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Abstract 

In the recent years, cryptocurrencies have gained popularity and have experienced high price 

volatility. This essay pretends to examine how the multivariate GARCH models predict the 

volatility of these digital currencies and what implications exist if we consider the correlations 

among them to forecast their volatility. Using a bivariate Diagonal VECH and bivariate Diagonal 

BEKK this thesis checks the covariance on the returns of the two largest cryptocurrencies in terms 

of market capitalization, Bitcoin and Ethereum. Since the price returns of financial assets tend to 

have a non-normal behavior, we consider a distribution that allows the data to have heavier tails, 

assuming that this could be more realistic as it is observed in other financial markets. After 

employing   the different models, we find that the best-fit distribution for estimating the conditional 

(co)variance is the Student’s t, which allows the data to have fatter tails. We find that GARCH(1,1) 

is the best specification for the conditional (co)variance of Bitcoin and Ethereum and when 

performing the forecast we find that the best model is estimated with the Diagonal VECH approach. 

 

Keywords: Cryptocurrency, Bivariate Diagonal BEKK, Bivariate Diagonal VECH, MGARCH, 

Volatility 

                                                             
1 The authors would like to thank the orientation, valuable comments and time dedicated by their supervisor, Anders 

Vilhelmsson 
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1. Introduction 

During the recent years, cryptocurrencies and blockchain have gained great popularity 

worldwide, and the number of cryptocurrencies has increased accordingly. As of April 2019, there 

were over 2000 different ones, with a rising trend and a total market capitalization of 175 billion US 

dollars (CoinMarketCap, 2019).  Nonetheless, it is a relatively new instrument in the financial 

markets, since its creation dates back to 2008 with the paper “Bitcoin: A peer-to-peer Electronic 

Cash System” published by Satoshi Nakamoto (Antonopoulos, 2014), and has had an exponential 

growth during its 10 years of existence. From the vast majority of current digital currencies, two of 

them (Bitcoin and Ethereum) account for 62% of the total market capitalization (CoinMarketCap, 

2019), implying that it is a very concentrated market despite of the large amount of different assets. 

Moreover, the prices of these two digital currencies rose rapidly and fluctuated significantly in 

recent years and, therefore, many cryptocurrency investors increased their investments in Bitcoin 

and Ethereum (Katsiampa, 2018b). That is the reason why we focus on these both cryptocurrencies 

for our research. The paper could be easily extended by including other cryptocurrencies, but we 

consider that investigating these two is the best choice, since the following in market capitalization 

have a small market share and will not make a big contribution to the main results. 

As it is well known, variance (volatility), just after the expected return, is considered the 

second most important statistical property of financial securities for portfolio construction, risk 

management and pricing. Hence, it becomes important to estimate this value as it is not possible to 

observe it given its latent variable nature. For this purpose, and considering that it is a security 

traded in the financial markets and, therefore, it is subject to volatility clustering, the estimation is 

conducted using Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models. 

Specifically, we use multivariate GARCH models such as bivariate Diagonal VECH and bivariate 

Diagonal BEKK models to estimate the variance of the cryptocurrencies mentioned above, and to 

check the covariance between them and predict future returns. In our study, we opted for diagonal 

type models over ordinary VECH and BEKK models because the number of parameters to be 

estimated is lower, and the results obtained are very similar. It is important to remark that in this 

paper we allow the returns to present fatter tails in their distribution and investigate whether this 

well-known feature of “common” financial instruments applies to cryptocurrencies as well.  

Katsiampa (2018b) addresses this topic by estimating Diagonal BEKK models under normal and 

Student’s t distribution, but does not employ Diagonal VECH parametrization nor utilizes loss 
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functions to decide which model to use; the decision relies upon the information given by the 

Information Criteria. 

The main purpose of the present study is to investigate and find the most accurate model for 

forecasting the variance of digital currencies using diagonal VECH and diagonal BEKK models and 

their performance for Bitcoin and Ethereum accounting for the correlation between them. 

Comprehending the interrelation of these two cryptocurrencies and forecasting their volatility is 

essential for suitable investment strategy developing and portfolio construction purposes as 

mentioned before. This research can help cryptocurrency investors to become more aware of their 

decisions and at the same time adds to the existing hitherto scarce literature in the area. 

The structure of the thesis is organized as follows: in section 2 we review the literature that 

has been written about cryptocurrencies, different implied models and works that were made 

considering their volatility. In section 3 we provide a short description of cryptocurrencies. In 

section 4 we describe the data used for this thesis. In section 5, methodology and statistical models 

to be considered are presented. In section 6, forecast evaluation procedure is described. In section 7, 

the main results of the thesis are presented after performing the corresponding models on the data 

and finding the best Multivariate-GARCH model for the sample. Finally, in section 8, the main 

conclusions of our research are presented. 

 

2. Literature review 

Recently, cryptocurrencies have become a popular topic in academic research. For example, 

Ciaian, Rajcaniova and Kancs, d’Artis (2016) investigated the Bitcoin price formation process and 

the determinants of its returns and found evidence that supply and demand of Bitcoin have 

considerable impact on its price and it can be explained in a standard economic model. Some other 

researchers studied the correlation between the prices of digital currency and trading volumes, for 

instance, Blau (2017) found evidence that the level of speculative trading is not directly related to 

the level of Bitcoin volatility, whereas Balcilar, Roubaud, Gupta and Bouri (2017) showed that the 

Bitcoin price returns and their relationship with trading volume develop in a nonlinear way. Also, 

the linkages of cryptocurrencies to mainstream assets was covered in a more recent study of Corbet, 

Meegan, Larkin, Lucey and Yarovaya (2018) where the authors found a very low correlation 

between them and therefore argued that cryptocurrencies establish a new investment asset class. 

Other researchers as Phillip, Chan and Peiris (2018) used the stochastic volatility model for 224 
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different digital currencies in order to explore their properties; they revealed that cryptocurrencies 

have specific characteristics such as leverage effect, volatility clustering, fat tails and long memory. 

