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Abstract

The increasing concern on the present and future impact of climate change has

raised the attention on the relationship between technology and the environment.

The aim of this paper is to investigate the impact of green innovation on carbon

emissions. Carbon dioxide (CO2) and Greenhouse Gas (GHG) emissions per capita

are used as a proxy for environmental quality. Technological innovation is measured

by the number of climate change mitigation patents granted for each country dis-

aggregated by areas of innovation. The estimation strategy entails the use of an

OLS with two-way fixed effects for a panel of 47 countries over the period 1976-

2012. Overall, we find evidence of a positive relationship between carbon emissions

and technological innovation, i.e. pollution can be reduced by adopting new energy

efficient technologies. However, the results differ depending on the type of patent

variable used. Furthermore, the results vary when the sample is divided into de-

veloped and developing countries. Interestingly, the additional regressions show a

significant impact of innovations only for the high-income economies sample. These

findings can be used to draw policy implications. Given the recent forecast of fu-

ture increase in carbon emissions, it is paramount to further improve technologies

to decouple economic growth from environmental pollution. Moreover, technology

transfer between developed and developing countries must be fostered to increase

the global effort in pollution reduction.

Keywords: Emissions, Technology, Patents, Environmental Kuznets Curve, OLS

fixed effects
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1 Introduction

The global concern on the negative effects of climate change has increased in the

recent decades. There is a wide consensus on the need to limit the amount of carbon

emissions in the future (Rogelj et al., 2018). Given the strong interconnection be-

tween increasing emissions and the rise in temperatures, the reduction is necessary

to limit the warming of the planet (Ganda, 2019). The rise in temperature will have

large negative consequences on the economic well-being of the society. For example,

as highlighted by the “Stern Review: the economics of climate change”, climate

change will have large negative effects for the world economy and the ecosystem1.

Furthermore, there is a wide consensus on the role of human economic activities

on the increase in carbon emissions (see, for example, Rosa and Dietz, 2012). A

large contributing factor in the levels of carbon emissions is given by the interaction

between population, consumption and technology. As argued by Rosa and Dietz

(2012), the anthropogenic impact on the environment depends on the direction of

technological innovation and consumption patterns2. At the same time, the envi-

ronmental impact of consumption is shaped by the technology used to produce and

transport goods. The linkage between consumption and technological innovation is

highlighted by Arto and Dietzenbacher (2014). The authors argue that population

growth and the surge in global consumption levels are the major culprits for the rise

in emissions. These, in turn, are partly offset by changes in technological innova-

tion3. However, technological innovation alone does not completely offset the rise in

emissions stemming from consumption and population growth.

According to the Intergovernmental Panel on Climate Change report (2018),

technological innovation and environmental policies are some of the measures that

can be adopted to reduce the amount of anthropogenic emissions in the atmosphere.

Technological innovation can have a large impact in reducing the impact of climate

change (Z. Yan et al., 2017). As illustrated by Li and Wang (2017, p.61), technolo-

gies lead to a reduction in emission in two ways: decrease the amount of emissions

in the production process and “end-of-pipe” controls. The latter include Carbon

Capture and Storage (CCS) of CO2. However, given the early stages of these in-

novations, their feasibility and adoption are very limited. In fact, as argued by

Sgouridis et al. (2019) in a recent study, CCS technologies have low climate change

1The Stern review estimates that, in case of no action against climate change, climate change
will lead to an economic loss equal to the 5 percent of global GDP each year. For a short analysis
of the Stern review, see Nordhaus (2007).

2The relationship between these factors is usually expressed using the IPAT equation. In detail:
Impact = Population x Affluence (GDP) x Technology

3For example, Arto and Dietzenbacher (2014) claim that, for the period 1995-2008, population
growth and consumption led to an increase in GHG emissions by 60%. Changes in technology, i.e.
cleaner sources of energy, more efficient production and changes in inputs, led to a reduction of
almost 30% for the same period.
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reduction potential given their limited installed capacity. Conversely, greater reduc-

tions can be achieved by using renewable energy sources. Hence, the development

of low-carbon technologies is paramount to reduce the amount of carbon emissions

(Nordhaus, 2007). Furthermore, emissions intensity reduction should be a priority

also in developing economies, as they are expected to experience large growth in

consumption and population levels (Arto and Dietzenbacher, 2014).

The aim of this paper is to investigate the impact of technological innovation

on carbon emissions. We collect data for 47 countries over the period 1976-2012.

Carbon dioxide (CO2) and Greenhouse Gases (GHGs) emissions per capita are used

as a proxy for environmental degradation. We collect data on the number of climate

change mitigation patents granted for each country to measure green innovation. In

addition, we disaggregate the indicator according to the type of technological area

addressed, i.e. we obtain four different indicators that measure innovation in the

transportation, energy, buildings and production of goods sectors. The estimation

method entails the use of OLS with two-way fixed effects. As a robustness check, we

divide our panel into developed and developing countries subsamples. Our results

show heterogeneous effects of emissions reduction due to technological innovation,

i.e. results vary according to the area and countries examined.

The contributions of this paper are manifold. First, we present a detailed analysis

on the impact of green innovation on emissions by disaggregating our main regressor,

i.e. the granted patent variable, into four different areas of innovations. This allows

us to capture the heterogeneity of the positive effect of technological innovation on

the environment. In contrast with previous studies, we use data on granted patents

instead of patents applications, since we argue they provide a more precise indica-

tor of (successful) technological innovation. Second, we divide the sample into high

and low-income economies to investigate whether the impact of green innovation on

emissions differs according to the level of economic development of a country. This

provides a further analysis on the relationship between economic growth, techno-

logical advancement and environmental quality. Finally, we take advantage of the

larger time series of patent data to examine the technology-environment nexus over

a larger time frame.

The paper is organised as follows. Chapter 2 illustrates the theoretical under-

pinning of the technology, environment and economic growth nexus. In addition, we

provide a general overview on the use of patents in economics and discuss the previ-

ous literature findings. The empirical strategy used to disentangle the relationship

between environment and green innovation is presented in Chapter 3. Data and

econometric issues are discussed in Chapter 4. Then, in Chapter 5 we present our

results and robustness checks. The discussion and comparison to previous literature

findings are provided in Chapter 6. Finally, Chapter 7 concludes.
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2 Environment, economic growth and technology

2.1 Environmental Kuznets Curve

The relationship between economic growth and pollution is frequently depicted as

inverted-U curve. As countries foster their economic development, the growth in

income exerts an increasing pressure on the environment. However, once a thresh-

old is reached, i.e. a specific level of income, the environmental pressure exerted

by economic growth diminishes (Grossman and Krueger, 1991). The reduction

in the pollution level can be explained by the development and adoption of more

environment-friendly technologies, which are only possible if large amount of re-

sources are allocated to R&D. Hence, economic growth, technological innovation

and environmental quality are deeply interconnected.

The standard Environmental Kuznets Curve (EKC) regression model is illus-

trated by the following equation:

Emissionsit = αi + β1GDP it + β2GDP
2
it + εit (1)

The addition of income squared is necessary to capture the nonlinear relationship

between economic growth and pollution. If the EKC hypothesis holds, β1 is positive,

while β2 enters with a negative sign (Dinda, 2004). We will use this basic equation

as the starting point for our empirical analysis.

Several authors have tested the empirical validity of the EKC. For example,

Selden and Song (1994) find evidence of an inverted-U relationship between economic

growth and four different types of air pollutants: carbon monoxide, suspended par-

ticulate matter, sulfur dioxide and oxides of nitrogen. Similar results are obtained

by Dinda and Coondoo (2006) using a panel data of 88 countries over the period

1960-1990. Moreover, the authors find evidence of a bi-directional causal relation-

ship between emissions and economic growth. This entails that there is a feedback

mechanism that affects both variables. Such dynamics has important policy impli-

cations, since the decrease in pollution in developed countries might not be enough

to offset the rising levels of pollution in emerging economies. Apergis and Ozturk

(2015) confirm the validity of the EKC hypothesis on a panel of 14 Asian economies

over the period 1990-2011. Furthermore, contrary to Dinda and Coondoo (2006),

they do not find any evidence of a bi-directional relationship between income and

emissions, but only a one-directional effect of income on emissions.

An important determinant of the inverted-U curve is technology (Andreoni and

Levinson, 2001). In fact, the mechanism behind the improvement in environmental

quality, once a turning-point income level is reached, cannot be solely explained

by economic growth. As argued by Andreoni and Levinson (2001), the shape of
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the curve is determined by the relationship between technological development in

the production of goods and in emissions abatement. According to Popp et al.

(2010, p.875) the impact of innovation depends on the direction of technological

change, i.e. the effect of innovation is dichotomous. First, new technologies can

lead to economic growth and to an increase in the use of resources. Consequently,

the rise in economic output leads to an increase in emissions and to a negative

impact on the environment. This is the scale effect (for a more detailed analysis,

see Tsurumi and Managi, 2010). Second, technological innovation can decrease the

rate of carbon emissions and thus mitigate the impact that economic growth exerts

on the environment (Jaffe, Newell, and Stavins, 2000).

The presence of an inverted-U relationship between economic growth and envi-

ronmental quality relies on the existence of increasing returns to scale in the abate-

ment technologies (Andreoni and Levinson, 2001). In addition, a developed economy

has a lower marginal cost for abating pollution, while the opposite is true for an

emerging economy4. Stokey (1998) claims that countries with low income levels

have only access to dirty technologies, while high-income economies have access to

cleaner technologies which contributes to a reduction in the environmental pressure

of economic growth. In short, the validity of the EKC hypothesis relies on the degree

of improvements in abatement technologies.

The different share of technological innovation efforts between countries is also

highlighted by Popp (2012). For example, in 2007 research expenditures from US

and Japan was 46% of the total, while OECD countries combined accounted for the

80%. Innovation in climate change related technologies follows a similar path5. As

previously discussed, the level of economic development of a country is an important

determinant of the degree of innovation conducted. For example, Lanjouw and Mody

(1996) find that technologies aimed at mitigating air pollution are mainly patented

by high income economies, such as the US, Germany and Japan. On the other side,

less complex technologies are patented also by developing countries. Similar results

are presented by Dechezleprêtre et al. (2011): high income countries account for

the majority of the cutting-edge environmental-friendly innovations. On the other

hand, developing economies do carry out some research, but it is mostly focused on

the internal market with low global adoption potential. This can be partly explained

by the different need of technological innovation: emerging economies develop and

implement technologies that are not needed or obsolete in high income countries

4A large determinant of increasing returns in the presence of large fixed costs. A low-income
country might not have enough economic resources to overcome the large fixed cost necessary in
developing and adopting cleaner technologies. Hence, it is unlikely to generate increasing returns
to scale in abatement technologies (Andreoni and Levinson, 2001).

5A detailed analysis of the country-share of total innovation for our panel will be presented in
the data section, in Chapter 4.
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(Popp, 2012). Hence, developed countries have a predominant role in technological

innovation.

