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Abstract
We consider the Hopfield model on graphs. Specifically we compare five
different incomplete graphs on 4 or 5 vertices’s including a cycle, a path
and a star. Provided is a proof of the Hamiltonian being monotonically
decreasing under asynchronous network dynamics. This result is applied
to the treated incomplete graphs to derive exact values for the incre-
mental drop in energy on pattern sizes 2, 4, and an arbitrary m under
restriction. Special cases provided includes evaluating the network on a
graph as a union of two independent components, and additionally one
example using a deterministic dilute variable. Furthermore we study the
stability of patterns considering a Hopfield model with synchronous net-
work dynamics for two different incomplete graphs using simulations.

Keywords Neural Network ¨ Hopfield Model ¨ Incomplete Graph



Contents

1 Introduction 1

2 Hopfield model 2
2.1 Hopfield Model . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 State space . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Dynamics in time . . . . . . . . . . . . . . . . . . . . . 3
2.1.3 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.4 Storing and recalling patterns . . . . . . . . . . . . . . 4

2.2 Hopfield Model on Graphs . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Undirected Graph . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Delute variable. . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Proof that the Hamiltonian is monotonically decreasing in time 6

3 Hopfield model on incomplete graphs 8
3.1 Defining a graph given two patterns . . . . . . . . . . . . . . . 8
3.2 Hopfield model on a two-component disconnected graph with

four nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.1 Difference in energy updating neuron k in a network

with 4 neurons and 2 patterns . . . . . . . . . . . . . . 11
3.2.2 G as a union of two independent components . . . . . 13
3.2.3 Difference in energy updating neuron k in a network

with 4 neurons and with m arbitrary patterns under
restriction . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Hopfield model on a two-component disconnected graph with
five nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.1 Defining the graph with two patterns. . . . . . . . . . . 17
3.3.2 Difference in energy updating neuron k in a network

with 5 neurons and 2 patterns . . . . . . . . . . . . . . 17



3.3.3 Difference in energy updating neuron k in a network
with 5 neurons and 2 patterns deleting one edge . . . . 19

3.4 Hopfield model on a star graph with five nodes . . . . . . . . . 20
3.4.1 Difference in energy updating neuron k in a network

with 5 neurons and 2 patterns . . . . . . . . . . . . . . 21
3.5 Hopfield model on a path graph with five nodes . . . . . . . . 23

3.5.1 Defining the graph with two patterns . . . . . . . . . . 24
3.5.2 Defining the graph with four patterns . . . . . . . . . . 24

3.6 Hopfield model on a cycle graph with five nodes . . . . . . . . 25
3.6.1 Difference in energy updating neuron k in a network

with 5 neurons and 2 patterns . . . . . . . . . . . . . . 26

4 Simulation results for stability of patterns in a Hopfield model
with 5 neurons and 4 patterns for graph G2 and G3 27

5 Summary of findings 28
5.1 Definition of the weights given pattern size 2 or 4 . . . . . . . 28
5.2 The delta energy function . . . . . . . . . . . . . . . . . . . . 29
5.3 Stable patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Conclusion 31



1 Introduction

The Hopfield model is a model of an artificial neural network with great im-
portance in a multitude of scientific fields. Coupled with graphs this model
provides a framework to study the stability of patterns and energy conver-
gence of the network.

While there has been research on different angles of this topic in the past,
for instance Jehoshua Bruck’s "On the Convergence Properties of the Hop-
field Model" (1990), Anton Bovier and Véronique Gayrard’s paper "Rigorous
Results on the Thermodynamics of the Dilute Hopfield Model" (1993), and
Néstor Parga and Edmund Rolls Transform-Invariant Recognition by Asso-
ciation in a Recurrent Network (1998), surprisingly sparse material has been
produced on the topic since the early nineties.

We aim to study the Hopfield model on an incomplete or deluted graph
G. The main appeal of a Hopfield model on a deluted graph is the idea that
delution might enable memorization of a large number of patterns provided
less information, the Hopfield model still working as usual.

Delution can be implemented randomly and it is worth mentioning the
Erdős-Rényi model for generating random graphs. Here we either delete an
edge with probability p in the case of model Gpn, pq, or we randomly choose
a graph with a fixed M number of edges in model Gpn,Mq. Note, that it is
also possible to choose the patterns of the network randomly. In particular,
choosing the state of a neuron to be updated at random implies stochastic
network dynamics.

The storage capacity of a Hopfield network with N number of neurons
is usually measured by P

N
where P denotes the number of patterns. The

capacity is bounded from above by 1
4 lnn . However, Hopfield networks can

correct some of the errors upon memory retrieval. It was shown by Amit
et al. in 1990 that when using Hebbian learning to update the weights
the network storage capacity is limited to 0.138N number of patterns, if
neurons are updated at random. In this thesis it is assumed that we know
the incomplete graph G so that the network dynamics are deterministic in
nature. The weights are updated using Hebbian learning, and expressed in
terms of the patterns.

The main idea is to construct the patterns so that we do not use the
edges in the complete graph Kn on n vertices’s which are not present in G if
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such system exist, if not we prove the contrary. We want to find out if the
given approach is meaningful and if the Hopfield model works as assumed on
graph G. The purpose of this thesis is to analyze the convergence properties
of the energy function and the stability of the patterns of a Hopfield model
on an incomplete graph G. A final decision can then be made if the Hopfield
model on graph G has a rich enough profile.

The thesis is organized as follows. Sect. 2 is devoted to the Hopfield
model and the Hopfield model on various incomplete graphs will be treated
in Sect. 3. Simulation results for two examples of incomplete graphs is
treated in Sect. 4. In Sect. 5 we present a summary of findings and in Sect.
6 conclusions.

2 Hopfield model

We start this section aiming to introduce the Hopfield model, by making a
short note on Artificial Neural Networks, which can be viewed as comput-
ing systems originally developed to mimic basic biological neural systems
[Zhang et al., 1998]. The neuron can be defined as the information process-
ing unit [Haykin, 2009], where the input signals are weighted by connectivity
weights and summed up in the input potential, sometimes including bias,
and then mapped to an output.

The Hopfield model was introduced by John J. Hopfield in 1982 with the
aim to store and retrieve memory similar to how a brain works. The standard
procedure is for the network to learn a number of binary patterns and then
to return the one most similar to a given initialization pattern. The Hopfield
model is a feed-back neural network since its architecture can be described as
an undirected graph. Note, that the neurones in a Hopfield model are two-
state neurones. A connection or synapse between two neurons is expressed
in terms of a synaptic weight or connectivity weight. The network is said
to be fully connected if the output of each neuron is connected to all the
other neurons, this is equivalent to a Hopfield model on a complete graph.
A Hopfield model constitutes a recurrent neural network and a dynamical
system in time, to get a clearer view we introduce the following notation
presented in next subsection.
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2.1 Hopfield Model

2.1.1 State space

For a discrete dynamical system a state space can be defined as the set of
all possible configurations of such system, and in the Hopfield model the
time-dependent states of the neurons constitutes the configurations being
used.