We have seen many recommendations in different papers how to model the cryptocurrencies 

price returns volatility and the GARCH model which was introduced by Bollerslev (1986) is the 

most widely used one. In this model the conditional variance in the current period depends on the 

squared errors and conditional variances of the previous period. GARCH models, unlike linear 

estimation models, assume that the variance of the returns is not constant over time, as returns of the 

assets show periods of weak and strong fluctuations on the financial market, i.e. volatility clustering 

(which is common for cryptocurrencies data). Further, Bollerslev, Engle and Wooldridge (1988) 

proposed a multivariate GARCH model named Diagonal VECH considering a possible correlation 

between several assets. In order to reduce the number of parameters in the model, they assumed that 

both parameter matrices A and B should be diagonal, which means that every element of conditional 

covariance matrix depends only on its own lag and on the previous value of error term (Bollerslev, 

Engle &Wooldridge, 1988). However, this model requires some restrictions to ensure the positivity 

of conditional covariance matrix, which is quite complicated in practice. Therefore, Engle and 

Kroner (1995) presented another type of multivariate GARCH model named Diagonal BEKK in 

which they ensured the positive definiteness of conditional covariance matrix by proposing a new 

parametrization of covariance matrix without any restrictions. These two models are discussed in 

detail in section 5. 

Many authors employed different GARCH-type models in order to investigate the 

cryptocurrencies volatility. For instance, Katsiampa (2017) examined different conditional 

heteroscedasticity models performance to estimate Bitcoin price volatility. She employed GARCH, 

EGARCH, TGARCH, APARCH, CGARCH and ACGARCH models and based on information 

criteria she found evidence that the Component GARCH model is the optimal one. Chu, Chan, 

Nadarajah and Osterrieder (2017) investigated the price returns volatility of seven digital currencies 

such as Bitcoin, Dash, Dogecoin, Litecoin, Maidsafecoin, Monero and Ripple and by employing 

twelve GARCH-type models they concluded that IGARCH and GJRGARCH are the best fitting for 

volatility modelling purposes. However, aforementioned authors used only univariate GARCH 

models that overlook possible relationships over a set of cryptocurrencies (cross-sectional 

correlation) and only considers one variable. Therefore, multivariate GARCH models are more 

appropriate for estimating cryptocurrencies price returns volatility accounting for possible 

correlation between different digital currencies. 
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However, the literature on volatility dynamics and forecasting of cryptocurrencies using 

multivariate GARCH models remains limited. The most important related literature consists of the 

papers of Hultman (2018) and Katsiampa (2018a; 2018b). More specifically, Katsiampa (2018b) 

explored the volatility dynamics of Bitcoin and Ethereum over the period from August 2015 to 

January 2018 and by employing a bivariate Diagonal BEKK model, she revealed the dependence 

between two digital currencies and concluded that Ethereum is an effective hedging instrument 

against Bitcoin. In another study, Katsiampa (2018a) investigated the volatility dynamics of five 

different cryptocurrencies taking into account asymmetric effects of good and bad news in the 

conditional volatility of digital currencies. She used an asymmetric Diagonal BEKK model for the 

returns, covering the period from August 2015 to February 2018 and found evidence that 

asymmetric effects of positive and negative shocks have a considerable impact on conditional 

variance of Bitcoin, Ethereum, Ripple and Litecoin, whereas conditional volatility of Stellar Lumen 

does not capture asymmetric past shocks (Katsiampa, 2018a). Hultman (2018) investigated the 

effectiveness of the bivariate BEKK(1,1), GARCH(1,1) and the Standard stochastic volatility 

models to predict Bitcoin price returns volatility and concluded that GARCH(1,1) produces the most 

accurate forecast. In his study, he used the data of daily closing prices for Bitcoin and Ethereum (in 

case of bivariate BEKK) during the period from August 2015 to June 2018. 

We intend to extend the existing literature not only by considering a larger dataset, including 

one more year (until April 2019 capturing the price growth and decline experienced during 2017-

2018), but also by employing two multivariate GARCH models (such as a bivariate Diagonal VECH 

and bivariate Diagonal BEKK) for forecasting and accounting for possible correlation between 

Bitcoin and Ethereum. Moreover, we aim to estimate the models under multivariate normal and 

multivariate Student’s t distributions to examine which distribution fits better to the price returns of 

cryptocurrencies.  

 

3. Cryptocurrencies description 

Nowadays, there are 2165 digital currencies present in 17747 markets, however, Bitcoin and 

Ethereum are the largest ones and together represent 62.3% of total market capitalization 

(CoinMarketCap, 2019). Besides, prices of both cryptocurrencies have experienced a rapid growth 

and decline during recent years, and therefore many investors started investing actively in Bitcoin 

and Ethereum (Katsiampa, 2018b). Thus, we pick these two cryptocurrencies for our research. 
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3.1 Bitcoin 

Bitcoin was created in 2008 by an unknown individual or group of people under the 

pseudonym Satoshi Nakamoto as a peer-to-peer electronic cash system which was absolutely 

decentralized and free of any authority (Antonopoulos, 2014). Bitcoin is based on cryptography and 

uses encryption and digital signatures in order to make it protected and secure (Antonopoulos, 

2014). The main difference between Bitcoin and traditional currencies is that Bitcoin is an entirely 

digital currency. It only exists virtually and does not have any physical equivalents like coins or 

banknotes. 

Although current cryptocurrency markets are full of different analogues, Bitcoin is still the 

most demanded digital currency in terms of market capitalization. It is estimated at 89.5 billion US 

dollars which is 52.1% of the total market capitalization (CoinMarketCap, 2019). The current 

number of coins in existence available to public is about 17.6 million, with a fixed total limit in 

circulation of 21 million bitcoins (CoinMarketCap, 2019).  

Trading operations using Bitcoin as a payment rapidly grew in recent years due to increasing 

public and media interest (Katsiampa, 2018a). Bitcoin can be used for different purposes like selling 

and buying goods and services, transferring money to people or companies or exchanging for other 

currencies on specialized markets (Hultman, 2018). On the other hand, Bitcoin users could also 

purchase illegal goods (Baur, Hong & Lee, 2018). According to Foley, Karlsen and Putniņš (2019) 

around 26% of all Bitcoin users and 46% of Bitcoin transactions are connected with prohibited 

activities. Despite the opportunity to finance illegal activities or use it just for regular trading 

purposes, Bitcoin is mainly used for speculation and investment purposes (Katsiampa, 2017; 

Dyhrberg, 2016; Baek & Elbeck, 2015; Blau, 2017).  

