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Abstract

This thesis presents a numerical study of the beyond mean field extended Gross-Pitaevskii
equation for a two-component self-bound Bose-Einstein condensate, supplemented by an-
alytical work. We extend the quasi-two-dimensional system’s mean field particle-particle
contact interaction by quantum fluctuations (LHY-correction). We investigate the formation
of self-bound droplets without external confinement and confirm their ground-state stability.
Furthermore, we examine and discuss the real-time stability and dynamics of vortices in self-
bound droplets and find a size dependence for stability and their dynamics of their release
from a confined trap.
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Chapter 1 | Introduction

In the 1920s Einstein and Bose predicted the condensation of an ideal atomic gas of bosonic
particles into a single coherent state [1–3]. However, the realisation of Bose-Einstein conden-
sates (BEC) was not experimentally feasible at the time. It took several decades to develop
sufficiently sophisticated trapping and cooling techniques to realise Bose-Einstein condensa-
tion in ultracold atomic gases [4–8]. In the time between Einstein’s and Bose’s first prediction
and the experimental realisation, physicists poured time and effort into developing the ex-
tensive theoretical description of condensates that we know today. Those years of theoretical
work lead to the vast experimental research after the first success in 1995 and subsequent
years [8–10], which makes ultracold atomic gases one of the most pursued research topics in
modern physics.

In their fundamental theoretical description, ultracold atomic gases are assumed to be dilute
and weakly interacting, described by the condensate’s density and a scattering length. The
scattering length describes the particle-particle elastic interactions and is much smaller than
the average interparticle distances. This allows for a mean field description of the many-body
wavefunction, turning it into a product of single-body wavefunctions. The initially compli-
cated quantum mechanical many-body problem then reduces to that of a classical single
wavefunction Hamiltonian with an additional non-linear interaction term. This treatment
was first introduced, independently from each other, by Gross [11] and Pitaevskii [12]. The
resulting equation has the structure of the Schrödinger equation where the interactions are
approximated by a non-linear term.

As a quantum system described by a macroscopic wavefunction, the BEC cloud allows for
both, classical and quantum approaches in describing its dynamics. The macroscopic wave-
function leads to treatment in classical field theory and fluid-dynamics, ultimately leading to
thermodynamic properties and joint bulk motions, which are inherent macroscopic observ-
ables. However, staying in the description of second quantisation and treating the BEC via
annihilation and creation operators, the energy eigenvalues of the condensate can be calcu-
lated. This quantum approach was first taken by Bogoliubov, in an attempt to formulate
a theory of superfluidity [13]. Since then, both approaches have been used in many other
research areas, including the calculation of Hawking-radiation of black holes [14] and a theory
describing dark matter as a self-gravitating, self-interacting condensate [14].

One of the many intriguing aspects of BEC is the formation of vortices in response to rotation
[15, 16]. Compared to rigid-body motion, vortices in BEC show irrotationality, which forces
their density to form singularities around the centre of rotation. This is particularly interest-
ing as it displays macroscopic effects in a condensate that only exists due to quantum effects.
Furthermore, increasing the ratio of angular momentum to particle number, the number of
singly quantised vortices in the gas increases, instead of a multiply quantised vortex at the
trap centre [17]. If the number of vortices is high enough, this leads to grid-like structures
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with discrete rotational symmetries [18]. Additionally, vortices are a sign for superfluidity and
the building block for the connection between superfluidity and Bose-Einstein-condensation
[15, 19, 20]. Vortices have been studied extensively in various experiments, as well as theo-
retically within the Gross-Pitaevskii approach [21–26].

When investigating the aforementioned dark-matter self-gravitating BEC, one finds an equi-
librium between the attractive gravitational potential and the repulsive mean field interac-
tion. In an earthbound laboratory, however, gravitational forces are too small to stabilise
an untrapped condensate. However, Petrov [27] found recently, that for two-component
Bose gases it is possible to find a self-bound stable solution without external confinement.
This is by virtue of a higher-order correction beyond mean field, which arises to stabilise
the system. The correction is due to quantum fluctuations and was first proposed by Lee,
Huang and Yang and is generally referred to as the LHY-correction [28]. Only by accident
physicists found that the LHY-interaction can be used to create stable self-bound droplets in
one-component dipolar Bose gases [29–31]. In the case proposed by Petrov, the intraspecies
repulsion of a two-component gas effectively cancels out the interspecies attraction, so that
the LHY-correction stabilises the system without an external confinement. Only shortly after
the initial theoretical prediction, such self-bound droplets were first found by using Feshbach
resonances in two-component bosonic gases [32, 33]. Experimentally, one exploits the differ-
ent dependencies of the interaction terms on the particle density and interaction parameters.
Thus the interaction strengths are controlled independently, forming a droplet in equilibrium
without any external trapping.

Moreover, the LHY-correction changes its physical dependence on the particle density when
reducing the dimensionality of the system from three-dimensions to (quasi)-two- dimensions.
Instead of only allowing for repulsive higher-order corrections, we are now also able to find
attractive corrections [34, 35]. As we will see later this allows for finding stable droplets
across a wider range of parameters compared to a three-dimensional system.

To the best of our knowledge, up to now, there has been no investigation whether droplets
can form vortices, without assuming that the system is solved by a wavefunction containing
a vortex. Thus, in this project we aim to determine whether vortices and a vortex lattice can
form and sustain in a quasi-two-dimensional rotating self-bound droplet system, based on
the previously mentioned beyond zeroth-order mean field extensions to the Gross-Pitaevskii
equation. The analysis is done numerically using fourth- and second-order algorithms to
solve the Gross-Pitaveskii equation under imaginary-time propagation, before investigating
the system to address real-time stability. Such algorithms already exist for BECs within
mean field and have been proven to be fast converging and accurate, with the use of Fast
Fourier Transforms (FFT).

The structure of the thesis follows the structure of this introduction. Firstly we will fo-
cus on the general theoretical framework of ultra-cold dilute Bose gases by introducing
Bose-Einstein condensation, followed by the Gross-Pitaevskii equation for single and two-
component gases. After finishing that groundwork, we will investigate the ground state
energy and LHY-correction of condensates, before analysing rotational dynamics. In the last
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section of this first chapter, we will investigate the droplet formation in three-dimensions, as
it resembles more natural dynamics to understand the concept entirely.

The second chapter is devoted to describe the already existing algorithm we will use to solve
the following systems. We introduce the algorithm by first solving the quantum mechanical
harmonic oscillator, before displaying the Gross-Pitaveskii equation as a harmonic oscillator.
As such algorithm was designed to solve a particle in a magnetic field, we need to create a
bridge between the proposed system and the Gross-Pitaevskii equation with external rotation.

In the last theoretical chapter, the previously introduced system is squeezed from three-
dimensions to a quasi-two-dimensional system. We will discuss the mean field interaction
independently from the LHY-correction and explain why the vortex formation is indepen-
dent of the dimensionality.

The last chapter is dedicated to results, where we first show the formation of droplets in
quasi-two-dimensions, without external confinement. We continue by rotating stable solu-
tions in a trap and compare it to the formation of quantised vortices in a trapped mean
field condensate. As a last part we rotate stable solutions in a trap, before releasing it in
real-time. We then investigate the real-time stability and dynamics of singly quantised and
multiple single quantised systems.
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Chapter 2 | Bose Einstein condensation
(BEC)

The BEC is the fundamental phenomenon discussed throughout this thesis. This chapter is
dedicated to exploring the creation and behaviour of a condensate. Firstly, we will provide
a brief overview of Bose-Einstein condensation. Secondly, in Sec. 2.2 we introduce the
Gross-Pitaevskii equation, motivated by a second-quantisation approach. This will give a
partial differential equation describing the evolution of the condensate, governed by contact
interactions. The Gross-Pitaevskii equation (GPe) will then be investigated in Sec. 2.3,
focusing on its energy and rotational behaviour, to build a foundation for the discussion
about self-bound droplets in two-component Bose-gas.

2.1 Bose-Einstein condensation

Particles on the atomic and sub-atomic level are divided into two groups, Bosons and
Fermions. Following the spin-statistics theorem, Bosons have integer spin, for which the
wavefunction of identical bosons is symmetric under exchange of parity on any two par-
ticles [36]. Fermions, however, have half-integer spin, where the wavefunction of identical
fermions becomes antisymmetric under use of parity on any two particles. This symmetry
leads directly to the Pauli-exclusion principle for Fermions. For non-interacting Bosons, the
symmetry implies that an indefinite number of bosons may occupy the same single-particle
state. This behaviour was first predicted by Bose for light quanta and later generalised by
Einstein for any particle with bosonic properties [1–3].

The condensation of Bosons is governed by Bose-Einstein statistics, which can be displayed
by the Bose-Einstein distribution (see e.g. [37]). The average expected number of particles
〈ni(Ei)〉 in an energy state i with energy Ei of a given system of Bosons is given by

〈ni(Ei)〉 =
1

e(Ei−µ)/(kBT )− 1
, (2.1)

with µ the chemical potential, kB the Boltzmann-constant, T the temperature, and Ei > µ at
all times. We immediately see that for (Ei− µ)→ 0 the occupation number reaches infinity.
Thus all particles condense into the same single-particle state.

Expressing the field in the second quantisation notation Ψ̂, consisting of position eigenstates
φi(r) and their respective annihilation operators âi,

Ψ̂(r) =
∑
i=0

φi(r)âi.
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Further, we want to decompose the second quantisation operator in its ground state φ0 and
higher energy states

Ψ̂(r) = φ0(r)â0 +
∑
i 6=0

φi(r)âi. (2.2)

Given a system’s total particle number N and the number of condensed particles N0, we
can assume that the system is fully condensed when N0 → N . This allows for the use
of the so called Bogoliubov approximation [13, 38] 〈â†0â0〉 ≈ N0, hence â0 ≈

√
N0, where â†0

and â0 are the single state creation and annihilation operators, respectively. Additionally, the
Bogoliubov approximation requires that the condensate consists of a sufficiently high particle
number, so that commutation becomes negligible, i.e. [â†0, â0] = 0. Inserting â0 ≈

√
N0 into

Eq. (2.2) gives

Ψ̂(r) =
√
N0φ0(r) + δΨ̂(r). (2.3)

Considering a pure condensate, where all Bosons are in φ0(r) and thus omitting the second
term, turns the second quantisation operator into a classical field. Explicitly, this means that
we can describe a system governed by quantum effects in a classical manner [38].

