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1 Introduction

The number π is defined as the relationship between the circle’s circumference and its
diameter and it has been of great interest amongst many mathematicians throughout time.
The number π is an irrational number, which means that π can not be written as a ratio
of integers, and there are different proofs showing that this indeed is the case. However,
the proofs are rather complicated and this is the reason why the first proof that π is an
irrational number was not established until 1770 by Johann Heinrich Lambert.

Many mathematicians proved different formulas to obtain an approximation of π, how-
ever, an important difference between the formulas is how much effort it requires to compute
π to a certain accuracy. One way of approximating π is to use infinite series, that is, the
sum of the terms of an infinite sequence. The infinite series did not really start to play
a role within mathematics until the second part of the 17th century [16]. Some renowned
mathematicians that have calculated π with this mathematical tool are James Gregory and
Gottfried Wilhelm Leibniz, as well as John Machin. A Japanese Google employee, Emma
Haruka Iwao, has recently calculated π to 31.4 trillion digits using Google’s cloud-based
compute engine. This approximation is the one with most digits ever calculated.

This thesis will introduce some history of π as well as different methods to calculate
its digits. Also, in particular, study the Gregory–Leibniz formula, Machin’s formula and
Machin-like formulas, and the convergence rate of their respective approximations of π.

2 History

The history of π goes back a long way in history, starting already in the ancient Egypt around
1650 before Christ (B.C.). Mathematicians in Greece, China and Medieval Arabo–European
countries have over the years also contributed to the development of this fascinating number.

2.1 – 500 Anno Domini

The number π can be traced back all the way to the ancient Egypt. The main source of our
knowledge of historic calculations of π comes from ancient Egypt and the so called Rhind
Mathematical Papyrus from the Middle Kingdom of Egypt which was found in 1858 but
has been dated back to 1650 B.C. The papyrus contains a collection of 85 mathematical
problems. Solutions to these problems have also been found and the solutions were written
down by a man called Ahmes, who also is known as “the earliest known contributor to the
field of mathematics” [2, p.9]. One of these problems, number 50, includes calculating the
area of a circle, shown in the two figures below.
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Figure 1: A part of the original Rhind
Mathematical Papyrus [13].

Figure 2: Problem 50, written out fair, of the
Rhind Papyrus, which gives rise to an approx-
imation of π [14].

Today the translation of problem 50, figure (2), is: Example of a round field of diameter
9 khet. What is its area? According to Ahmes, the answer was 64 setat [3, p.1]. Khet is a
length measurement and a setat is a measurement of area, (khet)2 . The units are very old
and not used today.

The method for calculating this problem was according to the rule: shorten the diameter
of the circle by one ninth to get the side of a square [3, p.3]. This can be written in formulas
as

πr2 = π(d2)2 ≈ (8d
9 )2.

The approximation of π using the modern formula for the area of a circle would then be as
follows

π(d2)2 = A⇒ π ≈ (2
9)2 · 64 ≈ 3.1605

where d is the diameter and A the area of the circle. The error is small, since π ≈ 3.1416
for the first four decimals, so the Egyptians calculated areas of circles with a rather good
accuracy for being back in 1650 B.C. It is however worth mentioning that this small error
in π might have a large impact on calculations [3, p.3]. For example calculating a circle
of radius 50 meters gives, with nine correct decimals, an area of approximately 7854 m2,
meanwhile, with π as Ahmes calculated the same calculations for this circle gives 7901 m2.
The difference is almost 50 m2 and this is a rather large error when building for instance a
tower.

An even better approximation of π was made by the mathematician Archimedes around
200 B.C. His approach was to draw a regular hexagon inscribed in a circle and another
circumscribed, then, simultaneously doubling the number of sides of the polygons and count
the sides of each of the two at each step of doubling. The goal was to eventually have the
polygons sides being so short that they almost coincide with the circle. This method is
known as the principle of exhaustion [3, p.7–14].
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Figure 3: In– and circumscribed circle. From the left; hexagon (inscribed in green and
circumscribed in blue) and a doubled hexagon, dodecagon. This shows the idea of the
principle of exhaustion.

As the number of sides increase, the approximation of the circle becomes more accurate.
After doubling the regular hexagons four times each there were 96 sides in each polygon
and Archimedes could determine an interval containing π by calculating the area of the
inscribed and circumscribed polygon [3, p.14]. Since the decimal number system was not
established yet the interval was written as

310
71 < π < 31

7

and is read as 3.1408 < π < 3.1429. By using geometry, Archimedes approximated π to be
somewhere between 3.1408 and 3.1416, which is a rather good approximation compared to
the real value of π ≈ 3.1416.

In ancient Asia, there were also mathematicians working to achieve an approximation
of π. Amongst these there are two men that stand out prominently: Liu Hui in the 3rd
century and Zu Chongzhi in the 5th century. Liu Hui first discussed why the ratio of the
circumference of the diameter was generally taken as 3 and later derived a more precise value
of π. The work is similar to that of Archimedes, but instead of using both an inscribed
and a circumscribed hexagon, Liu Hui only used one hexagon inscribed in the circle. Also,
Hui adopted the decimal number system to his calculations to make the answer look more
elegant. The decimal number system was developed in China but only worked for five
decimals (starting from 10−1 they were called; fen, li, hao, miao and hu) and from the sixth
decimal the digits were represented by fractions. Liu Hui increased the number of sides of
the polygons more than Archimedes and in contrast to Archimedes, Hui did not encapsulate
π in an interval but gave one precise number [3, p.22]. By comparing the circle’s diameter
with its circumference Liu Hui approximated π to 3927

1250 = 3.1416 [3, p.31].
Later, Zu Chongzhi adapted Liu Hui’s method and improved the calculations for π

even more. The achieved ratio was 355
113 ≈ 3.1415929 where only the last decimal is wrong.

This result or approximation was not improved in almost 1,000 years until the Indian
mathematician Madhava of Sangamagrama (ca.1350–1425) calculated π with 11 correct
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decimals. Eventually, the Persian mathematician and astronomer Ghiyath al–Kashi (1380–
1429) calculated π to 16 correct decimals [3, p.24].

2.2 1500 – 1800 Anno Domini

Not until the end of the 16th century the method of calculating π changed. It was the
French solicitor and amateur mathematician, Françoise Viète, who first introduced the in-
finite product in 1579. The same basic method as Archimedes had presented was used,
namely, the principle of exhaustion. However, the polygons had 393216 sides and the calcu-
lations were described as an infinite product. In his book, “Variorum de rebus mathematicis
responsorum, liber V III” [18] the polygons were represented by triangles. By dividing the
polygon into triangles, Viète could observe a relationship between the circumference of a
polygon of n sides and another polygon with 2n sides and this relationship was cos θ [2,
p.32]. His infinite product was obtained by using this relationship and in Section 2.4.1,
the proof for this formula is performed using trigonometric identities. The formula Viète
achived was

2
π

= lim
n→∞

N∏
n=1

an
2 =

√
1
2 ·

√
1
2 + 1

2 ·
√

1
2 ·

√√√√1
2 + 1

2 ·

√
1
2 + 1

2 ·
√

1
2 · . . .

where an =
√

2 + an−1 and a1 =
√

2.
For Viète, the formula was not very convenient since it demands many iterations over

n to obtain just a few correct decimals. However, this discovery of the infinite product was
an important step for future mathematics [2, p.33].