2.2 Technological innovation and the environment

The analysis of the relationship between green innovation and pollution is conducted

using different types of technology indicators. According to Popp (2012), technolog-

ical innovation can be measured in two ways: input and output. Input measures are

R&D expenditure (as % of GDP) and number of researchers per country. Output

measures are patent data. As argued by Haščič and Migotto (2015), input mea-

sures present several drawbacks. First, they report aggregated data, which does not

allow to filter the green R&D (Popp, 2005). Second, data availability is an issue

since only high-income countries have detailed information on the investments on

research. Third, data on the private sector share of expenditures is usually missing

or incomplete. Lastly, there could be a gap between the amount of resources spent

and the innovation generated. In fact, according to Johnstone et al. (2010), R&D

expenditures and number of research personnel reflect the innovative capacity of a

country, i.e. the resources available to develop new technologies, rather than the

effective amount of innovation generated. Hence, given these major limitations, we

have opted for the number of patents as the proxy for innovation.

Despite these limitations, several authors have investigated the relationship be-

tween technological innovation and environmental quality using R&D expenditures

data. Studies at country level or firm level yield similar results, i.e. R&D expen-

ditures lead to a reduction in emissions. For example, Garrone and Grilli (2010)

investigate the link between public R&D in energy and CO2 per GDP for 13 devel-

oped economies between 1980 and 2004. The authors find a positive link between

energy efficiency and public R&D, but no significant relationship between emissions

and R&D.The focus on public investments is useful given the features of the R&D

markets. In fact, since technological innovation is characterised by high risks and

various degrees of success, public investment is necessary to remedy for market fail-

ures and foster knowledge spillovers. As argued by Popp (2010), government support

in R&D is needed to overcome market failures. On the others side, it can be argued

that these public funded technologies might be of little help if they are not easily

available or difficult to implement in the private market (Garrone and Grilli, 2010).

Li and Wang (2017), examine the impact of technological change on CO2 emis-

sions for a panel of 95 countries over the period 1996-2007. They find a positive

impact of technology on emissions, i.e. technology contributes to a decrease in CO2

emissions. Furthermore, the results hold also when the scale effect of technology

on economic output is accounted for. However, a limitation of the abovementioned
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studies is the short time span of the analysis, which does not allow to examine the

long-run relationship of the phenomenon. On the other side, Churchill et al. (2019)

investigate the relationship between R&D and carbon emissions for G7 countries in

the period 1870-2014. They find a heterogeneous impact of technological innova-

tion on the level of emissions depending on the period examined. In detail, R&D

contributes to a reduction in emissions for the majority of the years investigated;

yet, the technology variable coefficient enters with a positive sign for the 1955-1990

period. This can be explained by the scale effect as these countries experienced large

growth rates and an increasing opening to trade (Churchill et al., 2019). These, in

turn led to an increase in R&D and in carbon emissions. Hence, the positive sign is

a result of the increase in the economies’ scale.

The heterogeneity in the development of clean technologies at the firm level is

illustrated by Lee and Min (2015). The authors examine the relationship between

R&D and carbon emissions on a sample of Japanese firms over the period 2001-

2010. They differentiate between green R&D and non-green R&D (Lee and Min,

2015). In this way, they capture the effect of an increase in R&D in energy-intensive

industries. The authors find evidence of a significant reduction in carbon emissions

due to green R&D. At the same time, non-green R&D does not effectively reduce

CO2 emissions, but it works in the opposite direction, thus attenuating the positive

effect of clean technologies (Lee and Min, 2015).

Contrary to R&D expenditures, patent data is a measure of output (Albino et

al., 2014). A patent is the right granted by a government to an inventor and it

prevents a third party from using the invention for a certain period6. The patent

application procedure involves several steps and large monetary costs. Furthermore,

the filing of a patent usually occurs after the development of the technology has

begun7. Given these barriers, we can argue that inventors are willing to embark in

the patenting procedure only if they deem their invention valuable and if it meets

the patenting requirements (Harhoff, 2016). In other words, the procedure itself

acts as a guarantee for high-quality inventions (Hascic and Migotto, 2015). Hence,

patent data reports the success of the innovative process, rather than the innovative

capacity. The objective of the innovation can be easily categorised given the level of

detail contained in a patent application. In addition, the high level of international

standardisation and the availability of long time series on patent data, allow for

6In the case of a patent issued by the United States Patent and Trademark Office (USPTO),
protection lasts 20 years from the date of application (Popp, Juhl, and D. K. Johnson, 2003).

7According to Haupt et al. (2007), the timeline of technological patenting follows an S-shaped
curve. In short, at the initial phase in the development of a new technology, few patent applications
are made. Once the uncertainty around the potential application of the technology diminishes,
there is a surge in patent applications. Finally, as the rate of innovation decreases due to the
maturity of the technology, the number of patent filings decreases. For a more detailed analysis,
see Haupt et al. (2007).
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detailed cross-country comparisons (Albino et al., 2014).

The use of patent data is not new in economics. Economists have used it to

examine technological innovation, market competition between firms or countries

and their role as a source of economic growth (Griliches, 1990, Kortum, 1993 and

Thomas, 2001). Several authors have investigated the relationship between R&D

activity and patents. One of the first investigation was conducted by Comanor

and Scherer in 1969. The authors found a large correlation between innovation

inputs, i.e. R&D and number of researchers, and number of patents for a sample

of manufacturing firms (Comanor and Scherer, 1969). Similar results are found by

Scherer (1983) for a panel of US industrial corporations. Firms that invest more in

R&D are also the ones that are more likely to have their technologies patented.

Patent data is not exempt from limitations. For example, it does not report

the entire “universe” of technological innovations, since some technologies cannot

be patented8. In addition, some patents might be granted, but the technology is

not adopted in the real world. Yet, as highlighted by Haščič and Migotto (2015),

since individuals and firms face heavy costs to patent an invention, one could argue

that there is a higher probability that the technology will be adopted. Furthermore,

as reported in the OECD Patent Manual (OECD-EUROSTAT, 2009), the criteria

of “significant invention” is a necessary condition for the granting of a patent. In

conclusion, we can claim that patent data mainly includes innovations that generate

an improvement on the current level of technological innovation.

Technological innovation is a multifaceted phenomenon. Patent counts are use-

ful to obtain an output measure of the process, but they reveal scarce information

regarding the quality of the innovation. In fact, the heterogeneity in the quality

of technological innovation is a widely discussed issue in economics9. In the re-

cent past, there has been a push for increasing the quality of patents (Squicciarini,

Dernis, and Criscuolo, 2013). The presence of low-quality patents generates some

drawbacks. For example, it can slowdown innovation and diminish the incentives to

foster technological advancements (Hall, Graham, et al., 2004). The heterogeneous

quality entails that the contribution of a new technology widely varies according to

the improvement generated compared to the previous technological level. However,

patent data remains a reliable measure of the impact of technological innovation.

For example, according to Svensson (2015), there is a positive correlation between

a patent successful grant and its commercialisation. Hence, patented technologies

8In fact, according to Hall et al. (2001, p.5), inventions can be patented only if they meet the
criteria set by the patent office. For example, the USPTO grants the patent right only if “the
invention is non-trivial, novel and has a commercial application”.

9To examine the quality of innovation several different approaches are used. For example,
Nagaoka et al. (2010) use number of patent citations, while number of countries where the invention
is patented is used by Lanjouw et al. (1998) and Harhoff et al. (2003).
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are likely to be implemented and represent a reliable link to economically relevant

innovations (Albino et al., 2014). In short, given the lengthy process of patenting

we argue that patent data yield a robust measure of significant technological in-

novation. Furthermore, the grant of a patent is an implicit proof of a meaningful

improvement in the old technology or of the creation of a new one.

The use of patent data in examining the impact of green innovations on carbon

emissions is quite novel. For example, a recent study by Wurlod and Noailly (2018)

investigates the impact of green innovation, proxied by number of patents, on energy

intensity for 14 sectors in OECD countries between 1975 and 2005. They find

evidence of an overall reduction in energy intensity due to technological innovation.

Furthermore, the reduction is larger for recent years and energy-intensive industries.

Hence, technological innovation has a heterogeneous impact, which depends on the

period and sectors examined. Voigt et al. (2014) analyse the impact of patents

on energy intensity reduction for a panel of 40 major economies over the period

1995-2007. They find evidence of a large effect of energy use reduction due to

technological innovation10. A recent paper by Cheng et al. (2019) examines the

impact of technological innovation on carbon emissions for the BRIICS countries

over the period 2000-2013. The authors use environmental related patents as an

indicator of technology development11. Furthermore, they include control variables

such as exports, GDP per capita, renewable energy supply and FDI inflows. The

estimation is carried out by using a pooled OLS and a panel quantile regression.

Contrary to the previously discussed literature, the authors do not find evidence of

a reduction in emissions due to technological innovation. In fact, the patent variable

enters with a positive coefficient (even though not all the estimated coefficients are

significant). The authors argue that a possible explanation can be found in the lack

of environmental regulation, which is important in the reduction of carbon emissions

and to foster technological innovation12.

Chen and Lei (2018) examine the relationship between environmental quality

and technological innovation using a panel quantile regression. They collect data on

CO2 emissions, total patents applications13 and control variables for a panel of 30

10Their study differs from the main literature since they applied a Logarithmic mean Divisia
Index to analyse the trends in energy consumption. This method allows for the decomposition
between changes in energy use due to technological advancements or structural changes in the
economy. Furthermore, these effects are investigated both at the country and sectoral level.

11In detail, the patent variable includes climate change mitigation, water adaptation and envi-
ronmental management technologies.

12For example, environmental regulation impact on carbon emissions has been examined by Ren
et al. (2018) and Zhao et al. (2015). Both papers find evidence of a positive, yet heterogeneous
impact of environmental regulation on pollution. In other words, environmental-related laws can
reduce carbon emissions and improve eco-efficiency. Environmental regulation is also a driver of
technological innovation. As highlighted by Guo et al. (2017), regulation fosters the development
of green technologies, which in turn has a positive impact on economic growth.

13A limitation of this study is the use of total patent applications rather than environmental-

11



countries over the period 1980-2014. They find evidence of mixed impact of techno-

logical innovation. In detail, the reduction in emissions is larger and significant for

high-emissions countries, while the opposite is true for low-emissions countries. The

findings can be explained by the existence of a positive relationship between eco-

nomic growth and technological innovation (Chen and Lei, 2018). In other words,

higher economic growth leads to larger investments in the development of cleaner

and more advanced technologies. At the same time, economic growth is also the

main culprit for the rise in emissions.

Yan et al. (2017) investigate the impact of low-carbon technologies on car-

bon emissions for a panel of 15 large economies over the period 1992-2012. The

analysis is three-fold. First, the authors examine the overall impact of green in-

novations. Then, the environmental-related technology is further divided into two

sub-categories: clean and “grey” technology. The former includes the patents for

low-carbon emissions, i.e. carbon neutral technologies. The latter includes the re-

maining patents, which have a relatively higher negative impact on the environment.