2.2 Gross-Pitaevskii equation (GPe)

In this section we will derive the GPe, with the second quantisation field-operator Ψ̂(r, t),
whith the details given in App. (A). The Gross-Pitaveskii equation has been proven to be
successful in describing BECs numerically [12, 38, 39]. Thus, it will be our main tool for this
thesis. The field operator Ψ̂(r, t) in the Heisenberg picture fulfills [38]

i~
∂

∂t
Ψ̂(r, t) =

[
Ψ̂(r, t), Ĥ

]
=

[
−~2∇2

2m
+ Vext(r, t) +

∫
dr′ Ψ̂†(r′, t)V (r′ − r, t)Ψ̂(r′, t)

]
Ψ̂(r, t). (2.4)

Eq. (2.4) can be attained when using the many-body Hamiltonian Ĥ, expressed in the second
quantisation field-operator Ψ̂(r, t)

Ĥ =

∫
dr

(
~2

2m
∇Ψ̂†(r, t)∇Ψ̂(r, t)

)
+

1

2

∫
dr′dr Ψ̂†(r, t)Ψ̂†(r′, t)V (r′ − r, t) Ψ̂(r, t)Ψ̂(r′, t),

(2.5)

where the factor 1/2 rises to account for a single interaction between Ψ(r, t) and Ψ(r′, t) and
to avoid double-counting. We yield Eq. (2.5) with the commutation relations[

Ψ̂(r, t), Ψ̂†(r′, t)
]

= δ(r− r′) and (2.6)[
Ψ̂(r, t), Ψ̂(r′, t)

]
= 0. (2.7)
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and Ψ̂(r, t) given in terms of the annihilation and creation operator âp, â†p [38]

Ψ̂(r, t) =
∑
p

âp
1√
V

exp

(
ip · r
~

)
. (2.8)

The remaining integral in Eq. (2.4) is not solvable by perturbation theory for a realistic
hard-sphere contact potential. This is generally dealt with by using the diluteness criteria
na

1/3
s � 1. Here n is the particle density and as the s-wave scattering length. If the bosonic

gas fulfills na1/3
s � 1, the inter-particle distance is big enough that the exact form of contact

potential at its centre becomes irrelevant. Thus the potential shape is interchangeable, as
long as it preserves as. Exchanging the hard-sphere potential with an effective soft potential
that shares the same s-wave scattering length as, allows to separate the potential from the
field operator, thus turning the integral into g|Ψ(r, t)|2 with g =

∫
V (r) dr expressed using

the scattering length as as g = 4π~2as/m [38].

Following Eq. (2.3), we replace the field operator by a classical order parameter Ψ0(r, t).
This only applies when δΨ̂(r)→ 0 and thus then the temperature of the condensate T → 0.
The final Gross-Pitaveskii equation shows similarity to the non-linear Schrödinger equation
and is then given by [38]:

i~
∂

∂t
Ψ0(r, t) =

(
−~2∇2

2m
+ Vext(r, t) + g|Ψ0(r, t)|2

)
Ψ0(r, t). (2.9)

It is important to put emphasis on the applicability of this approach. First, we need a
sufficient amount of atoms, so that we are allowed to treat the system as a BEC. Second,
the diluteness condition needs to be fulfilled, and the temperature must be low enough to
replace the actual potential with an effective potential and the field operator with the order
parameter. Under these conditions and from the Bogoliubov approximation in the previous
section follows that

n(r) = |Ψ0(r)|2. (2.10)

We can easily extend the single-component equation Eq. (2.9) to a multi-component Gross -
Pitaevskii equation. For a two-component bosonic system with equal masses this gives us

i~
∂

∂t
Ψ0,1(r, t) =

(
−~2∇2

2m
+ Vext(r, t) + g11|Ψ0,1(r, t)|2 + g12|Ψ0,2(r, t)|2

)
Ψ0,1(r, t), (2.11)

i~
∂

∂t
Ψ0,2(r, t) =

(
−~2∇2

2m
+ Vext(r, t) + g22|Ψ0,2(r, t)|2 + g21|Ψ0,1(r, t)|2

)
Ψ0,2(r, t) (2.12)

where gij is the interaction parameter between particle species i and j, Ψ0,i the order param-
eter of particle species i. Furthermore, we see that the effective external potential Vext can
represent any form of additional potential.

2.3 Energy of the dilute Bose gas

In this section, we will find the energy eigenvalues of our dilute bosonic gas Hamiltonian,
in the ground state described by the mean field interaction as well as the first higher order
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correction to the mean field description. In doing so, we will use an approach first utilised
by Bogoliubov, which will yield the ground state energy for a system of quasi-particles in the
case of the first higher order correction.

2.3.1 Ground state energy of the dilute Bose gas

To calculate the ground state energy we use the Hamiltonian in Eq. (2.5) and insert the
following second quantisation operator Ψ̂ and two-body interaction potential Vq, [38, 39]

Ψ̂ =
∑
p

âp
1√
V

exp

(
ip · r
~

)
,

Vq =

∫
drV (r) exp

(
−iq · r

~

)
,

into Eq. (2.5), which gives

Ĥ =
∑ p2

2m
â†pâp +

1

2V

∑
Vqâp1+qâ

†
p2−qâp1 âp2 , (2.13)

with V being the volume of the system, Vq the two-body interaction potential and the first
summation over p and the second over p1, p2, and q [38]. Here p is the particle’s linear
momentum without Vq the interaction potential, p1, p2, the respective particle’s linear mo-
mentum before collision and q the linear momentum exchange. Again, we interchange the
actual contact particle-particle interaction potential Vq with a Gaussian shaped pseudopo-
tential, thus resulting in an interaction parameter U0 as long as na1/3 � 1 is fulfilled.

Ĥ =
∑ p2

2m
â†pâp +

1

2V
U0

∑
âp1+qâ

†
p2−qâp1 âp2 . (2.14)

Assuming that all particles in the system are in the ground state at zero temperature, with
N0 = N and thus 〈â†0â0〉 = N0, allows for the Bogoliubov approximation â0 =

√
N0 [13]

Ĥ =
∑ p2

2m
â†0â0 +

1

2V
U0

∑
â†0â

†
0â0â0.

The first term equals zero with p = 0 and thus, the ground state energy becomes

E0 =
N2U0

2V
, (2.15)

with U0 = 4π~2as/m, where as is the three-dimensional s-wave scattering length of the pseudo
potential, obtained from the Born approximation. Physical systems are frequently described
by the interaction coupling constant g = 4π~2as/m [38].

2.3.2 First order correction to the energy

The previous approximation, where the condensate is at T = 0, and thus p = p1 = p2 =
q = 0, is not applicable for realistic physical systems, where some particles lie in an excited
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state, thus resulting in non-negligible linear momentum contributions p 6= 0 [13]. Starting
off from revisiting Eq. (2.14), we make the approximation of a soft pseudo-potential. Due to
the conservation of linear momentum, terms with only one operator p 6= 0 are not possible
[38]. We write the Hamiltonian again, but with the ground state energy already excluded,
in order to calculate the first order correction to the energy:

Ĥ =
U0

2V
â†0â

†
0â0â0 +

∑
p

p2

2m
â†pâp +

U0

2V

∑
p 6=0

(
4â†0â

†
pâ0âp + â†pâ

†
−pâ0â0 + â†0â

†
0â−pâ−p

)
.

(2.16)

Here the first term represents the already known ground state energy Eq. (2.15) for particles
in the condensate. The second term represents the kinetic energy contribution and the third
term the ground state energy for particles in the condensate with nonzero linear momentum.
The factor four in the first part of the third term derives from simple combinatorics of indis-
tinguishable particles.

We replace the zero momentum components in the third term with â0 =
√
N0, while in

the first term we use quadrature of the sum over all states â†0â0 +
∑

p 6=0 â
†
pâp = N , also called

the renormalisation relation:

â†0â
†
0â0â0 = N2 − 2N

∑
p 6=0

â†pâp +

(∑
p 6=0

â†pâp

)2

, (2.17)

where we can neglect higher order terms in brackets p 6= 0, due to their small contribu-
tion [38]. Unfortunately, the substitution of the real interaction matrix element Vq by the
pseudopotential and constant value U0 results in a divergence. This is counteracted in the lit-
erature by replacing U0 with the higher-order dependency of the interaction coupling constant
g according to higher-order perturbation theory.

U0 = g

(
1 +

g

V

∑
p6=0

m

p2

)
. (2.18)

Substituting the renormalisation relation in Eq. (2.17) and Eq. (2.18) into Eq. (2.16), yields
the following expression [38]

Ĥ = g
N2

2V
+
∑ p2

2m
â†pâp +

1

2
gn
∑
p6=0

(
2â†pâp + â†pâ

†
−p + âpâ−p +

mgn

p2

)
. (2.19)

The quadratic dependency of the Hamiltonian on the operators â†−p and âp, allows for diag-
onalisation by the linear transformation known as the Bogoliubov transformation [13],

âp = upb̂p + v∗−pb̂
†
−p, â†p = u∗pb̂

†
p + v−pb̂−p, (2.20)

where b̂†p and b̂p are the new quasiparticle operators [13, 38]. These operators share the Bose
commutation relations with the original particle operators â†p and âp, i.e. âpâ

†
p′−â†p′ âp = δpp′ .

Using the commutation relationship with the Bogoliubov transformation, we get

|up|2 − |v−p|2 = 1 (2.21)
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and after algebraic manipulation (App. (C)), we find the diagonalised Hamiltonian

Ĥ = E0 +
∑

ε(p)b̂†pb̂p, (2.22)

with

E0 = g
N2

2V
+

1

2

∑
p6=0

[
ε(p)− gn− p2

2m
+
m(gn)2

p2

]
, (2.23)

being the ground state energy to the higher order approximation and

ε(p) =

[
gn

m
p2 +

(
p2

2m

)2
]1/2

(2.24)

is the dispersion relation of the excitations [38].

This shows that the original system of interacting particles can be described in terms of
a Hamiltonian of quasi-particles with ground state energy E0. From their respective annihi-
lation and creation operators b̂p and b̂†p, the original bosonic particles can be understood as
two quasi-particles propagating in opposite directions. Considering Eq. (2.17), we recognise
that the quadratic terms of operators can be understood as the creation and annihilation
of quasi-particles in the same operation. Thus one often refers to the higher-order energy
correction as an energy shift due to quantum fluctuations.

To calculate the ground state energy E0 we turn the sum over the phase space in Eq. (2.23)
into a phase space integral (App. (C)), which yields the result [38, 40]

E0 = g
N2

2V

[
1 +

128

15
√
π

(na3)1/2

]
, (2.25)

where the first term is the mean field ground state energy, calculated in the previous section
and the second term gives the higher order correction. This calculation was first done by Lee,
Huang and Yang in 1957 and is thus called the LHY-correction. However, Eq. (2.25) gives
the correction term in case of a three-dimensional spherical system for a single-component
bosonic gas. Thus, it is not reasonable to use it in the case of this thesis, as we want to study
a two-component Bose-gas in quasi-two-dimensions. The three-dimensional case, however,
illustrates the general physical behaviour and is worth studying in itself. Larsen did a similar
calculation for a two-component Bose-gas [41] and the LHY-correction is then given in a
similar form by

ELHY = V
32
√

2π

15

∑
±

(a11n1 + a22n2 ± κ)5/2 , (2.26)

with κ =
[
(a11n1 − a22n2)2 + 4a2

12n1n2

]1/2
, aij the s-wave scattering length between compo-

nent i and j and ni is the density distribution for component i. For a12 = −√a11a22 Eq. (2.26)
gives

ELHY = V
256

15

√
π (a11n1 + a22n2)5/2 . (2.27)
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A quasi-two-dimensional solution to the LHY-correction was done only recently by Zin [35]
and Ilg [42], which we will further investigate in Ch. 4 about dimensional reduction.

