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Abstract

Traditional mean-variance optimization of portfolios has received much criticism

due to its inability to account for higher order moments and non-quadratic utility.

In this thesis, the topic of portfolio optimization is studied using the Atkinson in-

dex with CRRA utility. We construct Atkinson-efficient portfolios using computer-

generated data in Monte Carlo simulations, as well as using financial asset re-

turns data of assets taken from American stock exchanges. The results show that

when normality holds, there are no benefits to the usage of the Atkinson. Under

non-normality, however, there are advantages to using the Atkinson instead of the

Sharpe ratio. These advantages are great enough for researchers to disregard its

greater complexity.
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1

Introduction

Traditional mean-variance optimization of portfolios has received much criticism due to

its inability to account for higher order moments and non-quadratic utility (Burr Porter

and Gaumnitz, 1972; Jondeau and Rockinger, 2005). When returns are not normally

distributed and utility is not quadratic, the mean-variance framework will fail to hold

(Baron, 1977, p. 1683; Burr Porter and Gaumnitz, 1972, p. 438). In the context of this

framework, it is well known that financial returns suffers from distributional issues, such

as non-normality (Jondeau and G. M. Rockinger, 2006, p. 29). Jondeau and Rockinger

(2005) are among those who have shown that non-normality can lead to large opportunity

costs for risk-averse investors.

There are many measures that have been constructed to deal with the issues of the

mean-variance framework, however they are often subject to criticism themselves. Value-

at-Risk (VaR) models are quite commonly seen in use among finance professionals, how-

ever, along with other drawdown performance measures, it suffers from the weakness that

it is a monotonic function of the standard deviation under most return distributions (El-

ing and Schuhmacher, 2011), which suggests it does not give the investor any substantial

amount of extra information. Other performance measures, such as the application of

the Gini index to financial returns, have been shown to be easily manipulated.

In a recent paper by Fischer and Lundtofte (2019), the Atkinson Index, primarily

known for its use in measuring inequality, is applied to measure risk in financial returns.

The Atkinson index covaries weakly with the Sharpe ratio, and it is robust to manip-
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ulation (Fischer and Lundtofte, 2019). In this thesis we use this measure to construct

an efficient portfolio of assets with non-normal returns for investors with Constant Rel-

ative Risk Aversion (CRRA) utility, since as it currently stands, what has been studied

is merely its behavior in the context of comparing its value for individual assets. It is

interesting to analyze its behavior in the weighting of assets in a portfolio, both in the

two-asset simulation case and in the many-asset real-world data case. This is done while

carefully auditing the properties of the data used.

In this thesis, we examine efficient portfolios constructed by the Atkinson Index. We

do this firstly for the two-asset case using simulated daily financial returns, and secondly

for the many-asset case using a set of ten assets selected from the largest stocks by market

capitalization in the S&P 500 stock index. We evaluate these efficient portfolios generated

by the Atkinson index in relation to benchmark-portfolios, generated as mean-variance

efficient portfolios, in order to answer two questions:

1. Are there advantages to using the Atkinson index instead of other measures, specif-

ically the Sharpe ratio?

2. If there are advantages to using the Atkinson index, are the advantages great enough

to warrant the more complex calculations required to compute it and the greater

complexity of its interpretation?

We start by applying it to simulated data, after which we examine its behavior with

real-world financial returns data.

The remainder of this thesis will be structured as follows: Section 2 will consist of

a review of previous literature on the topic of alternative measures used in portfolio

optimization, and a theoretical background. In section 3, the approach to method will

be explained in detail for easy reconstruction of the results, which will be presented and
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discussed in section 4. Section 5 concludes the thesis.

2

Literature Review & Theory

In a classical paper written by Anthony B. Atkinson (1970), the Atkinson index was

proposed as a measure of inequality. Motivating him was the need to address known issues

with other measures, such as variance or the Gini index. In particular, his criticism was

directed towards the latter, which he explains is not suitable for use under all conceivable

circumstances. Below we will outline the issues, Atkinson’s proposed solution, and how

we can apply it to construct efficient portfolios of financial assets.

2.1 The Mean-Variance Efficient Portfolio

The mean-variance framework was first introduced by economist Harry Markowitz (1952),

and has since then been the most commonly used framework to select and weight assets

optimally for a portfolio. Previously, it had been proposed that portfolios should be con-

structed using a mixture of the assets with the highest expected returns, arguing that

the law of large numbers applies and that the realized returns of the portfolio should

therefore equal the expected value of the portfolio. This is essentially arguing that even

market risk can be eliminated through diversification. Markowitz took issue with this

assumption, since assets considered for a portfolio are often correlated and that these

correlations needs to be taken into account. Even diversification is limited to the elimi-

nation of idiosyncratic risk.

A decade later, William F. Sharpe (1964) had developed an extension of this frame-

work that came to be called the Capital Asset Pricing Model (CAPM), introducing the
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optimization problem that he used to construct mean-variance efficient portfolios. In

the CAPM model, we assume that there are k assets with a corresponding excess return

vector r that satisfy r ∼MVNk(µ,Σ), where µ is the expected excess return vector and

Σ is the true variance-covariance matrix of the considered assets. With a weights vector

w, we minimize the expression (Chen, Hsien, and Lin, 2011).

max
w

µTw√
wTΣw

subject to îTw = 1

and wi ≥ 0. (2.1)

where î is the unit vector. This maximizes the Sharpe ratio (hereafter called the Sharpe)

of the portfolio given the constraints that the sum of all weights equals one (i.e., that all

wealth is invested in the portfolio), and that all asset weights need to be non-negative

(short-sale constraints).

In this thesis we use numerical optimization methods, however, the closed-form solu-

tion to this maximization problem is useful to understand the parameters involved. This

closed-form solution to the problem is given by:

w∗ =
1

îTΣ−1µ
· Σ−1µ. (2.2)

For a more explicit display of the parameters involved, we consider the optimal weight

of asset i, w∗i , which for the two-asset case is given by:

w∗i =
µiσ

2
j − µjρi,jσiσj

µiσ2
j + µjσ2

i − (µi + µj)ρi,jσiσj
, (2.3)

where µi and µj are the expected excess returns of assets i and j respectively, σi and σj

are the true standard deviations of assets i and j respectively, and ρi,j is the coefficient

of correlation between assets i and j.

The assumption that the returns follow a multivariate normal (MVN) distribution is

problematic since it is almost never satisfied in real-world financial return data, which
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often exhibit skewness and excess kurtosis. In addition, financial asset returns certainly do

not all follow the same distributions. For example, given two assets with the same mean

and variance, a negative skewness in only one of them would imply a greater downside

risk in this asset than in the other. However, this risk is not recognized by the mean-

variance framework and thus not by the CAPM, the performance in the two assets will be

considered the same. To maximize expected utility when the assumption of multivariate

normality is not satisfied, we have to instead assume a quadratic utility function for

mean-variance optimization to be the best method. This assumption is restrictive for a

researcher.

2.2 The Atkinson Efficient Portfolio

In this section, we will discuss previous attempts to solve the issues described above

within a context of portfolio optimization, as well as the advantages of using our proposed

solution.