Let n be the number of neurons in a Hopfield network and let ~σ be an
element of the state space, defined in the following way

Ωn “ t~σ “ pσ1, ..., σnq : σi P t´1,`1uu, (1)

and observe that |Ωn| “ 2n.

2.1.2 Dynamics in time

The Hopfield model utilizes updates, i.e., changes the states of the neurons
in time. The network can be updated synchronously or asynchronously, i.e.
the states of all neurons being updated once or each at the time in the latter
case.

To update the state of a neuron we will use the input potential, which
rely on the network weights which are updated according to the Hebbian
learning rule and expressed in terms of the patterns, as we explain below.

Given a set tξ1, ...., ξmu P Ωn which we call patterns, define for all i ‰ j,
the connectivity weights in the following way

wij “
1
n

m
ÿ

µ“1
ξµi ξ

µ
j , 1 ď i, j ď n. (2)

Then the deterministic update rule governing the network dynamics we
define as follows. Let ~σp0q “ ~η. The initial state ~η is often chosen randomly,
however in this thesis we will study different choices of ~η. Then

σipt` 1q “ sgn phiptqq , i “ 1, .., n, (3)

where
hiptq “ hipσptqq “

ÿ

j

wijσjptq, i “ 1, ..., n, (4)
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meaning that the state of neuron i is being updated; we call hiptq the input
potential for neuron i.

Asynchronous network dynamics. In asynchronous network dynamics
only one state is being updated at each moment of time, the rest being
unchanged. Note that if the state of a neuron k is changed then σkpt` 1q “
´σkptq since σi P t`1,´1u for i “ 1, ..., n. Let kptq be the index of a neuron
updated at time t. Observe, that

σkptqpt` 1q P tσkptqptq,´σkptqptqu (5)

but for all j ‰ kptq
σjpt` 1q “ σjptq. (6)

We will denote such network dynamics as asynchronous network dynamics.

2.1.3 Hamiltonian

A Hopfield network defines an energy function for each configuration ~σ P Ωn.
We call this energy function a Hamiltonian and we denote the Hamiltonian
in the following way

Hp~σq :“ Hp~w, ~σq “ ´
ÿ

i

ÿ

j

wijσiσj, 0 ď i, j ď n. (7)

The major property of a Hopfield network is that following repeated updating
of different neurons the network converges to a local minimum in the energy
function. This means that if a state is a local minimum of the energy function
it is a stable state for the network. We will study the difference in energy

∆Hptq :“ Hp~σpt` 1qq ´Hp~σptqq (8)

following an update of the state of a neuron.

2.1.4 Storing and recalling patterns

A Hopfield network is constructed to be able to store and recall patterns.
Intuitively when provided with a new pattern, the network will return one
of the stored patterns that agrees most with the new pattern. Denote the m
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patterns ξµ indexed by µ “ 1, ...,m, which we aim for the network to store
and recall, in the following way

tξ1, ..., ξmu Ă Ωn. (9)

The network is said to correctly represent a pattern ξµ if condition

σiptq “ σipt` 1q “ ξµi (10)

holds for all neurons 1 ď i ď n.
The network is initialized in a state ~σp0q “ ~η. Following repeated up-

dating of the states the goal is to converge to a fixed point corresponding
the pattern µ most similar to the initial state ~η. We say that a pattern is
retrieved if

σiptq “ ξµi (11)

for all i “ 1, ..., n.

2.2 Hopfield Model on Graphs

2.2.1 Undirected Graph

A Hopfield net can be defined in terms of an undirected graph, which is a
graph in which edges have no orientation, i.e. the edges can be described as
unordered pairs so that the edge pi, jq, is identical to the edge pj, iq, where
i ‰ j.

2.2.2 Delute variable.

Let G be an undirected graph on vertices t1, ..., nu and denote the delute
variable by

εji “ εij “

#

1, if pi, jq is an edge of G
0, otherwise

, (12)

where εii “ 0 is assumed to hold for all i. Note, that pεijq1ďi,jďn is called the
adjacency matrix for graph G.
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2.3 Proof that the Hamiltonian is monotonically de-
creasing in time

We define for any undirected graph G and any ~σ P Ωn the energy function
similar to (7);

HG
p~σq :“ Hp~wG, ~σq “ ´

ÿ

i

ÿ

j

wGijσiσj, wGij “ wijεij, 1 ď i, j ď n (13)

Notice, that (13) is equivalent to (7) when graph G is complete.

In the following theorem we will look closer at the instance when σkpt` 1q “
´σkptq, where asynchrnous network dynamics is considered.

Theorem 2.1. In a Hopfield model on any given graph G, the energy func-
tion is monotonically decreasing in time, under asynchronous network dy-
namics.

Proof. Assume that for some k,

σkpt` 1q “ ´σkptq, (14)

and
σjpt` 1q “ σjptq, j ‰ k. (15)

Consider the difference in energy ∆HGptq in the following.

HG
p~σpt` 1qq ´HG

p~σptqq
ˇ

ˇ

~σptq“~σ

“ ∆HG
ptq “

ÿ

i‰j

ÿ

j‰i

wGij

˜

σiσj ´ sgn
˜

ÿ

k

wGikσk

¸

sgn
˜

ÿ

k

wGjkσk

¸¸

“
ÿ

i‰j

ÿ

j‰i

˜

1
n

ÿ

µ

εijξ
µ
i ξ

µ
j

¸˜

σiσj ´ sgn
˜

ÿ

k

wikσk

¸

sgn
˜

ÿ

k

wjkσk

¸¸

(16)
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Using the fact that ´σipt` 1qσjptq`σipt` 1qσjptq “ 0, one can factorise the
expression (16) in the following (17) way.

∆HG
ptq “

ÿ

i,j

wGij

´

σiptqσjptq ´ σipt` 1qσjpt` 1q
¯

“
ÿ

i,j

wGij

”

pσiptq ´ σipt` 1qqσjptq ` σipt` 1qpσjptq ´ σjpt` 1qq
ı (17)

In the case that σkpt ` 1q “ ´σkptq, and if σjpt ` 1q “ σjptq holds for all
j ‰ k, the following is obtained.