2.4 Rotational dynamics of a dilute Bose gas in the mean
field description

An important feature of BECs is the formation of quantised vortices under rotation, as it
exemplifies the connection between superfluidity and Bose-Einstein condensation [19, 20].
Thus, we will investigate the rotational dynamics of a dilute Bose-gas, by first deriving the
continuity equation of the GPe and then introducing the current density j and flow velocity
v. We then use the flow velocity to elaborate on the concept of irrotationality. Further
investigation will include the structure, energy and critical angular momentum of quantised
vortices, for a rotating condensate with external rotation frequency Ω.

We derive the continuity equation by following the well known formalism from classical field
theory. Multiplying Eq. (2.9) with Ψ∗0 and subtracting the complex conjugate of the resulting
equation from itself, gives [38, 39]:

∂|Ψ0(r, t)|2

∂t
− i~

2m
∇ ((Ψ∗0(r, t)∇Ψ0(r, t)−Ψ0(r, t)∇Ψ∗0(r, t))) = 0. (2.28)

We then introduce the current density j as given by,

j(r, t) = − i~
2m

(Ψ∗0(r, t)∇Ψ0(r, t)−Ψ0(r, t)∇Ψ∗0(r, t)) . (2.29)

Inserting Eq. (2.29) into Eq. (2.10), the continuity equation in Eq. (2.28) reduces to

∂n

∂t
+ div j(r) = 0. (2.30)

The flow velocity v(r) of the condensate is then defined by j(r) = nv(r). We now rewrite
the order parameter Ψ0(r) with it’s density amplitude and a phase S

Ψ0(r) =
√
n(r)eiS(r) = |Ψ0(r)|eiS(r). (2.31)

Thus, Eq. (2.29) and v become

j(r) = n
~
m
∇S(r),

v(r) =
~
m
∇S(r).

(2.32)

To determine the condensate’s dynamics under rotation we apply ∇×:

∇× v(r) =
~
m
∇×∇S(r) = 0. (2.33)

10



Without loss of generality we bring the condensate into cylindrical coordinates, where the
density only depends on the radius r and the height z, while only the phase factor depends
on φ:

Ψ0(r, z, φ) = |Ψ0(r, z)|eiφ. (2.34)

With Eq. (2.32) and ∇ in cylindrical coordinates, v then becomes

v(r) =
~
m

1

r
êφ. (2.35)

Eq. (2.33) and (2.35) classify a fluid as irrotational, where the flow velocity changes 1/r
from the center; compared to the rotation of a rigid body, where it increases linearly with
the distance from its center. With that irrotationality and the introduction of the phase
factor follow two conclusions. Firstly, due to the 1/r dependence of the velocity, v would
diverge in the center of the condensate. Thus we impose that the density |Ψ0(r, z)| → 0
as r → 0. Secondly, should there be no change in the wavefunction after rotating for 2π,
Ψ0(r, z, φ) = Ψ(r, z, φ+ 2π), thus [38, 39]

∆S =

∮
dl∇S = 2πl, (2.36)

with l an integer, which gives the rotational quantisation of the condensate, which we rein-
troduce into Eq. (2.34)

Ψ0(r, z, φ) = |Ψ0(r, z)|eilφ. (2.37)

From the previous discussion, we see that the condensate’s rotation will lead to a singularity
in its density in the centre of the rotation. We see that the rotation always associates with
a phase jump in it’s phase factor exp(ilφ) [38, 39].

Further, we will calculate the energy of singly and multiply, i.e. l > 1, quantised vortices,
as well as the critical angular momentum, that associates with the existence of vortices.
The energy expectation value of a condensate’s Hamiltonian without an external potential is
governed by the kinetic term and the zeroth-order interaction therm, thus resulting in [38,
39]

E =

∫
dr

[
~

2m
|∇Ψ0(r)|2 +

1

2
U0|Ψ0(r)|4

]
. (2.38)

Returning to our system in cylindrical coordinates, and imposing z-coordinate invariance,
the energy of a condensate with a vortex of rotational quantisation l is then given by

E =

∫ R

0

dr 2πr

[
~

2m

(
∂|Ψ0(r)|
∂r

)2

+
~

2m
l2
|Ψ0(r)|2

r2
+
U0

2
|Ψ0(r)|4

]
, (2.39)

from the center of the vortex to a distance R. In order to calculate the energy associated
with a vortex in a uniform, untrapped condensate, we subtract the ground state energy from

11



Eq. (2.39). The total number of particles in a 2-dimensional cylindrical volume is given by
[38, 39]

N =

∫ R

0

dr r2π|Ψ0(r)|2 = πR2|Ψ0(R)|2 −
∫ R

0

dr 2πr
(
|Ψ0(R)|2 − |Ψ0(r)|2

)
, (2.40)

with the ground state energy per particle E0 = (1/2)U0|Ψ0|4, and the condensate’s ground
state energy E0 is then

E0 =
1

2
U0

∫ R

0

dr r|Ψ0(r)|4

=
1

2
πR2|Ψ0(R)|4 − |Ψ0(R)|4U0

∫ R

0

2 dr πr(|Ψ0(R)|2 − |Ψ0(r)|2).

(2.41)

Introducing |Ψ0| =
√
nf(η) and η = r/ξ with ξ = ~/

√
2mgn, the so called healing length

of the condensate. The healing length gives the distance over which the wavefunction tends
to its bulk value from zero in the case of being trapped in an infinite well. Using both
substitutions gives for the total energy of a vortex Ev:

Ev =
π~2n

m

∫ R/ξ

0

dη

[(
df

dη

)2

+
l2

η2
f 2 +

1

2
(f 2 − 1)2

]
η. (2.42)

For l = [1, 2, 3] via numerical integration this gives [43]

Ev,l=1 = πn
~2

m
ln

(
1.46R

ξ

)
,

Ev,l=2 = 4πn
~2

m
ln

(
0.59R

ξ

)
,

Ev,l=3 = 9πn
~2

m
ln

(
0.38R

ξ

)
.

(2.43)

Further, one can show that it is energetically favourable for a vortex with l > 1 to split up in
several single-quantised vortices. However, vortices with multiple quanta of circulation can
be energetically favourable in anharmonic trapping potentials [44, 45].

Treating the condensate as a uniform medium, we can compute the total angular momentum,
as the sum of each particles angular momentum, so that with Ev,l=1 = ΩcL

L = N~,

such that

Ωc =
~

mR2
ln

(
1.46R

ξ

)
, (2.44)

with Ωc the critical rotation needed for it to be energetically favourable of a single quan-
tised vortex to enter the condensate [38, 39]. So far we investigated a condensate as a

12



Figure 2.1: Left: Condensate density distributions as indicated by the labels, with their respective
phase plotted in the background. We see the existence of phase discontinuities localised within
the density-singularity.
Right: L(Ω/ω) for mean field interaction g = 50 and ω = 0.1, where L(Ω/ω) is the angular
momentum per particle in dependence of the ratio between external rotation Ω and the harmonic
oscillator frequency ω. We see the existence of critical angular momentum, which leads to a
phase-transition between higher states of vorticity.

uniform medium, without any external trapping potential. We want to repeat the calcula-
tion following from Eq. (2.39) for a two-dimensional one-component condensate trapped in a
two-dimensional harmonic oscillator with oscillator frequency ω. If the traps oscillator length
aosc is large compared to the healing length ξ, we can calculate the energy by using Eq. (2.43)
up to a radius r1 and then calculate the energy for r1 < r < R in a classical way. This gives
[46]:

Ev =
πn~
m

ln

(
1.46R

ξ

)
+

1

2

∫ R

r1

drmn(r)v2(r)2πr. (2.45)

With the density inside of a trap in the Thomas-Fermi approximation, where the interaction
strength is so big, that the kinetic contribution is negligible, taking the form 1− r2/R2 and
the velocity v given in magnitudes of ~/mr. Eq. (2.45) then computes to

Ev =
πn~
m

[
ln

(
1.46R

ξ

)
+

∫ R

r1

dr
r

r2

(
1− r2

R2

)]
=

=
πn~
m

ln

(
0.888R

ξ

)
.

(2.46)
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We now repeat the calculation of the total angular momentum, by integrating over the density
distribution:

L = n0~
∫ R

0

dr

(
1− r2

R2

)
2πr

=
1

2
n0πR

2~

which then gives the critical angular momentum Ωc, with aosc =
√

~/mω [46]

Ωc,l=1 = 2ω
a2
osc

R2
ln

(
0.888R

ξ

)
. (2.47)

In Fig. (2.1, left) we plotted the density as contour over the phase in the background for a
one-component BEC trapped in ω = 0.1 with g = 50, while in Fig. (2.1, right) the respective
L(Ω/ω) plot is shown, where L(Ω/ω) is the angular momentum per particle in dependence
of the ratio between external rotation Ω and the harmonic oscillator frequency ω. Firstly,
we can can confirm the existence of a critical angular momentum, due to the discrete jumps
in L(Ω/ω). Furthermore, we recognise the preference of multiple single-quantised vortices
over one multiple-quantised one for a harmonic trap in Fig. (2.1, left), as indicated by the
phase in the background. As previously derived, each phase discontinuity corresponds to a
singularity in the condensate’s density.

2.5 Self-bound droplets in three-dimensions

So far we have looked at zeroth-order mean field interaction and the first-order LHY-correction.
Let us now investigate how those cooperate with each other in a physical system. We are
particularly interested in forming a self-bound two-component system, which was first pre-
dicted by Petrov [27]. This section follows [27], where we will first investigate the formation
of those self-bound droplets before discussing their geometry.

We introduce δg, which will be defined as

δg = g12 +
√
g11g22, (2.48)

with gij defined as in Ch. 2.2. We then investigate how the zeroth-order mean field energy of
the given system changes, which is given by,

EMF,i = gii
N2

2V
+ g12

N2

2V
,

for component i = 1, 2 with Eq.(2.48) and g11 = g22 = g follows

EMF = δg
N2

2V
. (2.49)

Thus, without taking quantum fluctuations into account, the system will be driven apart
for δg ≥ 0 and collapse for δg < 0. The formation of self-bound droplets in the absence of
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Figure 2.2: Left: EMF +ELHY for different δg in the range from −4.0 to −1.5, based on Eq. (2.26).
As we approach δg → 0, the negative bulge in energy vanishes, as indicated by the zoom-in for
δg = [−1.5,−2.0].
Right: δg(n) based on Eq. (2.50), with different colorcoding indicating the position of δg used in
the left plot

higher-order corrections is therefore impossible.