2.2.1 Some Previously Proposed Solutions

Before we introduce the solution that we use to the issues described in the above section,

it is worth noting that previous attempts have been made. Extensions and modifications

of the mean-variance framework have been developed to account for skewness (Kraus

and Litzenberger, 1976; Konno and Suzuki, 1995) and kurtosis (Lai, Yu and Wang,

2006; Stacy, 2008). However, none of these frameworks consider entire distributions, nor

are they proven to be fully compatible with expected utility maximization under various

utility functions. Additionally, modifications of the Gini index (hereafter called the Gini),

mostly known for its use in measuring income inequality (Gini, 1912), have been used for

the same purpose (Shalit and Yitzhaki, 1984; Hespeler and Shalit, 2016).

The approach to use the Gini to construct an efficient portfolio, however, has its flaws.

Fischer and Lundtofte (2019) show that it is possible to construct an asset using out-of-

the-money call and put options such that its Lorenz curve intersects with that of an asset
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of an asset following a Normal Inverse Gaussian (NIG) distribution. This implies that one

cannot make a statement about second order stochastic dominance to rank these assets

against each other using the Gini (Cowell, 2000). In finding the Gini-efficient portfolio,

not being able to rank the assets would cause issues in deciding on which assets to include

in the portfolio and using which weights.

2.2.2 Our Proposed Solution

In order to deal with cases where we have to compare assets that exhibit non-normality,

intersecting Lorenz curves, and the appropriate utility function is non-quadratic, Fischer

and Lundtofte (2019) derive a measure of financial performance from the Atkinson index

(hereafter called the Atkinson). Let us first state a simple definition of the Atkinson to

illustrate its interpretation in an income inequality context:

A = 1− yCE

E[y]
, (2.4)

where y is the income of an individual and yCE is the certainty equivalent income for

the individual with a given utility function and aversion-to-inequality (or risk-aversion,

as we will see below) parameter. Since aversion to inequality (ν > 0) implies that

0 < yCE

E[y]
< 1, the Atkinson is always between zero and one for risk averse individuals.

As yCE approaches E[y], the Atkinson approaches 0. This happens when either the

distribution of income is approaching equality across the population, or when the aversion

to inequality approaches zero. Thus, a lower Atkinson is considered favorable.

The Atkinson has several interpretations. Perhaps the most intuitive way is to think

of it as an individual that is faced with a decision under uncertainty: to choose a country

in which to live without knowing where on the income distribution he or she will end up.

We can then interpret equation 2.4, the general-case Atkinson, as the share of income, in

relation to the mean E[y], that the individual is willing to give up to be certain about

their place on the income distribution. The certainty equivalent income, yCE, is the
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amount of income that the individual will get.

Equation 2.4 is a general-case formulation that is easy to interpret. For the special

case of constant relative risk aversion (CRRA), the Atkinson is instead written as:

A(ν) =


1− 1

E[y]
(E[y1−ν ])

1
1−ν ν > 0, ν 6= 1

1− 1
E[y]

eE[ln y] ν = 1,

(2.5)

where the parameter ν is the risk aversion of the individual.

Fischer and Lundtofte (2019) apply the Atkinson to fund returns. They do this by

considering the Atkinson in terms of a function of future wealth, instead of income. They

therefore substitute y with w0R, where w0 is the initial wealth, wealth at t = 0, and R

is the gross return (total return without deduction of fees or other expenses) earned on

this initial wealth. The returns can be compounded continuously, R = er or discretely

R = 1 + r, where we in the latter case assume that r ≥ −1 so that w0R always stays

non-negative, which is required for the Atkinson to be defined. Wealth as a non-negative

constant is intuitive as long as we restrict debt to a maximum of wt, or do not consider

it at all, in which case wt is the amount of cash you have to invest at time t.

Nevertheless, the substitution yields:

A = 1− w0R
CE

E[w0R̃]

CRRA
= 1− RCE

E[R̃]
= 1− RCE

E

E[R̃E]
, (2.6)

where R̃E = R̃
Rf

is the geometric excess returns. The CRRA case is especially interesting

as, for this family of utility functions, the Atkinson is independent of both initial wealth,

w0 and a constant risk-free rate, giving more generalizable results. This result is shown

in equation 2.6.

Fischer and Lundtofte (2019) further prove that this measure satisfies n-th order

stochastic dominance, even with the presence of intersecting Lorenz curves, unlike previ-

ously existing performance measures. This means that the Atkinson takes into account
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not only the first, second, third or fourth moment, but a potentially infinite amount of

moments. This is especially relevant in the case of CRRA or CARA utility functions,

where a utility maximization problem using the mean variance framework will fail to as-

sign weights such that expected utility is maximized, unlike in our Atkinson framework.

Intuitively, we can understand that there is a negative relationship between performance1

and the Atkinson. We therefore expect the Atkinson to depend:

• negatively on mean (higher reward). Higher mean is considered higher reward in

the sense of higher expected excess returns.

• positively on standard deviation (higher risk). Higher standard deviation is consid-

ered higher risk in the sense of higher average fluctuations.

• negatively on skewness (higher reward). Higher skewness is considered higher re-

ward in the sense of more outliers on the positive end of the distribution in relation

to outliers on the negative end.

• positively on excess kurtosis (higher risk). Higher kurtosis is considered higher

risk in the sense of more frequent outliers on both ends of the distribution, thus

fluctuations are more often large when occurring.

• positively on risk aversion. Risk aversion emphasizes any risk in the returns distri-

bution, and downplays any reward.

As for Atkinson-efficient weights in a portfolio, we expect them to depend negatively on

the Atkinson. With regards to this measure, we follow the pattern of maximizing the

Sharpe, by considering the following optimization problem:

min
w


1− 1

E[R̃]
(E[R̃1−ν ])

1
1−ν ν > 0, ν 6= 1

1− 1
E[R̃]

eE[ln R̃] ν = 1

1Fischer and Lundtofte (2019) consider the Atkinson a risk measure. However, in this thesis it will
be considered in terms of performance in a risk-reward sense, as it behaves analogously to the Sharpe
ratio (with which it will be compared) with respect to the first two moments. As such, we will call it a
performance measure in this thesis.
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subject to îTw = 1

and wi ≥ 0 (2.7)

to construct an Atkinson-efficient portfolio. This minimizes the Atkinson of the portfolio

given the constraints that the sum of all weights equals one (i.e., that all wealth is

invested in the portfolio), and that all asset weights need to be non-negative (short-sale

constraints). Considering an entire portfolio of assets, not just individual assets, we have

additional class of parameters to consider when calculating the Atkinson: the cross central

moments. In accordance with the Sharpe-efficient portfolio, we expect the Atkinson-

efficient weights to depend negatively on covariance between assets considered for the

portfolio. Moreover, by extension we believe that higher order cross central moments, such

as coskewness and cokurtosis, should also affect the Atkinson-optimal weights, positively

and negatively respectively. This is due to coskewness having been shown to decrease

(Campbell and Akhtar, 2000, pp. 1270-1271) perceived risk and cokurtosis to increase

(Fang and T.-Y. Lai, 1997) perceived risk.

3

Method

Since the Atkinson is supposed to account for higher moments, unlike the Sharpe, we

want to compare the efficient portfolios that these performance measures yield under both

normality and non-normality, in order to find out whether, when and to which extent

there are advantages to using the Atkinson. We therefore need to write scripts in Python

that construct these portfolios. This is done under various circumstances to investigate

and compare the weights they yield under normality, negative skewness and kurtosis.
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The construction of these portfolios, especially the Atkinson ones, require numerical

optimization methods. To conduct the analysis, we firstly find it useful to perform Monte

Carlo simulations where we have control over the properties of the distributions of the

data. Secondly, we want to investigate and compare their behaviours under circumstances

that would be more likely to occur in reality, and thus perform an optimization on

financial assets taken from real-world stock exchanges. To make this possible, we write

the optimization scripts in Python. Note that we do not consider a risk-free interest

rate, as this would unnecessarily complicate the script without benefit. This could be

interpreted as assuming that the risk-free interest rate rf = 0.

