 5.0.1 shows the various
relevant parameters, and in the chapter the figure captions will only report deviations from these
parameters.

Table 5.0.1: Various Parameters.

Ecore = 56 Ev1 = 25 Ev2 = 15
U00 5 U01 4 U02 3 Ukq = K

(
√
εk−
√
εq)2

U11 5 U12 4 U22 5
M11 0.0069 M12 0.0075 M21 0.0049 M22 0.0057
AX -0.3 NA 600 NX 100 ω 87
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We mention again at this point that we are investigating the dynamics of a system that is per-
turbed by a narrow Gaussian wave packet. We are interested in understanding the relationship
between the anti parallel-spin configuration and parallel-spin configuration in order to quantify, us-
ing concurrence, the degree of entanglement between the spin of the photoelectron and the Auger
electron. Firstly we look at a pure photoemission in order to shape the pulse and also to have an
understanding of the how the density of electrons in the core level changes over time with no Auger
decay involved.

(a) Core level electron density for either spin channel
in the presence of an external laser light field,
where no Auger decay is allowed. (b) Electron density in the photo-continuum as a result

of ionization from an external laser light field.

Figure 5.0.1: Behavior of the system, under the influence of the external laser light

Figure 5.0.1 panel (a) shows how the density of spin up, or down, electrons in the core level
changes as a Gaussian wave packet interacts with the system. The core level is quickly depleted of
one electron, i.e. the density of charge in the continuum corresponds to one electron. Because the
light field interacts independently on electrons with both spin projections, the state of the system
after emission will be a combination of emitted spin-up and spin-down electrons.Panel (b) shows
the spectral peak in the photocontinuum.
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5.0.1 Fixed Ukq with varying matrix elements

Auger Spectra

Figure 5.0.2: Varying the ratio M21

to M12 in the equation M2
12 + M2

21 =

M2/2 through 5:5, 7:3 and 10:0 from
top to bottom with K = 0.

The results in figure 5.0.2 show the expectation values of
the electron densities n̂kσ(t) in the Auger spectra as func-
tions of time and energy. One can see that there are three
distinct peaks corresponding to the three different energies
of the Auger electron, depending on the configuration of
the decay. The lowest energy energy peak corresponds to
the Auger electron that was ionized in the decay involv-
ing only valence level 1 electrons. This can be understood
considering that in this case, from equation 2.2.1 and tak-
ing into account atomic interactions, the energy is deter-
mined as

0 = E(q↑/↓)− E(A11; q↑/↓k↓/↑) =⇒
EA = 24

(5.0.1)

where E(X) denotes the energy of the basis state
|X〉 where E(q↑/↓) is the long time limit of the energy
of the state where a photoelectron has been emitted, and
E(A11; q↑/↓k↓/↓) is the long time limit of the energy of
the state after the Auger decay leaving to holes in va-
lence level 1. The middle-energy peak is the energy of the
Auger electron involved in the Auger decay with differ-
ent valence level, and the highest-energy peak is the one
from the decay involving only valence level 2. Keeping
the interaction between the photoelectron and the Auger
electron fixed, while varying the matrix elements M12 and
M21 from M12 = M21 to M12 = M/

√
2 and M21 = 0,

one can see that there is no difference in the location in
energy of the peaks; however, there is a difference in the
density of electrons between the peaks. As the parallel-
spin contribution increases, the density of electrons at the
energy corresponding to Auger electron emitted in a de-
cay involving both valence levels increases at the expense
of the intra-level Auger decays.

This is due to the fact that the total Auger rate depends also on (M12−M21)
2, which is responsi-

ble for the parallel-spin contribution to the decay. When M12 6= M21, the total Auger rate goes up,
adding to the height of the central-energy peak, while the lowest- and highest- energy rates are kept
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fixed throughout. Thus, the relative strengths of M11 and M22 are diminished while the combined
effect of the anti parallel and parallel-spin parts of M12 is increased. We now move to consider the
entanglement between photo- and Auger electrons.

Concurrence

Figure 5.0.3: Varying the ratio M12

to M21 in the equation M2
12 + M2

21 =

M2/2, through 5:5, 7:3, 10:0 from top
to bottom with K = 0.