In 1649, John Wallis presented a different infinite product obtained by using analytic
calculus, equation (1). This mathematical formula became very important for the later
so-called integral calculus [2, p.40]. In contrast to Viète’s formula this one did not contain
any square roots and therefore it was easier to handle than Viète’s, however, it was still not
feasible to calculate π this way since many terms had to be used in order to obtain just a
few correct digits of π [3, p.68–77]. The formula that Wallis presented was

π

2 =
∞∏
n=1

( 2n
2n− 1 ·

2n
2n+ 1

)
= 2

1 ·
2
3 ·

4
3 ·

4
5 · . . . (1)

and its proof follows in Section 4.2.2. Something that is rather interesting with this product
is its pattern: the first term is larger than π, the second is smaller and then the third is
larger again and then this continues.

Later, a series for π
4 was obtained independently by Gottfried Wilhelm Leibniz (1646–

1716), James Gregory (1638–1675) and an Indian mathematician whose identity is unknown
but usually ascribed to Nikalantha. The formula obtained is the arctan series and is named
after Leibniz and Gregory, Gregory–Leibniz formula, equation (2). The arctan series was
obtained in different ways by each of these mathematicians but none of them used the
principle of exhaustion since π was not the actual number that they tried to calculate.
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The Gregory–Leibniz series has had a great impact on future mathematics since many
mathematicians worked out other formulas due to the arctan series [3, p.92].

π

4 =
∞∑
n=0

(−1)n 1
2n+ 1 = 1− 1

3 + 1
5 + . . . (2)

In 1706 the mathematician John Machin improved the approximation of π by expressing
the difference between two arctangents as

π

4 = 4 arctan 1
5 − arctan 1

239 . (3)

In 1706, a mathematician named William Jones published his work and used the Greek
symbol π for the first time to represent the number. This symbol was chosen because it is
the first letter in the Greek word for circumference, περιµετρoσ (read as perimetros). The
mathematician Leonard Euler used the symbol π in his work and it was after this that the
symbol π became more frequently used to describe the number [2, p.77].

Later, in 1750 the number π had been expressed by infinite series, infinite products
as well as infinite continued fractions. In 1766–1767 Johann Heinrich Lambert proved the
irrationality of π, which means that the number can not be expressed as a fraction and the
decimal expansion is not periodic and nor does it terminate [3, p.141]. The idea was first
to prove that the continued fraction expression

tan(x) =
x

1−
x2

3−
x2

5−
x2

...
holds. Then he showed, using the argument of infinite descent, that if x 6= 0 is rational
then the right hand side in his formula is irrational. Since tan π

4 = 1 is rational this implies
that π is irrational [10]. This proof is rather complicated but later in 1974 a different proof
was presented by the number theorist Ivan Niven which is referred to as a “simple” proof,
however, it is still very technical. Worth mentioning is that, more proofs showing that π is
irrational exists but is not discussed in this paper.

2.3 1800 – Anno Domini

An English man called William Shanks lived between 1812 and 1882 in a small village close
to the Scottish border. He was particularly interested in mathematical constants, and his
most ambitious project was a record-setting computation of π to 707 decimal places. It took
Shanks almost 20 years to compute, by hand, the digits to π and he published his results
in 1873. The computation was made using Machin’s formula, equation (3). Unfortunately,
in 1944 Shanks approximation was proved wrong by F. D. Ferguson, who discovered that
only the first 527 decimal places were right. Ferguson found this error by using the formula
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π

4 = 3 arctan 1
4 + arctan 1

20 + arctan 1
1935

and making a computation using a calculator, then comparing his result with the one from
Shanks [9].

Moreover, in 1882, the original proof of the transcendency of π was published by Ferdi-
nand von Lindemann. That is, π is not a solution to any polynomial equation with rational
coefficients. This proof has been simplified by other mathematicians such as Weierstrass,
Hilbert, Gordon and many more [11, p.169].

Around the 1950’s and onwards computers have been used to calculate π with iterative
algorithms. A Japanese Google employee, Emma Haruka Iwao, has recently calculated π to
31.4 trillion digits using Google’s cloud-based compute engine [15]. This approximation is
the one with most digits ever calculated and mathematicians are still working on algorithms
to achieve even better approximations.

Worth mentioning is that this many digits are not used for any calculations today. For
example, the radius of the visible universe is about 46 billion light years. To calculate
the circumference of a circle with this radius with an accuracy equal to the diameter of
a hydrogen atom, which is approximately 1.06 · 10−10 m, one will need 39 or at most 40
decimal places for π [8].

2.4 Proofs

2.4.1 Viète’s formula

2
π

= lim
n→∞

N∏
n=1

an
2 =

√
1
2 ·

√
1
2 + 1

2 ·
√

1
2 ·

√√√√1
2 + 1

2 ·

√
1
2 + 1

2 ·
√

1
2 · . . .

Viète’s formula can be proved using the trigonometric identities sin θ = 2 cos θ2 sin θ
2 and

cos θ2 =
√

cos(θ+1)
2 . First, these two trigonometric formulas will be proved and after that the

proof of Viète’s formula will follow.

Theorem 1. Double angle formula for sine

sin 2θ = 2 cos θ sin θ

for all θ.

Proof. Using the sum-formula sin(θ + β) = sin θ cosβ + cos θ sin β. Now, set β = θ then

sin(θ + θ) = sin θ cos θ + cos θ sin θ = 2 cos θ sin θ.
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Theorem 2. Half-angle formula for cosine

cos θ2 =

√
cos θ + 1

2

when −π ≤ θ ≤ π.

Proof. From the unit circle it is known that 1 = sin2 θ + cos2 θ, also, the double angle
formula for cosine is cos 2θ = cos2 θ − sin2 θ (proven in a similar way as for sine above).
Now, using these equations results in

cos 2θ = cos2 θ − (1− cos2 θ) = 2 cos2 θ − 1⇔ 2 cos2 θ = cos 2θ + 1

and replacing θ by θ
2 gives

cos2 θ

2 = 1
2(cos θ + 1)⇒ cos θ2 = ±

√
cos θ + 1

2
for θ 6= πn, where n is an odd integer.

Proof. Now, the proof of Viète’s formula will follow using the double angle formula for sine
with three different θ, starting with θ and θ

2 ,

sin θ = 2 cos θ2 sin θ2 (4)

sin θ2 = 2 cos θ4 sin θ4 . (5)

Now, substituting sin( θ2) with equation (5) gives

sin θ = 2 cos θ2
(
2 cos θ4 sin θ4

)
. (6)

By substituting θ in equation (4) with θ
4 gives

sin θ4 = 2 cos θ8 sin θ8
and finally, using this result in (6) gives

sin θ = 2 cos θ2
(
2 cos θ4

(
2 cos θ8 sin θ8

))
. (7)

Referring to equation (4) as n = 1, (6) as n = 2 and (7) as n = 3 and expand for even more
n this can be written as a product

sin θ = 2n · cos θ2 · cos θ4 · · · cos θ

2n · sin
θ

2n
and dividing this expression by θ results in
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sin θ
θ

= 2n

θ
· cos θ2 · cos θ4 · · · cos θ

2n · sin
θ

2n
also known as the normalized sincθ function given by the Fourier transform from the rect-
angle function. Re-writing 2n

θ as 1
2n
θ

we get

sin θ
θ

= cos θ2 · cos θ4 · · · cos θ

2n ·
sin θ/2n

θ/2n . (8)

Taking the limit on sin(θ/2n)
(θ/2n) as n→∞ results in

lim
n→∞

sin(θ/2n)
(θ/2n) = 1

where the known limit limx→∞
sinx
x = 1 was used.

