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Abstract

Automated Twitter accounts, or Twitter bots, have gained increased attention
lately. In particular, a novel type of bot, so called social bots, are piquing peo-
ples’ interest, as these bots have recently been involved in a number of political
events. Most of the previous work on how to detect bots has not distinguished
between such novel bot types, and other, less sophisticated ones. Instead, they
have all been lumped together, producing models to detect automated behaviour
in general. Although indeed useful, the above approach might cause issues when
the task at hand concerns one particular type of bot account. This thesis there-
fore attempts at making the classification of bots more fine grained, viewing
social bots, traditional spambots, and fake followers as three separate bot cate-
gories, to be classified together with the category for actual human users (called
”genuine users”). Four machine learning methods are trained and compared
for this purpose, showing that the random forest performs slightly better than
the rest in all performance measures used. However, all models yield an overall
accuracy above 90%, which is relatively high compared to similar studies in the
field. The analysis also indicates that data sampling has been biased, skewing
the data to yield some unexpected results. For instance, genuine users show
much more activity than would be expected of the average human-controlled
Twitter account. Additionally, traditional bots, which are supposed to be the
easiest to classify, instead appear to be the opposite. If the data sampling has
indeed been biased, the validity of the models trained on this skewed data is
called into question. Hence, more research into sampling techniques is sug-
gested, and it is concluded that the models produced should be tested on more
diverse datasets. Without these kinds of repeated studies, the impact of the
supposed sampling bias, and consequently the usefulness of the models in real
world situations, cannot be properly assessed.
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1 Introduction

1.1 Background

In March 2006, a group of people at the podcast company Odeo created the
first prototype of what would later become one of the largest social networks in
the world: Twitter. What began as an SMS-based app for friends to casually
update each other on what they were doing, has today turned into a dominant
force in the global media landscape [1]. At the time of writing, the site has more
than 300 million monthly users [24], among which are politicians, activists, news
outlets, and other public figures and organizations.

The way Twitter functions is relatively simple: you begin by creating an account.
From this account you can then start tweeting, i.e. posting texts (tweets) up to
280 characters long (previously only 140 characters). Other people can choose
to follow you, and you can choose to follow them. Following someone means
that whenever that person tweets something from their account, it shows up
in your feed, which is a continuously updated web page on which all tweets of
those you follow are displayed. If you like something someone has posted, you
can notify the user of this by pressing a like-button on the post. You can also
choose to retweet it, which allows you to post the tweet from your own account,
but with the original poster’s username still attached.

Using these functions, the original idea behind the platform was for friends
and communities to keep up to date and share information with each other.
However, as Twitter has expanded, so has its multitude of areas of use.

Twitter bots

One of the rising phenomena, that has received much attention lately, are the
so called Twitter bots. A Twitter bot can be many things, as the term lacks a
precise, widely agreed upon, definition. In a general sense, however, a Twitter
bot may be said to be any type of account that operates via some sort of
automation.

Accounts of this type have been involved in a number of large political events
during the last decade, where these accounts have attempted, in different ways,
to exert influence over the public. Examples of where such actuating campaigns
have occurred include the 2010 U.S. Midterm election [20] and the Massachusetts
Special election in the same year [18], the 2016 U.S. Presidential election [21], the
2017 French Presidential election [9], and the ongoing conflict between Ukraine
and Russia [13].

In light of this, one might understand why bots, on Twitter and elsewhere,
have been discussed in news outlets as well as in academia. With such a large
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number of users, the impact of political campaigns on social media platforms
could potentially be sizable.

Sticking to the very general definition of bots as simply any automated accounts,
however, risks creating confusion in these discussions. For instance, with this
definition, many media outlets and other large organizations using Twitter to
post news and press releases, would be categorized as bots. While these accounts
are indeed automated, they are generally of little interest to research concerning
the detection of bot operations, for the simple reason that they are already
known to be automated. Anyone trying to analyze or find ways of identifying
bots on Twitter or any other social medium, therefore first needs to define what
is meant by the word ”bot”.

To bring clarity to this issue, R. Gorwa and D. Guilbeault have suggested a
typology for different kinds of automated or seemingly automated programs
which are frequently referred to as bots [11]. This list includes the following
definitions:

• Crawlers and scrapers: bots programmed to index and archive web-
sites, e.g. to make the sites accessible via search engines.

• Chatbots: programs engaging in interactive dialogue with humans via
natural language. Often used by companies for simpler communication
with customers, such as answering frequently asked questions.

• Spambots: either programs, or computers taken over by malware and
controlled by a third party, used to send out massive amounts of messages,
advertisements, comments, etc..

• Social bots: bots active on social media, automatically generating con-
tent, and often even posing as real humans.

• Sockpuppets: real humans using fake identities, for instance to promote
a certain product or cause. May act in ways similar to that of automated
accounts.

• Cyborgs: a combination of automated and manually controlled pro-
grams, although the exact level of automation required for a program
to fall into this category is not determined.

Although this list is not exhaustive, and although it is not always obvious where
to draw the line between different types of automated programs (a bot on Twit-
ter spreading spam messages; is that a social bot or a spambot?), the categoriza-
tion presented above can nonetheless serve as a baseline for further discussions.
Unless further specification is provided, the term ”bot” or ”Twitter bot” will
here be used to denote social bots posing as humans or in other ways obscuring
their true identity on Twitter, as well as spambots and sockpuppets operating
on the social network. In practice, some of the above mentioned social bots
might not be fully automated, so cyborg accounts on Twitter concealing their
true purpose or origin will also be included under the ”bot” term. Accounts
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managed manually by humans, i.e. non-bots, will be called ”genuine users”. By
using these definitions, news outlets and other accounts which are known to use
automation are excluded from the analysis. Bot types completely irrelevant for
the study, like crawlers and scrapers, are naturally also left out.

1.2 Research question

This paper takes aim at developing techniques for detecting and categorizing
bots on Twitter. Previous works on the subject have almost exclusively focused
on the detection part. That is, finding methods to differentiate between bots and
genuine users. Here, the author attempts to make that differentiation even more
fine grained, using multinomial classification to discriminate between different
types of bots. The reason for this is that if the recent technological development
continues, yielding an ever more diversified landscape of automated accounts,
for certain types of tasks it might become irrelevant to talk about bots as a
unified group. Any estimation of the number of sophisticated social bots or
sockpuppets, for instance, risks being potentially gravely erroneous, if all types
of bots are lumped together into the same group.

The goal of this paper is to find the best performing machine learning method for
Twitter bot detection and categorization. While many works on bot detection
have been written, there has, to the best of the author’s knowledge, almost not
been anything written about bot categorization, i.e. multinomial classification
of different bot types. Moreover, the author has not been able to find anything
written on comparing different multinomial classifiers with each other.

Seeing as the possible number of methods one could try is very large, only
a handful will be examined in this paper. Random forest, which has yielded
promising results for binary classification [25], [16], [22], is one of the candi-
dates. Another is logistic regression, due to the fact that it is a linear model
that is relatively easy to interpret. Thirdly, artificial neural networks will be
tried out, mainly because there does not appear to have been much written
on Twitter bot detection using this technique. Finally, the k-nearest-neighbors
method will be employed, for very much the same reasons as the artificial neural
networks.

The main idea behind using these specific methods is that they differ quite a
lot, which makes for more interesting and revealing comparisons.

With this in mind, the following research question is stated:

• Which method, out of random forest, logistic regression, artificial neural
networks, and k-nearest-neighbors, performs best in the multinomial clas-
sification of different types of Twitter accounts (i.e. classifying different
bot types along with genuine users)?

Of course, the choice of features, data set, and which models to examine, are
all things that will affect the final verdict of this study, and replications are
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necessary before any grand conclusion can be drawn. It is therefore worthwhile
to underline that the purpose of this thesis is to serve as part of a larger body
of evidence yet to be collected.

1.3 Related Work

Detection

As mentioned in the previous section, most of the work written on the issue of
Twitter account classification is concerned with distinguishing between bots and
non-bots, i.e. a binary classification problem. An example of this is the early
work by A.H. Wang [26], which compared different classification methods for
detecting Twitter spammers, using a dataset annotated by the author himself.
It showed that out of the methods tested, the näıve Bayesian classifier performed
best.

Another work using some kind of spambots is the work by O. Varol et. al. [25].
Here, the dataset originally sampled by K. Lee et. al. [16] around the year
2010 is used to train a random forest model, which is then evaluated on newly
collected, manually annotated Tweet data. The reason the model is evaluated
on newly collected data is to determine whether it is still valid for the new kind
of bots that have most likely appeared on Twitter since 2010. It is, however, not
made clear exactly what kind of bot behaviour the annotators have been able
to detect. It could be that they have been able to detect mainly the same kind
of spambots that existed in the training set, in which case the model evaluation
might actually not confirm what it claims to do.

In the work by J.P. Dickerson et. al. [5], sentiment analysis of tweet contents
is employed for feature creation. Manual annotation is yet again used to create
labels for the observations, on both training and test sets. However, the accounts
used come from a sample collected in connection with the Indian 2014 election,
in which only accounts tweeting on topics related to that election have been
included. It is therefore more likely that this work actually uses the type of
novel, more sophisticated social bots in its models.