3.1 The L-BFGS-B Optimization Algorithm

The limited-bounded Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B) algorithm (Fletcher,

2000) is an optimization algorithm that finds a local optimum of an objective function. It

is a numerical method, and as such it iteratively tests points on the k-dimensional space

that the function spans until it finds the optimum. Rather than randomly testing points

until it finds the optimum, it does this by analyzing gradients and Hessians in order to

assess an appropriate direction in which to move and re-perform the analysis, each time

with the aim of further approaching the optimum. This way it tries to minimize the

amount of iterations needed.

L-BFGS-B is a version of the BFGS algorithm, which belongs to the Quasi-Newton

family of algorithms, a family of algorithms that were created to reduce the computational

power needed to perform optimizations using Newton’s method (Dennis and Moré, 1977).

This is done through approximations of Hessians (and sometimes gradients), rather than

performing the exact computations that are are needed in each iteration using Newton’s

method. This technique is useful in situations where the computational power needed to

compute the exact values of these matrices is large, or when they are otherwise unavail-

able. This particular version of BFGS limits the memory usage by limiting the amount

of Hessians that need to be stored, and is extended to perform bound-constrained opti-
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mization (Byrd et al., 1995).

We use this algorithm for its easy availability in the SciPy package, and for the per-

formance issues that may be encountered in Monte Carlo simulations using more compu-

tationally heavy optimization. While the approximations can cause inaccuracies in the

process of finding the optimum, this mainly affects the amount of iteration needed to find

it. We do not expect the results to be significantly less accurate than they would have

been using the full Newton’s method, as Quasi-Newton methods have been shown to be

very reliable (Schittkowski, 1981; 1987).

For this algorithm to successfully find an optimum every time it is used, the function

to be optimized needs a unique local minimum/maximum, at least under any defined

constraints. In order to demonstrate that the functions that we optimize indeed do have

unique local minima/maxima, we run an optimization on the same set of k = 10 assets

100 times. We use the property of this algorithm that it needs an initial guess to be

implemented in Python, by simply providing a new, randomly generated, initial guess

each time.

If the function has several local minima/maxima, then the algorithm should find dif-

ferent minima/maxima depending on where the initial guess is placed. While we note

that this should not be mistaken for a mathematical proof of whether the functions have

unique local minima/maxima, we can use it to draw conclusions about whether this prop-

erty is likely or not to be present. If the optimization shows different results for multiple

initial guesses, then we cannot assume that there is a unique local minimum. If they

show the same result, however, then we can assume this. The conclusion should hold for

any k number of assets. The initial-guess weights are randomly generated in Python by

generating a set of k and normalizing these to sum up to 1. The results are shown in

Appendix A.1.
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3.2 The Optimization Script

The numerical optimization is performed using Python, which provides numerical op-

timization algorithms in the SciPy library. Specifically, in minimizing the Atkinson

and maximizing the Sharpe under bounds and constraints, the scipy.optimize.minimize()

method is used. As of SciPy v1.2.1, the method uses the L-BFGS-B optimization algo-

rithm as default optimization algorithm (Jones et al., 2019). The data generation and

optimization is looped 1000 times to plot the distributions of the weights and calculate

interesting properties to assist us in the analysis.

3.2.1 Data Generation

We need a large data set with specified properties. Therefore, it is convenient to generate

this data ourselves, rather than to only use real-world financial returns data. In each run

of the script, a different combination of distributions is considered. The script generates

a T × k matrix X of random variables of specified distributions. Due to the lack of

a comprehensive data generating package to be used in Python, the data needs to be

generated in a couple of different ways, depending on the distributional properties that

we want.

To generate data that follow a normal distribution, we use numpy.random.randn()

from the NumPy library (Oliphant, 2019). For a skew-normal distribution, a family of

distributions that generalizes the normal distribution to allow for continuous variation

from normality to non-normality (Azzalini, 1985), we use scipy.stats.skewnorm() from the

SciPy library (Jones et al., 2019) and assign a value of −1 to the skewness parameter. For

kurtosis, we define a function ourselves that generates a normally distributed variable Y

(again, using numpy.random.randn()) and transforms it according to Fleishman’s power

method (Fleishman, 1978):

Z = a+ bY + cY 2 + dY 3.
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With this method it is possible to specify parameters a, b, c, d such that data is generated

from a distribution with specific values for the excess kurtosis parameter (Luo, 2011),

however, since we are only interested in the sign of this parameter, not the exact value,

we are satisfied with specifying a = b = c = 0 and d = 1. This creates positive excess

kurtosis in our data.

The precision with which the skewness and excess kurtosis of the non-normal distri-

butions can be controlled is quite low with these simple specifications, however we get

around this limitation by only using the distributions that fall within certain specified

intervals of these parameters, throwing away the rest. Means and standard deviations are

simpler to control when needed after the data has been generated by addition and multi-

plication. When investigating behaviors of optimal weights under skewness and kurtosis,

we therefore keep means and standard deviations constant over each simulation, in order

to isolate the effects of the higher moments.

With this data generating script, a trade-off arises between proximity to the distribu-

tional properties we seek and efficiency of the script. Since the data generating process is

not very computationally heavy with today’s computers, we lean towards prioritizing the

first. Therefore we throw away any data that is generated with kurtosis above ±0.3 when

we investigate negative skewness, and any data generated with a skewness greater than

±0.1 when investigating excess kurtosis. Due to practical limitations, moments above

the fourth are not controlled for nor computed.

After we have generated data for the k assets we consider in a simulation, we want

to transform it into data that simulate correlated assets. We achieve this by replacing

columns 2, 3, ..., k of the X-matrix with columns that are calculated to correlate according

to a specified (k − 1)× 1 ρr-vector, in which the correlations with X1 are specified. The

correlated vectors are calculated using the formula:

Xi,correlated = ρi ·X1 +
√

1− ρ2
i ·Xi,uncorrelated, i = 2, 3, ..., k. (3.1)
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3.2.2 Optimization

Having generated an appropriate X matrix, it is then used to calculate a matrix M of

expected values to calculate the variance-covariance matrix:

Σ =
1

T − 1
(X −M)′(X −M). (3.2)

The script then specifies a set of parameters that the scipy.optimize.minimize() method

takes, including the constraints and bounds, along with the function to minimize. We

define the bounds of the weights wi ∈ [0, 1] (short constraints) and then the constraint

that îTw = 1 (that all wealth is required to be invested in the portfolio). After this, the

optimization is ready to be performed. We define one function per performance measure:

1. The calculation of the Atkinson is specified in a function that is given the k × 1

weight matrix, the amount of observations T , the T × k matrix X, and the risk-

aversion parameter ν. The Atkinson is multiplied by a factor of 1 000 000 to deal

with step-size issues in the optimization algorithm. Specifically, certain values of

the correlation ρr and risk aversion ν parameters, the Atkinson takes values that

are so small that the algorithm mistakes the gradient for zero at the first iteration

and thus believes it has found the minimum. Upscaling the Atkinson parameter

solves this issue. Naturally, before any interpretations of the Atkinson are made,

we scale it back to have A ∈ (0, 1) after the minimization is performed.