On the right, we report the concurrence C between the
photoelectron and the Auger electron as functions of their
energies. One can see a clear resemblance between the
structure of the peaks here compared to the peaks in the
Auger spectra and the photo spectra. As M12 and M21

are varied, the concurrence between the photoelectron and
the Auger electron is diminished (this is evident by look-
ing at the middle peak). Interestingly, and in contrast with
the Auger peaks, the concurrence between the photoelec-
tron and the Auger electron decreases as the difference
between M12 and M21 increases. This is because the more
likely the parallel-spin configuration is, the less likely the
photoelectron and the Auger electron are to have oppo-
site spin. The parallel contribution thus masks the correla-
tion between the spins. Again, the edge peaks can be seen
to decrease due to the same phenomenon as in the Auger
spectra: when the parallel-spin configuration is increased,
the total Auger rate increases at the expense of the contri-
butions from M11 and M22, this can be seen clearly from
the expression of C in equation 4.0.21. We can see that
the maximum value of the concurrence between two elec-
trons at specific energies is around 0.016 however the total
concurrence, and the local concurrence for each peak, are
significantly higher, as reported in Table 5.0.2.

Table 5.0.2: Table showing the total and local concurrence
for each scenario, C1,2,3 refer to the peaks with low, middle
and high Auger energy, respectively.

5:5 7:3 10:0
Ctotal 0.97 0.90 0.34
C1 0.33 0.32 0.22
C2 0.47 0.42 0
C3 0.17 0.16 0.12
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5.0.2 Fixed matrix elements, with varying
Ukq interaction

Concurrence

Figure 5.0.4: Varying Ukq, with the
matrix elements fixed, with K =0,
1, 3 (see column 4 in table 5.0.1).

In this column we display results for the concurrence when
the interaction Ukq varies and all the matrix elements are kept
fixed at the values in table 5.0.1. By increasing the strength
of the interaction, the concurrence peaks split. Furthermore,
their positions on the Auger energy axis are shifted down-
wards, by different amounts depending on the strength of the
interaction and their energy. Because of the type of interac-
tion used, the closer the Auger energy is to the photoelectron
energy, the stronger the interaction becomes. This offers a
likely explanation for the shift to lower energies. Due to en-
ergy conservation before the Auger decay and after, with a
repulsive interaction between the electrons in the continuum
the total energy increases and hence the energy of the Auger
electron must decrease. This is also consistent with the fact
that the peaks do not shift by the same amount, since the
higher energy peak is closer to the photoelectron energy, thus
the interaction is stronger, and the decrease must be greater.

The reason for the peaks splitting could be related to a
more nuanced effect of the interaction. A possible mecha-
nism is that, for an ultrashort pulse, the energy of the pho-
toelectron is fixed after the emission and before the Auger
decay, and for a relatively broad photo peak the density of
charge away from the center energy is relatively large. To
conserve energy, the widths of the Auger peaks must also be
broadened, and if the photoelectron energy is lower, the en-
ergy of the Auger electron also tends to be lower. But here
is the nuance: the interaction depends on the electrons’ energies and if the photoelectron energy is
lowered as well as the Auger energy, the interaction changes little. Conversely, if the Auger energy
does not change, the interaction increases. For a fixed photo energy, the Auger energy can change
while at the same time the interaction changes. Since the interaction is more sensitive to changes
in Auger energy close to the photoelectron energy, this is could be the reason why the higher en-
ergy peak splits more compared to the intermediate and lower energy Auger electron. If the above
speculative arguments hold, then it is possible that the modality of the splitting could turn out sig-
nificantly different for a more realistic interaction. And, for a slower pulse, also be dependent on
the competition between the pulse emptying the core level, and the Auger transitions filling it.

23



Chapter 6

Conclusion and outlook

We have introduced and computationally implemented a minimal model for a time-dependent de-
scription of photoemission and Auger decay in atoms. An uncommon and attractive feature of our
method is that it accounts for both photo- and Auger electrons in a coherent, equal footing formu-
lation, by time-evolving the many-body wavefunction of the system. Due to the complexity of the
problem, we introduced a truncation of the configuration space, based on a constraint on the total
number of electrons ejected from the atom in to the continuum. But, and most importantly, this still
fully retains the interplay between the photoelectron and Auger channels.