We now want to consider the LHY-correction and see if we can find stable self-bound solu-
tions. As a first heuristic approach, we compare the mean field energy according to Eq. (2.49)
to the positive-definite three-dimensional LHY-correction in Eq. (2.25). The mean field en-
ergy needs to be negative definite to be able to form three-dimensional self-bound solutions.
Continuing, we want to investigate this argument analytically. Starting by taking the sum
of the energies and taking the negative derivative to the volume, gives the pressure.

P = − ∂

∂V
Etot.

In a self-bound solution the pressure needs to vanish inside the droplet in order to create
a force equilibrium. We continue for simplicity with g11 = g22 and n1 = n2 as in general
g11/g22 = n1/n2:

Etot = EMF + ELHY

=
N2

2V

(
δg +

128

15
√
π

(2gn)5/2

)
⇒ P = − ∂

∂V
Etot = −1

2
n2δg − 7

4

128

15
√
π
n9/2(2g)5/2 !

= 0

⇒ δg = − 448

15
√
π

(2gn)5/2. (2.50)

The final result in Eq. (2.50) supports the prior heuristic approach and shows that droplet
formation in three-dimensions only exists for negative mean field interaction. Fig. (2.2) shows

15



Eq. (2.50) while indicating the respective interaction energy EMF +ELHY in Fig. (2.2a). For
lower δg the negative bulge in energy becomes smaller, so that it is only possible to form
self-bound systems for δg < 0. Further we recognise that, due to the pressure equilibrium
independent of the local position, the density must form equi-density surfaces. In three-
dimensions and in absence of any outer confinement or dynamics that could alter the shape,
this will lead to a spherical density distribution.
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Chapter 3 | Pseudo fourth- and second-
order spectral algorithm to
solve the GPe

We now want to turn towards describe an algorithm that solves the GPe in imaginary time,
in order to find a stable ground state. In earlier years, the Crank-Nicholson method was used
to solve the GPe and similar coupled partial differential equations. Only recently a change to
spectral methods was made, methods that heavily rely on the fast Fourier transform. This
thesis relies in particular on a pseudo-fourth- and second-order algorithm to solve the GPe in
imaginary time, which was proposed and implemented many years ago [47, 48], so that this
thesis does not present the development of such an algorithm, but displays a new utilisation in
the coming results chapter. However, we use a modified algorithm, that solves the rotating
GPe, exploiting the analogy between rotation and a particle in a magnetic field. Despite
being able to change the algorithm to real-time propagation, imaginary time is preferred as
only imaginary-time propagation offers a convergence to stable solutions, via the quantum
mechanical time operator Û [49]

Û = e−τĤ . (3.1)

First, we want to create a connection between the Hamiltonian for a charged particle in a
magnetic field and a rotating Hamiltonian. This will prove useful later when we discuss the
algorithm. Introducing the Hamiltonian for the charged particle in a magnetic field [50]:

Ĥ =
1

2m

(
p +

e

c
A
)
− eΦ, (3.2)

with A and Φ respectively the vector and scalar potential. We insert for the vector potential
in two-dimension A = B(yêx − xêy) which gives

Ĥ =

(
p2 + peB (yx̂+ xŷ) + e2B2 1

4

(
x2 + y2

))
− eΦ, (3.3)

with peB (yx̂+ xŷ) = −i~∇eB (yx̂+ xŷ) = −i~eB∇×r = eBLz, where we see a connection
to rotation for the first time, in the angular momentum Lz. Assuming eB = Ω gives(

−i ~
2

2m
∇− ΩLz +

1

4
Ω2r2

)
− eΦ. (3.4)

Repeating this for the Hamiltonian for rotation, which is given by [50]

HΩ = H − ΩLz with H = −i ~
2

2m
∇ + Vext

⇒ HΩ = −i ~
2

2m
∇ + Vext − ΩLz (3.5)
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Comparing Eq. (3.5) to Eq. (3.4) we see that Vext must be equal to (1/4)Ω2r2 to equalize
Eq. (3.4) and Eq. (3.5). As we can change the external potential in any way possible in the
previous algorithm without consequences, we subtract (1/4)Ω2r2 as a constant term of Vext
to transform the algorithm into the rotational case. Replacing B in the previously described
algorithm with the rotational frequency Ω, allows for solving the GPe with external rotation.

After establishing this connection we derive the algorithm by discussing how to solve the
one-dimensional harmonic oscillator, before solving the GPe and later with the correct sub-
stitutions using this to solve the charged particle in a magnetic field. The one-dimensional
harmonic oscillator is given by:

Ĥ = T + V =
1

2m
p̂2 +

1

2
mω2x̂2. (3.6)

One can write its density matrix (or imaginary time operator) as [49, 51]:

e−τ(T+V ) = e−τCV V e−τCTT e−τCV V +O(τ 3), (3.7)

where we will determine the functions CV and CT later on. One does this by evaluating
Eq. (3.6) in Eq. (3.7)

〈x′| e−τCV V e−τCTT e−τCV V |x〉 = e−τCV ω
2x′2/2e−(x′−x)2/(2τCT )e−τCV ω

2x2/2. (3.8)

We know the exact expression of the density matrix for the left-hand side [37]

〈x′| e−τ(T+V ) |x〉 = exp
[
− ω

2 sinhωτ

((
x′2 + x2

)
coshωτ − 2x′x

)]
= exp

[
− ω

ωτ

((
x′2 + x2)

)
(coshωτ − 1) +

(
x′2 + x2

)2
)]
. (3.9)

with −2x′x = (x′ − x)2 − x′2 − x2. Comparing Eq. (3.8) and Eq. (3.9) for CT and CT gives

CV =
coshωτ − 1

ωτ sinhωτ
and CT =

sinhωτ

ωτ
. (3.10)

Aiming for real-time propagation, one substitutes τ = it, which gives

CV =
1− cos(ωt)

ωt sin(ωt)
and CT =

sin(ωt)

ωt
. (3.11)

We then iterate the discretised wave function forward in imaginary time via

|Ψ(τ + ∆τ)〉 = e∆τ(T+V ) |Ψ(τ)〉 . (3.12)

The condensate ground state Ψ0 can then be calculated for a particular set of input param-
eters:

Ψ0 ≈ lim
τ→∞

Ψ(τ) = lim
τ→∞

e−τ [T+V (τ)]Ψ(0), (3.13)
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where Ψ(0) is our initial wavefunction at τ = 0. Now that we know how to solve the one-
dimensional harmonic oscillator via imaginary time-evolution, we apply the found expression
to the GPe. We can rewrite the single-component GPe as [49, 51]

(T + V )Ψ(x, y) with V = g|Ψ|2. (3.14)

Following imaginary time evolution, the condensates ground state is then given as Eq. (3.13)

Ψ0 ≈ lim
τ→∞

Ψ(τ) = lim
τ→∞

e−τ [T+V (τ)]Ψ(0).

Thus, we can solve the GPe the same way as a harmonic oscillator [49, 51].

While Eq. (3.7) describes a second order factorisation, we are interested in a fourth order
algorithm. It can be shown that a fourth order algorithm is described by [49, 51]

T (4)(τ) = e−
1
6
τV̂ (α)e−

1
2
τe−

2
3
τṼ (α)e−

1
2
τT̂ e−

1
6
τV̂ (α), (3.15)

with V̂ (α) = V + α
48
τ 2[V, [T, V ]] and Ṽ (α) = V + 1−α

24
τ 2[V, [T, V ]]. Considering α = 1 turns

Ṽ = V .

Furthermore, we can use the algorithm to solve a harmonic oscillator by displaying a charged
particle in a magnetic field as [51]

Ĥ =
1

2

(
Π2
x + Π2

y

)
with Πx = px − Ax = −i ∂

∂x
+

1

2
By Πy = py − Ay = −i ∂

∂y
+

1

2
Bx. (3.16)

Landau found that [Πx,Πy] = iB which is analogous to [ωx, py] = iω. We can identify the
corresponding terms in the harmonic oscillator P = Πy, Q = Πx/B and ω = B . The opera-
tors are then T = Π2

y/2 = p2/2 and V = Π2
x/2 = ω2Q2/2, respectively.

From Eq. (3.15) the fourth order algorithm for a charged particle in a magnetic field then
goes as follows [51]:

1. Start with a suitable set of initial conditions that allows for finding the ground state

2. Multiply ψ with exp{−τV/6}, where V is the external potential

3. Compute the Fourier transform from ψ(x, y) to ψ(px, y) and
multiply by exp{−τCV (1/4)(px +By)2}

4. Compute the Fourier transform from ψ(px, y) to ψ(x, py) and
multiply by exp{−τCT (1/4)(py +Bx)2}

5. Compute the Fourier transform from ψ(x, py) to ψ(px, y) and
multiply by exp{−τCV (1/4)(px +By)2}
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At this point we encounter the (1/48)τ 2[V, [T, V ]] term in Eq. (3.15), the effective midpoint
potential where

[V, [T, V ]] =

(
∂V

∂x

)2

+

(
∂V

∂y

)2

. (3.17)

The algorithm continues as follows

6. calculate positional derivatives of the effective potential

and multiply by exp

{
−τ(2/3)

(
V τ 2/48

(
Re
(
∂V
∂x

)2
+ Re

(
∂V
∂y

)2
))}

7. Compute the Fourier transform from ψ(x, y) to ψ(px, y) and
multiply by exp{−τCV (1/4)(px +By)2}

8. Compute the Fourier transform from ψ(px, y) to ψ(x, py) and
multiply by exp{−τCT (1/4)(py +Bx)2}

9. Compute the Fourier transform from ψ(x, py) to ψ(px, y) and
multiply by exp{−τCV (1/4)(px +By)2}

10. Transform back to ψ(x, y) and multiply by exp{−τV/6}

11. Normalise the resulting wavefunction and repeat from step 1 until convergence is
reached.

Thus, we can solve the GPe by making the right substitutions and display it as a charged
particle in a magnetic field.