2. As for the mean-variance framework, the optimization algorithm calls a calculation

of the portfolio Sharpe (with no risk-less asset: E[rp]

σp
) given the k × k variance-

covariance matrix Σ and the k×1 weights vector. In order to maximize this function

using a minimization algorithm, the function returns the negative of the Sharpe.

Similarly to the Atkinson case, we correct this value before any interpretations are

made.

This optimizes equations 2.7 and 2.1 respectively.
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3.2.3 Monte Carlo Simulations

For each case that we investigate, we loop the data generation and the optimization 1000

times to find the distribution of the weights they yield under each set of circumstances.

The circumstances that concern us is not limited to multiple types of distributions, but

also include multiple values for the correlation ρr and risk-aversion ν parameters. There-

fore, we do not only run one Monte Carlo simulation per type of distribution, we run

several. In each one we assign different values to the risk aversion and correlation param-

eters, investigating all combinations that are interesting. Having pre-specified the values

we want to investigate for each parameter, the script runs two loops, one within the other.

The outer loop changes the correlation parameter ρr and the inner one changes the risk-

aversion parameter. This is done so that for each correlation coefficient, a Monte Carlo

simulation for each interesting value of the risk-aversion parameter is run. Naturally, this

is done for all combinations of distributions that we consider.

In our simulations we consider the Atkinson framework with a utility function and

risk-aversion parameter, however the mean-variance framework without these. Since our

main goal is to investigate the effects of skewness and kurtosis, this will not be an issue.

The mean-variance framework does not change with different values for these properties.

Hence, different values for the risk aversion parameter would not yield different Sharpe-

optimal weights when investigating skewness and kurtosis even if there was a utility

function. However, when investigating the measures under normality, we will investigate

for which values of risk aversion ν that the two considered measures correlate the most.

We will then use this value for our comparisons with real-world data, so that this param-

eter does not cause any distortions in the optimal weights to occur due to differences in

the lower moments that we do not control for.

3.3 Data and Descriptive Statistics

The financial data to be used in the many-asset case covers the period 05/10/18–05/10/19

and was retrieved in prices from their respective exchange, from which the daily per-
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centage returns were calculated. Ten duplicate observations were removed before any

calculations were performed. All ten stocks are among the largest, by market capital-

ization, in the S&P 500 stock price index. Table 3.1 shows the Atkinson, the Sharpe

of these stocks, the geometric mean, and the second, third and fourth central sample

moments of their respective returns distribution. We see that the average mean of these

stocks is 0.04% and the average standard deviation is 1.6%. These values will be used

as parameters in our data generation described above. The statistics also indicate that

both skewness and excess kurtosis are frequently appearing properties of financial returns

data. Table 3.2 shows the correlations between returns of these assets. They also indicate

that correlations between financial assets are commonly positive, at least when traded on

closely-related exchanges.

Microsoft Amazon.Com Apple Alphabet A Facebook Class A
Atkinson 0.001278 0.002404 0.001829 0.001395 0.003600
Sharpe 0.065090 0.029411 0.007869 0.013196 0.002585
Mean 0.001041 0.000641 0.000147 0.000218 0.000060
SD 0.015961 0.021759 0.018636 0.016487 0.023122
Skewness 0.053135 0.015256 -0.431841 -0.262995 -1.795713
Excess Kurtosis 2.475430 2.911917 4.873472 2.865189 19.361587

Berkshire Hathaway ’B’ Johnson & Johnson Visa ’A’ Exxon Mobil Walmart
Atkinson 0.000797 0.000786 0.001046 0.000761 0.000706
Sharpe 0.012101 0.035356 0.056068 -0.021017 0.067690
Mean 0.000152 0.000413 0.000815 -0.000260 0.000833
SD 0.012529 0.011667 0.014501 0.012337 0.012281
Skewness -0.119880 -2.612088 0.233670 0.078644 1.794183
Excess Kurtosis 4.967074 21.696050 3.408485 1.250523 12.897226

Table 3.1: Distributional Properties

Name/Ticker MSFT AMZN AAPL GOOGL FB BRK.B JNJ V XOM WMT
Microsoft 1.000000 0.788745 0.676747 0.741200 0.490217 0.521910 0.330011 0.812214 0.449363 0.318276
Amazon.Com 0.788745 1.000000 0.690845 0.776568 0.585452 0.478365 0.287696 0.762234 0.436079 0.284504
Apple 0.676747 0.690845 1.000000 0.646896 0.438606 0.499882 0.295527 0.662839 0.391893 0.220335
Alphabet A 0.741200 0.776568 0.646896 1.000000 0.575098 0.436895 0.263695 0.710142 0.432433 0.184821
Facebook Class A 0.490217 0.585452 0.438606 0.575098 1.000000 0.260226 0.116446 0.437402 0.268256 0.069529
Berkshire Hathaway ’B’ 0.521910 0.478365 0.499882 0.436895 0.260226 1.000000 0.381379 0.548149 0.543475 0.379447
Johnson & Johnson 0.330011 0.287696 0.295527 0.263695 0.116446 0.381379 1.000000 0.309685 0.392138 0.307715
Visa ’A’ 0.812214 0.762234 0.662839 0.710142 0.437402 0.548149 0.309685 1.000000 0.462881 0.251914
Exxon Mobil 0.449363 0.436079 0.391893 0.432433 0.268256 0.543475 0.392138 0.462881 1.000000 0.343625
Walmart 0.318276 0.284504 0.220335 0.184821 0.069529 0.379447 0.307715 0.251914 0.343625 1.000000

Table 3.2: Correlation Matrix
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4

Results

In this section, we present the results from the Monte Carlo simulations as well as from

the many-asset case.

4.1 Monte Carlo Simulations

We simulate three cases of daily financial returns data, to use in the construction of

Atkinson-efficient and Sharpe-efficient portfolios under short-sale constraints and with

all wealth invested:

1. Asset 1 and asset 2 generated from N ∼ (0.0004, 0.016).

2. Asset 1 generated from a negatively skewed distribution with mean = 0.0004 and

standard deviation = 0.015, and asset 2 generated from N ∼ (0.0004, 0.016).

3. Asset 1 generated from a distribution with positive excess kurtosis, mean = 0.0004

and standard deviation = 0.015, asset 2 generated from N ∼ (0.0004, 0.016).

For each case we show a set of six graphs, with the graphs for the first case being

supplemented by the coefficient of correlation between the weights yielded by the Sharpe

optimization and the Atkinson optimization. Each set of graphs shows only weights of

asset 1, from which it is easy to deduce the weight of asset 2 after realizing that their sum

needs to equal 1. The first set shows the distribution of the weight assigned to asset 1 by

the Sharpe (as a benchmark case) for each value of correlation ρr and risk aversion ν, the
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second set shows the distribution of the weight assigned to asset 1 by the Atkinson for

each value of correlation ρr and risk aversion ν, and the third set shows the distribution

of the difference between the weights assigned to asset 1 by the two risk measures for each

value of correlation ρr and risk aversion ν. To minimize the amounts of graphs shown in

the in this section, we choose to only show the graphs for three values of risk aversion

ν: ν = 10, ν = 30 and ν = 50. The graphs corresponding to all values are shown in the

Figures section of Appendix A.

After presentation of the results, each case will start with a general discussion, then

follows a discussion of the effect of correlation ρr, after which the effect of risk aversion

ν will be discussed. Each case then ends with a conclusion.