∆HG
ptq “

ÿ

j

wGkjpσkptq ´ σkpt` 1qqσjptq `
ÿ

i

wGik pσkptq ´ σkpt` 1qqσipt` 1q

letting
w
G
ii “ 0

loooomoooon

“
ÿ

j‰k

wGkj pσkptq ´ σkpt` 1qqσjptq `
ÿ

i‰k

wGki pσkptq ´ σkpt` 1qq ¨

assuming
σipt`1q“σiptq
for all i ‰ k
loooooooomoooooooon

σiptq

assuming
σkpt`1q
“ ´σkptq
loooooomoooooon

“ 2
ÿ

j‰k

wGkjσjptq2σkptq “ 4σkptq
ÿ

j

wGkjσjptq

using that
a “ |a| sgn paq
loooooooooomoooooooooon

“ 4σkptq|
ÿ

j

wGkjσjptq|σkpt` 1q

assuming
σkpt`1q
“ ´σkptq
loooooomoooooon

“ 4σkptq|hkptq|p´σkptqq “ ´4|hkptq| ď 0
(18)

Thus

∆Hptq “
#

´4|hkptq|, for σkpt` 1q “ ´σkptq and σjpt` 1q “ σjptq

0, for σkpt` 1q “ σkptq and σjpt` 1q “ σjptq
ď 0.

(19)

Conclusion. We conclude that the energy function of a Hopfield model
on a given graph under asynchronous network dynamics is monotonically
decreasing.
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3 Hopfield model on incomplete graphs

The fact that the energyH is non-increasing follows by results on the Hopfield
model on a complete graph. We introduce a way to define a Hopfield model
on an incomplete graph given two patterns that agrees with the weights
corresponding to this graph. We study examples of the Hopfield model on
various incomplete graphs. The aim is to derive the exact values for the
incremental drop in energy.

3.1 Defining a graph given two patterns

Given an incomplete graph G on t1, ..., nu, our idea is to define ξ1, ξ2 P Ωn

so that
wij “

1
n

m
ÿ

µ“1
ξµi ξ

µ
j “ 0 (20)

whenever εij “ 0.
This is useful for providing values for the energy difference in time for

a Hopfield model on an incomplete graph assuming asynchronous network
dynamics. This is done by determining the patterns corresponding to a
certain set of weights belonging to a Hopfield model on a graph. Then we
can use the ordinary Hopfield model on a complete graph G since it does not
use pi, jq, so that wGij “ wij.

Definition 3.1. A general two pattern dependency formula. Let wij be the
weights and denote by γij a function

γij :“ p´1q1twij“0u, (21)

that takes the values 1, ´1.
Define ¯jpiq :“ ¯j P tj : 1 ď j ď nu to be the index of the node connected

to node i in G so that γi¯j “ 1. Observe that here we have

wi¯j :“ ˘ 2
n

(22)

which follows from the definition (2) of weights and patterns. Using property
(22) along with the constraints (26) of the weights posed previously, one can
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define a general pattern dependency formula ξµi , for i ‰ j in the following
way.

ξµi :“ ξµi p~ξq “ γijξ
µ
j ξ

3´µ
i ξ3´µ

j , µ “ 1, 2 (23)

This follows by division in
#

ξ1
i ξ

1
j ` ξ

2
i ξ

2
j “ 0, iff ξ1

i ξ
1
j “ ´ξ

2
i ξ

2
j

ξ1
i ξ

1
j ` ξ

2
i ξ

2
j ‰ 0, iff ξ1

i ξ
1
j “ ξ2

i ξ
2
j

(24)

by ξ1
j , so that

#

ξ1
i ξ

1
j ` ξ

2
i ξ

2
j “ 0, iff ξ1

i “ ´ξ
1
j ξ

2
i ξ

2
j

ξ1
i ξ

1
j ` ξ

2
i ξ

2
j ‰ 0, iff ξ1

i “ ξ1
j ξ

2
i ξ

2
j .

(25)

3.2 Hopfield model on a two-component disconnected
graph with four nodes

Example. Define a Hopfield model on a graph G1, with n “ 4 nodes and
consisting of two disconnected components. This graph contains two edges
corresponding to

w12 “ w13 “ w24 “ w34 “ 0 (26)
w14, w23 ‰ 0, (27)

with the graph depicted in Figure 1. First observe that for such graph an
even number of patterns is required to be able to construct the zero weights,
this fact appears from the definition of the weights (2).

Figure 1: Two-component disconnected graph G1 with four nodes
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In order to define a graph specific pattern dependency formula, we start by
defining the indexes of the weights. It will be convenient for us to use the
following notation. For all 1 ď i ď n

j1 :“ j1pi, nq “ |n` 1´ 2i|
j2 :“ j2pj1, nq “ n` 1´ j1

` :“ `pi, nq “ n` 1´ i,
(28)

this implies that the index node set ti, j1, j2, `u “ t1, 2, 3, 4u. We proceed to
define a graph specific pattern dependency formula as follows. Note that in
graph G1, any node i is connected to node ` (see (28)). Then we define

γ
G1
ij pwijq “

#

1, for j “ `

´1, for j “ j1, j2.
(29)

The connected weights of graph G1 take values in the following set

w
G1
i` P tw14, w23u, w14, w23 P t`

1
2 ,´

1
2u. (30)

Consider ξµ, µ “ 1, 2 which satisfy (22)-(25). From the system of equations
(23), we derive

ξµi “ ´ξ
µ
j1
ξ2´µ
i ξ3´µ

j1
“ ´ξµj2ξ

3´µ
i ξ3´µ

j2
“ ξµ` ξ

3´µ
i ξ3´µ

` . (31)

Using Definition 3.1, we shall express the component ξµi from pattern µ in
terms of another component ξµj belonging to the same pattern where i ‰ j.
Recall that to define a zero weight with two patterns the sign of ξiξj must
differ for the two patterns, whereas for non-zero weights it has to be equal
for both patterns. It follows from equation (23) that

ξµi “ ξµj (32)

if condition
sgn pγijξ

3´µ
i ξ3´µ

j q “ 1 (33)
is satisfied. Keeping equation (31) in mind, (33) is the case if either of the
following conditions are satisfied:

ξµi “ ξµ` , µ “ 1, 2 (34)
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or
ξ3´µ
i “ ´ξ3´µ

j . (35)

Indeed a counter example using (31) confirms this equality by taking ξµ1 ‰ ξµ4
for at least one µ. Assume for instance ξ1

1 ‰ ξ1
4 with ξ2

1 “ ξ2
4 to hold, then

the equality
ξ1

1ξ
1
2 ` ξ

2
1ξ

2
2 “ ξ1

2ξ
1
4 ` ξ

2
2ξ

2
4 (36)

now becomes equality

´ξ1
4ξ

1
2 ` ξ

2
4ξ

2
2 “ ξ1

2ξ
1
4 ` ξ

2
2ξ

2
4 (37)

which is a contradiction, this is true also if ξµ1 ‰ ξµ4 for all µ holds.

