
MASTER’S THESIS 2019

What is required by software
platforms in order to give a
good developer experience?
Christoffer MacFie

ISSN 1650-2884
LU-CS-EX 2019-08

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2019-08

What is required by software platforms
in order to give a good developer

experience?

Christoffer MacFie

What is required by software platforms
in order to give a good developer

experience?
(A Research Into Qlik Core’s Developer Experience)

Christoffer MacFie
dat13cma@student.lu.se

June 19, 2019

Master’s thesis work carried out at Qlik AB.

Supervisors: Martin Höst, martin.host@cs.lth.se
Andrée Hansson, andree.hansson@qlik.com

Examiner: Ulf Asklund, ulf.asklund@cs.lth.se

mailto:dat13cma@student.lu.se
mailto:martin.host@cs.lth.se
mailto:andree.hansson@qlik.com
mailto:ulf.asklund@cs.lth.se

Abstract

This research report was carried out in collaboration with Qlik AB and aimed
to identify what aspects are needed from a software platform in order for de-
velopers to want to use them. It also aimed to identify how well the software
platform Qlik Core had implemented these aspects.

The research used online questionnaires, interviews and data analysis using
Qlik Sense. The research compared how different groupings of people had
varying needs. It also explored and got a deeper understanding of why some
of these aspects were needed.

The research found that the most important aspects of a software platform
is API code examples, thorough documentation explanations and that you can
have working code quickly. It also found that Qlik Core does not have these
three aspects and it needs to mainly work in its documentation and examples.

Keywords: MSc, Developer Experience, DX, Software Platforms, Qlik Core

ii

Acknowledgements

There are several people I want to thank who made this paper possible.

I want to thank the interviewees who took time out of their day to be interviewed for
this research paper. I also want to thank all the anonymous people who took the surveys
conducted in this research paper.

I want to thank Andrée Hansson and Johan Bjering, who both served as mentors for me at
Qlik. I also want to thank Martin Höst, who was my mentor at Lund University. Finally, I
also want to thank Ulf Asklund, who is the exterminator of this paper.

iii

iv

Contents

Preface vii

1 Background and Purpose 1
1.1 Goal Of This Research Paper . 1
1.2 What is User Experience? . 1
1.3 What is Developer Experience? . 3
1.4 How Can One Define ”Good” DX? . 3
1.5 Who are Qlik and what is Qlik Core? . 4
1.6 Popularity of Programming Languages 5
1.7 Kinds of APIs . 6
1.8 API User Personas . 10
1.9 Standardisation . 11

2 Methodology and Preparations 15
2.1 Deciding consideration aspects . 15
2.2 Linking considerations to ISO-9216-1 18
2.3 Surveys . 19
2.4 Interviews . 28
2.5 Making Recommendations for Software Platforms 34
2.6 Evaluating Qlik Core . 34

3 Results and Discussion 35
3.1 Initial Survey . 35
3.2 Survey 2 Results . 39
3.3 Interview Results . 52
3.4 Recommendations For Software Platforms 62
3.5 Evaluation of Qlik Core . 82
3.6 Qlik Core Evaluation Summary . 90
3.7 Threats to Validity . 92

v

CONTENTS

4 Conclusion 93
4.1 Further Research . 94

Bibliography 97

A Pilot Survey 101

B Main Survey 109

C Material for Interview 125

vi

Preface

To start this research paper off, I will tell you a story.

Some years ago I believed I was too dumb to understand thermodynamics. I was about 18
years old and was sitting in my class room trying to solve a problem surrounding that very
subject. I just could not understand it. My classmates were doing fine, talking and joking
with each other while they were solving one problem after another. Meanwhile I just sat
there, scratching my head, struggling with the first task.

Then one day, I decided to go and sit by myself instead of in the classroom. I had brought
a book, not the one given by the school, but another I had borrowed from the library. I sat
in total silence and carefully read the chapter about thermodynamics. I stopped, reflected
on the text, and then went back into it. And suddenly, I just understood what I could not
understand before.

I think about this from time to time whenever I feel too dumb to learn something. It is
not that I was too dumb, it is that the needs I had to do it were not fulfilled. The lesson of
the story is that people have different needs in order to have a good experience.

This story can be applied to a lot of things in life. Some time ago when trying to use
a software platform when programming, I encountered the feeling off not being smart
enough again. But then I remembered this story, and realized that it is not that I am too
dumb, it is that my needs are not fulfilled. I needed another explanation, to not sit next
to may classmates and to have some silence. And this is what this research paper will be
about. What needs do different developers have from software platforms in order to have
a good experience using them?

vii

Chapter 1
Background and Purpose

1.1 Goal Of This Research Paper
This research paper is done in collaboration with the company Qlik. The goal of it is to
define the needs developers have from software platforms in order for them to have a good
experience. It also evaluates how well Qlik’s software platform Qlik Core satisfy these
needs. The questions this research paper intends to answer are:

1. What aspects are needed by a software platform in order for people to find them
favourable, and how important are these aspects?

2. Do different groups of software platform users have different needs?

3. Why are some of these aspects needed or not needed by a software platform in order
for people to find them favourable?

4. How favourable is Qlik’s software platform Qlik Core to use users, and what can be
improved?

1.2 What is User Experience?
To start off, one needs a method of how to even measure experience. One field we can look
into, that has been researched a lot, is User Experience (UX). UX is the collective term for
many disciplines merged into one that evaluates the overall experience delivered to a user
of a system, product or service. The coining of the term is often attributed to Norman et al.
(1995), who has a background in the fields of cognitive science and usability engineering.
There is not one definitive definition of what UX is. They one who created the term,
Norman, defines UX as:

1

1. Background and Purpose

”All aspects of the end-user’s interaction with the company, its services, and
its products. The first requirement for an exemplary user experience is to
meet the exact needs of the customer, without fuss or bother. Next comes
simplicity and elegance that produce products that are a joy to own, a joy to
use. True user experience goes far beyond giving customers what they say they
want, or providing checklist features. In order to achieve high-quality user
experience in a company’s offerings there must be a seamless merging of the
services of multiple disciplines, including engineering, marketing, graphical
and industrial design, and interface design.”

User Experience has since its emergence in the 1990s gotten its own ISO-standard: ISO-
9241-210. It is defined by ISO 9241-210:2010 (2010), part of ”Ergonomics of human
system interactions”, as

”A person’s perceptions and responses that result from the use or anticipated
use of a product, system or service”

The World Wide Web Consortium (W3C) is the main international standards organization
for the World Wide Web. W3C (2005) defines it as following:

”A set of material rendered by a user agent which may be perceived by a user
and with which interaction may be possible.”

One common denominator is that UX is related to how something is perceived. It can
therefor be considered a somewhat subjective quality of a product, system or service. Be-
cause of this it can be hard to measure with exact numbers. ISO 9241-210:2010 (2010)
has a four-part process for how to evaluate a system or service. The process can be seen
in Figure 1.1. It is an iterative process, and depending on if the design solution meets the
user requirements or not, an earlier phase in the process needs to be revisited.

Figure 1.1: The UX evaluation process as defined by ISO 9241-
210. Solid arrows shows the next step in the process, and dashed
lines shows possible returns to earlier steps if needed.

2

1.3 What is Developer Experience?

1.3 What is Developer Experience?
User Experience revolves around the broad and vague group of ”users”. What we are
interested however is the experience for one certain group: developers. This is what the
term ”Developer Experience” revolves around. Developer Experience, or DX, is similar to
the more well known User Experience (UX), but with the user being a software developer
using a service or software aimed at developers, such as an API or library (rather than
some executable program). Developer Experience has yet to be defined by any standards
organization. There is also limited peer-reviewed academic research around the subject.
That does not however mean that there does not exist articles about it. DX is defined by
Jarman (2017) as

”The experience developers have when they use your product, be it client li-
braries, SDKs, frameworks, open source code, tools, API, technology or ser-
vice.”

Dhide (2017) has describes in an article how he and a team of developer tries to define
DX, and came to the following conclusion:

”Developer Experience (DX) is inspired by the User Experience practice and
sees developers as a special case of users. Developer Experience Design is the
practice of understanding how developers get their work done, and optimizing
that experience.”

This report uses the following definition, inspired by the UX-definitions described above:

”Developer Experience is the perceived feelings and thoughts of a developer,
generated by an interaction with a software or service that is meant to be used
by a software developer”

1.4 How Can One Define ”Good” DX?
So how do we figure out what exactly is ”good” DX? There are many potential factors for
defining what constitutes ”good” DX. The website Every Developer (2019) has developed
a DX Index from 1-10, where they consider four factors:

1. Are the libraries available in popular languages?

2. How prominent, in-depth are the starting guides?

3. Are the solutions self-serving, without need of demos or ’call us’?

4. Is the pricing clearly stated?

Jarman (2017) has other factors that he uses to evaluate if something gives a good DX. He
for example puts emphasis on communication between the product provider and the devel-
oper. The dialog between the product provider and the community needs to be authentic,
open and honest in order the give a good developer experience, according to Jarman.

3

1. Background and Purpose

Dhide (2017) did a workshop, which generated a list of things that they think should be
considered when designing software or services with good DX. Their key aspects are sim-
plicity, usability, innovation and ”delightfulness”. They put emphasis on ”Less is more”,
stating that ”Any element that is not helping the user achieve their goal is working against
them”. Some other things they say are important are ”Always keep the target users in mind
as the product is designed”, ”Know what type of problem you’re solving” and ”Use con-
cepts familiar to the user rather than system-oriented terms”.

It has been researched by Graziotina et al. (2018) what makes a developer happy and un-
happy, and they found several indicators, both internal and external factors. The internal
factors were things like stress, fatigue, low motivation, etc. They also pointed to external
factors. These were things like low productivity, delays, broken flow, and more. Accord-
ing to their findings, low productivity is the most common cause of unhappiness among
developers.

A similar study researched by Wróbel (2013) showed that positive emotional states give
an increase in productivity, and negative emotional states gives a decrease in productiv-
ity. The research also calculated the risk/opportunity for each emotional state, in relation
to productivity. The calculation showed that the most impactful emotional state to pro-
ductivity is ”frustration”, being the most the most common negative emotional state for
programmers.

The issues pointed out by Graziotina et al. (2018) and Wróbel (2013) is something that
may be improved by giving developers a better DX. This research shows that there is a
clear need for good DX.

1.5 Who are Qlik and what is Qlik Core?
This research report is done in collaboration with the company Qlik. Qlik is a software
company in Lund, founded in 1993 (Qlik Media Representation, 2010). They offer several
products, with the two most popular ones being QlikView and Qlik Sense. These two pro-
grams are used for discovery of insights about data that the user has. The programs take
large quantities of data and link them together into a data-model, which then can be easily
interacted with to help the user find insights, patterns and anomalies. This new informa-
tion can then help companies make decisions for the next step for the company.

Let me take an example. A telemarketing company is trying to figure out what employee
deserves a Christmas bonus. The company has several thousands of excel sheets of all sold
products during the year and who sold what. Going through all these sheets would take
many days, and would be very difficult. However, when they load it into Qlik Sense, they
can within minutes see the sales per person and date. They find that two employee has
the same sale amount. However, one of the employees had zero days throughout the year
where they had no sales, whereas the other had 95 days. The company decides to give the
Christmas bonus to the employee who had the most consistency in sales.

4

1.6 Popularity of Programming Languages

This is all possible because of the Qlik Associative Engine (QAE). The engine links all
the data together and makes a data model, which can then be easily displayed in different
ways. The target audience for QlikView and Qlik Sense are businesses.

Qlik has now launched a new product called Qlik Core (QC). The target for this product
is developers, rather than ”ordinary people”. The main selling point of this new product is
that it gives the powerful QAE to developers to use, and make their own products on top
of it. Qlik Core is, as described on the official website, ”an analytics development plat-
form built around Qlik Associative Engine and Qlik-authored open source libraries”(Qlik,
2019). The Qlik Core platform consists of several components, with its central part being
the QAE. To protect intellectual property (IP), the QAE is close-source.

The Qlik Core platform also provides libraries and services to make it possible to use
the QAE, which almost all of them are open-source. The libraries and services that are
included with Qlik Core are ”Mira”, ”Halyard”, ”Enigma” and a licensing service.

Mira is an open-source JavaScript service which is used to generate insights about the data.
Halyard is a JavaScript library which makes loading data into the QAE easier. Enigma is
an open-source service which makes it possible to communicate with the QAE. This li-
brary is offered in both JavaScript and Go. Lastly, the licensing service is a close-source
service that authenticates that the user has paid for the use of the platform.

Furthermore, Qlik also offers a unified testing framework called ”after-work.js” and vi-
sualisation library called ”picasso.js”. These are also open-source, but are still classified
by Qlik as ”experimental” as they are not yet stable, at time of writing.

It should be mentioned that QC takes use of a third-party software called Docker. As
described by OpenSource (2019), Docker works a bit like virtual machine, but instead of
having a whole operating system run, it simulates just a folder-system. Docker works with
something they call ”Containers”, which makes it possible to package an application with
all its dependencies, libraries, etc, into one package. By using Docker, Qlik has made QC
portable and runnable in most operating system.

1.6 Popularity of Programming Languages
It should said a few things about the state of programming languages in 2019, since it is an
aspect that affects developers as we will see later in this report. There are new languages
emerging all the time. Some disappear just as quickly as they appeared, while others are
here to stay. GitHub (2019) releases a yearly review of people’s usage of the web-based
hosting service. In their review they talk about, amongst other things, what languages are
the most popular. In Figure 1.2 we can see the most popular languages from the end of
2014, to the end of 2018. As mentioned, some languages come and go. One example
is Ruby, which has dropped from 5th place, to 10th in just three years. The undisputed
winner however is JavaScript, which is also what Qlik Core mainly uses. It should also be
mentioned that Go, which QC also offers one of their libraries in, is on the rise and saw

5

1. Background and Purpose

an increase by 150% during 2018(GitHub, 2019).

Figure 1.2: The most popular programming languages in GitHub
repositories over time.

Source: Data from GitHub (2019)

1.7 Kinds of APIs
Application Program Interfaces (APIs) are, simply put, a software that lets one application
interact with another application’s inner data and services. Applications are in need of an
interface to interact with its inner parts to create, read, update and read (CRUD) as well
as execute commands. APIs provide this link between the two pieces of software that lets
them communicate. Because of APIs broad nature, there aremany types of APIs(Sturgeon,
2016).

1.7.1 Internal, Public and Partner APIs
APIs have different level of openness, depending on who is going to access them, as de-
scribed by Levin (2017). They are usually divided into three groups: Internal APIs, Public
APIs and Partner APIs. These three groups are explained below.

Internal APIs
Internal APIs are APIs that are meant to be used in internal productions and within an
organisation or company. They are often developed to be used between different teams in
the company to be able to connect software components in the application, without having
to actually know the code of the component. The benefit of this is that the team can open
up certain needed functionality of the software to other teams while still being in control
of their own code. This kind of APIs are protected and require internal API keys to access
to ensure that people outside of the company or other non-company authorised persons
are not able to access them.

6

1.7 Kinds of APIs

Public APIs
Public APIs is another kind of API. This is a way for the company to open up functionality
of the software’s inner workings to the world so that anyone may build new applications
that are built upon the original software. This kind of interface often only has a small
percentage of the functionality that the internal API has, since the circuitry of the software
must be protected for security reasons as well as from business intelligence theft. If the
internal API was open to the public anyone could build their own copy of the program or
find vulnerabilities. These kind of APIs either do not require any API key to access, or
have an API key that is open for anyone to acquire (either through payment or for free).

Public APIs also helps with stability for software. ‘’Martin’s Metrics for Instability” mea-
sures how ‘’stable” a piece of software is, based on howmany dependencies it has on other
packages (Höst, 2019, pp. 37-38). According to this theory, the more dependent a soft-
ware is on other packages, the more unstable it is. This can be related to public APIs. If a
software is built on a platform with just a few API methods, it is much more stable than if
it were to call many different ones since there is a lot more thinks that can break.

Partner APIs
Partner APIs are a third interface that can be shared business-to-business (B2B), with
strategic partners to the company. Partner APIs often put some restraints on what can be
exposed so that the inner workings of the software is still protected, but is able to be more
open than a public API. These kinds of APIs require an API key that is often contracted
with terms and condition to protect the company’s business intelligence.Levin (2017)

1.7.2 Web APIs
When using services over the internet, there aremany different protocols that can be used to
communicate. Just like with many other things in computer science, there are many valid
approaches whom all have their pros and cons. The world wide web (WWW) is largely
built upon the application protocol hypertext-transfer-protocol (HTTP) which, amongst
other things, provides CRUDmethods to be applied on resources. Resources in this context
refers to any thing: file, object, document, text, etc, that is provided by aweb service. There
are however many ways of utilizing this protocol to let a client access and manipulate
server-side data, as well as execute commands. Below there are two methods described.

REST
Representational State Transfer (REST) is a software architectural style that is used in web
services which acts as a communication bridge between computer systems and the inter-
net. It lets the system interact and manipulate the service it is interacting with. REST
solves many issues that had been present in previous implementations of communication
between computer systems and the web (CodeAcademy, 2019; Sturgeon, 2016; Feng et al.,
2009).

One of the key factors in REST is that it is stateless. Statelessness in this context means

7

1. Background and Purpose

that the two communicating parties do not need to know anything about each other or have
seen previous messages to understand future ones. This feature is possible by limiting it to
the use of resources instead of commands. REST-APIs can therefor not ask the server side
to execute a specific custom command, but is limited to using CRUD methods. Feng et al.
(2009) points out some key constraints that exist in REST. A few of these are that every-
thing is a resource in REST, the identification of resources is done by using URI (Uniform
Resource Identifier) and that it uses stateless interactions.

A REST request consists of an HTTP method, a header containing information about the
request, the path to the resource and lastly an optional message body consisting of data.

Statelessness makes it possible to separate the client and the server. Code changes to the
server will not require changes to the client’s code, and vice versa, as long as the message
format between the two are kept the same.

Since REST does not use sessions, but simply responds to any incoming requests, it is
easy to scale up. It just requires more bandwidth and processing power to be able to han-
dle more requests per second.

If you for example want to post a message as a user with the userID 1, it could look
something like what we can see in Listing 1.1.

Listing 1.1: An example of how an API call can look using REST
POST / users /1/ messages HTTP /1.1
Host : example . com
Content - Type : application / json
{" msg ": " Test123 "}

Here, the resource of /users/1/messages is fetched and then the new message is
created and put into the database. The server does not work in sessions and cannot tell
clients that a new message is available. The clients has to periodically ask the server if
there are any new messages to retrieve.

REST may be appropriate to use when you mostly want to do CRUD-commands or ma-
nipulate data.

RPC
Remote Procedure Call (RPC) is a also described by Code Academy (2019); Sturgeon
(2016); Feng et al. (2009) as a protocol used to execute commands on remote systems.
RPC is, like REST, also built on HTTP, but uses mostly just the GET and POST commands.
RPC is a request-response protocol and is, unlike REST, stateful. Ergo, the protocol works
with sessions between a client and a server, and previous messages may be needed in order
to understand future ones.

An upside of RPC is that it lets a client request the server to execute a custom command.

8

1.7 Kinds of APIs

Making an RPC-call is much likemaking a normal function call, in that you simply provide
the name of the method and the parameters. A consequence of this is that code changes
on server-side, such as method-name or parameter input, may require code changes on the
client side as well.

Since RPC has two-way communication, the server can tell the client when something
has changed, whereas in REST-based communication the client has to ping the server to
check if there are any changes. An RPC based server needs to have a unique session for
each client, which can cause problems with scalability.

If we go back to the example used in the previous section: posting a message may look
something like what can be seen in Listing 1.2.

Listing 1.2: An example of how an API call can look using RPC
POST / SendMessage HTTP /1.1
Host : example . com
Content - Type : application / json
{" userId ": 1, " msg ": " Test123 "}

Here, the server has a custom method called SendMessage. If the method call is not
made asynchronous, the client is put in wait until the server responds with an acknowl-
edgement or the call reaches a timeout. Since RPC uses sessions and custom commands,
the method can be implemented as such that other sessions should be notified that a new
message has been sent, and the server can send it out to appropriate clients.

RPC may be appropriate to use when you have functionality that can benefit from two-
way communication or is mainly command-oriented.

1.7.3 What Type of API is Qlik Core?
Qlik Core consists of several components which utilizes several libraries that has different
types of APIs. The QAE also has several different ways of communicating with its inner
workings. These APIs also have different types of APIs, namely JSON-RPC, gRPC and
REST. JSON-RPC is a variant of RPC that utilizes the JSON format and gRPC is Google’s
implementation of RPC (Qlik, 2019). The libraries is listed in List 1.1.

List 1.1: Libraries offered by Qlik with Qlik Core

Mira - Discovery service library included in QC, based on REST
halyard.js - Data loading service that works as a wrapper around the load scripts to make
data loading easier for a user. This service does not use an API standard.
enigma.js - QAE communicating service included in QC, based on gRPC
Qlik Associative Engine - QAE has several different APIs offered for communication
with it

QIX API - An API based on JSON-RPC

9

1. Background and Purpose

Data Connector API - An API based on gRPC
Analyitical Connector API - An API based on gRPC

1.8 API User Personas
There are many types of people using platforms, whom all have different requirements and
personalities. To get a better understanding of what the needs of a system will have one
can take help of the concept of ”User Personas”, which has its origin in UX. It described
by Bernhaupt et al., p. 191 as a fictional character which helps understands a user’s goals,
environment, needs and problems to achieve a certain task. User personas helps a designer
of a system to understand what needs the system’s user will have.

One way of dividing people is into the two groups ”Decision makers” and ”Non-Decision
Makers”. These both need to be catered to in order to have a successful platform: if the
decision makers are ignored the platform will not be implemented by companies in the
first place. If the users are ignored, the platform will be quickly dropped since its usage is
not good enough.

Nottingham (2012) lists several personas that will affected by how HTTP-based APIs are
developed. A persona in this context is a group of people who share certain characteris-
tics. He tries to cover all thinkable personas that would be affected by APIs. He looks
both from the perspective of how to satisfy the consumer of APIs, and the creator of APIs.
For this research paper, the view is that of what makes consumers of software platforms
satisfied, and it is therefore the viewpoint of the consumer that is interesting to us.

Established Company Employees - These people are limited in their freedom of
what they can adopt, prohibited by the company’s policies, ways of working and
legal requirements. They are more likely to use more established programming lan-
guages, rather than the latest fads or up-and-coming languages. They are more likely
to demand good documentation with examples in their languages, and less likely to
spend time trying to understand new ways of working.

Startup Company Employees - This person is in many ways the opposite of the
person described above. This person is more likely to use newer programming lan-
guages, closely following what’s ”hot and new”. This person also prefers quick solu-
tions, going for existing implementations rather than developing their own. They’re
pragmatic, looking for fast results and does not have time to spend too much time
on ”fancy” solutions.

Mobile Developers - This person has concerns that developers for computer-based
API consumers does not have to the same extent. Even though it was more relevant
a few years ago, when mobile phones were considerably less powerful and PCs, the
mobile developer has to take into account CPU and memory usage more than the
developers for PCs. They also care about energy usage, since mobiles uses batteries.
API creators can help this developer out by specifying how heavy API calls are to
make.