In fact, the grey category also includes technologies that improve the energy effi-

ciency but do not necessarily reduce carbon emissions (Z. Yan et al., 2017). Not

surprisingly, the results vary depending on the indicator used. The aggregate mea-

sure of technological innovation does not reduce carbon emissions14. However, the

more detailed analysis yields different results. First, clean technologies significantly

decrease CO2 emissions. This can be easily explained given the carbon-neutrality

of these innovations, even though their full potential depends on the economic prof-

itability and on the replacement of old carbon-intensive technologies (Z. Yan et al.,

2017). On the other side, grey patents do not significantly reduce carbon emissions,

since they can still contribute to CO2 emissions (Z. Yan et al., 2017). In fact, the

improvement in energy efficiency does not necessarily entail a substantial reduction

in emissions.

In short, most of the studies summarised find evidence of a reduction in carbon

emissions due to technological innovation. Moreover, similar results are obtained

irrespective of the technological innovation indicator used. As we have illustrated,

the impact of green innovation on environmental degradation is quite heterogeneous.

Low-carbon technologies have a greater impact in emissions reduction. On the other

hand, mixed results are found when using less carbon neutral technologies.

related patents.
14This finding can be partly explained by the heterogeneity of the indicator. In fact, clean

patents are described as “high-quality” innovations, while the grey patents also include “low-
quality” technologies.
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3 Empirical strategy

To investigate the relationship between technological innovation and carbon emis-

sions, a plethora of different estimation strategies have been used in the previous

literature. Several authors have opted for panel quantile regressions (see, among

others Cheng et al., 2019 and Chen and Lei, 2018). Another widely used approach

is the Ordinary Least Squared Fixed Effects (for example, Yan et al. 2017). The use

of Fixed Effects captures unobserved heterogeneous factors, that otherwise would

be included in the error terms. In studies with a small time period, several authors

have opted for the use of the General Method of Moments (for example, Wang et

al. 2012).

Our baseline model includes the Environmental Kuznets Curve which is then

augmented with additional regressors. We include the number of green patents

related to climate change mitigation technologies as our main variable of inter-

est15. We further disaggregate our patent variable to account for the different areas

of technological innovation addressed16. In detail, the patent variable is divided

in transport (cc transport), energy (cc energy), goods production (cc goods) and

buildings (cc building) patents17. We can assume that the first three are the most

relevant, since energy transformation, goods production and transportation account

for a large share of global emissions18. We have created a new variable cc tot in

order to capture the full impact of the climate change mitigation technologies on

emissions. This new indicator is obtained by summing all the 4 subcategories. One

advantage of the variable is that it accounts for the overall effect of the climate

change mitigation technological area. On the other hand, it presents a large degree

of heterogeneity, since it includes technologies with a very different spectrum of ac-

tion. Nonetheless, we believe that its inclusion in our estimation strategy can yield

some useful insights on the overall impact of climate change mitigation technologies

on emissions. In addition, we include trade openness, total population, FDI inflows,

fossil fuel energy consumption and an index of democracy as control variables.

The patent variable includes the number of granted patents. Since it takes some

years for a patent to be granted, the variable can be described as a lagged measure

of green innovation. The multidirectional relationship between technology, GDP

and emissions can lead to endogeneity issues. For example, there can be a contem-

15Y02 code according to the International Patent Classification (IPC) system.
16Our choice of patents indicator is similar to the one adopted by Cheng et al. (2019). However,

in contrast to their methodology, we only use climate change mitigation patents, while the authors
include also water adaptation and environmental management technologies.

17A detailed description of the technologies included in each patent variable is presented in
Chapter 4.

18According to the IPCC Mitigation of Climate Change Report (2015), in 2010 the transport
sector accounted for 14%, energy production for 25%, industrial production for 21%, while buildings
for 6% of global emission.
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poraneous effect stemming from technological innovation and GDP on emissions.

Furthermore, as examined by Su and Moaniba (2017), carbon emissions can lead

to an increase in the development of climate change adaptation technologies. How-

ever, we argue that endogeneity is not an issue for our estimation strategy. Our

argument rests on the presence of a lag between technology invention and granting

of a patent. As previously discussed, it takes on average 3 years for a patent to be

granted. Hence, the contemporaneous levels of emissions are affected by technolog-

ical innovation, but not vice versa.

Our baseline nonlinear model with first differenced variables is illustrated by the

following equation:

∆Emissionsit = β0 +β1∆Patit +β2∆GDPit +β3∆GDPit
2 +β4∆Controlsit + µt + δi + εit (2)

where Emissionsit may be either CO2 per capita or GHGs per capita. Pat is

patent counts and is the main variable of interest. GDPit and GDP 2
it are included

to account for the impact of economic growth on pollution (as illustrated by the

EKC hypothesis). Controls include all our control variables, i.e. trade openness,

population, fossil fuel energy consumption, FDI inflows, democracy index, µt is year

fixed effects, δi is country fixed effects19 and εit is the error term (which is assumed

to be i.i.d).

This study uses a nonlinear model which is estimated by OLS with country

and year fixed effects20. When using panels with large N and small T, the Nickell

bias leads to inconsistent estimates if fixed effects are included in a dynamic model

(Nickell, 1981). However, the bias disappears when the panel contains a large T

(Ganda, 2019). Since our panel includes T=37, we can safely assume that the Nickell

bias is not a concern in our estimation strategy. Two-way fixed effects are used to

account for country and year specific shocks that otherwise would be included in

the error terms21 (Álvarez-Herránz et al., 2017).

In the economics literature, GDP and carbon emissions are often described as

nonstationary time series22. As we will show in the next chapter, the presence of

nonstationary variables and the lack of cointegration do not allow for the use of a

long-run estimation strategy, such as an error correction model. Hence, since non-

19We use clustered standard errors at the country level in order to obtain consistent estimates
in the presence of heteroscedasticity and within-group correlation, i.e. errors correlated within
clusters, but not between clusters.

20Given the presence of several zeros in our patent variable, we have opted for using raw data
instead of taking logs to avoid reducing the number of observations. This entails that we can-
not interpret our findings as elasticities. Furthermore, there is no general consensus on the log-
transformation of the data in the previous literature.

21In detail, country fixed effects account for time invariant factors that vary between country.
On the other side, year fixed effects account for time varying factors, e.g. shocks, that affect all
the countries.

22For example, Wang et al. (2012), Ganda (2019), Dinda (2018) find that GDP and emissions
are nonstationary in levels, but stationary in first differences.
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stationarity can yield spurious results, we estimate the model with first differenced

variables (Kaufmann, Kauppi, and Stock, 2006). The use of first differences allows

us to remove the unit root process and it makes possible to use the estimation tech-

niques developed for stationary panels23. Furthermore, as suggested by Woolridge

(2010), we have opted for first differencing all the variables included in our regres-

sion to have a more homogeneous interpretation of the results. Table 1 reports the

description of the variables used in our estimation.

Table 1: Variables description
Variable Description

co2 capita Per capita CO2 emissions (expressed in Kton)
ghg capita Per capita GHG emissions (expressed in CO2 equivalent Kton)
cc transport Number of climate change mitigation patents for the transport sector
cc energy Number of climate change mitigation patents for the energy sector
cc building Number of climate change mitigation patents for the improvement of

buildings energy efficiency
cc goods Number of climate change mitigation patents for goods production
cc tot Sum of the climate change mitigation patents category
wdi gdpcap GDP per capita in constant 2010 US$
wdi sq gdp GDP per capita in constant 2010 US$ squared
wdi trade Sum of exports and imports of goods and services as a share of GDP
wdi pop Total population (expressed in millions)
wdi fdiin Foreign Direct Investments, net inflows in current US$
wdi fossil Fossil fuel energy consumption as a share of total energy
polity Index of democracy

When examining the relationship between green innovations and carbon emis-

sions, there is no general concordance on the inclusion of the lagged dependent

variable as an additional regressor. For example, Álvarez-Herránz et al. (2017) and

Carrión-Flores and Innes (2010) include one lag of the dependent variable in their

model. On the other side, Fernández Fernández et al. (2018), Cheng et al. (2019)

and Yan et al. (2017) do not include the lag of emissions. The inclusion of the lagged

dependent variable can be useful to capture some of the dynamics, as the level of

emissions last year can partly explain emissions this year (Keele and Kelly, 2006).

However, our case is different, since first differencing the emissions variable removes

a large degree of the potential dynamics. Hence, we have opted for not including

the dependent variable lag as an additional regressor for our baseline specification.

As a matter of fact, the exclusion rests on two main factors: the small dynamics

included in a first-differenced variable and the lack of a predominant strategy in the

previous patent-emissions literature. However, we will include the regression results

with the lagged dependent variable in the appendix, as a robustness check.

The use of time fixed effects allows to account for year-specific shocks, e.g. finan-

23According to Woolridge (2010), the OLS estimator is consistent in first-differences.
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cial crises, that otherwise would be included in our error terms and lead to biased

estimates. As highlighted by Gow et al. (2010), the use of time fixed effects reduces

the impact of these common shocks. For these reasons, we argue that the inclusion

of time fixed effects captures the potential cross-sectional dependence in our data.

4 Data

The data used in our paper has been collected from various sources. The sample

includes 47 countries for the 1976-2012 period (N=47 and T=37). The choice of

countries and time is dictated by data availability. The countries included are mainly

large economies (OECD members) and other developing countries that significantly

contribute to global emissions. For example, developed economies are the ones

with the most significant levels of investments in research (Churchill et al., 2019).

The exclusion of less relevant economies is due to the small contribution to the

global share of innovation and emissions. Thus, their exclusion allows for a more

direct analysis of the phenomenon. In short, our selection of countries yields a

direct investigation on the extent to which the largest emitters and innovator can

contribute to global emissions.

4.1 CO2 and GHG emissions

The data on CO2 and Greenhouse Gases (GHG) emissions has been retrieved from

the EDGAR v.4.3.2 dataset. It reports country-level emissions of fossil fuels and

industrial processes, for all anthropogenic activities. The GHG data includes CO2

(carbon dioxide), CH4 (methane) and N2O (nitrous oxide) emissions24. These are

calculated by using national data on fossil fuel production, population, energy con-

sumption, industrial and agricultural statistics (Janssens-Maenhout et al., 2017) and

IPCC values for the emission factors. In our analysis, both emissions variables are

expressed in per capita levels25.

The choice of two distinct dependent variables rests on the heterogeneous impact

of these gases on the atmosphere. According to Brander and Davis (2012), the main

GHGs are carbon dioxide, nitrous oxide, methane and ozone. These have different

atmospheric lifetimes, i.e. the time necessary for a pollutant to return to its natural

level (either by being absorbed or converted into another gas). A frequently used

24The GHG variable includes the values expressed in carbon dioxide equivalent, which allows to
count different gases in a common unit. In detail, the measure is obtained by multiplying the gas
by its global warming potential. In this case, the CO2-equivalent methane measure is obtained by
multipliying it by 25, while nitrous oxide by 298. A more detailed discussion is provided in the
next paragraph.

25The use of per capita emissions is in line with Cheng et al. (2019) and Álvarez-Herránz (2017)
studies.
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measure of a gas contribution to climate change is the “global warming potential”.

It describes the amount of warm that a gas produces compared to the carbon dioxide

contribution for a specific time range, usually 100 years (Brander and Davis, 2012).

For example, CO2 has an index of 1, since it is used as the benchmark value.