One merit of our approach is to provide a quite versatile benchmarking tool to more sophisti-
cated treatments. A second clear advantage is that it permits to address at the qualitative level a
number of interesting aspects of atomic transitions in the time domain. An example in this respect,
and central to this work is the entanglement between photo- and Auger electrons, a topic currently
of growing scientific interest. Our work takes a first step in this direction, by studying the time
dependent concurrence (a measure of entanglement) in the spin sector. We find that the interactions
between the electrons in the continuum strongly affect the modality of entanglement.

As future directions, we mention the following possibilities: i) one could further investigate the
interplay of photo- and Auger electron dynamics, specifically from a Bell states perspective.

ii) Due to the different Auger decay channels available in the model, interesting interference
effects must result in the temporal features of the decay; these could be characterized via an explo-
ration of the transition rate parameters.

iii) On the more ambitious side, a rather important problem is how to deal with larger configura-
tion spaces, to release the current constraints on the nature of the laser interactions. On speculative
ground, it is not unlikely that a hybrid approach would be needed, where e.g the photoelectron
continuum is described by a more advanced formalism, e.g. via the Green’s function technique.

These possibilities are left for the future, and in concluding we note that our model is simplistic
and minimal, and is a tool for preliminary investigations. Nevertheless, the results already found
here display interesting aspects of time-resolved atomic processes worth investigating further.
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[4] A. Einstein. Über einen die erzeugung und verwandlung des lichtes betreffenden heuristischen
gesichtspunkt. Annalen der Physik, 322(6):132–148, 1905.
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Appendix: The code
This is an original computer source code, completely written from scratch by the author of this
thesis, which simulates the time evolution of a model atomic system excited by light, and where an
electron emission in the continuum is followed by atomic Auger recombination. The structure of
the code is explained in the main text of the thesis. The code is to be used in conjunction with a
second code, not shown here, which determines the basis set to be used in the calculations.

# i n c l u d e <i o s t r e a m>

# i n c l u d e <f s t r e a m>

# i n c l u d e <x t e n s o r / x a r r a y . hpp>
# i n c l u d e <x t e n s o r / x i o . hpp>
# i n c l u d e <x t e n s o r / xview . hpp>
# i n c l u d e <x t e n s o r / x i n d e x v i e w . hpp>
# i n c l u d e <x t e n s o r−b l a s / x l i n a l g . hpp>
# i n c l u d e < t u p l e>
# i n c l u d e <x t e n s o r / x m a n i p u l a t i o n . hpp>
# i n c l u d e <x t e n s o r / x i o . hpp>
# i n c l u d e <complex>
# i n c l u d e <x t e n s o r / x a r r a y . hpp>
# i n c l u d e <x t e n s o r / xcomplex . hpp>
# i n c l u d e <v e c t o r>
# i n c l u d e <x t e n s o r / x o p e r a t i o n . hpp>
# i n c l u d e <x t e n s o r / xnorm . hpp>
# i n c l u d e <x t e n s o r / xrandom . hpp>
# i n c l u d e <x t e n s o r / x f i x e d . hpp>
u s i n g namespace x t ;

vo id Lanczos ( i n t H dim , a u t o s t a t e s , a u t o x0 , d ou b l e dt , i n t n t ,
i n t n x c t , i n t n s c t ){

i n t L = H dim ;
i n t k l i m i t = 7 ;
do ub l e t o l = 1e−16;
c o n s t s t d : : complex<double> j ( 0 , 1 ) ;
x a r r a y<s t d : : complex<double>> x k = x0 ;
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x a r r a y<s t d : : complex<double>> t r i d i a , > A base , x km1 , x kp1 , a k ,
b k , r r , y tmp , c t , Hx k , p h a s e s 0 ;

i n t n a t = 3 ;
i n t norb = n a t + n x c t + n s c t ;

s t d : : o f s t r e a m p s i 0 f i l e ;
p s i 0 f i l e . open ( ” T h r e e l e v e l p l o t d a t a . t x t ” ) ;

s t d : : o f s t r e a m e n t f i l e u d , e n t f i l e u u ;
e n t f i l e u d . open ( ” d e n s i t y m a t r i x u d . t x t ” ) ;
e n t f i l e u u . open ( ” d e n s i t y m a t r i x u u . t x t ” ) ;

