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1 Abstract

This thesis presents a system, which builds on the Generative Adversarial Network (GAN) frame-
work, with the focus of learning interpretable representations of data. The system is able to learn
representations of data that are ordered in regards to the saliency of the attributes, in a completely
unsupervised manner. The training strategy expands the latent space dimension while appropriately
adding capacity to the model in a controlled way. This builds on the intuition that highly salient
attributes are easiest to learn first. Empirical results on the Swiss roll dataset show that the represen-
tation is structured in regards to the saliency of the attributes when training the latent space progres-
sively on a very simple GAN architecture. Experiments using a more complex system, trained on
the CelebA dataset, scales the idea to a more interesting use case. Experiments using latent space in-
terpolations show that our model successfully structures the latent space with respect to the saliency
of the attributes, while also generating at least as real looking images and in less training time, than
state-of-the-art methods.
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Lund University. First and foremost, I would like to thank my advisors, Ted Kronvall and Henning
Petzka, for many fruitful and fun discussions and Martin Trimmel for getting to know you as a great
friend from whom I have learned a lot. I would also like to thank everyone else in professor Cristian
Sminchisescu’s group for being welcoming and fostering my interest in research. I am looking
forward to collaborating with you all in the future.

Lastly, I would like to express my gratitude to several people who are my life long supporters.
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engineer. Thank you Anna Sandström Löf, Annika Sandström and Matilda Backendal for always
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3 Introduction

Scientific discoveries often start with observations of the real world. Many times, the problem is to
explain hidden structure in observed data. In some cases, the structure could perhaps be explained
by a differential equation derived from the laws of physics. When studying data with no appar-
ent relation to physics though, other tools need to be used. One such tool, coming from statistics,
is called density estimation. Density estimation tries to solve the generic problem of explaining
hidden structure in any type of data. Density estimation assumes that there exists some true, but
unknown, way of explaining the data, which consists of a set of observations, also called samples.
Strictly speaking, density estimation assumes that the samples come from an unknown probability
density function pdata(x) which, at each sample x, describes the likelihood of observing that sam-
ple. Adding some more terminology, the data is said to be distributed according to pdata(x). Given
independent samples from pdata(x), density estimation is the process of constructing another den-
sity pmodel(x; θ) parameterized by θ that approximates pdata(x) as closely as possible [8]. This is
most often achieved by minimizing some measure of distance between pdata(x) and pmodel(x; θ)
with respect to θ and this process is referred to as training.

Modeling pmodel(x; θ) can be done in many ways. One such way is through so-called generative
models, which this work focuses on. These models have the ability to generate new data from
pmodel(x; θ) such that the data looks as if it came from pdata(x). In order to produce a sample
from pmodel(x; θ), an input z to the model, called the latent vector, is often needed. The vector is
called latent since it describes that z is a hidden representation of the data sample x. Furthermore,
all latent vectors lie in a vector space, which is called the latent space. The latent vector z could be
seen as a code, where each entry controls some characteristics of the data sample x. One desirable
property of a generative model is to have the ability to specify each entry in z to encode a certain
isolated characteristic of the output sample x. For instance, when generating images of faces, it
would be beneficial if the entries in z, independently of each other, controlled the sex, hair color,
hairstyle, skin color, pose, facial shape, eye color and so on. This would make image generation very
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controlled and could help greatly when solving other tasks like classification, localization, anomaly
detection and planning, which all need good representations of data. The problem is that most gen-
erative models do not yield representations where the entries of z independently control semantic
attributes of the data instance. Instead, the entries of z are often entangled, which in practice means
that it is impossible to relate the entries to specific isolated attributes of the data. A disentangled
latent representation is thus sought. While there exist attempts to formalize the definition of disen-
tanglement [13], using it informally serves our purposes well and in this work, if different directions
in the latent space encode semantically independent information, then the latent space is said to be
disentangled.

This work focuses on a specific way of disentanglement, where the saliency of the attributes are
ordered such that attributes causing most variability in the image are seen as most salient. Repre-
sentations of this form could potentially be useful for tasks involving style-transfer, but also extend
to other applications like data compression and dimensionality reduction. In this work, the sought
representation is implicitly inferred by using a novel training process of a generative model, which
is trained in an unsupervised manner. Contrary to supervised training, this means that no annota-
tions are required during training. The main contribution is a training scheme of artificial neural
networks, GANs specifically, where the latent space dimension grows during the training process
in a controlled way. To the best of our knowledge, we are the first ones proposing this idea. The
underlying motivation behind this approach is a form of curriculum learning that is imposed by the
training process. Curriculum learning originates from the human education system where students
are presented easier concepts first and gradually face higher difficulty. The argument is made that by
first modeling the problem with a latent space of small dimension, the system is required to first fo-
cus on the most salient attributes of the data, which should be easiest to learn at first. Our reasoning
relies on the assumption that the most salient attributes of the data lie on a so-called submanifold (of
the data manifold) which has high variance. More details will be covered in Section 4.3, but in short,
a manifold is a generalization of a surface in a Euclidean space and can serve as a tool to reason
about high-dimensional data in a geometric way. Examples of aspects with high data variation could
be facial shape, pose and hairstyle. As more latent dimensions become available, aspects of lesser
variation, like eye shape and mouth expression are modeled, resulting in disentanglement in the la-
tent space between aspects of high and small data variation. This is similar to principal component
analysis (PCA), which linearly orders the data dimensions with respect to data variation. Our model
can, however, model nonlinear behavior. It is important to note that our protocol does not imply that
each entry in the latent vector z controls an isolated semantic attribute of the output like hairstyle,
sex or pose. Rather, the purpose is to order aspects of data variation.