Methane (CH4) has an index of 25, which entails that 1kg of methane has the

same impact of 25kg of CO2. Nitrous oxide (N2O) has an index of 298, which is

significantly larger compared to the other GHGs. In short, methane and nitrous

oxide retain more heat compared to carbon emissions. Hence, their inclusion in our

dependent variable is relevant given their greater contribution to the warming of the

atmosphere.

On the other side, nitrous oxide and methane have a shorter atmospheric lifetime

compared to CO2, which can persist in the atmosphere for several centuries. In

detail, methane lasts for about a decade in the atmosphere, while nitrous oxide for

more than one hundred years (Ehhalt et al., 2001). Furthermore, CO2 is the largest

contributor to climate change, followed by methane and nitrous oxide (Stocker et al.,

2013).

As we have examined, these gases have different impacts on the atmosphere.

Furthermore, they also differ for atmospheric lifetime. Thus, to capture the hetero-

geneous effects of these gases, we have opted for the use of two dependent variables.

The first dependent variable includes only carbon dioxide emissions. This allows

us to examine the impact of technological innovation on the major contributor to

climate change. Furthermore, isolating CO2 emissions is important given their large

share in the GHGs total26. The second dependent variable includes carbon dioxide,

methane and nitrous oxide. This indicator yields the overall relationship between

GHGs and technological innovation.

At the global level, CO2 emissions per capita have been stable for the last three

years, up to 2016. Yet, the situation at the country level is quite heterogeneous. For

example, the developed economies, such as US, Japan, the Russian Federation and

the EU28 group have all witnessed a decrease in emissions27 . Likewise, China has

experienced a stable decrease in emissions per capita since 2015, which is mainly

due to the change in their energy sector composition, i.e. coal consumption has

decreased (Janssens-Maenhout et al. 2017). The opposite is true for India and

Indonesia which have all increased their emissions. For example, the upward trend

in India’s emissions levels is mostly due to its high rate of economic growth and

the increase in the demand of energy, which is largely supplied by oil and coal

26For example, in 2017 CO2 accounted for 73% of total GHGs (Olivier and Peters, 2018).
27According to Arto and Dietzenbacher (2014), developed countries have stabilised their national

emissions in production, but increased the consumption embodied emissions at the global level.
On the other side, developing economies have experienced an increase in both the consumption
and production embodied emissions.
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consumption (BP, 2017).

Greenhouse Gas emissions per capita have been rising in the 1976-2012 period,

mainly due to the rise in CO2 emissions. In detail, CH4 share of GHGs emissions

declined from 27% in 1970 to 19% in 2012. Similarly, the N2O share oscillated

between 7% in 1970 and 6% in 2012. The overall decrease is mainly attributed

to the shift from agricultural to industrialised economies for developing countries

(Janssens-Maenhout et al., 2017). The global trend has experienced a downturn in

the 1980s and 1990s, which was then followed by an increase until 2012. At the

country level, the EU28 group, the Russian federation and Japan experienced a

decrease in GHG emissions. On the other side, emerging economies, such as China

and India, increased their emissions.

4.2 Patent data

Technological innovation is measured by the number of environmental related patents

granted by the United States Patent and Trademark Office (USPTO). The data is

retrieved from the OECD database. As already discussed, the choice of patents

granted, rather than patent applications, aims at capturing the impact of effective

and significant innovation28. However, the total patents granted could not be fully

representative of the technology used if the technology is adopted before the patents

are granted or if the technology is not patented at all. It can be argued that this

bias is relatively smaller compared to the upward bias that could stem by including

patents that might not be granted29. In fact, the use of granted patents might lead to

a downward bias in our estimations, if a large share of technologies is implemented

but not granted. As we can see from the summary statistics presented in Table

3, the OECD dataset reports also fractional count patents. This is necessary to

account for patents that have multiple (and foreign) inventors30. Furthermore, the

method avoids the inclusion of the same patent for multiple countries. Patents are

attributed to a country by the inventor’s residence, which allows to have a detailed

picture of the efforts in innovation for each country (OECD-EUROSTAT, 2009).

The first subcategory, i.e. transport, covers technologies related to road, rail, air

and maritime transport. Furthermore, different types of engines are covered, from

the conventional internal combustion engine, to hybrid and electric engines. It also

includes fuel efficiency-improving technologies aimed at reducing GHGs emissions.

28Carrión-Flores and Innes (2010) argue that data on patent application better captures the
timing of discovery. However, since we are interested in examining the aggregate impact of tech-
nological advancement, granted data represents a more suitable indicator of green innovation.

29The previous literature mainly uses patent application data as a proxy for technological inno-
vation (see, among others Wurlod and Noailly, 2018, Cheng et al., 2019 and Yan et al., 2017. On
the other side, Dinda (2018) uses granted patents.

30For example, if a patent has been co-invented by one German and one American, then it will
be counted as 1

2 of a patent for Germany and 1
2 for the US.
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Finally, energy-storing and recharging technologies are included (e.g. electric charg-

ing stations for road vehicles). The breadth of this category entails the inclusion

of technologies with a heterogeneous potential in climate change mitigation. For

example, carbon emissions are significantly reduced by the implementation of an

electric engine, rather than an improvement in a vehicle fuel-efficiency31.

The second subcategory, i.e. energy, includes technologies with the objective

of producing and transmitting energy. The energy-production category covers re-

newable energy, which can be divided into several sources. For example, renewable

energy can be obtained from wind, solar thermal and photovoltaic, geothermal and

hydro sources. This category includes also non-fossil fuels, such as biofuels and

waste-generated fuels, and nuclear energy. Furthermore, it covers technologies that

mitigate every type of fuel generated emission (fossil and non-fossil), i.e. technologies

that improve output efficiency. Finally, energy storage technologies (e.g. batteries)

and transmission technologies are included. Hence, as we can see, this subcategory

is composed of low-carbon emissions technologies, such as renewable ones, but also

from less carbon efficient technologies.

The building subcategory covers energy-efficient technologies and the integration

of renewable energy in constructions. The former includes energy-efficient lightning

and heating, but also the adoption of smart grids. The latter covers all the re-

newable technologies that can be installed on a building, from photovoltaic panels

to biomasses for heating. We can argue that the contribution on the reduction

in emissions stemming from these technologies is smaller compared to the other

subcategories.

The goods processing subcategory is quite heterogeneous. First, it includes all

the technological improvements aimed at the reduction in emissions generated from

the production of goods in various sectors32. Second, it also includes technologies

that are used in the final production of goods, from storing goods to assemblage.

31See, for a more detailed discussion, Helmers and Marx (2012) and Cerovsky and Mindl (2008).
32Among others, technologies that reduce the production of GHGs in the industrial sector.

Furthermore, technologies related to the agriculture sector are also included. These are particularly
important given the relatively large production of GHGs, in particular methane and nitrous oxide
from agriculture (J. M.-F. Johnson et al., 2007).
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Figure 1: Total patents by area of innovation

Figure 1 plots the time series of our green innovation variables for the entire

panel. In general, we can see an upward trend in the number of granted patents.

Specifically, an increase is experienced in the last few years, which is highlighted by

the sharp rise in the cc tot line. There seems to be a convergence between the patents

in the energy and transport areas. Furthermore, these two variables represent the

largest contribution to innovation in our sample since they almost double cc goods

and cc buildings patent counts.

Table 2 shows the country share of global technological innovation in our dataset.

For each patent variable, the share is calculated by dividing the total number of

patents granted per country over the total global number of patents for the 1976-

2012 period. The same procedure is used to calculate the share of CO2 and GHG

emissions per capita. The table illustrates some general patterns. First, the devel-

oped countries group accounts for a disproportionally large share of technological

innovation. This, as previously discussed, is to be expected given the larger amount

of R&D produced by these countries33. Similarly, these countries largely contribute

to global (per capita) pollution, with the 78% and 71% of CO2 and GHG emissions,

respectively34. Emerging economies produce relatively more green patents in the

33Raiser et al. (2017) argue that these differences stem from different amount of R&D and invest-
ments, institutional capabilities and lack of commercialisation of innovations. Furthermore, patent
regimes can act as a barrier to the creation of knowledge, particularly in low-income countries.

34However, given that these measures are expressed at per capita level, they do not yield a clear-
cut interpretation on the total share of emissions, since they depend on the demographic trend of
a country.
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Table 2: Country share of patents and per capita emissions
Country Transport Energy Building Goods Total CO2cap GHGcap

Developed Countries
Australia 0.52% 0.75% 0.38% 1.01% 0.71% 4.00% 4.37%
Austria 0.56% 0.32% 0.33% 0.82% 0.52% 1.93% 1.76%
Belgium 0.09% 0.32% 0.15% 1.01% 0.41% 2.71% 2.40%
Canada 1.40% 2.30% 2.25% 3.31% 2.28% 5.01% 3.69%
Czech Republic 0.02% 0.05% 0.08% 0.07% 0.05% 3.47% 2.86%
Denmark 0.10% 1.02% 0.42% 0.48% 0.54% 2.57% 2.37%
Estonia 0.00% 0.00% 0.01% 0.01% 0.00% 4.62% 3.79%
Finland 0.13% 0.28% 0.37% 0.71% 0.35% 2.71% 2.59%
France 2.18% 3.36% 2.18% 4.13% 3.08% 1.64% 1.57%
Germany 11.89% 7.84% 5.88% 8.55% 9.05% 2.79% 2.39%
Greece 0.04% 0.04% 0.02% 0.02% 0.03% 1.73% 1.66%
Hungary 0.04% 0.07% 0.26% 0.19% 0.11% 1.57% 1.46%
Iceland 0.00% 0.00% 0.00% 0.00% 0.00% 2.37% 2.25%
Ireland 0.02% 0.04% 0.13% 0.03% 0.04% 2.18% 2.61%
Israel 0.12% 0.76% 0.56% 0.32% 0.43% 1.89% 1.55%
Italy 0.96% 0.76% 1.21% 1.80% 1.13% 1.71% 1.46%
Japan 38.12% 17.46% 20.65% 14.74% 23.36% 2.16% 1.67%
Korea 1.11% 1.81% 4.64% 1.10% 1.71% 1.78% 1.45%
Luxembourg 0.03% 0.01% 0.01% 0.08% 0.03% 6.35% 4.87%
Netherlands 0.25% 0.79% 1.83% 1.26% 0.85% 2.48% 2.33%
New Zealand 0.08% 0.10% 0.14% 0.06% 0.09% 1.72% 3.30%
Norway 0.02% 0.20% 0.10% 0.28% 0.16% 2.12% 2.34%
Poland 0.00% 0.02% 0.01% 0.09% 0.03% 2.27% 2.19%
Portugal 0.01% 0.02% 0.01% 0.02% 0.02% 1.04% 1.01%
Romania 0.01% 0.02% 0.04% 0.02% 0.02% 1.53% 1.41%
Singapore 0.01% 0.08% 0.26% 0.06% 0.07% 2.10% 1.65%
Spain 0.10% 0.34% 0.12% 0.25% 0.22% 1.46% 1.30%
Sweden 1.01% 1.16% 0.88% 0.92% 1.02% 1.67% 1.61%
Switzerland 0.48% 1.23% 0.78% 1.58% 1.04% 1.52% 1.30%
United Kingdom 1.87% 2.14% 1.57% 3.49% 2.35% 2.25% 2.07%
United States 38.28% 55.33% 52.55% 51.35% 48.85% 4.61% 3.96%
Total Developed 99.43% 98.61% 97.80% 97.75% 98.56% 77.97% 71.25%
Developing countries
Argentina 0.02% 0.07% 0.00% 0.03% 0.04% 0.88% 1.48%
Brazil 0.04% 0.06% 0.04% 0.16% 0.08% 0.40% 0.80%
Chile 0.01% 0.01% 0.01% 0.09% 0.03% 0.70% 0.84%
China 0.19% 0.39% 1.48% 0.38% 0.44% 0.71% 0.74%
India 0.08% 0.22% 0.12% 0.38% 0.21% 0.21% 0.29%
Indonesia 0.00% 0.00% 0.00% 0.00% 0.00% 0.26% 0.43%
Iran 0.00% 0.01% 0.00% 0.02% 0.01% 1.13% 1.33%
Mexico 0.05% 0.04% 0.06% 0.28% 0.11% 0.83% 0.94%
Peru 0.00% 0.00% 0.00% 0.01% 0.00% 0.27% 0.38%
Philippines 0.01% 0.02% 0.11% 0.01% 0.03% 0.19% 0.30%
Russia 0.11% 0.38% 0.10% 0.47% 0.29% 3.05% 2.75%
Saudi Arabia 0.00% 0.04% 0.01% 0.10% 0.04% 3.00% 3.86%
South Africa 0.03% 0.10% 0.23% 0.31% 0.15% 1.73% 1.57%
Thailand 0.01% 0.03% 0.02% 0.00% 0.01% 0.50% 0.69%
Turkey 0.00% 0.01% 0.00% 0.01% 0.00% 0.70% 0.77%
United Arab Emirates 0.00% 0.01% 0.02% 0.00% 0.01% 7.46% 11.57%
Total Developing 0.57% 1.39% 2.20% 2.25% 1.44% 22.03% 28.75%