10

1.9 Standardisation

Poorly Connected Users - These users has concerns that the others don’t. With
poor connection, they’re taking into account how big the responses from API calls
are, how many calls has to be made, etc. This developer needs specifications on
these things when developing.

1.9 Standardisation

As mentioned in Section 1.5, there is no standard for DX given by The International Or-
ganisation for Standardisation (ISO). There are however other standards from ISO that
are interesting to examine and compare with. One is ISO 9126 Software engineering -
Product Quality. One part of this ISO-standard concerns how to measure the quality of
software. It has six different characteristics: functionality, reliability, usability, efficiency,
maintainability and portability. Each of these characteristics has sub-characteristics. The
definition of each characteristic is listed, and their sub-characteristics, is in Table 1.1 and
Table 1.2. This standardisation is presented as it will be used in Section 2.2 to relate the
ISO-standard to the aspects that are to be considered in this research.

11

1. Background and Purpose

Table 1.1: Part 1: ISO-9216

Functionality
F1 Suitability The capability of the software product to provide an ap-

propriate set of functions to specified tasks and objectives
F2 Accurateness The cap... / / ... to provide the right or agreed results or

effects with the needed degree of precision
F3 Interoperability The cap... / / ... to interact with one or more specified

systems
F4 Security The cap... / / ... to protect information and data so that

unauthorised persons or systems cannot read or modify
them and authorised persons or systems are not denied ac-
cess to them

Reliability
R1 Maturity The cap... / / ... to avoid failure as a result of faults in the

software
R2 Fault tolerance The cap... / / ... to maintain a specified level of perfor-

mance in cases of the software faults or of infringement of
its specified interface

R3 Recoverability The cap... / / ... to re-establish a specified level of perfor-
mance and recover the data directly affected in the case of
a failure

Usability
U1 Understandability The cap... / / ... to enable the user to understand whether

the software is suitable, and how it can be used for partic-
ular tasks and conditions of use

U2 Learnability The cap... / / ... to enable the user to learn it application
U3 Operability The cap... / / ... to operate and control it
U4 Attractiveness The cap... / / ... to be attractive to the user [visually]

Efficiency
E1 Time Behaviour The cap... / / ... to provide appropriate response and pro-

cessing times and throughput rates when performing its
function, under stated conditions

E2 Resource Utilisation The cap... / / ... to use appropriate amounts and types of
resources when the software performs its function under
stated conditions

12

1.9 Standardisation

Table 1.2: Part 2: ISO-9216

Maintainability
M1 Analysability The cap... / / ... to be diagnosed for deficiencies or causes of

failures in the software, or for the parts to be modified to be
identified

M2 Changeability The cap... / / ... to enable a specified modification to be imple-
mented

M3 Stability The cap... / / ... to avoid unexpected effects from modifications
of the software

M4 Testability The cap... / / ... to enable modified software to be validated
Portability

P1 Adaptability The cap... / / ... to be adapted for different specified enviroments
without applying actions or means other than tose provided for
this purpose for the software considered

P2 Installability The cap... / / ... to be installed in a specified environment
P3 Co-existence The cap... / / ... to co-exist with other independent software in a

common enviroment sharing common resources
P4 Replaceability The cap... / / ... to be used in a place of another specified soft-

ware product for the same purpose in the same environment
All characteristics

AC Compliance The cap... / / ... to adhere to standards and conventions relating
to the characteristic

The most relevant part of this ISO-standard for this report is the part about usability, with
understandability and learnability being the most central for DX. However, all the charac-
teristics are relevant for providing good DX.

This ends the chapter about Background and Purpose. As has been shown, there is a
great need for good DX but it has yet to be standardized by any organisation or researched
thoroughly in any big publication. This emphasis the importance of this report.

13

1. Background and Purpose

14

Chapter 2
Methodology and Preparations

There could have been many approaches in this project to try to find out what people re-
quire from software platforms in order to get a good developer experience. The process
chosen in this research paper was to make a survey followed by interviews to triangu-
late the results. The importance of data triangulation is described by Runeson and Höst
(2008). One of the triangulation methods described in that publication is methodological
triangulation, which triangulates the data by using different types of data collection, e.g.
qualitative and quantitative data. This method is the one used in this report.

First of all it was decided what aspects were going to considered. This was followed by an
initial pilot survey to find what parts to investigate further. Then the main survey was con-
ducted. After that the results were analyzed to find patterns and interesting aspects. This
lead to a series of questions, which was then used when conducting interviews with people
with different experience and job titles. The result from the interviews were put together
and related to the findings in the survey. This finally resulted in a list of recommendation
on what is needed by a software platform in order to give a good DX. Lastly, this list was
used to analyze how well Qlik Core follow these recommendations.

2.1 Deciding consideration aspects
There are a lot of aspects that could have been considered as requirements for good DX.
The first section presents the list of aspects used, followed by a description of how it was
created. It should be said that this list of aspects was revised between the pilot survey, and
the main survey. The list of aspects can be seen in Table 2.1.

The original version of the list contained 14 aspects. They were decided in a combina-

15

2. Methodology and Preparations

tion of reading literature, my own experience of what I would consider when choosing
software platforms, and a brainstorm meeting with more experienced people at Qlik, con-
sisting of an architect and developers. The revision of the list is discussed in Section 2.3.5.

List of Aspects
1 How often the software is updated
2 I can have working code quickly
3 The API documentation gives thorough explanations on how it works
4 The API has code examples
5 The documentation doesn’t assume any prior expertise
6 The documentation has consistent language
7 The documentation is easy to navigate
8 The official website looks professional
9 The pricing of the software
10 The release- and change notes are thorough
11 The software has the same features on all different platforms
12 The software is compatible with different platforms
13 The software is offered in more than one programming language
14* The software is open source
15* The software uses the programming language I am most comfortable with
16 There exists an active online community around the software
17** The creator of the software has good communication with it is users
18** The creator of the software has high transparency with its issues, ways of work-

ing, future plans, etc.
19** The creator of the software seems professional
20** The creator of the software has a good reputation online
21** I have heard of the creator of the software before
22** I have heard of other software the creator of the software has made
*Not part of the first survey, **Not part of the second survey

Table 2.1: List of aspects considered to give good DX

The process of deciding the aspects consisted of three parts: reading literature, self-reflection
and a brainstorming meeting, which each part generated a few of the aspects used in the
end. An overview of the process can be seen in Figure 2.1. The next coming sections talk
in detail about how the aspects were derived.

Jarman (2017) is the source for some of these aspects. One of the points he makes is
the importance of a great documentation. He says the documentation should always be
written as if the developer is a beginner, which lead to aspect ”5 - The documentation
doesn’t assume any prior expertise” in the list. He also says great documentation is con-
sistent, ergo it does not use different words to mean the same thing, which lead to aspect ”6
- The documentation has consistent language”. A third aspect he says is needed for great
documentation is that is has a logical structure, which lead to aspect ”7 - The documenta-
tion is easy to navigate”. The last part he considers important for a great documentation
is verbosity. As he puts it, ”You can never say too much”. This resulted in ”3 - The API

16

2.1 Deciding consideration aspects

Figure 2.1: The process of deciding the aspects to be considered
in this report

documentation gives thorough explanations on how it works”. Jarman also thinks it is
important to have good release notes. He goes on to present what release notes should
consist of. According to him, not only should the release notes consist of the expected,
such as what’s new, updated, deprecated, fixed, etc, but also point out possible risks of the
new release, such as things that might break with it. Although these sub-features of release
notes might be interesting to list as their own aspects, the list had to be kept short and the
aspect that was ended up with was ”10 - The release- and change notes are thorough”.

Jarman also talks about pricing. He puts emphasis on that pricing of the software should
be easy to find for the developer. This was also listed by Every Developer (2019) as an
aspect they consider. During the brainstorming, this aspect was also discussed. The aspect
was ended up with was the somewhat vague ”9 - The pricing of the software”. This was
deliberately chosen to be a somewhat open-ended aspect, since there’s a lot of things that
you can consider around the pricing. The information that was searched for was simply if
pricing was something that was often considered in general. In hindsight, it might have
been better to have divided this into several aspects, since it is difficult to know how the
survey taker interpreted the aspect.

When this short list existed, I sat down and thought of things that I consider myself when
picking software. The list was extended further, with aspects related to API examples,
online community and platform compatibility.

After this, a brainstormingmeeting was held with two senior developers and a senior archi-
tect to further extend the list of aspects. The meeting attendees can arguably be considered
to have expertise within the field, having worked for many years within the industry. The
architect had worked at Qlik for five years, and within the industry for 15 years. He works
mostly with back-end development. He is a very outspoken person with lots of ideas, and
felt like a valuable person to have at the brainstorming meeting. One of the developers is a
fairly new employee at Qlik which had recently moved over to working with web develop-

17

2. Methodology and Preparations

ment. She felt like she could be valuable, having fresh eyes on web platforms. The second
senior developer had extensive experience in both back and front end development and
was also part of the team developing Qlik Core. Since she is part of developing a software
platform and have thus thought about these aspects a lot, it felt natural to include her in
the brainstorming meeting.

Firstly, all three were given five minutes to write down as many aspects as they could
think of. These aspects were then presented in turn and written on a whiteboard. Any
further ideas that the three experts got when they saw the others’ ideas were also added.
I then presented the list I had created myself earlier and the aspects not yet listed were
added as well on the whiteboard. The list was then discussed, as well as the phrasing of
each aspect and the importance of them.

Finally the list contained fourteen aspects, as seen in Table 2.1. Being open source is
pointed out as important by Jarman (2017), and was discussed in the meeting. It was
however not included in the final list. After the first survey was conducted, it was also
pointed out by survey takers as an aspect that they considered. It was then added to the
list to be used in the main survey. The list also contained the aspect of how often the soft-
ware is updated. Linares-Vásquez et al. (2013) researched how the stability of an API, i.e.
change-proneness, impacts the success of software using that API. The study suggests that
software using APIs that are not prone to change were more successful.

Aspect number 15 on the list was added for the main survey as well. The reasoning here
being that the aspect ”13 - The software is offered in more than one programming lan-
guage” felt like it needed a parallel question: ”15 - The software uses the programming
language I am most comfortable with”, to see if the importance of several language was
solely based on the fact that people wanted their favourite programming language.

Robillard (2009) conducted a similar survey as the one being made in this report, which
had more open-ended questions where the respondents would list what obstacles make it
difficult for them to learn an API. This survey found that there were five areas that may
cause difficulties in learning an API. They were ”Resources”: Obstacles caused by inade-
quate or absent resources for learning the API (for example, documentation), ”Structure”:
Obstacles related to the structure or design of the API, ”Background”: Obstacles caused
by the respondent’s background and prior experience, ”Technical Enviroment”: Obstacles
caused by the technical environment in which the API is used (for example, heterogeneous
system, hardware) and lastly ”Proces”: Obstacles related to process issues (for example,
time, interruptions). The most common obstacle were insufficient or inadequate examples,
followed by issues with the API’s structural design and thirdly unspecified issues with the
documentation.

2.2 Linking considerations to ISO-9216-1
As described above, there is no standard for DX. ISO-9216-1 is however a standard to
describe and measure the quality of software, so comparing the aspects to this list can be

18

2.3 Surveys

interesting. In Table 2.2, the aspects are linked to characteristics they relate to. The aspect
ID’s can be found in Table 2.1 and the references to the sub-characteristics can be seen in
Table 1.1 and 1.2.

Table 2.2: Relation between ISO-9216-1 and DX-aspects

A
sp
ec
tI
D

Fu
nc

tio
na

lit
y

R
el
ia
bi
lit
y

U
sa
bi
lit
y

Effi
ci
en

cy

M
ai
nt
ai
na

bi
lit
y

Po
rt
ab

ili
ty

1 R1 M3 P4
2 F1, F2 U1, U2, U3 M2
3 F1, F2, AC AC U1, U2, U3, AC AC M1, AC AC
4 F1, F2, AC AC U1, U2, U3, AC AC M1, AC AC
5 AC AC U1, U2, U3, AC AC AC AC
6 AC AC U1, U2, U3, AC AC AC AC
7 U1, U2, U3, AC
8 U4
9 U1

10 F1 R1 U1 P4
11 P4
12 F3 P1, P2
13 U2
14 AC AC AC AC M1, M2, M4, AC AC
15 F1, F2 U1, U2, U3
16 U1, U2

2.3 Surveys
2.3.1 Reasons To Do Surveys
Surveys are a popular way to collect quantitative data. There are several situations when
surveys, or questionnaires as they are also referred to, are a good method to use when one
wants to collect quantitative data. Denscombe (2010) has described it as a good method
when you are working with data that is of non-sensitive subjects, when the data sources
are spread out and when the data pool is big. He also states that questionnaires are a
good way to collect data of both factual nature, as well as opinion-based. Denscombe
goes on to say that a questionnaire is likely to contain collection of both of these kinds
of data and that it is important to make it clear to the person taking the questionnaire
whether or not the question is asking for an opinion, or a ’fact’. Since this research project
concerns itself with a mixture of both factual data, such as people’s work experience, job
titles and responsibilites, as well as opinion-based data relating to developer experience,
questionnaires are a good methodology to use.

19

2. Methodology and Preparations

2.3.2 Construction of a Questionnaire
Denscombe (2010) has a section where he lays out the vital parts of a questionnaire. Ac-
cording to him, a questionnaire should always contain the following parts.

• The Sponsor - Clearly state who this questionnaire is from and for.

• The Purpose - Why is this questionnaire being made and for what will the data be
used. He warns however that one should not go into too much detail, as to lead the
questionnaire taker into answering in a certain way.

• Confidentiality - Assert the questionnaire taker that the data collected will not be
publically available or be directly linked to the him or her, if him or her so not wishes.

• Voluntary Responses - Convey that the questionnaire is completely voluntary to
take.

• Thanks - Make sure to extend your thanks to the questionnaire taker for voluntarily
taking the questionnaire.

Denscombe (2010) also states that there is no good, defined number of questions that
should exist in a questionnaire. However, it should be as brief as possible. He warns
of trying to ask too many questions, for anything that might be important. This is not a
good approach. A questionnaire constructor should always try to keep the scope as tight
as possible. He gives four tips for when trying to do this.

• Only ask questions that are absolutely vital for the research

• Proof-read to make sure you do not ask any duplicate questions

• Make it as fast and easy as possible to answer the questionnaire

• Have a test-round for your questionnaire

Furthermore, Denscombe (2010) stresses the importance of the phrasing of questions and
knowing your target audience. He gives a comprehensive list of things to think of when
doing this. Some key parts are that using words that are suitable for your target audience,
avoid leading questions and make sure to include sufficient alternatives. He also puts em-
phasis on the ordering of questions. He states that ”easy” questions, that don’t require
much consideration from the questionnaire taker (Such as job title) should come early in
the questionnaire.

In his book, Denscombe (2010) also talks about consistency in how you state your ques-
tions. There are pros and cons of using a variety of style for your questions, according to
Denscombe. He suggests that using a variety of styles will stop the questionnaire taker
from becoming bored, and also stops them from falling into a pattern, where they simply
answer the same way every time without considering the question. The upside of using the
same question style is that it will make the questionnaire taker used to how the questions

20

2.3 Surveys

should be answered and limits the likelihood for confusion.

The first questionnaire had a mixture of question style whereas the second one had a more
standardized style for the questions. The reasoning for this is discussed in Section 2.3.5.

2.3.3 Making a Test Questionnaire - Survey 1
In the early stages of the research project, it was still not decided what part of DX should
be thoroughly researched. A test-survey was therefor constructed with what was known
to be a very broad scope. The goal of the survey was not to collect useful data per say, but
rather to find what sub-field of DX was interesting to pursue. The goal was also to see how
well defined the list of aspects was (see Table 2.1), if there were better ways of phrasing
the questions and if people even knew what developer experience was. The survey was
only sent internally to people working at Qlik. I was weary of Denscombes warning that
people are hesitant to do more than one survey, but knew that the main survey would be
much later. I also made sure, when the survey was sent out, to keep the tone casual to
only catch people whom were actually interested in taking this survey, to ”save” the more
hesitant people for the main survey, hoping that the interested people might take the main
survey later as well. A last step to prevent this feeling of ”Only having one shot” was
to only keep the survey open for 24 hours. The questions in the survey concerned how
people find new software, what they consider when choosing software, if there are any
deal breakers for them when choosing a software platform and if they had heard of the
concept of DX. The The survey can be found in appendix A.

Survey 1 Subjects, Questions and Takeaways
As stated before, the scope was kept very broad. The survey consisted of three main parts:
Background information, how developers find new software and lastly their relationship
to DX around software. Both close- and open-ended questions were mixed in this survey.
From this, two things were found:

1. More aspects suggestions of things to consider around DX and how people find new
software.

2. The process needs to be more streamlined in the main survey with close-ended ques-
tions to more easily be able to compare the data.

Exploring how people find new software would have been interesting, but the directly
DX-related questions onwhat peoplewant from a softwarewasmore interesting to research
further. The test survey also found that the majority of developers had not heard of the
concept of ”Developer Experience” before, or could not define it.

2.3.4 Follow-up Interview to Survey 1
After the results from the initial survey had been evaluated, two follow-up interviews were
conducted in order to get insights if there were any issues with the survey. Results from the

21

2. Methodology and Preparations

research are not normally presented in this section. However, as the results of the follow-
up interview affected how the main survey was constructed, some results will be presented
here right away anyway.

The overall takeaway from the interviews was that mindset, context and definitions was
a concern. The two interviewees realized during the interview that they had not given
consistent answers, due to having thought of different situations for different survey ques-
tions. The survey also used technical jargon, that while it had been explained in the survey,
had not been read by the interviewees. This leads to questioning the integrity of the data
collected in the first survey, since one cannot know if the survey takers had used their own
understanding of the jargon, or read the definition given in the survey. During the two
interviews some questions were discussed as well as being too open-ended to be answered
with close-ended alternatives. Lastly, the interviewees had an issue with the questions
having too little context. As stated by one of the interviewees, ”Well, it depends on the
context.”, was the answer to a lot of the survey questions according to him. He stated that
it depends if he is working on a hobby project, or professionally. He also stated that it
depends on if he’s the only one that will use the platform, or if his co-workers will as well.

Takeaways from Follow-up interview
Some takeaways are that the context is key to many of the questions that are trying to
be asked, and it needs to be clearly stated in the main survey. Another insights is that it
needs to be confirmed that the survey taker has read the definitions of certain jargon to
give comparable data when analyzing the results. Lastly, a context given by an example
would be good to have, to put all the survey takers in the same mindset.

2.3.5 Making the Main Questionnaire - Survey 2
Having made a pilot survey and a follow-up interview, the main survey for the research
project was ready to be constructed. When the second questionnaire was constructed, it
was sent out internally on Qlik and shared on Qlik’s official twitter, which is followed
mainly by customers of Qlik. This is discussed further later in this chapter.

The questionnaire can be seen in Appendix B.

Re-scoping and Changes
Overall, the width of the project had to be scoped down, and some things had to be dropped
from exploration in the project. The first survey found that the creator behind a software
was less considered than had been anticipated. Although it would have been interesting to
explore, the decision was to drop these questions for the main survey. The questions about
how they find new software and how long time they spend on this was also be dropped
from exploration. The re-scoped focus of the main survey instead became what develop-
ers are considering when looking at software platforms.

It was clear that most people had not heard of, or were not sure about, what developer

22

2.3 Surveys

experience was. The main survey therefor included an even more comprehensive defini-
tion of exactly what DX is. The follow-up interview made it clear that people may skip
texts about definitions and context, which lead to the change of making these texts more in
focus and even having confirmation questions, assuring that they had indeed read the text.

With the need for more context, three different situations were defined.

Group: - When working professionally and choosing a software platform for a
group of people.

Single: - When professionally choosing a software platform solely for yourself.

Hobby: - When working non-professionally on a hobby project.

From now on, these three situations will be referred to as ’Group’, ’Single’ and ’Hobby’.

As many of the questions as possible were made close-ended to give easily comparable
data. In the first survey there was also the very broad phrase of referring to ”Tools and
Framework”. This term felt too broad, and since Qlik Core is a software platform, in the
end people’s thought around only this concept was pursued.

Furthermore, when extending the questioning around software considerations, it was split
it into two parts: How often they consider something, as well as how it affects them emo-
tionally, since this is more central to how DX is measured. Lastly, as mentioned before,
two new entries were added to the list of aspects (See Table 2.1).

Survey 2 Structure
The survey consisted of three parts:

Part 1: Background - A screener around who the survey taker is.

Part 2: Software Considerations - A three-part section around of how often they
consider the different aspects when choosing a software platform

Part 3: Developer Experience - A two-part section around how likely the different
aspects are to cause a positive/negative feeling

This first part of the survey contained definitions and explanations. It also consisted of a
background-check of whom the respondent was, asking questions like job title, years of
experience and size of the company he/she is working at. It also had a question on whether
or not the respondent was in a position to make decisions on what software other people
would use. This question was relevant out of two reasons. The first was to be able to
have data on whether or not decision makers have other priorities. It also made sure that
non-decision makers would not answer the part about the context of ’Group’, since they
did not have the authority to make those decisions anyway.

The second part of the survey focuses on what people consider when choosing a soft-
ware platform. This part was divided into the three contexts Group, Single and Hobby.

23

2. Methodology and Preparations

The questions were the same in these three parts, the only difference was the context given.
The question was:

”When <context>, which of these traits or aspects do you usually consider
when using a software platform?”

The respondent would then rank each aspect (see Table 2.1) on a scale. They had the
following alternatives.

- Never consider

- Rarely consider

- Sometimes consider

- Often consider

- Always consider

The last part of the survey focused on developer experience. It had two sub-parts, how
likely a factor is to cause them to leave an interaction with a software platform with a posi-
tive feeling, and how likely a factor is to cause them to leave an interaction with a software
platform with a negative feeling. The question were closely linked to the questions asked
in the consideration part, but focused on the feeling rather than if they usually consider
the factor when choosing a software platform. For this section, the survey takers had to
consider the following questions, asked twice with one version being POSITIVE and the
other being NEGATIVE.

On a scale from 1 - 5, how important is it that these aspects exist in order for
you to leave the interaction with the software platform with a <POSITIVE
/ NEGATIVE> FEELING?

The survey taker was then presented with the following alternatives:

1 - Not very important

2 -

3 - Neutral

4 -

5 - Very important

So to put it more clearly, one example could be: "If the software platform was open source:
on a scale from 1 - 5, how likely are you to leave the interaction with a positive feeling?".
The same question was then asked again, in it’s opposite form: "If the software platform
was not open source, on a scale from 1 - 5, how likely are you to leave the interaction with
a negative feeling?".

In this paper this type of question will from now on be referred to as ”DX Impact”, in
reference to an aspect having a certain amount of positive impact on developer experience
if it exists, and a certain negative impact on developer experience if it does not exist.