From an optimization perspective, by training the latent space dimensions progressively, the param-
eters θ of the model are also trained in a progressive manner. The hypothesis is that the training
protocol effectively excludes parameter optima that would result in an entangled latent representa-
tion and local optima, where the representation is ordered with respect to attribute variability, are
thus more easily found (Section 6). Results are shown empirically using latent space walks, where
it is clear that our model successfully structures the latent space with respect to the saliency of the
attributes, while also generating at least as real looking images and in less training time, than state-
of-the-art methods.

The report is outlined as follows. Section 4 presents an overview of generative models and GANs
specifically. A brief section on artificial neural networks is also included. Section 5 covers related
work, while Section 6 describes, in detail, the developed methodology to grow the latent space of
GANs. Several growing strategies are developed and tested in Section 7, which contains experi-
ments on a Swiss roll dataset and the CelebA dataset [18]. Section 8 contains a brief discussion,
while Section 9 describes potential directions for future work. The report is concluded in Section
10.

4 Generative Modeling

A generative model can generate data from a distribution pmodel(x; θ), such that the generated data
is indistinguishable from some true, but unknown, distribution pdata(x). This assumes that the pa-
rameters θ are tuned adequately. To tune or optimize the parameters, a measure of difference, usually
called the loss function or objective, between pmodel(x; θ) and pdata(x), needs to be minimized with
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respect to θ. In statistics, the notion of distance between probability density functions is measured
by a divergence, which is a weaker notion than that of a distance, since it may not be symmetric with
respect to the data distribution pdata(x) and the model distribution pmodel(x; θ). Using for instance
the Kullback-Leibler divergence (and putting the densities in a certain order) yields a loss function,
which creates an optimization problem equivalent to maximum likelihood estimation (MLE) on the
observed data [9], i.e.,

min
θ∈M

KL[pdata(x)||pmodel(x; θ)] = min
θ∈M

Ex∼pdata

[
log

pdata(x)

pmodel(x; θ)

]
, (1)

where θ is the collection of parameters that are optimized from a family of modelsM. The true den-
sity pdata(x) does not depend on θ and thus the expression can be equivalently written as performing
MLE

max
θ∈M

Ex∼pdata [log pmodel(x; θ)]. (2)

Changing the order of pdata(x) and pmodel(x; θ) in (1) produces a different objective, which can not
be phrased as MLE, but in some situations, that objective is also useful [8].

In practice, pdata(x) is not available since only discrete samples of pdata(x) exist. Calculating the
expectation in (2) with respect to the true distribution pdata(x) is therefore not possible, but a so-
called Monte Carlo estimate of the expectation can be used in practice. A Monte Carlo estimate
builds on the fact that

Ex∼pdata [log pmodel(x; θ)] = lim
n→∞

1

n

n∑
i=1

log pmodel(xi; θ), xi ∼ pdata. (3)

Since in practice, infinitely many samples are not available, a Monte Carlo estimate approximates
the true expectation in (2) as

Ex∼pdata [log pmodel(x; θ)] ≈
1

N

N∑
i=1

log pmodel(xi; θ), xi ∼ pdata. (4)

4.1 Implicit and Explicit Generative Models

In order to understand the properties of the specific generative model used in this work, a categori-
sation of generative models is made. Either the likelihood can be modelled explicitly or implicitly.
Starting with explicit generative models, one can note that in order to maximize the likelihood in (4),
the likelihood function pmodel(x; θ) needs to be explicitly specified from some parameterized family
of distributions. This leads to the main advantage of explicit generative models, which is that train-
ing is straightforward, since the MLE objective can be used directly. This is achieved by plugging
in the function expression of pmodel(x; θ) into (4), and optimizing it with an appropriate gradient
ascent method. Another advantage of explicit generative models is that the likelihood for a given
sample x can be computed directly. Examples of these models include the variational autoencoder
and pixelcnn [17], [25]. The main issue with explicit generative models is, however, that the chosen
family of distributions both needs to be sufficiently complex to model the often multi-modal data
distribution pdata(x), while still being tractable to compute the likelihood [8]. Implicit generative
models offer a solution to this dilemma. They do not require explicitly specifying the distribution
family and thus no assumptions need to be made on pmodel(x; θ). As a consequence though, a more
difficult optimization problem often ensues, together with the fact that likelihood evaluation is no
longer possible. Instead, only samples from pmodel(x; θ) can be drawn. An example of an implicit
generative model is the generative adversarial network (GAN) [7], which is the main focus of this
work.