p s i 0 f i l e << n x c t << s t d : : e n d l ;
p s i 0 f i l e << n s c t << s t d : : e n d l ;

f o r ( i n t t = 0 ; t < n t ; t ++)
{
t r i d i a = z e r o s<s t d : : complex<double >>({ k l i m i t + 1 , k l i m i t + 1 } ) ;
A base = z e r o s<s t d : : complex<double >>({ k l i m i t + 1 , L } ) ;
x km1 = z e r o s<s t d : : complex<double >>({L } ) ;
x kp1 = z e r o s<s t d : : complex<double >>({L } ) ;
y tmp = z e r o s<s t d : : complex<double >>({L } ) ;
a k = z e r o s<s t d : : complex<double >>({1});
b k = z e r o s<s t d : : complex<double >>({1});
r r = z e r o s<s t d : : complex<double >>({1});

i n t k l i m i t 0 = 0 ;

f o r ( i n t mm = 0 ; mm < k l i m i t ; mm++)
{
Hx k = z e r o s<s t d : : complex<double >>({L } ) ;

s t d : : i f s t r e a m I f i l e ( ” I t a b l e . b i n ” , s t d : : i o s : : b i n a r y ) , J f i l e ( ” J t a b l e . b i n ” , s t d : : i o s : : b i n a r y ) ,
v a l f i l e ( ” v a l t a b l e . b i n ” , s t d : : i o s : : b i n a r y ) ;
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i f (mm > 0)
{
f o r ( i n t k = 1 ; k < mm − 1 ; k ++)
{
a u t o dum = l i n a l g : : vdo t ( view ( A base , k ) , x k ) ;
x k = x k − dum∗view ( A base , k ) ;
}
}

a u t o xnorm = s q r t ( s t d : : r e a l ( l i n a l g : : vdo t ( x k , x k ) ) ) ;
x k = x k / xnorm ;

view ( A base , mm) = x k ;

i n t i = 0 , j = 0 ;
do ub l e v a l = 0 ;

w h i l e ( I f i l e . r e a d ( ( c h a r ∗ ) &i , s i z e o f ( i n t ) ) )
{
J f i l e . r e a d ( ( c h a r ∗ ) &j , s i z e o f ( i n t ) ) ;
v a l f i l e . r e a d ( ( c h a r ∗ ) &va l , s i z e o f ( do ub l e ) ) ;

i f ( j == 0 && i != j )
{
/ / s t r o n g p u l s e
v a l = v a l ∗ exp(−pow ( t ∗ d t − 15 , 2 ) / 5 0 . ) ;
i f ( t ∗ d t > 30){
v a l = 0 ;
c o n t i n u e ;
}

/ / / weak p u l s e
/ / v a l = v a l ∗ exp(−pow ( ( t ∗ d t − 4 0 ) / 2 0 0 . , 2 ) ) ;
/ / i f ( t ∗ d t > 40){
/ / v a l = 0 ;
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/ / c o n t i n u e ;
/ / }

v a l = cos ( 8 7∗ ( t ∗ d t ) ) ∗ v a l ;
}
Hx k [ i ] += v a l ∗ x k [ j ] ;
Hx k [ j ] += v a l ∗ x k [ i ] ;

}

a k = l i n a l g : : vdo t ( x k , Hx k ) ;
y tmp = Hx k − a k ∗ x k ;
r r = l i n a l g : : vdo t ( y tmp , y tmp ) − pow ( b k , 2 ) ;

i f ( abs ( r r [ 0 ] ) < t o l )
{
b r e a k ;
}

k l i m i t 0 ++;
a u t o b kp1 = s q r t ( abs ( r r ) ) ;
x kp1 = ( y tmp −b k ∗x km1 ) / b kp1 ;
t r i d i a (mm,mm) = a k [ 0 ] ;

i f (mm < L − 1)
{
t r i d i a (mm, mm + 1) = b kp1 [ 0 ] ;
t r i d i a (mm + 1 , mm) = b kp1 [ 0 ] ;
}

x km1 = x k ;
x k = x kp1 ;
b k = b kp1 ;
}

i f ( k l i m i t 0 == 0)
{
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x k = exp(− j ∗ d t ∗ a k )∗ x k ;
}