This novel type of social bot is also studied in the work by S. Cresci et. al.
[3], using Twitter accounts which have been promoting political campaigns or
consumer products, and which have later been verified by the authors as bots.
The authors of this work develop a whole new unsupervised detection method
inspired by DNA sequencing. It accomplishes detection by finding accounts with
certain suspicious similarities which are shown to be a strong indicators of bot
accounts.

The main reason for bringing up examples of previous works on bot detection is
to show that there usually exists at least some obscurity regarding the collection
of data in this field. How has the sampling been performed? Is there any
potential bias? How have the accounts been labeled and how have those labels
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been defined? All these questions are good to keep in mind when analyzing the
results of this thesis, which has used the dataset made available by S. Cresci et.
al. in [4]. It, too, will come with certain question marks, as will be shown in
section 4 and 5.

Categorization

All methods for binary classification of Twitter accounts suffer from one weak-
ness: they cannot distinguish between different kinds of bots. For some tasks,
this might not be a problem. However, if the goal is to, for instance, esti-
mate the populations of different bot types, multinomial classification is more
appropriate.

There indeed seem to be fewer works on this topic, but they do exist. One
example is the work by Z. Chu et. al. [2]. Here the authors use a somewhat
intricate technique, involving both Bayesian classification and LDA, to classify
accounts as either humans, bots, or cyborgs, which is a mix between human
controlled and automated account. As in many previous works, the data is
manually annotated by the authors.

A work that does not use multinomial classification, but which none the less
attempts to distinguish between different types of accounts, is the work by O.
Varol et. al. [25] mentioned above. Although the authors use binary classifi-
cation, they later employ K-means clustering to identify possible subcategories
in the data. Their results indicate three subcategories for bots, ranging from
simple spammers to more legit-looking, self promoting accounts, one subcate-
gory for more sophisticated bots akin to the cyborgs in [2], and then several
subcategories for genuine human accounts.

One issue which is amplified in multinomial classification of Twitter accounts is
the definition and demarcation of account classes or categories. Although this is
not a trivial problem in the binary case either, for each new bot type introduced
into the classification environment, the difficulty of the task increases severely.
As [25] shows, bots can be subdivided into numerous subcategories, making
it hard to know exactly where to draw the line, and how many categories to
actually use. This problem is further discussed in section 2.3.1, where the author
defines the account classes used in the work, and presents some arguments for
why using these definitions could be justified.

1.4 Outline

A brief introduction to Twitter and the issue of Twitter bots has been provided
in section 1. Previous related work has also been discussed here.

Next up is a thorough discussion of the data used here in section 2. What
types of accounts are actually available in the studied data set? How well does
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classification of these sampled accounts generalize to classification of Twitter
accounts in the real world? These questions will be answered here.

In section 3, a broad range of methodological aspects are looked into, stretching
from balancing classes to model construction. Measures of accuracy, which
will be crucial for determining model performance, are also brought up in this
section.

Following are the results in section 4. Model performance on test data will be
presented, together with tables and figures illustrating what features may have
been most relevant for the classifiers.

Finally, section 5 draws from the experience of working on this thesis, discussing
how to interpret the results, and giving recommendations for future research.
Section 6 sums it all up with some concluding remarks, answering the research
questions, but also touching on unforeseen outcomes of the analysis.

2 Data

The data used in this thesis was kindly provided by Stefano Cresci and the other
authors of the 2017 paper ”The paradigm-Shift of Social Spambots: Evidence,
Theories, and Tools for the Arms Race” [4]. It comes in two folders, one con-
taining so called user data and the other containing so called tweet data. The
data as such is organized in different spreadsheets. Each of the two folders con-
tains multiple spreadsheets, each spreadsheet in turn containing data for only
one of the four account categories genuine users, social bots, traditional bots
and fake followers. Depending on which folder you are looking at, the rows and
columns of the spreadsheets therein will denote different things.

Beginning with the user data folder, each row of any spreadsheet in this folder
represents one unique Twitter account, and the columns hold different pieces of
information about these accounts. For instance, one of the columns holds the
Twitter ID, which is a unique number that every Twitter account has. Other
examples of columns are username, number of followers, the date the account
was created, and so on. This is why it is called the user data, because it deals
with information regarding the account (user) as such. In other words, there is
no information about tweet contents in these spreadsheets.

Specifically, the user data folder contains one spreadsheet for genuine users,
three for social bots, four for traditional bots, and one for fake followers. When
one category has several spreadsheets, it is due to the fact that the data points
in it have not been sampled in the same process, and thus each sampling process
is given its own spreadsheet.

In the tweet data folder, the spreadsheets have a different structure. Here,
instead of representing a unique account, each row represents one unique tweet,
with the columns signifying tweet specific information such as tweet text, number
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of likes, date of posting, and so on. However, there is also a column which
contains the Twitter ID of the account that posted each tweet. Thanks to
this, any row (tweet) in a tweet data spreadsheet can be connected to a row
(account) in its corresponding user data spreadsheet. There may of course be
multiple tweets for any given account, which is why the tweet data will need to
be aggregated (see section 2.2).

Now, there is again one spreadsheet for genuine users, three for social bots and
one for fake followers. These correspond to the ones in the user data folder.
However, for the traditional bot category, there is here only one spreadsheet
instead of four, meaning that only the spreadsheet in the user data folder cor-
responding to this tweet data spreadsheet will be used. Thus, since every user
data spreadsheet will have a corresponding tweet data spreadsheet, together
they will be referred to as spreadsheet pairs. In the subsequent analysis, each
Twitter account will be viewed as an observation. These observations will have
features computed both from the user data and tweet data connected to them,
and will be assumed to belong to one of the four categories (classes) mentioned
above.

In the next section, the actual accounts and how they were sampled will be de-
scribed in a little more detail. After that follows an explanation of how the fea-
tures used in the machine learning models were computed. Finally, the viability
of drawing general conclusions from the available data will be discussed.

2.1 Data labels

There are four data labels given by the data: genuine users, social bots, tradi-
tional bots and fake followers. These represent the four categories that will be
used in the classification. Note that the label social bots is here not referring to
the generic term as used in section 1.1, but specifically to a type of fairly new
and sophisticated social bots, often posing as humans on Twitter. The exact
definitions and demarcations of the different categories are discussed in section
2.3.1.

Genuine users

The genuine user data was collected by the authors of [4], by randomly sampling
thousands of Twitter accounts and asking each account a question in natural
language. The 3 747 of these that actually responded were then verified as real
humans. These accounts thus have one row each in the user data spreadsheet
for genuine users. However, only a part of these, 1 083 accounts, actually have
corresponding tweet data, and it is those which will be used in the classification.
The reason why not all accounts have available tweet data is not clear.
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Social bots

The social bot category is represented by three spreadsheet pairs of user and
tweet data. The first pair was collected in connection to the 2014 Mayoral
election in Rome. It contains 991 accounts which were used to promote one of
the campaigns by retweeting any post that the candidate tweeted.

The second pair contains 3 457 accounts who were found promoting a phone
application for hiring people to do artistic work such as digital photography and
music.

Continuing on the theme of product promotion, the bots in the third pair adver-
tised products with reduced price on Amazon.com. This pair contains a total
of 464 accounts.

Traditional bots

As mentioned in the beginning of section 2, the traditional bot category has
four spreadsheets with user data, but only one of them has a corresponding
spreadsheet with tweet data. There is thus only one spreadsheet pair for this
category. The data in these spreadsheets was introduced by [27], and is a
collection of accounts which were found to be spamming links to different types
of malware, such as computer viruses. In total there are 1000 accounts in this
category.

Fake followers

Finally, fake followers are accounts which only serve the purpose of boosting
someones follower count. There are websites offering such accounts for sale,
which is how the authors of [4] have acquired the data in the fake followers
spreadsheet pair. It is made up of 3 351 accounts, purchased from three different
Twitter online markets. Like with genuine users, for some reason not all these
accounts have tweet data available, so only the 3 202 accounts which do will be
used.

2.2 Features

Figure 1 visualizes how each Twitter account, i.e. each observation, is repre-
sented in the data, with one row in a user data spreadsheet giving information
about account statistics, and a number of rows in a tweet data spreadsheet,
each row giving information about an individual tweet posted by the account.
The information available is exemplified by some column names for both spread-
sheet types. The figure further illustrates how this information is processed and
merged into a full set of features, ready to be used.
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Twitter account i

Row i in user spreadsheet mi rows in tweet spreadsheet

Tweet #1 Tweet #2 Tweet #mi

• username
• num. of followers
• account creation date

• tweet text
• num. of likes
• tweet creation date

Account features Content features

Feature vector for account i

column examples column examples

Figure 1: Flowchart describing the data structure. Arrows going from variable exam-
ples to account and content features respectively emphasize that features are calculated
from the available variables (for instance, using the ”tweet text” from all mi tweets for
account i, the average length of tweets can be calculated and used as a feature. Sim-
ilarly, the username for account i can be used to calculate length of username, which
can also be used as a feature).