24

2.3 Surveys

Implications of Data Pool

The survey was sent out internally to Qlik employees. It was also shared with customers
of Qlik through their twitter account. This is a quite homogeneous group of people, all
working with a certain type of software. While this could be seen as concerning for the
data, it was decided that a wider audience than this should not tried to be reached. The
reasoning behind this was that there were no reliable or guaranteed way of widening the
data pool by any big numbers. However, if the survey was to be shared online and ask
’random’ people to answer, one could not know who is answering. By keeping it limited
to these two sources, one can have control of who are in the data pool and can take this
into account when drawing conclusions.

Analyzing Survey 2

With all the questions, a part from people’s job title, being close-ended it was quite easy to
streamline and compare the data collected from the survey. The data was loaded into Qlik
Sense, which made it easy to find patterns and insights of the data. In order to compare
the questions where people had to choose alternatives on a scale, each answer was given a
number of points, see Table 2.3. This was based on Denscombe (2010, p. 243) description
on how to compare ordinal data. The decision to make it go between 0.00 and 1.00 was
arbitrary, the importance is that the distance between the numbers are equal to make them
comparable.

Table 2.3: Scaled answers and their given points when analyzing
the data

Answer Points
Never Consider 1 - Not very important 0.00
Rarely Consider 2 0.25
Sometimes Consider 3 - Neutral 0.50
Often Consider 4 0.75
Always Consider 5 - Very important 1.00

Comparison of Different Types of Questions

In the main survey there was one section with consideration questions, and one section
with DX-related questions. These were closely related, but some differ in what they are
asking. In Table 2.4 and Table 2.5 all the questions grouped together. Themost noteworthy
differences between DX-question and consideration question is the pricing of the software,
where the consideration question is very broad whereas the DX-question specifically asks
how easy it was to find the price. Another question that differs is the broad consideration
question of how often the software is updated, whereas the DX-question specifically asks
about how quickly the software addresses bugs.

25

2. Methodology and Preparations

Table 2.4: Part 1: The questions asked in the main survey,
grouped by aspect category.

AMOUNT OF PROGRAMMING LANGUAGE OFFERS
The software was offered in more than programming language P
The software was only offered in one programming language N
The software is offered in more than one programming language C

ONLINE COMMUNITY
The online community was helpful with up-to-date discussion threads P
The online community was not helpful and the discussion threads were out-of-date N
There exists an active online community around the software C

RELEASE NOTES
The release notes for what’s new/updated/deprecated/etc in an update were well-
written

P

The change- and release logs for what’s new/updated/deprecated/etc in an update
were poorly written

N

The release- and change notes are thorough C
DOCUMENTATION LANGUAGE CONSISTENCY

The documentation had a consistent language, not using different words to mean
the same thing

P

The documentation did not have a consistent language, using different words to
mean the same thing

N

The documentation has consistent language C
DOCUMENTATION NAVIGATION

The documentation was easy to navigate P
The documentation was hard to navigate N
The documentation is easy to navigate C

PLATFORM COMPATIBILITY
The software was compatible on different platforms P
The software was compatible on only one platform N
The software is compatible with different platforms C

BEING OPEN SOURCE
The software was open source P
The software was not open source N
The software is open source C

OFFICIAL WEBSITE LOOK
The official website looked professional P
The official website did not look professional N
The official website looks professional C
P: Positive DX Impact Question
N: Negative DX Impact Question
C: Consideration Question

26

2.3 Surveys

Table 2.5: Part 2: The questions asked in the main survey,
grouped by aspect category.

DOCUMENTATION PRIOR EXPERTISE
The documentation did not assume that I had any prior expertise with the software,
not referencing software-specific things without explaining them

P

The documentation assumed I had prior expertise with the software, referencing
software-specific things without explaining them

N

The documentation doesn’t assume any prior expertise C
FEATURES ON ALL PLATFORMS

The software’s features existed and acted the same on different platforms P
The software’s features did not exist or acted differently on different platforms N
The software has the same features on all different platforms C

UPDATES
The software quickly released updates to address bugs P
The software was slow to release updates to address bugs N
How often the software is updated C

WORKING CODE QUICKLY
I could quickly have working code when starting from scratch P
I took a long time before I had working code when starting from scratch N
I can have working code quickly C

API DOCUMENTATION THOROUGHNESS
The API was thoroughly explained so that you could understand how it worked P
The API was poorly explained so that you could not understand how it worked N
The API documentation gives thorough explanations on how it works C

API CODE EXAMPLES
The code examples for the API were good P
The code examples for the APIs were bad N
The API has code examples C

FAVOURITE PROGRAMMING LANGUAGE
The software used a programming language I am skilled in P
The software used a programming language I am not very skilled in N
The software uses the programming language I am most comfortable with C

SOFTWARE PRICING
The pricing of the software was easy to find P
The pricing of the software was hard to find N
The pricing of the software C
P: Positive DX Impact Question
N: Negative DX Impact Question
C: Consideration Question

27

2. Methodology and Preparations

2.4 Interviews
2.4.1 Reasons to do Interviews
There are several reasons why interviews are a suitable method use in this research project.
The quantitative data collected by the two survey gives a good idea of what is needed, but
does not answer why it is needed. Interviews will therefor give a depth to the quantitative
data that has been collected. Denscombe (2010) recommends using interviews as a follow-
up to questionnaires. As he puts it, questionnaires can generate some interesting results
that interviews can pursue in greater detail and depth. He also states that interviews should
be seen as a good way to corroborate data found with other methods. By using interviews,
one can triangulate data collected by the questionnaires to confirm the facts once more
with another approach. Furthermore, Dencsombe talks about interviews being well-suited
for certain kinds of data. He gives three main data types when interviews are a good
method, two of which are applicable to this research project. The first reason is when
data is based on emotions. DX is, as described before, based on the feeling of a good
interaction, something that is hard to get a understanding of through surveys. The second
reason given by Denscombe is when you have access to ’key players’ with in a field. That
is, when you have the possibility to interview people that have great insight into a field,
interviews are a good way to collect that data. With these interviews, one have access to
people of different experience, job titles and level of decision power. By doing interviews,
one can get an understanding of why different job titles desire different things, why more
experienced people want certain aspects and why persons with a lot of decision power
within a company have needs that others do not.

Interview Instead of Observation Study
An observation study was discussed as a method to be used to evaluate DX. This type of
data collection is presented in Denscombe (2010, pp. 196-215). When evaluating UX,
observation studies are used to see how people interact with software. It is mainly used
to see if an UI is intuitive. The conductor of the research (the observer) let’s a user (the
observed) interact with a piece of software. Meanwhile, the observer asks non-intrusive
questions, such as ”What are you thinking now?” and ”What do you expect to happen
when you click this?”. The observations, such as how long people are stuck or if they
made any assumptions that were not expected, are written down. A discussion around
this approach for evaluating DX as well was had. However, when diving deeper into what
could be observed, it was found that this approach was quite limiting. Documentation
navigation, consistency, examples and deception thoroughness could be explored with an
observation study, whereas the other aspects would be more difficult to explore with an
observation study. Since interview had no limitations on what could be explored, it was
decided that this approach was superior.

2.4.2 Interview Decisions
There are several things that had to decided when interviews were to be conducted. This
included what type of interview style was to be used, what structure the interview should

28

2.4 Interviews

have, what subjects should be explored and what questions should be asked.

Interview Style
There are many different ways of conducting interviews. Denscombe (2010) groups it into
three different approaches: one-on-one interviews, group interviews and focus groups.
These methods all have pros and cons.

One-on-one interviews are easy to arrange, since only two people’s (Interviewer and inter-
viewee) schedules have to coincide. Compared to group interviews and focus groups, it is
also easy to control the interview, dive deeper into questions when needed and it is easy
to link the results to the specific person.

Group interviews have advantages as well. It helps to find what a consensus around a
topic is, where people’s opinions can be challenged right away by other group members.
There are also risks of group interviews, where ’quieter’ people may be silenced by mem-
bers of the group who are more dominant. Group interviews are also less suited for topics
where some answers that are more ’accepted’ than others.

Finally, focus groups is quite similar to group interviews. The major difference is in the
moderation, where group interviews is closer to one-on-one interviews where the inter-
viewer asks the group very specific questions, whereas in focus groups the participants are
less moderated and discuss more amongst themselves. Focus groups have the same issues
as group interviews does. It also requires a more skilled moderator, since focus groups is
more of an ongoing discussion of experts within a field, that can easily get out of hand if
the moderator does not know how to steer the group. Transcribing focus groups are also
more challenging since it is natural that people talk over each other. Linking opinions to
certain people may also be harder when everyone’s statements are blurred together. Focus
groups is pointed out by Kontio et al. (2004) as a very cost efficient and quick method for
collecting this type of data. That article however also warns that focus groups requires a
lot of planning and instrumentation. If it lacks this, it may result in biased results.

For this research project, one-on-one interviews were chosen. The disadvantages of them
are small, and one the most challenging things about the interviews is finding time to ar-
range them. It was not feasible to try to find enough people for a group interview where
everyone’s schedules could coincide.

Interview Structure
Dencsombe describes three different types of interviews: structured, semi-structured and
unstructured interviews. Structured interviews are much like questionnaires, where the
interviewer holds a tight grip on the interview and does not expect free form answers.
Structured interviews looks to standardize the results for easy comparison. This interview
structure is more for ’checking’ rather than ’discovery’ and is therefor more of a quantita-
tive data collection rather than qualitative.

29

2. Methodology and Preparations

Semi-constructed interviews has, just like constructed interviews, a clear set list of ques-
tions. However, in a semi-structured interview, the interviewee is not presented with yes
or no questions, or questions with alternatives. The questions are instead open-ended. As
described by Denscombe (2010), the interviewee is expected to develop their own ideas
and speak widely about the given issue or question. Here, the emphasis is more on ’dis-
covery’ than checking.

Unstructured interviews is the third alternative and is the loosest of the three styles. With
this structure, the interviewer wants to get the interviewees general thoughts on a subject
or issue and tries to be as unobtrusive as possible. As described by Denscombe (2010),
the interviewer presents a specific issue or subject and hopes to get a ball rolling. Semi-
constructed and unstructured exist on a continuum. The more open-ended the questions
are, the more you move from semi-structured to to unstructured.

For this research project, the style of semi-constructed was used. The goal is to discover
new things, rather than check and confirm, which removes the option of a structured inter-
view. However, there is a very clear set of questions that need answers.

2.4.3 Interview Subjects
There are many things that be explored for these interviews. Due to limited time, it had to
be narrowed down to a few subjects. The results of the survey will presented in Section
3.2, but they served as a basis for choosing interview subjects. The three subjects that were
chosen are related to release notes, APIs and online community.

Release notes is noted as a very important aspect by literature, but the survey results
showed that this is one of the least considered aspects. It was therefor decided to be futher
explored.

The API documentation, examples and quick-working code were pointed as the most im-
portant aspects by the surveys. Therefor they were decided to be explored more.

The last subject that was chosen to be explored was online communities. This is personally
a very important aspect, which I was interested in exploring more.

2.4.4 Interview material
I concluded, after discussion with mentors, that it would be good to have reference points
during the interviews, that there should be some material that the interviewee could use
when talking. It was discussed using some API documentation and release notes from
existing software platforms, more precisely Qlik Core. However, Qlik Core is a very ad-
vanced platformwhich takes a long time to grasp. Since the interviewees have limited time
to put aside for the interviews, it seemed like making them read and understand documen-
tation of a whole new software platform was too much to ask. Instead an API documen-
tation and release notes for a made up software platform called ’MyBakery’ was created.
Everyone already have a good mental picture of how a bakery works, so even if you give

30

2.4 Interviews

them limited amount of documentation they still have a mental picture of what this soft-
ware platform does. To make the request of making them read documentation less boring,
I tried to make a gamification of the task. The interviewees were given the material, and
three questions they needed to answer. This forced them to understand the material, rather
than just read through it. The material can be seen in appendix C.

2.4.5 Interview Questions
Ultimately, the question that needs to be answered is ”Why are the aspects needed or not
needed to give a good DX and what happens if they do/do not exist or are poorly/well
implemented?” The questions for the interviews were constructed to be able to answer
this question. Since the interview is semi-constructed, all questions will not necessarily
be asked. Depending on how the interviewee answer, some questions may already have
been answered, some questions may be uninteresting to dive into, etc.

A - APIs
For theAPI documentation, API examples and to haveworking code quickly, it was already
known that it was important. It was not very surprising that it was. For this, the goal was
rather trying to understand how one can define ”good” API related things.

AA General

AA1 How important would you say API documentation and examples are?

AB Api Documentation

AB1 When you look at API documentation, what are you usually looking for?
- What should the documentation look like?
- Is there anything in the material you always look for, or something that is
missing?

- When you come across an API documentation, are there any red flags you
look for?

AB2 How does the API documentation quality affect you in your work?
- Do you abandon a software platform if the documentation is poor?

AC Api Examples

AC1 What is your goal when looking at API examples?
- For copy-pasting?
- To understand underlying structure?
- To simply see how it is used?

AC2 What should API examples look like?
- Short examples or long examples?
- Should it be runnable or concise?

31

2. Methodology and Preparations

- Within a big context or concise?

AC3 How does the API examples quality affect you in your work?

- Do you abandon a software if the examples are poor?

AD Working Code Quickly

AD1 Is it important for you to have working code quickly?

- Why is it/is it not?

AD2 When can you accept to not have working code quickly?

AD3 Can you have working code quickly if the API examples and documentation is
bad?

B - Release Notes
For release notes, it is known through the survey that they are not considered. The ques-
tions have been divided into three groups: ”When are [release notes] needed” and ”What
should [release notes] look like?”. A final question to see if the interviewee had any ideas
about anomalies in the surveys was also asked.

BA BA - When are they used?

BA1 How often do you look at release notes?

BA2 In what circumstances do you look at release notes?

- Do you look at release notes before deciding to use a platform?

BA3 What do you look for when looking at release notes?

BB What should they look like?

BB1 Would you say it is important that software platforms have release notes?

- Do you find that information in some other way?

BB2 How detailed should they be? / What should they look like?

- How important is it for you that the release notes are thoroughly written?

BB3 Is it worth a company’s time to make thorough release notes?

BB4 How do poor release notes affect you?

BC Survey Anomaly

BC1 Release notes is ranked as the least, or amongst the least important aspect for
all groups. Why do you think that is?

32

2.4 Interviews

C - Online Communities
For online community, the goal is to try and understand why it was ranked so differently
in the two surveys. A goal is also try to understand why, in general, an online community
matters.

CA General

CA1 When talking about software platforms, what is an online community to you?
CA2 If the documentation was flawless, would you not need an online community?

CB When are they used?

CB1 How often would you say you take help from online communities?
CB2 Do you check out the online community before choosing a platform?

CC What should it look like?

CC1 What do you want from an online community / what should it look like?
- How important are online communities?
- What do communities that you like have in common?
- Is it important that a community feels alive?
- Is it important the community feels helpful?
- Is it important that the tone used in the community is positive?
- Is it important that the company behind the software are part of the com-
munity?

CC2 If we compare software platforms to something smaller, such as a library.
Would you say it is more important or less important to have a software com-
munity around it?

- Why is it more/less important?

CD Survey Anomaly

CD1 In the first survey, having an online community was ranked as the second most
important aspect. In the second one, it’s ranked in the middle. Why do you
think that is?

2.4.6 Analysis of Interviews
After all the interviews had been completed, they were transcribed from auditory format
into text form manually. Each statement from the interviewees were coded with what
topic was being talked about and what question they were answering with that statement.
Once this had been done, each question in Section 2.4.5 was looked at. By having all the
statements coded, one could quickly see what each interviewee had answered for every
question. The answers for each question from the different interviewees was then sum-
marised, to try to get an overview of what the the concerns around each topic was. Any
anomalous answers that went against the other interviewees answers were also noted. The
results of the interviews were then summarised in Section 3.3.

33

2. Methodology and Preparations

2.5 MakingRecommendations for Software
Platforms

Using the results from the surveys and the interviews, this report gives recommendations to
software companies making software platforms. The result for each aspect is summarised,
and then given a result where it is presented how important the aspect is to a software plat-
form, how big of an effort it is to make a software platform have the aspect, and how big of
a payoff it is for a company to implement the aspect. The importance of the aspect is based
on combination of the effort and payoff. The effort to make the software platform have the
aspect is estimated, and the payoff is based on a combination of the scores it got from
the results in the surveys and interviews. The importance is scored on a scale from ”Not
important”, ”Not very important”, ”Somewhat Important”, ”Important” and ”Very Impor-
tant”. Payoff and effort is scored on a scale from ”Low”, ”Low-Medium”, ”Medium”,
”Medium-High”, ”High”. Each aspect is also presented with a recommendation on what
a software company making a platform should do with the aspect.

2.6 Evaluating Qlik Core
One of the goals for this research paper is to evaluate how good of a software platform Qlik
Core is. In section 3.4, the recommendations I have for companies who provide a software
platform is presented. These recommendations served as a basis for evaluating Qlik Core.
I went through each aspect and determined how well Qlik Core followed the recommenda-
tions given. I discussed in what ways QC does, or does not, follow the recommendations
and what issues it had. Finally I gave a verdict of either ”Needs to be changed” or ”No
need for change”. In the case of giving the verdict ”Needs to be changed”, I presented
what needs to be done in order to get a passing grade. After it all a summation is given in
Table 3.16. If the aspect is passed, the score of aspect is counted, otherwise the aspect gets
0 points. The sum of points is divided by the total possible points to give a score between
0.00 and 1.00.

Sum of points from passed aspects
Sum of points from all aspects

= Score

The results were viewed from different groupings, which is discussed later in this paper.
The groupings had a different number for the maximum scoring, and the result had to be
put into an interval so one could compare them. The interval of 0.00 and 1.00 was chosen
as it can be seen as a percentage of many of the total possible points each grouping scored,
with 0% being no points scored and 100% being that they passed all aspects.

34

Chapter 3
Results and Discussion

3.1 Initial Survey
Although the first survey only was a pilot version, it can be interesting to briefly evaluate
the results of it. There were also things asked in the first survey, that was not in the main
one. The survey got 38 responses in total. Initially it was intended to look at the outcome
from four different perspectives, and compare them to the overall group. Perspective in
this context means grouping the respondents by some common denominator. The four
perspectives were:

People with more than 5 years experience in the industry

People who are developers within the industry

People who are architects within the industry

People in companies with more than 200 employees

The last perspective with the larger companies was removed from the report since the
majority of all answers were from Qlik, and the group was therefor a too big majority of
the whole group.

The survey found that the majority of people do not know what DX is. In Table 3.1
we can see how many people felt they could define DX. It can be seen that it is quite an
unknown term. Almost half of the respondents had not heard of it, and only 7.9% felt they
fully knew what it was.

35

3. Results and Discussion

Table 3.1: Percent of people who knew what Developer Experi-
ence was.

Have you heard of the term ’Developer Experience’?
Answer Percent
Yes, and I could comfortably give a definition of it 7.9%
Yes, and I think I could give a definition of it 21.1%
Yes, but I could not give a definition of it 18.4%
No 47.4%
I don’t know 5.3%

3.1.1 Consideration Factors

The scores from consideration question in the first survey in Figure 3.1. The table is di-
vided into the different perspectives. ”Everyone” is simply the average result, ”Experi-
enced” is people with more than 5 years of experience in the industry, ”Developers” are
those who had the job title of developer or software engineer, and ”Architects” are those
who were some for of software architect. The score columns are coloured from green, to
yellow, to red, with a higher score being green and a lower score being red. The columns
for the difference between the perspective and the average are coloured with an increase
of more than 0.05 being green, a change of 0.25-0.49 being yellow, a change of 0.00-0.24
being white and a decrease of more than 0.05 being red. As we can see, all but 3 factors
scored equal to or above 0.50 points, meaning that they were factors that were more often
than not considered.

36

3.1 Initial Survey

Figure 3.1: Scores from consideration aspects in survey 1, di-
vided into different perspectives.

If we start by looking at the software consideration aspects, we can see that the most
important factor was ’The API has code examples’, followed by the importance of an ac-
tive community around the software, and thirdly that the API explanations were thorough.
The least two important factors were ’The documentation has consistent language’ and
’The release- and change notes are thorough’. This is an interesting find, since literature
highlights these to factors as being very important. Many companies also spend a lot of
resources to keep documentation consistent and release notes thorough. Here we see that
most people, more often than not, do not consider this factor.

For the more experienced users, the result differ somewhat when compared to the ’Ev-
eryone’ group. They take less consideration to factors surrounding APIs, documentation
and time to get started, and care more about pricing, cross-platform compatibility and the
thoroughness of release notes.

With the group consisting of mainly developers, we see almost the inversion of some trends
in the more-experience-group. The developer group cares about documentation and time-
to-get-started, and do not care about release notes and cross-platform compatibility.

Looking at the part about the creator behind the software, we can deduct a few things.
Overall, the creator behind the software seem to be not completely non-important, but

37

3. Results and Discussion

also not very important, with all factors scoring close to 0.50. The most commonly consid-
ered factor was that the creator seemed professional, but that only ranked 0.63 on average.
The least considered factor was ’I have heard of the creator of the software before’, which
ranked only 0.39.

With the more experienced users, they considered the factors even more rarely than the
’Everyone’ group, apart from transparency, which increased slightly. Still, the scores are
close to 0.50, and the creator once again seem to be only a somewhat important factor.

With the group consisting of only developers, it is much the same as before, with the
one exception that ’I have heard of the creator of the software before’ had an increase by
10%. It is however still the least considered factor.

3.1.2 Deal Breakers
The first survey also had a section of what they considered to be a deal breaker for trying
out a new software. In Table 3.2 we can see the result of this.

Table 3.2: Percentage of people who found aspects to be a deal
breaker

Aspect
70% I have to pay to be able to fully evaluate the software
65% It takes a long time to get initially started
65% The API is poorly explained
62% The API has poor or no code examples
59% The online community around the software is dead or has little activity
27% The creators behind the software feel like they cater to businesses, not developers
27% The online community around the software is unappealing
16% The website for the documentation is hard to navigate
11% The documentation uses inconsistent language
11% The software is not open source
8% The creators behind the software are not transparent
8% The documentation assumes prior experience with the software
3% The release notes are poorly written

As we can see many of the aspects that people consider when choosing a software is
also a deal breaker if it is poorly implemented. A very clear result from this part is that
most people are not willing to pay for a software before they can try it out.

3.1.3 Ways of Finding New Software
In the test survey there was also a part about how people find new software. The answers
can be seen in Table 3.3. As we can see, the most common way of finding new software is
either through people you know, or online discussions. Since people spend the majority of
their working time online and with coworkers, this is quite a natural result. Conferences

38

3.2 Survey 2 Results

and online courses are not part of people’s daily lives in the same way, and naturally it is
not a common source of new discovering new software.

Table 3.3: The most common ways of finding new software

How do you usually discover new tools and frameworks?
Answer Percent
Friends or coworkers telling me about it 86.8%
Online communities and forums 86.8%
Reading blog posts or articles 55.3%
Searching for related key words online 50.0%
Social media 34.2%
Conferences 26.3%
Online Courses 13.2%

3.2 Survey 2 Results
There are many ways you can view the results. In the research it has been looked at from
many different angles, and compared with different groups.