Now, for large n it can be concluded that equation (8) can be approximated as

lim
n→∞

sin θ
θ

= lim
n→∞

cos θ2 · cos θ4 · · · cos θ

2n
To get Viète’s formula θ is substituted to θ = π

2 .

lim
n→∞

sin(π/2)
(π/2) = 1

(π/2) = lim
n→∞

cos π4 · cos π8 · · · cos π

2 · 2n

Finally, using the formula for half angle of cosine in the equation above gives

2
π

=
√

1
2 ·

√
1
2 + 1

2 ·
√

1
2 ·

√√√√1
2 + 1

2 ·

√
1
2 + 1

2 ·
√

1
2 · · ·

and Viète’s formula is proven.

2.4.2 Wallis’s formula
π

2 =
∞∏
n=1

( 2n
2n− 1 ·

2n
2n+ 1

)
= 2

1 ·
2
3 ·

4
3 ·

4
5 · · ·

Proof. The integral

In =
∫ π

0
sinn x dx (9)

can be re-written as ∫ π

0
sinn x dx =

∫ π

0
sin(n−1) x · sin x dx

and applying integration by parts results in
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∫ π

0
sin(n−1) x · sin x dx =

[
− sin(n−1) x · cosx

]π
0

+
∫ π

0
(n− 1) cos2 x · sin(n−2) x dx.

Using the trigonometric identity 1 = cos2 x+sin2 x then cos2 x can be expressed as 1−sin2 x.
Now integral (9) can be written as∫ π

0
sinn x dx = 0 +

∫ π

0
(n− 1)(1− sin2 x) sin(n−2) x dx

and finally ∫ π

0
sinn x dx = n− 1

n

∫ π

0
sin(n−2) x dx. (10)

This yields that In can be written as

In = n− 1
n

In−2 (11)

where I0 = π and I1 = 2. Now, the even and odd subscripts are separated as

I2n = 2n− 1
2n I2n−2 = 2n− 1

2n · 2n− 3
2n− 2I2n−4

= 2n− 1
2n · 2n− 3

2n− 2 · · · I0

= 2n− 1
2n · 2n− 3

2n− 2 · · ·π = π
k∏

n=1

2n− 1
2n

(12)

and

I2n+1 = 2n
2n+ 1I2n−1 = 2n

2n+ 1 ·
2n− 2
2n− 1I2n−3

= 2n
2n+ 1 ·

2n− 2
2n− 1 · · · I1

= 2n
2n+ 1 ·

2n− 2
2n− 1 · · · 2 = 2

k∏
n=1

2n
2n+ 1

(13)

where step before the step in both equations are obtained from the definition of I0 and I1.
For x in the interval [0, π] we have that 0 ≤ sin x ≤ 1 and

0 ≤ sin(2n+2) x ≤ sin(2n+1) x ≤ sin2n x

which gives

0 <
∫ π

0
sin(2n+2) dx ≤

∫ π

0
sin(2n+1) x dx ≤

∫ π

0
sin2n x dx

10



and re-writing this in terms of In

0 < I2n+2 ≤ I2n+1 ≤ I2n.

Using equation (11) we have

I2n+2
I2n

= 2n+ 1
2n+ 2 (14)

and the inequality (14) can now be re-written as

2n+ 1
2n+ 2 ≤

I2n+1
I2n

≤ 1. (15)

Moreover, taking the limit as n→∞ one gets

I2n+1
I2n

→ 1

which is equivalent to

lim
n→∞

I2n
I2n+1

→ 1.

Finally, by using equation (11) and (12)

lim
n→∞

I2n
I2n+1

=
∞∏
n=1

(2n− 1
2n · 2n+ 1

2n
)

= 1

and taking the recipricol

π

2 =
∞∏
n=1

( 2n
2n− 1 ·

2n
2n+ 1

)
which is Wallis product formula.

2.4.3 Irrationality of π

This is a proof by contradiction based on the proof given by Ivan Niven in 1974 where
the main idea is to state two properties, prove them both and finally conclude that they
contradict each other [3, p.276]. In addition to Niven’s proof there are some extra calcula-
tions, verifications and arguments added to give the reader a better understanding. Step 1
together with 2 proves Property 1, meanwhile, Step 3 together with 4 proves Property 2.
The proof below will show that these two properties contradicts each other.

Proof. First, assume that π is a rational number π = a
b where a and b are integers and

b > 0. For a positive integer n, which is specified later, we define the polynomial f(x) based
on a and b as

11



f(x) = xn(a− bx)n

n! . (16)

Also, F (x) is defined with even order derivatives of f(x) and alternating sign as

F (x) = f(x)− f (2)(x) + f (4)(x) + · · ·+ (−1)nf (2n)(x). (17)

Property 1. The integral ∫ π

0
f(x) sin x dx

is always an integer.
Step 1. It follows from the binomial theorem that n!f(x) is a polynomial with integer
coefficients and n ≤ deg(x) ≤ 2n. Clearly, f (k)(0) = 0 for 0 ≤ k ≤ n (as well as for k > 2n)
and if n ≤ k ≤ 2n, by the binomial theorem we have

f (k)(0) = k! p
n!

for any integer p, so f (k) = 0 is an integer for each k. This means that f(x) and f (j)(x) has
integer values at x = 0, which is also the case when x = a

b = π, since

f(a/b− x) = (a/b− x)n(a− b(a/b− x))n

n!

= (a/b− x)n(a− a+ bx))n

n! = xn(a− bx)n

n! = f(x)

where f(x) is the same as equation (16). It can be concluded that the corresponding
function f(x) and its derivative have integer values for both x = 0 and x = a

b .
Step 2. From elementary calculus we have

d

dx
(F ′(x) sin x− F (x) cosx) = F ′′(x) sin x+ F ′ cosx− F ′(x) cosx+ F sin x

= F ′′(x) sin x+ F (x) sin x
= (F ′′(x) + F (x)) sin x = f(x) sin x

where the last step is achieved by taking the derivative of equation (17) two times and then
add F (x), eventually, what is left is f(x). We have now computed one anti-derivative of
f(x) sin x and the next step is to take the integral over [0, π].

∫ π

0
f(x) sin x dx =

[
F ′(x) sin x− F (x) cosx

]π
0 = F (π) + F (0) = F (a

b
) + F (0)

Now, we know that this integral always have to be an integer by Step 1 so Property 1 has
been established.
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Property 2.
0 < f(x) sin x < πnan

n!
where πnan

n! → 0 as n→∞.
Step 3. It can be seen that 0 < f(x) sin x since in the interval 0 < x < π it follows that
0 < sin x. Moreover, studying equation (16) it can be seen that for 0 < x < π all values
are greater than 0. Multiplying two positive functions gives a positive function and so the
lower bound is proved.

Further, in the interval 0 < x < π the function sin x ≤ 1 and for f(π) we obtain

f(x) = xn(a− bx)n

n! <
πnan

n!
since xn is growing and is at its largest πn, also, (a − bx)n is positive and decreasing as x
grows, which gives (a− bx)n < an. Multiplying these two positive function does not change
the sign so the upper bound is proved. This means that Property 2 holds.
Step 4. In this step we will integrate

∫ π

0
0 dx <

∫ π

0
f(x) sin x dx <

∫ π

0

πnan

n! dx ⇔ 0 <
∫ π

0
f(x) sin x dx < πn+1an

n! (18)

and consider the Taylor series expansion

πeπa = π + π2a

1! + π3a2

2! + π4a3

3! + · · · =
∞∑
n=0

πn+1an

n! .