Now, the features are divided into two categories: account features and content
features. They correspond schematically to the user data and tweet data in the
sense that account features are computed from user data, while content features
are computed from tweet data.

2.2.1 Computing features

Account features are those describing the account as such. Length of username,
age of the account, number of followers, and so on. In many cases, these fea-
tures are given directly in the user spreadsheets. An example is the number of
followers, which exists as a column in these spreadsheets, and thus needs no
particular computations to be obtained.
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Other account features, however, need additional computations for their cre-
ation. Length of username is one such example. In the user data spreadsheets,
there is a column in which the username of the account in question is given.
This, of course, cannot be used directly as a feature, since it is just a text.
Instead, a computer program counts the number of characters in the username,
thereby creating the new feature length of username.

As for the content features, the idea is to give an aggregated picture of an ac-
count’s tweets and tweeting behaviour. Now, none of these features are available
directly in any spreadsheet, but must all be computed in one way or another.
This is due to the one-to-many relation between an account, represented by one
row in a user spreadsheet, and the tweets posted by that account, represented
by many rows in a tweet spreadsheet. Thus, any type of tweet data must first
be aggregated in order to be used as a feature.

An example of such aggregation is the computation of different statistical mea-
sures over a number of tweets. One case where this comes into play is in the
length of tweets. In all tweet spreadsheets, there is a column giving the actual
text content for each tweet. Using this, a program can count the number of
characters in each tweet posted by a given account. The program can then
compute any desired statistical measure, like mean or standard deviation, for
these counts. By doing this, the one-to-many relation between an account and
its tweets is replaced by a one-to-one relation between an account and a mea-
sure computed over those tweets. Subsequently, since each account is viewed as
an observation, this makes it possible to use those measures, which are basically
aggregated tweet data, as features in a classifier.

There are other examples of how tweet data can be aggregated in order to yield
content features. These will be discussed in section 2.2.3, where a more thorough
explanation of the features actually used in this thesis is provided.

2.2.2 Feature selection

The reason feature selection is even needed in the first place is of course that
the possible number of features that can be computed is simply too large. A
natural way to perform this selection is to use some set of features that has been
shown to work well in previous works.

For this thesis, the work done by J. Fernquist et. al. [8] has been chosen as a
guide for picking features to include in the models. This is mainly due to the
fact that in their work, the authors have used the same data as the one used
here (i.e. the data from [4]), meaning that most of the features they use should
be possible to compute from the available data, without having to download
additional information from Twitter. Furthermore, the selection seems well
balanced and relevant, and has yielded promising results for binary classification
of Twitter accounts.
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The authors of [8] have used 140 features in total. However, not all of these fea-
tures will be used in this thesis. Some of them have been added by the authors
themselves by downloading additional Twitter data, and so will not be used. For
a few other features, it has been difficult to understand exactly how they have
been computed. These features have been left out as well. Additionally, in [8],
the content features include a couple of population standard deviations of differ-
ent measures, i.e. standard deviation of certain measures (e.g. length of tweets)
calculated for all tweets available, and not only the most recent tweets. Due to
computational complications, these features have been removed too.

All in all, 20 out of the original 140 features have been omitted. Only one
of them was on the list of the highest ten feature importances in [8], so this
reduction in the number of features should not have too large of an impact on
model performance.

2.2.3 List of features

Table 1 shows the full list of all features that have been used in the classification.
It is important to note that some entries in the list actually encompass multiple
features. One example of this is weekdays tweeting in the content feature column.
This entry actually represents seven features, each feature holding the count of
tweets posted during one of the seven week days. Additionally, for content
features, every entry marked with an asterisk (*) signifies that for that entry,
five features in the form of mean, median, standard deviation, minimum value
and maximum value of the variable in question, have been computed.

However, unless specified in the explanations below, the entries in the content
feature column correspond to one feature, namely the mean value of whatever
variable the entry denotes. For instance, the entry hashtags per tweet is a feature
measuring the mean number of hashtags per tweet for each account. For the
account feature column, all entries correspond to one feature each.

Before continuing to the detailed explanations of features below, note that none
of the content features are computed using all tweets available in the tweet
spreadsheets. Instead, only the 100 most recent tweets from each account have
been used for these computations, with the exception to this being when an ac-
count has less than 100 tweets, in which case all available tweets are used.

Now, some of the entries in table 1 are quite straight forward, like age of account,
number of tweets, or number of words. For other entries, however, a clarification
might be in order.

Follower-friend ratio First off, a friend in Twitter lingo is someone being
followed by someone else. So if account A follows account B, B is a A:s friend,
while A is B:s follower. Thus, follower-friend ratio signifies the relation between
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Account features Content features
Age of account Hashtags per tweet
Follower-friend ratio Hours of day tweeting
Given likes per follower Length of tweets *
Given likes per friend Mentions per tweet
Has location Normalized distribution hours tweeting
Has default profile description Normalized distribution of tweet endings
Length of username Normalized distribution weekdays tweeting
Likes per day Number of words *
Number of followers Retweets achieved per tweet
Number of friends Retweet-tweet ratio
Number of likes given Time between mentions *
Number of tweets Time between retweets *
Tweets per day Time between tweets*

Time between urls *
Unique hashtags per tweet
Unique mentions per tweet
Unique sources
Urls per tweet
Weekdays tweeting

Table 1: Features used in the classification (*: Computing the measures mean, median,
standard deviation, maximum value and minimum value)

the number of users following an account and the number of users being followed
by that account.

Has location & Has default profile description On Twitter, users can
choose to write a short description about themselves that shows up when you
visit their user page. If they do not write anything, they are said to have
a default profile description. Users can also choose to state a location, for
instance the city in which they live. These two profile attributes are captured
by the features has location and has default profile description, which are binary
and take the value one if true and zero if false.

Likes per day & Tweets per day Features counting something per day (e.g.
likes per day) are computed simply by taking the count of the given measure
and dividing it by the age of the account in days. Knowing the creation date of
the account, the age can be easily computed.

Hours of day tweeting & Weekdays tweeting For each Tweet, the exact
time and date of posting is recorded. Using the information about time of
posting, it is possible to count the number of tweets a user has posted during
each hour of the day. By doing this, 24 features can be created, each representing
the number of tweets posted by the account during the respective hour. In the
same way, using the posting date information, the number of tweets posted on
each of the seven weekdays can be counted, yielding seven features.
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Normalized distributions Here, a normalized distribution simply means that
counts are transformed into percentages. For instance, normalized distribution
hours tweeting is computed from hours of day tweeting, by using the counts to
determine what percentage of a user’s tweets were posted on any given hour of
the day.

Tweet endings The text in a tweet can end in many different ways; a period,
a question mark, a digit, and many more. Looking at each of an account’s tweet
texts, the number of different tweet endings, i.e. the last character in a tweet
text, can be counted and normalized accordingly. This is what is done in the
features behind normalized distribution of tweet endings; each tweet ending is
represented by a feature, and the value of the feature is the percentage of a
user’s tweets which end with that particular character. Since it would not be
possible to create a feature for every possible tweet ending, a number of tweet
endings are selected. Tweets not ending with any of the characters in that list
count toward the feature other tweet endings. Tweet endings selected to create
features are period, exclamation mark, question mark, digits, lower case letters
and upper case letters. (Note that this may not be the same tweet endings
selected in [8], since these were not explicitly stated by the authors).

Retweet features Each post made by a Twitter account can either be a tweet,
i.e. a post composed by the user himself, or a retweet, which basically means
reposting or forwarding a post made by someone else. The number of a user’s
posts which are retweets relative to the number which are tweets is what the
feature retweet-tweet ratio measures. The retweets achieved per tweet feature,
on the other hand, measures how many times per tweet the user is retweeted
by someone else on average.

Time between events As mentioned above, the date and time of posting
is recorded for each tweet. This makes it possible to compute the time that
passed between the posting of two tweets. Applying this computation to the 100
most recent tweets, things like mean time between tweets as well as mean time
between tweets containing hashtags, mentions, or URLs (together with other
statistical measures like median and standard deviation), can be calculated and
used as features. (Note: a mention is when a tweet is directed at a specific user
by stating their username preceded by an at sign(@) in the tweet).

Unique instances Just as the number of hastags per tweet can be counted, the
number of unique hashtags can be counted. This entails counting each hashtag
only once, regardless of whether it is used multiple times in multiple tweets.
The same goes for mentions and sources. To clarify, the source of a tweet is the
utility used to post the tweet, for instance a mobile app or a web page. Hence, if
a user always posts their tweets through the same mobile app, that user will only
record one unique source. Unlike most other content features, unique sources is
not a feature averaged over the number of tweets, but simply the total number
of unique sources. It is worth wile to note that since the unique hashtags and
mentions are found via text searches, there is a risk that these counts are not
completely accurate. For instance, if someone uses the at sign in front of a word
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which is not a username, it will still count toward the unique username feature.
However, this can be assumed to be a minor issue with little impact on the
results.

2.3 Generalizing from available data

One issue that arises immediately when trying to develop any sort of Twitter
bot classification method, be it binary or multinomial, is the question of how
well the classification methods developed in the study generalize to the real
world. For the methods to generalize, it requires that a) the categories assumed
in the study truly exist as disjoint classes in the real world, and subsequently
b) that these classes are indeed well represented in the sampled data.