In total, the main survey yielded 39 responses. The results were loaded into Qlik Sense
where one could find different groups and patterns. The results were looked from the
overall average result, result depending on your job title, result depending on how much
experience you have in the industry and if you have the authority to make decisions of
what software a group of people will use.

The job titles were divided into four groups: Architects, Developer and Engineers, Man-
agers and Other. The quantity and percentage of total can be seen in the Table 3.4. The
”Other” group consisted of a CTO, a Product Designer, a Head of Consulting and Devel-
opment and a Principal Consultant. This group of people will not be investigated in the
results.

A summary of how the different job titles ranked the aspects can be seen in Table 3.5.
The ranking is based on how many points they received. Having an interval as ranking
means that several aspects had the same score and are in joint places.

Table 3.4: Main survey responses grouped by job titles

Grouped Job Titles # of answers % of total
Architects 10 25.6%
Developer and Engineers 21 53.8%
Managers 4 10.3%
Other 4 10.3%

39

3. Results and Discussion

Table 3.5: List of aspects with their ID, and points and rankings
of aspects, grouped by job title

Aspects with their ID
1 How often the software is updated
2 I can have working code quickly
3 The API documentation gives thorough explanations on how it works
4 The API has code examples
5 The documentation doesn’t assume any prior expertise
6 The documentation has consistent language
7 The documentation is easy to navigate
8 The official website looks professional
9 The pricing of the software
10 The release- and change notes are thorough
11 The software has the same features on all different platforms
12 The software is compatible with different platforms
13 The software is offered in more than one programming language
14 The software is open source
15 The software uses the programming language I am most comfortable with
16 There exists an active online community around the software

Scores and rankings

A
sp
ec
tI
D

Ev
er
yo
ne

Ra
nk

Av
g
Ev

er
yo
ne

A
rc
hi
te
ct
sR

an
k

A
rc
hi
te
ct
sS

co
re

D
&
E*

Ra
nk

D
&
E*

Sc
or
e

M
an
ag
er
sR

an
k

M
an
ag
er
sS

co
re

O
th
er

Ra
nk

O
th
er

Sc
or
e

4 1 0.90 1 0.92 1 0.91 1 0.79 1-2 0.94
3 2 0.82 3 0.82 2 0.87 3 0.73 4 0.74
2 3 0.80 2 0.85 4 0.80 4-5 0.71 1-2 0.94
9 4 0.80 5 0.76 3 0.84 2 0.75 3 0.85
15 5 0.68 6 0.69 5 0.73 6-7 0.63 5 0.69
14 6 0.68 4 0.77 6 0.69 8 0.60 8 0.58
16 7 0.65 8 0.63 7 0.67 9-11 0.54 6 0.65
7 8 0.60 7 0.66 8 0.61 12 0.52 10 0.52
8 9 0.60 9 0.63 10 0.56 4-5 0.71 12 0.44
12 10 0.58 10 0.58 11 0.52 9-11 0.54 7 0.59
1 11 0.58 11 0.52 9 0.57 6-7 0.63 11 0.51
5 12 0.47 13 0.47 13 0.44 9-11 0.54 9 0.52
11 13 0.46 14 0.41 12 0.45 13-15 0.44 13 0.42
6 14 0.41 12 0.49 14 0.34 16 0.42 14 0.39
13 15 0.36 15 0.37 15 0.31 13-15 0.44 16 0.23
10 16 0.33 16 0.26 16 0.29 13-15 0.44 15 0.35
*D&E: Developers and Engineers

40

3.2 Survey 2 Results

3.2.1 Overall Result
Overall, there were quite a lot of interesting findings when analyzing the results from the
main survey. In general, people are more likely to consider things when they are choosing
for a group rather than for themselves. For the three categories, Single is the closest to the
average result, with Group and Hobby existing as opposites on either side of Single. In all
but one case, if it is often considered when choosing for a group, it is not often considered
when choosing for a hobby project, and vice versa.

For the part of the survey regarding DX and people’s feelings around software platforms,
it can be said that there is a direct correlation between if an aspect in it is good form has a
positive impact, that same aspect in its bad form will have about the same level of negative
impact. However, in all but once case, the positive effect is greater than the negative effect,
if only slightly. In general it is closely related to how often something is considered. That
is to say, if something will cause someone to have a non-neutral feeling regarding an as-
pect, they will also consider it when choosing a platform. Tahat is, there is no uncoupling
between what causes them to have a good DX, and what they consider when choosing a
platform. There are some outliers to this, but that is the general case.

The top three most considered aspects for each context can be seen in the Table 3.6.

Table 3.6: Top 3 considered aspects by each context

Average
1 The API has code examples
2 The API documentation gives thorough explanations on how it works
3 I can have working code quickly

Group
1 The API has code examples
2 The API documentation gives thorough explanations on how it works
3 The software is compatible with different platforms

Single
1 The API has code examples
2 The API documentation gives thorough explanations on how it works
3 I can have working code quickly

Hobby
1 The pricing of the software
2 The API has code examples
3 I can have working code quickly

The overall result concluded that the most considered aspect overall is ’The API has code
examples’. For hobby, it is the second most important aspect, only 0.03 points behind
the first place. Further, good code examples had the biggest positive impact on developer
experience, and bad code examples had the biggest negative impact on DX. The negative
impact if the examples are bad are not as extreme as the positive impact is if they are good
however. In conclusion, API examples are a key factor for software platforms’ quality.

41

3. Results and Discussion

This aligns with the result from Robillard (2009), which also found that inadequate API
examples is the most common obstacle for learning an API.

The thoroughness of the documentation is also one of the most important aspects, coming
in as the second most important aspect for all categories except for Hobby. The positive
DX-impact is as big as the negative one, and it is also reflected in that its consideration
points are as high as the DX-impact points.

Having working code quickly is also in the top three for all but the group category, where it
is in fourth place. The positive DX-impact if you can have working code quickly is slightly
higher than the negative DX-impact if it takes a long time before you have working code.
The positive impact is also stronger than if you compare it to how often it is considered.

Having the software be compatible with different platforms is a big divider. It is the third
most important aspect for Group, but one the least important aspects for Hobby, and some-
where in themiddle for Single. The positive impact is lower than how often it is considered,
and the negative DX-impact is even less. If you exclude the Group-category, it places itself
on average as the 11th most important aspect, out of 16.

The pricing of the software is important to everyone, placing itself on average as the 4th
most important aspect overall, but it is the most important aspect for Hobby. For group
and single, it is both the 5th and 4th most important aspect respectively. In Table 3.7 we
can see the full score and rankings for the different contexts.

42

3.2 Survey 2 Results

Table 3.7: Scoring for each aspect by each context
A
sp
ec
tI
D

Aspect G
ro
up

Si
ng

le

H
ob

by

1 How often the software is updated 0.69 0.59 0.46
2 I can have working code quickly 0.75 0.80 0.86
3 The API documentation gives thorough explanations on how

it works
0.85 0.82 0.79

4 The API has code examples 0.93 0.88 0.88
5 The documentation doesn’t assume any prior expertise 0.41 0.47 0.53
6 The documentation has consistent language 0.42 0.42 0.39
7 The documentation is easy to navigate 0.61 0.60 0.60
8 The official website looks professional 0.67 0.60 0.53
9 The pricing of the software 0.74 0.76 0.91
10 The release- and change notes are thorough 0.40 0.31 0.27
11 The software has the same features on all different platforms 0.63 0.47 0.28
12 The software is compatible with different platforms 0.81 0.58 0.37
13 The software is offered in more than one programming lan-

guage
0.48 0.35 0.25

14 The software is open source 0.64 0.66 0.74
15 The software uses the programming language I ammost com-

fortable with
0.56 0.71 0.78

16 There exists an active online community around the software 0.69 0.62 0.65

In Figure 3.2 it is shown how the consideration points compares to how much of a
positive and negative DX impact it has. Table 3.8 shows the exact numbers for the DX
impacts, and the average scores. The difference in positive- and negative DX impact is
quite small.

43

3. Results and Discussion

Table 3.8: The average scoring for the consideration questions,
its positive DX impact and its negative DX impact and their differ-
ence, by each aspect category

A
sp
ec
tI
D

Aspect Category C
Q
*
Sc

or
e

N
Q
**

Sc
or
e

PQ
**

*
Sc

or
e

DX
Sc

or
e
D
iff

4 Api Code Examples 0.89 0.85 0.89 ±0.04
3 Working Code Quickly 0.85 0.83 0.82 ±0.01
2 Documentation Thoroughness 0.83 0.80 0.81 ±0.01
9 Pricing 0.76 0.74 0.81 ±0.07
15 Documentation Navigation 0.72 0.64 0.70 ±0.06
14 Updates 0.72 0.63 0.69 ±0.04
16 Online Community 0.71 0.62 0.65 ±0.03
7 Favourite Programming Language 0.67 0.62 0.60 ±0.02
8 Being Open Source 0.66 0.59 0.59 0.00
12 Official Website Look 0.63 0.56 0.56 0.00
1 Documentation Language Consistency 0.63 0.53 0.55 ±0.02
5 Features On All Platforms 0.63 0.53 0.48 ±0.05
11 Documentation Prior Expertise 0.57 0.47 0.43 ±0.03
6 Platform Compatibility 0.47 0.42 0.41 ±0.01
13 Release Notes 0.44 0.40 0.34 ±0.06
10 Number of Programming Languages 0.39 0.34 0.32 ±0.02
*CQ: Consideration Question
**NQ: Negative DX Question
***PQ: Positive DX Question

44

3.2 Survey 2 Results

1 How often the software is updated
2 I can have working code quickly
3 The API documentation gives thorough explanations on how it works
4 The API has code examples
5 The documentation doesn’t assume any prior expertise
6 The documentation has consistent language
7 The documentation is easy to navigate
8 The official website looks professional
9 The pricing of the software
10 The release- and change notes are thorough
11 The software has the same features on all different platforms
12 The software is compatible with different platforms
13 The software is offered in more than one programming language
14 The software is open source
15 The software uses the programming language I am most comfortable with
16 There exists an active online community around the software

Figure 3.2: The scoring of the consideration points, with how
much of a positive- and negative DX impact it has. The interval
goes between the lowest score and the highest score. The consid-
eration question’s score is blue, the positive DX impact question
is green and the negative DX impact question is pink.

There are several angles you can view the results at. In the following sections, a few are
discussed.

3.2.2 Developer and Engineers
Developer and Engineers are the majority of people who are going to use a software plat-
form, since they make out the majority of a development team. In the survey, they also
made out the majority of the respondents. In Table ?? we can see how they ranked the

45

3. Results and Discussion

considerations. According to this, they are people who want thorough documentation and
API examples. They want to have working code quickly, and they care about the pricing
of the software. They also more often than not care if a project is open-source, and also
want to use the programming language they are most comfortable with. Even though they
want thorough documentation, less often than not they don’t care if the documentation
uses inconsistent language or assumes prior expertise. They do not care if release notes
are thorough. Developers and engineers have an average score of 0.60, with the difference
between the most considered aspect, and the least considered aspect, being 0.62.

Table 3.9: The ranking of the aspects, sorted alphabetically, by all
job titles. Rankings in an interval have the same score and therefor
the same rank.

Question A
rc
hi
te
ct
s

D
ev
s&

En
g

M
an
ag
er
s

How often the software is updated 11 9 6-7
I can have working code quickly 2 4 4-5
The API documentation gives thorough explanations on how it works 3 2 3
The API has code examples 1 1 1
The documentation doesn’t assume any prior expertise 13 13 9-11
The documentation has consistent language 12 14 16
The documentation is easy to navigate 7 8 12
The official website looks professional 9 10 4-5
The pricing of the software 5 3 2
The release- and change notes are thorough 16 16 13-15
The software has the same features on all different platforms 14 12 13-15
The software is compatible with different platforms 10 11 9-11
The software is offered in more than one programming language 15 15 13-15
The software is open source 4 6 8
The software uses the programming language I am most comfortable
with

6 5 6-7

There exists an active online community around the software 8 7 9-11

3.2.3 Architects
Architects are a key part of a development team. They are responsible for how the software
will be structured and therefor also often have a say in if the software will be using a
software platform, what platform will be used. In Table 3.9 we can see how the architects
ranked the aspects. According to this result, architects are (just like developers) peoplewho
want code examples and thorough documentation. They find it important that software
platforms are open-source, and want to have working code quickly. They also, just like
developers, do not care if the release notes are thorough. The average score for architects
is 0.61, with the a difference between the most considered aspect, and the least considered
aspect, of 0.66.

46

3.2 Survey 2 Results

3.2.4 Managers
Managers have responsibilities that differ quitemuch from developers, engineers and archi-
tects. They often have to think of legal aspects and are in contact with other departments,
such as sales. They will often also not have the same level of competence when it comes
to software development as architects, developers and engineers have. They are also not
the key demographic for this research, since we are talking about developer experience.
They are however a key part for the selection of software platforms, since they will have
the most authority and also are the person in control (or is the contact to the person in con-
trol) of the money. In Table 3.9 we can see how the managers ranked the aspects. There
we can see that even managers care about API examples and that they can have working
code quickly. The pricing of the software is, maybe not surprisingly, quite important to
them. Managers have an average score of 0.59, with the biggest difference between the
most considered aspect, and the least considered aspect, being just 0.37.

3.2.5 All job titles compared
In Table 3.5 we can see all the job titles grouped. If we compare architects with developer
and engineers, they are quite similar. On average, the score differences is only 0.06. The
biggest difference for consideration questions is ’The documentation has consistent lan-
guage’, where Architects average out at 0.49/1.00 in points, making it ’Sometimes consid-
ered’, whereas Developer and Engineers only score 0.34/1.00, placing it between ’Some-
times consider’ and ’Rarely consider’. Their ranking does not differ much, with the biggest
ranking difference being two spots. It can also be said that architects on average have a
score of 0.61, and developers 0.60. So by a fine margin, architects consider more things
than developers and engineers. Architects are also more extreme, where the most consid-
ered aspect, and least considered aspect have difference of 0.66 points, whereas developers
and engineers have 0.62. They are however, like stated before, quite close and similiar.

If we compare architects and managers, the differences are bit more extreme. On aver-
age, they differ by 0.09 points. The biggest divider for them is ’The release- and change
notes are thorough’, where they differ by 0.18 points. The rank difference is only one spot
though. Their biggest dividers in rank differ by five spots. They are ’The official web-
site looks professional’ and ’The documentation is easy to navigate’ where the first one is
more important to Architects, and the second one is more important to Managers. We can
also see that managers are much less extreme in their opinions than architects, where the
difference between the most considered aspect, and the least considered aspect, being just
0.37, whereas it is 0.66 for architects. Since architects will be working more directly with
software platforms, they may have stronger opinions on what is needed, and not needed
for them.

If we compare Developer and Engineer with Managers, we also find that their quite differ-
ent. On average, they differ in points by 0.10 points. Their biggest differ in points is for
’The official website looks professional’, where they differ by 0.15 points, which is also
their biggest differ in ranking: 6 spots difference. Just like with architects vs managers,
they’re differences between the extreme are very different. 0.37 difference for managers,

47

3. Results and Discussion

and 0.62 for developers and engineers. Once again, this seems quite natural since devel-
opers and engineers will be working with the platform more and have stronger opinions
on what they need.

3.2.6 Experience
The responses were also divided into five groups, depending on how much experience in
the software industry the had. There were 5 people with less than 5 years experience, 10
people with 5 - 10 years experience, 10 people with 10 - 15 years experience, 12 people
with 15 - 25 years experience and 2 people with 25+ years of experience in the software
industry. How people ranked the aspects, depending on years of experience, can be seen
in Table 3.10. The overall take away is that years of experience is not a good indicator of
people’s needs. There doesn’t seem to be any relationship with ”The more/less experience
you have, the more/less something is important”.

Table 3.10: The scoring of the aspects, grouped by years of expe-
rience.

Aspect <
5
ye
ar
s

5
−

10
ye
ar
s

10
−

15
ye
ar
s

15
−

25
ye
ar
s

25
+
ye
ar
s

The API has code examples 0.91 0.93 0.89 0.85 1.00
The API documentation gives thorough explana-
tions on how it works

0.91 0.86 0.87 0.72 0.83

I can have working code quickly 0.79 0.86 0.82 0.77 0.92
The pricing of the software 0.73 0.86 0.81 0.83 0.67
The software uses the programming language I am
most comfortable with

0.68 0.73 0.68 0.74 0.50

The software is open source 0.67 0.62 0.74 0.71 0.67
There exists an active online community around the
software

0.84 0.53 0.73 0.55 0.75

The documentation is easy to navigate 0.60 0.68 0.64 0.48 0.71
The official website looks professional 0.53 0.67 0.54 0.59 0.50
How often the software is updated 0.66 0.52 0.52 0.58 0.50
The software is compatible with different platforms 0.41 0.54 0.59 0.57 0.54
The documentation doesn’t assume any prior exper-
tise

0.43 0.57 0.50 0.39 0.50

The software has the same features on all different
platforms

0.28 0.42 0.53 0.45 0.29

The documentation has consistent language 0.41 0.45 0.40 0.32 0.58
The software is offered in more than one program-
ming language

0.28 0.35 0.35 0.36 0.25

The release- and change notes are thorough 0.26 0.34 0.33 0.30 0.25

48

3.2 Survey 2 Results

3.2.7 Decision Makers

The results were also divided into decision makers and non-decision makers. The groups
are of comparable size: There are 22 decision makers for groups and 14 non-decision
makers for groups, and 3 who answered that it is not applicable. In Table 3.11 we can see
how decision makers and non-decision makers score differently. Overall, non-decision
makers and decision makers don’t differ a lot.

Aspect D
M
*
R
an

k

D
M
*
Sc

or
e

N
D
M
**

R
an

k

N
D
M
**

Sc
or
e

The API has code examples 1 0.91 1 0.86
TheAPI documentation gives thorough explanations on how
it works

2-3 0.83 3 0.80

I can have working code quickly 2-3 0.83 4 0.79
The pricing of the software 4 0.80 2 0.83
The software uses the programming language I am most
comfortable with

6 0.69 6 0.74

The software is open source 5 0.70 8 0.63
There exists an active online community around the software 7 0.62 5 0.75
The documentation is easy to navigate 8 0.59 7 0.66
The official website looks professional 9 0.58 9-10 0.61
How often the software is updated 11 0.53 9-10 0.61
The software is compatible with different platforms 10 0.55 12 0.54
The documentation doesn’t assume any prior expertise 12 0.45 11 0.60
The software has the same features on all different platforms 13 0.43 14 0.46
The documentation has consistent language 14 0.38 13 0.50
The software is offered in more than one programming lan-
guage

15 0.32 15 0.38

The release- and change notes are thorough 16 0.29 16 0.35
*DM: Decision Makers, **NDM: Non-Decision Makers

Table 3.11: The ranking and scorings of decision makers, com-
pared with non-decision makers.

It could also be interesting to see who the decision makers are. Divided by job title
and level, it looks like this:

49

3. Results and Discussion

Job Title Level DM* NDM**
Architect Middle 0 0
Architect Senior 7 2
Developer and Engineers Middle 3 4
Developer and Engineers Senior 5 7
Managers Middle 1 0
Managers Senior 3 0
Other Middle 0 0
Other Senior 3 1

22 14
*DM: Decision Makers, **NDM: Non-Decision Makers

Table 3.12: Caption

As can be seen in Table 3.12, and not surprising, all managers are decision makers.
Somewhat more interesting, two architects claim they are not in a position to make deci-
sions on what software others will use. We also see that 50% of Middle level people are
decision makers, and 64% of Senior level people are decision makers.

3.2.8 Compared to Survey 1

The sample size is almost exactly the same in the two surveys. The pilot survey had 38
responses, whereas the main one had 39. There are two major differences between the two
surveys. The first one had mostly just Developer and Engineers, 74%, only one manager,
3%, and just five architects, 13%. As a reminder, the second survey had 53.8% developer
and engineers, 10.3% managers and 25.6% architects. The second difference is that in the
main survey, the people were given a context for when they were considering the aspects.

If we compare it to the first survey, we see some anomalies. To be able to compare the
rankings, we will exclude the two newly added questions in this part. In Table 3.13 we see
the two surveys compared.

50

3.2 Survey 2 Results

Table 3.13: The difference in score and ranking between the first
and second survey.

Aspect S2
*
R
an

k

S2
*
Po

in
ts

S1
**

R
an

k

S1
**

Po
in
ts

D
iff
er
en

ce
Po

in
ts

D
iff
er
en

ce
R
an

k

The API has code examples 1 0.90 1 0.87 +0.03 0
The API documentation gives thorough explana-
tions [on how it works]

2 0.82 3 0.78 +0.05 +1

I can have working code quickly 3 0.80 4 0.76 -0.04 +1
The pricing of the software 4 0.80 5 0.74 +0.06 +1
The software uses the programming language I
am most comfortable with

5 0.68 7 0.68 0.00 +2

The software is open source - 0.68 - - - -
There exists an active online community around
the software

6 0.65 2 0.80 -0.15 -4

The documentation is easy to navigate 7 0.60 10 0.61 0.00 +3
The official website looks professional 8 0.60 11 0.59 +0.01 +3
The software is compatible with different plat-
forms

9 0.58 6 0.72 -0.14 -3

How often the software is updated 10 0.58 8 0.63 -0.05 -2
The documentation doesn’t assume any prior ex-
pertise

11 0.47 12 0.50 -0.03 +1

The software has the same features on all different
platforms

12 0.46 9 0.62 -0.16 -3

The documentation has consistent language 13 0.41 13 0.45 -0.04 0
The software is offered in more than one
programming language

- 0.36 - - -

The release- and change notes are thorough 14 0.33 14 0.41 -0.09 0
*S2: Survey 2, **S1: Survey 1

An interesting difference is the rank of ’The software is compatible with different plat-
forms’. However, this aspect is very divided in the second survey depending on the sit-
uation. The rankings for this aspect look as following: Group ranks it as the third most
important, whereas single ranks is at the 10th spot and finally hobby at place number 13.
Similarly, the question ’The software has the same features on all different platforms’ has
a big point difference when comparing the first and second survey. However, this is also a
divided question depending on situation in the second survey. It is ranked by Group at 9th,
Single is tied between the 11th and 12th spot and for Hobby it is 13th. In the first survey, it
is ranked as 9 out of 14. The change in ranking in both these cases can therefor somewhat
be explained by the fact that no context was given in the first survey.

Perhaps most interesting is that in the first survey, ’There exists an active online commu-

51

3. Results and Discussion

nity around the software’ ranked as the second most important aspect, but is on average
ranked as the sixth most important aspect in the second survey. There is no difference on
the context here, in the second survey it is ranked at 6 by both Single and Hobby, and is
tied between 6th and 7th spot for Group. It is slightly more important for Developer and
Engineers, but only by 0.04 points, so the fact that the first survey had them as a majority
cannot explain this either. There does not seem to be any obvious explanation for this shift.

3.2.9 Perspectives that were not Considered
Data was collected on other things as well. Two of these were the size of the company the
questionnaire taker worked at, and what professional level they were at their company.