Finally, one but not the only way to express pattern ξµi in terms of ξµj , γ
µ´1
ij

is in the following way stated below

ξµi “ γµ´1
ij ξµj . (38)

3.2.1 Difference in energy updating neuron k in a network with 4
neurons and 2 patterns

Let
σjp0q “ ηj, j ‰ i, (39)

and assume the following condition for the patterns
#

ξµi ξ
µ
j‰` “ ´ξ

3´µ
i ξ3´µ

j‰`

ξµi ξ
µ
` “ ξ3´µ

i ξ3´µ
`

, µ “ 1, 2, (40)

which corresponds to the weights related to G1 as defined in (26) and (27).
Then when

σkpt` 1q “ ´σkptq,
σjpt` 1q “ σjptq, j ‰ k,

(41)

we derive using result (18)
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∆HG1p0q “ ´4|hkp0q|
eq.p2q
“ ´4|

ÿ

j‰k

1
n

m
ÿ

µ“1
ξµk ξ

µ
j ηj|

eq.p28q
“ ´4|

ÿ

j‰`
j‰k

1
n

˜

m
ÿ

µ“1
ξµk ξ

µ
j

¸

ηj `
ÿ

j“`

1
n

˜

m
ÿ

µ“1
ξµk ξ

µ
j

¸

η`|

pm,nq
“ ´4|

ÿ

j‰`
j‰k

1
4

˜

2
ÿ

µ“1
ξµk ξ

µ
j

¸

ηj `
ÿ

j“`

1
4

˜

2
ÿ

µ“1
ξµk ξ

µ
j

¸

η`|

“ ´4|
ÿ

j‰`
j‰k

1
4

`

ξ1
kξ

1
j ` ξ

2
kξ

2
j

˘

ηj `
1
4

`

ξ1
kξ

1
` ` ξ

2
kξ

2
`

˘

η`|

eq.p40q
“ ´4|

ÿ

j‰`
j‰k

1
4

`

ξ1
kξ

1
j ´ ξ

1
kξ

1
j

˘

ηj `
1
4

`

ξ1
kξ

1
` ` ξ

1
kξ

1
`

˘

η`|

“ ´4|14
`

ξ1
kξ

1
` ` ξ

1
kξ

1
`

˘

η`|

“ ´2|ξ1
kξ

1
` η`|

eq.p1q
“ ´2|η`|

eq.p1q
“ ´2.

(42)

Note that if σkpt ` 1q “ σkptq for all k, then ∆HG1ptq “ 0 holds. Since the
input potential of neuron k in G1 is defined according to

h
G1
k p0q “ 1

4

m
ÿ

µ“1
ξµk ξ

µ
` η`, (43)

we know that if equality

sgn p1
4

m
ÿ

µ“1
ξµk ξ

µ
` η`q “ ηk (44)

is satisfied, then the difference in energy will equal zero. This corresponds
to choice of ~η according to

1
2pξ

1
kξ

1
` ` ξ

2
kξ

2
` qη` “ ηk (45)
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or equivalently
ηkη` “ ξµk ξ

µ
` , µ “ 1, 2. (46)

The computations of result (42) points at a value of ´2 for the delta energy
function following an update of a neuron k where σpt`1q “ ´σptq is assumed.
This can be summarized in the following way

∆HG1p0q “
#

´2, σkp1q “ ´σkp0q
0, σkp1q “ σkp0q.

(47)

Conclusion. Given a graph G1 and two patterns chosen as above, we
conclude that the energy function is monotonically decreasing under asyn-
chronous network dynamics, and that ∆HG1p0q P t0,´2u, where ∆HG1p0q “
0 only in the trivial case that σkp1q “ σkp0q.

3.2.2 G as a union of two independent components

Definition 3.2. Split the graph G1 in two subgroups each on two vertices’s
as depicted in Figure 2 and Figure 3. Denote the two subgraphs by G

Pκ
1 ,

κ “ 1, 2.

Figure 2: Subgraph
G
P1
1

Figure 3: Subgraph
G
P2
1

To obtain the delta energy of any of the two subgraphs updating neuron
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k, let k “ ` hold and consider

∆HGPκ1 p0q “ ´4|hkp0q|

“ ´4|
ÿ

j‰k

1
n

m
ÿ

µ“1
ξµk ξ

µ
j ηj|

“ ´4|
ÿ

j‰`

1
2

2
ÿ

µ“1
ξµk ξ

µ
j ηj|

“ ´4|
ÿ

j“5´`

1
2

2
ÿ

µ“1
ξµk ξ

µ
j ηj|

“ ´2|
2
ÿ

µ“1
ξµ` ξ

µ
5´`η5´`|

“ ´2|pξ1
` ξ

1
5´` ` ξ

2
` ξ

2
5´`qη5´`|

“ ´2|pξ1
` ξ

1
5´` ` ξ

1
` ξ

1
5´`qη5´`|

“ ´2|2ξ1
` ξ

1
5´`η5´`|

“ ´4|ξ1
` ξ

1
5´`η5´`|

“ ´4.

(48)

From result (48) one can see that the two subgraphs give identical results in
terms of the energy delta function.

Conclusion. Given a subgraph G
Pκ
1 and two patterns chosen in ac-

cordance to the set of weights agreeing with this graph, we conclude that
the energy function is monotonically decreasing under asynchronous network
dynamics, and that ∆HGPκ1 p0q P t0,´4u. Note, that ∆HGPκ1 p0q “ 0 only if
σkp1q “ σkp0q.
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3.2.3 Difference in energy updating neuron k in a network with 4
neurons and with m arbitrary patterns under restriction

In the following subsection mG denotes the number of patterns for a network
on a graph G. We omit the subscript if it is clear from context. Consider
a Hopfield network on an incomplete graph on n vertices’s. To enable zero
weights we assume m “ 2ι. For a network with n number of neurons on a
complete graph the total number of possible configurations is 2n. Thus for
any incomplete graph the number of patterns is m “ 2ι ď 2n and conse-
quently mG1

“ 2ιG1
ď 16 for n “ 4.