buildings and goods production areas of innovation compared to the transport and

energy areas. The uneven distribution of green patents entails that our results will

be mostly driven by the technological innovation process in the developed countries.

However, we argue that, as developing countries still account for around a fourth

of per capita emissions, their inclusion in our sample yields a more comprehensive

analysis of the innovation-emissions relationship35.

35Furthermore, developing countries are expected to experience an increase in their emissions
level in the next decades due to economic growth (Capuano, 2018). Hence, the inclusion of these
nations in our analysis is useful to draw policy implications.
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4.3 Control Variables

The control variables are collected from the Quality of Government Standard dataset

(2019 edition) and the World Development Indicators database. In detail, GDP per

capita (constant 2010$) is used to account for the impact of economic growth on

the environment. Furthermore, we have included the square of GDP per capita

to capture the nonlinear relationship between economic growth and environmental

quality, as highlighted by the EKC hypothesis. Trade openness, measured as the

sum of exports and imports of goods and services as percentage of GDP, is included

given its impact on environmental degradation (for a more detailed discussion, see

Grossman and Krueger, 1991 and Managi, Hibiki, and Tsurumi, 2009). Total pop-

ulation data is used to account for the human footprint on the environment36. FDI

inflows are included to control for the presence of the Pollution Haven hypothesis.

Foreign capitals can foster economic growth, which in turn leads to an increase in

carbon emissions. Fossil fuel energy consumption reports the percentage of energy

that is produced using non-renewable resources37. Furthermore, energy consumption

is strictly correlated to economic growth38. Finally, we include the level of democ-

racy index polity, since democratic governments have higher levels of environmental

quality (see, for example, Lægreid and Povitkina, 2018). The index ranges between

0 (least democratic) and 10 (most democratic).

Table 3: Summary statistics
Variable Mean Std. Dev. Min. Max. N

co2 capita 9.069 6.938 0.378 63.313 1739
ghg capita 12.78 14.91 1.363 322.633 1739
cc transport 22.536 98.434 0 1321.314 1739
cc energy 25.064 112.902 0 2191.538 1739
cc buildings 7.649 33.78 0 489.089 1739
cc goods 18.994 71.075 0 818.871 1739
cc tot 74.243 302.025 0 4820.812 1739
wdi gdpcap 25354.843 20791.44 263.231 113682.039 1626
wdi sq gdp 1074886192.321 1672560432.842 69290.359 12923606016 1626
wdi trade 72.217 59.603 8.385 441.604 1615
wdi pop 87.386 217.763 0.22 1351 1706
wdi fdiin 3.001 8.790 -58.323 252.308 1570
wdi fossil 77.908 18.782 10.255 100 1662
polity 7.806 3.026 0 10 1675

36For the sake of an easier interpretation of the coefficients, population is expressed in millions.
37These include oil, coal, petroleum and natural gas products.
38Some authors use the share of renewable energy instead of the fossil fuel share. However, due

to data availability, we have opted for the latter one. At the same time, we do not use total energy
consumption as a control variable in order to avoid any collinearity issue with the GDP variable.
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4.4 Unit root and cointegration tests

Unit root tests are common practice in the time series literature, where a large T

is available. Given the large time period examined in this paper, we test for the

presence of unit roots by using the Im-Pesaran-Shin (IPS) and the Fisher-type tests.

These two have the same null hypothesis, i.e. all panels contain a unit roots, but

different alternative hypotheses. The IPS alternative hypothesis tests if some panels

are stationary. On the other side, the Fisher-type alternative hypothesis is valid if

at least one panel is stationary. We subtract cross-sectional averages in order to

account for heterogeneity in the panel. Furthermore, both tests include one lag and

no trend.

As we can see from Table 4 the variables present a mixed order of integration. In

detail, the IPS test shows that only the FDI inflows variable is stationary in levels.

The Fisher-type tests yields some different results. The FDI inflows, democracy

index, transport, building and goods patents variables are stationary in levels. The

difference in results can be explained by the different alternative hypothesis of the

tests. On the other side, all variables are stationary in first differences.

Table 4: Unit root tests
Variable IPS Fisher IPS(1) Fisher(1)

co2 capita 3.1519 3.0977 -15.5463*** -16.8769***
ghg capita 1.6576 1.4820 -15.9453*** -17.2096***
cc transport na -10.0836*** na -29.5156***
cc energy 7.4947 -0.6904 -23.3895*** -24.6748***
cc building na -5.9727*** na -33.6337***
cc goods na -5.4205*** na -31.6006***
cc tot 8.1420 1.1470 -23.0950*** -24.6808***
wdi gdpcap 7.6306 6.6318 -14.2417*** -15.5378***
wdi sq gdp 10.4257 8.1111 -13.7455*** -15.0567***
wdi trade 3.4857 3.5242 -22.5302*** -24.2785***
wdi pop 6.0471 4.4821 -7.3974*** -8.0144***
wdi fossil 1.8949 1.2107 -18.7087*** -20.1441***
wdi fdiin -5.2845*** -5.7792*** -26.9003*** -28.4171***
polity na -2.7519*** na -18.1335***

Na=insufficient number of time periods to compute w-t-bar

Our unit root tests are concordant to the economic literature. Carbon emissions

and GDP are usually described as non-stationary processes. Álvarez-Herránz et al.

(2017) find evidence of I(1) series for both these variables. Similarly, Hossain (2012)

argues in favour of non-stationarity in levels for carbon emissions, GDP and trade

openness. On the other side, Ganda (2019) finds weak evidence of stationarity in the

patent variable for a panel including OECD countries over the period 2000-2014. At

the same time, the author finds that foreign direct investment inflows are stationary
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in levels, which is concordant to our results.

The presence of unit roots can yield to biased estimates if not properly accounted

for. The issue can be solved if the I(1) variables are cointegrated. However, the

cointegration tests showed contradicting results: the CO2 variable presented lack

of cointegration, while slightly significant cointegration was found for the GHG de-

pendent variable39. For these reasons, we estimate our model using first-differenced

variables.

5 Estimation result

The impact of technological innovation on carbon emissions is examined by using the

number of patents related to climate change mitigation technology. As previously

discussed, we take advantage of the detailed disaggregation of our patent variable to

decompose the analysis into specific areas of innovation. The chapter presents the

results of the estimation strategy using the four different patent related variables:

transport, energy, buildings and goods production technologies. Furthermore, an

extra regression including the sum of our four indicators, i.e. cc tot is carried out in

order to capture the overall impact of climate change related technologies. For each

patent variable, we run two regressions: the first one using CO2 per capita emissions

as the dependent variable and the second one using GHGs per capita emissions.

First, we present our findings obtained by the baseline empirical strategy. Then,

we divide the sample in developed and developing countries as a robustness check.

Finally, we compare the results with the previous literature.

5.1 Baseline estimation

The baseline estimation follows the model specified in Chapter 3. We run a re-

gression with the same order of patent indicators for the two different dependent

variables, i.e. CO2 and GHGs per capita emissions. Tables 5 and 6 are organised as

follows. Column 1 reports the impact of transport related technologies for CO2 and

GHGs emissions per capita, respectively. Column 2 illustrates the technological in-

novation impact in the energy production. Column 3 presents the effect of building

related technologies on pollution. Column 4 illustrates the impact of technological

innovation in the production of goods on carbon emissions. Finally, column 5 re-

ports the overall impact of the entire range of climate change technologies obtained

by the sum of the four variables. Given the different nature of the data, we will only

comment on the sign and relative magnitude of the coefficients.

39We have decided to not include the results of the cointegration tests due to their unconclu-
siveness. A possible explanation on the lack of cointegration is the large persistence of unmodeled
natural emissions (for a more detailed analysis, see Kaufmann, Kauppi, and Stock, 2006).
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As expected, the relationship between green patents and emissions is hetero-

geneous. The patent variables estimated coefficients are all negative but vary in

significance levels and magnitudes. Overall, technological innovation has a more

significant and greater impact on GHG per capita emissions. This can be explained

by the different types of emissions that are related to, for example, transport, pro-

duction of goods and energy.

Table 5 reports the estimation results for the impact of green technologies on CO2

emissions per capita. In column 1 the estimated coefficient for the transport patent

variable has the expected negative sign, but it is not significant. On the other side,

the estimated coefficient in column 2 is negative and significant at the 5 percent level.

This entails that technological innovation in the energy sector effectively reduces

CO2 emissions. The buildings coefficient in column 3 enters with the expected

negative sign, but it is not significant. Similarly, in column 4 the coefficient for

patents in goods production is negative, but not significant and very small. Finally,

column 5 reports the estimation results when using the sum of all the climate change

related technology. As it can be seen, the coefficient is negative and significant at

the 5 percent level40.