During the time working on this thesis we switched from the previously described pseudo
fourth-order algorithm to a second-order algorithm. The algorithm in itself as described in
the aforementioned numerated list stays mostly the same, only changing the imaginary time
propagation operator to

T (2)(τ) = e−
1
2
τV (τ)e−τe−

1
2
τV (0) (3.18)

and thus reducing the steps to the respective amount in the operator. The change was done
due to a switch from a single-processor CPU code to a parallelised GPU-code, offering a
speed-up by approximately 105, thereby allowing for the numerical results in the following
chapters.
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Chapter 4 | Lower dimensionality in BEC

The previously discussed systems were exclusively three-dimensional. However, our interest
lies in lower-dimensional systems, particularly two and quasi-two-dimensions, as they offer
easier computational accessibility. While the general physics in lower-dimensional systems
remains the same, the interaction density’s mathematical expression changes. In this chapter
we will discuss those changes, starting with creating a framework that allows us to differen-
tiate between the different dimensional states. Further, we will transform the mean field and
LHY-energy into their lower-dimensional expressions.

We introduce the minimum excitation energy ε0

ε0 =
~2

2m

(
2π

az

)2

, (4.1)

where az is the length scale of external confinement, that squeezes the system into lower
dimensionality with ε0 in the confined direction. A given system is lower-dimensional when
neither thermal fluctuations nor the interaction energy are large enough to allow excitation in
the confined direction, i.e. g11n1 + g22n2 � ε0 and kBT � ε0. As we are dealing with perfect
conditions for condensation, kBT � ε0 is always fulfilled. Moreover, g11n1 + g22n2 � ε0
and kBT � ε0 form an upper bound for the two-dimensional system. However, for a
quasi-two-dimensional system, excitations in the confined direction are allowed, such that
g11n1 + g22n2 > ε0 and thus az > as and az � Lx,y, so that the condensate geometrically
speaking looks two-dimensional [35].

The mean field energy in three-dimensions is given by E = gn2/2 with the particle den-
sity n = |Ψ(r, t)|2. We reduce the mean field interaction energy by following a local density
approximation, which allows for assuming that the Hamiltonian of the system is separable
in the z-direction. Thus, the wavefunction is

ψ(x, y, z) = Φ(x, y)× Z(z). (4.2)

We will squeeze the condensate in z-direction via a harmonic trap. In the mean field de-
scription of the ground state energy, the particles linear momentum p equals zero. Thus the
condensate will find itself in the ground state so that Z(z) takes the shape of a Gaussian

Z(z) =
1

π1/4a
1/2
z

e
− z2

2a2z .

The square of the particle density n is then

n2 = |Φ(x, y)|4|Z(z)|4 = n2
Q2D|Z(z)|4,
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and inserting Z(z) into this, gives

|Z(z)|4 =

√
(Z(z)Z∗(z))4 =

(
π1/2az

)−2
e
− 2z2

a2z . (4.3)

We integrate this over the whole space in z-direction,∫ ∞
−∞
|Z(z)|4 dz =

(
π1/2az

)−2
∫ ∞
−∞

e
− 2z2

a2z dz =
1√

2πaz
, (4.4)

which gives for the mean field energy

E =
gn2

Q2D√
2π

az. (4.5)

Petrov derived a more general expression for both, the exact two-dimensional and quasi-two-
dimensional case [52]:

g =
2
√

2π~2

m

1

az/as + (1/
√

2π ln(1/πq2a2
z))
. (4.6)

We now further introduce the limitation that az � as, with as being the three-dimensional
s-wave scattering length, which needs to be fulfilled for having a quasi two-dimensional sys-
tem. This is equivalent to g11n1 + g22n2 � ε0. For az � as the zeroth-order mean field
interaction energy becomes equal to Eq. (4.5) when exchanging g with Eq. (4.6).

As previously mentioned, Eq. (2.25) given for the three-dimensional LHY energy in Ch. 2.3,
only adheres to free space. Even if one goes one step back and repeats the integration with
the above local density approximation, one gets an erroneous result, as the energy values
in the z-direction are assumed to be continuous. Thus we need a more general expression,
which is given in the original paper by Lee, Huang and Yang, and also by Zin [28, 35],

ε0
L3
ELHY = lim

r→0

∂

∂r

(
r

1

2V

∑
k

eikr (εk − Ak)

)
for g12 = −√g11g22. (4.7)

Here L is the size of a box potential, ε0 = ~2/2m (2π/L)2 the minimal excitation energy,
εk =

√
E2
k + 2Ek(g11n11 + g22n22), Ak = Ek + g11n11 + g22n22 and Ek = ~2k2/2m [35]. The

prefactor ε0/L3 has been extracted to make Eq. (4.7) dimensionless and should be restored
when using ELHY in simulations. In three-dimensions we would now change the sum over k-
space into a phase space integral and would yield prior three-dimensional results in Eq. (2.27).
For quasi-two-dimensions we still integrate over the two unconfined directions, while keeping
the sum for the confined one,

1

V

∑
k

→ 1

(2π)2

∫
d2k⊥

1

L

∑
kz

,

so that

EQ2D,LHY = lim
r→0

∂

∂r

(
r

1

2

∑
qz

∫
d2q⊥e

iqr(εq − Aq)

)
, (4.8)
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Figure 4.1: Left: EMF +ELHY for different δg in the range from 3.0 to −1.5, based on Eq. (4.9).
The energies have similar shapes for all values of δg, so that stable solutions are possible for
repulsive and attractive mean field interaction
Right: δg(n) based on Eq. (5.1), with different colorcoding indicating the position of δg used in
the plot to the left

with qi = L/(2π)ki, εq =
√
q4 + 2ξq2, Aq = q2 + ξ and ξ = (g11n11 + g22n22)/ε0. Further

calculation gives, that Eq. (4.8) approximates to [35]

ELHY (ξ) =
π

4
ξ2

(
log(ξ) + log

(
2π2
)

+
1

2
+
π2ξ

3

)
, (4.9)

for ξ < 0.3, while for ξ ≥ 0.3 Eq. (4.8) equals the three-dimensional two-component inter-
action Eq. (2.27). So that Eq. (4.9) is only valid for very dilute parts of the gas with small
ξ or for small trap sizes with high minimal excitation energy ε0. We see that Eq. (4.9) is
not positive-definite, resulting in an attractive LHY-term compared to the purely repulsive
term in the three-dimensional case. This will be particularly interesting for the formation of
self-bound droplets.

Additionally, we can derive the exact two-dimensional LHY-energy by inserting the two-
dimensional scattering length in the expressions given by Petrov for two-dimensional energy
and condensate density, where the two-dimensional scattering length is given by [35, 53]:

a2d = 2Le
−γ− L

2a3d . (4.10)

The energy E2d and condensate density n0, for symmetric components, is obtained by: [53]

n0 =
exp

(
−2γ − 3

2

)
2π

ln
(
a12,2d
a2d

)
a2da12,2d

,

E2d =
8πn2

ln2
(
a12,2d
a2d

) [ln( n

n0

)
− 1

]
,

(4.11)

which gives Eq. (4.9) with the last term omitted.
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Chapter 5 | Results

In the previous chapters we started by describing BECs and their energetic properties in
and beyond mean field as well as their rotational dynamics. Followed by the dimensional
reduction to quasi-two- and two-dimensions, we established the numerical algorithm used to
solve the rotational GPe , so that the adaptation of the algorithm is original in this thesis.
In the following chapter, we present the obtained results in a quasi-two-dimensional system
and compare them to the previous chapters and the current literature. Starting with droplet
formation in the given system and the rotational dynamics of a trapped LHY-fluid, we
merge both sections by studying the real-time dynamics of vortices in self-bound quasi-
two-dimensional droplets via extended mean field theory.

5.1 Formation of droplets in lower dimensions

In Ch. 4, we gave the LHY energy for a quasi-two-dimensional system, which can be negative
compared to the positive-definite three-dimensional LHY-correction. As discussed, this leads
to a higher number of self-bound solutions across a wider range of parameters with respect
to δg as indicated by Fig. (4.1, left). We now want to investigate the droplet formation and
shape for such systems, by first deriving the pressure equilibrium and then making an edu-
cated guess on the resulting equation. The chapter finishes by showing example systems for
various physical parameters based on simulations via the algorithm described in Ch. 3.

We calculate the pressure in the given system by taking the derivative of the energy with
respect to the volume inhabited by the condensate. Enforcing equal pressure throughout the
droplet, this yields an expression for the existence of droplets in a certain range of parameters
[35]. The energy for a quasi-two-dimensional system in mean field with LHY-correction is
given by

Etot = EMF + ELHY

=
N2

2V
δg +

ε0
L3
V
π

4

(
2g

N

V ε0

)2(
log

(
2gn

ε0

)
+ log

(
2π2
)

+
1

2
+
π2(2gn)

3ε0

)
.

Taking the derivative to the volume gives us the pressure P ,

⇒ P = − ∂

∂V
Etot = −

(
EMF + ELHY,Q2D +

ε0
L3

π

4

(
2gn

ε0

)2
)

!
= 0

⇒ δg = −2πg2

[
log

(
2gn

ε0

)
+ log

(
2π2
)

+
3

2
+
π22gn

3ε0

]
ε0
L3
,

(5.1)

with all parameters as before. We plot Eq. (5.1) in Fig. (4.1, right) and see behavior similar to
Fig. (4.1, left). In Fig. (4.1, left) and Fig. (4.1, right) the solution’s distance in particle density
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Figure 5.1: Left: Radial density distribution of quasi-2-dimensional self-bound systems for g = 50
and δg in the range displayed. We find that for higher δg the steepness of fringes decreases.
Additionally, we see that, despite the symmetrical distribution around δg = 0, the other two do
not intersect δg = 0 symmetrically in the top right panel.
Right: Radial density distribution of quasi-2-dimensional self-bound systems for g = 50, δg = 0
and the norm fixed to the display values. With increasing norm, the droplet only increases in size,
but not its particle density n. This confirms our result in Eq. (5.1).

n is small. Based on that observation, we can assume to find stable self-bound droplet solu-
tions for a wider range of parameters δg, that would be inaccessible for the three-dimensional
case. Due to the dependence on the particle density n in Eq. (5.1) and the restrictions towards
a pressure equilibrium, we expect a flat-top density distribution with a steep descent towards
the edges. Furthermore, an increase in particles N should not alter the particle density of a
stable solution, but only increase the width of the droplet.

We want to confirm the above heuristic approach by solving the system numerically. We
start by taking the derivative of ELHY,Q2D to the density in order to yield a potential that
we can feed into the GPe

VLHY,Q2D =
∂

∂n
EQ2D,LHY =

π

ε20
gξ

(
log(ξ) + 1 + log

(
2π2
)

+
π2

2
ξ

)
ε0√
8π3

, (5.2)

with all the parameters as before. We propagate Eq. (2.9) using the algorithm described in
Ch. 3 with Vext = VLHY,Q2D + VMF and ω = Ω = 0. First we are interested in the shape
of the droplet, where we find three different solutions with a fixed norm N = 1, g11 = g22

and δg = g12 +
√
g11g22 = [−3.0, 0.0, 3.0] so that δg � g11 = g22. The density distribution

is shown in Fig. (5.1, left). We find similar shapes for all three configurations, only differing
in height and steepness at the fringes of the distribution. For smaller δg the height and
steepness increases, as indicated by the main plot and the bottom right subplot. δg = 3.0
and δg = −3.0 have different crossing points with δg = 0.0 despite symmetrical distribution
of g. This comes from the nonlinearity of VLHY,Q2D. Additionally, we plotted the density
distribution as a surface plot as little inlay within the plot for δg = 0.0.
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We are also interested in how the droplet shape changes with increasing particle number
N . By increasing N to N = [10, 20, 40, 60] in Fig. (5.1, right), we confirm the assumptions
made in the heuristic approach, that the density for a stable solution stays unaffected by the
particle number and only changes the extent of the droplet.