Because of the way the data pool was shaped, these two groups were not looked at, al-
though they could have been interesting. The first one was company size. 30 out of 39
people worked in companies with more than 1000 people, and only 4 out of 39 people
worked in companies with less than 100 people. Therefor the data pool was too small to
make any larger claims on patterns.

The other group that could have been interesting to look at was the professional level
of the persons. However, 77% were senior level, and 23% were middle, and no one was
junior level. The job title level is somewhat arbitrary, and it could be argued that looking at
years of experience, where the answers are more divided, can substitute this angle. Most
of the people with a middle level have worked less than 5 years. How big part of the work
experience group are made up of middle and senior level respectively can be seen in the
Table 3.14.

Table 3.14: The link between level in job title and years of expe-
rience

Years of experience Middle level Senior level
5 years 100% 0%
5-10 years 20% 80%
10-15 years 20% 80%
15-25 years 0% 100%
25+ years 0% 100%

3.3 Interview Results
After the survey was done and analyzed, there were fives interviews conducted. The inter-
viewees all works at Qlik. Their names are kept anonymous and will only be referred to
by their job title. The interviewees were:

- The Architect, a person with over 25 years of experience in the industry

- The Software Engineer, a person with four years of professional experience

- The Quality Architect, a person with 20 - 25 years of professional experience

52

3.3 Interview Results

- The Software Developer, a person with 10 - 15 years of professional experience

- The Development Manager, a person with 10 - 15 years of professional experience

The following sections presents the results of the interviewees by each subject field.

3.3.1 API Documentation and Examples
Just like the survey suggested, API documentation and examples are extremely important.
The first people look at, according to the interviews, is the examples. That seems to be
the way people get started when encountering a documentation. This is, according to the
interview subjects, to get an overview of the software platform. Examples give an insight
into what the software can do, what its applications are.

”The example is a summary without comments”
— Quality Architect

So it is an easy way for them to quickly see what the platform is intended to do. Interview
subjects also state that examples are a good way to see if it is something that they can
quickly understand, if it is something they are used to. One of the interview subjects stated
that the more generic an API is, e.g. the more applications it has, the more examples are
needed.

”... which means that if it’s a broad and generic API ... they will have to have
a lot of examples”
– Architect

The interview subjects also said they look at other things to determine if they want to use
a software platform. When asked if there were any ”red flags” for API documentation,
several different answers were given. One stated that language inconstancy was a big
warning, another if the documentation felt auto-generated, and a third if the description
of the methods were lacking. People also stated they usually look at things outside of
documentation when they are deciding, namely how well-known and popular the software
platform seems to be.

”In the github you look at, is it starred, howmany has downloaded it, and stuff.
Is it used? Is it up-to-date?”
— Quality Architect

”And googling a lot. See what others are using.”
— Senior Developer

”I would look both at the API documentation but also how much it’s used and
how much it’s maintained, what was the latest changes and things like that”
— Architect

One of the interview subjects were a manager, which turned out to have quite other prior-
ities when it came to API documentation when he was in his working role. His opinion
was that developers tend to think about more what’s fun to use, rather than what is useful.

53

3. Results and Discussion

”I think that developers tend to play down the need for production worthy code
... [if] it looks good, if [developers] think it’s fun to work with, it’s good [to
the developers]”
— Development Manager

The manager was more concerned with reliability of the software platform. How likely
was it to break down? And if so, what support can the developers get? Should we buy a
support contract?

All the interview subjects said that they want to have working code quickly. Some of
them attributed this to them being impatient or lazy, but when you started to question a bit
more you realized that this is actually their way of figuring out if a software is valuable.
When question about why he wants to have working code quickly, the architect stated:

”I don’t get the feeling of the API otherwise.”
— Architect

So examples were used both to understand the underlying structure, how different part of
the platform are linked up. But also for copy-pasting into your project to try it out.

The interviewees were also asked if they could ever tolerate not having working code
quickly. It turns out that it is acceptable if they already know that the software is valuable
and is what they are looking for. This however had the prerequisite that they would work
with the software platform for a long time, and they knew that the long time it took to get
started would be worth it. It however caused irritation. Consensus was though that they
would rather try to find an alternative rather than to spend time to get it working, if they
had the option.

”So if there is several different alternatives, I think I start out with another.”
— Quality Architect

”Well, if I have a choice to find something else to use then I would just do
that.”
— Software Engineer

”...if you go to ... one API and you found it quite bad, then you skip and go
the next API.”
— Senior Developer

So it is quite clear that developers are impatient and are not reluctant to drop platforms
for something else, if they have the choice. It is therefor important for a software platform
to get started quickly, and to quickly convey to the developer what it is that the software
platform can do. Developer do not want to spend a lot of time to figure out if a software
platform is useful for them.

In the interviews it was also talked about what the examples should look like. Not sur-
prisingly, most of the people said it depends on the situation. Two cases that were brought
up by several interviewees was that there should be ’getting-started’ kind of examples,

54

3.3 Interview Results

where the example is runnable. The other case was for examples that exist in the API’s
method descriptions. These ones should be as isolated as possible, according to interview
subjects.

”... as isolated as possible. So you just show one small feature...”
— Quality Architect

It was also stated by many that if the concepts are complicated, it is preferable to have
smaller, step-by-step examples rather than a big example that does the complicated thing.
This is especially important if the example introduces a lot of new concepts that needs to
be understood.

”...it’s important to have more step-by-step things ... [if] you need some pre-
requisite knowledge in order to [understand] that”
— Software Engineer

Preferably there should both exist a larger example within a bigger context, and a smaller
snippet that just shows how specific methods of the API should be used. If there can only
exist one of these, the concise example is preferred over the bigger ones.

”If I have to choose then it would be [the] more concise examples...”
— Software Engineer

One of the interview subjects had a warning on quick-working code and that it can be
decieving. They had been working on a project where they found a software platform
to use. They got started quickly, and it seemed to be a good platform to use for their
purpose. However, once they started to try to do more advanced things using the platform,
they realized that the documentation was severely lacking. To do the simple things, and
get up and going was no issue. But the documentation was not well documented beyond
its simplest cases. They ended up doing and investigation, and decided it was easier to
actually throw away months of work and use another platform with good documentation,
rather than trying to use the platform with poor documentation.

”And you could do the basic things quickly and it worked well. But after a
while every time you ran into a problem and you wanted to fix it and you look
into the documentation it’s like: it doesn’t say anything here. Then we real-
ized: ’Okay, if this continues happening you just keep losing time, every time
you want to fix something’. So we kind of scraped it and did an investigation:
’Okay what are our other options?. And in this case, let’s try to look at the
documentation straight away and see if all of the problems we had with the
older one are now gonna be fixed.”’
— Software Engineer

Takeaway from API Documentation and Examples Interviews
The takeaway is that examples are very important in documentation. There needs to be
examples that explains what the software platform can do and give the developer a way to
get started quickly. Developers are impatient, so if you cannot provide a way to quickly
give these things, theywill choose another alternative. The documentation needs to explain

55

3. Results and Discussion

advanced concepts step-by-step. It is also important that there exists documentation for
both how you do the simple things, as well as more special cases. The language needs to
be consistent, the documentation needs to be manually written with care and the methods
need to have thorough explanations.

3.3.2 Release note
Release notes is part of all serious software platforms. But how much are they used, what
do people want from them? According to the interviews, they are not used much at all. All
but one interviewee said that they use release notes regularly, and some said they almost
never use them, and one had never even looked at release notes in their professional career.
When asked how often they read release notes the answers were:

”Almost never, I can say ... they are not very important to me.”
— Quality Architect

”I don’t know if I’ve ever looked at release notes”
— Software Engineer

The software engineer, who even has part of her working duties to present release notes,
stated that she never looks at release notes herself. The interviewees’ answers suggests
that release notes are highly avoided. The manager said that he will look at release notes
when there are major releases, to get a grip on how much time an upgrade would take.

”I want to know how big of a change, and howmuch time do we need to invest
in such a change.”
— Developer Manager

He also said that managers more likely rely on developers and architects to take that roll
in general.

”The manager would probably ask the architects and developers to tell how
much work they needed to put in ... I don’t think the manager himself would
look into it”
— Developer Manager

The architect however said that release notes are very important to him. Out of the inter-
view subjects, he is the one with the most experience, over 25 years. He stated that he
earlier in his career did not care much about release notes either. He says:

”A lot of year ago when I was new I would probably say the same thing, to be
honest. It’s more like afterwards you really realize how important it becomes
when you sit there and you have the give the next version ... maybe it’s easy
to overlook that fact.”
— Architect

The architect suggests that the release notes are something that you are taught to appreciate
after having trouble with poor release notes. He says there are three different situation
when he looks at release notes. The first is the initial situation, when he first encounters a
software platform.

56

3.3 Interview Results

”...getting the feeling of how well they are documentation things ... it also
gives you a feeling [of] how mature or obsolete the platform is. If the the last
release note is five years old ... that’s a bad thing. If there [are] new release
notes every day that’s also a warning sign, [it] means it’s not mature”
— Architect

The second situation is the frustration phase, as he puts it.

”The other one is ... the frustration phase. ’Why is this not working, it should
work’, and then you’re going to release notes. It’s more like finding the issue”
— Architect

The last situation he presents that causes him to look at release notes is when there needs
to be a decision if software should be upgraded or not.

”Probably the real reason for release notes, it’s like ’Okay, should we up-
grade?’ ... I think that’s the key thing with release notes, that’s why you
have them. If it’s worth to upgrade.”
— Architect

This would suggest that there are in fact many use cases for release notes.

When asked how important they think release notes are, most of the interviewees say that
they are important, even if they do not use them themselves. The senior developer stated
that release notes is not important. But when asked about if they thought it was the general
case for developers that they do not care about release notes, the senior developer stated:

”No. Because my colleagues wants us to write release notes. So I think ...
others are actually reading them.”
— Senior Developer

The software engineer, who had as part of the duties to present Qlik Sense’s changes be-
tween versions, stated:

”Looking at how much other people are interested in having us present that,
then it seem like it’s quite important”
— Software Engineer

For these two, it seems that release notes is something that they are not interested in, but
have learned that others apparently do. The architect even stated, as mentioned previously,
that he has been taught that they are important.

”So I’ve been taught in that sense that [releaes notes] are very important.”
— Architect

For those interviewees who do look at release notes, it’s quite different things they look
at. The quality architect and manager states they only care about things that may break
anything. The architect, as stated before, looks at several different things. The senior
developer stated that she may be interested in new features, but says she finds those things
through online discussions and blogs rather than release notes. The quality architect, who
is part of the decision if software should be upgraded, stated he doesn’t even look at release
notes before that decision. Instead, they do test builds with the newer version, and if none
of the tests breaks with the new version, they simply upgrade to that version.

57

3. Results and Discussion

”If there’s a new [version], we take it. And then the release notes [are] not
important. Unless the new bump breaks something. Then you have to try to
figure what has changed ... if our pipeline is green, we merge to master.”
— Quality Architect

The architect is also the only interviewee that looks at release notes before choosing a
software platform. When asked if they check the release notes before choosing a software
platform, they stated:

”I don’t think I have”
— Quality Architect

”Probably not ... Unfortunately not ... I probably should. But I would rely on
the architects and developers to tell me if they were good enough”
— Development Manager

When asked why they think release notes are not very important to people, according to
the surveys, a few theories were presented. Mainly it was release notes are not part of
every day work, and you can most of the time use a software platform without looking at
release notes.

”It’s not so often you use them ... most things don’t change that much”
— Architect

”You can use an API without the release notes”.
— Senior Developer

When asked how poor release notes affect people, all but the architect naturally said that
it does not affect them that much, since they do not use them. They however said it affects
their opinion on the company.

”I think it is bad when it comes to ... the trust ... between whoever is using the
API and whoever is developing. I think it reflects poorly on the company.”
— Software Engineer

”You get a more serious feeling about the API if you have release notes. [Poor
release notes] reflects poorly on the company”
— Senior Developer

Takeaway from Release Notes interviews
The takeaway seems to be that most people don’t use release notes, even people who
”should” use release notes. People go to great lengths to not read them. The manager
relies on others to read them and the quality architect relies on his tests. The senior de-
veloper and software engineer simply don’t do it. The architect cares a lot about it, that
is however something that years of experience has taught him. Release notes seem to be
used more as a last resort when something breaks, as is to be avoided at every cost. The
release notes are however thought of by the interviewees as something very important.
The mentality is that they should be there, and the lack of them makes the software creator
seem unprofessional.

58

3.3 Interview Results

3.3.3 Online Communities
Online communities are places on the internet where people can discuss issues or ques-
tions they have about software. They can exist on many places. Some software companies
host their own forums, other communities naturally emerge on online forums such as Stack
Overflow. Sometimes they exist on both of these places. Exactly what defines an online
community can be somewhat vague. When the interviewees where asked what an on-
line community was to them, there were several different answers given. The consensus
seemed however that where it existed, did not matter.

”When it comes to online community, it’s like anywhere on the internet.”
— Software Engineer

”Well it’s somewhere I can find something specific about [the software plat-
form]. It could be their own community like Qlik community, [or] Stack Over-
flow or something where I can find a lot of information. A lively debate some-
where else where I would typically find discussions, I would say that they’re
pretty equal to me. In reality I don’t care [where I find the information].”
—Architect

So online communities can exist in many places. The answers given by the interviewees
would suggest that they are not loyal to any specific forum site but would use whatever
source fulfilled their needs. When asked how much they used online communities, it was
clear that it was a very central part of their daily life.

”I use them very often just to find answers. [And] asking questions I would
probably say like a couple of times a month.”
— Architect

”All the time”
— Software Engineer

So an aspect that is used daily by developer is clearly something that is important.

Another aspect of a community that was asked about was if it needed to ”feel” alive. This
turns out was a very central part of an online community. It was also concluded that it
needed to feel helpful. The interviewees went so far as to say that they would not even
consider it a community if it did not feel alive or helpful.

”I wouldn’t call a dead community a community. That’s an aspect of the com-
munity, that there really is somebody there. If the community isn’t able to
answer questions I put there then it’s not [a] community I would say. That’s
to me the key thing about it, that if I reach out and ask something I will get an
answer.”
—Architect

The development manager puts emphasis as well that the community needs to have a pos-
itive tone in how discussions are conducted.

59

3. Results and Discussion

”That they are polite answers and they are elaborate answers to questions.
[That] there are people answering to the right level. Sometimes there are peo-
ple who misuse this, like ’I have to show something to my manager, please
do this for me’. I don’t think you need to answer those but you should least
support: ’Here’s some help to get you started’ ”
— Development Manager

When asked if they needed to feel like they’re apart of the community themselves, the
answer seemed to be no from the interviewees. Their participation was not something that
was important, the key thing was just that they got help with what they needed from the
community.

”No. But it’s great that others want to be part of the community because
otherwise I wouldn’t find my answers.”
— Senior Developer

The interviewees were also asked if they felt like it was important that the company behind
the software was part of the community. Here, some mixed answers were given as well.
The architect stated that if it is a big company, it is needed. But for smaller, open-source
things, it was not needed. However, the consensus seemed to be that although it was not
necessary per say, it had a positive impact.

”Yeah, I think that’s always good. I don’t think it’s necessary that they’re part
of the community but I think it would make the consumer feel better about
using the product. Again, coming back to the trust and relationship between
the product and the user.”
— Software Engineer

The senior developer stated that if the company behind a software is part of the online
community, it gives the feeling of the company actually caring about their users. The
answers from the interviewees would suggest that

”...that [the company] actually take [their] responsibility for [their] users. For
the community.”
— Senior Developer

However, when asked if it has the opposite effect if they’re not part of the community, she
changes her answer.

”Actually, I don’t think I care who answers the question. [But] if there are
questions that are not answered, that you know that a [company]-person can
answer, and doesn’t do that, that’s not good.”
— Senior Developer

When further asked if it is worth a company’s time to answer community questions, the
manager elaborated his answer.

”I think it goes down to a money question, actually. If you can get by without,
because there is a lot of people answering, then you’re a lucky company, and
you don’t need to do that. Then you can back away if you think that the com-
munity is working by itself. [Otherwise] you probably need to be there.”
— Development Manager

60

3.3 Interview Results

In the interviews it was also explored if online community was just a substitute for poor
documentation. When asked if they needed a community, even if the documentation was
close to perfect, the general answer was yes. The reasoning behind this was that online
communities can answer very specific questions, whereas documentation aremore general.
Online communities can also answer why you can not do something, which a documenta-
tion most often will not. Online communities was also stated as being comforting, that it
feels safe to know that lots of other developers are using the same thing.

”It would lower my thoughts about it. It has to be a really good [platform] to
get started without [an online community]. [Online communities] can put the
solution in perspective to the question, which a documentation couldn’t do. If
you have an area which is very generic, a community could catch that person
easier than a documentation.”
— Development Manager

The architect was the only one who checked online communities before deciding if he
wanted to use a software platform. He stated that it was quite hard to get a grip on if
a community is useful or not, when you’re not using the platform yet. But he said that
reading threads was still helpful, to see what the community was like.

”You can get a feeling if you follow the discussion threads and things like that
to see that... If most of them end in... like people don’t understand anything;
that’s a bad thing. That’s a very important answer [too], that there is no an-
swer.”
—Architect

Several of the other interviewees stated that they usually just use online communities when
they are stuck on something, and only then. The quality architect stated that he didn’t feel
the need to check the online community before deciding.

”Not if I find good information on the github page or something. Then I don’t
have any reason to check out the community.”
— Quality Architect

”No I don’t [check the online community before deciding].”
— Senior Developer

When finally asked to put concisely what they want from an online community, it was clear
that they mostly just want answers and their problems solved easily.

”Structured, indexible solutions”
— Quality Architect

”I want answers to my questions, I think that’s it.”
— Development Manager

”Activity and people interacting with each other. And having questions and
examples.”
— Software Engieneer

61

3. Results and Discussion

Takeaways from Online Communities interviews

The takeaway from the interviews around online communities shows a few things. One
is that online communities is something primarily used by people when they’re stuck and
have a specific problem that the documentation may not cover. Where this community
exists does not really matter to people, the priority is if the information they need exists or
not. Most of them however don’t care if they’re part of the community. It simply acts as
a problem solver. They also point out that it is not necessary that the company behind the
software is part of the community, but that it doesn’t hurt and can build a trust between
the company and the user. As much as it is a problem solver for when the documentation
doesn’t give them the answer, they still want an online community even with a very good
documentation. The primary reason for this is that there is always problems and situations
that are too specific for a documentation to cover. Online communities are used by the
interviewees very often, and is therefor quite important to them. However, documentation
is even more important.

3.4 Recommendations For Software Plat-
forms

Having presented the results I will now give my personal recommendation for compa-
nies who make software platforms. These are my personal recommendation, based on the
results that the research yielded. The are presented in alphabetical order.

62

3.4 Recommendations For Software Platforms

3.4.1 How often the software is updated

Figure 3.3: Scoring for ”How often the software is updated”

Updating of the software platform is of course important. Bugs need to be fixed, the com-
patibility for different platforms improved and new features might be added from time to
time. In Figure 3.3 we can see how it is ranked. As we can see it is ranking somewhere in
the middle. We also see that the DX impact is bigger than the consideration. As mentioned
in section 2.3.5, the DX-question and consideration question differed quite a bit for this as-
pect, and we should be careful to correlate these two. The DX impact shows however that
being quick to address bugs has a bigger impact than the negative impact of being slow to
address bugs.

The interviews showed that how often the software is updated can be seen as an indi-
cator for how mature the software platform is. Too often and it will scare people away,
as it is an indicator that there is a lot of bugs or the software is immature. If the software

63

3. Results and Discussion

platform is updated not often enough it is an indicator that the software platform feels
abandoned or not prioritised. The recommendation is to plan your updates carefully, try
to lump small updates together into bigger ones, as to not update too often. Exemptions
from this is critical bug fixes, such as relating to security or breaking bugs.

Result: Somewhat important. Medium effort, medium payoff.

3.4.2 I can have working code quickly

Figure 3.4: Scoring for ”I can have working code quickly”

To have working code quickly has been shown to be important to developers. In Figure
3.4 we can see the scoring. With an average score of 0.80/1.00 for the job titles, this is
an important aspect that should always be considered when creating a software platform.
There’s also no major difference depending on the context. We also see that it has a strong
DX impact. Not only are developers impatient people that want results quickly overall,

64

3.4 Recommendations For Software Platforms

working code quickly is developers way to figure out if a software platform is useful. Soft-
ware developers quickly abandon software if they don’t see its value. Because working
code quickly is their way of evaluating new software, it is extremely important to be able
to provide this. The recommendation is to easily show how to get started. It should both
be front and centre when you visit the website, and the example should be easy to follow
without being too simple. The effort to have an example that is easy to follow and makes
the user understand it can take time, and be a bit of an effort, but is definitely worth it.

Result: Very important, always keep in mind. Medium effort, high payoff.

3.4.3 The API documentation gives thorough expla-
nations on how it works

Figure 3.5: Scoring for ”The API documentation gives thorough
explanations on how it works”

65

3. Results and Discussion

Documentation is the heart of a software platform, providing the explanation of how to use
it. In Figure 3.5 we can see how it scored. With an average score of 0.82/1.00 for the job
titles it is paramount that this aspect is taken care of. We also see that it is important for all
contexts. This is also reflected in the DX impact result, where we see that poor documenta-
tion has a strong negative impact, and vice versa. Poor documentation was shown to cause
developers to quickly abandon software. It doesn’t matter how good your software plat-
form is. If you don’t have good documentation that clearly explains how you’re suppose to
use it, people will not use your platform. You must make sure you explain all parts of your
platform. The effort to have thorough documentation is big, but is worth it when you see
how important it is. While documentation needs to be thorough, it is important to ease the
reader into it. Presenting all information at once will overwhelm the reader. Images are of-
ten a good way to explain how things are interacting. The recommendation is to put a lot of
effort into this. Before going into too much detail, give the reader an overview of what the
documentation will convey, and how things are interconnected. User pictures and models
for this. Listen carefully to any questions you get from users. If a lot of users find the same
things difficult, it can be an indicator that the documentation is not thorough enough. A
good method could be to read online discussions, and see what people have difficulty with.

Result: Very important, always keep in mind. High effort, high payoff.

66

3.4 Recommendations For Software Platforms

3.4.4 The API has code examples

Figure 3.6: Scoring for ”The API has code examples”

You can explain concepts and methods in text, but often an example is the best way to con-
vey something quickly. The interviews showed that examples is the first thing people look
at when encountering documentation. It is therefor important that the example is front
and centre in documentation. The examples are used for many things too. It is for copy-
pasting into people’s projects, getting an overview how things work and are linked together
as well as to simply see how things should be used. The effort to construct good examples
is quite big. The recommendation is to always have a simple example with all methods
and concepts, and if possible more advanced examples too. The simple example should be
concise, and show the standard situation. It could be tempting to show something fancy.
This however increases the risk for confusion. If you’re going to show advanced situations,
do it step-by-step as to not confuse the user. In Figure 3.6 you can see how it scored. With
an average score of 0.90/1.00 for the job titles and a strong DX impact it is paramount that

67

3. Results and Discussion

this aspect is taken care of. It is also important in all contexts. It is the first thing users
look at to get an overview, a mental model, and if they don’t understand you risk losing
them.