The control variables enter with the expected signs. First, GDP per capita is

significant at the 1 percent level and positive. This is in line with the previous

literature findings: economic growth increases carbon emissions (see, for example,

Saboori et al., 2014 and Muhammad, 2019). On the other side, the GDP per capita

squared coefficient is negative and significant (at the 1 percent level), which confirms

the EKC hypothesis. In fact, there is a nonlinear relationship between economic

growth and CO2. These results are concordant with the predominant literature (for

a more detailed discussion, see Hu et al., 2018 and Zoundi, 2017). The trade variable

enters with a positive, yet nonsignificant coefficient. Interestingly, the population

variable (expressed in millions) has a negative and significant (at the 1 percent

level) coefficient. This entails that as population grows, carbon emissions decline41.

The fossil fuel energy consumption coefficient enters with a positive and significant

sign. In fact, non-renewable energy consumption is one of the major contributors

to carbon emissions. This is in line with the findings of Boontome et al. (2017),

Dogan and Seker (2016) and Long et al.(2015). On the other side, the FDI inflows

variable has a negative and significant (at the 5 percent level) coefficient, which

entails that FDI inflows lead to a reduction in carbon emissions42. Finally, the level

40The comparison between the two significant coefficients, i.e. the energy and the total techno-
logical innovation illustrates how the former has double the impact in reducing carbon emissions.
The result can be partly explained by the large degree of heterogeneity in the green patent variable
in column 5.

41The finding can be partly explained by the fact that, since emissions are expressed in per
capita, an increase in the population, i.e. the denominator, will reduce emissions.

42According to Cheng et al. (2019), FDI inflows have a two-fold impact on the environment: the
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Table 5: OLS fixed effects estimation results for CO2 emissions per capita
Variables (1) (2) (3) (4) (5)

cc transport -0.000585
(0.000357)

cc energy -0.000332**
(0.000127)

cc buildings -0.000986
(0.00105)

cc goods -2.00e-05
(0.000352)

cc tot -0.000166**
(6.59e-05)

wdi gdpcap 0.000253*** 0.000252*** 0.000253*** 0.000253*** 0.000252***
(4.48e-05) (4.48e-05) (4.49e-05) (4.49e-05) (4.48e-05)

wdi sq gdp -1.23e-09*** -1.23e-09*** -1.24e-09*** -1.24e-09*** -1.24e-09***
(3.97e-10) (3.98e-10) (3.99e-10) (4.00e-10) (3.98e-10)

wdi trade 0.00599 0.00599 0.00599 0.00599 0.00599
(0.00445) (0.00446) (0.00445) (0.00446) (0.00445)

wdi pop -0.0426*** -0.0425*** -0.0429*** -0.0424*** -0.0426***
(0.00659) (0.00655) (0.00658) (0.00644) (0.00656)

wdi fossil 0.105*** 0.105*** 0.105*** 0.105*** 0.105***
(0.0268) (0.0267) (0.0268) (0.0267) (0.0267)

polity -0.0149 -0.0149 -0.0150 -0.0151 -0.0149
(0.0102) (0.0102) (0.0102) (0.0102) (0.0102)

wdi fdiin -0.00262** -0.00262** -0.00262** -0.00262** -0.00262**
(0.00125) (0.00125) (0.00125) (0.00126) (0.00125)

Constant 0.0589 0.0623 0.0614 0.0601 0.0613
(0.0478) (0.0488) (0.0489) (0.0487) (0.0487)

Observations 1,452 1,452 1,452 1,452 1,452
N 47 47 47 47 47
R-squared 0.296 0.296 0.296 0.295 0.296
Country FE YES YES YES YES YES
Year FE YES YES YES YES YES
Hausman Test 22.20*** 26.85*** 23.09*** 28.17*** 24.48***

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

of democracy variable has a negative, yet nonsignificant coefficient.

Table 6 reports the estimation results for the impact of green patents on GHG

emissions per capita. We follow the same empirical strategy used in Table 5. The

results are similar to the ones discussed above. However, there is a general increase

in the magnitude and in the level of significance of the estimated patent coefficients.

halo effect and the pollution haven hypothesis. The former entails a positive effect of FDI inflows,
i.e. they lead to an improvement in the environmental quality of the country of destination. The
latter implies the opposite, i.e. FDI inflows lead to an increase in the emissions due to scale effect.
In our sample, the estimated coefficient shows the presence of the halo effect.
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First, the transport related technology coefficient in column 1 has the same sign

as previously, but it is now significant at the 5 percent level. Thus, technological

innovation in the transport sector significantly reduces GHG emissions per capita.

In column 2, the energy related patent variable has a slightly larger coefficient

compared to Table 5. The patent variable coefficients in column 3 and 4 follow the

same path as above, i.e. they are negative but not significant43. On the other side,

the aggregated variable in column 5 is negative and significant (at the one percent

level). Furthermore, the coefficient is larger compared to the case with CO2 as the

dependent variable. Finally, the control variables follow the same path as before.

The tables also display the Hausman test in order to evaluate the accuracy of our

regression analyses. The Hausman test is performed by comparing the accuracy of

the fixed effects model against the random effects model. The Null-hypothesis is that

the two models do not significantly differ between each other. Given the significance

of the test at the one percent level, we can safely reject the Null-hypothesis. Hence,

the fixed effects model outperforms the random effects for all specifications.

As mentioned in Chapter 3, in order to check for the robustness of our empiri-

cal strategy we have proceeded to augment our baseline regression with the lagged

dependent variable as an additional regressor. The results are showed in Table 2a

and Table 3a in the Appendix. In line with our expectations, both the CO2 and

GHG lagged dependent variables enter with a non-significant coefficient44. Interest-

ingly, the magnitudes of the green patent estimated coefficients slightly change. For

example, both the cc energy and the cc tot coefficients are now larger compared to

our baseline regression with CO2 emissions per capita as the dependent variable.

The comparison with GHG emissions per capita as the dependent variable follows

the same path. The cc energy coefficient is now larger, whereas the cc transport is

smaller.

43Interestingly, the cc buildings estimated coefficient is larger compared to all the other patent
variables for both the CO2 and GHG estimations (however not significant). This goes somewhat
against our expectations, since we would assume that the impact of improved energy efficiency in
buildings has a smaller effect compared to, for example, improvements in the transportation or
energy production sector.

44This confirms the hypothesis that the use of first differenced variables reduces the dynamics
included in these variables. Furthermore, it proves that the use of a static model is appropriate
given that the estimated lagged emissions coefficients are not significant.
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Table 6: OLS fixed effects estimation results for GHG emissions per capita
Variables (1) (2) (3) (4) (5)

cc transport -0.000808**
(0.000364)

cc energy -0.000353**
(0.000154)

cc buildings -0.00224
(0.00158)

cc goods -0.000286
(0.000516)

cc tot -0.000227***
(8.23e-05)

wdi gdpcap 0.000656*** 0.000655*** 0.000656*** 0.000656*** 0.000655***
(0.000218) (0.000218) (0.000218) (0.000218) (0.000218)

wdi sq gdp -3.44e-09** -3.44e-09** -3.44e-09** -3.44e-09** -3.44e-09**
(1.31e-09) (1.31e-09) (1.31e-09) (1.31e-09) (1.31e-09)

wdi trade 0.00721 0.00721 0.00722 0.00722 0.00721
(0.00597) (0.00598) (0.00597) (0.00598) (0.00597)

wdi pop -0.0254* -0.0253* -0.0263* -0.0252* -0.0254*
(0.0133) (0.0132) (0.0133) (0.0132) (0.0133)

wdi fossil 0.0882*** 0.0879*** 0.0880*** 0.0877*** 0.0880***
(0.0309) (0.0308) (0.0309) (0.0308) (0.0309)

polity -0.0250 -0.0251 -0.0251 -0.0251 -0.0249
(0.0281) (0.0282) (0.0282) (0.0282) (0.0282)

wdi fdiin -0.00554* -0.00553* -0.00553* -0.00554* -0.00554*
(0.00314) (0.00315) (0.00314) (0.00315) (0.00314)

Constant -0.186 -0.182 -0.182 -0.184 -0.183
(0.131) (0.132) (0.131) (0.131) (0.131)

Observations 1,452 1,452 1,452 1,452 1,452
N 47 47 47 47 47
R-squared 0.245 0.245 0.245 0.245 0.245
Country FE YES YES YES YES YES
Year FE YES YES YES YES YES
Hausman Test 27.96*** 34.27*** 29.54*** 35.23*** 31.31***

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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5.2 Developed and developing countries

In order to further investigate the heterogeneous impact of green patents on car-

bon emissions, we divide our panel into two subsamples: developed and developing

countries45. In fact, as previously discussed, the degree of technological innovation

and its impact differs depending on the GDP level of a country. For example, the

major innovators are developed nations, while emerging economies usually lack suf-

ficient resources to invest in the development of such technologies. Furthermore,

the adoption of new technologies is assumed to be wider in high-income economies,

while developing countries usually lag behind. The following four tables illustrate

the results of our empirical estimation. First, we report the regression results for

CO2 and GHG per capita emissions for developed countries. Second, the last two

tables illustrate the results for the developing economies subsample.

Table 7 reports the estimated coefficients for the panel of developed countries

using CO2 emissions as the dependent variable. As expected, the division into the

two subsamples yields some different results. The transport-related patent technol-

ogy enters with the same (negative) sign, but it is now significant at the 5 percent

level. On the other side, the energy and buildings patent variables enter with the

expected negative sign, but they are not significant. Surprisingly, the cc goods esti-

mated coefficient is positive but not significant46. Finally, cc tot estimated coefficient

is negative but not significant.

The control variables follow the same path as our baseline model. The income

variable enters with a positive and significant coefficient, while squared income coef-

ficient is negative. Hence, the EKC hypothesis holds for this subsample of countries.

Interestingly, now the polity coefficient is negative and significant at the 10 and 5

percent level. The negative sign partly confirms the hypothesis that democratic

governments (in high-income countries) exert a positive role in reducing carbon

emissions (similar results are found by Lægreid and Povitkina, 2018, for a panel of

156 countries).

Table 8 reports the regression results when using GHG emissions per capita as the

dependent variable for the panel of developed countries. In line with our previous

findings, only the transport related technology is significant (it is now at the 1

percent level). The cc goods estimated coefficient is still nonsignificant, positive,

but very small. As in our baseline regression, the magnitudes of the estimated

45We use the classification adopted by the UN World Economic Situation and Prospects re-
port (2019) to divide countries according to the level of development. The developed countries
subsample includes 31 economies, while the developing one includes 16 economies.