4.1.1 Normality

We begin by running the simulation of a portfolio for k = 2 assets that have indepen-

dently identically distributed (I.I.D.) returns generated from N ∼ (0.0004, 0.016). This

is done since without higher moments that deviate from those of the normal distribution,

we can compare the measures when both measures are able to account for all existing

risk in the assets. Only small differences should occur as simulated data will never follow

a distribution exactly equal to the normal for a finite set of data points (T <∞). In the

case that they both actually do, for example if we let T approach infinity, the weights

should be exactly (0.5, 0.5).

We show the weights of asset 1 for T = 1000 and num sim = 1000 (the number of

simulations run) in figure 4.1. Figure 4.1a shows the distribution of the Sharpe-efficient

weights of asset 1 under normality, which does not depend on risk aversion ν. Figures

4.1b–d show the distributions of the Atkinson-efficient weights for various values of cor-

relation ρr and risk aversion ν under normality. Figures 4.1e–g show the distributions of

the differences between the Atkinson-efficient and the Sharpe-efficient weights for various

values of correlation ρr and risk aversion ν under normality. Figure 4.3 shows the mean

Atkinson efficient weight under normality as a function of risk aversion ν and its 95%

confidence intervals, for various values of correlation ρr. Table 4.1 shows the correlation
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(a) w1,SR

(b) w1,AI , ν = 0.5 (c) w1,AI , ν = 1 (d) w1,AI , ν = 10

(e) w1,AI − w1,SR, ν = 0.5 (f) w1,AI − w1,SR, ν = 1 (g) w1,AI − w1,SR, ν = 10

Figure 4.1: Efficient Weights under Normality

coefficient ρw for various values of the risk aversion parameter.

As can be seen in figure 4.1a, figures 4.1b–d and figures 4.3, the weight of asset 1

is distributed with a mean of 0.5 for both risk measures, indicating that both assets

are considered approximately the same by both risk measures. The differences between

the Atkinson-efficient and the Sharpe-efficient weights are small and on average approx-

imately 0, which we see in figure 4.1e–g. We can see that for different values for corre-

lation ρr, the algorithm assigns greater weights to better assets, making the distribution

of weights wider.

These results are unsurprising. The weight of asset 1 fluctuates around 0.5 for both

measures due the two assets being simulated from the exact same true distribution, and
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(a) ρr = 0.0 (b) ρr = 0.2 (c) ρr = 0.4

(d) ρr = 0.6 (e) ρr = 0.8

Weight of asset 1 with 95% confidence interval bounds

Figure 4.3: Mean Atkinson-Efficient Weight under Normality

have only slightly varying sample distributions in each simulation. That the Atkinson-

efficient weights often differ from the Sharpe-efficient weights in spite of being calculated

on the exact same assets is likely mostly due to the deviation from normal of higher

moments, since only the Atkinson takes these into account.

Correlation ρr under Normality

Correlation ρr has a widening effect on all of these distributions. This is intuitive as it is

less meaningful to use correlated assets for differentiation. Thus, any existing differences

risk will be receive larger emphasis with more correlation. We can also see this effect in

the well-known closed-form solution to Sharpe-efficient weights (see equation: 2.3). That

correlation ρr widens the distribution of the difference between the efficient weights, as

seen in figures 4.1e–g, indicates that the two frameworks consider the correlation differ-

ently. This could be due to the calculation of the correlated asset also contributing to

increases in the values of higher order cross central moments (coskewness and cokurtosis)

in the sample distributions, which only the Atkinson framework should account for. Fur-

ther, it is clear from figures 4.1b–d and 4.3 that the mean of Atkinson-efficient weights
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does not depend on correlation ρr.

Risk Aversion ν under Normality

ν corr(wAI , wSR), ρw
0.5 0.9999
0.7 0.9998
1 0.9998
2 0.9995
4 0.9986
7 0.9963
10 0.9931
20 0.9734
30 0.9464
40 0.9131

Table 4.1: Weight Correlations, ρw, under Normality

As risk aversion ν increases, we observe in figures 4.1b–d and 4.3 that the distribution

of weights given by the Atkinson is also largely unchanged, however, correlation between

the weights given by the Sharpe and by the Atkinson is decreased. We see this decrease

of correlation in table 4.1, as well as in figures 4.1e–g where risk aversion ν is seen to

have a widening effect on the distribution of the difference between the respective efficient

weight.

It is somewhat surprising that the correlation coefficient ρw between the weights as-

signed by the two measures under normality is decreasing with risk aversion ν, indicating

that the two risk measures are best comparable for lower values of risk aversion ν. It

could be that the combined effect of the increase in risk aversion ν on the higher moments

on the Atkinson dominates the effect on the first two moments in such a way that the

Atkinson framework assigns weights that differ more from the Sharpe-efficient weights

which only account for moment 1 and 2. Nevertheless, we draw the conclusion that the

measures are most comparable for lower values of ν and use this result in the many-asset

case with assets taken from the real world, where we want to make a fair comparison

between the measures applied to real-world data.
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Conclusion under Normality

The conclusion of this section is that we see no great advantages to using the Atkinson

instead of the Sharpe when the normality assumption of the Sharpe holds true. Both

measures give weights that are approximately equally distributed, especially for lower

values of ν. What could be to the advantage of the Atkinson is the additional concern with

risk aversion ν, however this also seems to introduce an additional assumed parameter

which is often unknown to the researcher. Increasing the value of this parameter also

introduces greater distortions of the optimal weights when the higher moments deviate

from the normal in the sample – finite-period – data. We consider the Sharpe-efficient

portfolios preferable for three main reasons when the normality assumption holds true:

• No distortion of optimal weights due to deviating higher moments when calculated

on a finite-period sample.

• Simplicity of calculation and implementation.

• Simplicity of interpretation.

4.1.2 Negative Skewness

Moving on to more interesting combinations of distributions, we continue by showing

the results from simulations of portfolios in which asset 1 is generated from a negatively

skewed distribution (skew1 ∈ [−0.836,−0.405]), and in which asset 2 is generated from

N ∼ (0.0004, 0.016). The sample distributions of both assets are manipulated post-

generation to have a mean of exactly 0.0004 and standard deviation of exactly 0.016.

Negative skewness varies within the interval. The absolute value of kurtosis is not allowed

to exceed 0.3 for either asset. The results are shown in figure 4.5. Figure 4.5a shows the

distribution of the Sharpe-efficient weights of asset 1 under negative skewness, which does

not depend on risk aversion ν. Figures 4.5b–d show the distributions of the Atkinson-

efficient weights for various values of correlation ρr and risk aversion ν under negative

skewness. Figures 4.5e–g show the distributions of the differences between the Atkinson-

efficient and the Sharpe-efficient weights for various values of correlation ρr and risk
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(a) w1,SR

(b) w1,AI , ν = 0.5 (c) w1,AI , ν = 1 (d) w1,AI , ν = 10

(e) w1,AI − w1,SR, ν = 0.5 (f) w1,AI − w1,SR, ν = 1 (g) w1,AI − w1,SR, ν = 10

Figure 4.5: Efficient Weights under Negative Skewness

aversion ν under negative skewness. Figure 4.7 shows the mean Atkinson efficient weight

under negative skewness as a function of risk aversion ν and its 95% confidence intervals,

for various values of correlation ρr.