Result: Very important, always keep in mind. High effort, high payoff.

3.4.5 The documentation doesn’t assume any prior
expertise

Figure 3.7: Scoring for ”The documentation doesn’t assume any
prior expertise”

Software platforms will naturally have concepts that are new to people. Whenever a new
concept is used, you risk confusing the user if it is not explained. In Figure 3.7 you can
see that it does not score very high, with an average of 0.47/1.00 for the job titles. It is

68

3.4 Recommendations For Software Platforms

the same for the contexts. We also see that the DX impact scores about the same as the
consideration questions. This doesn’t mean that it can be completely ignored, but it seems
developers are not deterred by new concepts. The recommendation is to link to an expla-
nations of new concepts where ever they’re used. This effort is not very big, but solves the
problem.

Result: Not very important, but don’t ignore. Low effort, medium payoff.

3.4.6 The documentation has consistent language

Figure 3.8: Scoring for ”The documentation has consistent lan-
guage”

Having consistent language is an indicator of documentation that has been thoroughly re-
viewed and worked with. In Figure 3.8 however we can see that it scores quite low, with
an average of 0.41/1.00 for the job titles. It is about the same for the contexts. We also see

69

3. Results and Discussion

that although it is not quite often considered, it has a stronger DX impact. It is however still
close to neutral. A documentation with inconsistent language is still very much usable, it
just increases the risk for confusion. The effort to fix an already inconsistent documenta-
tion is can sometimes be very high. The recommendation is to define a vocabulary that
should be used by the documentation writers before starting to write documentation, or
from now on if the documentation has already been written. This will ensure that new
documentation has consistency, as long as the documentation writers make sure to use the
vocabulary. Because of the high effort, and low importance according to this research,
going through documentation and fixing inconsistency should not be of very high priority.

Result: Not very important, but don’t ignore. High effort, low payoff.

3.4.7 The documentation is easy to navigate

Figure 3.9: Scoring for ”The documentation is easy to navigate”

70

3.4 Recommendations For Software Platforms

As mentioned before, developers are impatient people. A documentation that is easy to
navigate, means developers can find what they’re looking for quicker. In Figure 3.9 we see
that it scored somewhere in between ’Sometimes consider’ and ’Often consider’ for both
the job titles and the contexts. It also has a DX impact that is above neutral. The recom-
mendation is therefor to have a clear navigation structure, with carefully chosen titles that
makes the user understand what each link will lead them to. For larger pages, having a
table of contents at the top that shows what sections it contains is also recommended. For
smaller sub-pages a short paragraph could be good to explain to the user what he or she
can expect to find on the page. This gives the possibility to the user to be more efficient
when searching for specific things. The effort to do this can be somewhat high, especially
the careful title naming. The titles can easily be too vague or ambivalent. Having an effi-
cient search function for your documentation will also make the navigation more easy. To
implement this is a higher effort than structuring the documentation. The recommenda-
tion is therefor to start with the structure, and after that work look into the possibilities to
create a search function.

Result: Somewhat important, keep in mind. Medium-high effort, medium payoff.

71

3. Results and Discussion

3.4.8 The official website looks professional

Figure 3.10: Scoring for ”The official website looks professional”

The official website is often a company’s face outwards, and a user’s first encounter with
the company. You should not downplay the importance of first impressions. In Figure
3.10 we can see that it scored somewhere in between ’Sometimes consider’ and ’Often
consider’ with the average score of 0.60/1.00 for the job titles. It is the same for the con-
texts. The DX-impact for a good or bad website is however neutral. The recommendation
is to spend some time to make sure your official website looks professional. Test it for
different browsers and devices. The effort to do this should not be high for a software
company who creates software platforms. If a company whom provides software platform
solutions cannot provide a professional looking website, the impression it gives is that they
won’t provide a good platform either.

Result: Somewhat important, keep in mind. Medium effort, medium payoff.

72

3.4 Recommendations For Software Platforms

3.4.9 The pricing of the software

Figure 3.11: Scoring for ”The pricing of the software”

Money always plays a roll in any company, and the price of a software cannot be ignored.
You can make money from your software in many ways, through licensing, subscriptions,
support contract, and more. In Figure 3.11 we see that it is quite important to people. It
is especially important for people working on hobby projects. This is another aspect, as
mentioned in section 2.3.5, where the DX-questions and considerations questions are a bit
different, and one should be careful to draw parallels. We can see however in the consid-
eration scoring that pricing is very important. We can tell by the DX-scoring that clearly
showing the pricing of the software has a very strong positive impact, and hiding the pric-
ing away has a strong negative impact. The recommendation for pricing, in order to give
a good experience for developers, is to clearly state the pricing of the software platform.
Especially if your target audience is people working on hobby projects. Whichever money
making model the software platform uses, the cost to inquire it for a developer should not

73

3. Results and Discussion

be hidden away. Hiding the pricing can not only cause irritation from the developer, but
also hurt the trust between the customer and the company.

Result: Important, keep in mind. Low effort, high payoff.

3.4.10 The release- and change notes are thorough

Figure 3.12: Scoring for ”The release- and change notes are thor-
ough”

Contrary to what litterature would suggest, release notes was shown to be a quite non-
important aspect, as seen in Figure 3.12. Especially for the people who are supposedly
using them: developers and architects. We can see by the DX-impact that poor release
notes has a bit of a negative impact. It is however still below neutral. The interviews
showed that release notes are a last resort for people, and ignored as much as possible.
The recommendation is therefor to not spend too much time on release notes. But make

74

3.4 Recommendations For Software Platforms

sure to not ignore them since it reflects poorly on the company, according to the interviews.
If you make sure to have good commit messages, these can act as a good base for writing
the release notes. This minimises the time that has to be spent on writing the release notes.

Result: Not important, but don’t ignore. Medium effort, low payoff.

3.4.11 The software has the same features on all
different platforms

Figure 3.13: Scoring for ”The software has the same features on
all different platforms”

If your software platform supports many different platforms, such as operatingf systems
and browsers, it takes time and effort to make sure that they work the same in all situa-
tions. In Figure 3.13 we see that this scores kind of low, and the DX-impact is neutral. It

75

3. Results and Discussion

is somewhat higher in the context of deciding for a group. The effort to make sure that
all features exist on all platforms is very high. The recommendation is therefor to clearly
state to the users what features are offered on what platforms. If you decide to make sure
that the features are consistent on all platforms, be aware that the effort to do this is very
high and may not have a big payoff.

Result: Not very important. High effort, low-medium payoff.

3.4.12 The software is compatiblewith different plat-
forms

Figure 3.14: Scoring for ”The software is compatible with differ-
ent platforms”

Having your software platform be compatible with many different platforms is a require-
ment for some users, a bonus for some. The effort to do this is however high. If you plan to

76

3.4 Recommendations For Software Platforms

implement this, make sure that the increase in potential users is worth the effort to do this.
You need to be aware that it highly increases all future maintenance for your platform. As
we can see in Figure 3.14, the scoring is low to average for both job titles and DX impact.
The one outlier is in the context of deciding for a group, where it is very important. The
recommendation is to skip this aspect, if you are not sure that the increase in users is worth
the effort.

Result: Not very important. High effort, low-medium payoff.

3.4.13 The software is offered inmore than one pro-
gramming language

Figure 3.15: Scoring for ”The software is offered in more than
one programming language”

77

3. Results and Discussion

Having your platform be compatible with more than one language takes a big effort. It
takes a long time to develop and doubles the maintenance needed. As we can see in Fig-
ure 3.15 it is not ranked high at all, both for the consideration part and the DX part. The
recommendation is therefor to ignore this aspect. The effort compared with the payoff is
not worth it.

Result: Not important. High effort, low payoff.

3.4.14 The software is open source

Figure 3.16: Scoring for ”The software is open source”

Being open source has both benefits and limitations. It is out of the scope of this research
paper to evaluate these. But as we can see in Figure 3.16 it is quite important to develop-
ers and architects. The DX impact shows however that being close-sourced doesn’t have
a very big impact. The recommendation is therefor to try to be open source if you can,

78

3.4 Recommendations For Software Platforms

but it is not necessary. If it is not something that the company is used to, be aware that
it requires other ways of working than conventional software that is close-source. If you
decide to make an open-source software platform, make sure you have the expertise in
the company to be able to handle this type of software. It has a potential to increase the
amount of users, but if you don’t use the benefits that open-source gives, it may not pay off.

Result: Important. Medium-high effort, high payoff.

3.4.15 The software uses the programming language
I am most comfortable with

Figure 3.17: Scoring for ”The software uses the programming
language I am most comfortable with”

Developers tend to be more comfortable working with certain languages, and it is unique
for every person. As we can see in Figure 3.17 it is definitely something people consider.

79

3. Results and Discussion

TheDX impact shows however that they’re not immediately deterred by software platforms
that is not in their favourite language. As stated before, providing several languages is not
worth the effort. The recommendation is therefor to be attentive to what programming
languages are popular, and to see how the trends change. Be aware however that these
trends are just that, trends. New languages emerge all the time as ”the new hot thing”. The
safer bet is to offer your software platform in a popular language, that is predicted to be
popular for quite some time.

Result: Important. Medium effort, high payoff.

3.4.16 There exists an active online community around
the software

Figure 3.18: Scoring for ”There exists an active online commu-
nity around the software”

80

3.4 Recommendations For Software Platforms

It can be difficult, if not impossible, to forcefully create an online community around your
software platform. It is not up to the company if people engage in online discussions, it is
up to the users themselves. A company can provide platforms for discussions, but also rely
on existing community platforms. In Figure 3.18 we see that it is quite often considered,
and a good community has above neutral DX impact on developers.

The effort to create an online forum for users to discuss doesn’t have to be too big,
but acts as a starting point for a community to be created. Often communities will natu-
rally emerge on other places, such as Stack Overflow. The company can help the online
community prosper by keeping an eye on these communities as well, and answer question
there. This also builds a trust between the user and the company.

Online communities is primarily used for questions and answers to help out when the
documentation is not enough. The effort to make sure your online community has the an-
swers they need is somewhat big. The recommendation is to take extra care of your online
community when it is new and small, and less when it is big enough that it takes care
of itself. Never ignore it though, pay attention to suggestions and issues that your online
community has.

Result: Important, keep in mind. Medium effort, medium-high payoff.

3.4.17 Summary of Recommendations
A summary of the relevance, effort and payoff can be found in Table 3.15

A
sp
ec
tI
D

Relevance Effort Payoff
1 Somewhat Important Medium Medium
2 Very Important Medium High
3 Very Important High High
4 Very Important High High
5 Not very important Low Medium
6 Not very important High Low
7 Somewhat important Medium-high Medium
8 Somewhat important Medium Medium
9 Important Low High
10 Not important Medium Low
11 Not very important High Low-medium
12 Not very important High Low-medium
13 Not important High Low
14 Important Medium-High High
15 Important Medium High
16 Important Medium Medium-High

Table 3.15: Summary of the relevance, effort and payoff for each
aspect. The aspect IDs can be seen in Table 2.1

81

3. Results and Discussion

3.5 Evaluation of Qlik Core
The last part of this report looks at the evaluation of how well Qlik Core followed the rec-
ommendations given in section 3.4. This was done aspect-by-aspect, and given a verdict
based on how important the aspect is compared with how well they follow the recommen-
dation.

3.5.1 How often the software is updated
Qlik Core is a quite new product, which left beta in mid-fall of 2018. The different parts of
QC are updated continuously (several commits on GitHub per week for each component
of QC). Qlik releases a monthly blog post about what has been updated the last month.
At the time of writing this paper, they’ve made four such blog posts. With this being such
a new product, and having so many components, it is natural that there will be a lot of
updates. The continuous updating may deter users as it shows that this product is still
quite immature, but can also be seen by some that this product is very much taken care of.
Effort: Medium. Payoff: Medium. Importance: Somewhat important.
Verdict: No need for immediate change. It is not feasible for QC to lump the updates
together when the product is still so new. But Qlik should be aware of what issues the
almost daily updates can be.

3.5.2 I can have working code quickly
When evaluating this aspect, I tried to visit the QC website as if I were a new user. I took
the persona of myself, a junior software developer, that had heard of QC and wanted to
check out what it was, and what it can do. The following text is the process of doing so,
and what issues I had.

Qlik Core provides several tutorials for a user to do when getting started. The first tutorial
called ’Hello-Engine’ simply sets up the possibility to communicate with the engine. It
was not clearly explained in the tutorial what the goal of the tutorial was, so when I finished
I did not fully understand what I had finished. I thought that I had done something wrong,
my thoughts were ”This can’t be it?” when I had actually completed the tutorial. Overall
I had a lack of achievement, and did not feel I had learned anything about what Qlik Core
is or can do. The following tutorial ’Hello Data’ suffered a bit from the same issues. The
third tutorial ’Hello Visualisation’ was the first tutorial where I felt I had learned some-
thing about what Qlik Core can do. A tutorial should give the user a sense of achievement,
and make the user feel like he or she learned something they did not previously know. In
my opinion, these tutorials could be merged into one longer tutorial, divided into three
sections.

For the next tutorial ’core-orchestration’ I got stuck immediately. The tutorial prompts
you to get a licence. The process of figuring out how to configure the license was ex-
tremely cumbersome. I had to search for a long, long time on how I should do it. In the
end, I had to follow a total of five links away from the tutorial page until I found an ex-

82

3.5 Evaluation of Qlik Core

ample, inside a file in a GitHub project. Afterwards, when I talked to the people whom
had created the tutorial, it turns out that getting a license was only optional for the tutorial,
even though it was stated that it was needed.

The ’core-orchestration’ tutorial also has a lot of prerequisites on knowledge. I still tried
to follow the guide, which ultimately did not work. When talking to the Qlik Core team, it
turns out that this is a very special case for using Qlik Core, and will not be used by most
people. The way it is presented, right after the simplest tutorials, is problematic. This will
scare users away. It needs to be explained that this is a special and advanced case.

The fourth tutorial was about authorisation. This was also a special, advanced case which
did not teach the user about what Qlik Core can do. It was also hard to follow, with expla-
nations that were brief and hard to understand.

The last tutorial is related to data loading. These tutorials did not require as much pre-
requisite knowledge. It however failed as well. When talking to the tutorial constructor,
it turns out that the tutorial was out date with what commands should be run. Ultimately,
this tutorial also failed to be completed.

Overall, getting started felt difficult, cumbersome and irritating. I was stopped by errors,
getting a licence that I did not actually need, setting up configurations and out-of-date tu-
torials. I also felt like I was was not actually learning anything about what Qlik Core can
do. The tutorials need to be reworked in my opinion, with more simple use cases. And
most importantly, tutorials where the user actually gets to change some code and feel like
they learn something, rather than running downloaded scripts. The goal when making the
tutorials should be ”How do we get the users interested in Qlik Core, and make them feel
like they are able to use it.”

Effort: Medium. Payoff: High. Importance: Important.
Verdict: Needs to be changed. The tutorials needs to be both reworked, and probably
extended with more simple examples. The tutorial needs to be created with the goal of
getting new users to understand how Qlik Core works, what it can do, and show that them
that it solves problems in an easy and efficient way.

3.5.3 The API documentation gives thorough expla-
nations on how it works

Qlik Core is a group of different services running together. How these are linked together,
is nowhere explained.
On the QC website one can find the API documentation. It turns out that the documen-
tation there however, is not directly under the Qlik Core teams control. It is pulled from
other sources and automatically generated. In the end however, it is the Qlik Core team
that is responsible for what is on their website.

At the heart of it all is the QAE, which uses several different APIs, as stated in section

83

3. Results and Discussion

1.5. In the introduction to the QAE it is explained that the different APIs are meant to be
used in different use cases, and that each of these APIs has their own API documentation.
An issue that exists in all documentation is that there are close to no examples.

QIX API Documentation
For their own QIX API has many issues. The documentation has been split up into sev-
eral different sub-categories. They are ”Definitions”, ”Global”, ”Doc”, ”Generic Object”,
”Generic Bookmark”, ”Generic Dimension”, ”Generic Measure” and ”Generic Variable”.
None of these eight sub-pages have an introduction or description of what the page con-
tains.
The sub-page ”Definitions” is the one that is lacking the most. The definitions page is
simply just a long list of a total of 217 definitions. In Figure 3.19 we can see how an entry
in ”Definitions” typically looks like.

Figure 3.19: An example of how a method for the ”Definitions”
part of QIX API looks like. It has no description for the entry, and
one of the fields has no description as well.

This is not an outlier. 36 fields had No description, and out of the 217 entries, only 60
has a text explaining what the definition is or does. This does not follow the recommen-
dations given in this paper, and need to be taken care of as soon as possible.
For the other API sub-pages of QIX, most of the entries has descriptions, with just a few
exceptions.

REST API Documentation
The REST API seems like the most mature of the four APIs. It has description for all
parts, with parameters and responses defined. It also states what permissions are needed.
In Figure 3.20 we can see what an entry in the REST API documentation typically looks
like.

84

3.5 Evaluation of Qlik Core

Figure 3.20: An example of how an entry in the REST API doc-
umentation typically looks like.

At the top of the page however is a link called ”Qlik Associative Engine API spec-
ification”, which is broken. This immediately gives the user a feeling of an immature
documentation.
Data Connector API Documentation
In the documentation for Data Connector we once again have the issue of missing descrip-
tions. Its lack of descriptions is however not as bad as the QIX documentation. It is also
the only documentation that has a figure that explains how it is interacting with other ser-
vices.
Analytical Connector API Documentation
This documentation is on par with the REST API documentation in how mature it is. It
only has one field without a description. It is however, just like all other documentation,
lacking an intro and an explanation on where and when it is suitable to use this.
License Documentation
As discussed in 3.5.2, the licensing caused a lot of confusion. How to actually set up the
licensing is not really explained on the page. In Figure 3.21 we can see how they explain
of how to setup your license. What a <License service URL> should look like, is
not explained. The best way to fix it was to open an example in GitHub and look in the
configuration file.

85

3. Results and Discussion

Figure 3.21: The description on how to pass the licensing to the
Qlik Associative Engine.

Effort: High. Payoff: High. Importance: Very important.
Verdict: Needs to be changed. Overall, the documentation feels overwhelming. It is hard
to get a grip onwhen, where and how theAPIs are supposed to be used. The documentation
is not really explained at all. An introduction, with images, explaining how things are
interconnected would be a great way to start. The licensing page needs rework too.

3.5.4 The API has code examples
The APIs have close to no examples at all in the documentation. The few examples that
exists are in the introduction part, and are snippets without any context. The recommenda-
tion for this aspect is to always have small examples in the documentation, and preferably
longer examples as well. As stated in 3.4.4, code examples are used for many things: get-
ting an overview as to understand the platform, getting started and seeing how code is
used. Even more alarming, the tutorials that is suppose to get people started is without ex-
amples. They simply rely on the user opening and project in GitHub and reading through
it. The issue with this is that examples are not only used for having runnable code, but to
get a mental image of what something does, interacts with other things and works. API
examples is the most important aspect according to this research paper, and the lack of
them can been felt heavily. It is hard to get an understandable overview, hard to get started
and hard to see how the APIs should be used.

Effort: High. Payoff: High. Importance: Very important.
Verdict: Needs to be changed. The software platform has almost no examples at all,
which makes it hard to use in a lot of ways. This needs to be of very high priority to fix.

3.5.5 The documentation does not assume any prior
expertise

Qlik states that this documentation requires you to know some things before you begin.
Most central is the third-party software Docker. By doing this, Qlik dismiss the respon-
sibility to explain how these things work. However, it feels like the documentation take
too little responsibility in explaining new concepts. The documentation also uses some

86

3.5 Evaluation of Qlik Core

unexplained expressions. One example of this is the term to do something ”On The Fly”
that encountered twice, but it was never explained what exactly it means.
Their way of dealing with new concepts however follows the recommendations of linking
to places where an explanation is given. Qlik should be aware that the threshold of starting
with Qlik Core is high for a new person because of the high requirements in prerequisite
knowledge.

Effort: Low. Payoff: Medium. Importance: Not Very Important
Verdict: No need for change. If Qlik Core gives more examples and gets better at explain-
ing its documentation, this aspect does not need fixing. It follows the recommendations.
Combined with this aspect’s importance being low, this aspects gets a pass.

3.5.6 The documentation has consistent language
As mentioned in 3.5.3, the Qlik Core team are not directly responsible for the documenta-
tion for the APIs. When contacting the people responsible for the different parts, it turns
out that there is no central vocabulary used, as is recommended. When reading through
the documentation, it does however not seem inconsistent in its wording. The effort to
produce a vocabulary to be used by many different teams is high, and inconsistency in the
language does not seem to be an issue.

Effort: High. Payoff: Low. Importance: Not very important
Verdict: No need for change. The recommendation is to use a central vocabulary. The
language is however not inconsitent without it, and because of the high effort to implement
it, this gets a pass anyway.

3.5.7 The documentation is easy to navigate
There are a few issues with the navigation for the documentation. The first is that on the
start page, see Figure ??, there is no clear way of how to reach the API documentation. It
turns out that the documentation is hidden in ”Services”.

The recommendation is to carefully choose your titles. API documentation being found
inside Services is not very obvious, in my opinion. The sub-pages also have some very
vague names. The services’ APIs are quite big. For example, the QIXDefinitions part hav-
ing 217 entries in just one long list. Navigating the API documentation feels cumbersome
and overwhelming. Restructuring this into smaller sections, with aptly named headings
would make it easier.
The Qlik Core website has a search function, which searches both their own documenta-
tion and third-party software documentation. The search function however is limited. It
does not allow you to search for exact phrases, normally done by putting a phrase within
citation marks. You cannot tell the search to not include certain words or phrases, nor-
mally done by adding a minus before the word or phrase. In the end, it is probably easier
to use a search engine like Google, than Qlik Core’s own search function.

Effort: Medium-High. Payoff: Medium. Importance: Somewhat Important

87

3. Results and Discussion

Verdict: Needs to be changed. The API reference documentation is hard to find, some-
what hard to navigate and the search function is lacking functionality.

3.5.8 The official website looks professional
This aspect is hard to evaluate objectively, since it is up to each user’s opinion. According
to me, the website does look professional. It is using standard conversions, doesn’t have
spelling errors or buggy CSS. It works well on mobile as well.

Effort: Medium. Payoff: Medium. Importance: Somewhat important.
Verdict: No need for change.

3.5.9 The pricing of the software
Finding the pricing of Qlik Core is not possible. Going to the licensing page, you can
easily try the software for free for a period of time. If you want to obtain an actual license
however, you have to contact the sales department of Qlik. They don’t give any informa-
tion of any kind of price range or if it is a monthly or yearly (or any other) payment. Any
information you want about pricing, you have to contact the sales department. This clearly
goes against my recommendations.