5.2 Rotational dynamics of a trapped LHY-fluid

As we saw in Sec. 2.4 the shape and form of interaction of a condensate influences the rota-
tional dynamics of the condensate. We now want to investigate how its dynamical behaviour
changes for a trapped system governed by quantum fluctuations that without the trap would
form a stable droplet. Starting off by revisiting the continuity equation Eq. (2.28) and energy
expectation value Eq. (2.38) we then chose the same system as in Ch. 2.4 for Fig. (2.1) but
choose δg = 0.0, so that the LHY contribution is the only effective particle-particle interac-
tion of the system.

We remember that the continuity equation comes from multiplying Eq. (2.9) with Ψ∗0 and
subtracting the complex conjugation of the result from itself. Because of this, only imagi-
nary parts of the equation survive, making the continuity equation independent of any real
Vext. Henceforth, we obtain the same quantised-irrotational dynamics and vortex formation
as described in Ch. 2.4.

The energy of a uniform medium governed by quantum fluctuations with a vortex of ro-
tational quantisation l in cylindrical coordinates is then similarly to Eq. (2.38) given by

E =

∫
d r

[
~

2m
|∇Ψ0(r)|2 +

π

4

(
U0

ε0
|Ψ0(r)|2

)2

·

·
(

log

(
|Ψ0(r)|2U0

ε0

)
+ 0.5 + log

(
2π2
)

+
π2U0|Ψ0(r)|2

3ε0

)
ε0√
8π3

]
. (5.3)

As done in Sec. 2.4 this can be used to calculate the energy and critical angular momentum
for vortex creation or to study multiple off-axis vortices as done in [44, 54, 55]. However, this
is not in scope of this thesis.

To offer a quantitative description of the differences in rotational dynamics between mean
field and LHY-correction, we plot L(Ω) with the same parameters as in Fig. (5.2). The LHY
dominated condensate shows, as expected, the same quantised increase in angular momen-
tum as pure mean field interaction in Fig. (2.1). However, the critical angular momentum
for the symmetry breaking by introducing an additional vortex to the system is drastically
lowered for LHY. This is as expected as the LHY-correction is generally much weaker than
the mean field interaction. In the mean field, a weaker interaction should come with a larger
vortex core, which is the opposite of what we see for the LHY-fluid. Additionally, the L(Ω)
slope for a higher number of vortices is smaller for LHY and the system’s angular momen-
tum for higher vortex states increases compared to mean field. The slope corresponds to the
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Figure 5.2: Left: Vortex density distributions as indicated by the labels. For vortex numbers
l > 5 we find a different distribution of vortex positions within the condensate, as for a purely
mean field interacting Bose gas.
Right: L(Ω/ω) for LHY-interaction g = 50 and ω = 0.1. We see the existence of critical external
rotation Ωc, which leads to a phase-transition between states of higher vorticity. However, due to
the weaker LHY-correction compared to mean field, the critical angular momentum is lower.

movement of vortices to the centre of the condensate, thus increasing angular momentum
per particle. Furthermore, the L(Ω) and Ω/ω spacing between different symmetries seem
to be more equal. All of this shows that there is still much to understand and invites for a
expanding study of the system similar to [44, 54, 55]. For a easier comparison, both Fig. (2.1)
and Fig. (5.2) are given again in App. (B).

5.3 Real-time dynamics of rotating self-bound quasi-two-
dimensional droplets

Understanding the droplet formation and rotational dynamics of quasi-two-dimensional Bose-
gases governed to a large extent by quantum fluctuations, we now want to investigate the
real-time dynamics of rotating droplets. This poses an interesting question, as a droplet is
in a pressure equilibrium, sensitive to any perturbation. Thus it is not trivial whether a
centrifugal force due to rotation breaks that equilibrium.

We focus on real-time stability and dynamics. From a classical point of view, a rotating
harmonic oscillator is stable as long as Ω ≤ ω. A self-bound droplet, however, requires
ω = 0.0, so that we cannot rotate a self-bound droplet without it leaving pressure equi-
librium. It is worth noting that the mean field energy, as well as the LHY-correction, can
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act as a confining energy, thus giving some margin for rotation Ω > ω. For mean field this
margin was calculated by Rosenbusch et al. in [56], but has yet to be calculated for the LHY-
correction of any dimensionality. Additionally, in recent publications, either a wavefunction
with vorticity according to Eq. (2.34) was assumed as a solution of the GPe [57], or it was a
study about real-time stability of those phase-inprinted states [58]. In the following sections,
we will find a ground state with m vortices via imaginary time propagation, then release the
system by decreasing the harmonic trap linearly

ω(t) =

{
ω0 − vt if vt < ω0

0 if vt ≥ ω0

(5.4)

and turning off the external rotation Ω completely. After the full trap release, i.e. ω(t) = 0
we study the real-time stability and dynamics for a unit vortex and multiple single-quantised
vortices.

5.3.1 Unit vortex

We start off by investigating the unit vortex, as it is the easiest system to analyse, but still
provides interesting physics as we will see. Initially we create a number of converged trapped
BECs with a unit vortex. We choose g = 50, N = 15, δg = 0, L =

√
8π and ω0 = 0.0025.

All of the parameters are chosen heuristically, however, ω0 is chosen small enough, so that
the shape is not dominated by the Gaussian as seen in the density inlay in Fig. (5.3, right).

The angular momentum 〈Lz〉 is conserved in real time as we show in App. (D). We can
then use 〈Lz〉 as an important benchmark, as deviations can then only occur due to numeri-
cal truncation errors or non-physical behaviour of the system.

Initially, the behaviour for different trap opening speeds during the opening sequence is
of interest. For three different sets of condensates, we open the trap with speeds v =
[10−4ω0, 10−3ω0, 5 · 10−3ω0] and measure the maximum density in time, as well as the an-
gular momentum. The results are displayed in Fig. (5.3) with the percentage of trap opening
shown along the x-axis instead of time. We see that over the whole propagation time angular
momentum is conserved. Moreover, for high opening rates the density oscillates on a neg-
ative slope, while for adiabatic opening speeds the density follows a steady Gaussian slope.
In Fig. (5.3, left) the plotted density distributions are normalised to the maximum density
value of the first column. As the trap releases the condensate, the density decreases, while
the condensate and vortex core size grows. The rows correspond, from top to bottom, to
v = [10−4ω0, 5 · 10−3ω0, 10−3ω0]. Despite the full shut-off of the trap, the condensate has not
yet fully expanded for v = 10−4ω0 at the end of the sequence. In the following we will study
the difference between both cases after release. Due to the steady decrease in particle density
n, we will choose v ≤ 10−4ω0 for following systems.

In Fig. (5.4) we show the time-evolution of a unit vortex directly after full release for
v = 10−3ω0. Due to the expansion velocity and the density dependence of the LHY-correction,
the droplet slowly splits into two rings. These rings grow in radius and oscillate in size and
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Figure 5.3: Left: Density distributions for all three systems at g = 50, ω0 = 0.025 and
0%, 50%, 100% trap opening. The density is given by red, the highest and blue, the low-
est. Systems parameters as given in the text and opening speed from top to bottom v =
[10−4ω0, 5 · 10−3ω0, 10−3ω0]
Right: Time evolution of the maximum density for each system, distinguished by the trap opening
speeds as given in the plot. The surface plot corresponds to v = 10−4ω0. Furthermore, we see
that the angular momentum per particle is conserved.

density but never reconnect during the time evolution. They keep growing until the border
of the mesh is reached. However, only investigating the real-time evolution holds no informa-
tion about the systems physicality. As we established angular momentum as an important
benchmark, we plot ∆L(t)/L0 in Fig. (5.5) for all v in a range ∆L(t)/L0 ∈ [−0.01, 0.01] for
times after full release from the harmonic oscillator. We see that for v < 10−4 L deviates over
time, thus, Fig. (5.4) shows an unphysical system. We call a system unphysical, when the
set of chosen parameters Comparing the phase in Fig. (5.4) with Fig. (5.5, left) we find that
the instability in the system is occurring at approximately the same time as a discontinuity
in the phase shows.

Releasing the condensate adiabatically with v ≤ 10−4ω0 for ω0 = 0.0025 creates meta-
stable solutions, that remain constant in their size and density over time. We define them
as meta-stable, as they stay stable up to a certain point where numerical deviations lead to
unstability of the system. Thus, we are uncertain about their permanent physical stability.
Besides numerical deviations over time, we do not find any physical instabilities occurring.
However, the radius of those meta-stable solutions changes periodically over time, depending
on v, similar to the breathing mode in [39]. In Fig. (5.6, right) we plot the FWHM of the
vortex core (bottom) and droplet size (top) for ω0 = 0.0025 and v = [10−4ω0, 2 · 10−4ω0].
For both systems we see perdiodical changes in distance over time, which can be brought
back to the particular density dependence of VLHY,Q2D and the expansion speed of the har-
monic oscillator, which affects the vortex core size while opening the trap. Furthermore, for
v = 10−4ω0 we see a second small oscillation occurring for the vortex core size at its minima,
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Figure 5.4: Time evolution of a unit vortex directly after full release with v = 10−3ω0. Due to the
velocity and the density dependence of the LHY-correction, two rings form, that expand as time
continues, until they reach the border of the mesh. The density is normalised to the highest value
at t = 60. The plot in the bottom shows the respective phase for each given density distribution.

0 20000
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0

0.01

0 20000 0 20000

Figure 5.5: Deviation of angular momentum directly after full release from the trap for values of
v as given in the plot. We see that for the studied system of propagating rings the GPe breaks
down and thus yields unphysical results due angular momentum not being conserved.

originating from a density wave traversing through the droplet radially from the vortex core
off phase with the main breathing mode. This can be seen in Fig. (5.6, left) for v = 10−4ω
and t = 5950 and more clearly in [59]. Fig. (5.6, left) shows the density distributions for
ω0 = 0.0025 and v = [10−4ω0, 2 · 10−4ω0, 5 · 104ω0] at same time differences, corresponding to
Fig. (5.6, right). Both plots in Fig. (5.6) show the different oscillations frequencies and ampli-
tudes for all systems, as well as the virtually undetectable breathing mode for v = 5 · 104ω0.