Since πeπa is a convergent series, tends to a limit, the terms must tend to 0 as n gets large.
This implies that the right hand side in equation (18) tends to 0 as n→∞.

To summarize, Property 2 states that the integral will be between 0 and 1 for sufficiently
large n, meanwhile, Property 1 states that the integral is always an integer. These two
properties contradicts each other and therefore it can be concluded that our premise was
wrong and π is an irrational number.

3 Mathematical background

3.1 Precision and accuracy

When approximating a number, it is not certain that the approximated number is correct
and there are different descriptive phrases commonly used depending on what is referred to.
For instance, to describe the correctness of the digits in any number one is usually referring
to the precision, amount of digits, and accuracy, correctness of digits. The error may occur
for a variety of reasons, for example truncation, rounding or inherited errors [5, p.56].
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Example. π ≈ 3.1416.

π ≈ 2.984327654 (19)
π ≈ 3 (20)
π ≈ 3.14160 (21)
π ≈ 3.1416 (22)
π ≈ 3.1415927 (23)

Of the five statements above (19) is the most precise but least accurate, (20) is not very
precise but it is accurate, (21) is more precise than (22) but the last digit in (21) is not
accurate and finally (23) is accurate in all digits given.

3.2 Convergence of series

In mathematics, and especially when working with finite or infinite series, convergence is
fundamental. In order to study convergence you will have to look at the first N terms of
the expansion, the partial sum, and observe any changes in the limit as N →∞ [7].
Definition. An infinite series, with a sequence of real numbers a1, a2, a3, . . . is defined as

∑
n≥1

an = lim
x→∞

N∑
n=1

an.

If the limit exists in IR then the infinite series is convergent. On the other hand, if the
limit does not exist the series is called divergent.

An infinite series can be split up in its partial sum SN , and the error RN , as

S =
∞∑
n=1

an = SN +RN

and it is the error that is related to the correctness of the approximated digits [6, p.3].
A series can converge slowly or more rapidly. Generally, a more rapid convergence is

desired since the amount of computation needed to calculate the approximated number
to any given accuracy is reduced. When reference is made to a more rapid convergence,
such reference means that fewer terms are required to approximate the series with a good
accuracy. In other words, the partial sum SN settles down [6, p.1].

For different N (number of terms included in the partial sum) the approximation of the
series can be determined to be in an interval

SN ±R∗N =
{
SN −R∗N
SN +R∗N .

(24)

where R∗N is an upper bound for |RN |, also called the absolute error.
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However, there is nothing that says that the calculated partial sum obtained to calculate
the interval above is the correct one and this problem may occur due to rounding, which
will be discussed in the next section [11, p.59].

Instead, the estimated error R∗N is studied to determine the accuracy of the approx-
imated number. This error can be estimated with different methods, for instance, with
integrals. The estimated error gives information about the accuracy of the approximated
digits in the partial sum SN by showing which digit that is affected. When referring to t
correct decimals one means that

|S − SN | ≤ 0.5 · 10−t

and all digits in position with units ≥ 10−t is said to be significant digits.
Example.

a = 1.414
R∗ = 0.22 · 10−3

1.41378 ≤ a ≤ 1.41422

The error is ≤ 0.22 · 10−3 ≤ 0.5 · 10−3 and t = 3 which means that there are three correct
decimals.
Example.

a = 1.414
R∗ = 0.77 · 10−3

1.41323 ≤ a ≤ 1.41477

The error is ≤ 0.77 · 10−3 ≤ 0.5 · 10−2 so there are two correct decimals.

3.3 Rounding

When working with a large number of decimals it is necessary to use rounding. That is,
making the number more simple with less digits than available but still keeping it close to
its actual value. Rounding is an efficient tool when working with numbers that have many
digits but only needs a simple representation of it, in other words, fewer digits. However,
rounding can also be a problem when one wants the correct representation and the rounding
is done even though it is not wanted.

Rounding almost always occurs when calculating with computer programs, since by
rounding the storage space in the computer can be used in a more efficient way. When
an infinite series is approximated with a finite number of terms the rounding error has an
impact on the approximation. This impact will be greater as the number of terms increases.
Here, the rounding error is the difference between the actual result from a given algorithm
and the result given from the same algorithm using a finite number of terms.
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The round-off error appears because computers use float point numbers, finite and dis-
crete, instead of real numbers, infinite and continuous. Floating point numbers are used
in computers to store and represent real numbers. Depending if the computer has 32 or
64 bits, which are the most common, the amount of numbers which the computer can cor-
rectly represent differs. The number of bits are referred to as the computers word length
and limits the computer in how many digits it can represent. The components to represent
real numbers are the sign, exponents and the mantissa, see figure (4).

Figure 4: 32 bit number, IEEE Floating-Point Standard.

Moreover, when adding a very small number to a very large this would make the final
sum to be shifted just a little bit on the number line for real numbers. However, this is not
the case for the computer. Since the computer represents digits in R with floating point
numbers this number line has gaps, see figure (5). Considering the first part of any partial
sum,

∑N−n
i=1 ai, and adding a small number from the remaining part,

∑N
i=n ai, instead of

shifting just a little bit on the number line the computer rounds off and stays where it
already is and this leads to a cancellation error. Computers are working with a restricted
number of binary significant digits. It is constantly rounding and making trade-off between
size and precision.

Figure 5: Real number line, infinite and continuous, versus floating point numbers, finite
and discrete [4].

If the last values are very small in comparison to the first ones then the last ones
might not have any impact on the approximation and therefore be left out, however, this
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last sequence might actually have an impact on the approximation. The propagation of the
error will affect the approximation in such way that it is less accurate. One way to minimize
the round-off error is, if N is known, to estimate the series backwards [4, p.20–33]. The
forward and backwards estimations can be written as

Sforward = x1 + x2 + · · ·+ xN−1 + xN

Sbackwards = xN + xN−1 + · · ·+ x2 + x1

where the result of computing backwards is that the “tail” of decimals, which did not have
any effect on the rounded number before, may have a greater impact now since they have
been added up.
Example. Calculations of the harmonic series

SN =
N∑
n

1
n

for N = 107 Matlab gives:

Sforward =
N∑
1

1
n

= 16.695311365857272

Sbackwards =
1∑
N

1
n

= 16.695311365859965

and it can be seen that the four last decimals are different which means that there is a
rounding error. Also, worth mentioning is that when computing the harmonic series using
fixed precision it looks like it is convergent but this is not the case. The wrong assumption
is due to float number representation and word length in the computer. In this thesis the
partial sum, SN , may differ depending on the number of terms included and also what
formula that has been used. Some formulas are more sensitive to rounding and as a result
SN will differ.

One can conclude that to determine the correctness of an approximation it is impor-
tant to have knowledge about different types of uncertainties such as precision, accuracy,
error, sources and propagation of uncertainties. In this thesis, if nothing else is stated,
approximations of series will mainly be calculated forward.

4 Gregory–Leibniz formula

π

4 = 1− 1
3 + 1

5 + · · · =
∞∑
n=0

(−1)n 1
2n+ 1 (25)

17



4.1 History

As mentioned in Section 2.2, the arctan formula was obtained independently in around
1670 by Gottfried Wilhelm Leibniz (1646–1716), James Gregory (1638–1675) and an Indian
mathematician (ascribed to Nikalantha) [3, p.92].