In other words, the viability of generalizations is an issue of properly defining
bot categories on one hand, and sampling procedure on the other.

2.3.1 Defining categories

In this thesis, three different bot categories, or classes, are assumed, together
with a non-bot category, genuine users, with the hope that these truly corre-
spond to disjoint categories in the real world. Note that these bot categories do
not necessarily correspond to the categories drawn up in the list in section 1.1.
Instead, they are to be viewed as separate categories which simply fall under
the ”bot” term as defined in the end of that section.

For Twitter bots, the most interesting aspects, those that would justify separa-
tion into different categories and at the same time make these categories disjoint
(or as disjoint as possible), include how the bots behave and what their purpose
is. Thus, when trying to create relevant categories, these two aspects ought to
be given large weight.

To begin with, the idea behind the chosen categorization into social bots and
traditional bots is, as shown in [4], that from what used to be simple spambots
(traditional bots), the emergence of a new type of bot has, by now, been well
documented. Due to their ability to imitate humans, these new bots, called
social bots in reference to this ability to act ”social”, are supposedly significantly
harder to detect. In addition, these types of bots generally tend to be used
for different purposes. While the traditional spambots often tweet links to
different malicious software, social bots are mainly used for marketing purposes,
for instance to influence public opinion in some political issue or to promote
some product. Because of distinctive behavioral patterns as well as distinctive
purposes of use, the division into social and traditional bots is deemed justifiable
and reasonable.

As for fake followers, the behavioral patterns play a smaller role in putting
them in a category of their own, although it is expected that they will exhibit
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behaviour different from that of the other two bot categories. Here it is instead
mainly the purpose for which these accounts are used that justifies the separate
category, and that purpose is to boost a users follower numbers. This is a
wholly different purpose than for the above mentioned traditional and social
bots, giving legitimacy to the assumption of this third category.

Since there is nothing that prevents fake followers to be used for other purposes
than boosting someones Twitter stats, accounts in this class could potentially
behave in ways which would equally well justify categorizing them as any other
bot type. Although this is a weakness of the class definition, it is assumed that
the behaviour of fake followers is notably more passive than that of other bot
types. This assumption is supported by table 4, which shows that on aver-
age, fake followers post significantly fewer tweets per day than other account
types.

Using genuine users as a category goes without saying. Although it is not
completely trivial how to define this category (how much automation can an
account employ before deemed a bot?), it is probably still the most well defined
category, namely real humans predominantly tweeting manually. Assuming such
a class in the classification is justified by the sheer fact that it is meant to include
all accounts which are not bots.

These definitions of three bot categories and one non-bot category may not be
the ones best representing the real world. There is always a risk of there being
accounts for which two or more of the categories overlap, or which do not really
fit into any of the categories. By creating more categories, either by further
subdivision or by introducing wholly new categories, these risks could potentially
be reduced. Another way of handling the issue could be to employ multi-label
classification, i.e. allowing each observation to actually belong to several classes
at once. However, due to limitations in time and in the scope of this thesis, as
well as practical limitations posed by the available data, other categorization
schemes are not explored. It is instead assumed that the categories presented
above indeed exist in the real world and that they are disjoint, or at least that
their intersections are marginal, and the labels given in the data set are taken
as ground truth for these categories. To what extent this is reasonable of course
depends on how the data has been sampled.

2.3.2 Sampling procedure

A description of the different spreadsheet pairs and their origins was provided in
section 2.1. However, to what extent they truly fit into the presumed categories,
and how well they represent them, still remains to be answered.

For fake followers, the sampling is very straight forward. The authors of [4]
have simply bought these accounts from three different online markets for these
kinds of products. There is almost no doubt that this sampling procedure will
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yield observations belonging to the correct category, since a bought account em-
ployed to boost follower numbers is the very definition of a fake follower. There
is, however, the question of sampling bias. That is, whether these particular
accounts, although members of the correct category, are truly representative of
that category. Perhaps accounts bought from other websites will exhibit differ-
ent properties than the ones used here? This is something which one should
keep in mind during the following analyses.

Genuine users, too, have been sampled in a fairly transparent way, namely via
random sampling, aided by use of natural language. As explained in section 2.1,
a large amount of accounts have first been sampled randomly, and each account
sampled has been asked a question in natural language. Then, the accounts that
responded have been verified to indeed belong to a human users [4], although
it is a bit unclear exactly how this verification has been performed. A guess is
that the authors have looked at the quality of the answer, potentially together
with some other parameters for the account. Despite this minor obscurity, the
likeliness of a bot passing both these controls can reasonably be viewed as slim.
Thus, the subset of genuine users indeed most likely contains an overwhelming
majority of human, non-bot accounts. In addition, using random sampling
ought to have brought a relatively unbiased sample to begin with, although there
might of course have been some new bias introduced in the verification process,
for instance by picking only those who answered the control question.

Traditional bots have been sampled by the authors of [27]. Here, the authors
have used a graph sampling technique from [17] to initially randomly sample a
nearly 500 000 Twitter accounts and their latest tweets. These tweets have been
analyzed by special computer programs to see if they contain URL:s linking to
malicious websites. Accounts which have posted large amounts of these links
(more than 10% of their tweets containing at least one such link) are examined
manually to verify that they are truly spammers. Given that the graph sampling
performs well in terms of random selection, the large initial sample should have
been decently unbiased. Picking out the spambots, however, includes a number
of more or less arbitrary measures, which could potentially skew or contaminate
the sample. For instance, any spammers not exceeding the 10% limit would have
been excluded. In the same way, any real users exceeding it might have been
incorrectly included. The odds for this, however, ought to be viewed as slim
given the subsequent manual verification, which of course is a potential source
of bias in itself. Taken together, it does not seem very likely that the subset
would contain accounts which are not traditional spambots. There is however a
non-negligible risk that some accounts belonging to this category were excluded
due to different biases in the filtering process.

Lastly, there are the social bots, which have been collected in three separate
sampling processes. It is not clear how any of these sampling processes have
been conducted, since the authors of [4] simply state that they have obtained
the data without mentioning how. Thus, the extent of possible sampling biases
is virtually impossible to assess here. The verification of these accounts as social
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bots, however, is commented in [4], albeit briefly. Out of the originally suspected
social bot accounts, only those passing yet another manual verification process
have been added to the final data sets (i.e. the spreadsheet pairs used in this
thesis). The verification has been carried out by way of account comparison
between the social bots, seeing which accounts behave similarly, excluding the
most distinguishable outliers. No further details about this manual annotation
process are provided, making it difficult to have a well informed opinion on how
likely it is to yield a correct assessment. However, the described behavior of
these accounts, for instance as retweeting every single post of a specific political
candidate, fits well into the behaviour one would expect to see from social bots.
Thus, given that this was truly how the accounts behaved, and given that the
authors of [4] choose an appropriate way of double checking it, the final, verified
data should indeed mainly be made up of social bots. Still, out of all the
account categories, this is the one whose sampling methods are shrouded in
most uncertainty.

Even though parts of the sampled data might raise some concerns, there is not
much that could be done to remedy these. The main purpose of this section
is merely to make the reader aware of weaknesses in the sampling that might
cause problems when trying to generalize the obtained results to a wider pop-
ulation of Twitter accounts. In addition, these weaknesses can also affect the
classification performance for different classes in this thesis, which is good to
keep in mind.

3 Methodology

In this section, performance measures, balanced classes and model training,
testing and validating, are discussed. After that follows explanations of each of
the four machine learning methods used in this thesis.

3.1 Measures of model performance

To evaluate and tune the models, as well as to make comparisons between the
performances of different methods, some measure or measures of this perfor-
mance is needed. In multinomial classification, some measures commonly used
are averages of accuracy, precision and F-score [23]. These averages can be
predicted either by computing the measure for each class separately and then
averaging over the number of classes (macro average), or by using all the classes
at once to compute the average (micro average). In this paper, macro averages
have been used.

Another measure of model performance is the Matthews Correlation Coefficient
(MCC), also known as the phi coefficient. Although this was originally devel-
oped for binary classification problems, a generalization for multinomial cases
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has been developed in [10]. The value of the MCC can range between -1 and +1
depending on the direction of the correlation, and is basically a measure of how
well the predicted class belongings correlate with actual class belongings.

3.2 Balanced classes

The number of observations differ quite a lot between the different classes. For
social bots and fake followers, the number of observations exceed 3 000, while
genuine users and traditional bots only have around 1 000 each due to missing
data. Although these imbalances are not huge, they can still cause problems
in classification, as the classifiers are likely to be biased in favor of the more
common classes [15]. That is, the classifiers are likely to be better at classifying
observations from the more common classes than from the more uncommon ones
when trained on imbalanced data.