Recall from (28) that in graph G1 for any neuron indexed by i “ 1, ..., n
there exists an edge to neuron `pi, nq such that wi` ‰ 0. Consider then

∆HG1p0q “ ´4|hkp0q|

“ ´4|
ÿ

j‰k

1
n

m
ÿ

µ“1
ξµk ξ

µ
j ηj|

“ ´|
ÿ

j‰k

m
ÿ

µ“1
ξµk ξ

µ
j ηj|

“ ´|
ÿ

j‰k

pξ1
kξ

1
j ` ξ

2
kξ

2
j ` ...` ξ

m´1
k ξm´1

j ` ξmk ξ
m
j qηj|

“ ´|pξ1
kξ

1
` ` ξ

2
kξ

2
` ` ...` ξ

m´1
k ξm´1

` ` ξmk ξ
m
` qη`|,

(49)

where we used the properties of patterns, pertaining to G1, as defined previ-
ously. Since any term ξµk ξ

µ
j P t´1, 1u we derive from here that

∆HG1p0q “ ´2|m2 ´ α|, (50)

where 0 ď α ă m
2 denotes the number of terms ξµk ξ

µ
` for which there exists a

negative in the sum corresponding to weight wk`. Relaxing the strictness of
this inequality we get that the term α is restricted so that

0 ď α ď m
2 ´ 1. (51)

The term α can never be larger than m
2 since if this is true it is impossible to

find a negative for each of the α number of terms. It can never be m
2 since

this implies an equal number of terms ξµi ξ
µ
j with the same sign resulting in

15



wk` “ 0 which is false. It follows that

∆HG1p0q P t´m,´pm´ 2q, ...,´pm´ pm´ 4qq,´2, 0u “ D1, m “ 2ι ď 16,
(52)

and that
∆HG1p0q P t´16,´14, ...,´2, 0u, (53)

since D1 Ă t´16,´14, ...,´2, 0u. The smallest value min ∆HG1p0q “ ´16 is
obtained with α “ 0 and m “ 16.

Conclusion. Given a graph G1 and with m patterns chosen as above,
we conclude that the energy function is monotonically decreasing under
asynchronous network dynamics and that HG1p0q P t´16,´14, ...,´2, 0u
and ∆HG1p0q P t´m,´pm ´ 2q, ...,´pm ´ pm ´ 4qq,´2, 0u. Note, that
∆HG1p0q “ 0 only if σkp1q “ σkp0q.

3.3 Hopfield model on a two-component disconnected
graph with five nodes

Example. Define a Hopfield model on a two-component disconnected graph
G2 so that it contain n “ 5 nodes, symmetry in weights (2) still assumed.
In addition to the set of weights in the four node example two more weights
are zero so that

w12 “ w13 “ w24 “ w34 “ w25 “ w35 “ 0
w14, w15, w23, w45 ‰ 0,

(54)

where an even number of patterns is still required. The visualization of graph
G2 is presented in Figure 4 below.
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Figure 4: Two-component disconnected graph G2 with five nodes

3.3.1 Defining the graph with two patterns.

To express the weights in terms of patterns condition (54) need to be satisfied.
A quick inspection should convince oneself that the definition of the weights
(26) and the pattern dependency formula (31) of G2 is identical to that of
G1 for all i, j ‰ 5.

Observe that in contrast to the graph G1 examined previously that con-
tained one connection for each node, in G2 there also exist nodes that con-
nects to two nodes.

Exchanging n`1 for n in the definition belonging to (31), then for i, j ‰ 5
the first three leftmost products in pattern dependency formula for G2 will
be identical.

3.3.2 Difference in energy updating neuron k in a network with 5
neurons and 2 patterns

Define the following indexis as below.

j1 P t1, 4, 5u
j2 P t2, 3u

(55)

17



We have that
∆HG2ptq “ ´4|hkpσkptqq|

“ ´4|
ÿ

j‰k

1
n

m
ÿ

µ“1
ξµk ξ

µ
j σjptq|

“ ´4|
ÿ

jPj1‰k

1
n

m
ÿ

µ“1
ξµk ξ

µ
j σjptq `

ÿ

jPj2‰k

1
n

m
ÿ

µ“1
ξµk ξ

µ
j σjptq|.

(56)

If k P j2 the first sum in the last line below becomes zero, and there is just
one possible connecting weight in j2 so that

∆HG2p0q “ ´4|hkp0q|

“ ´4|
ÿ

jPj2‰k

1
n

m
ÿ

µ“1
ξµk ξ

µ
j ηj|

“ ´ 4
n
|ξ1
kξ

1
5´kη5´k ` ξ

2
kξ

2
5´kη5´k|

“ ´ 4
n
|ξ1
kξ

1
5´kη5´k ` ξ

1
kξ

1
5´kη5´k|

“ ´ 8
n
|ξ1
kξ

1
5´kη5´k|

“ ´8
5 |ξ

1
kξ

1
5´kη5´k|

“ ´8
5 .

(57)

Define j1 P tk, j̃1, j̃2u and j̃ P tj̃1, j̃2u. If k P j1, the following result appears

∆HG2p0q “ ´4|hkp0q|

“ ´4|
ÿ

jPj1‰k

1
n

m
ÿ

µ“1
ξµk ξ

µ
j ηj|

“ ´4
5 |

ÿ

jPj1‰k

pξ1
kξ

1
j ` ξ

2
kξ

2
j qηj|

“ ´8
5 |

ÿ

jPj1‰k

ξ1
kξ

1
j ηj|

“ ´8
5 |ξ

1
kξ

1
j̃1
ηj̃1 ` ξ

1
kξ

1
j̃2
ηj̃2 |

“ ´8
5 |ξ

1
kpξ

1
j̃1
ηj̃1 ` ξ

1
j̃2
ηj̃2q|

“ ´8
5 |ξ

1
j̃1
ηj̃1 ` ξ

1
j̃2
ηj̃2 |

(58)

which is maximized if
ξ1
j̃1
ηj̃1 “ ξ1

j̃2
ηj̃2 (59)
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or equivalently
ηj̃1ηj̃2 “ ξ1

j̃1
ξ1
j̃2

(60)

and
ηj̃1ηj̃2 “ ξ2

j̃1
ξ2
j̃2
, (61)

resulting in the value
∆HG2p0q

ˇ

ˇ

kPj1
“ ´16

5 . (62)

Choosing an initialization pattern ~η according to (60) and (61), will al-
ways ensure the smallest possible delta energy function.

We get that

∆HG2p0q “

$

’

&

’

%

0, if k P j1 and ξ1
j̃1
ηj̃1 “ ´ξ

1
j̃2
ηj̃2

´8
5 , if k P j2

´16
5 , if k P j1 and ξ1

j̃1
ηj̃1 “ ξ1

j̃2
ηj̃2 .

(63)

Conclusion. Given a graph G2 and with two patterns chosen in accordance
to the set of weights agreeing with this graph, we conclude that the energy
function is monotonically decreasing under asynchronous network dynamics,
and that ∆HG2p0q P t0,´8

5 ,´
16
5 u.

3.3.3 Difference in energy updating neuron k in a network with 5
neurons and 2 patterns deleting one edge

If k P j2, then deleting the edge corresponding to w23 brings a result of zero
in (57), while deleting any other edge do not change the result. Denote by
ε0 “ tε : ε23 “ 0 and εij “ 1 for i, j ‰ 2, 3u, the set of delute variables
corresponding to deleting the edge between neuron 2 and 3.

Denote by i0, j0 a particular value of i, j, then denote ε1 “ tε : εij “
0 and εi0j0 “ 1 for i0, j0 ‰ i, j ‰ 2, 3u.