The most obvious observation to make from figure 4.5 is that there is no deviation

in Sharpe-efficient weights, seen in figure 4.5a. The risk-reward is considered equal for

both assets by the Sharpe since the first two moments of the sample distributions are

held constant over the simulations. We then observe in figure 4.5b–d that the Atkinson-

efficient weights of asset 1 fluctuate mostly below 0.5 for all values of correlation ρr and

risk aversion ν. This is because the Atkinson also takes higher moments into account.

Naturally, since the Sharpe-efficient weights are always 0.5, this also means that the
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(a) ρr = 0.0 (b) ρr = 0.2 (c) ρr = 0.4

(d) ρr = 0.6 (e) ρr = 0.8

Weight of asset 1 with 95% confidence interval bounds

Figure 4.7: Mean Atkinson-Efficient Weight under Negative Skewness

difference between the Atkinson-efficient and the Sharpe-efficient weight is distributed

mostly below 0 for all values of correlation ρr and risk aversion ν, as is seen in figures

4.5e–g. As expected by our theory, particularly obvious is the effect of negative skewness

in this simulation which seems to assign lower weights to asset 1, which has considerable

negative skewness. This shows that the risk, as measured by the Atkinson, is higher in

asset 1 than in asset 2 when asset 1 has negative skewness. To put it simply: when the

outliers are more, as well as more extreme, on the negative end of the distribution, the

risk as considered by the Atkinson is increased.

Correlation ρr under Negative Skewness

Similarly to the case with two normally distributed assets, the weights assigned to asset

1 by the Atkinson fluctuate more for higher correlation ρr. For higher correlation ρr, we

also observe some observations in which the Atkinson assigns a weight to asset 1 greater

than 0.5. This unexpected result most likely occurs because of the correlation calculation,

which causes the difference in negative skewness between the two assets to lessen to the

extent that the combined risk in the higher moments of the distribution is sometimes
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greater than the risk in the negative skewness.

Risk Aversion ν under Negative Skewness

In this case, risk aversion ν plays a larger role than in the previous, as it is seen to widen

the distribution on both sides of the mean, especially to the left as we can see on the

lower bound of the confidence interval in figure 4.7. In this graph we can clearly also see

that it simultaneously moves the mean leftwards. We see in figures 4.5b–d that for very

low values of risk aversion ν, the weight fluctuations are very small, indicating that the

Atkinson does not consider the risk of asset 1 to be much greater than that of asset 2

for these values. For higher values, such as for ν = 10, the negative skewness of asset

1 begins to receive attention. We see also in figures 4.5b–d that for this value of risk

aversion ν, asset 1 receives Atkinson-efficient weights further to the right of 0.5 than for

lower values.

It is interesting that the effect of risk aversion ν is much larger in this case than under

normality. It could be due to an exponential effect of risk aversion on the risk attributed,

such that the larger magnitudes of the skewness of the sample distributions are considered

dis-proportionally heavier under higher values of risk aversion ν. This effect would not

be present to the same extent in the previous case since the sample distributions do not

vary as much, not even in the first two moments.

It could be questioned whether the consideration of the negative skewness is large

enough for any of these values of risk aversion ν. For very low values of risk aversion ν,

the skewness barely makes a difference in the weight yielded, and even for larger values,

such as risk aversion ν = 10, negative skewness does not yield weights much lower than

0.47 even in the most extreme cases. Here, we need to keep in mind that out of all

sample distributions we generate, even the most negatively skewed has a skewness of

merely −0.836, not a very extreme value. If one still considers this an issue, one could

solve it by increasing risk aversion ν further, however then the risk in the lower moments

may receive somewhat odd consideration in comparison to the standard mean-variance

framework, as is indicated by the increasing difference in efficient weights in figure 4.1,
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and by the lower efficient-weights correlation ρw for larger values of ν seen in table 4.1.

Either way, the issue of not having the skewness considered at all, as is the case in the

mean-variance framework, is definitely even worse.

Conclusion under Negative Skewness

Considering both sides of these results we conclude that, under skewness, the Atkinson

is preferable to the Sharpe. The results make it obvious that under skewness, the impact

on the risk measured by the Atkinson is to the advantage of the investor whose portfolio

is being optimized, especially when being careful with the magnitude of the risk-aversion

parameter. Without this consideration for skewness, a rational investor will experience

unexpectedly large drawdowns when this skewness is negative, and will not gain as much

from the additional expansions when this skewness is positive. Therefore, as long as

there is enough skewness, the advantages of the Atkinson outweigh the disadvantages

of its interpretation being less intuitive and its computation more complex. Further-

more, considering that computers nowadays handle these computations quite easily, the

skewness that is needed for it being warranted should be considered quite low for most

researchers.

4.1.3 Positive Excess Kurtosis

In our final simulation, we generate data to examine the effects of kurtosis on the portfolio

weights. Asset 1 in this portfolio is generated from a distribution with positive excess

kurtosis (kurt1 ∈ [5.21, 101]), and asset 2 is generated from a normal distribution, N ∼

(0.0004, 0.016). As in the case with negative skewness, the generated data is manipulated

to have a mean of exactly 0.0004 and standard deviation of exactly 0.016. Skewness

is limited to ±0.1. The results are shown in figures 4.9 and 4.11. Figure 4.9a shows

the distribution of the Sharpe-efficient weights of asset 1 under positive excess kurtosis,

which does not depend on risk aversion ν. Figures 4.9b–d show the distributions of the

Atkinson-efficient weights for various values of correlation ρr and risk aversion ν under

positive excess kurtosis. Figures 4.9e–g show the distributions of the differences between
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(a) w1,SR

(b) w1,AI , ν = 0.5 (c) w1,AI , ν = 1 (d) w1,AI , ν = 10

(e) w1,AI − w1,SR, ν = 0.5 (f) w1,AI − w1,SR, ν = 1 (g) w1,AI − w1,SR, ν = 10

Figure 4.9: Efficient Weights under Positive Excess Kurtosis

the Atkinson-efficient and the Sharpe-efficient weights for various values of correlation ρr

and risk aversion ν under positive excess kurtosis. Figure 4.11 shows the mean Atkinson

efficient weight under positive excess kurtosis as a function of risk aversion ν and its 95%

confidence intervals, for various values of correlation ρr.

Again, we see in 4.9a that the Sharpe-efficient weights do not change when the mean

and variance are held constant. However, looking at 4.9b–d, we see that the Atkinson

distributes efficient weights completely below 0.5 for asset 1, which has positive excess

kurtosis. Naturally, since the Sharpe-efficient weights are always 0.5, this also means that
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(a) ρr = 0.0 (b) ρr = 0.2 (c) ρr = 0.4

(d) ρr = 0.6 (e) ρr = 0.8

Weight of asset 1 with 95% confidence interval bounds

Figure 4.11: Mean Atkinson-Efficient Weight under Positive Excess Kurtosis

the difference between the Atkinson-efficient and the Sharpe-efficient weight is distributed

completely below 0 for all values of correlation ρr and risk aversion ν, as is seen in figures

4.9e–g.

Correlation ρr under Positive Excess Kurtosis

Unlike in the case of skewness, correlation ρr does not show any particular effect on the

distribution of the Atkinson-efficient weights, as can be seen in figures 4.9b–d. This is

surprising and unexpected from the theory as we, again, can have a look at equation

2.3 and recognize that correlation ρr should, as is true for the cases of normality and

negative skewness, widen the distributions of weights due to the decreased benefit of

diversification. The reason that it does not could be due to the correlation coefficient

simultaneously working in another way as well: it decreases the difference in the kurtosis

between the assets, thus decreasing the difference in risk. It seems that this effect cancels

the effect of decreased benefit of diversification in the case of positive excess kurtosis.