Moreover, as explained in section 2.1, these imbalances are not due to any
natural abundance of social bots and fake followers on Twitter, but rather to
the fact that the class subsets have been sampled in different ways, on different
occasions, and sometimes by different authors. Therefore, the classes will be
balanced by means of undersampling. This entails removing observations at
random from the classes with largest abundance until all classes have the same
number of observations (1 000 observations in this case). A potential drawback
from this is of course the loss of potentially useful information. However, seeing
as the author does not have any prior knowledge about the true distribution
of the account types, and that 1 000 observations per class is still a relatively
large amount, this is deemed to be a reasonable approach. Thus, the dataset
which is split into a training and a test set (see next section) will contain 4 000
observations.

3.3 Training, validating & testing

The proportions by which to split the data into training and test sets is chosen
to be 4:1, that is, 80% of the data (3 200 observations) goes toward the training
set and 20% (800 observations) toward the test set. No validation set is created.
Instead, model tuning, i.e. selecting hyper-parameters, is performed via cross-
validation (see below).

Hyper-parameters are parameters which are not estimated directly by the model
but must be chosen by the model creator before the training of the models can
begin. Examples are the number of trees in a random forest, the weight of
the penalty term in regularized logistic regression, the learning rate in artificial
neural networks, or the number of neighbors k in k -nearest-neighbors.

To avoid making this choice completely arbitrary, each model undergoes a vali-
dation process where different combinations of hyper-parameters are tried out.
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The method used to try them out is 5-fold cross-validation. This method works
by randomly splitting the training data into five parts. The model with the
combination of hyper-parameters in question is then fitted on four of these
parts, and thereafter set to classify the observation in the part which was left
out. A measure of model performance, accuracy, is calculated, after which the
process of fitting and classifying is repeated, but now leaving out another part,
until each part has been left out once. Finally, an average of the five differ-
ent accuracy measures obtained is recorded. After this, another combination of
hyper-parameters are applied to a model, which goes through the same process.
When all selected combinations of hyper-parameter have been tested in this
manner, the combination that yielded highest averaged accuracy is nominated
as the final model to be used on the test set [12].

When each machine learning method has nominated a model through the trials
of cross-validation, these models are employed to classify the observations in the
test set. From these classifications, the measures discussed in section 3.1 are
computed and presented as the verdict of each method’s merits.

3.4 Random forests

To understand what a random forest is, one must begin with the concept of
decision trees, and then move on to bootstrap aggregation (bagging) and decor-
relation of predictors [14]. In this section, a brief walk through of each of these
concepts is provided, together leading up to an explanation of the random forest
model.

3.4.1 Decision trees

In the case of classification, a decision tree can be defined as a number of cut-off
points, used to make a series of decisions, the last of which being the decision
on how to classify any given observation.

Training (fitting) a classification tree is performed by creating a number of
regions in feature space. A region is basically a set of splitting rules. An ob-
servation is said to belong to a given region if the feature vector xi of that
observation conforms to all splitting rules set up by the region. These rules
take the form of binary decisions, for example x1 < v1 or x2 ≥ v2, where vj
are cut-off points in feature space. Naturally, splitting rules always come in
pairs of events and complementary events. This means that if the splitting rule
xj < vj is used to define one region, xj ≥ vj will be used to define another,
complementary, region. Thus, new regions are created by finding cut-off points
along which to split the observations belonging to one particular region into two
new regions.
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The cut-off points vj along which to perform the splits are found by optimizing
a measure of quality of these splits. Here, this measure is chosen to be the Gini
index, which is defined as

G =

K∑
k=1

pmk(1− pmk),

where pmk is the proportion of observations from class k in region m, assuming
there are K classes in total. In other words, there is one Gini index measure
for each region. When a cut-off point is considered, the average Gini index for
the resulting two hypothetical regions, weighted by the number of observations
falling into each region, can be computed. This average can then be compared to
the Gini index in the region to which the observations currently belong, yielding
a measure of change in Gini index. Running such comparisons over all existing
regions, for each region examining all features and their potential cut-off points,
the split creating the largest reduction in Gini index can be found, and those
two new regions can be created. Repeating this process of splitting until some
stopping criteria is reached, for instance until all regions contain five or fewer
observations, yields the final, trained model.

With this model, any new observations can be classified by first determining
which region it belongs to, and subsequently applying the principle of majority
vote.

3.4.2 Bootstrap aggregation (bagging)

The predictions of a single classification tree will be highly dependent on ex-
actly which observations were selected to use as training data. Trees trained on
different data partitions are likely to exhibit highly variable results in terms of
performance on test data. This problem of high variance can be reduced how-
ever. Instead of training a single tree, multiple trees can be trained, classifying
any new observations by assigning it to the class it has been assigned to by most
of those trees.

However, to train multiple trees, multiple training sets are needed. These can
be obtained via bootstrapping. The technique entails drawing observations from
the training set with replacement, until the size of this newly drawn training set
is equal that of the original one. This procedure can be repeated any number
of times to yield B such bootstrapped training sets.

For each of the bootstrapped sets, a classification tree is trained, consequently
yielding B trees in total. The predictions over all these trees are then aggregated
to yield the final classification via majority vote as described above. Hence the
term bootstrap aggregation, or bagging.
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3.4.3 Decorrelating features

A random forest model is basically bagging with a twist. Although bagging
reduces variance, the reduction might not be very large if there exists some
feature which is a notably stronger predictor than the others. This is because
the particularly strong feature is likely to be used in the first split by almost
all the trees, leading to a high correlation between their predictions. In other
words, many of the trees are likely to yield very similar regions in feature space,
thereby producing very similar classifications. Taking the majority vote of such
classifications then somewhat defeats its purpose, since virtually the same result
could be achieved by using just one or a few trees, meaning variance is not
reduced nearly as much as if the predictions would be uncorrelated.

To counteract this, the random forest method uses a randomly selected subset
of all features when searching for each optimal split. By doing so, the method
ensures that no feature is allowed to dominate the early splits of the trees,
allowing the trees to be fitted in more various ways. The predictions of these
trees will consequentially be decorrelated, and taking the majority vote of their
classifications will thus yield a larger reduction in variance than in the simple
bagging case.

The hyper-parameters that will be tuned as described in section 3.3 are hence
the number of trees B, and the number of features searched in each split.

3.4.4 Feature importance

Due to its use of bagging, one downside of the random forest method as com-
pared to a single classification tree is the loss of interpretability. In a single
tree, the regions in feature space created can be studied, something which is not
possible when there are perhaps hundreds of trees involved.

A way to make sense of the features in a random forest is instead to calculate
the feature importance. This is done by recording the average reduction of the
Gini index for each feature over all B trees. That is, the reduction in the Gini
index achieved by all splits along a particular feature, averaged over all trees,
and computed for all features. A large value indicates that the feature tends
to create fairly qualitative splits, making it a relatively useful and important
feature. In figure 3, this has been visualized for the 15 features with highest
importance for the actual training data.

3.5 Logistic regression

Multinomial logistic regression builds on the transformation of linear combina-
tions of features, a linear predictor, to produce estimates of class probabilities.
To understand how this model is trained, one must first understand the under-
lying multinomial distribution, the logistic response function used to transform
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the linear predictor, and the maximum likelihood method employed for the es-
timation of the coefficients in this predictor.

3.5.1 Multinomial distribution

Assume that for a given population, there exist K + 1 disjoint classes that any
individual can belong to. Sampling one observation from this population, the
class belonging of that observation can be described by the vector y of length
K. In this vector, each element yk corresponds to a class and takes the value of
either one or zero depending on if the observation belongs to that class or not.
If the observation belongs to the K+ 1:th class, the reference class, all elements
are instead zero, i.e. y = 0. The vector denoting the probabilities of classes
1, ...,K is defined as π = (π1, ..., πK). Again, the probability for class K + 1 is
simply 1− π1 − ...− πK .

The distribution of y is then the multinomial distribution, and its probability
mass function is thus:

f(y|π) = πy1

1 · ... · π
yK

k · (1− π1 − ...− πK)1−y1−...−yK . (1)

This means that the probability of an observation belonging to class k ∈ {1, ...,K}
is

P (yk = 1|π) = π0
1 · ...π1

k · ... · π0
K · (1− π1 − ...− πK)1−0−...−1...−0 = πk,

and subsequently that the probability for class K + 1 is:

P (y = 0|π) = π0
1 · ... · π0

K · (1− π1 − ...− πK)1−0−...−0 = (1− π1 − ...− πK).

Viewing the class probabilities πk as functions of linear predictors, class proba-
bilities for any given observations can be modeled. For this, however, a function
like the logistic response function is needed [7].

3.5.2 The logistic response function

The logistic response function is a way to transform a linear predictor to ensure
that the response is bounded between zero and one, which is necessary for
modeling probabilities. Assuming a feature vector xi, the linear predictor for
a class k is defined as ηik = x′iβk. Then, for any observation i, the class
probability for class k ∈ {1, ...,K} can be modeled in the following way:

P (yik = 1|xi) = πik =
exp(ηik)

1 +
∑K

l=1 exp(ηil)
(2)
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where the right hand side of the equation is the logistic response function. For
class K + 1, the probability is subsequently modeled as:

P (yi = 0|xi) = 1− πi1 − ...− πiK =
1

1 +
∑K

l=1 exp(ηil)
. (3)

No matter what values any of the linear predictors ηik take, these functions
will always output a number between zero and one. Combining this way of
modeling probabilities with the probability mass function of the multinomial
distribution, the maximum likelihood method can be employed to estimate the
regression coefficients β = (β1, ...,βK).