Besides, there is no common opinion among researchers regarding the position of Bitcoin on 

the market, whether it is an asset or a currency. Dyhrberg (2016) argues that Bitcoin is very similar 

to both the US dollar and gold, therefore it can be classified somewhere in between a currency and a 

commodity. However, Corbet et al. (2018) investigated the connectedness of cryptocurrencies to 

traditional assets and concluded that there is very low correlation between them and therefore they 

argued that cryptocurrencies establish new investment asset class. According to Katsiampa (2018a) 

Bitcoin has more similarities with financial assets because of its specific properties such as volatility 

(Katsiampa, 2017; Chu et al., 2017), susceptibility to speculative bubbles (Cheah & Fry, 2015), 

heavy-tailed distribution (Chan, Chu, Nadarajah & Osterrieder, 2017; Gkillas & Katsiampa, 2018; 

Phillip, Chan & Peiris, 2018) and leverage effects (Phillip, Chan & Peiris, 2018). More descriptions 
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of Bitcoin can be found in papers of Böhme, Christin, Edelman and Moore (2015), Dwyer (2015) 

and others. 

 

3.2 Ethereum 

Ethereum is a quite new digital currency, which was launched in July 2015, and as well as 

Bitcoin it is based on Blockchain platform (Katsiampa, 2018a). Despite the fact that Ethereum was 

released a few years ago, it has already become the second largest digital coin. It is estimated 

currently at 17.3 billion US dollars which represents 10.2% of the total market capitalization 

(CoinMarketCap, 2019). There are more than 105.6 million coins in circulation which is 

approximately six times higher than the circulating supply of Bitcoin (CoinMarketCap, 2019). 

Moreover, large industrial flagships recently supported and promoted Ethereum through the 

Enterprise Ethereum Alliance foundation (Katsiampa, 2018a). 

 

4. Data 

The dataset for this research consists of daily closing prices in US dollars for Bitcoin and 

Ethereum over the period from 7th August 2015 (as the starting date of trading Ethereum) to 8th 

April 2019. Summarizing, the sample consists of 1341 observations for each cryptocurrency. We 

split our sample in two intervals as shown in Figure 1. The first interval from 7th August 2015 to 8th 

April 2018 is used for in-sample estimation. The second interval from 9th April 2018 to 8th April 

2019 (365 days) is used for out-of-sample forecast evaluation. The data are available online at the 

website CoinMarketCap (2019). 

 

 

 

 

Figure 1. In-sample and out-of-samples intervals. Source: Brooks (2014) 

 

Figure 2 shows the Bitcoin price evolution during the period of study. We can see that the 

prices of Bitcoin rose slowly until the beginning of 2017. Starting from the second quarter of 2017 

there was a rapid growth, which reached the maximum point of 19497.40 US dollars in December 

2017. This fact attracted public attention and increased investment and speculation. In 2018, the 

prices started to decline significantly and nowadays vary around 3000-5000 US dollars. 

7th August 2015 8th April 2018 9th April 2018 8th April 2019 

In-sample estimation interval 
Out-of-sample forecast 

evaluation interval 
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Figure 2. Bitcoin daily closing prices (in US Dollars) 07/08/2015 – 08/04/2019 

 

Figure 3 represents the Ethereum price evolution over the period from 7th August 2015 to 8th 

April 2019. It can be seen that the price of Ethereum were stable until the beginning of 2017. After 

that, they gradually increased over the period from the second quarter of 2017 until the end of 2017. 

Then, from the beginning of 2018 there was a considerable price decrease. 

 

 

Figure 3. Ethereum daily closing prices (in US Dollars) 07/08/2015 – 08/04/2019 

 

To sum up, the prices of both cryptocurrencies tend to have the same behavior and therefore 

could be correlated. This assumption is confirmed by the positive Pearson correlation coefficient 

with a value of 0.8998. 
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In order to make the data appropriate for the further analysis we make them stationary by 

transforming prices of cryptocurrencies into returns. The returns of Bitcoin (𝑖 = 1) and Ethereum 

(𝑖 = 2) are calculated on daily basis as follows: 

 
𝑟𝑖,𝑡 = 𝑙𝑛𝑃𝑖,𝑡 − 𝑙𝑛𝑃𝑖,𝑡−1 = ln (

𝑃𝑖,𝑡

𝑃𝑖,𝑡−1
), (1) 

where 𝑟𝑖,𝑡 is the logarithmic price return of cryptocurrency 𝑖 at time 𝑡, 𝑃𝑖,𝑡 is the observed 

price of cryptocurrency 𝑖 at time 𝑡 and 𝑃𝑖,𝑡−1 is the observed price of cryptocurrency 𝑖 at time 𝑡 − 1. 

Table 1 illustrates the descriptive statistics and the unit root tests for the price returns of the 

two cryptocurrencies. The average daily price returns are positive (0.22% and 0.31%) for both 

Bitcoin and Ethereum respectively with a standard deviation of 3.93% and 7.60%. 

 

Table 1. Descriptive statistics and unit root tests for the Bitcoin and Ethereum daily price returns 

Panel I: Descriptive statistics 

N = 1340 Bitcoin Ethereum 

 Mean 0.0022 0.0031 

 Median 0.0023 -0.0009 

 Maximum 0.2251 0.4123 

 Minimum -0.2075 -1.3021 

 Std. Dev. 0.0393 0.0760 

 Skewness -0.2240 -3.4058 

 Kurtosis 7.9887 69.6112 

 Jarque-Bera 1400.721*** 250325.7*** 

Panel II: Unit root test statistics 

Augmented Dickey-Fuller  -36.4210*** -39.1649*** 

Phillips-Perron  -36.4399*** -38.8461*** 
*** 1% level of significance 

Note: This table in Panel I represents the descriptive statistics for the Bitcoin and Ethereum daily price returns and Jarque-Bera test 
with the null hypothesis that returns are distributed normally. Panel II shows the results of Augmented Dickey-Fuller and Phillips-
Perron tests with null hypothesis of non-stationary data. Both panels cover sample period from 7th August 2015 to 8th April 2019. 