46The positive sign of the coefficient can be partly explained by the fact that the variable includes
patents that improve energy efficiency in the production of goods. As highlighted by Yan et al.
(2017), energy efficiency can also lead to an increase in energy consumption, which in turn increases
emissions.
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Table 7: Estimation results for CO2 emissions per capita in developed countries
Variables (1) (2) (3) (4) (5)

cc transport -0.000667**
(0.000280)

cc energy -0.000237
(0.000174)

cc buildings -0.00119
(0.00114)

cc goods 0.000200
(0.000395)

cc tot -0.000144
(8.57e-05)

wdi gdpcap 0.000208*** 0.000207*** 0.000207*** 0.000207*** 0.000207***
(7.33e-05) (7.35e-05) (7.32e-05) (7.33e-05) (7.34e-05)

wdi sq gdp -1.00e-09* -1.00e-09* -1.00e-09* -1.00e-09* -1.00e-09*
(5.60e-10) (5.62e-10) (5.61e-10) (5.62e-10) (5.61e-10)

wdi trade 0.00556 0.00558 0.00559 0.00562 0.00558
(0.00602) (0.00604) (0.00604) (0.00607) (0.00603)

wdi pop 0.0493 0.0531 0.0517 0.0561 0.0529
(0.0578) (0.0553) (0.0560) (0.0560) (0.0567)

wdi fossil 0.145*** 0.145*** 0.145*** 0.145*** 0.145***
(0.0305) (0.0304) (0.0305) (0.0305) (0.0305)

polity -0.0586* -0.0590* -0.0596** -0.0598** -0.0588*
(0.0289) (0.0290) (0.0289) (0.0289) (0.0290)

wdi fdiin -0.00231* -0.00229* -0.00230* -0.00228* -0.00229*
(0.00124) (0.00125) (0.00125) (0.00125) (0.00124)

Constant 0.0928 0.0972 0.0965 0.0940 0.0962
(0.0742) (0.0754) (0.0758) (0.0755) (0.0755)

Observations 925 925 925 925 925
N 31 31 31 31 31
R-squared 0.392 0.391 0.391 0.391 0.391
Country FE YES YES YES YES YES
Year FE YES YES YES YES YES

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

parameters are slightly larger compared to Table 7.

The following tables illustrate the findings for the developing countries subsam-

ple. Table 9 reports the regression results with CO2 as the dependent variable. As

expected, the change in sample yields different results compared to the panel with

high-income economies. In fact, the transport related variable is not significant

anymore. On the other side, the cc goods variable now enters with a negative and

significant coefficient at the 5 percent level. Hence, when comparing the two sub-

samples, our findings show a dichotomous effect of technological innovation in the

production of goods. In column 5, the cc tot estimated coefficient is now significant
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Table 8: Estimation results for GHG emissions per capita in developed countries
Variables (1) (2) (3) (4) (5)

cc transport -0.000776***
(0.000259)

cc energy -0.000249
(0.000195)

cc buildings -0.00200
(0.00177)

cc goods 3.60e-05
(0.000548)

cc tot -0.000178
(0.000113)

wdi gdpcap 0.000229*** 0.000229*** 0.000229*** 0.000228*** 0.000229***
(7.50e-05) (7.52e-05) (7.49e-05) (7.50e-05) (7.51e-05)

wdi sq gdp -1.02e-09* -1.02e-09* -1.02e-09* -1.02e-09* -1.02e-09*
(5.50e-10) (5.53e-10) (5.50e-10) (5.53e-10) (5.52e-10)

wdi trade 0.00514 0.00517 0.00516 0.00520 0.00516
(0.00586) (0.00588) (0.00587) (0.00591) (0.00587)

wdi pop 0.0515 0.0563 0.0516 0.0604 0.0555
(0.0723) (0.0682) (0.0719) (0.0682) (0.0705)

wdi fossil 0.147*** 0.146*** 0.147*** 0.146*** 0.147***
(0.0308) (0.0307) (0.0308) (0.0308) (0.0308)

polity -0.0874* -0.0879* -0.0885* -0.0885* -0.0876*
(0.0461) (0.0461) (0.0461) (0.0461) (0.0461)

wdi fdiin -0.00199 -0.00197 -0.00198 -0.00197 -0.00198
(0.00117) (0.00118) (0.00118) (0.00119) (0.00118)

Constant 0.0802 0.0850 0.0858 0.0819 0.0843
(0.0823) (0.0833) (0.0838) (0.0833) (0.0833)

Observations 925 925 925 925 925
N 31 31 31 31 31
R-squared 0.388 0.387 0.388 0.387 0.387
Country FE YES YES YES YES YES
Year FE YES YES YES YES YES

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

at the 10 percent level.

As illustrated by Table 10, the estimation strategy using GHG emissions as

the dependent variable does not yield significant results for most of our variables of

interest. In fact, only technological innovation in the production of goods appears to

be slightly significant (at the 10 percent level). On the other side, the energy-related

patents variable now enters with a positive, yet non-significant, coefficient47.

47A similar finding is illustrated by Cheng et al. (2019). The authors find evidence of an increase
in carbon emissions due to the development of green patents for the BRIICS economies. A possible
explanation is the large heterogeneity of the patent indicator. In other words, the innovation in the
energy sector in developing countries is not primarily directed towards low-carbon technologies.
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Table 9: Estimation results for CO2 emissions per capita in developing countries
Variables (1) (2) (3) (4) (5)

cc transport -0.00324
(0.00508)

cc energy -0.00242
(0.00424)

cc buildings -0.000312
(0.00998)

cc goodsprod -0.0135**
(0.00595)

cc tot -0.00297*
(0.00150)

wdi gdpcap 0.000267*** 0.000267*** 0.000267*** 0.000268*** 0.000268***
(6.90e-05) (6.87e-05) (6.93e-05) (6.77e-05) (6.86e-05)

wdi sq gdp -1.29e-09 -1.29e-09 -1.28e-09 -1.29e-09 -1.31e-09
(1.12e-09) (1.11e-09) (1.13e-09) (1.11e-09) (1.11e-09)

wdi trade 0.00701* 0.00702* 0.00703* 0.00714* 0.00698*
(0.00355) (0.00356) (0.00352) (0.00371) (0.00355)

wdi pop -0.0266*** -0.0272*** -0.0258*** -0.0282*** -0.0303***
(0.00540) (0.00602) (0.00475) (0.00559) (0.00603)

wdi fossil 0.0303** 0.0302** 0.0303** 0.0304** 0.0301**
(0.0110) (0.0110) (0.0110) (0.0111) (0.0110)

polity 0.00130 0.00117 0.00140 0.00242 0.00127
(0.00970) (0.00973) (0.00964) (0.00986) (0.00966)

wdi fdiin -0.0256 -0.0255 -0.0254 -0.0253 -0.0255
(0.0184) (0.0183) (0.0183) (0.0184) (0.0184)

Constant 0.0612 0.0628 0.0584 0.0636 0.0719
(0.0410) (0.0417) (0.0428) (0.0398) (0.0428)

Observations 521 521 521 521 521
N 16 16 16 16 16
R-squared 0.247 0.247 0.246 0.250 0.248
Country FE YES YES YES YES YES
Year FE YES YES YES YES YES

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 10: Estimation results for GHG emissions per capita in developing countries
Variables (1) (2) (3) (4) (5)

cc transport -0.00514
(0.00880)

cc energy 0.00125
(0.0110)

cc buildings -0.00350
(0.0145)

cc goodsprod -0.0160*
(0.00878)

cc tot -0.00279
(0.00337)

wdi gdpcap 0.000992*** 0.000991*** 0.000991*** 0.000992*** 0.000992***
(0.000134) (0.000134) (0.000134) (0.000133) (0.000134)

wdi sq gdp -3.33e-09 -3.31e-09 -3.32e-09 -3.32e-09 -3.34e-09
(3.81e-09) (3.83e-09) (3.81e-09) (3.80e-09) (3.82e-09)

wdi trade 0.0107** 0.0108** 0.0107** 0.0109** 0.0107**
(0.00402) (0.00400) (0.00395) (0.00411) (0.00399)

wdi pop -0.00673 -0.00444 -0.00679 -0.00832 -0.00959
(0.0164) (0.0195) (0.0163) (0.0157) (0.0179)

wdi fossil 0.00313 0.00327 0.00315 0.00323 0.00296
(0.0239) (0.0238) (0.0240) (0.0240) (0.0239)

polity -0.0155 -0.0153 -0.0154 -0.0142 -0.0155
(0.0316) (0.0323) (0.0317) (0.0316) (0.0316)

wdi fdiin -0.142 -0.142 -0.142 -0.142 -0.142
(0.101) (0.101) (0.101) (0.101) (0.101)

Constant -0.311 -0.318 -0.311* -0.309* -0.303
(0.180) (0.189) (0.174) (0.175) (0.183)

Observations 521 521 521 521 521
N 16 16 16 16 16
R-squared 0.344 0.344 0.344 0.344 0.344
Country FE YES YES YES YES YES
Year FE YES YES YES YES YES

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

6 Discussion

The hypothesis of a reduction effect in emissions due to technological innovation

is confirmed by our findings. The empirical investigation shows heterogeneous ef-

fects of green innovation on environmental quality. However, we observe some com-

mon trends. First, cc tot enters with a negative and significant (at the 1 percent

level) coefficient in both our baseline specifications. Second, green innovation has a

greater impact in reducing GHG emissions, compared to CO2 emissions. This can

be explained by the more inclusive measure of emissions represented by the GHGs

dependent variable. In fact, as already discussed, these technologies aim at reducing
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various types of emissions. Third, the transport and energy related technologies have

the largest and most significant impact in the reduction of emissions. On the other

side, we find low significant effects from innovations in the production of goods or in

the improvement in buildings energy efficiency. These findings are to be expected,

since transportation and energy production account for a large share in the global

emissions (Edenhofer, 2015). Furthermore, as illustrated in Figure 1, the number of

granted patents in the energy and transport sector is significantly larger than the

other two areas of innovation. However, considerable care should be exercised when

investigating the impact of green innovation on environmental quality. In fact, not

all technologies have a positive effect in reducing carbon emissions. Improvements

in energy efficiency can also lead to an increase in production and thus to an offset

in the benefits accrued from mitigating the impact of economic activities (Z. Yan

et al., 2017).

This paper provides additional support for the positive relation between green

patents and environmental quality. Overall, our findings are in line with the previous

literature. For example, the heterogeneous effect of green innovation is also high-

lighted by Wang et al. (2012). The authors find evidence of a significant reduction

in CO2 emissions stemming from the development of carbon-free energy technolo-

gies, but not from less carbon neutral technologies. Similarly, Weina et al. (2016)

find evidence of an increase in environmental quality due to green innovation48. In

detail, technological innovation has a significant impact in the reduction of total

CO2 emissions. Yan et al. (2017) find evidence of a nonhomogeneous relationship

between technological innovation and carbon emissions. Specifically, only patents

related to low-carbon technologies are found to significantly reduce CO2 emissions,

while other environmental related technologies have a nonsignificant impact49. The

positive effect of energy related innovation on carbon emissions is also illustrated by

Jin et al. (2017) for the case of China. The authors find evidence of a reduction in

emissions due to technological development aimed at fostering energy efficiency in

the energy sector.

In contrast, the study conducted by Cheng et al. (2019) shows opposite results.

Technological innovation leads to an increase in carbon emissions in OECD countries.

However, the estimated coefficients are not significant. Heterogeneous findings are

also illustrated by Mensah et al. (2018). Technological innovation reduces carbon

emissions in some of the developed countries examined, while it increases CO2 for

48In Wang et al. (2012), the analysis is carried out on a panel of Chinese provinces, rather than
countries. Furthermore, there is a large degree of heterogeneity between regions. Weina et al.
(2016) collect data from Italian provinces and use a STIRPAT in the estimation strategy.