Effort: Low. Payoff: High. Importance: Important
Verdict: Needs to be changed. It is up to Qlik themselves how they choose to sell their
product. Not giving any sort of information on the cost however will have a huge negative
impact on developer experience for their potential buyers.

3.5.10 The release- and change notes are thorough
The release notes are in my opinion well done. Since it is a very new product, the release
notes are more about new features rather than changes. These are presented in the form of
a blog post with images and gifs, which makes it easy to get an overview of what’s new.
They warn about changes they are making that may cause issues, and explain how one
should fix these things.

Effort: Medium. Payoff: Low. Importance: Not important.
Verdict: No need for change.

3.5.11 The software has the same features on all
different platforms

Qlik Core does not list on their website what features exist on what platforms. They have,
according to one of their team members, tested it on different web browsers and found
limitations for their services, but have yet to put them on their website. When it comes
to the Qlik Associative Engine, that is run in support of the third-party software Docker.
Docker is supported by Mac, Windows and most Linux distributions. It is also supports

88

3.5 Evaluation of Qlik Core

many different servers. So the heart of Qlik Core, the engine, acting the same on all dif-
ferent platforms is reliant on Docker acting the same on all different platforms.

Effort: High. Payoff: Low-medium. Importance: Not very important
Verdict: Needs to be changed. The recommendation is to list your feature support on
your website, which Qlik Core does not.

3.5.12 The software is compatiblewith different plat-
forms

As mentioned in 3.5.11, the server side of Qlik Core (the engine) supports many platforms
through Docker. The other libraries offered in Qlik Core works in all browsers, but may
have limitations depending on the browser.

Effort: High. Payoff: Low-medium. Importance: Not very important.
Verdict: No need for change. I recommend however to make the information of platform
support more clear on the Qlik Core website.

3.5.13 The software is offered inmore than one pro-
gramming language

As mentioned before, Qlik Core is constructed from a combination of different libraries.
The engine is close-source, so the programming languages needed to know is for the sup-
porting libraries that comes with Qlik Core. The majority of the libraries are written in
JavaScript, which we saw in section 1.6 was a very popular programming language. How-
ever, they’ve actually gone to the length of offering the library that communicates with the
engine, Enigma, is both JavaScript and Go. This is above and beyond what I even recom-
mend.

Effort: High. Payoff: Low. Importance: Not important.
Verdict: No need for change.

3.5.14 The software is open source
Qlik Core is partially open source. The data loading software ”Halyard”, the discovery
service ”Mira” and the software communicating with the engine ”Enigma” are all open
source. The Qlik Core website and all the tutorials are also open-source. The Licensing
service and the Qlik Associative Engine are however close-source. Their reasoning behind
making the Qlik Associative Engine close-source is to protect intellectual property. It is
their main selling point, and also serves as the basis for their other products, and needs to
be protected. Their licensing service contains some intellectual property as well and logic
that would be vulnerable to open up to the public. Qlik has been in talks however to open
up this service as well to the public, but would need some refactoring of the software in
that case.

89

3. Results and Discussion

Effort: Medium-High. Payoff: High. Importance: Important
Verdict: No need for change. Qlik has tried to make Qlik Core as open-source as possi-
ble, which follows the recommendations.

3.5.15 The software uses the programming language
I am most comfortable with

As talked about in 1.5, the libraries in QC mainly uses JavaScript. The recommendation
for this aspect is not to offer many languages, but rather keep an eye on what languages
are popular, and will keep on being popular. And as we saw in section 1.6, JavaScript is
the most popular language on GitHub.

Effort: Medium. Payoff: High. Importance: Important
Verdict: No need for change.

3.5.16 There exists an active online community around
the software

Being a fairly new product, there doesn’t seem to be any community around Qlik Core yet.
Searching for Qlik Core on Stack Overflow yields zero results. There are no discussions
from users directly in the GitHub repository relating to Qlik Core either. Qlik does have a
forum site for its users, https://community.qlik.com. This website has different
sub-categories for their products. It does not yet however a sub-category dedicated to Qlik
Core. On the Qlik Core website, they link to a support channel on Slack (a chat program
used commonly by developers). As of writing this paper, this seems to be the best way to
get help as a user.
It may be too early to judge Qlik Core for not having an online community. In fact, when
talking with a member of the Qlik Core team, they deliberately not tried to push Qlik Core
too hard yet. They are still a small team working on the product, and the decision was to
try and funnel all questions into one place, namley Slack. He also states that they watch for
questions and issues on Stack Overflow. Once they feel ready to push the product more,
they should in my opinion dedicate a part of their forum site to Qlik Core.

Effort: Medium. Payoff: Medium-High. Importance: Important.
Verdict: No need for change. It is natural that Qlik Core does not have a community yet,
and since they have deliberately chosen not to try and create one, this aspect gets a pass.
Qlik should be aware though of the importance of an online community.

3.6 Qlik Core Evaluation Summary
In total, it had no need for change for 10 out of the 16 aspects. In Table 3.16 we can see
a summation. We see that it gets av average score of 0.55/1.00. It is suited for all of the

90

3.6 Qlik Core Evaluation Summary

three job titles, but mostly managers. Out of the three contexts, it is most suited for the
context of working professionally.

Table 3.16: The summation of how well Qlik Core follows the
recommendations

N
ee
ds

ch
an

ge

Question Av
g
Ev

er
yo
ne

A
rc
hi
te
ct

D
&
E

M
an

ag
er
s

G
ro
up

Po
in
ts

Si
ng

le
Po

in
ts

H
ob

by
Po

in
ts

X The API has code examples 0.90 0.92 0.91 0.79 0.93 0.88 0.88
X The API documentation gives

thorough explanations on how it
works

0.82 0.82 0.87 0.73 0.85 0.82 0.79

X I can have working code quickly 0.80 0.85 0.80 0.71 0.75 0.80 0.86
X The pricing of the software 0.80 0.76 0.84 0.75 0.74 0.76 0.91

The software uses the program-
ming language I am most com-
fortable with

0.68 0.69 0.73 0.63 0.56 0.71 0.78

The software is open source 0.68 0.77 0.69 0.60 0.64 0.66 0.74
There exists an active online
community around the software

0.65 0.63 0.67 0.54 0.69 0.62 0.65

X The documentation is easy to
navigate

0.60 0.66 0.61 0.52 0.61 0.60 0.60

The official website looks pro-
fessional

0.60 0.63 0.56 0.71 0.67 0.60 0.53

The software is compatible with
different platforms

0.58 0.58 0.52 0.54 0.81 0.58 0.37

How often the software is up-
dated

0.58 0.52 0.57 0.63 0.69 0.59 0.46

The documentation doesn’t as-
sume any prior expertise

0.47 0.47 0.44 0.54 0.41 0.47 0.53

X The software has the same fea-
tures on all different platforms

0.46 0.41 0.45 0.44 0.63 0.47 0.28

The documentation has consis-
tent language

0.41 0.49 0.34 0.42 0.42 0.42 0.39

The software is offered in
more than one programming
language

0.36 0.37 0.31 0.44 0.48 0.35 0.25

The release- and change notes
are thorough

0.33 0.26 0.29 0.44 0.40 0.31 0.27

Points 4.39 4.41 4.47 3.94 4.51 4.34 4.32
Max Points 9.73 9.81 9.60 9.42 10.27 9.64 9.28
Score 0.55 0.55 0.53 0.58 0.56 0.55 0.53

91

3. Results and Discussion

3.7 Threats to Validity
Runeson and Höst (2008, pp. 71-74) discusses validity of results from studies made in
software engineering. As they put it, validity denotes the trustworthiness of the results
yielded by a study. They present four main points of validity: construct validity, internal
validity, external validity and reliability.

Construct validity is related to the interpretation of questions asked by the researcher, if
the person asked interprets the question the way it is intended by the researcher. This study
put effort into this issue, trying to make sure as much as possible that the questions were
interpreted as intended. The pilot survey showed that there were issues with construct va-
lidity, which was fixed for the main survey. In the interviews, the interviewees were asked
to clarify ambiguous answers and if it was clear that they were interpreting the question
wrong the same question was asked again with more clarification from the interviewer.
Although you cannot be positive that the persons taking the survey interpreted the ques-
tions asked the way that were intended, construct validity is not of great concern for this
report.

Internal validity is related to the examination of causal relations in results, e.g. cause
and effect. If it is being studies whether factor A causes factor X, there is a risk that factor
X is also affected by an unknown factor B. If factor B is not known to the researcher, false
conclusions may be drawn. This report presents the results with this in mind, saying that
the results seem to suggest that the results leads to a certain conclusion. External validity
relates to how the generalization of the results are made. The results are from a certain
point in time, by a certain group of people, being in a certain situation and generalizing
the results as being true in all cases may cause invalidity. This report is however careful to
not make too definite conclusions. The data pool for this report were a very homogeneous
group of people and was quite small. There is a certain risk for external validity with this
report that it results may not be applicable as a ‘’truth” for all cases for software platform.
Using the results from this report, one should be aware of the nature of the data pool. Reli-
ability, in the context of validity, concerns how dependent the results are on the conductor
of the research. A study like this should, in theory, yield the same result if conducted
again by another researcher. One way of lowering the risk for invalidity by this factor is to
present what question was asked in the interviews and questionnaires, as well as tell how
the data was analysed. This has been made in this report, and it is in my opinion a low risk
of invalidity caused by reliability.

One way of lowering the risk of result invalidity according to Runeson and Höst (2008) is
to triangulate the results, which has been done in this report. The validity of the results is
overall not questionable in my opinion.

92

Chapter 4
Conclusion

So what is the conclusion of this research paper? If we go back to the original questions
this research paper intended to answer, they were:

1. What aspects are needed by a software platform in order for people to find them
favourable, and how important are these aspects?

2. Do different groups of software platform users have different needs?

3. Why are some of these aspects needed or not needed by a software platform in order
for people to find them favourable?

4. How favourable is Qlik’s software platform Qlik Core to use users, and what can be
improved?

We now have the knowledge to answer each of these questions.

What aspects are needed by a software platform in order for people to find them
favourable, and how important are these aspects?
The conclusion of the first question is that the most important aspects for a software plat-
form is that it has thorough documentation, code examples, is easy to get started with, and
clearly shows the cost of the software platform. The least important aspects that need to
exist in order for developers to find a software platform favourable is that the release notes
are thorough, that the software platform is offered in several languages and the documen-
tation has consistent language.

Do different groups of software platform users have different needs?
The conclusion for the second question is that some groupings are irrelevant, while some
other show that different groups have different needs. Looking at years of experience or
if people has the power to make decisions for other people did not say much about what
needs they had from a software platform. Grouping people by their job title or by in what

93

4. Conclusion

context they are going to use a software platform showed differences in priorities. The
research also found that there is no uncoupling between what people consider and what
while give them a positive experience using a software platform. Ergo, they are aware of
what they need in order to be happy.
Overall the research also found that developers are impatient and follow the path of least
resistance. If a software platform seems cumbersome, they would rather spend time on
finding an alternative than trying to understand the software platform.

Why are some of these aspects needed or not needed by a software platform in order
for people to find them favourable?
The research found that developers want working code quickly in order to be able to eval-
uate if a software platform is useful. They do not read about the platform when evaluating,
but would rather just try it out themselves. The research also found that online communi-
ties are used as a source of questions-and-answers when stuck and developers do not care
much about where it is, who is answering or if they feel apart of the community. Release
notes were also found to be avoided by developers as much as possible. API examples in
documentation was used for several things: copy-pasting into your code, seeing howmeth-
ods should be used but most importantly as an overview for understanding the platform
instead of reading explanatory texts.

How favourable is Qlik’s software platform Qlik Core to use users, and what can
be improved?
Qlik’s software platform Qlik Core was found to have some issues. It lacked API exam-
ples and API documentation explanations. It was hard to get started with and did not tell
users its pricing. The research found that it was slightly more suited for professional use
compared to hobby projects, and was slightly more suited for managers than developers,
engineers and architects.

4.1 Further Research
There is a lot of possibility for further research. Here I suggest a few things.

Deeper investigate other aspects than the three in this research paper
Because of time constraints, there was only possible deep dive in to some of the aspects.
It would however be interesting to get a deeper understanding of some of the other aspects.

How do people discover new software?
It was investigated a little bit in the test survey how people discover new software. This had
to be dropped because of time constraints in this research paper, but would be interesting
to research more.

Use another data pool
The data pool for this research paper was quite homogeneous. It would be interesting to

94

4.1 Further Research

see if other data pools yields similar results.

Do the creators behind the software matter?
In the test survey it was also asked about if people consider the creator behind the soft-
ware. This was also dropped in the main survey, but would be interesting to research more.

Extend the list of aspects
The nature of this research paper was of the investigating kind. The list of aspects could
be extended with considerations that were not brought up in this paper.

95

4. Conclusion

96

Bibliography

Regina Bernhaupt, Girish Dalvi, Anirudha Joshi, Devanuj K. Balkrishan, Jacki O’Neill,
and Marco Winckler. Human-Computer Interaction - INTERACT 2017 - 16th IFIP
TC 13 International Conference, Mumbai, India, September 25-29, 2017, Proceedings,
Part IV.

Code Academy. What is rest?, 2019. https://www.codecademy.com/articles/
what-is-rest [accessed: 2019.01.15].

Martyn Denscombe. The good research guide : for small-scale social research projects.
McGraw-Hill Education, 4 edition, 8 2010. ISBN 9780335241408.

Rahul Dhide. Building the Developer Experience (DX) From the Ground Up. 10
2017. https://blog.argoproj.io/building-the-developer-
experience-dx-from-the-ground-up-8254d50457f5 [accessed:
2019.01.22].

Every Developer. What is developer experience?, 2019. http://
everydeveloper.com/developer-experience/ [accessed: 2019.11.01].

Xinyang Feng, Jianjing Shen, and Ying Fan. Rest: An alternative to rpc for web services
architecture. First International Conference on Future Information Networks, pages
7–10, 2009.

GitHub. Top languages over time, 2019. https://octoverse.github.com/
projects#languages [accessed: 2019.01.31].

Daniel Graziotina, Fabian Fagerholm, Xiaofeng Wangd, and Pekka Abrahamsson. What
happens when software developers are (un)happy. Journal of Systems and Software,
140:32–47, 2018.

Martin Höst. EDAA35 Utväardering av programvarusystem. 2019. http:
//fileadmin.cs.lth.se/cs/Education/EDAA35/EDAA35.pdf [accessed:
2019.02.21].

97

https://www.codecademy.com/articles/what-is-rest
https://www.codecademy.com/articles/what-is-rest
https://blog.argoproj.io/building-the-developer-experience-dx-from-the-ground-up-8254d50457f5
https://blog.argoproj.io/building-the-developer-experience-dx-from-the-ground-up-8254d50457f5
http://everydeveloper.com/developer-experience/
http://everydeveloper.com/developer-experience/
https://octoverse.github.com/projects#languages
https://octoverse.github.com/projects#languages
http://fileadmin.cs.lth.se/cs/Education/EDAA35/EDAA35.pdf
http://fileadmin.cs.lth.se/cs/Education/EDAA35/EDAA35.pdf

BIBLIOGRAPHY

ISO 9241-210:2010 (2010). Ergonomics of human system interaction - part 210:
Human-centered design for interactive systems (formerly known as 13407). Stan-
dard, International Organization for Standardization, Geneva, CH, 2010. https:
//www.iso.org/standard/52075.html.

Sam Jarman. The best practices for a great developer experience (dx). 2017.
https://hackernoon.com/the-best-practices-for-a-great-
developer-experience-dx-9036834382b0 [accessed: 2019.11.01].

Jyrki Kontio, Laura Lehtola, and Johanna Bragge. Using the Focus Group Method in
Software Engineering: Obtaining Practitioner and User Experiences. Proceedings -
2004 International Symposium on Empirical Software Engineering, ISESE 2004, pages
271– 280, 09 2004.

Guy Levin. Internal vs external apis. 3 2017. https://blog.restcase.com/
internal-vs-external-apis/ [accessed: 2019.01.31].

Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Massimiliano
Di Penta, Rocco Oliveto, and Denys Poshyvanyk. Api change and fault proneness: A
threat to the success of android apps. pages 477–487, 2013.

Don Norman, Jim Miller, and Austin Henderson. What you see, some of what’s in the
future, and how we go about doing it: Hi at apple computer. In Conference Companion
on Human Factors in Computing Systems, CHI ’95, pages 155–. 1995. ISBN 0-89791-
755-3.

Mark Nottingham. User personas for http apis. 4 2012. https://www.mnot.net/
blog/2012/04/14/user_personas_for_http_apis.

OpenSource. What is Docker?, 2019. https://opensource.com/resources/
what-docker [accessed: 2019.01.31].

Qlik. Qlik core, 2019. https://core.qlik.com/ [accessed: 2019.01.31].

Qlik Media Representation. From Swedish Startup to Software Success Story: Qlik-
Tech Lars Björk Named Ernst Young Entrepreneur Of The Year® 2010 Winner
in the Technology Category, 2010. https://www.qlik.com/us/company/
press-room/press-releases/1114-from-swedish-startup-to-
software-success-story [accessed: 2019.01.31].

Martin P. Robillard. What Makes APIs Hard to Learn? Answers from Developers. IEEE
Software, 26(6):27–34, 2009.

Per Runeson andMartin Höst. Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering, 14(2):131, Dec 2008.

Phil Sturgeon. Understanding rpc vs rest for http apis. 9 2016. https:
//www.smashingmagazine.com/2016/09/understanding-rest-
and-rpc-for-http-apis/, [accessed: 2019.01.31].

98

https://www.iso.org/standard/52075.html
https://www.iso.org/standard/52075.html
https://hackernoon.com/the-best-practices-for-a-great-developer-experience-dx-9036834382b0
https://hackernoon.com/the-best-practices-for-a-great-developer-experience-dx-9036834382b0
https://blog.restcase.com/internal-vs-external-apis/
https://blog.restcase.com/internal-vs-external-apis/
https://www.mnot.net/blog/2012/04/14/user_personas_for_http_apis
https://www.mnot.net/blog/2012/04/14/user_personas_for_http_apis
https://opensource.com/resources/what-docker
https://opensource.com/resources/what-docker
https://core.qlik.com/
https://www.qlik.com/us/company/press-room/press-releases/1114-from-swedish-startup-to-software-success-story
https://www.qlik.com/us/company/press-room/press-releases/1114-from-swedish-startup-to-software-success-story
https://www.qlik.com/us/company/press-room/press-releases/1114-from-swedish-startup-to-software-success-story
https://www.smashingmagazine.com/2016/09/understanding-rest-and-rpc-for-http-apis/
https://www.smashingmagazine.com/2016/09/understanding-rest-and-rpc-for-http-apis/
https://www.smashingmagazine.com/2016/09/understanding-rest-and-rpc-for-http-apis/

BIBLIOGRAPHY

W3C. Glossary of terms for device independence. W3C working draft, W3C, January
2005. http://www.w3.org/TR/2005/WD-di-gloss-20050118/.

Michał Wróbel. Emotions in the software development process. 2013 6th International
Conference on Human System Interactions, HSI 2013, pages 518–523, 06 2013.

99

http://www.w3.org/TR/2005/WD-di-gloss-20050118/

BIBLIOGRAPHY

100

Appendix A
Pilot Survey

The initial test survey that was sent out. The original survey was conducted using Google
Form, and answered online. The look of it is not the same here as it was online, but the
questions are identical.

101

2/1/2019 New Software and Developer Experience

https://docs.google.com/forms/d/1z8Ra9ZmygbaNWGMej3LRo7Y0zMYn9H_pTv-aysNMXus/edit 1/6

New Software and Developer Experience
Brief background about you

* Required

1. What is your job title at your company? *
Mark only one oval.

 I am not currently working at a company.

 Prefer not to answer.

 Other:

2. How big is the company you are currently working at? *
Mark only one oval.

 Self employed

 2 - 5 people

 5 - 20 people

 20 - 50 people

 50 - 100 people

 100 - 200 people

 200+ people

 I am not currently working

3. For how many years have you been working professionally within the software industry? *
Mark only one oval.

 Less than 1 year

 1 - 3 years

 3 - 5 years

 5 - 10 years

 10 - 15 years

 15+ years

 I don't work within the software industry.

Skip to question 4.

New software
When we use the word software, we mean anything where the target audience of the software are
developers, be it SDKs, libraries, APIs, IDEs etc. We will collectively call these 'tools and frameworks' in
the survey.

2/1/2019 New Software and Developer Experience

https://docs.google.com/forms/d/1z8Ra9ZmygbaNWGMej3LRo7Y0zMYn9H_pTv-aysNMXus/edit 2/6

4. How do you usually discover new tools and frameworks? *
Check all that apply.

 Online communities and forums

 Friends or coworkers telling me about it

 Conferences

 Searching for related key words online

 Reading blog posts or articles

 Social media

 Other:

5. What is a common reason you decide not to use a tool or framework?

6. What do you usually do first when you want to evaluate if you want to use a new tool or
framework? *
Check all that apply.

 Try to make a simple project from scratch (Like ''Hello World")

 Try to integrate it into a simple project I already have

 Try to integrate it right away into the project I intend to use it in

 Follow a more advanced step-by-step tutorial

 Read a lot about it online, before starting any kind of coding

 Other:

2/1/2019 New Software and Developer Experience

https://docs.google.com/forms/d/1z8Ra9ZmygbaNWGMej3LRo7Y0zMYn9H_pTv-aysNMXus/edit 3/6

7. How quickly do you usually decide if the tool or framework is for you? *
Mark only one oval.

 Less than 10 minutes

 Less than 30 minutes

 Less than 1 hour

 Less than 3 hours

 Less than 6 hours

 Less than 12 hours

 Less than 1 day

 Less than 2 days

 Less than 3 days

 Less than a week

 Less than a month

 More than a month

 I prefer not to answer

Developer Experience
In this survey we are trying to evaluate what makes a developer give new software a shot!

8. Have you ever heard of the term "Developer Experience" (DX)? *
Mark only one oval.

 Yes, and I could comfortably give a definition of it

 Yes, and I think I could give a definition of it

 Yes, but I could not give a definition of it

 No

 I don't know

9. What is the last new tool or framework that you
decided to try that you felt gave you a good
experience as a developer?

10. Are there any tools or frameworks that you have to use, that you do not like using? Why?

Last Part!

2/1/2019 New Software and Developer Experience

https://docs.google.com/forms/d/1z8Ra9ZmygbaNWGMej3LRo7Y0zMYn9H_pTv-aysNMXus/edit 4/6

You just heard about a new tool or framework for your project!

Let's say you just heard about a new software that might be useful in the project that you are working on,
and want to check it out.

11. Which of these traits or aspects do you usually consider when deciding if you want to TRY a
new tool or framework? *
Mark only one oval per row.