 

The mean and median of Bitcoin price returns are close from each other (0.22% and 0.23% 

respectively). This may suggest that the data have symmetrical distribution, which is consistent with 

the histogram of Bitcoin returns presented in Figure 4. The range is small. Skewness of Bitcoin is 

negative and equals to -0.22 which is close to zero, but kurtosis is higher than 3 and equals to 7.99. 

Therefore, we can assume that the distribution of Bitcoin price returns is not normal and has heavy 

tails. This assumption is proven by the Jarque-Bera test, since p-value equals to 0.00 which is lower 

than any significance level. It means that the null hypothesis that skewness = 0 and kurtosis = 3 is 

rejected. 
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Figure 4. Bitcoin logarithmic price returns distribution histogram 

 

Ethereum has a mean and median that are not close to each other (0.31% and -0.09% 

respectively) which suggest that the data have asymmetrical distribution. Besides, there is a big 

difference between the maximum and minimum value. The distribution of Ethereum price returns is 

right skewed, which is indicated by its skewness = -3.41 < 0. Moreover, the distribution is 

leptokurtic since kurtosis = 69.61 > 3. We can guess that Ethereum price returns are not normally 

distributed and have high kurtosis, which is confirmed by the results of the Jarque-Bera test – null 

hypothesis is rejected as p-value is 0%, lower than any significance level. This is also consistent 

with Ethereum histogram showed in figure 5. 
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Figure 5. Ethereum logarithmic price returns distribution histogram 

To conclude, the price returns of the two cryptocurrencies are leptokurtic because of 

significant excess kurtosis. However, Bitcoin has smaller kurtosis than Etherium. According to 

negatively skewed price returns of both digital currencies, we can make an inference that it is more 

likely to observe large negative returns. Moreover, the Jarque-Bera test results proved the deviation 

from normality. The results of the Augmented Dickey-Fuller and Phillips-Perron unit root tests 

proved that the price returns of both cryptocurrencies are stationary. Thus, the data are appropriate 

for further analysis. 

 

5. Methodology  

The starting point for our analysis is characterization of the price returns according to their 

descriptive statistics. This step was described in details in section 4. Then, in order to check the data 

for stationarity we perform Augmented Dickey-Fuller and Phillips-Perron unit root test. Thus, we 

test price returns of both cryptocurrencies under the null hypothesis of the unit root opposite to 

alternative hypothesis of stationary data. According to obtained results reported in the end of section 

4, we can see that the Bitcoin and Ethereum price returns are stationary.  

Hence, as the main research methods, we employ multivariate GARCH models such as 

bivariate Diagonal VECH and bivariate Diagonal BEKK models to estimate the volatility of Bitcoin 

and Ethereum price returns accounting for correlation between them. We prefer diagonal type of 

models instead of the ordinary VECH and BEKK, because the number of parameters to be estimated 

is lower in diagonal models, this produces better results in the numerical optimization. For example, 

already in the bivariate case we face problems regarding the optimization because there were several 

local optimums, depending on the starting point of the iteration. It becomes more severe the more 

parameters we have. Among other reasons, diagonal models are preferred due to the number of 

parameters. 

Both, diagonal VECH and diagonal BEKK models are regarded as two of the most used 

models for volatility estimations. The main difference between them is that diagonal BEKK ensures 

the positivity of conditional covariance matrix by construction, without any restriction, whereas 

diagonal VECH requires imposing some limitations to parameters. 

In addition, we estimate these models under both the multivariate normal and multivariate 

Student’s t distributions in order to investigate whether models under a distribution that accounts for 

heavy-tailed behavior fits better to the price returns of cryptocurrencies than the models under the 
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normal distribution. Additionally, we try two different equations for the conditional mean, the 

standard constant equation and other which follows an AR(1) process, as a first attempt to dig 

further into this “new” financial instrument.  

Thus, we have two conditional mean equations: 

  𝑟𝑖,𝑡 = 𝜇𝑖 + 𝜂𝑖,𝑡, 𝑖 = 1,2, 𝜂𝑖,𝑡|Ω𝑡−1~𝐷(0, Η𝑡)  (2) 

  𝑟𝑖,𝑡 = 𝜇𝑖 + 𝛾𝑖𝑟𝑖,𝑡−1 + 𝜂𝑖,𝑡, 𝑖 = 1,2, 𝜂𝑖,𝑡|Ω𝑡−1~𝐷(0, Η𝑡) (3) 

Where 𝑟𝑖,𝑡 is the vector of the logarithmic price return of cryptocurrency 𝑖 at time 𝑡, 𝜇𝑖 is a 

vector of parameters that estimates the mean of the price return of cryptocurrency 𝑖, 𝜂𝑖,𝑡 is the vector 

of error terms for 𝑖 at time 𝑡,  with a positive definite conditional covariance matrix 𝐻𝑡 given the 

available information set 𝛺𝑡−1. Thus, the size of all components of the conditional mean equation is 

(Tx1). The third equation is similar to the second one, but it contains an additional variable, 𝑟𝑖,𝑡−1, 

which is the vector of the lagged logarithmic price return of cryptocurrency 𝑖, 𝛾𝑖  is its 

corresponding estimator. 𝐷(0, Η𝑡), can be either a Student’s t or a Normal distribution. 

For the matter of this paper, the sub index 1 refers to Bitcoin, while sub index 2 refers to 

Ethereum. As it is known, when we model the conditional variance of 𝜂𝑖,𝑡, we are estimating the 

conditional variance of the returns. 

 

5.1 Bivariate Diagonal VECH 

One of the most popular multivariate GARCH model is Diagonal VECH introduced by 

Bollerslev, Engle and Wooldridge (1988), it is defined in matrix notation as follows: 

 ℎ𝑡 = 𝐶 + 𝐴П𝑡−1 + 𝐵ℎ𝑡−1 (4) 

where 

ℎ𝑡 = 𝑣𝑒𝑐ℎ(𝐻𝑡), 

П𝑡 = 𝑣𝑒𝑐ℎ(𝜂𝑡𝜂𝑡′), 

𝐶 is an 
(𝑁+1)𝑁

2
× 1 parameter vector and A and B are paremeter matrices of order 

(𝑁+1)𝑁

2
×

(𝑁+1)𝑁

2
. 