i f ( k l i m i t 0 != 0)
{
a u t o H L = view ( t r i d i a , r a n g e ( 0 , k l i m i t 0 ) , r a n g e ( 0 , k l i m i t 0 ) ) ;
a u t o A base0 = view ( A base , r a n g e ( 0 , k l i m i t 0 ) ) ;

a u t o d i a g r e s = l i n a l g : : e i g h ( H L ) ;
a u t o H E = s t d : : ge t <0>( d i a g r e s ) ;
a u t o H s t a t e s = t r a n s p o s e ( s t d : : ge t <1>( d i a g r e s ) ) ;

c t = z e r o s<s t d : : complex<double >>({ k l i m i t 0 } ) ;

p h a s e s 0 = exp(− j ∗ d t ∗H E ) ;

f o r ( i n t i = 0 ; i < k l i m i t 0 ; i ++)
{
f o r ( i n t lam = 0 ; lam < k l i m i t 0 ; lam ++)
{
view ( c t , i ) += l i n a l g : : vdo t ( view ( A base , i ) , l i n a l g : : d o t (
t r a n s p o s e ( A base0 ) , view ( H s t a t e s , lam ) ) ) ∗ p h a s e s 0 ( lam )∗
view ( H s t a t e s , lam ) [ 0 ] ;
}
}

x k = l i n a l g : : d o t ( t r a n s p o s e ( A base0 ) , c t ) ;
}

/ / i f ( t == n t − 1)
/ / {
/ / x k = {0 , 0 , 0 , 0 , 0 , / ∗ ∗ / s q r t ( 0 . 2 5 ) , s q r t ( 0 . 2 5 ) , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , / ∗ ∗ /
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/ / s q r t ( 0 . 2 5 ) , s q r t ( 0 . 2 5 ) , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;
/ / }

x a r r a y<double> dens = z e r o s<double >({ norb } ) ;

x a r r a y<double> d e n s u u = z e r o s<double >({ n x c t , n s c t } ) ;
x a r r a y<double> d e n s u d = z e r o s<double >({ n x c t , n s c t } ) ;

i n t l1 , l2 , l 3 ;
i n t m1 , m2 , m3 ;
do ub l e prob ;

f o r ( i n t j = 0 ; j < L ; j ++)
{
l 1 = view ( view ( s t a t e s , j ) , 0 ) [ 0 ] ;
l 2 = view ( view ( s t a t e s , j ) , 0 ) [ 1 ] ;
l 3 = view ( view ( s t a t e s , j ) , 0 ) [ 2 ] ;
m1 = view ( view ( s t a t e s , j ) , 1 ) [ 0 ] ;
m2 = view ( view ( s t a t e s , j ) , 1 ) [ 1 ] ;
m3 = view ( view ( s t a t e s , j ) , 1 ) [ 2 ] ;

p rob = pow ( abs ( view ( x k , j ) ) , 2 ) [ 0 ] ;

f o r ( s i z e t i = 0 ; i < norb ; i ++) {
i f ( l 1 == i | | l 2 == i | | l 3 == i )
{
view ( dens , i ) += prob ;
}
}

i f ( l 3 >= n a t && l 3 < n a t + n x c t )
{
i f (m3 >= n a t + n x c t )
{
view ( view ( dens ud , l 3 − n a t ) , m3 − n a t − n x c t ) += prob ;
}
}
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i f ( l 2 >= n a t && l 2 < n a t + n a t + n x c t ){
view ( view ( dens uu , l 2 − n a t ) , l 3 − n a t − n x c t ) += prob ;
}
}

i f ( t == n t − 1)
{
f o r ( s i z e t i = 0 ; i < n x c t ; i ++)
{
f o r ( s i z e t j = 0 ; j < n s c t ; j ++)
{
e n t f i l e u d << i << ” ” << j << ” ” << view ( view ( dens ud , i )
, j ) [ 0 ] << s t d : : e n d l ;
}
}

f o r ( s i z e t i = 0 ; i < n x c t ; i ++)
{
f o r ( s i z e t j = 0 ; j < n s c t ; j ++)
{
e n t f i l e u u << i << ” ” << j << ” ” <<