3.5.3 Maximum likelihood estimation

If yi follows a multinomial distribution with its parameters πi modeled as a
functions of linear predictors, the likelihood function for a sample of size n from
this population is defined as:

L(β) =

n∏
i=1

f(yi|πi)

with f(yi|πi) being the probability mass function from eq. 1. Since the func-
tions in eq. 2 and 3 are inserted into the probability mass function, it is clear
how the likelihood indeed becomes a function of parameters β.

Developing this further, the log-likelihood becomes

l(β) =

n∑
i=1

yi1 log

(
exp(ηi1)

Si

)
+ ...+ (1− yi1 − ...− yiK) log

(
1

Si

)

where Si = 1 +
∑K

l=1 exp(ηil). With that, the estimates β̂ can be computed via

the equation ∂l(β)
∂β = 0, solving for β by an iterative method [7].

3.5.4 Regularization

To optimize the coefficient estimation for model performance on new data, reg-
ularization using an L2 penalty term will be employed. This is done to con-
strain the regression coefficients in order to avoid overfitting. The tuning pa-
rameter used to determine the size of the penalty term will be selected via
cross-validation (see section 3.3). For regularization, standardized features, i.e.
mean zero and variance one, are necessary to ensure all features are treated
equally [12].
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3.6 Artificial Neural Networks

The artificial neural networks (ANN) derive their name from originally being
used to model the connection between synapses in human brains. Seeing as there
are many different kinds of ANN:s, constraints on the number of models tested
is needed. Therefore, this thesis will only be exploring the multiple hidden layer
back-propagation network.

3.6.1 Inputs, outputs & hidden layers

An ANN has three types of layers, each layer having a certain number of units,
or neurons. The input layer is where the feature values of an observation are
inserted and fed to the next layer. If there are p features, there are p+1 neurons
in this layer, the added neuron constantly outputting a one to introduce a bias
term, much like the intercept in a regression.

The output layer produces estimated probabilities for each class. Naturally, if
there are K classes, this layer has K neurons. Each neuron k in this layer is fed
a linear combination of the outputs from the previous layer. It then transforms
this linear combination using the softmax function (see below), yielding an
estimated probability of the given observation belonging to class k.

Between the input and output layers are the hidden layers. A hidden layer
transforms linear combinations of the output from the previous layer using an
activation function σ. These transformations are then fed forward to the next
layer. Just like with the input layer, each hidden layer introduces a bias term
by having a neuron which always outputs a one. The number of hidden layers,
as well the number of neurons in each hidden layer, are hyper-parameters, and
will be chosen via cross-validation.

To clarify how classification is actually performed using this method, assume
there is a feature vector xi, and that the network in question has L hidden layers
l. Now, each neuron j in the first hidden layer takes in a linear combination
wjxi, in turn outputting zj = σ(wjxi). The activation function σ is chosen to
be the sigmoid function σ(v) = 1/(1+e−v), which is a common choice [12]. The
same sort of transformation is produced by all the hidden layers, each hidden
layer l using linear combinations of the output vector from the previous hidden
layer zl−1 to compute its output.

Finally, the output vector of the last hidden layer L is computed and fed to
the output layer. Each neuron k in the layer is thus given a linear combination
wkzL, which is transformed via the softmax function to yield the estimated
probability pk for class k:

pk =
exp(wkzL)∑K
l=1 exp(wlzL)

.
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Observation i will then be classified as belonging to the class for which the
estimated probability is highest.

If the class of observation i is known, the predicted class probabilities can be
compared to the actual target vector yi. This vector is of length K, each element
corresponding to one of the K classes. If observation i belongs to class k, the
k:th element will be one in this vector, and all other will be zero. Using the
discrepancies between this target vector and the predicted probabilities, the
parameters w can be adjusted to improve the accuracy of the model. This is is
the main idea behind fitting the ANN.

3.6.2 Fitting the ANN

Assume that there is an error function R(w) ≡
∑n

i=1Ri(w) that measures how
much the predicted probabilities differ from the actual target vector, i.e. how
well the model fits the data. Here, w can be seen as the vector containing all
parameters w, often called weights, in the network. Note that n is the sample
size, meaning an error can be computed for each individual observation. For
Ri, the cross-entropy function

Ri(w) = −
K∑

k=1

yik log(pik)

will be used in this thesis.

Furthermore, taking the derivative of the error function with regard to each
weight w and evaluating it at the current weight value, predicted class probabil-
ities pi, and target vector yi, yields the gradient ∇Ri. This specifies the slope
of the error function with regard to the weights, and will be needed to fit the
model.

Fitting the ANN then begins by randomly assigning values to all weights in w,
usually from a distribution producing values near zero. The first observation i
from the training set is then fed into the model, producing a vector of predicted
class probabilities pi. Since the target values are also known, the gradient of the
error function can be computed. The weights can then be updated via gradient
descent as follows:

wi+1 = wi − γ∇Ri

where γ is the learning rate adjusting the size of each update. This procedure of
updating the weights via gradient descent is then repeated for all observations
in the training set. When all observations in the training set have been fed to
the model once, one epoch is said to have passed. After a selected number of
epochs, the process stops, and the model is considered to be fitted.
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The way the gradient is actually computed is by a technique called back- propa-
gation. Compared to forward propagation, back-propagation is computationally
faster, and is therefore used here [6].

3.6.3 Hyper-parameters & model framework

Many choices need to be made when fitting an ANN. Some of these have al-
ready been presented in the previous sections, for instance using the sigmoid
function for activation, or the back-propagation technique for computing the
gradient. Due to limitations in time and in the software used [19], only cer-
tain selected hyper-parameters will be tuned via cross-validation (see section
3.3). These parameters and the values chosen for them will be presented in the
results.

Finally, the features will be standardized before used, i.e. given mean zero
and variance one. This is to avoid that features with higher absolute values
are given greater importance by the regularization process [12]. This process
entails adding a penalty term to the error function. By doing this, the weights
are shrunken toward zero, which decreases the risk of overfitting.

3.7 k-Nearest-Neighbors

When compared to the other methods used in this thesis, the k -nearest-neighbors
method (k -NN) stands out in terms of simplicity. The way it performs classifi-
cation on new data is by calculating the Euclidean distance between the feature
vector of a new observation and all observations in the training set. It then
sorts the distances from lowest to highest, and assigns the given observation to
the class most common among the top k entries on that list.

For the Euclidean distance to make sense as a measure of distance, the features
must be measured in the same units. Therefore, all features are standardized
to have mean zero and variance one [12].

The number of neighbors k to use for the classification decision will be decided
via cross-validation as described in section 3.3, and is presented in the results.
Values tested for k have been 1, 2, 3, 4, 5, 10, 20 and 50.
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4 Results

In this section, the results are presented. These include performance measures
for the different models, together with a test for whether the models differ sig-
nificantly in regard to overall accuracy. Some descriptive statistics are also
presented. It is with the help of the content in this section that the research
questions will be answered. Additionally, the results will be the topic of discus-
sion and interpretation in section 5.

4.1 Model performance

The main result of this thesis can be seen table 2 and figure 2. Table 2 of
model performance on test data indicates that the random forest model actually
beats the other models regardless of which performance measure is studied. As
a matter of fact, there is no case in which a model outperforms another in
terms of one measure, but is outperformed by the same in terms of another
measure.

After random forest, the second best model is the ANN, which beats the logistic
regression in all measures, in turn beating the k-NN in all measures.

Accuracy Precision F-score MCC
Random Forest 0.99125 0.991347 0.991259 0.988360
Logistic Regression 0.9750 0.975077 0.975005 0.966689
ANN 0.98000 0.980119 0.979973 0.973390
k-NN 0.92625 0.926668 0.925845 0.902067

Table 2: Model performance measures (accuracy, precision, F-score and MCC) for the
different machine learning methods used (random forest, logistic regression, artificial
neural network and k-nearest-neighbors)

For the top three models, however, the race is fairly tight, and for the logistic re-
gression and the ANN, the performances seem to be virtually indistinguishable.
To test whether any of the differences in accuracy actually indicate a significant
difference between the methods, a bootstrapping technique is employed. The
result of this can be seen in figure 2.

What has been done here is that 50 bootstrapped training sets have been sam-
pled from the original one. For each of these bootstrapped sets, models from
all four methods have been fitted. Every fitted model has then been used to
classify the test set, for which accuracy has been recorded. Out of the 50 ac-
curacy estimates obtained for each method, a mean and standard deviation of
the estimates has been computed. The standard deviation has then been used
to create lower and upper bounds for the accuracy estimates via the margin of
error, using ≈ 95% confidence. These bounds are visualized as black error bars
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Figure 2: Accuracy for the four different models averaged over 50 bootstrapped training
sets. Error bars indicating the upper and lower bound of an ≈ 95% confidence interval.
Note broken y-axis.

in figure 2, in which the mean accuracy for each method is represented by the
blue bars.