Leibniz earned a doctor’s degree in law in February 1667 but studied mathematics as a
side project. In 1672, Leibniz visited the prominent European physicist and mathematician,
Christiaan Huygens. After discussions regarding physics and mathematics, Huygens pro-
vided Leibniz with the letters of Pascal, published under the name of Dettonville. Leibniz’
studies of these letters played an important role in his development as a mathematician.
Leibniz obtained the arctan formula by expanding 1

1+x2 as an infinite series and integrating
term by term. Eventually, Leibniz was able to present the arctan formula and his results
has been celebrated among many mathematicians [3, p.94–96].

Gregory was a Scottish mathematician who died from sudden illness and therefore the
greater part of his work was never published. His main interest in mathematics was to find
an infinite series representation of any given function. In his first book Gregory introduced
important mathematical ideas, such as convergence and algebraic and transcendent func-
tions. Gregory was a good friend of a man named John Collins and through him Gregory
came in contact with English mathematicians, such as Isac Newton and John Pell. On De-
cember 24, 1670, Collins sent Gregory Newton’s series for sin x, cosx, arcsin x and x cotx [3,
p.97–101]. In a famous letter to Collins on February 15, 1671, Gregory gives expansions
of different series, amongst others, arctan x, which he thought was Newton’s method [3,
p.87–91]. This was not the case, instead he had found the relationship between the series
and successive derivation of the given function, now known as the Taylor series. Gregory
did not recognize his discovery and therefore his work was never published. Instead Brook
Taylor presented his similar work almost forty years later [3, p.97–101].

The mathematician from southern India, Nilakantha, had knowledge of the formula
already in the middle of the 15th century. This persons work, written in Sanskrit, was only
discovered around 1835, in other words many years after Gregory and Leibniz had already
presented the formula [16].

4.2 Proof

The proof of the arctan series varies between the three mathematicians, however, all of
them play some part in today’s most commonly used proof, which is made with Maclaurin
expansion.

Theorem 3.

arctan x =
∫ x

0

1
1 + t2

dx = x− x3

3 + x5

5 −
x7

7 + . . .

+ (−1)n x
2n+1

2n+ 1 + · · ·+ (−1)n+1
∫ x

0

t2n+2

1 + t2
dt

(26)
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Proof. Using the expansion of the finite geometric series

1− zn+1

1− z = 1 + z + z2 + z3 + · · ·+ zn

for z 6= 1 and adding zn+1

1−z on both sides

1
1− z = 1 + z + z2 + z3 + · · ·+ zn + zn+1

1− z

is achieved. Changing the variable z = −t2 gives

1
1 + t2

= 1− t2 + t4 − · · ·+ (−1)nt2n + (−1)n+1 (−t2)n+1

1 + t2
. (27)

Now, 1
1+t2 is the derivative of arctan t and taking the antiderivative of (27) on the interval

[0, x] then

arctan x = x− x3

3 + x5

5 − · · ·+ (−1)n x
2n+1

2n+ 1 + (−1)n+1
∫ x

0

t2n+2

1 + t2
dt (28)

is obtained. What remains to be proved is that the integral in (28) tends to zero as n→∞.
For |x| ≤ 1 ∣∣∣∣∫ x

0

t2n+2

1 + t2
dt

∣∣∣∣ ≤ ∫ |x|
0

t2n+2dt

where the right hand side can be re-written as

∫ |x|
0

t2n+2dt =
[
t2n+3

2n+ 3

]|x|
0

= |x|
2n+3

2n+ 3 . (29)

Since we have defined |x| ≤ 1 this gives

|x|2n+3

2n+ 3 ≤
1

2n+ 3 (30)

and as n → ∞ the right hand side in equation (30) goes to zero, which proves that (26)
holds. Further, for x = 1 in equation (28) Gregory–Leibniz formula

arctan 1 = π

4 = 1− 1
3 + 1

5 −
1
7 + · · ·+ (−1)n 1

2n+ 1 + · · · =
∞∑
n=0

(−1)n 1
2n+ 1

is achieved.
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4.3 Convergence

Gregory–Leibniz’ formula converges very slowly, approximately 5000 terms must be calcu-
lated to obtain an accuracy of three digits for π [11, p.54].

Equation (28) can also be written as arctan(x) = SN (x) + RN (x), recall from Section
3.2, where

SN (x) =
N∑
n=0

(−1)n x
2n+1

2n+ 1

and
RN (x) = (−1)n+1

∫ x

0

t2n+2

1 + t2
.

In equation (30) it is shown that

RN (x) ≤ |x|
2n+3

2n+ 3 (31)

and in Gregory–Leibniz series for x = 1

arctan 1 = π

4 = SN (1) +RN (1)

π = 4SN (1) + 4RN (1) = 4
N∑
n=0

(−1)n x
2n+1

2n+ 1 + 4RN (1).

By studying the error term in equation (31) it can be seen that the error decreases with 2n
which means that more terms will give a better accuracy for the approximation. To show
that this series converges rather slowly values for N = 1000, 5000 will follow respectively
and starting with N = 1000 gives

π ≈ 4S1000(1) = 4
1000∑
n=0

(−1)n 1
2n+ 1 .

Computation in MatLab gives

π ≈ 4S1000(1) = 3.142591654339544

and the error estimation is

4R1000(1) ≤ 4
2003 <

4
2000 = 0.2 · 10−2.

Studying the error one can conclude that there will be an impact on the third decimal in
S1000, this gives that 3.14 are the only correct digits. The result of these calculations shows
that with 1000 terms two correct decimals are obtained. Now, N = 5000 will be calculated
which will give a better result than the previous calculation.

π ≈ 4S5000(1) = 4
5000∑
n=0

(−1)n 1
2n+ 1

20



Computation in MatLab gives

π ≈ 4S5000(1) = 3.141792613595791

and the error estimation is calculated to

4R5000(1) ≤ 4
10003 <

4
10000 = 0.4 · 10−3

Studying the error it shows that there will be an impact on the fourth decimal in S5000 and
one can conclude that 3.141 are the only correct digits.

After calculations one can see that a lot of terms are needed to get the third decimal
correct. Since this formula was found before calculators and computers it was not feasible to
do the calculations. However, the Gregory–Leibniz formula converge more rapidly if x = 1
is replaced by x = 1√

3 as Abraham Sharp did and found 71 digits in 1699 [11, p.55].

4.4 x = 1√
3

A rather small change to the Gregory–Leibniz formula gives a noticeable improvement to
the convergence, which will be shown in this section. Changing the argument of the arctan
series to x = 1√

3 gives

arctan
( 1√

3

)
= 1√

3
−

(
1√
3

)3

3 +

(
1√
3

)5

5 − · · · =

= 1√
3

(
1− 1

3
( 1√

3

)2
+ 1

5
( 1√

3

)4
− . . .

)
=

= 1√
3

(
1− 1

9 + 1
45 − . . .

)
= π

6 .