4.2 Generative Adversarial Networks

The idea behind GANs is a pair of competing models called generator and discriminator. The
generator Gθ : Rk −→ Rd (commonly k < d) is a complicated nonlinear real-valued differentiable
function parameterized by θ, that models pmodel(x; θ). The generator takes as input the latent vector
z ∈ Rk, which is sampled from a known, often simple distribution p(z), and generates a sample
from pmodel(x; θ) by transforming z through Gθ, i.e., Gθ(z) = x ∼ pmodel(x; θ). The goal of
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Gθ is to produce samples indistinguishable from the true data distribution pdata(x). To guide Gθ,
another complicated nonlinear real-valued differentiable function parameterized by φ, called the
discriminator Dφ : Rd −→ R, tries to distinguish between samples generated by Gθ (labeled as
fake) and samples from the true data distribution (labeled as real). The generator is penalized if it
generates samples that are recognized as fake by the discriminator and the discriminator receives a
penalty if it fails to distinguish between real and fake samples.

To derive the GAN objective function, consider Dφ = Dφ(x) to generate a number between 0 and 1
for a given input x. If x comes from pdata(x), then the target value for Dφ(x) is 1 (label = real).
If x comes from pmodel(x; θ) the target value for Dφ(x) is 0 (label = fake). The target of Gθ(z)
is the adverse of Dφ, which is to generate samples x = Gθ(z) such that Dφ(Gθ(z)) ≈ 1. Based on
this, an objective function is constructed that takes the form

min
θ∈M

max
φ∈F

Ex∼pθ [log(1−Dφ(x))] + Ex∼pdata [log(Dφ(x))]. (5)

Here pmodel(x; θ) = pθ for brevity. While the objective may look intimidating at first, breaking it
down leads to an intuitive optimization problem. HereM and F define parametric families of the
models. From (5), the objective for Gθ and Dφ can be separated. This yields for Dφ,

min
φ∈F
−Ex∼pθ [log(1−Dφ(x))]− Ex∼pdata [log(Dφ(x))]. (6)

As the second term in (5) does not depend on θ, the generator loss becomes

min
θ∈M

Ex∼pθ [log(1−Dφ(x))]. (7)

For numerical reasons, the loss in (7) saturates at the beginning of training, when the generator is
poor. This yields very slow training due to small gradient magnitudes. To alleviate this problem,
instead, the following loss is used for the generator, which together with (6), results in the so-called
non-saturated GAN

min
θ∈M

−Ex∼pθ [log(Dφ(x))]. (8)

Finally, thanks to the formulation of the objective in (5) as a sum of expectations, it is possible to
estimate the objective by using Monte Carlo estimates, following a recipe similar to (4), instead of
exact computation. The objective can thus be optimized without an explicit form of the likelihood
pmodel(x; θ). Only samples are required from the model.

While here we only discuss the intuitive motivation, the objective in (5) can also be derived from the
minimization of a statistical divergence betwen pdata(x) and pmodel(x; θ). This topic is discussed
in Section 4.5 and, building from the latter viewpoint on GANs, in Section 4.6 we discuss how
choosing the Wasserstein distance as the divergence leads to the Wasserstein GAN [1].

4.3 The Image Manifold

To find out what specific kinds of functions are useful for Gθ and Dφ, the observation is made that
any d-dimensional distribution can be generated by taking a set of d variables that are normally
distributed and mapping them through a sufficiently complicated function [6]. Recall, however, that
the input dimension to the generator Gθ is not necessarily equal to the output dimension. The obser-
vation is still applicable though and to see that, some new terminology and reasoning is introduced
as follows. First consider a real image of spatial size n× n. Stacking the image matrix as a vector,
the image can be seen as to lie in Rn×n×3 = Rd (×3 due to RGB). The constraint is that the image
has to be real-looking and not all vectors in the space Rn×n×3 represent valid real images. This
constrains the real image to lie on a so-called manifold in Rn×n×3. The manifold is a generaliza-
tion of a surface in a Euclidean space and it describes geometrically how the data is distributed on
some nonlinear surface in the high-dimensional space Rn×n×3. Digesting the previous sentence
is difficult, but in lower dimensions, manifolds appear everywhere. For instance, a sphere is a 2D
manifold in R3 and a ring is a 1D manifold in R2. A perhaps not very formal definition, but serving
a conceptual purpose, is that a manifold is a surface that everywhere locally resembles a Euclidean
space. Even more informally, a manifold looks like a plane if one moves close enough to its surface.