view ( view ( dens uu , i ) , j ) [ 0 ] << s t d : : e n d l ;
}
}
}

f o r ( s i z e t i = 0 ; i < norb ; i ++) {
p s i 0 f i l e << dens [ i ] << s t d : : e n d l ;
}

s t d : : c o u t << 100∗ t / d ou b l e ( n t ) << s t d : : e n d l ;
}

p s i 0 f i l e . c l o s e ( ) ;
e n t f i l e u d . c l o s e ( ) ;
e n t f i l e u u . c l o s e ( ) ;
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}

i n t main ( ) {

do ub l e d t = 0 . 0 2 ;
do ub l e TIME = 1 4 0 . ;
i n t n a t = 3 ;
i n t n s c t = 600 ;
i n t n x c t = 100 ;
i n t norb = n a t + n s c t + n x c t ;

c o n s t s t d : : complex<double> uc ( 0 , 1 ) ;

s t d : : a r r a y<s i z e t , 3> shape = { 50000000 , 2 , 3 } ;
x t : : x t e n s o r<i n t , 3> s t a t e s 1 ( shape ) ;

x a r r a y<i n t> gr = {{0 , 1 , 2} ,{0 , 1 , 2}} ;
view ( s t a t e s 1 , 0 ) = g r ;
i n t n = 1 ;

f o r ( i n t kx = n a t ; kx < n a t + n x c t ; kx ++) {
x a r r a y<i n t> row k1 = {{1 , 2 , kx } ,{0 , 1 , 2}} ;
/ / s p i n up i n kx
view ( view ( s t a t e s 1 , n ) , 0 ) = view ( row k1 , 0 ) ;
view ( view ( s t a t e s 1 , n ) , 1 ) = view ( row k1 , 1 ) ;
n ++;
}
/ /
f o r ( i n t kx = n a t ; kx < n a t + n x c t ; kx ++) {
x a r r a y<i n t> row k1 = {{0 , 1 , 2} ,{1 , 2 , kx } ,} ;
/ / s p i n down i n kx
view ( view ( s t a t e s 1 , n ) , 0 ) = view ( row k1 , 0 ) ;
view ( view ( s t a t e s 1 , n ) , 1 ) = view ( row k1 , 1 ) ;
n ++;
}
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/ / / / / / / / / / / / / / / / / / SPIN UP IN X / / / / / / / / / / / / / / / / / / / / /
f o r ( i n t kx = n a t ; kx < n a t + n x c t ; kx ++) {
f o r ( i n t ka = n a t + n x c t ; ka < n a t + n s c t + n x c t ; ka ++) {
x a r r a y<i n t> row ka1 = {{0 , 2 , kx } , {0 , 2 , ka }} ;
view ( view ( s t a t e s 1 , n ) , 0 ) = view ( row ka1 , 0 ) ;
view ( view ( s t a t e s 1 , n ) , 1 ) = view ( row ka1 , 1 ) ;
n ++;
}
}