(32)

Now, to determine the speed of convergence the error is studied again by dividing the
equation into

π

6 = SN
( 1√

3

)
+RN

( 1√
3

)
⇔

π = 6SN
( 1√

3

)
+ 6RN

( 1√
3

)
where

SN
( 1√

3

)
=

N∑
n=0

(−1)n
( 1√

3
)2n+1

2n+ 1 = 2
√

3
N∑
n

(−1)n
( 1√

3

)2n 1
2n+ 1 = 2

√
3
N∑
n

(−1)n

3n(2n+ 1)

and

6RN
( 1√

3

)
≤ 6

( 1√
3
)2N+1

2N + 3 = 2
√

3
3N+1(2N + 3)
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where the error is approximated with equation (29). Comparing this error with equation
(31) it can be seen that here it decreases much more rapid, as there is a dominant factor of
3N in the denominator, that is, fewer terms will be needed for the series to converge. For
N = 4, 10 the new approximation of π will be calculated. Starting with N = 4 gives

π ≈ 6S4
( 1√

3

)
= 3.142192613595791 (33)

6R4
( 1√

3

)
≤ 2

√
3

35 · 11 < 0.2 · 10−2 (34)

and here, the error says that there is an uncertainty in decimal three. So with this change
of variable a correctness for two decimals is obtained by calculating the first four terms,
that is, the convergence is much more rapid than before. Now, for N = 10

π ≈ 6S10
( 1√

3

)
= 3.141593304503082 (35)

6R10
( 1√

3

)
≤ 2

√
3

311 · 23 < 0.9 · 10−6 (36)

and this time the error will effect decimal seven and six. It can be concluded that with
N = 10 terms there will be five correct decimals, 3.14159. These two examples show
that just a small adjustment to x can make the infinite series, used to approximate π,
converge much more rapidly and as a result give more accurate digits for fewer terms in the
approximation.

The so called Theodorus’s constant
√

3 is an irrational number and to determine the
fraction 1√

3 it is necessary to first make calculations of
√

3 in order to calculate π. Just like
there are different formulas for calculating π this yields for 1√

3 as well. For instance, this
number can be approximated by infinite series. As a result of using

√
3, Abraham Sharp’s

formula, equation (32), was rather difficult to calculate, especially by hand.

5 Machin’s formula
π

4 = 4 arctan 1
5 − arctan 1

239 (37)

5.1 History

John Machin was a mathematician and astronomer who lived between 1680 and 1752. Not
much is known about Machin, but it has been established that he had a great interest in
human diseases and he was able to describe these in a fascinating way. Actually, he was
the first one to describe “Distemperd Skin” which today is known as Ichthyosis Hystrix,
a rare skin disorder. Not only did he work on diseases but he also took a big interest

22



in mathematics and astronomy. In 1710 he was elected a Fellow of the Royal Society (a
Fellowship for many of the British most eminent scientists), serving as their secretary [1].

Before Machin started as a secretary of the Royal Society he improved the convergence
of the inverse tangent method π

4 = arctan x, using smaller arguments and created an al-
ternative arctan series which converges more quickly. In 1706, Machin calculated π to 100
digits and the formula played an important part in the calculation of decimals for π from
the beginning of the 18th century until the end of the 20th century [11, p.58].

5.2 Proof

The proof of Machin’s formula will be made with the sum and difference identity for the
tangent function. First, the tangents identities will be proved and secondly proof of Machin’s
formula will be provided.

Theorem 4. Tangent of difference

tan(u− v) = tan u− tan v
1 + tan u tan v (38)

for all u and v.

Proof. Tangents of difference can be re-written with sin(u− v) and cos(u− v) as

tan(u− v) = sin(u− v)
cos(u− v) = sin u cos v − sin v cosu

cosu cos v + sin u sin v

and dividing the numerator and denominator with cosu cos v assuming u, v 6= π
2 + πn, for

n ∈ N, gives

tan(u− v) =
sinu cos v−sin v cosu

cosu cos v
cosu cos v+sinu sin v

cosu cos v
= tan u− tan v

1 + tan u tan v .

which is the tangents of difference.

Tangent of sum
tan(u+ v) = tan u+ tan v

1− tan u tan v
is obtained by changing v to −v and using that the tangent function is odd.

Proof. We want to prove that the right hand side of equation (37) is equal to the left hand
side and taking tangents on both sides of equation (37) gives

tan π4 = tan
(
4 arctan 1

5 − arctan 1
239

)
(39)

where tan π
4 = 1. Using tangents difference formula with u = 4 arctan 1

5 and v = arctan 1
239

the right hand side can be re-written as

tan
(
4 arctan 1

5
)
− tan

(
arctan 1

239
)

1 + tan
(
4 arctan 1

5
)

tan
(

arctan 1
239
) =

tan
(
4 arctan 1

5
)
− 1

239
1 + tan

(
4 arctan 1

5
)( 1

239
) . (40)
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Now, tan
(
4 arctan 1

5
)

can be expressed as

tan
(
4 arctan 1

5
)

= tan
(
2 arctan 1

5 + 2 arctan 1
5
)

and using tangents sum formula then

tan
(
2 arctan 1

5
)

+ tan
(
2 arctan 1

5
)

1− tan
(
2 arctan 1

5
)

tan
(
2 arctan 1

5
)

is obtained. Re-writing the expression above one more time gives

tan
(

arctan 1
5 + arctan 1

5
)

+ tan
(

arctan 1
5 + arctan 1

5
)

1− tan
(

arctan 1
5 + arctan 1

5
)

tan
(

arctan 1
5 + arctan 1

5
)

and using tangents sum formula once more results in

tan
(

arctan 1
5

)
+tan

(
arctan 1

5

)
1−tan

(
arctan 1

5

)
tan
(

arctan 1
5

) + tan
(

arctan 1
5

)
+tan

(
arctan 1

5

)
1−tan

(
arctan 1

5

)
tan
(

arctan 1
5

)
1− tan

(
arctan 1

5

)
+tan

(
arctan 1

5

)
1−tan

(
arctan 1

5

)
tan
(

arctan 1
5

) · tan
(

arctan 1
5

)
+tan

(
arctan 1

5

)
1−tan

(
arctan 1

5

)
tan
(

arctan 1
5

) .
For tan(arctan 1

5) = 1
5 we get

1
5 + 1

5
1− 1

5 ·
1
5

+
1
5 + 1

5
1− 1

5 ·
1
5

1−
1
5 + 1

5
1− 1

5 ·
1
5
·

1
5 + 1

5
1− 1

5 ·
1
5

=
2 · 50

120

1−
( 50

120
)2 =

5
6

1− 2500
14400

= 72000
71400 = 120

119

and putting this result in to equation (40) gives
120
119 −

1
239

1 + 120
119 ·

1
239

=
28561
28441
28561
28441

= 1

which means that
π

4 = 4 arctan 1
5 − arctan 1

239
and Machin’s formula is proved.

5.3 Convergence

Due to the choice of smaller x-values, x = 1
5 and x = 1

239 , in the arctan series Machin’s
formula converges more rapidly than those formulas presented earlier and this will be shown
in the same way as in Section 4.2. By using the Maclaurin expansion of arctan, equation
(28) Machin’s formula

π

4 = 4
( N∑
n=0

(−1)n
(1

5
)2n+1

2n+ 1 + (−1)n+1
∫ 1

5

0

t2n+2

1 + t2
)

−
( N∑
n=0

(−1)n
( 1

239
)2n+1

2n+ 1 + (−1)n+1
∫ 1

239

0

t2n+2

1 + t2
) (41)
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is obtained. Now SN and RN is extracted.