According to Bollerslev, Engle and Wooldridge (1988) in Diagonal VECH model both parameter 

matrices A and B should be diagonal, which means that every element of 𝜎𝑖𝑗,𝑡 depends only on its 

own lag and on the previous value of 𝜂𝑖,𝑡−1 and 𝜂𝑗,𝑡−1. Hence, in bivariate case the model is defined 

as: 

 

[

𝜎11,𝑡

𝜎22,𝑡

𝜎12,𝑡

] = [

𝑐1

𝑐2

𝑐3

] + [
𝛼11 0 0
0 𝛼22 0
0 0 𝛼33

] [

𝜂1,𝑡−1
2

𝜂2,𝑡−1
2

𝜂1,𝑡−1𝜂2,𝑡−1

] + [
𝛽11 0 0
0 𝛽22 0
0 0 𝛽33

] [

𝜎11,𝑡−1

𝜎22,𝑡−1

𝜎12,𝑡−1

] (5) 
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This model can also be expressed as a system of equations: 

 

{

𝜎11,𝑡 = 𝑐1 + 𝛼11𝜂1,𝑡−1
2 + 𝛽11𝜎11,𝑡−1

𝜎22,𝑡 = 𝑐2 + 𝛼22𝜂2,𝑡−1
2 + 𝛽22𝜎22,𝑡−1

𝜎12,𝑡 = 𝑐3 + 𝛼33𝜂1,𝑡−1𝜂2,𝑡−1 + 𝛽33𝜎12,𝑡−1

 (6) 

However, Diagonal VECH model needs imposing some limitations to ensure the positivity of 

conditional covariance matrix 𝐻𝑡 which sometimes can be very complicated in practice. In order to 

solve this inconvenient, we can easily impose positivity on 𝐻𝑡 by employing the Diagonal BEKK 

model. 

 

5.2 Bivariate Diagonal BEKK 

Another widely used multivariate GARCH model is the Diagonal BEKK (Engle & Kroner, 

1995), in which the conditional covariance matrix is defined in the following way: 

 Η𝑡 =  ∁′∁ +  Α′𝜂𝑡−1𝜂𝑡−1
′ Α + Β′Η𝑡−1Β (7) 

Where Η𝑡 is a conditional covariance matrix of all the price returns, A and B are square N ×

N matrices and C is an upper triangular matrix of constants. In the Diagonal BEKK model, both 

parameter matrixes A and B are diagonal, and all their off-diagonal elements equal to zero. Thus, in 

the bivariate case we have the following model: 

 𝐻𝑡 = [
𝜎11,𝑡 𝜎12,𝑡

𝜎21,𝑡 𝜎22,𝑡
]

= [
𝑐11 0
𝑐12 𝑐22

] [
𝑐11 𝑐12

0 𝑐22
]

+ [
𝑎11 0
0 𝑎22

] [
𝜂1,𝑡−1

𝜂2,𝑡−1
] [𝜂1,𝑡−1𝜂2,𝑡−1] [

𝑎11 0
0 𝑎22

]

+ [
𝛽11 0
0 𝛽22

] [
𝜎11,𝑡−1 𝜎12,𝑡−1

𝜎21,𝑡−1 𝜎22,𝑡−1
] [

𝛽11 0
0 𝛽22

] 

(8) 

This model can also be written as a system of equations: 

  

{

𝜎11,𝑡 = 𝑐11
2 + 𝛼11

2 𝜂1,𝑡−1
2 + 𝛽11

2 𝜎11,𝑡−1

𝜎22,𝑡 = 𝑐12
2 + 𝑐22

2 + 𝛼22
2 𝜂2,𝑡−1

2 𝛽22
2 𝜎22,𝑡−1

𝜎12,𝑡 = 𝑐11𝑐12 + 𝛼11𝛼22𝜂1,𝑡−1𝜂2,𝑡−1 + 𝛽11𝛽22𝜎12,𝑡−1

 
(9) 

As we can clearly see from the equation, the elements of the covariance matrix are positive 

without imposing any restrictions (because all the relevant coefficients are squared values). 

However, the solutions are not unique, i.e. we can replace positive value with a negative one and 

vice versa. Therefore, Engle and Kroner (1995) restrict 𝛼11, 𝛽11 and diagonal elements of ∁ matrix 
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to be positive. In addition, we keep the restrictions of the stationarity condition. 

Under the normal distribution, the vector 𝜃 of the parameters of the model is estimated by 

maximizing the log-likelihood function: 

 

𝑙𝑛𝐿(𝜃) =  ∑(−
𝑁

2
ln(2𝜋) −

1

2
ln(|Η𝑡|) −

1

2
𝜂𝑡

′ Η𝑡
−1𝜂𝑡)

𝑇

𝑡=1

 (10) 

Under Student’s t distribution with 𝑣 > 2 degrees of freedom, the log-likelihood function is 

defined as follows: 

 

𝑙𝑛𝐿(𝜃) =  ∑(𝑁

𝑇

𝑡=1

ln [
Г (

𝑣 + 1
2 )

√𝜋(𝑣 − 2)Г (
𝑣
2)

] −
1

2
ln(|Η𝑡|) −

𝑣 + 1

2
𝑙𝑛[1 + 𝜂𝑡

′ [(𝑣 − 2)Ht]−1𝜂𝑡] (11) 

The estimation under the multivariate normal and multivariate Student’s t distributions is 

performed using the statistical package Econometric Views (EViews10). 

The time-varying correlation between Bitcoin and Ethereum is defined as: 

 𝜌𝑡 =
𝜎12,𝑡

√𝜎11,𝑡𝜎22,𝑡

 (12) 

Where 𝜎11,𝑡 is the conditional variance of Bitcoin, 𝜎22,𝑡 is the conditional variance of 

Ethereum, 𝜎12,𝑡 is the conditional covariance of both cryptocurrencies. 

We can summarize both models as follows: 

 

{

𝜎11,𝑡 = 𝑐1 + 𝛼1𝜂11,𝑡−1 + 𝛽1𝜎11,𝑡−1

𝜎22,𝑡 = 𝑐2 + 𝛼2𝜂22,𝑡−1 + 𝛽2𝜎22,𝑡−1

𝜎12,𝑡 = 𝑐3 + 𝛼3𝜂12,𝑡−1 + 𝛽3𝜎12,𝑡−1

 (13) 

Where the first term of the equations refers to a constant, the second refers to the error term 

of the conditional mean equation and the third one to the previous value of the variance/covariance. 