This effect also exists in the case of negative skewness, where it is the negative skewness

that increasingly disappears with higher correlation ρr, however, the effect seems to be
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dominated by the effect of decreased benefit of diversification, making the distribution of

weights wider.

Risk Aversion ν under Positive Excess Kurtosis

From figures 4.9b–d and 4.11 we see that risk aversion ν still shows to have an effect on

the distribution of the Atkinson-efficient weight of asset 1, as its mean decreases and its

distribution widens. Especially, it widens on the negative end. This is similar to the case

of negative skewness. This widening effect is expected due to its effect of emphasizing

any risk. For risk aversion ν there is no simultaneous, counteracting effect, as there is

with correlation ρ as discussed above.

Another remarkable thing about these results is that although excess kurtosis of asset

1 reaches rather extreme values, as high as 101, the weight of this asset does not reach

values much lower than 0.46. This reintroduces the question of whether the risk in these

higher moments is not considered enough for these values of ν. By the same reasoning

as before, the solution to increase the value of risk aversion ν raises other issues and

researchers should therefore be careful to increase it too much. However, that the risk is

considered at all is still considered positive in our view.

Conclusion under Positive Excess Kurtosis

The result that the widening effect on the efficient-weight distribution of correlation is

canceled by its effect on the difference in kurtosis indicates that the Atkinson considers

positive excess kurtosis a lesser risk than negative skewness. Contrarily, directly com-

paring the wideness of the distributions of figures 4.5b–d and figures 4.9b–d we see that

the distributions are generally slightly wider for positive excess kurtosis than they are

for negative skewness. This would indicate the opposite, that positive excess kurtosis is

considered a greater risk than negative skewness. We need to keep in mind that the values

of excess kurtosis could generally be considered more extreme than the values of negative

skewness in the sample-distributions, so therefore the results of these two sections are not

entirely comparable. Therefore, we need to be humble with the uncertainty of any direct
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comparisons between them.

We conclude that the Atkinson is preferable to the Sharpe when constructing efficient

portfolios under excess kurtosis. Similarly to the case of negative skewnesss, a value of

risk aversion ν = 10 seems to yield a good compromise between reasonable consideration

for the lower moments and enough consideration for the kurtosis.

4.2 The Many-Asset Case

Microsoft Amazon.Com Apple Alphabet A Facebook Class A
Atk.-opt weight 0.000000 0.000000 0.000000 0.017822 0.056408
Sha.-opt weight 0.293318 0.000000 0.000000 0.000000 0.000000

Berkshire Hathaway ’B’ Johnson & Johnson Visa ’A’ Exxon Mobil Walmart
Atk.-opt weight 0.105358 0.284029 0.060750 0.157143 0.318490
Sha.-opt weight 0.000000 0.087576 0.108313 0.000000 0.510793

Table 4.2: Efficient Weights in the Many-Asset Case

Table 4.2 shows the Atkinson-efficient and the Sharpe-efficient weights. In this sec-

tion, we also consider tables 3.1 and 3.2. The construction of these portfolios are made

under short-sale constraints and with all wealth invested, as in the previous section. At

first glance, it is interesting that many assets in the Atkinson-efficient portfolio have

considerable kurtosis, even the assets given the highest Atkinson-efficient weights. This

seemingly contradicts the theory and the results of the previous section that kurtosis

should be a positive component to the Atkinson (meaning worse performance) and nega-

tive to component to the weight given in an Atkinson-efficient portfolio. Similarly, some

assets with large Atkinson-efficient weights have considerable negative skewness, also seen

to be interpreted as worse for Atkinson-measured performance in the previous section.

Below we will see why this may be. To see the effects of correlation on the magnitude of

the weights, we will mostly examine the correlations between assets with positive weights,

rather than between all assets, as these are the most relevant for the weight of the re-

spective asset.

We can see that the Atkinson and the Sharpe both assign greatest weight to Walmart

(WMT). Looking at its Atkinson, AWMT = 0.000706, we can see that it carries good

performance in spite of its high kurtosis, in comparison to the other assets. Its Sharpe
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(which, of course, also affects the Atkinson) is high, SWMT = 0.0677, and its skewness is

strongly positive. Its correlation with the rest of the assets in the portfolio is relatively

low as well, contributing to its role in minimizing the Atkinson of the entire portfolio.

The reason for its Atkinson-efficient weight being lower than its Sharpe-efficient weight

may be due to the high excess kurtosis, kurtWMT = 12.9, although its skewness is con-

siderably positive, skewWMT = 1.79. Since the higher moments are what causes the

difference between the optimal weights for each asset, this indicates that the negative

effect of this magnitude of positive excess kurtosis dominates the positive effect of this

magnitude of positive skewness. This statement, however, relies on the assumption that

the magnitudes, or rather, the effect on the Atkinson, of the even higher moments (from

the fifth and up) is negligible. This we do not know.

The Atkinson-efficient weight of Johnson & Johnson (JNJ), wAJNJ = 28.4%, is inter-

esting. It receives quite a large weight in spite of its considerable negative skewness,

skewJNJ = −2.61, and highly positive excess kurtosis, kurtJNJ = 21.7. This could be

due to its correlations with the rest of the assets being low and its Sharpe quite high,

SJNJ = 0.0354. However, despite these properties of its distribution, the large weight

is still surprising since these factors should also be taken into account in the Sharpe-

efficient weight, which is lower. This could unexpectedly indicate that these values of

the third and the fourth moments are considered positive for the performance by the

Atkinson. Similarly, Facebook Class A (FB) also receives a positive Atkinson-efficient

weight, wAFB = 5.64%, despite it having the highest Atkinson of all considered assets,

AFB = 0.0036, while receiving no weight in the Sharpe-efficient portfolio.

Considering their distributional properties, the weights of these two assets are un-

expected by our theory and the results in the previous section, and their respective

explanation seems to differ. By the value of the Atkinson for Johnson & Johnson (JNJ),

AJNJ = 0.000786, which is quite low in comparison to the other assets’ Atkinsons, we

should conclude that it is the Sharpe and moments five and up, that still gives it its con-

siderable, positive weight. As for the Atkinson-efficient weight of Facebook Class A (FB),

its high Atkinson seems in agreement with our theory and our results from the previous

31



section, that its first four moments are considered poor for performance by the Atkinson.

The higher moments do not seem to compensate in this case. It suggests that its only

redeeming quality is its low correlation with the other assets in the portfolio, giving it

a positive Atkinson-efficient weight. One could interpret this as correlation being more

heavily disfavored by the Atkinson framework than by the mean-variance framework.

However, comparing figures 4.1a to figures 4.1b–d, we see that the optimal-weight

distributions widen similarly with increasing correlation ρr. The distribution of weights

given by the Atkinson does not widen more than the distribution given by the Sharpe.

Thus, it does not seem that the above explanation is entirely accurate. A more accurate

explanation could be that the correlation also transfers to the higher moments, in the

form of coskewness, cokurtosis, etc, which are not major properties in the simulation

under normality due to the entire lack of higher moment deviations from the normal.

Although the higher order cross central moments are not computed and further inves-

tigated in this thesis, we can speculate that these are likely to be accounted for by the

Atkinson framework, while they are not by the mean-variance framework. This would

indirectly disfavor correlation more in the Atkinson framework than in the mean-variance

framework.