SN = 4
N∑
n=0

(−1)n
(1

5
)2n+1

2n+ 1 −
N∑
n=0

(−1)n
( 1

239
)2n+1

2n+ 1

= 4
5

N∑
n=0

(−1)n

52n · (2n+ 1) −
1

239

N∑
n=0

(−1)n

2392n · (2n+ 1)

(42)

RN = 4 · (−1)n+1
∫ 1

5

0

t2n+2

1 + t2
− (−1)n+1

∫ 1
239

0

t2n+2

1 + t2
.

These expressions gives
π

4 = SN +RN ⇔ π = 4SN + 4RN

π = 16
5

N∑
n=0

(−1)n

52n · (2n+ 1) −
4

239

N∑
n=0

(−1)n

2392n · (2n+ 1) + 4RN

and as before, an estimation of the error is made using equation (29) and (30) so that

|4RN | ≤
16 ·

(1
5
)2n+3

2n+ 3 +
4 ·
( 1

239
)2n+3

2n+ 3 = 16
52n+3 · (2n+ 3) + 4

2392n+3 · (2n+ 3) . (43)

This time, the error will decrease even faster than for the Gregory–Leibniz formula with
argument x = 1 and x = 1√

3 . Here, the dominant terms in the denominators are 25n and
2392n which will grow fast as n increases and as a result the error will decrease fast. Once
again, different number of terms will be studied starting with N = 4.

π ≈ 4S4

MatLab gives
π ≈ 3.1415926824044

and the approximated error is

|4R4| ≤
16

511 · 11 + 4
23911 · 11 < 0.3 · 10−7 (44)

Here, the error will effect decimal eight so with N = 4 terms there will be seven correct
decimals, 3.1415926. Further, calculations for N = 8 gives

π ≈ 4S8

MatLab gives
π ≈ 3.141592653589837

and the approximated error is

|4R8| ≤
16

519 · 19 + 4
23919 · 19 < 0.5 · 10−13
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Here, the error will effect decimal 14 and the 13:th decimal might be effected by rounding,
so with N = 8 terms there will be 12 correct decimals, 3.141592653589.

It can be concluded that Machin’s formula converges more rapidly than the Gregory–
Leibniz formula and as a result gives more accurate digits to π for fewer terms. In addition,
there are no irrational numbers included as in the modified Gregory–Leibniz formula with
x = 1√

3 which makes Machin’s formula easier to calculate compared to the Gregory–Leibniz
formula.

6 Machin-like formulas

As has been shown in this thesis, the arctan series is of importance for the calculation of π
and depending on the argument x the series can converge slowly or more rapidly. Starting
with x = 1, the Gregory–Leibniz formula, it was concluded that this series converged far too
slow in order to obtain digits with good accuracy. Later, it was shown that other values of
x give a more accurate approximation of digits to π, still, there were some difficulties with
the argument x = 1√

3 since this is a fraction with the irrational number
√

3. However, in
Machin’s formula two arctan terms are added together, with arguments even smaller than
the other formulas shown in this thesis, and the formula converges much more rapidly than
such previous shown formulas.

There are several inverse tangent formulas that have been influenced by the one Machin
discovered and these are called Machin-type or Machin-like formulas. These formulas differ
from the original Machin formula since the arguments and scale are different and can, for
example, be generated using complex numbers.

Around 1800, mathematicians started to work with, what is now called Gaussian integers
Z[i] = {a+ bi | a, b ∈ Z}, which revolutionized the search for arctan identities. In 1894, the
mathematician Dmitry A. Grave published a problem requesting all rational solutions to

π

4 = m arctan 1
p

+ n arctan 1
q
.

Shortly after, this problem was generalized by Carl Störmer as

k
π

4 = m arctan 1
x

+ n arctan 1
y

for (m,x, n, y, k) ∈ Z. Störmer proved that there were only four unique solutions when the
nominator in the equation above is equal to one [12]. Later, certain gaps in the proof that
Störmer published were filled in by another mathematician, Ljunggren, in 1942 [17].

By assuming that k,m, n ≥ 0, x 6= ±y, x 6= ±1, y 6= ±1 and gcd(m,n), greatest common
divisor, Störmer’s formula only has four unique solutions, namely the ones published by
Machin, Euler, Hermann and Hutton, which will be shown later. Störmer completed his
proof in 1894 and he found that Gauss had already observed the connection between complex
integers and arctan.
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Further, for the one-term formula it can be proven that

kπ = n arctan b

a

only has the integer solutions b = 0 or a = ±1 and this proof was published for the first
time by Störmer. He writes this equation as

ρ arctan b

a
= k

π

4
and assumed that ρ and k are positive with gcd(ρ, k) = 1 and gcd(a, b) = 1. Today, this
can be shown by using Gaussian integers and will be proven in Section 6.3. Two key points
when working with arctan and Gaussian integers are: the complex numbers can provide
insight into real problems, and unique factorization, when it exists, is a powerful tool [17].

6.1 Machin-like formula

c0
π

4 =
N∑
n=1

cn arctan an
bn

(45)

where an and bn are integers such that 0 < an < bn, cn is a signed non-zero integer and
c0 > 0.

6.2 Two-term formula

From the expression of the Machin-like formula, equation (45), the two-term formula can
be written as

arctan a1
b1

+ arctan a2
b2

= arctan
(a1b2 + a2b1
b1b2 − a1a2

)
,

for −π2 < arctan a1
b1

+ arctan a2
b2
<
π

2
and the proof follows.

Proof. Using tangent of difference, equation (38), the two-term formula is proved. Let
x = arctan u and y = arctan v, where u = a1

b1
and v = a2

b2
then

tan(x+ y) = tan x+ tan y
1− tan x tan y =

= tan(arctan u) + tan(arctan v)
1− tan(arctan u) tan(arctan v) = u+ v

1− uv =

=
a1
b1

+ a2
b2

1− (a1
b1
· a2
b2

) =
a1
b1
· b2
b2

+ a2
b2
· b1
b1

(1− a1
b1
· a2
b2

) · b1b2
b1b2

= a1b2 + a2b1
b1b2 − a1a2

.

This gives
arctan u+ arctan v = arctan

( u+ v

1− uv
)

= arctan
(a1b2 + a2b1
b1b2 − a1a2

)
and proves the two-term Machin-formula.
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6.3 Complex factors

As stated earlier all Machin-type formulas can be expressed with complex factors. Studying
complex numbers then the inverse tangent function can be written, up to an integer multiple
of π, as

arg((bn + ian)cn) = cn arctan an
bn
. (46)

Further, to observe the relationship between complex numbers and Machin-like formulas
two factors with complex numbers and cn = 1 are multiplied, that is, their associated
arguments are added and this results in

(b1 + ia1) · (b2 + ia2) = b1b2 + ia2b1 + ia1b2 − a1a2

= b1b2 − a1a2 + i · (a1b2 + a2b1).
(47)

Now, using equation (46) with (47) the two-term Machin-formula is obtained when n = 1, 2
and cn = 1 as

arg
(
b1b2 − a1a2 + i · (a1b2 + a2b1)

)
= arctan

(a1b2 + a2b1
b1b2 − a1a2

)
and it has now been established that the two-term Machin formula can be represented with
complex factors.

In general, for two complex numbers to fulfil Machin-like formulas it is necessary that
the complex numbers, when multiplied with each other, can be factorized as 1 + i times an
integer. In other words, the multiplication should result in

k(1 + i)c0 =
N∏
n=1

(bn + ian)cn

where k is an arbitrary integer. If this equation holds it is possible to achieve more than a
two-term Machin-like formula and instead create a formula with more terms which is not
only limited to the four unique two-term formulas.