f o r ( i n t kx = n a t ; kx < n a t + n x c t ; kx ++) {
f o r ( i n t ka = n a t + n x c t ; ka < n a t + n s c t + n x c t ; ka ++) {
x a r r a y<i n t> row ka2 = {{0 , 2 , kx } , {0 , 1 , ka }} ;
view ( view ( s t a t e s 1 , n ) , 0 ) = view ( row ka2 , 0 ) ;
view ( view ( s t a t e s 1 , n ) , 1 ) = view ( row ka2 , 1 ) ;
n ++;
}
}
f o r ( i n t kx = n a t ; kx < n a t + n x c t ; kx ++) {
f o r ( i n t ka = n a t + n x c t ; ka < n a t + n s c t + n x c t ; ka ++) {
x a r r a y<i n t> row ka3 = {{0 , kx , ka } , {0 , 1 , 2}} ;
view ( view ( s t a t e s 1 , n ) , 0 ) = view ( row ka3 , 0 ) ;
view ( view ( s t a t e s 1 , n ) , 1 ) = view ( row ka3 , 1 ) ;
n ++;
}
}
f o r ( i n t kx = n a t ; kx < n a t + n x c t ; kx ++) {
f o r ( i n t ka = n a t + n x c t ; ka < n a t + n s c t + n x c t ; ka ++) {
x a r r a y<i n t> row ka4 = {{0 , 1 , kx } , {0 , 2 , ka }} ;
view ( view ( s t a t e s 1 , n ) , 0 ) = view ( row ka4 , 0 ) ;
view ( view ( s t a t e s 1 , n ) , 1 ) = view ( row ka4 , 1 ) ;
n ++;
}
}
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f o r ( i n t kx = n a t ; kx < n a t + n x c t ; kx ++) {
f o r ( i n t ka = n a t + n x c t ; ka < n a t + n s c t + n x c t ; ka ++) {
x a r r a y<i n t> row ka5 = {{0 , 1 , kx } , {0 , 1 , ka }} ;
view ( view ( s t a t e s 1 , n ) , 0 ) = view ( row ka5 , 0 ) ;
view ( view ( s t a t e s 1 , n ) , 1 ) = view ( row ka5 , 1 ) ;
n ++;
}
}
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ /
/ /
/ / / / / / / / / / / / / / / / / / SPIN DOWN IN X / / / / / / / / / / / / / / / / / / /
f o r ( i n t kx = n a t ; kx < n a t + n x c t ; kx ++) {
f o r ( i n t ka = n a t + n x c t ; ka < n a t + n s c t + n x c t ; ka ++) {
x a r r a y<i n t> row ka1 = {{0 , 2 , kx } , {0 , 2 , ka }} ;
view ( view ( s t a t e s 1 , n ) , 0 ) = view ( row ka1 , 1 ) ;
view ( view ( s t a t e s 1 , n ) , 1 ) = view ( row ka1 , 0 ) ;
n ++;
}
}
f o r ( i n t kx = n a t ; kx < n a t + n x c t ; kx ++) {
f o r ( i n t ka = n a t + n x c t ; ka < n a t + n s c t + n x c t ; ka ++) {
x a r r a y<i n t> row ka2 = {{0 , 2 , kx } , {0 , 1 , ka }} ;
view ( view ( s t a t e s 1 , n ) , 0 ) = view ( row ka2 , 1 ) ;
view ( view ( s t a t e s 1 , n ) , 1 ) = view ( row ka2 , 0 ) ;
n ++;
}
}
f o r ( i n t kx = n a t ; kx < n a t + n x c t ; kx ++) {
f o r ( i n t ka = n a t + n x c t ; ka < n a t + n s c t + n x c t ; ka ++) {
x a r r a y<i n t> row ka3 = {{0 , kx , ka } , {0 , 1 , 2}} ;
view ( view ( s t a t e s 1 , n ) , 0 ) = view ( row ka3 , 1 ) ;
view ( view ( s t a t e s 1 , n ) , 1 ) = view ( row ka3 , 0 ) ;
n ++;
}
}
f o r ( i n t kx = n a t ; kx < n a t + n x c t ; kx ++) {
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f o r ( i n t ka = n a t + n x c t ; ka < n a t + n s c t + n x c t ; ka ++) {
x a r r a y<i n t> row ka4 = {{0 , 1 , kx } , {0 , 2 , ka }} ;
view ( view ( s t a t e s 1 , n ) , 0 ) = view ( row ka4 , 1 ) ;
view ( view ( s t a t e s 1 , n ) , 1 ) = view ( row ka4 , 0 ) ;
n ++;
}
}
f o r ( i n t kx = n a t ; kx < n a t + n x c t ; kx ++) {
f o r ( i n t ka = n a t + n x c t ; ka < n a t + n s c t + n x c t ; ka ++) {
x a r r a y<i n t> row ka5 = {{0 , 1 , kx } , {0 , 1 , ka }} ;
view ( view ( s t a t e s 1 , n ) , 0 ) = view ( row ka5 , 1 ) ;
view ( view ( s t a t e s 1 , n ) , 1 ) = view ( row ka5 , 0 ) ;
n ++;
}
}
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

a u t o s t a t e s = view ( s t a t e s 1 , r a n g e ( 0 , n ) ) ;
x a r r a y<s t d : : complex<double>> x0 = z e r o s<s t d : : complex<double >>({n } ) ;
view ( x0 , 0 ) = 1 ; / / f i r s t s eed ( ground s t a t e )

Lanczos ( n , s t a t e s , x0 , d t , 7500 , n x c t , n s c t ) ;

}
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