If k P j1 it holds by the result of (58) that deleting the edge correspond-
ing to w23 does not affect the delta energy function and neither does deleting
the edge wj̃1j̃2 where k ‰ j̃1, j̃2.

However, deleting the edge corresponding to wj1j̃1 , so that εj1j̃1 “ 0,
affects the delta energy function. This can be seen from result (64), building
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on the computations of result (58), but with the delute variable not always
non-zero. Denote by ε2 “ tε : εj1j̃1 “ 0 and εij “ 1 for i, j ‰ j1, j̃1u the set of
delute variables corresponding to deleting the edge between neuron j1 and
j̃1, then the following must hold.

∆HGε2
2 p0q

ˇ

ˇ

ˇ

kPj1
“ ´8

5 |εj1j̃1ξ
1
j1
ξ1
j̃1
ηj̃1 ` εj1j̃2ξ

1
j1
ξ1
j̃2
ηj̃2 |

“ ´8
5 |1 ¨ ξ

1
j1
ξ1
j̃1
ηj̃1 ` 0 ¨ ξ1

j1
ξ1
j̃2
ηj̃2 |

“ ´8
5 |ξ

1
j1
ξ1
j̃1
ηj̃1 |

“ ´8
5

(64)

From the previous result (62) it becomes clear, together with computations
(64) and as stated below

HGε2
2 p0q

ˇ

ˇ

ˇ

kPj1
“ ´8

5 ą ´16
5 “ HG2p0q

ˇ

ˇ

kPj1
, (65)

that the delta energy function has increased with the deletion of this wj1j̃2
weight. Furthermore we denote by ε3 the set ε3 “ tε : εi0j0 “ 0 and εij “

1 for i, j ‰ i0, j0 ‰ j1, j̃1u.
Conclusion. Given a graph G2 and with two patterns chosen in ac-

cordance to the set of weights agreeing with this graph, we conclude that
deleting one edge, the energy function is still monotonically decreasing un-
der asynchronous network dynamics, and that

∆HG
ε0
2 p0q

ˇ

ˇ

ˇ

k“j2
P t0u, (66)

∆HG
ε1
2 p0q

ˇ

ˇ

ˇ

k“j2
P t0,´8

5 ,´
16
5 u, (67)

∆HG
ε2
2 p0q

ˇ

ˇ

ˇ

k“j1
P t0,´8

5u, (68)

and
∆HG

ε3
2 p0q

ˇ

ˇ

ˇ

k“j1
P t0,´8

5 ,´
16
5 u. (69)

3.4 Hopfield model on a star graph with five nodes

Example. Define a Hopfield model on a star graph G3 so that it contain
n “ 5 nodes, symmetry in weights (2) assumed. The weights are defined
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according to
w23 “ w24 “ w25 “ w34 “ w35 “ w45 “ 0

w12, w13, w14, w15 ‰ 0,
(70)

with an even number of patterns required. The graph G3 can be seen in
Figure 5 below.

Figure 5: Star graph G3 with five nodes

3.4.1 Difference in energy updating neuron k in a network with 5
neurons and 2 patterns

We continue in a similar fashion to previous sections on delta energy. First
consider the case when k ‰ 1, the following must then hold.

Case 1. k ‰ 1
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Consider
∆HG3p0q “ ´4|hkp0q|

“ ´4|
ÿ

j‰k

1
n

m
ÿ

µ“1
ξµk ξ

µ
j ηj|

“ ´4|
ÿ

j“1

1
n

m
ÿ

µ“1
ξµk ξ

µ
j ηj|

“ ´4
5 |

m
ÿ

µ“1
ξµk ξ

µ
1 η1|

“ ´4
5 |

m
ÿ

µ“1
ξµk ξ

µ
1 η1|

“ ´4
5 |2ξ

1
kξ

1
1η1|

“ ´8
5 |ξ

1
kξ

1
1η1|

“ ´8
5 .

(71)

Case 2. k “ 1

Let j1, j2, j3, j4 be arbitrary indexes for j. Consider then

∆HG3p0q “ ´4|hkp0q|

“ ´4|
ÿ

j‰k

1
n

m
ÿ

µ“1
ξµk ξ

µ
j ηj|

“ ´4
5 |
ÿ

j‰k

pξ1
kξ

1
j ` ξ

2
kξ

2
j qηj|

“ ´4
5 |
ÿ

j‰k

pξ1
kξ

1
j ` ξ

1
kξ

1
j qηj|

“ ´8
5 |
ÿ

j‰k

ξ1
kξ

1
j ηj|

“ ´8
5 |ξ

1
k

ÿ

j‰k

ξ1
j ηj|

“ ´8
5 |
ÿ

j‰k

ξ1
j ηj|

“ ´8
5 |ξ

1
j1
ηj1 ` ξ

1
j2
ηj2 ` ξ

1
j3
ηj3 ` ξ

1
j4
ηj4 |.

(72)
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There are three possible conditions for ξ1
j ηj as defined below, with the fol-

lowing results for the delta energy function.

∆HG3p0q “

$

’

&

’

%

0, if ξ1
j1
ηj1 “ ξ1

j2
ηj2 “ ´ξ

1
j3
ηj3 “ ´ξ

1
j4
ηj4

´16
5 , if ξ1

j1
ηj1 “ ξ1

j2
ηj2 “ ξ1

j3
ηj3 “ ´ξ

1
j4
ηj4

´32
5 , if ξ1

j1
ηj1 “ ξ1

j2
ηj2 “ ξ1

j3
ηj3 “ ξ1

j4
ηj4 p˚q

(73)

Here p˚q in (73) constitutes the minimum for the delta energy function of
graph G3 updating neuron k.

Conclusion. Given a graph G3 and with two patterns chosen in ac-
cordance to the set of weights agreeing with this graph, we conclude that
the energy function is monotonically decreasing under asynchronous network
dynamics, and that ∆HG3p0q P t0,´16

5 ,´
32
5 u.

3.5 Hopfield model on a path graph with five nodes

Example. Define a Hopfield model on a path graph G4 so that it contain
n “ 5 nodes, with symmetry in weights (2) assumed. The weights are defined
according to

w13 “ w14 “ w15 “ w24 “ w25 “ w35 “ 0
w12, w23, w34, w45 ‰ 0,

(74)

with an even number of patterns required. Visualization of G4 is provided in
Figure 6 below.

Figure 6: Path graph G4 with five nodes
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3.5.1 Defining the graph with two patterns

For a path defined as in G4 two patterns are not enough to define its weights.
This can be observed in the following way. Let the patterns ξ1

1 , ξ
2
1 contain an

uneven number of minus signs, it follows that patterns ξ1
3 , ξ

2
3 has to contain an

even number of negative terms. To satisfy the condition w12 ‰ 0, then ξ1
2 , ξ

2
2

has to contain an uneven number of minus signs, but to get w23 ‰ 0 an even
number of minus signs are required. The realization of both requirements
can for obvious reasons not occur at the same time.