It is clear from this plot that the error bars for logistic regression and ANN
overlap, indicating that the methods indeed seem to perform equally well. If
anything, the logistic regression even has a slightly higher accuracy than the
ANN when looking at the bootstrapped sets. Furthermore, although it is hard
to spot, none of the error bars overlaps with the error bar of the random forest.
This would seem to indicate a significantly higher accuracy than for the other
methods. In contrast, since the error bar of the k -NN does not overlap any of
the others, this indicates that the method has significantly lower accuracy than
the rest.

The hyper-parameters used for each method above have not been changed over
the bootstrapped training sets. Instead, they have been selected via 5-fold cross-
validation performed on the original training set, and then kept constant during
the bootstrapping.

For the random forest method, the number of trees is set to 200 and the number
of features used for each split is set to the square root of the total number
of features, i.e.

√
120 ≈ 11 features. In the logistic regression, the tuning

parameter for the regularization is chossen to be 1. Next, the ANN method
finds one hidden layer with 50 neurons, a learning rate of 0.01, and 200 epochs,
to yield the optimal model. Finally, cross-validation for k -NN results in using
k = 2 neighbors. For the rest of the thesis, the models trained on the using the
hyper-parameters stated above will be called the final models.
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To see in greater detail how the final models classify the observations in the test
set, table 3 presents the confusion matrices obtained for all these models. The
rows show the actual number of observations in the corresponding class (200
for each one) and what they have been classified as. The columns instead show
the number of observations that have been classified as belonging to a certain
class, and what class those observations actually belonged to. This means that
the diagonals show the number of observations for each account type that have
been classified correctly.

Note that although the columns have not been labeled, they have the same order
as the rows, so the first column is for observations classified as genuine users,
the second for those classified as social bots, and so on.

Random forest
GU 199 0 1 0
SB 2 198 0 0
TB 3 1 196 0
FF 0 0 0 200

Logistic regression
GU 194 4 2 0
SB 2 197 1 0
TB 3 2 193 2
FF 0 1 3 196

ANN
GU 198 2 0 0
SB 2 198 0 0
TB 2 2 192 4
FF 0 2 2 196

k-NN
GU 191 5 2 2
SB 2 197 1 0
TB 13 4 175 8
FF 7 1 14 178

Table 3: Confusion matrices for the four final models. Actual class belongings are
given in rows, predicted class belongings are given in columns. Rows and columns
correspond, so for instance the first row (titled GU) shows number of actual genuine
users, and first column shows number of predicted genuine users (GU: Genuine users,
SB: Social bots, TB: Traditional bots, FF: Fake followers).

4.2 Examining the features

To get an at least somewhat better understanding of how the features might be
utilized in the models, this section presents a figure of feature importance as
obtained from the random forest. A table of means for some selected features is
also presented to give an idea of how and in what regard the different account
types might differ the most.

4.2.1 Which features are most relevant?

In figure 3, the 15 features with highest feature importance, as described in
section 3.4.4, are displayed. The names of the features are the ones used by
the program running all the computations. Except for using ”md” as an ab-
breviation for ”median” and ”btw” for ”between”, there should not be many
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Figure 3: Feature importance for the 15 most important features as obtained by the
random forest model. The bars represent the average reduction in Gini index achieved
by each feature as a percentage of the total reduction in Gini index over all features.

differences between these names and what the features have been called else-
where in the thesis.

The kinds of features that show highest importance vary quite a lot, with both
account and content features reaching the highest spots (account features having
a slight majority over all), and not any specific types of feature completely
dominating the list. However, none of the features concerned with the text of
the tweets, like length of tweets, number of words or tweet endings, show up on
the list. Neither do the features dealing with hour of the day or weekday specific
information. On the other hand, a couple of features targeting the time between
different kind of tweets take up the bottom placements, and four features related
to retweets enter the list at somewhat varying positions.

4.2.2 Class characteristics

It is not feasible to analyze every model in the level of detail required to learn
what features have what effect on the classification. However, to at least get
some picture of the roles played by the features in the models, table 4 presents
the mean values for 20 selected features. Some have been selected because they
where given high importance by the random forest model (see previous section),
but in general the selection has been made so as to represent a wide variety of
feature types.

34



Features GU SB TB FF
Retweet-tweet ratio 0.7804 0.4919 0.0517 31.188
Retweets achieved per tweet 728.40 3.66 0.0 403.45
Number of followers 2271.07 611.68 637.30 18.20
Number of friends 676.94 589.79 1326.54 363.30
Likes per day 4.8556 0.0658 0.0051 0.0087
Age of account 1419.64 296.19 412.22 320.93
Number of tweets 19951.97 1500.43 220.83 74.73
Tweets per day 15.7634 2.3061 0.4929 0.2637
Length of username 10.7959 12.3009 11.26 11.9069
Length of tweets (mean) 72.2173 72.0041 75.6161 62.0722
Length of tweets (std.dev) 34.8352 35.912 20.1683 34.3911
Number of words (mean) 12.0591 12.5193 13.3363 10.6049
Time between tweets (mean) 19.68 21.16 138.06 272.55
Tweet endings, ”.” 0.1638 0.1770 0.1186 0.2013
Tweet endings, ”!” 0.0577 0.0546 0.0793 0.1232
Weekdays, Mondays (norm.) 0.1152 0.0827 0.1183 0.1407
Weekdays, Fridays (norm.) 0.1998 0.0996 0.1745 0.1571
Hours of day, 12 p.m. (norm.) 0.0287 0.0321 0.0337 0.0408
Hashtags per tweet 0.2986 0.0763 0.1558 0.1822
Unique hashtags per tweet 0.1798 0.0658 0.0617 0.1599

Table 4: Mean values for 20 selected features and all account types (GU: Genuine
users, SB: Social bots, TB: Traditional bots, FF: Fake followers).

The top six features in table 4 are also the top six in figure 3. All these features
show rather vast differences in mean values between the different classes. This
is particularly notable for retweets achieved per tweet, where the values range
between 0 and more than 700. In addition, there does not appear to exist
any clear pattern of similarity between the classes. For instance, for number of
followers, social bots and traditional bots are closest to each other, while for
number of friends, social bots are more similar to genuine users.

Another feature where there exists a drastic difference between the account types
is tweets per day. Here, the value is around 60 times higher for genuine users
than for fake followers. Large differences between highest and lowest value also
exist for features like number of tweets and time between tweets (mean).

In contrast, features like length of username and number of words (mean) do not
show too much variation between the different classes, although these features
are subject to certain limitations since usernames and tweets cannot exceed a
certain length. Some interesting differences can be spotted in for instance tweet
endings, ”!”, which seems to indicate that fake followers use exclamation marks
to end their tweets almost twice as often as any other class. However, this might
not be enough to impact the models in any decisive way, as was seen for instance
in figure 3 where this feature did not show up.
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Some other features, like length of tweets (mean) and length of tweets (std.dev)
are similar for all but one class, which diverges notably from the rest. These
could then potentially be relevant features for distinguishing that particular
class.

5 Discussion

The purpose of this section is mainly to bring up the most remarkable aspects of
the results and analyze what they mean, both for the conclusions in this thesis
and for future research in the field.

5.1 Interpreting results

Before any discussions on which method performed best, it is reasonable to
point out that all final models achieved accuracy above 90% on the test set,
which, given previous work in the field (see the works cited in section 1.3), is a
relatively good result.

It is also worth pointing out that the precision, F-score and MCC do not con-
tribute any relevant additional information about the models’ performances.
The idea behind these measures is to capture patterns in the classifications
which the overall accuracy fails to capture. However, since both the precision,
F-score and MCC are all so close to the accuracy, no new aspects of the models
are revealed by inspecting these measures.

As has been shown in section 4.1, there seems to be a tied race between the
logistic regression and the ANN methods. Although the ANN outperforms
the logistic regression on the test set, the bootstrapping of accuracy indicates
that this might as well just be due to the randomness inherent in the esti-
mation. Random forest, on the other hand, is by using the same bootstrap
approach deemed to significantly outperform all methods. Worst performance
is attributed to the k-NN method, showing a significantly lower accuracy than
all other models.

The random forest performing best would be very much in line with results from
binary classification of Twitter accounts (as mentioned in section 1.2), where
the random forest has also been shown to give best performance when compared
to other machine learning methods.

One thing to note here is that only accuracy has been bootstrapped. The other
performance measures might show other results, which could mean that for
those measures, the random forest would not be significantly better than all
other methods.

More importantly, however: since the differences between at least the top three
methods are so strikingly small, it is probably more interesting to analyze which
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features are most important and what issues might exist with the data, than
which particular model to use for the classification.

Looking at table 3, for all models, observations from the traditional bot class
seem to be the most difficult to classify. This is counter intuitive, since the tra-
ditional bot class should encompass bots which are supposedly unsophisticated
and thus easier to detect. Perhaps this then says something about the nature
of the data set (as hinted at in section 2), namely that the sampling proce-
dures used to obtain the different accounts likely has at least some unwanted
impact on test accuracy. That is, the accounts do not only differ because of
their different class belongings, but also purely because they have been sampled
differently. Or in yet other words, there seems to exist some sampling bias. This
means that some members of the intended population have not been sampled
with the same probability as others. Since the members with higher sampling
probability most likely also have characteristics distinguishing them from the
rest of the population, this skews the data, making any conclusions drawn from
it less dependable.