 

5.3 Forecast evaluation 

As mentioned before in this paper, forecasting cryptocurrencies volatility is essential for 

suitable investment strategy developing and portfolio construction purposes, therefore, it can help 

cryptocurrency investors to be more aware of their decisions. For forecasting evaluation, we perform 

an out-of-sample approach meaning that we split our sample in two parts. The first part covers the 

period from 7th August 2015 to 8th April 2018 and is used for in-sample estimation. In the second 

part, we keep 365 days (from 9th April 2018 to 8th April 2019) for out-of-sample forecast. In 

addition, we intend to forecast considering 3 different time horizons (1-day, 5-days and 20-days) to 

evaluate the accuracy of the models. 
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5.3.1 Volatility proxy 

In the forecasting stage, we face the problem that the variable of interest 𝜎𝑡
2 (conditional 

variance) is a latent variable, meaning that it is unobservable. To evaluate forecast accuracy, we 

have to compare the forecasted variance 𝜎�̂�
2
 to the latent variance 𝜎𝑡

2. However, this is impossible 

and we should use an unbiased proxy for the latent volatility. A common approach among 

researchers is to use squared daily returns 𝑟𝑡
2 as the proxy for the true variance (Poon & Granger, 

2003). Although squared returns are unbiased, they are an extremely noisy estimator of the latent 

volatility according to Andersen and Bollerslev (1998). To solve this problem, they recommend 

using cumulative squared intraday returns (also known as a realized volatility) as an alternative 

proxy. However, the realized volatility cannot be used as a proxy in our thesis, since we do not have 

access to high frequency data. Thus, the latent variance is proxied by using squared daily returns 

despite of its known flaws, and the covariance by multiplying the returns of each of the currencies:  

 𝜎11,𝑡 = 𝑟1,𝑡
2    ;  𝜎22,𝑡 = 𝑟2,𝑡

2    ;  𝜎12,𝑡 = 𝑟1,𝑡𝑟2,𝑡 

 
(14) 

5.3.2 Loss functions 

There are different approaches to measure forecast accuracy, and the most popular one is the 

loss function. It evaluates the forecast error. The error in is defined as the difference between the 

latent variance and the forecasted variance.  

Thus, let’s define the forecast error at time t with 𝑒𝑡 and the loss function with 𝑓(𝑒𝑡). 

Granger (1999) claims that a loss function should satisfy three properties: 

 𝑓(0) = 0 which means that if there is no error, there will be no loss 

 min 𝑓(𝑒𝑡) = 0 and thus 𝑓(𝑒𝑡) ≥ 0 

 𝑓(𝑒𝑡) is monotonic non-decreasing as the forecast error moves away from zero. 

According to Poon and Granger (2003) the most widely used loss functions include Mean 

Square Error (MSE), Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). Hence, to 

measure the forecast accuracy in this research we employ MSE, MAE and RMSE. 

 

𝑀𝑆𝐸: 𝐿(𝜎𝑡, �̂�𝑡) =  
1

𝑇
∑(𝜎𝑡 − �̂�𝑡)2

𝑇

𝑡=1

 (15) 

 

𝑀𝐴𝐸: 𝐿(𝜎𝑡, �̂�𝑡) =  
1

𝑇
∑|𝜎𝑡 − �̂�𝑡|

𝑇

𝑡=1

 

(16) 
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𝑅𝑀𝑆𝐸: 𝐿(𝜎𝑡 , �̂�𝑡) =  √
∑ (𝜎𝑡 − �̂�𝑡)2𝑇

𝑡=1

𝑇
 

(17) 

Patton (2011) argues that Mean Square Error is a robust loss function regardless the choice 

of proxy for the latent variance. However, Wilhelmsson (2006) claims that Mean Square Error is 

very susceptible to outliers whereas Mean Absolute Error is more robust to outlying values. 

 

6. Empirical results  

As we mentioned before, we want to compare the results obtained assuming a normal 

distribution on the data and assuming another distribution that allows the sample to have fatter tails, 

in this case Student’s t distribution. Besides, we will check if the conditional mean for each one of 

the cryptocurrencies follows a AR(1) process or not. According to this, we estimate 8 different 

models: 4 for Diagonal VECH, and 4 for Diagonal BEKK. Each one of these groups split into 

Normal distribution and Student’s t distribution. Finally, we estimate one following an AR(1) 

process and other that does not. We name them from I to VIII and they are described now: 

 

Table 2. Description of the different models to estimate 

Model 
MGARCH Distribution Cond. Mean Process 

D. BEKK D. VECH Student-t Normal Constant AR(1) 

I X   X   X   

II X   X     X 

III X     X X   

IV X     X   X 

V   X X   X   

VI   X X     X 

VII   X   X X   

VIII   X   X   X 

 

Note: Table 2 presents the convention of each one of the models i.e. Model I is estimated using Diagonal BEKK approach, under 
Student-s distribution and constant conditional mean. Model VII is estimated using Diagonal VECH, under normal distribution and 
with autoregressive conditional mean. 
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6.1 Parameters estimations 

After running the regressions in Eviews we obtain the following results shown in Table 3: 
 
Table 3. Values of the estimated parameters of the employed models 

 

 Level of significance: * = 10%, ** = 5%, *** = 1%  

Note: Table 3 presents the estimated coefficients following the notation of equations 2,3 and 13 for each of the models in Table 2 and 

their corresponding statistical significance. 

 

We can observe from the conditional mean equations coefficients (see equations 2 and 3), 

that using either the Student’s t distribution or the normal distribution, Bitcoin (𝜇1) seems to have a 

long term expected return around 0.27%, statistically significant at 1%, except for model VII when 

it is significant at a 10% of confidence. For Ethereum (𝜇2), the constant in the conditional mean is 

not significant for any of the 8 different models proposed, and that the coefficients of 

autocorrelation (𝛾1 and 𝛾2) have a negative sign with the Student’s t distribution around -1.4% (not 

significant). On the other hand, we found that using a normal distribution the autocorrelation 

coefficient of 1 period is around +7% and significant at 5%. 