5.3.2 Multiple vortices

We continue by increasing the number of vortices in the system and release the condensate adi-
abatically. With increasing number of vorticesm, we also need to increase the particle number
N , so that for m = [1, 2, 3, 4] we use N = [10, 15, 20, 30] respectively. For the trap opening
speed we choose a value that resulted in stable systems for the unit vortex, i.e. v ≤ 10−4.
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Figure 5.6: Left: Density distributions for three different trap opening speeds at different
timesteps, whereas red is the highest and blue the lowest. From top to bottom: 10−4ω0 , 2 ·
10−4ω0 , 5 · 10−4ω0

Right: time evolution of the full width half maximum of the droplet radius (top) and vortex core
(bottom) for 10−4ω0 and 2 · 10−4ω0. We omitted 5 · 10−4ω0 to enhance clarity, due to a lack of
variation, as indicated by the respective density distributions on the left.

Again, for all following number of vortices we investigate the real-time stability for the two
trapsizes ω0 = [0.0025, 0.001] and three opening speeds v = [10−4ω0, 2 · 10−4ω0, 5 · 10−4ω0]
from Sec. 5.3.1 with dt = 0.01 per iteration. The stability of the system was found to be
independent of dt within the validity of the second-order algorithm. Additionally, we provide
a quantitative description of the rotational dynamics for a stable three-vortex system.

In Fig. (5.7) we plot the angular momentum expectation value 〈Lz〉 for all unit vortex systems
discussed so far, and additionally for vortex numbers m = [1, 2, 3, 4]. 〈Lz〉 is normalised by
L(0) at the beginning of the trap opening. The light-purple systems represent ω0 = 0.0025
and the dark-purple ω0 = 0.001, while each row and column show systems as given in the
labels in the plot. As angular momentum is supposed to be conserved (App. (D)) for any
rotational symmetry, we recognise that all systems below the green line in Fig. (5.7) are un-
physical due to their deviation. Thus, a higher number of vortices m requires a slower trap
opening v or weaker initial trap ω0. There are two different instabilities occurring. One
where the system becomes unphysical over time, as in m = 3, v = 10−4ω0. The other one,
where the system starts with a deviation from ∆L(t)/L(0) = 0 as in m = 4, v = 5 · 10−4ω0.
The latter is due to a deviation that occurs during the release process and can most likely
be avoided with a more realistic non-linear opening procedure.

In the following, we describe the real-time evolution for droplets with multiple single quan-
tised vortices, on the example of m = 3, v = 10−4ω0 with ω0 = 0.001 according to Fig. (5.8).
However, the same description can be applied to every other previously displayed system.
Real-time evolutions for all systems as movies can be found at [59]. Furthermore, the de-
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Figure 5.7: ∆L(t)/L(0) for ω0 = 0.0025 in light-purple and ω0 = 0.001 in dark-purple. Each
column represents v and each row the number of vortices m as given in the figure. All systems
below the green line are considered to be parameters where the GPe breaks down and produces
unphysical results due to angular momentum conservation.

scription also fits the dynamics of two-dimensional systems, according to Eq. (4.11), as found
in [60].

There are three features to observe, the first being the same breathing behaviour as ob-
served for m = 1, where the breathing amplitude and frequency decrease as the opening
speed decreases. Just as with the unit vortex, we see density waves traversing radially from
each vortex core. Those waves reflect off the boundaries of the droplet in m-fold rotational
symmetry. This leads to local asymmetric deviations of the particle density n around the
vortex core and thus changes the healing length ξ asymmetrically around the vortex core.
In Sec. 2.4 we established that for small rotation the vortex core size is approximately the
healing length ξ, where ξ = 1/

√
2nU0. As the density changes, so does ξ and thus the vortex

cores obtain their irregular shape. With decreasing v this occurrence vanishes, as the result-
ing density waves amplitude decrease as well. The last feature to observe is that given enough
time, the droplet obtains m-fold rotational symmetry, where m is the number of vortices as
before.
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Figure 5.8: Real-time evolution of m = 3, v = 10−4ω0 and ω0 = 0.001. The plot in the top left is
at t = 0 directly after release. Each further plot from the top left to the bottom right evolves the
system by ∆t = 1800.
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Chapter 6 | Conclusion

In this thesis, the formation of quasi-two-dimensional droplets and their rotational stability
and dynamics were studied in a mean-field imaginary and real-time approach. The work
is mostly numerical, using the extended Gross-Pitaveskii equation, supplemented by some
analytical calculations regarding the required pressure equilibrium and real-time stability re-
quirements.

The formation of quasi-two-dimensional droplets was confirmed in Sec.5.1, where we chose
δg � g to stay in the range of validity of the derivation of the quasi-two-dimensional LHY-
correction, which uses

√
g11g22 = −g12. The self-bound droplet forms a true ground state

of the system, with constant particle density n independent of the number of particles N
in the system. Furthermore, we can expect from Fig. (4.1) that self-bound droplets in lower
dimensionality can form over a wider range of parameters, than their three-dimensional coun-
terparts. So far, experiments were only done on three-dimensional droplets, thus inviting for
a study in lower dimensionality, by squeezing the system with a trap in one axis, while tuning
the scattering length of both components via Feshbach-resonances [61].

Due to the self-bound nature, rotational dynamics of the system offer a variety of config-
urations that can be studied. We focused on the real-time stability and dynamics of the
unit vortex in Sec. 5.2 and Sec. 5.3.1, by first showing that the expectation value of angular
momentum is conserved in real-time independent of the external or particle-particle poten-
tial. This gives us an important benchmark for further results. Realising the importance of
the trap-opening speed on the initially trapped ground state in Fig. (5.3), we investigate the
real-time evolution of different opening speeds, directly after full release. Fig. (5.4) shows
the formation of expanding rings after release for a non-adiabatic trap opening, which yields
unphysical results where the GPe breaks down and does not conserve angular momentum.
Despite total angular momentum being conserved over time, it is not confirmed whether both
rings contain their angular momentum and will be subject of future work. More importantly,
we found a similarity to the breathing mode [39] for stable solutions, where depending on the
trap opening speed, the amplitude and frequency of oscillation for droplet size and vortex
core change.

In Sec. 5.3.2 we repeated the study on stability and rotational dynamics for systems with
multiple single-quantised vortices. We found in Fig. (5.7) that a higher number of vortices
m requires a lower trap opening speed v. Additionally, while gathering the data, we found
that a higher m requires a higher number of particles N to keep the system stable, which
is in agreement with [57]. In the last paragraph of Sec. 5.3.2 we described the rotational
dynamics of a system with m = 3, v = 10−4ω0 and ω0 = 0.001 and found that added to
the previously observed effects occurring, the droplet changes its shape to m-fold discrete
rotational symmetry given enough time. Similar effects occur in all studied systems and can
be seen in [59].

34



Considering the possible experimental realisation, we need to add that the creation of self-
bound vortex solutions may prove to be difficult. Our initial calculation shows that the
angular momentum is conserved for any potential. However, this excludes perturbation or
particle losses. The former are never fully avoided in an experimental setup, the latter are
inherent for self-bound droplets as shown by Petrov in [27]. We show a possibility to stabilise
the system against perturbations via a non-monotonous potential in [60].

On more speculative grounds, another possible direction for further investigation emerges
when drawing an analogy to fermionic density-functional theory: In that case, the potentials
used in practical implementations can be affected by self-interaction contributions. How this
issue correlates to the bosonic LHY-correction applied in this thesis is unclear at present
stage, and poses a question for future research.

Due to the novelty of self-bound droplets, this research area offers a plethora of possible
studies in the continuation and advancement of this work. An analytical investigation of the
breathing behaviour, density waves and shape transform of stable vortex solutions, similar to
as it was done for a trapped system [62–65], will be useful in advancing the understanding of
the effect and finding analogies to already fully understood classical hydrodynamical systems
[66]. Furthermore, we can extend this thesis, by considering dipolar interaction, or extending
the study to a fully three-dimensional system.

Introducing a periodical change in scattering length over time can prove to be interesting,
similar to [67], where a condensate surrounded by a ring-trap potential was modulated over
time. The resulting firework-like jet-emission were then simulated using the mean field Gross-
Pitaevskii equation and brought into connection with density waves within the condensate
[68]. However, the logarithmic shape of the LHY-correction varies widely from a pure mean
field approach so that an analytical and numerical study of such a system can shed new light
on the underlying physical mechanisms.
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Chapter A | Derivation of the Gross-
Pitaevskii equation

We derive the GPe in Ch. 2.2 starting from Eq. (2.4), following [38, 39]:

i~
∂

∂t
Ψ̂(r, t) =

[
Ψ̂(r, t), Ĥ

]
(A.1)

Using the commutation relations[
Ψ̂(r, t), Ψ̂†(r′)

]
= δ(r− r′, t) and (A.2)[

Ψ̂(r, t), Ψ̂(r′, t)
]

= 0 (A.3)

and for the many-body Hamiltonian

Ĥ =

∫
dr

(
~2

2m
∇Ψ̂†(r, t)∇Ψ̂(r, t)

)
+

1

2

∫
dr′ dr Ψ̂†(r, t)Ψ̂†(r′, t)V (r′ − r, t) Ψ̂(r, t)Ψ̂(r′, t).