3.5.2 Defining the graph with four patterns

What about four patterns? We claim that the graph G4 is not defined on
four patterns. Assume for some i ‰ j, that each of the sets

tξ1
i , ξ

2
i , ξ

3
i , ξ

4
i u ‰ tξ

1
j , ξ

2
j , ξ

3
j , ξ

4
j u, i ‰ j, (75)

contains an even number of negative elements. Then
4
ÿ

µ“1
ξµi ξ

µ
j “ 0, i ‰ j, (76)

if and only if

tξ1
i , ξ

2
i , ξ

3
i , ξ

4
i u ‰ t´ξ

1
j ,´ξ

2
j ,´ξ

3
j ,´ξ

4
j u, i ‰ j, (77)

and
4
ÿ

µ“1
ξµi ξ

µ
j ‰ 0, i ‰ j, (78)

if and only if

tξ1
i , ξ

2
i , ξ

3
i , ξ

4
i u “ t´ξ

1
j ,´ξ

2
j ,´ξ

3
j ,´ξ

4
j u, i ‰ j. (79)

Let there be a k for which tξ1
k, ξ

2
k, ξ

3
k, ξ

4
ku contains an even number of negative

elements. To satisfy (74), the following conditions need to be satisfied:

tξ1
k, ξ

2
k, ξ

3
k, ξ

4
ku ‰ t´ξ

1
k`2,´ξ

2
k`2,´ξ

3
k`2,´ξ

4
k`2u, k “ 1, 2, 3, (80)

tξ1
k, ξ

2
k, ξ

3
k, ξ

4
ku ‰ t´ξ

1
k`3,´ξ

2
k`3,´ξ

3
k`3,´ξ

4
k`3u, k “ 1, 2, (81)

24



and
tξ1

1 , ξ
2
1 , ξ

3
1 , ξ

4
1u ‰ t´ξ

1
5 ,´ξ

2
5 ,´ξ

3
5 ,´ξ

4
5u. (82)

Note, that for any i ‰ j where set tξ1
i , ξ

2
i , ξ

3
i , ξ

4
i u contains an even number

of negative elements and set tξ1
j , ξ

2
j , ξ

3
j , ξ

4
j u contains an odd number of neg-

ative elements, that (78) holds. Thus, given tξ1
k, ξ

2
k, ξ

3
k, ξ

4
ku as above, all sets

tξ1
i , ξ

2
i , ξ

3
i , ξ

4
i u, i “ 1, 2, 3, 4, 5, contains even number of negative elements.

Since
m
ÿ

µ“1
ξµk´1ξ

µ
k ‰ 0, k “ 2, 3, 4, 5, (83)

we need

t´ξ1
k´1,´ξ

2
k´1,´ξ

3
k´1,´ξ

4
k´1u “ tξ

1
k, ξ

2
k, ξ

3
k, ξ

4
ku, k “ 2, 3, 4, 5, (84)

and

tξ1
k, ξ

2
k, ξ

3
k, ξ

4
ku “ t´ξ

1
k`1,´ξ

2
k`1,´ξ

3
k`1,´ξ

4
k`1u, k “ 2, 3, 4, 5. (85)

However, this holds if and only if

tξ1
k´1, ξ

2
k´1, ξ

3
k´1, ξ

4
k´1u “ tξ

1
k`1, ξ

2
k`1, ξ

3
k`1, ξ

4
k`1u, k “ 2, 3, 4, 5, (86)

which violates (74) and (75). Similar results can be shown if the set of
patterns indexed by k contains an odd number of negative elements.

Conclusion. We have shown that given a path graph G4, its weights
cannot be defined using two or four patterns.

3.6 Hopfield model on a cycle graph with five nodes

Example. Define a Hopfield model on cycle graph G5 so that it contain
n “ 5 nodes, symmetry in weights (2) assumed. The weights are defined in
the following way,

w13 “ w14 “ w24 “ w25 “ w35 “ 0
w12, w23, w34, w45, w51 ‰ 0

(87)

with an even number of patterns required. The graph G4 can be seen in
Figure 7 below.
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Figure 7: Cycle graph G5 with five nodes

3.6.1 Difference in energy updating neuron k in a network with 5
neurons and 2 patterns

We shall prove that given two patterns, the energy delta function in a Hop-
field network for a cycle graph is not defined. Continue in the same way
as for the previous incomplete graphs by computing the difference in energy
updating neuron k on graph G5. Consider

∆HG5p0q “ ´4|hkp0q|

“ ´4|
ÿ

j‰k

1
n

m
ÿ

µ“1
ξµk ξ

µ
j ηj|

“ ´4
5 |
ÿ

j‰k

pξ1
kξ

1
j ηj ` ξ

2
kξ

2
j ηjq|

“ ´4
5 |ξ

1
kξ

1
k´1ηk´1 ` ξ

2
kξ

2
k´1ηk´1 ` ξ

1
kξ

1
k`1ηk`1 ` ξ

2
kξ

2
k`1ηk`1|

“ ´4
5 |2ξ

1
kξ

1
k´1ηk´1 ` 2ξ1

kξ
1
k`1ηk`1|

“ ´8
5 |ξ

1
kξ

1
k´1ηk´1 ` ξ

1
kξ

1
k`1ηk`1|

“ ´8
5 |ξ

1
kpξ

1
k´1ηk´1 ` ξ

1
k`1ηk`1q|

“ ´8
5 |ξ

1
k´1ηk´1 ` ξ

1
k`1ηk`1|

“ ´8
5 |ξ

2
k´1ηk´1 ` ξ

2
k`1ηk`1|.

(88)

The delta energy function can then be defined according to

∆HG5p0q “
#

0, ξµk´1ξ
µ
k`1 “ ´ηk´1ηk`1 for µ “ 1 and µ “ 2

´16
5 , ξµk´1ξ

µ
k`1 “ ηk´1ηk`1 for µ “ 1 and µ “ 2 p˚q.

(89)
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Note however, that for every k we need that the following condition to be
satisfied

$

’

&

’

%

ξ1
kξ

1
k`1 “ ξ2

kξ
2
k`1

ξ1
kξ

1
k´1 “ ξ2

kξ
2
k´1

ξ1
k´1ξ

1
k`1 “ ´ξ

2
k´1ξ

2
k`1,

(90)

in other words, for a node to be connected to a neighbour implies that
ξ1
kξ

1
k`1 “ ξ2

kξ
2
k`1, and that also ξ1

kξ
1
k´1 “ ξ2

kξ
2
k´1 must hold. But for every

two entries in (90) that holds, multiply them and you will see that the ex-
pression can never be true, for instance ξ1

k´1ξ
1
k`1 “ ξ2

k´1ξ
2
k`1 would also have

be true, which contradicts the definition of the weights in this graph.
Conclusion. We have showed that given a cycle graph G5, its weights

cannot be defined with two patterns.