For the conditional variance equations, in all the 8 models the coefficients turned out to be 

significant, most of them with a confidence level of 1%; just a few with a different behavior, 𝑐1 

resulted significant at a 5% when assuming a Student’s t distribution (models I, II, V and VI), and 𝑐3 
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not significant for the same models. The interpretation of these coefficients is rather not of much 

interest for the purpose of this paper. However, it is important to remark that all the constant terms 

in 𝜎11, 𝜎22, 𝜎12, despite of their statistical (un)significance, are very close to 0, so the evolution of 

the Variance/Covariance of the currencies is mainly determined by the error term of the conditional 

mean and the previous value of itself. 

Additionally, we would like to remark that all the coefficients of the variance have the 

expected positive values, which was one the reasons to include the Diagonal BEKK model, given 

that it ensures the positivity of the coefficients by construction.   

At the end of the table, there are two additional rows, named Student-t distribution and Log-

likelihood. This first contains the coefficient estimated for the degrees of freedom of the 

distribution. As we can see, it only exists in the 4 models where we consider a Student’s t 

distribution, and the coefficients are statistically significant at 1% and are between 2 and 3. It is 

important to highlight that for having a defined variance the degrees of freedom have to be greater 

than 2, so, in our models we can assure that the variance is well defined. Additionally, as we know, 

the Student’s t distribution tends towards the normal distribution when we consider infinite degrees 

of freedom. Having so small figures (still well defined as mentioned before) leads us to think and 

confirm that our data follows, most likely, a heavy-tailed distribution, but we must show if these 

models are statistically better than the ones when we assume a normal distribution. 

    For this comparison, we use the likelihood ratio test. For the implementation of the test, 

we must have an unrestricted and a restricted model, where we have imposed restrictions to the 

estimators. The null hypothesis of the test states that the restricted model is sufficient to explain the 

dependent variable. It follows asymptotically a Chi-squared distribution with m degrees of freedom, 

where m is the number of restrictions. It is described as follows: 

 𝐿𝑅 =  −2 ∗ (𝐿𝑟 − 𝐿𝑢) (18) 

Where 𝐿𝑟 is the log-likelihood of the restricted model and 𝐿𝑢 is the log-lkelihood of the 

unrestricted model.  

In this paper, the restricted models are the ones that we assume to follow a normal 

distribution, and the unrestricted would be assuming a Student’s t distribution. Likewise, the 

restriction that we impose is that the coefficient of the degrees of freedom is zero, so m=1. We 

compare the models that are identical in all the estimation but using different distribution on the 

sample data. This means that we compare I vs III, II vs IV, V vs VII and VI vs VIII. After the 

calculations, we find that the statistics are 461, 468, 460, and 452 respectively.  According to what 

we mentioned before, the critical value of the Chi-squared distribution with 1 degree of freedom and 
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95% of probability is 3.84, so we can reject the null hypothesis and therefore conclude that the 

models following a t-distribution are statistically better fit for explaining the conditional variance 

with our data. 

 

6.2 Model Fitting 

As it is widely known, the most used GARCH(p,q) model for standard financial instruments 

is the GARCH (1,1) specification (Brooks, 2014),  but according to what we mentioned before, the 

academic literature regarding the cryptocurrencies is not that broad and extensive. So, considering 

the aim of this paper where we want to find the most accurate model for forecasting the conditional 

variance of Bitcoin and Ethereum we ran the models I, II, V and VI with a higher order GARCH:  

GARCH (1,2), GARCH (2,1) and GARCH (2,2) in order to compare them with the GARCH(1,1). It 

is important to highlight that these 4 models are the ones that follow a Student’s t distribution, 

because as we discussed in the previous section, the heavy-tailed distributions models outperformed 

the models with a normal distribution.  

For comparing the different models, we use the Log-Likelihood ratio used before and the 

Information Criteria (IC) to see how adding new variables to the models is punished through the 

overfitting and how the parsimony is affected. We use the Akaike’s (AIC), Schwarz Bayesian’s 

(SBIC) and Hannan-Quinn’s (HQIC). 

First of all, just by checking the IC for each model, we find that we could disregard the 

GARCH(2,1) and GARCH(2,2) specifications as those have a larger coefficient for each one of IC 

considered. Regarding the GARCH(1,2), we find that this could be a better specification for model 

VI (as the 3 IC turned out to be the lower than our reference model), and for model II is not 

completely conclusive, because with 1 (AIC) out of 3 we find a larger figure. For the other two 

models (II and V) GARCH(1,1) has better results. 

 

Table 4. Log-Likelihood Ratio test for fitting models 

Log-Likelihood Ratio Test 

Restricted: GARCH (1,1) I II V VI 

GARCH (1,2) 3.81 4.24 3.81 4.24 

GARCH (2,1) 0.00 0.00 0.00 0.00 

GARCH (2,2) 0.00 0.00 0.00 0.00 
 

Note: Table 4 presents the value of the Log-Likelihood Ratio Test, comparing the GARCH (1,1) specification with the other 3. 
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So far, we do not have statistical evidence that GARCH(1,1) is better than the others, so as a 

second step, we perform the Log-Likelihood ratio test. As expected, the test reflects that we should 

not use GARCH(2,1) and GARCH(2,2) specifications as the Log-Likehood turned to be exactly the 

same than in the GARCH(1,1), therefore we prefer to use the restricted model. At the same time, 

when comparing the GARCH(1,2) for models II and VI we find a statistic of 4.24 and the critical 

value is 3.84 which means that with a probability of 95% we should use this model instead of the 

“restricted” one. Nevertheless, if we start increasing the probability, after 96.06%, we get that we 

should use the restricted model. For the sake of being conservatives, we keep using the 

GARCH(1,1) for all the models. 

We could have contemplated GARCH(p,q) models of higher order than GARCH(2,2); but 

considering that: this is a first approach to the check the specification of the conditional variance, 

and  that we preferred the GARCH(1,1) over the others in most of the cases, it is not likely that we 

could improve the forecasting by introducing more lags on the model. 

 

6.3 Forecast evaluation 

For the forecasting part of our paper, it is important to remark that we are forecasting 3 

different variables, 𝜎11, 𝜎22, 𝜎12 (conditional volatility of Bitcoin, conditional volatility of Ethereum 

and the conditional covariance respectively). Moreover, we forecast considering 3 different time 

horizons (1 day, 5 days and 20 days) and we are comparing 4 different models (I, II, V, VI). 