(A.4)

If we now use Eq. (A.1), we will get two parts of an equation on the righthand side, Ψ̂Ĥ and
ĤΨ̂. Using

Ψ̂(r, t) =
∑
p

âp
1√
V

exp

(
ip · r
~

)
(A.5)

one can rewrite Eq. (A.4) into

Ĥ =
∑ p2

2m
â†pâp +

1

2V

∑
Vqâp1+qâ

†
p2−pâp1 âp2 (A.6)

At first Ψ̂Ĥ is taken care of and turns into [38, 39][∑
âp

1√
V

exp

(
ip · r
~

)][∑ p2

2m
â†pâp +

1

2V

∑
Vqâp1+qâ

†
p2−pâp1 âp2

]
(A.7)

while ĤΨ̂ is symmetric to latter expression. One can immediately identify two different
terms, separated by the plus sign, which we treat separately.∑

âp
1√
V

exp

(
ip · r
~

)∑ p2

2m
â†pâp (A.8)
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Also considering the symmetric part from ĤΨ̂ and for simplicity ignoring every non-operator
part of the expression, we obtain

âpâ
†
pâp − â†pâpâp =

=
[
âp, â

†
pâp
]

=
[
âp, â

†
p

]
âp + â†p [âp, âp]

= âp + 0

= âp (A.9)

Inserting this into the original equation, gives∑ p2

2m
âp

1√
V

exp

(
ip · r
~

)
=

= −~2∇2

2m
Ψ̂(r, t) (A.10)

With use of Eq. (A.3), which is analogously applicable to annihilation and creation operators.
The last part of the equation turns into [38, 39]:

âp1 âp1+qâp2−qâp1 âp2 − âp1+qâp2−qâp1 âp2 âp1 =

= [âp1 , âp1+qâp2−qâp1 âp2 ]

= [âp1 , âp1+qâp2−qâp1 ] âp2 + âp1 , âp1+qâp2−q [âp1 , âp2 ]
(A.11)

= . . .

with [âp1 , âp1+qâp2−qâp1 ] = [âp1 , âp1+qâp2−q] âp1 + âp1+qâp2−q [âp1 , âp1 ]

= . . . (A.12)
with [âp1 , âp1+qâp2−q] = [âp1 , âp1+q] âp2−q + âp1+q [âp1 , âp2−q]

= âp2−q (A.13)
Eq. (A.13) in Eq. (A.12) in Eq. (A.11) gives

. . . = âp2−qâp1 âp2 (A.14)

Inserting this into Eq. (A.6), gives

1

2V

1√
V

∑
Vqâp2−qâp1 âp2 exp

(
ip · r
~

)
=

[∫
dr′ Ψ̂†(r′, t)V (r′ − r)Ψ̂(r′, t)

]
Ψ̂(r, t) (A.15)

As we previously ignored the treatment of any external potential, we are able to add this in
the final outcome

i~
∂

∂t
Ψ(r, t) =

[
−~2∇2

2m
+ Vext(r, t) +

∫
dr′ Ψ̂†(r′, t)V (r′ − r)Ψ̂(r′, t)

]
Ψ̂(r, t) (A.16)

We are now allowed to replace the field operator Ψ̂ with the classical field Ψ0, if Eq. (2.3) is
valid

i~
∂

∂t
Ψ0(r, t) =

(
−~2∇2

2m
+ Vext(r, t) + g|Ψ0(r, t)|2

)
Ψ0(r, t) (A.17)
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Chapter B | Comparison of rotational dy-
namics between mean field
and LHY-fluid

Figure B.1: Left: L(Ω) for mean field interaction
Right: L(Ω) for pure LHY-interaction without mean field
Comparing both, purely mean field interaction and LHY-fluid as in Sec. 5.2 we find that the
critical angular momentum is lowered for the LHY-fluid which corresponds to the generally
weaker LHY-interaction than mean field. However, we find that the vortex core size is lower
for the LHY-fluid, but for a weaker interaction it should increase in size. In the LHY-fluid
the different vortex states ascend in L(Ω) is less steep compared to purely mean field as
well as each state exists with less variation in Ω. Additionally, we find a different vortex
formation for m = [5, 6]. It is however unclear if this whether due to peculiar form of the
LHY-correction or if the true ground state for the system was not found and the vortices for
the LHY-system represent an excited state.

42



Figure B.2: Left: L(Ω) for mean field interaction
Right: L(Ω) for pure LHY-interaction without mean field
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Chapter C | Derivation of the three-
dimensional LHY-
correction to the mean field
energy

We complete the derivation of the LHY-correction to the mean field energy in Ch. 2.3.2,
continuing from Eq. (2.21), following [38]:

|up|2 − |v−p|2 = 1 (C.1)

Is fulfilled when

up = coshαp and vp = sinhαp. (C.2)

We then choose αp such that b̂†pb̂†p and b̂pb̂p vanish in the Hamiltonian in Eq. (2.17). This is
solved for:

gn

2

(
|up|2 − |v−p|

)
+

(
p2

2m
+ gn

)
upv−p = 0. (C.3)

We solve Eq. (C.3) with help of cosh 2α = coshα2 + sinhα2 and sinh 2α = 2 coshα sinhα,
which gives us:

coth 2αp = ±
(
p2/2m+ gn

2ε(p)
± 1

2

)1/2

. (C.4)

where ε(p) is the dispersion relation in Eq. (2.24). Eq. (C.4) reduces the Hamiltonian Ĥ to
Eq. (2.22).

In the following we calculate the phase space integral mentioned around Eq. (2.23) [69]:

E0 =
gN2

2V
+

1

2

∑
p6=0

(gn
m
p2 +

(
p2

2m

)2
)1/2

− gn− p2

2m
+
m(gn)2

p2


with p =

√
2mgnx and dp/dx =

√
2mgn

E0 =
gN2

2V
+

1

2

∑
p6=0

[(
2(gn)2x2 + (gn)2x4

)1/2 − gn− gnx2 +
m(gn)2

2mgnx2

]
=
gN2

2V
+

1

2

∑
p6=0

gn

[
x(2 + x2)1/2 − 1− x2 +

1

2x2

]
.

44



Turning the sum over the phase space into a phase space integral gives:

E0 =
gN2

2V
+

1

2

gnV

(2π~)3

∫
IR3

d3p

[
x(2 + x2)1/2 − 1− x2 +

1

2x2

]
=
gN2

2V
+

1

2

gN

(2π~)3

∫ ∞
0

dp

∫ π

0

dΘ

∫ 2π

0

dφ p2 sin Θ

[
x(2 + x2)1/2 − 1− x2 +

1

2x2

]
=
gN2

2V
+
gN

2

4π

(2π~)3
(2mgn)3/2

∫ ∞
0

dx x2

[
x(2 + x2)1/2 − 1− x2 +

1

2x2

]
.

Where the integrand is a positive monotonusly decreasing function with f(0) = 1/2, thus the
integral converges to ≈

√
128/15 and it follows:

E0 =
gN2

2V
+

√
128

15

gN

2

(2mgn)3/2

2π2~3

=
gN2

2V

(
1 +

128

15
√
π

√
a3n

)
.

which matches Eq. (2.25).
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Chapter D | Conservation of angular mo-
mentum for an arbitrary real
interaction potential

We show the conservation of angular momentum in real-time for a zeroth-order mean-field
and quasi-two-dimensional LHY-correction, which is used as a benchmark for the physicality
of our results. The calculation was double checked by [70] as it will be used in [60].

The time derivative of the angular momentum Lz is given by:

d

dt
〈Lz〉 =

d

dt

∫
d2 r(Ψ∗0LzΨ0) =

∫
d2 r [(∂tΨ

∗
0)LzΨ0 + Ψ∗0 (∂tLz) Ψ0 + Ψ∗0Lz (∂tΨ0)] . (D.1)

Where ∂tLz = 0 on the right-hand side. Additionally, we can use the GPe for the remaining
two terms, such that

∂tΨ0 = −iAΨ0, ∂tΨ
∗
0 = i(AΨ0)∗, (D.2)

where A = −(1/2)∇2 + Vtrap + Vint, Vtrap an arbitrary external trapping potential and Vint
the aforementioned interaction potentials. Inserting this into Eq. (D.1) gives

d

dt
〈Lz〉 = i

∫
d2 r [(AΨ0)∗ LzΨ0 + Ψ∗0Lz (AΨ0)] =

= i

∫
d2 r

((
−1

2
∇2Ψ∗0LzΨ0 +

1

2
Ψ∗0Lz∇2Ψ0

)

+ (VtrapΨ
∗
0LzΨ0 −Ψ∗0LzVtrapΨ0) + (VintΨ

∗
0LzΨ0 −Ψ∗0LzVintΨ0)

)
.

(D.3)

With Lz in spatial representation for two-dimensional spherical coordinates:

Lz = −i∂φ. (D.4)

We know that the free particle must conserve angular momentum Lz, however, we can show
by using integration by parts twice, that the first term in Eq. (D.3) indeed equals zero. Due
to the similar shape of the remaining two terms, both follow the same transformation, where
the right-hand side Ψ∗0∂φ(Ψ0V ) becomes

Ψ∗0∂φ(Ψ0V ) = Ψ∗0(∂φΨ0)V + Ψ∗0(∂φV )Ψ0 (D.5)

and the first term cancels out the left-hand side, so that we remain with

d

dt
〈Lz〉 = −

∫
d2 r(Ψ∗0Ψ0∂φVtrap + Ψ∗0Ψ0∂φVint). (D.6)
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While the trapping potential has an explicit space-dependency, this is not the case for the
interaction potential. Thus angular momentum is conserved for a harmonic oscillator, but not
for an anharmonic oscillator. Additionally we see that angular momentum is conserved for
m = [0, 1], however this is not trivially clear form > 1. The quasi-two-dimensional interaction
potential follows from Eq. (4.9) with V = ∂nE and consists out of three parts. The first are
terms similar to zeroth-order mean field, with linear dependency on kn = k|Ψ0|2 = kΨ∗0Ψ0,
the second with quadratic dependcy on kn2 and one term with kn ln(kn), where we replaced
all the constants in Eq. (4.9) with k for simplicity. Starting with the zeroth-order mean field
terms:

k

∫
d φΨ∗0Ψ0∂φ(Ψ∗0Ψ0) = k

[∫
d φΨ∗0Ψ0Ψ0∂φΨ∗0 +

∫
d φΨ∗0Ψ0Ψ∗0∂φΨ0

]
. (D.7)

We focus on the first term and use integration by parts∫
d φΨ∗0Ψ0Ψ0∂φΨ∗0 =

[
|Ψ0|4

]2π
0
−
∫
d φΨ∗0 [Ψ0Ψ0∂φΨ∗0 + 2Ψ∗0Ψ0Ψ∗0∂φΨ0] , (D.8)

where the first term becomes zero and with the second term we see that∫
d φΨ∗0Ψ0Ψ0∂φΨ∗0 = −

∫
d φΨ∗0Ψ0Ψ∗0∂φΨ0. (D.9)

We insert this last expression into Eq. (D.7), thus the whole integral becomes zero and angular
momentum is conserved.∫

d φΨ∗0Ψ∂φVint = [Ψ∗0Ψ0V ]2π0 −
∫
d ((∂φΨ∗0)Ψ0 + Ψ∗0∂φΨ0) . (D.10)

We follow the same procedure for kn2 and find that this also conserves angular momentum.
For ∂φ(kn ln(kn)) we find

∂φ(kΨ∗0Ψ0 ln(kΨ∗0Ψ0)) = k ln(kΨ∗0Ψ0)∂φΨ∗0Ψ0 + kΨ∗0∂φΨ0 + kΨ0∂φΨ∗0. (D.11)

Where the last two terms are equal to the above zeroth-order mean field calculation. For the
first term we follow again the calculation above and find that the kn ln(kn) also conserves
angular momentum. Thus,

d

dt
〈Lz〉 = 0, (D.12)

for zeroth-order mean field and quasi-two-dimensional LHY-correction. Furthermore, is the
two-dimensional LHY-correction often represented as n ln(n) and therefore, the angular mo-
mentum is also conserved in exact two dimensions. Additionally, it is save to assume that
this is also the case for the three-dimensional LHY-correction in Eq. (2.25).
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