4 Simulation results for stability of patterns
in a Hopfield model with 5 neurons and 4
patterns for graph G2 and G3

We have implemented a computer algorithm in Python that finds all sets of
patterns corresponding to graph G2, G3 and which gives information about
the stability of the patterns.

Denote the network size by n, the pattern size by m, the number of pos-
sible sets of patterns in the graph by c1, and the number of sets of patterns
that contain a stable pattern for each eta by c2.

Denote the initial states for the network by η “ pη1, η2, ..., ηnq, where the
initial state of neuron i is denoted by σip0q “ ηi for i “ 1, ..., n. Denote
also the pattern µ of the network by ξµ “ pξµ1 , ..., ξµnq, where the pattern µ of
neuron i is denoted by ξµi for µ “ 1, ...,m, i “ 1, ..., n.
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Table 1: Comparison table

Graph n m c1 c2 Example

η “ p1, 1, 1, 1, 1q
ξ1 “ p´1,´1,´1,´1,´1q

G2 5 4 192 24 ξ2 “ p´1, 1, 1,´1,´1q
ξ3 “ p1,´1,´1, 1, 1q
ξ4 “ p1, 1, 1, 1, 1q

η “ p1, 1, 1, 1, 1q
ξ1 “ p´1,´1,´1, 1, 1q

G3 5 4 6144 768 ξ2 “ p´1,´1, 1,´1, 1q
ξ3 “ p´1, 1,´1,´1, 1q
ξ4 “ p1, 1, 1, 1, 1q

5 Summary of findings

5.1 Definition of the weights given pattern size 2 or 4

Comparing the six different graphs, given either two or four number of pat-
terns, we have proved that not all of the weights belonging to the particular
graphs will be defined. The results are stated below where an x indicates
that the graph is defined on the given pattern size provided in the top row.

28



Table 2: Comparison table

Graph Def. on 2 patterns Def. on 4 patterns
Kn x x
G1 x x
G2 x x
G3 x
G4
G5 x

We conclude that the weights of the graphs G,G1, and G2 are defined
given two and four patterns, the weights of the graphs G3,G5 are defined
given four patterns, and the weights of the graph G4 are undefined given two
patterns and given four patterns.

5.2 The delta energy function

We have studied the delta energy function for various incomplete graphs,
applying asynchronous network dynamics. The result is provided in the
table below.

Denote by β “ 0, ..., 10, an index corresponding to each row in table (3)
below and the set of all treated graphs by G̃ “ tG1, G

Pκ
1 , ..., G5u. Denote the

graph G̃β P G̃, the network size nβ, pattern sizemβ and index kβ of the neuron
which state is to be updated corresponding to row β. Furthermore denote
by xβ the variable xβ “ pG̃β, nβ,mβ, kβq, and given xβ denote the difference
in energy at time t “ 0 by F pxβq “ ∆HG̃βp0q

ˇ

ˇ

ˇ

k“kβ

, where hkp~σp0qq|k“kβ “
řnβ
j“1 wkβjηj “

řnβ
j“1p

1
nβ

řmβ
µ“1 ξkβξjqηj. Denote by Dβ the codomain of the

map f : xβ Ñ F pxβq given xβ where asynchronous network dynamics is
assumed.
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Table 3: Codomain of the map f : xβ Ñ F pxβq given xβ, where asynchronous
network dynamics is assumed.

β Graph, Gβ Network size, nβ Pattern size, mβ kβ Codomain Dβ of f

0 G1 4 2 k t0,´10
5 u

1 G1 4 m ď 16 k t0,´2,´pm´ pm´ 4qq, ...,´pm´ 2q,´mu

2 G
Pκ
1 4 2 k t0,´20

5 u

3 G2 5 2 k t0,´8
5 ,´

16
5 u

4 G
ε0

2 5 2 j2 t0u

5 G
ε1

2 5 2 j2 t0,´8
5 ,´

16
5 u

6 G
ε2

2 5 2 j1 t0,´8
5u

7 G
ε3

2 5 2 j1 t0,´8
5 ,´

16
5 u

8 G3 5 2 k t0,´16
5 ,´

32
5 u

9 G4 5 2 k not defined

10 G5 5 2 k not defined

Comparing the graphs we conclude that

maxF pxβq “ 0, β “ 0, ..., 10, (91)

and that

minF px8q ă minF px2q ă minF px3q “ minF px5q “ minF px7q

ă minF px0q ă minF px6q ă minF px4q “ F px4q,
(92)

where additionally

minF px1q ă minF px8q, if m1 ą
32
5 , (93)

must hold.

Conclusion. In the 4 node graph G1 there are fewer non-zero values for
∆GHp0q compared to the 5 node graphs excluding the special cases. Thus
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we favor the 5 node graphs. The star graph G3 contain the zero-value so that
∆GHp0q “ 0 not just for the trivial case σkp1q “ σkp0q, which is not favor-
able. The graphs G4, G5 are not favorable since we can not create the weights
corresponding to these graphs with 2 number of patterns. Thus excluding
special cases, we favor graph G2 which we interpret to have the richest pro-
file. However, including special cases, the graph G1 with an arbitrary m
(restricted) number of patterns, has the possibility to include the largest
number of non-zero values for the incremental drop in energy depending on
the value of m.

5.3 Stable patterns

Here we refer to Table 1 in Sect. 5.

6 Conclusion

The purpose of this thesis was to analyze the convergence properties of the
energy function and the stability of the patterns of a Hopfield model on an
incomplete graph, with the aim to study the Hopfield model on an incomplete
graph.

We have provided examples of a Hopfield model on incomplete graphs
such that the weights corresponding to the given graph can be expressed in
terms of its patterns for 2, 4 or m number of patterns as defined previously.
Treated examples includes a cycle graph, path graph and a star graph. Re-
sults has been presented, containing exact values for the incremental drop
in energy for the treated graphs under asynchronous network dynamics. In
the case that the weights corresponding to the graph can not be expressed
with the given number of patterns, a theoretical proof has been included.
We have treated special cases such as an incomplete graph as a union of two
independent components, and deluting one edge in an already incomplete
graph using a deterministic delute variable. Results from computer simu-
lations on the stability of the patterns and the number of configurations,
was presented for two of the provided incomplete graphs as defined in pre-
ceding sections. Furthermore we have drawn conclusions on the richness of
profile for the incremental drop in energy of the Hopfield model on different
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incomplete graphs, based on these findings.
Further research could examine the richness of profile for the Hopfield

model on given or randomly generated incomplete graphs but for a larger
number of vertices’s and patterns.
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