In light of the feature means shown in table 4, one could have thought that
traditional bots would differ enough from the other classes for the models to
pick it up. For multiple features, some of which are among the highest in im-
portance in the random forest model, the means differ drastically from the other
account types. Apparently, however, the models sometimes seem to mistake the
traditional bots for other account types, and in particular surprisingly often for
genuine users. This gives further support to the notion that sampling proce-
dures have impacted the data to some extent, at least if we assume that what
has been said in previous works about traditional bots being easier to classify
is true. Now, the discrepancies between previous works and the results here
could also be due to the fact that this thesis is trying to solve a multinomial
problem. Furthermore, seeing that the differences are relatively small between
most models, this is not something that should be taken to show that data is
detrimentally skewed. It is merely indicating that the suspicion about some
sampling bias being present in the data seems to have been accurate.

On the theme of sampling bias, another thing worth pointing out is that there are
some suspicious values in table 4. For instance, the feature tweets per day shows
that genuine users in the data set post more than 15 tweets per day on average.
Not only is this multiple times higher than for any other account type, it also
goes against what probably most people would view as normal human twitter
behaviour. Common sense tells us that 15 tweets a day on average is probably
not the most representative number for most regular (human) twitter users.
Similarly, having more than 700 retweets achieved per tweet must be considered
highly uncommon for most human users. Compared to the previous discussion
on traditional bots, this is actually even more alarming. Users who show this
much activity are not unlikely to differ from most genuine users in other ways
too. It is hard to say exactly how serious this discrepancy in behaviour is, but
it is surely not an optimal situation.
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If doubts concerning the quality of data are suspended for a moment, assum-
ing that the data sample is at least in most aspects representative of the wider
population, one conclusion that could be drawn from the results is that the
multinomial classification actually seems justified. For instance, it could have
been the case that the models would not have been able to distinguish between
the different bot types, or between genuine users and social bots. However, all
models cope fairly well with this task, which gives at least some reason to be-
lieve that it could actually be a useful approach to classifying Twitter accounts.
Seen somewhat optimistically then, this thesis would seem to suggest that us-
ing multiple bot types for Twitter account classification is not only sometimes
theoretically preferable, but also in fact fully doable in practice.

5.2 Future research

There are a number of question marks regarding how the data has been sampled,
with some results indicating sampling bias having a detectable impact on the
classifications. In light of this, sizable parts of future research in the field ought
to be devoted to collecting qualitative data. Without this, generalizations made
from the sample about the wider population may never be fully reliable, and
could potentially turn out to be misleading.

Developing unbiased and yet efficient sampling procedures for Twitter accounts
is no easy task, however. Before this can be done properly, perhaps there
even needs to be more research on the definitions and demarcations of actual
bot classes. Not only would this serve to reduce bias and make the sampling
more precise, it would also help increase the understanding of what actually
constitutes a social bot, for instance.

For the more immediate development of the multinomial classification models
produced in this thesis, the next step would be to try them out on completely
new datasets. This could bring clarity to the actual impact sampling bias has
had on the models, since performance measures notably different from those
obtained here would indicate that the observations in test set have indeed not
been representative of the full population. Of course, it might also be the case
that the data in any other dataset is biased, and that performance measures
would differ for that reason. However, using several other datasets to try the
models should still give a hint about their validity.

Another thing to try that could possibly improve accuracy for new data would
be to train models using only content features. It has been shown in figure 3
that many of the most important features, at least for the random forest model,
seem to be account features. However, account features are more dependent
on the time of sampling than content features, and may be less suitable for
classification of new Twitter accounts. As an example, a new traditional bot
account will have a very low account age, and most likely few tweets, friends,
followers, and so on. Using these features might therefore nudge the classifier
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in the wrong direction. Content features, on the other hand, ought at least
theoretically be more stable over time, since they are supposed to capture the
actual behaviour of the accounts. This is something which should not change
as much over time as certain meta stats are likely to do. Therefore, it might be
a good idea to do similar tests as have been performed here, but excluding the
account features and use only content features instead.

Finally, this selection of four machine learning methods is by no means exhaus-
tive, and there is of course also reason to test other classifiers in future research.
An example could be the unsupervised technique mentioned in section 1.3, which
has been shown to work very well for binary classifications.

6 Conclusion

This thesis set out to answer how accurately different machine learning meth-
ods could classify Twitter accounts, and whether any of the methods would
outperform the others. It has been shown that among random forest, logistic
regression, artificial neural networks and k-nearest-neighbors, the random forest
stands as the winner (by an ever so slight margin). It reached a test accuracy
of above 99%, which is remarkably high by almost any standard.

It has however also been shown that the data likely suffers from sampling bias,
making the above results somewhat less dependable. The extent of this bias is
difficult to assess merely by inspecting the current dataset. Therefore, perhaps
one of the most interesting conclusions of this work is that the models obtained
here ought to be tested on several different datasets, preferably ones collected
via new, improved sampling procedures, before their validity can be confirmed.
Moreover, this thesis suggests that it is exactly the development of reliable
and efficient sampling techniques that should be prioritized in the field of bot
classification. Without notable increases of data quality, results like the ones
obtained here will remain shrouded in uncertainty.
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Defence Research Agency (Totalförsvarets forskningsinstitut, FOI). Johan and
his colleagues shared the unpublished version of Political bots and the Swedish
general election [8], which helped a lot in the writing of this thesis. In addition
to that, Johan has on multiple occasions answered questions about their work
and the data they have used. This thesis would not be what it is, were it not
for these inputs.

References

[1] N. Carlson. The real history of twitter. https://www.businessinsider.

com/how-twitter-was-founded-2011-4?r=US&IR=T&IR=T, 2011. Ac-
cessed: 2018-10-18.

[2] Z. Chu, S. Gianvecchio, H. Wang, and S. Jajodia. Who is tweeting on
twitter: human, bot, or cyborg? In 26th Annual Computer Security Appli-
cations Conference (ACSAC), pages 21–30, 2010.

[3] S. Cresci, R. Di Petro, M. Petrocchi, A. Spognardi, and M. Tesconi. DNA-
inspired online behavioral modeling and its application to spambot detec-
tion. IEEE Intelligent Systems, 31:58–64, 2016.

[4] S. Cresci, R. Di Petro, M. Petrocchi, A. Spognardi, and M. Tesconi. The
paradigm-shift of social spambots: Evidence, theories, and tools for the
arms race. In 26th International Conference on World Wide Web Com-
panion, 2017.

[5] J.P. Dickerson, V. Kagan, and V.S. Subrahmanian. Using sentiment to
detect bots on twitter: Are humans more opinionated than bots? In
IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM), 2014.

[6] G. Dreyfus. Modeling with neural networks: Principles and model design
methodology. In G. Dreyfus, editor, Neural Networks - Methodology and
Applications, chapter 2, pages 85–199. Springer, 2005.

[7] L. Fahrmeir, T. Kneib, S. Lang, and B. Marx. Regression - Models, Methods
and Applications. Springer, Berlin, 2013.

[8] J. Fernquist, L. Kaati, and R. Schroeder. Political bots and the
swedish general election. In IEEE International Conference on In-
telligence and Security Informatics (ISI), pages 124–129, 2018. DOI:
10.1109/ISI.2018.8587347.

40



[9] E. Ferrara. Disinformation and social bot operations in the run up to
the 2017 french presidential election. First Monday, 22, 2017. DOI:
10.5210/fm.v22i8.8005.

[10] J. Gorodkin. Comparing two k-category assignments by a k-category corre-
lation coefficient. Computational Biology and Chemistry, 28:367–374, 2004.

[11] R. Gorwa and D. Guilbeault. Unpacking the social media bot: A
typology to guide research and policy. Policy & Internet, 2018.
DOI:10.1002/poi3.184.

[12] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. Springer, New York, 2nd edition, 2009.

[13] S. Hegelich and D. Janetzko. Are social bots on twitter political actors?
empirical evidence from a ukrainian social botnet. In Tenth International
AAAI Conference on Web and Social Media (ICWSM), 2016.

[14] G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to
Statistical Learning. Springer, New York, 2013.

[15] S. Kotsiantis, D. Kanellopoulos, and P. Pintelas. Handling imbalanced
datasets: A review. GESTS International Transactions on Computer Sci-
ence and Engineering, 30:25–36, 2005.

[16] K. Lee, B.D. Eoff, and J. Caverlee. Seven months with the devils: A long-
term study of content polluters on twitter. In Fifth International AAAI
Conference on Weblogs and Social Media (ICWSM), pages 185–192, 2011.

[17] J. Leskovec and C. Faloutsos. Sampling from large graphs. In ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pages 631–636, 2006.

[18] P. Metaxas and E. Mustafaraj. Social media and the elections. Science,
338:472–3, 2012.

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[20] J. Ratkiewicz, M. D. Conover, M. Meiss, B. Gonçalves, A. Flammini, and
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