Additionally, we are considering 3 different loss functions (MSE, MAE and RMSE). Thus, we can 

obtain diverse results, where different models might give the best forecast for each one of our 

variables. 

 

Table 5. The best forecasting model on different loss functions 

MAE   MSE   RMSE 

  σ11 σ22 σ12     σ11 σ22 σ12     σ11 σ22 σ12 

1 day VI II VI   1 day VI II VI   1 day VI II VI 

5 days VI II VI   5 days VI VI VI   5 days VI VI VI 

20 days VI II VI   20 days VI II VI   20 days VI II VI 
 

Note: Table 5 shows the model with the lower loss for each one of the variables, loss function, and horizon. 

 

As we can see from Table 5, the model VI (using diagonal VECH and following an AR(1) 

process) turned to be the best model when we want to model the conditional variance of Bitcoin and 
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the conditional covariance. On the other hand, for the conditional variance of Ethereum we find that 

the most accurate model is the model II (using diagonal BEKK and following an AR(1) process) in 

7 of the different 9 scenarios that we forecasted; in the other two scenarios we obtain better results 

with model VI. 

Considering these results, we would like to point that according to our research the best 

forecasts are obtained when we allow the conditional mean of the returns to be dependent on the 

lagged value of the returns, as these two models outperformed the forecast ability of the constant 

conditional mean equations. 

 

Table 6. Relative performance

 
 

Note: Table 6 presents relative performance of the 4 models estimated under Student-t distribution. The loss has been scaled by 100, 

in order to present easier figures to the read. The best model is normalized to be 0, as the minimum value is subtracted in each part.   

 

The results of the loss functions are somehow relative to each case, and they have their own 

drawbacks. For instance, when we use the MSE we elevate the returns to the power of 4, so it could 

be very noisy with the outliers. Additionally, MAE is a linear loss function that weighs all the 

differences equally, whereas the RSME is a quadratic function and weighs heavily the higher 

differences.  In Table 6, the relative performance of the models is presented. It is obtained by 

subtracting the loss value of the best model to the other models; thus, the best model has a value of 

0. It is possible to see that in most of cases the difference among the models is not very large, at 

least when using the loss functions described in section 6.2, which can be seen as a positive result. 

We tried to use the Heteroscedasticity adjusted-MAE (HMAE) to control for the heteroscedasticity 

(Andersen, Bollerslev & Lange, 1999), but as we do not count with high frequency data for the 
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Realized Volatility the values of these calculations tend to be really close to zero, and then the loss 

function calculation explodes and we got unnormal results. The HMAE is defined as follows: 

 

𝐻𝑀𝐴𝐸: 𝐿(𝜎𝑡, �̂�𝑡) =  
1

𝑇
∑ |1 −

𝜎�̂�

𝜎𝑡

|

𝑇

𝑡=1

 

 

(19) 

We depict the forecast of the conditional variables and the realized value of each variable in 

the Figures 6, 7, and 8. It can be seen that the forecast of the 1-day horizon has a poor performance, 

since the estimated value does not capture the big changes in the realized variable. On the 5-days 

horizon, we get better results as the calculated variable follows the real value in a more accurate 

way. Finally, for the 20-days horizon the forecast takes larger values than the proxied value.  

 

 
Figure 6. Realized Volatility and Forecasted Conditional Variance of Bitcoin for 1, 5, and 20 days 

using the specification of model VI 

 



28 

 
Figure 7. Realized Volatility and Forecasted Conditional Variance of Ethereum for 1, 5, and 20 days 

using the specification of model II 

 

 
 

Figure 8. Realized Covariance and Forecasted Conditional Covariance of Bitcoin and Ethereum for 

1, 5, and 20 days using the specification of model VI 
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Figure 9. Conditional Correlation by time horizon 

 
The Conditional Correlation is positive for the forecasted period, and we can confirm our 

hypothesis that the relation between the two variables is time varying, so it is better to treat them 

with this approach, than just assuming a constant value for them. Additionally, the correlation 

declines during high volatility periods, as in November of 2018; despite the fact that the covariance 

increases, the volatility grows in a larger magnitude. 

 
 

7. Conclusions 

 

One of the main aims of this paper was to test if the cryptocurrencies follow the known 

behavior of financial instruments on the distribution of their returns, i.e. if they have the feature of 

fatter tails. For this, we ran and compared the models assuming a normal distribution and a 

Student’s t distribution, and identified heavy tails in the data as the models had between 2 and 3 

degrees of freedom. Using the Log-Likelihood ratio test, we determined that we should use this 

approach since we got extreme values for the statistic. In this way, our findings are consistent with 

the outcome of Katsiampa (2018b), even though she employs only a Diagonal BEKK model, and we 

found a better estimate with model VI. Nevertheless, our daily conditional correlation ranges from 

0,24 to 0,92; therefore, the latter results differ from the findings of Katsiampa (2018b) since she 

concludes that Ethereum can be used as a hedging instrument for the Bitcoin. 

Overall, we find that the best model for forecasting the conditional variance using our two 

multivariate models is the Model VI, where we performed the estimation allowing our data to have 

fatter tails (since we used the Student’s t distribution), and used the Diagonal VECH approach. It 
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has the larger estimator of the degrees of freedom (2.77). We would like to highlight that it is the 

second-best model in the cases where it was not the best. Additionally, the shocks of the conditional 

forecast and covariance turned out to be statistically significant and persistent over time. 

As the latter figures exhibit, the horizon of 5 days manages to produce the more similar 

forecast compared to the Realized Variables; as the 1-day horizon can be seen as high frequency 

data for the 5-days horizon. The daily forecast fails to reproduce the “real” value in times of high 

volatility, as we only count on close prices. 

We are aware that one potential drawback in our paper is the lack of high frequency data for 

cryptocurrencies prices. As it was stated in section 6.1 for estimating the Realized Volatility, 

intradaily data should be collected and compared with the forecast of the conditional variance that 

we estimated to get more accurate results. This was the main reason why we could not use the 

HMAE in as a loss function for comparing models. A further research on the topic could be 

performed using high frequency data, as it fits better the real volatility of instruments. 
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