Never
consider

Rarely
consider

Sometimes
consider

Often
consider

Always
consider

The official website looks
professional
I can have working code
quickly
The API has code
examples
The API gives thorough
explanations
The documentation
doesn't assume any prior
expertise
The documentation has
consistent language
The documentation is
easy to navigate
The release- and change
notes are thorough
How often the software is
updated
The pricing of the
software
There exists an active
online community around
the software
The software is
compatible with different
platforms
The software has the
same features on all
different platforms
The software uses the
programming language I
am most comfortable with

12. What other things do you usually consider with software you might use?

The creator behind the tool or framework

2/1/2019 New Software and Developer Experience

https://docs.google.com/forms/d/1z8Ra9ZmygbaNWGMej3LRo7Y0zMYn9H_pTv-aysNMXus/edit 5/6

Behind the tool or framework is always a creator (be it a company, person or community).

13. Which of these traits or aspects do you usually consider when deciding if you want to TRY a
new tool or framework? *
Mark only one oval per row.

Never
consider

Rarely
consider

Sometimes
consider

Often
consider

Always
consider

The creator of the
software has good
communication with it's
users
The creator of the
software has high
transparency with it's
issues, ways of working,
future plans, etc.
The creator of the
software seems
professional
The creator of the
software has a good
reputation online
I have heard of the
creator of the software
before
I have heard of other
software the creator of
the software has made

14. What other things do you consider with the creator behind the tool or framework?

Deal breakers

Some things just has to exist in order for developers to use a software.

2/1/2019 New Software and Developer Experience

https://docs.google.com/forms/d/1z8Ra9ZmygbaNWGMej3LRo7Y0zMYn9H_pTv-aysNMXus/edit 6/6

Powered by

15. Which of these aspects or traits will make you definitely not use a new tool or framework? *
Check all that apply.

 It takes a long time to get initially started

 The API has poor or no code examples

 The API is poorly explained

 The documentation uses inconsistent language

 The documentation assumes prior experience with the software

 The website for the documentation is hard to navigate

 The release notes are poorly written

 I have to pay to be able to fully evaluate the software

 The online community around the software is dead or has little activity

 The online community around the software is unappealing

 The creators behind the software are not transparent

 The creators behind the software feel like they cater to businesses, not developers

 The software is not open source

 Other:

A. Pilot Survey

108

Appendix B
Main Survey

Themain survey that was sent out. The original survey was conducted using Google Form,
and answered online. The look of it is not the same here as it was online, but the questions
are identical.

109

2/1/2019 What is required by software platforms in order for developers to use them?

https://docs.google.com/forms/d/1rUdKgNld7l3LNbiM7l9IonPEtYYJo1Ec4Tbf1XCZQ-M/edit 1/14

What is required by software platforms in order for
developers to use them?
This survey is made as part of a master thesis conducted for Qlik AB. It is aimed at people working with
software platforms. It tries to answer the question of what aspects are required by software platforms in
order for developers to use them and enjoy them.

By taking this survey, you are not only helping better the quality of Qlik products, but extending the
academic research around the understanding of what developers want from software platforms.

As part of this master thesis we will also be conducting some interviews with some selected persons to
get a deeper understanding. If you are available to come to the Qlik offices in Lund, and you are
interested in taking part in an interview, please answer 'Yes' in the 2nd question below.
You are only saying that you're willing to be contacted. You are not agreeing to an interview, and there's
also no guarantee that you will be contacted.

* Required

1. Have you read and understood the text above? *
Mark only one oval.

 Yes

 No

2. Would you be willing to be contacted after this survey to do a more in-depth interview? *
Mark only one oval.

 Yes Skip to question 3.

 No Skip to question 6.

Interview Contact Details
You have answered that you would be willing to be contacted.
As stated before, this is not agreeing to taking part in an interview, and there's no guarantee that you will
be contacted.

3. First- and last name *

4. Email *

5. What company do you work at? *

Background
Some quick information about yourself.

2/1/2019 What is required by software platforms in order for developers to use them?

https://docs.google.com/forms/d/1rUdKgNld7l3LNbiM7l9IonPEtYYJo1Ec4Tbf1XCZQ-M/edit 2/14

6. What is your job title? *

7. What is your level? *
Mark only one oval.

 Junior

 Middle

 Senior

 Don't know / Not applicable

 Prefer not to answer

8. How many years have your been working professionally within the software industry? *
Mark only one oval.

 Less than 1 year

 1 year

 2 years

 3 years

 4 years

 5 - 7 years

 8 - 10 years

 10 - 15 years

 15 - 20 years

 20 - 25 years

 25+ years

 Prefer not to answer

2/1/2019 What is required by software platforms in order for developers to use them?

https://docs.google.com/forms/d/1rUdKgNld7l3LNbiM7l9IonPEtYYJo1Ec4Tbf1XCZQ-M/edit 3/14

9. How big is the company you work at? *
Mark only one oval.

 I'm not currently employed

 I'm self employed

 2 - 5 people

 6 - 10 people

 11 - 30 people

 31 - 50 people

 51 - 75 people

 76 - 100 people

 101 - 150 people

 151 - 250 people

 251 - 500 people

 501 - 1000 people

 1001 - 2000 people

 2000 - 5000 people

 More than 5000 people

 Prefer not to answer

 I don't work within the software development industry

10. Are you in a position where you can make decisions on what software other coworkers will
use, for example what platform a project will be built upon? *
Mark only one oval.

 Yes Skip to question 11.

 No Skip to question 12.

 I don't work in a group / Don't know / Prefer not to answer Skip to question 12.

Skip to question 12.

Working professionally & deciding for a group

2/1/2019 What is required by software platforms in order for developers to use them?

https://docs.google.com/forms/d/1rUdKgNld7l3LNbiM7l9IonPEtYYJo1Ec4Tbf1XCZQ-M/edit 4/14

You checked that you ARE in a position to make decisions for a
group. Therefore this section concerns when you are going to
use software professionally, and your have to take into
consideration how it may also affect coworkers. For example,
you are choosing what platform a project will be built upon.

2/1/2019 What is required by software platforms in order for developers to use them?

https://docs.google.com/forms/d/1rUdKgNld7l3LNbiM7l9IonPEtYYJo1Ec4Tbf1XCZQ-M/edit 5/14

11. When working professionally and deciding for a group, which of these traits or aspects do
you usually consider when using a software platform? *
Mark only one oval per row.

Never
consider

Rarely
consider

Sometimes
consider

Often
consider

Always
consider

The API has code
examples
The API documentation
gives thorough
explanations on how it
works
There exists an active
online community around
the software
I can have working code
quickly
The pricing of the
software
The software is
compatible with different
platforms (Such as
different operating
systems or browsers)
The software uses the
programming language I
am most comfortable with
The software is offered in
more than one
programming language
How often the software is
updated
The software has the
same features on all
different platforms (Such
as different operating
systems or browsers)
The documentation is
easy to navigate
The documentation
doesn't assume any prior
expertise
The documentation has
consistent language
The release- and change
notes are thorough
The official website looks
professional
The software is open
source

Working professionally

2/1/2019 What is required by software platforms in order for developers to use them?

https://docs.google.com/forms/d/1rUdKgNld7l3LNbiM7l9IonPEtYYJo1Ec4Tbf1XCZQ-M/edit 6/14

This part concerns when you are working professionally, but your
decision to use software platform is not for a group. For example,
the software will be present in a part of a project where you are
the sole contributor.

2/1/2019 What is required by software platforms in order for developers to use them?

https://docs.google.com/forms/d/1rUdKgNld7l3LNbiM7l9IonPEtYYJo1Ec4Tbf1XCZQ-M/edit 7/14

12. When working professionally and deciding for yourself, which of these traits or aspects do
you usually consider when using a software platform? *
Mark only one oval per row.

Never
consider

Rarely
consider

Sometimes
consider

Often
consider

Always
consider

The API has code
examples
The API documentation
gives thorough
explanations on how it
works
There exists an active
online community around
the software
I can have working code
quickly
The pricing of the
software
The software is
compatible with different
platforms (Such as
different operating
systems or browsers)
The software uses the
programming language I
am most comfortable with
The software is offered in
more than one
programming language
How often the software is
updated
The software has the
same features on all
different platforms (Such
as different operating
systems or browsers)
The documentation is
easy to navigate
The documentation
doesn't assume any prior
expertise
The documentation has
consistent language
The release- and change
notes are thorough
The official website looks
professional
The software is open
source

Skip to question 13.

Software considerations when working on a hobby project by
yourself

2/1/2019 What is required by software platforms in order for developers to use them?

https://docs.google.com/forms/d/1rUdKgNld7l3LNbiM7l9IonPEtYYJo1Ec4Tbf1XCZQ-M/edit 8/14

This part concerns when you are working on a hobby project by
yourself and don't have to concern your self with the issues
present when working professionally.

2/1/2019 What is required by software platforms in order for developers to use them?

https://docs.google.com/forms/d/1rUdKgNld7l3LNbiM7l9IonPEtYYJo1Ec4Tbf1XCZQ-M/edit 9/14

13. When working on a hobby project, which of these traits or aspects do you usually consider
when using a software platform? *
Mark only one oval per row.

Never
consider

Rarely
consider

Sometimes
consider

Often
consider

Always
consider

The API has code
examples
The API documentation
gives thorough
explanations on how it
works
There exists an active
online community around
the software
I can have working code
quickly
The pricing of the
software
The software is
compatible with different
platforms (Such as
different operating
systems or browsers)
The software uses the
programming language I
am most comfortable with
The software is offered in
more than one
programming language
How often the software is
updated
The software has the
same features on all
different platforms (Such
as different operating
systems or browsers)
The documentation is
easy to navigate
The documentation
doesn't assume any prior
expertise
The documentation has
consistent language
The release- and change
notes are thorough
The official website looks
professional
The software is open
source

Developer Experience
Background: Developer Experience (DX) is the equivalent of User Experience (UX) when the target
audience are software developers. It concerns itself with the somewhat vague quality of how software
makes you "feel". In the following question we're trying to pinpoint what's important from software in order
for a developer to have a good experience when interacting with it. When answering this, try to think of
moments when software has made you feel good, and times when software has irritated you, to be able to
answer how important the aspects are.

2/1/2019 What is required by software platforms in order for developers to use them?

https://docs.google.com/forms/d/1rUdKgNld7l3LNbiM7l9IonPEtYYJo1Ec4Tbf1XCZQ-M/edit 10/14

14. Did you read the background text above? *
Mark only one oval.

 Yes

 No

2/1/2019 What is required by software platforms in order for developers to use them?

https://docs.google.com/forms/d/1rUdKgNld7l3LNbiM7l9IonPEtYYJo1Ec4Tbf1XCZQ-M/edit 11/14

15. On a scale from 1 - 5, how important is it that these aspects exist in order for you to leave the
interaction with the software platform with a POSITIVE FEELING? *
Mark only one oval per row.

1 - Not very
important 2 3 -

Neutral 4 5 - Very
important

The pricing of the software was
easy to find
The code examples for the API
were good
The API was thoroughly
explained so that you could
understand how it worked
The online community was
helpful with up-to-date
discussion threads
The documentation was easy to
navigate
I could quickly have working
code when starting from scratch
The release notes for what's
new/updated/deprecated/etc in
an update were well-written
The software was compatible on
different platforms (Such as
different operating systems or
browsers)
The software used a
programming language I am
skilled in
The software was offered in
more than programming
language
The software quickly released
updates to address bugs
The official website looked
professional
The documentation did not
assume that I had any prior
expertise with the software, not
referencing software-specific
things without explaining them
The documentation had a
consistent language, not using
different words to mean the
same thing
The software's features existed
and acted the same on different
platforms (such as different
operating systems or browsers)
The software was open source

2/1/2019 What is required by software platforms in order for developers to use them?

https://docs.google.com/forms/d/1rUdKgNld7l3LNbiM7l9IonPEtYYJo1Ec4Tbf1XCZQ-M/edit 12/14

2/1/2019 What is required by software platforms in order for developers to use them?

https://docs.google.com/forms/d/1rUdKgNld7l3LNbiM7l9IonPEtYYJo1Ec4Tbf1XCZQ-M/edit 13/14

16. On a scale from 1 - 5, how important is it that these aspects exist in order for you to leave the
interaction with the software platform with a NEGATIVE FEELING? *
Mark only one oval per row.

1 - Not very
important 2 3 -

Neutral 4 5 - Very
important

The pricing of the software was
hard to find
The code examples for the APIs
were bad
The API was poorly explained so
that you could not understand
how it worked
The online community was not
helpful and the discussion
threads were out-of-date
The documentation was hard to
navigate
I took a long time before I had
working code when starting from
scratch
The change- and release logs
for what's
new/updated/deprecated/etc in
an update were poorly written
The software was compatible on
only one platform (Such as
operating system or browser)
The software used a
programming language I am not
very skilled in
The software was only offered in
one programming language
The software was slow to
release updates to address bugs
The official website did not look
professional
The documentation assumed I
had prior expertise with the
software, referencing software-
specific things without explaining
them
The documentation did not have
a consistent language, using
different words to mean the
same thing
The software's features did not
exist or acted differently on
different platforms (such as
different operating systems or
browsers)
The software was not open
source

Feedback
Here you can give feedback if there were any issues or if you have anything you'd like to tell the
researchers.

2/1/2019 What is required by software platforms in order for developers to use them?

https://docs.google.com/forms/d/1rUdKgNld7l3LNbiM7l9IonPEtYYJo1Ec4Tbf1XCZQ-M/edit 14/14

Powered by

17. Feedback

B. Main Survey

124

Appendix C
Material for Interview

Before the interviews were conducted, the interviewees got handed this PDF with a part
of a fictive software platform documentation. They had to read and solve three questions,
to make sure that they had actually read through it properly.

125

Material Quiz for MyBakery API

As your disposal you have some material. A section of API documentation, namely the description of the
class , the method and the method . You also have a longer version and a Step addStep makeCake
shorter version of release notes for the API.

What's wrong in this code?

The code tries to bake a strawberry shortcake. However, there are 3 errors in this code. What are they?

1. let baker = new Baker(createSuperEngine());

2. let recipeDB = new RecipeDB('recipes/cakes.json');

3. let recipe = recipeDB.getRecipe('strawberry shortcake');

4. baker.setRecipe(recipe);

5. baker.serveCake();

Answer:

Which of these two implementations would you recommend? Why?

Implementation 1

1. let b = new Baker(new SuperEngine());

2. b.setRecipe(recipeDB.get('chocolate cake'));

3. b.makeAnySizeCake(500);

Implementation 2

1. let b = new Baker(new Engine());

2. b.setRecipe(recipeDB.get('chocolate cake'));

3. b.makeLargeCake());

Answer:

What's wrong in this implementation?

Row 4 and 5 are correct, but row 1, 2, 3, 6 and 7, 8 all have errors in them. What are they?

1. let step1 = new Step('add', 'large eggs', 3000);

2. let step2 = new Step('knead', 5000, 'knead the dough for 5 seconds');

3. let step3 = new Step('cool', 6000.0);

4. let recipeDB = new RecipeDatabase('recipes/cakes.json');

5. let recipe = recipeDB.getRecipe('strawberry cake');

6. recipe.addStep('after', '1', step1);

7. recipe.addStep('behind', 3, step2);

8. recipe.addStep('last', step3);

Answer:

1.

2.

3.

6.

7.

8.

MyBakery Platform

Recipe API

addStep(string, int, Step) method

Usage

recipe.addStep(position, stepNbr, newStep)

The method calls on the class to add a new .Recipe Step Spec

Parameters

Name Type Description

position string
Specifies if the step should be added before or after . stepNbr
Acceptable inputs are , 'after' 'before'

stepNbr int
Takes a positive int. Specifies the number of the new step. If the number
is larger than the last step in the , the step will be added last.Recipe

newStep Step The new step to be added. See Step .Spec

Returns

Return type Status Description

void Success On success, the function will not return anything

WrongParametersError Error
This error is returned when the parameters are of
the wrong format.

NotEnoughArumentsError Error
This error will be returned when there are not
enough arguments.

Examples

This example makes a strawberry cake, but adds a pause step after step 4.

let recipeDB = new RecipeDatabase('recipes/cakes.json');

let recipe = recipeDB.getRecipe('strawberry cake');

recipe.addStep('after', 4, new Step('pause', 300000));

MyBakery Platform

Step

Step is a class used by that describes a step of how to bake a cake. The class has no methods, Recipe
but is simply a structure.

Usage

The class has three different constructors.

new Step(stepName, duration)

Intended to be used for a standard step without an ingredient. If already exists in the stepName
 the description will be fetched automatically.RecipeDatabase

new Step(stepName, duration, ingredient)

Intended to be used for a standard step with an ingredient.

new Step(stepName, duration, description)

Intended to be used when adding a custom step that does not exist in the database.

Parameters

Name Type Description

stepName string Name of the step.

duration int
Specifies the duration of the step, in milliseconds. Parameter must
be a positive int.

ingredient string The name of the ingredient

description string Specifies what to do in the step.

Standard Step Names

These are the standard step names and their respective descriptions. They all exist in RecipeDatabase

Step Name Description

'pause' Pauses all execution for the specified duration.

'mix' Mixes the ingredients

'mix'

'knead' Kneads the dough, if it exists

'add' Adds the specified ingredient

'repeat' Will loop once the steps between and repeat stopRepeat

'stopRepeat' Will stop the loop.repeat

'cool' Cools the mixture.

'putInOven' Puts the mixture in the oven

'addToSmallPan' Adds the mixture to a small pan

'addToBigPan' Adds the mixture to a big pan

Errors

Error Type Description

doubleStepNameError
This error is returned a custom step is trying to be added that
already exists in the RecipeDatabase

wrongParametersError
This error will be returned the wrong amount of parameters is put
in, the parameters are not of the correct type or the duration is
negative.

MyBakery Platform

Baker API

The is the central part of the MyBaker Platform, creating all objects.Baker Cake

makeCake() method

Usage

baker.makeCake()

The method calls on the class to follow the exact instructions and amounts given by Baker Recipe Spec

. It will automatically change of if needed. It returns an object of the class mode Engine Spec Cake Spec

or throws an error.

Parameters

This method takes no parameters.

Returns

Return type Status Description

Cake Success
On success, the function will return an object of the
class Cake

NoEngineError Error
This error is returned when either has not Baker
been assigned an or the assigned is Engine Engine
busy

LowEnergyError Error
This error is returned when the class has less Baker
energy than required by the Recipe

WrongEngineModeError Error
This error is returned when the mode of the Engine

 does not match the mode required by mode Recipe

Examples

Example

This example makes a strawberry cake without any changes.

let engine = SuperEngine();

let baker = new Baker(engine);

let recipeDB = new RecipeDatabase('recipes/cakes.json');

baker.setRecipe(recipeDB.getRecipe('strawberry cake'));

let cake = baker.makeCake();

baker.serveCake(cake);

Example with modifications

This example makes a strawberry cake, but doubles the amount of flour, changes the speed of the engine
and adds a pause step after step 4.

let engine = SuperEngine();

let baker = new Baker(engine);

let recipeDB = new RecipeDatabase('recipes/cakes.json');

let recipe = recipeDB.getRecipe('strawberry cake');

recipe.setIngredientAmount('flour', recipe.getAmount('flour')*2);

recipe.addStep('after', 4, new Step('pause', 300000));

baker.setRecipe(recipe);

baker.setEngine(getEngine().setSpeed(400));

let cake = baker.makeCake();

baker.serveCake(cake);

Change Log to MyBakery API

Version 5.3

New/Updated

SuperEngine

makeAnySizeCake(int: size)

servePlace(string: place)

Deprecated

makeHorribleCake()
makeLargeCake()
makeMediumCake()
makeSmallCake()

Bugs

The egg bug is fixed.

The overheating bug is fixed.

Change Log to MyBakery API

Version 5.3

7 November 2018

We are happy to announced that this latest release introduces our new, more efficient,
 that addresses many of the issues the community have pointed about. This SuperCakeMachineEngine

release sees new methods, updated methods, deprecated methods and bug fixes. We also talk about
known bugs that we are still working on.

New Class

With the release we present a new class.

SuperEngine()

This is the new cake engine. It replaces the now deprecated Engine()

Read specifications here: SuperEngine specifications

New Methods

This release also sees a new method.

makeAnySizeCake(int: size)

This method replaces the methods , and .makeLargeCake() makeMediumCake() makeSmallCake

Read specifications here: makeAnySizeCake spec

Updated Methods

servePlace(string: place) now also supports the input .'inFace'

Read specifications here: servePlace spec

Deprecated Methods

Some methods will be deprecated with this release.

List of deprecated methods

Engine() , instead use SuperEngine()

Engine() will not be supported with the introduction of our new engine.

makeLargeCake() , instead use makeAnySizeCake(500)
makeMediumCake() , instead use makeAnySizeCake(300)

makeMediumCake() , instead use makeAnySizeCake(300)
makeSmallCake() , instead use makeAnySizeCake(100)

The reasoning behind removing the methods are that they are reliant on our old
 that had performance issues. With the introduction of , BadCakeMachineEnginge makeAnySizeCake

the baker can make any sized cake.

makeHorribleCake()

This method has been deprecated since it's usage has been close to zero. If you still wish to use it the
following code will yield the same result:

let engine = SuperEngine();

let baker = new Baker(engine);

let recipeDB = new RecipeData(cakes.json);

baker.setRecipe(recipeDB.get('weddingCake'));

baker.getIngredients().forEach((ingredient) => {

 ingredient.setAmount('random');

});

baker.makeCake();

Bug fixes

The egg bug

The method had a bug where you could only add even amount of eggs. addEggs(float: amount)
This was due to a bug in the class where it used the class instead Baker mainBowl separateBowl
and then retrieving the correct amount. This has now been fixed.

The bug was introduced in version 5.0. Read more about the release here: 5.0 - A Better Baker!

The overheating bug

The method had an issue where setting a speed to over 9000 would overheat setSpeed(int: speed)
the engine. This was due to a bug in the old engine where was not set to extremeCoolingSystem

. This has now been fixed.true

The bug was introduced in version 5.2. Read more about that release here: Version 5.2 - Power savings

Known bugs

BakerPropertyError

We are currently still working on the bug of the baker returning the error code of:

BakerPropertyError: {

 Name: John Smith

 State: HungOver

 EnergyLevel: -1

}

Expected EnergyLevel to be 100.

Could not bake cake.

The bug has existed since and occurs when using the method Version 5.0 - A Better Baker! setDay
. We recommend not using this method in production at the moment.('sunday')

We have made a blog post on a workaround for this issue that you can read about here:
BakerPropertyError: A workaround with Baker.enforce('sobriety')

The bug is still not solved, but we are working on it and hope to fix it shortly.

	Preface
	Background and Purpose
	Goal Of This Research Paper
	What is User Experience?
	What is Developer Experience?
	How Can One Define ''Good'' DX?
	Who are Qlik and what is Qlik Core?
	Popularity of Programming Languages
	Kinds of APIs
	API User Personas
	Standardisation

	Methodology and Preparations
	Deciding consideration aspects
	Linking considerations to ISO-9216-1
	Surveys
	Interviews
	Making Recommendations for Software Platforms
	Evaluating Qlik Core

	Results and Discussion
	Initial Survey
	Survey 2 Results
	Interview Results
	Recommendations For Software Platforms
	Evaluation of Qlik Core
	Qlik Core Evaluation Summary
	Threats to Validity

	Conclusion
	Further Research

	Bibliography
	Pilot Survey
	Main Survey
	Material for Interview