49The insignificant impact of these technologies is attributed to their relatively low quality in
inducing ground-breaking innovation. At the same time, the authors argue that these technologies
might cause a rebound effect, which will increase the level of energy consumption and consequently,
emissions.
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some others. Fernández et al. (2018) find evidence of a reduction in emissions in

developed economies, while the estimated coefficient of the technology variable enters

with a positive and significant sign for China. In conclusion, the relationship between

green patents and environmental degradation varies depending on the technologies

and countries examined.

The lack of significant results in emissions reduction for the sample of developing

countries is in line with Chen and Lei (2018). The authors find evidence of a

greater impact in emissions reduction for high polluting countries. These findings

can be explained by the linkage between economic growth, emissions and technology.

As previously discussed, developed countries are the largest emitters, while at the

same time they invest large resources in developing new technologies. Hence, green

innovation leads to a greater reduction effect in these countries, compared to low

emitters. Similar findings are presented by Cheng et al. (2019). The authors claim

that the nonsignificant impact of technological innovation on carbon emissions can

be explained by the lack of sufficient resources to implement these technologies on a

large scale. In addition, restrictions in the technological diffusion between countries

can hinder technologies adoption (Cheng, X. Ren, Zhen Wang, and C. Yan, 2019,

p.9). For example, Mensah et al. (2018) argue that low degree of technological

diffusion, lack of resources to patent technologies and intellectual property rights

are some of the causes behind the limited impact of technological innovations in

reducing emissions. In our case, the differences in significance levels for the emerging

economies subsample can be explained by the relatively small number of patents

developed by these countries. In fact, despite the contribution of some emerging

economies, e.g. India and China, to the development of low carbon technologies has

increased in the recent past, developed countries still account for 90 percent of total

innovation (for a more detailed analysis, see Copeland, Žarnic, and Cervantes, 2018,

p.9). Another possible explanation is that these innovations have a limited impact

in reducing emissions, due to for example, their scarce adoption in the emerging

economies. Unfortunately, we are unable to further examine the reason behind the

low significance of our results due to the lack of detailed information on the quality

of patents granted.

Our paper presents some limitations. As we have discussed in Chapter 2, despite

patent data provides a more detailed measure of the technological innovation process,

it presents some drawbacks. For example, for our analysis we have collected data

on the number of granted patents by the US Patent and Trademark Office. As

previously highlighted, the United States account for almost half of the total granted

patents. This unbalanced distribution is to be expected given the source of our data,

i.e. the USPTO. At the same time, given the high costs and cumbersome procedures

that inventors have to face when submitting a patent file application, it is likely
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that the same innovation has been patented in the country of origin of the inventor

(Popp, Juhl, and D. K. Johnson, 2003). The large discrepancy in patents granted

between developed and developing countries is attributable to the fact that inventors

from emerging economies might not have enough resources to file their patents at

the USPTO. Thus, it can be argued that some inventions are still patented in the

country of origin but are not included in our data50.

Our investigation highlights the importance of technological innovation in re-

ducing carbon emissions. Several authors have argued in favour for an increase in

the global effort to develop more advanced technologies with the aim to reduce the

impact of economic development on the environment (see among others, Popp, 2011

and Raiser, Naims, and Bruhn, 2017). In fact, technology together with drastic

changes in our consumption patterns, is the major ally in reducing carbon emis-

sions. Given that the energy and transportation sector showed the most significant

results, R&D expenditures should be directed toward these areas of innovation. At

the same time, as we have discussed, developing countries need a large economic

support to develop and adopt cutting-edge technologies on a wider scale. Thus, a

strong international coordination is needed to increase the global adoption of cleaner

technologies and reduce carbon emissions. Furthermore, international cooperation

is required to reduce the technological gap between developed and developing coun-

tries (Copeland, Žarnic, and Cervantes, 2018). The fast growth rates of emerging

economies will undoubtedly exert an increasing pressure on the environment (Ca-

puano, 2018). Yet, as highlighted by Andersson and Karpestam (2013), the mere

adoption of technologies from developed countries might not be sufficient to reduce

carbon emissions. This entails the need of large investments in the development

of low-carbon technologies with a higher reduction potential compared to the ones

already developed.

According to Raiser et al. (2017), green policies and intellectual property rights

are paramount in the role of spreading technological innovation and its implemen-

tation. The role of patents is two-fold. First, since patents aim at protecting a

technology, they incentivise innovation. Second, a patent grants a monopoly to the

inventor, which is a barrier to technological diffusion (Raiser et al., 2017). The

uneven distribution of climate change related patents shows the quasi-monopolistic

position held by developed countries in the realm of climate change mitigation tech-

nologies (as argued, for example, by Dechezleprêtre et al., 2011 and Latif et al.,

50A more comprehensive measure of the global innovation process can be attained by using
the Triadic Patent data from the OECD dataset. This includes all the patents filed at the three
largest patenting offices, i.e. the USPTO, the EPO (European Patent Office) and the JPO (Japan
Patent Office). However, this indicator only reports the number of patents applications and not
the number of patents granted. Hence, given that granted patents provide a more meaningful and
significant measure of technological innovation, we have opted for using the data from the USPTO.
Further research should be directed toward a more comprehensive indicator of patent counts.
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2011). Hence, top-down transfers of technology together with a global effort in the

development of low-carbon technologies are paramount to generate a more effective

action in mitigating the effects of climate change.

7 Conclusion

In our paper, we examined the relationship between technological innovation and

emissions. The analysis was conducted on a sample of 47 countries over the period

1976-2012. In order to measure green innovation, we used the number of climate

mitigation patents granted by the USPTO. We believe that granted patents provide

a more relevant indicator of innovation compared to both R&D expenditures and

number of patents applications. The empirical evidence based on the EKC frame-

work showed a significant role of technological innovation in reducing both CO2 and

GHG per capita emissions. We also find evidence of a large heterogeneity in the

impact of green technologies depending on the technological area examined. Sim-

ilarly, the division of the sample into developed and developing countries provides

additional support for the nonhomogeneous impact of technological innovation. The

paper findings are in line with the previous literature. Our study however presents

some limitations. The use of data from the USPTO entails that developed countries

account for a disproportionally large share of total granted patents. Hence, this gap

represents a shortcoming in a potential generalisation of our results, especially in

the case of developing countries. Careful attention should be paid on the different

impact of green innovation between low and high-income countries. Further investi-

gations should rely on a more comprehensive indicator of technological innovation.
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Appendix

Table A1: List of selected countries
Argentinaa France Luxembourg Singapore
Australia Germany Mexicoa South Africaa

Austria Greece Netherlands South Korea
Belgium Hungary New Zealand Spain
Brazila Iceland Norway Sweden
Canada Indiaa Perua Switzerland
Chilea Indonesiaa Philippinesa Thailanda

Chinaa Irana Poland Turkeya

Czech Republic Ireland Portugal United Arab Emiratesa

Denmark Israel Romania United Kingdom
Estonia Italy Russiaa United States
Finland Japan Saudi Arabiaa

Note: a indicates developing countries
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Table A2: OLS fixed effects estimation results for lagged CO2 emissions per capita
Variables (1) (2) (3) (4) (5)

L.co2 capita -0.0435 -0.0437 -0.0435 -0.0435 -0.0436
(0.0567) (0.0568) (0.0568) (0.0568) (0.0568)

cc transport -0.000453
(0.000321)

cc energy -0.000420***
(0.000133)

cc buildings -0.00115
(0.00103)

cc goods -0.000198
(0.000356)

cc tot -0.000179**
(6.78e-05)

wdi gdpcap 0.000261*** 0.000261*** 0.000261*** 0.000261*** 0.000261***
(5.25e-05) (5.24e-05) (5.25e-05) (5.26e-05) (5.24e-05)

wdi sq gdp -1.27e-09*** -1.26e-09*** -1.27e-09*** -1.27e-09*** -1.26e-09***
(4.33e-10) (4.34e-10) (4.34e-10) (4.35e-10) (4.33e-10)

wdi trade 0.00580 0.00580 0.00580 0.00581 0.00580
(0.00464) (0.00464) (0.00464) (0.00465) (0.00464)

wdi pop -0.0440*** -0.0439*** -0.0444*** -0.0438*** -0.0440***
(0.00657) (0.00657) (0.00659) (0.00646) (0.00658)

wdi fossil 0.104*** 0.104*** 0.104*** 0.104*** 0.104***
(0.0266) (0.0265) (0.0266) (0.0265) (0.0265)

polity -0.0155 -0.0154 -0.0156 -0.0155 -0.0154
(0.0105) (0.0105) (0.0105) (0.0105) (0.0105)

wdi fdiin -0.00270** -0.00270** -0.00270** -0.00270** -0.00270**
(0.00133) (0.00133) (0.00133) (0.00134) (0.00133)

Constant 0.0413 0.0417 0.0409 0.0397 0.0414
(0.0711) (0.0710) (0.0714) (0.0708) (0.0711)

Observations 1,421 1,421 1,421 1,421 1,421
N 47 47 47 47 47
R-squared 0.297 0.297 0.297 0.297 0.297
Country FE YES YES YES YES YES
Year FE YES YES YES YES YES

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table A3: OLS fixed effects estimation results for lagged GHG emissions per capita
Variables (1) (2) (3) (4) (5)

L.ghg capita 0.0267 0.0268 0.0267 0.0267 0.0267
(0.0331) (0.0332) (0.0331) (0.0331) (0.0332)

cc transport -0.000680**
(0.000323)

cc energy -0.000419***
(0.000155)

cc buildings -0.00231
(0.00154)

cc goods -0.000364
(0.000515)

cc tot -0.000228***
(8.43e-05)

wdi gdpcap 0.000646*** 0.000645*** 0.000646*** 0.000646*** 0.000646***
(0.000224) (0.000224) (0.000223) (0.000224) (0.000224)

wdi sq gdp -3.38e-09** -3.38e-09** -3.38e-09** -3.38e-09** -3.38e-09**
(1.34e-09) (1.34e-09) (1.34e-09) (1.34e-09) (1.34e-09)

wdi trade 0.00701 0.00701 0.00701 0.00701 0.00701
(0.00604) (0.00604) (0.00603) (0.00604) (0.00604)

wdi pop -0.0243* -0.0241* -0.0251* -0.0240* -0.0242*
(0.0126) (0.0125) (0.0126) (0.0125) (0.0126)

wdi fossil 0.0882*** 0.0880*** 0.0881*** 0.0878*** 0.0881***
(0.0315) (0.0314) (0.0314) (0.0314) (0.0314)

polity -0.0257 -0.0257 -0.0258 -0.0257 -0.0256
(0.0290) (0.0290) (0.0290) (0.0290) (0.0290)

wdi fdiin -0.00538* -0.00538* -0.00538* -0.00538* -0.00538*
(0.00317) (0.00318) (0.00317) (0.00318) (0.00317)

Constant -0.297 -0.298 -0.297 -0.300 -0.298
(0.225) (0.225) (0.225) (0.225) (0.225)

Observations 1,421 1,421 1,421 1,421 1,421
N 47 47 47 47 47
R-squared 0.247 0.247 0.247 0.247 0.247
Country FE YES YES YES YES YES
Year FE YES YES YES YES YES

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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