As stated earlier, by using Gaussian integers and prime factors the single-term formula
can be proved. For the lemma, corollary and the proofs below k ∈ Z and n ∈ N.
Lemma 1. Let z = a+ bi 6= 0 be a Gaussian integer. There is a natural number n such that
zn ∈ Z if and only if a = 0, b = 0 or a = ±b.

Proof. The backward direction follows by setting n = 1, 2 or 4. In order to prove the
forward direction, assume that zn = m, where m ∈ Z. Since the Gaussian integers is a
unique factorization domain (UFD) [17]

z = p1 · p2 · · · pk · q

where p is a Gaussian prime factor, k ∈ Z and q is any unit (±1,±i) [17]. It follows from
laws of exponents that

zn = pn1 · pn2 · · · pnk · qn.
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Since m = pk · q, it follows that, pk|m and further m = pk · q ⇒ pk|m ⇒ pk|m since
m = m. This means that all Gaussian prime factors that are not 1 + i comes in pairs. The
factor 1 + i will not come in a pair since 1 + i and 1 − i is the “same” Gaussian integer,
1 + i = (+i)(1 − i) and i is a unit. Further, since (a + bi)(a − bi) = a2 + b2 this means
that the contribution will only be integers. Also, ordinary primes ≡ 3(mod 4) gives integer
values. To summarize, z is a product of integer values and a possible non-negative integer
power of (1 + i). That is, z = p · (±i)(1 + i)k, p ∈ Z, can be split up in three different cases:
z is either just an integer value p or only an imaginary part p(±i) or the whole expression
and this gives the only solutions a = 0, b = 0 or a = ±b, which proves our lemma.

Corollary 1. The only rational values of tan kπ
n are 0 and ± 1 when k ∈ Z.

Proof. Suppose that tan kπ
n = b

a where b ∈ Z and a ∈ N. Then

arg(a+ bi)n = n arg(a+ bi) = n(kπ)
n

= kπ

which, modulo 2π equals 0 or π, depending if k is odd or even. Notice that when (a+bi)n ∈ Z
the fact that tan kπ

n = 0 or tan kπ
n = ±1 follows from the lemma.

Corollary 2. Identities of the form kπ = n arctan x with x rational have x = 0 or x = ±1. In
particular, π = 4 arctan 1 is the most efficient such identity for computing π using Gregory’s
series.

Proof. By applying tan on kπ
n = arctan x gives tan kπ

n = x = a
b and applying Corollary 1

with the Lemma gives Corollary 2.

Moreover, there exists several of multiple-angle identities, not only for b1 = b2 = 1, to
compute π and this can be written as

kπ

n
= m1 arctan b1

a1
+m2 arctan b2

a2

and the following example will show how to achieve one of these formulas.
Example. Let’s pick a Gaussian prime, for instance 2+3i and denote z1 = 2+3i, z2 = 2−3i
and m1 = m2 = n = 1. Then the corresponding arctangent identity is: 0π = arctan 3

2 −
arctan 3

2 which is useless. However, by introducing a factor (1− i) then

z1 = (2 + 3i)(1− i) = 5− i.

For n = 4 the corresponding identity is

π

4 = arctan 3
2 − arctan 1

5

and by using the formula for multi-angle identities more identities can be found.
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6.3.1 Euler’s formula

This formula is
π

4 = arctan 1
2 + arctan 1

3
and it can be rewritten with complex numbers. According to equation (46) these factors
can be determined to be (2 + i) and (3 + i). Multiplying these two factors gives

(2 + i) · (3 + i) = (6 + 2i+ 3i+ i2) = (5 + 5i) = 5(1 + i)

and (5 + 5i) has the angle (π/4) in the first quadrant of the complex plane. This proves
that Euler’s two-term formula can be re-written with complex factors.

Just as in previous sections the convergence is of interest. In this calculation certain
steps have been left out, but all steps are shown in the section where the convergence of
Machin’s formula is studied. Here, equations (29) and (30) gives

|4RN | ≤
4 ·
(1

2
)2N+3

2N + 3 +
4 ·
(1

3
)2N+3

2N + 3 = 1
4N · 2(2N + 3) + 4

9N · 27(2N + 3)

as the error term. It can be seen directly from the approximated error term that this
approximation will converge rather fast since the error decreases with 4N in the first term
and 9N in the second. As an example, for N = 8 then six correct decimals are obtained.

6.3.2 Machin’s formula

As familiar, this formula is

π

4 = 4 arctan 1
5 − arctan 1

239

and can be rewritten with factors of complex numbers following the same steps as for Euler’s
formula. Then

(5 + i)4 · (−239 + i) = −22 · (134) · (1 + i)

and the estimated error for this formula is calculated in Section 5.3.

6.3.3 Hermann’s formula

Hermman’s formula is
π

4 = 2 arctan 1
2 − arctan 1

7
and rewriting it with factors of complex numbers results in

(2 + i)2 · (−7 + i) = (3 + 4i) · (−7 + i) = (−25− 25i) = −25 · (1 + i).
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Now, the convergence is studied in the same way as in the section regarding Euler’s two-term
formula. The error term is

|4RN | ≤
4 · 2 ·

(1
2
)2N+3

2N + 3 −
4 ·
(1

7
)2N+3

2N + 3 = 1
4N · (2N + 3) −

4
49N · 343(2N + 3)

and here it can be seen that this formula will converge faster than Euler’s formula, since
49N > 9N . However, it does not converge faster than Machin’s formula since 25N and
2392N is larger than those in Hermann’s formula.

6.3.4 Hutton’s formula

The fourth and final two-term formula is
π

4 = 2 arctan 1
3 + arctan 1

7
and in complex form this is written as

(3 + i)2 · (7 + i) = (8 + 6i) · (7 + i) = (50 + 50i) = 50 · (1 + i).

Here, the error term is

|4RN | ≤
4 · 2 ·

(1
3
)2N+3

2N + 3 +
4 ·
(1

7
)2N+3

2N + 3 = 8
9N · 27(2N + 3) + 4

49N · 343(2N + 3)

and it can be concluded, by studying the denominator, that not even Hutton’s formula con-
verges faster than Machin’s. Comparing all the four two-term formulas it can be concluded
that Machin’s formula has the fastest convergence rate. However, all of these formulas
converge rather rapidly comparing them to the formulas of Viète’s, Wallis’s and Gregory–
Leibniz formula.

7 Conclusion

To conclude, the number π has fascinated mathematicians throughout history. Since π
is an irrational number the decimal expansion is infinite and the search for more correct
digits is an ongoing process. To decide if an infinite series or product is good or not, one
have to study the convergence. Faster convergence means that less terms are needed in the
expansion. Several different formulas can be used to compute π, but the most commonly
used formula is the arctan formula, established by Gregory and Leibniz. In order to achieve
a rapid convergence the argument needs to be small.

Instead of using just a single-term formula Machin found an arctan formula for two
terms and not long after him three more unique two-term formulas were established by
Euler, Hutton and Hermann. All of these formulas gave a smaller error term than the
one-term formulas and as a result the two-term formulas converged more rapidly. This way,
less terms were needed in the infinite series to obtain more correct digits.
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Today, the Machin-like formulas are widely used to compute more and more decimals
to π. We have now found so many decimals that the search for more decimals no longer
serves any real purpose other than the hunt for more decimals itself. 40 decimals is namely
more than enough to describe the world around us with extreme accuracy.
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