This interpretation that the correlation transfers over into the higher moments is sup-

ported by comparisons of the weights of other highly correlated assets for the respective

case. There seems to be a pattern that higher-correlation ρr assets are given a lower

Atkinson-efficient weight than Sharpe-efficient weight. The heavy weight of Microsoft

(MSFT) in the Sharpe-efficient portfolio, wSMSFT = 29.3%, is one such asset. It is heavily

correlated with the positively Sharpe-efficient weighted, wSV = 10.8%, Visa ’A’ (V) asset,

ρMSFT,V = 0.812. We see that while given this considerable weight in the Sharpe-efficient

portfolio, it is not given any weight at all in the Atkinson-efficient portfolio despite its

mid-level Atkinson. There are no assets in the Atkinson-efficient portfolio given such high

weights with correlations that parallel this. The highest correlation between two assets

in the Atkinson efficient portfolio is that between Alphabet A (GOOGL) and Visa (V),

ρGOOGL,V = 0.71, however their combined weight is no more than wAGOOGL + wAV = 6%
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and the Atkinsons of both are mid-level among the considered assets.

5

Conclusion

In this thesis, the topic of portfolio optimization has been studied using the Atkinson as

a performance measure with CRRA utility. We have used simulated data in Monte Carlo

simulations, as well as daily financial asset returns data of assets taken from American

stock exchanges. In the analysis, we used the distributional properties of these assets

to study their weights in Atkinson-efficient portfolios, and compared them to Sharpe-

efficient weights. We asked the questions whether there are any advantages to using the

Atkinson index instead of a standard performance measure, the Sharpe ratio, and whether

any advantages are great enough to warrant the more complex calculations required to

compute it and the greater complexity of its interpretation.

Aiming to hold all else equal in the Monte Carlo simulations, the Atkinson frame-

work is shown to give lower efficient weights to negatively skewed distributions and to

distributions that exhibit positive excess kurtosis. In the many-asset case, it becomes

apparent that the considerations of this framework differ remarkably from the mean-

variance framework, even using financial returns data taken from real stock exchanges.

Seemingly, this is to the advantage of a rational investor maximizing expected utility.

However, the magnitude of the risk-aversion parameter needs careful consideration to

neither distort weights unnecessarily nor fail to consider the risk in the higher moments

adequately. It should also be noted that under normality, there are no benefits to this

framework, rather it may distort the weights due to sample-distribution deviations from
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true normality.

All things considered, the results suggest that there are advantages to using the Atkin-

son index when the concerned asset distributions exhibit non-normal properties. The

advantages are deemed great enough that complexity of interpretation should not daunt

the researcher whenever the higher moments of distributions are considerable, nor should

the computational complexity have adverse effects on today’s computers great enough to

deter him.

Further research is needed on the magnitude of the higher moments and how they

relate to the Atkinson-efficient weights, not only the sign of these moments. Addition-

ally, it would be useful to not only investigate the higher order central moments, but also

the higher order cross central moments, such as coskewness and cokurtosis. Such prop-

erties could explain some surprising results, especially in the many-asset case. Lastly,

the Atkinson is not the only performance measure that considers higher moments and as

such, it is necessary to compare it to portfolios constructed using other such performance

measures, in order to truly determine its usefulness.
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A

Appendix

A.1 Function Shapes

Atkinson
min 0.0 0.0 0.0 0.0 0.139 0.382 0.147 0.0 0.18 0.147
max 2.32e− 12 7.85e− 12 7.65e− 12 1.84e− 13 0.14 0.384 0.15 5.838e− 12 0.183 0.149

Sharpe
min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.659 0.337
max 4.98e− 06 3.96e− 06 2.22e− 06 1.44e− 06 4.4e− 05 2.81e− 06 1.12e− 04 4.82e− 06 0.659 0.341

Table A.1: Min & Max Weights through 100 Optimizations

From the result that the minimum and maximum weights are essentially the same for

all initial guesses, we draw the conclusion that both the Atkinson and the Sharpe ratio,

at least when evaluated within the domain defined by the constraints, are convex with

respect to the weights vector w. In other words, we assume that there is a unique

local minimum in both functions under these constraints, implying that the L-BFGS-B

algorithm is sufficient for our analysis.
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Figures

(a) w1,SR (b) w1,SR (c) w1,SR

Figure A.1: Sharpe-Efficient Weights
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(a) w1,AI , ν = 0.5 (b) w1,AI , ν = 0.7

(c) w1,AI , ν = 1 (d) w1,AI , ν = 2

(e) w1,AI , ν = 4 (f) w1,AI , ν = 7

(g) w1,AI , ν = 10 (h) w1,AI , ν = 20

(i) w1,AI , ν = 30 (j) w1,AI , ν = 40

Figure A.3: Atkinson-Efficient Weights under Normality
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(a) w1,AI , ν = 0.5 (b) w1,AI , ν = 0.7

(c) w1,AI , ν = 1 (d) w1,AI , ν = 2

(e) w1,AI , ν = 4 (f) w1,AI , ν = 7

(g) w1,AI , ν = 10 (h) w1,AI , ν = 20

(i) w1,AI , ν = 30 (j) w1,AI , ν = 40

Figure A.5: Atkinson-Efficient Weights under Negative Skewness
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(a) w1,AI , ν = 0.5 (b) w1,AI , ν = 0.7

(c) w1,AI , ν = 1 (d) w1,AI , ν = 2

(e) w1,AI , ν = 4 (f) w1,AI , ν = 7

(g) w1,AI , ν = 10 (h) w1,AI , ν = 20

(i) w1,AI , ν = 30 (j) w1,AI , ν = 40

Figure A.7: Atkinson-Efficient Weights under Positive Excess Kurtosis
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(a) w1,AI − w1,SR, ν = 0.5 (b) w1,AI − w1,SR, ν = 1

(c) w1,AI − w1,SR, ν = 0.5 (d) w1,AI − w1,SR, ν = 1

(e) w1,AI − w1,SR, ν = 10 (f) w1,AI − w1,SR, ν = 10

(g) w1,AI − w1,SR, ν = 0.5 (h) w1,AI − w1,SR, ν = 1

(i) w1,AI − w1,SR, ν = 0.5 (j) w1,AI − w1,SR, ν = 1

Figure A.9: Efficient Weight Differences under Normality
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(a) w1,AI − w1,SR, ν = 0.5 (b) w1,AI − w1,SR, ν = 1

(c) w1,AI − w1,SR, ν = 0.5 (d) w1,AI − w1,SR, ν = 1

(e) w1,AI − w1,SR, ν = 10 (f) w1,AI − w1,SR, ν = 10

(g) w1,AI − w1,SR, ν = 0.5 (h) w1,AI − w1,SR, ν = 1

(i) w1,AI − w1,SR, ν = 0.5 (j) w1,AI − w1,SR, ν = 1

Figure A.11: Efficient Weight Differences under Negative Skewness
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(a) w1,AI − w1,SR, ν = 0.5 (b) w1,AI − w1,SR, ν = 1

(c) w1,AI − w1,SR, ν = 0.5 (d) w1,AI − w1,SR, ν = 1

(e) w1,AI − w1,SR, ν = 10 (f) w1,AI − w1,SR, ν = 10

(g) w1,AI − w1,SR, ν = 0.5 (h) w1,AI − w1,SR, ν = 1

(i) w1,AI − w1,SR, ν = 0.5 (j) w1,AI − w1,SR, ν = 1

Figure A.13: Efficient Weight Differences under Positive Excess Kurtosis
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