The true dimension of the image manifold is unknown, but from a modeling perspective, under mild
regularity conditions, the input dimension to the generator determines the dimension of this space.
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Therefore, it may be reasonable to assume that the input dimension to the generator should be cho-
sen in a range that respects the dimension of the data manifold. This means that the d-dimensional
density pdata(x) could be seen as created by a density of a smaller dimension. This concludes the
reasoning that if the input dimension to the generator is close enough to the underlying dimension
of the real data, any pmodel(x; θ) can be constructed as long as Gθ is chosen to be sufficiently
complicated.

4.4 Artificial Neural Networks

Building on the reasoning in Section 4.3, this section presents the type of functions used for Gθ and
Dφ. The reader is assumed to be familiar with neural networks and an introduction to the topic is
provided by [21]. Here, only the necessary nomenclature is covered.

Artificial neural networks are a class of parameterized functions f : Rn −→ Rm that are constructed
by composing linear functions fk and nonlinear functions ak such that

f = an ◦ fn ◦ an−1 ◦ fn−1 ◦ ... ◦ a2 ◦ f2 ◦ a1 ◦ f1. (9)

Each function fk : Ru −→ Rv is parameterized by weights θk and forms a so-called layer together
with the so-called activation function ak, that is applied elementwise to the output of fk. The activa-
tion function is what gives the system the ability to model nonlinear behavior and is commonly cho-
sen to be either ReLu, a(x) = max(0, x), or Leaky ReLu (LReLu) defined by a(x) = max(cx, x),
c constant. The hyperbolic tangent (tanh) function is sometimes used to constrain the output be-
tween [−1, 1].

It can be shown that, in the limit, as more dimensions are added to the layers, neural networks are
universal function approximators. This means that with sufficient capacity, they can approximate
any given function arbitrarily well [21]. Therefore, they are a useful tool to model Gθ and Dφ.

The input vector to each layer is usually visually represented by putting each input entry as a number
in a node and stacking the nodes vertically. The output from the layer is then another vertical stack
of nodes. Depending on how the layer function defines connections between input nodes and output
nodes, different properties of the layer are achieved. If all output nodes are allowed to be any linear
combination of all input nodes, the layer is said to be fully connected. The computation is equivalent
to matrix multiplication between the weights of the layer, as a matrix, and the input, as a vector. If
the weight matrix is forced to be sparse and output nodes can be written as linear combinations of
only input nodes that are nearby, the layer is said to be convolutional. The computation is equivalent
to sliding a weight matrix, called kernel, across the input, reshaped into an image.

Stacking many fully connected layers form a so-called multilayer perceptron (MLP) while stacking
many convolution layers result in a convolutional neural network (CNN).

The optimization scheme for finding the appropriate weights in a neural network model is referred
to as training and is done by minimizing a specified objective, also called loss, by following the neg-
ative gradient direction of the loss with respect to the weights. These algorithms are referred to as
gradient descent methods. In this work, the Adam [16] optimizer and the RMSprop [22] optimizer
are used. These methods use an adaptive form for the learning rate, which controls the size of each
weight update.

4.5 Connecting the GAN Objective to Divergence Minimization

Recall that the GAN objective was conceptually motivated by (5). No connection was, however,
made to a statistical notion of difference between pmodel(x; θ) and pdata(x). In this section, we will
see that the objective in (5) can be generalized to express a multitude of GAN objectives, which all
relate to a measure of divergence between pmodel(x; θ) and pdata(x). The starting point is the fact
that some divergences between pmodel(x; θ) and pdata(x) can be expressed as [9]

max
φ∈F

Ex∼pθ [hφ(x)]− Ex∼pdata [h′φ(x)]. (10)

Here pmodel(x; θ) = pθ for brevity and h and h′ are appropriate real-valued differentiable func-
tions parameterized by φ from an appropriate family of models F . This yields a form where the
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divergence can be minimized by constructing a minimax objective on the form

min
θ∈M

max
φ∈F

Ex∼pθ [hφ(x)]− Ex∼pdata [h′φ(x)]. (11)

Setting hφ(x) = log(1 − Dφ(x)) and h′φ(x) = −log(Dφ(x)) yields the original GAN in (5) and
thus (11) is a generalization of (5). Without covering the full details, which can be found in [7],
one finds that the objective in (5) for the generator, under the assumption of a perfect discriminator,
minimizes the so-called Jensen-Shannon divergence between pdata(x) and pmodel(x; θ).

Different choices of h, h′ and F yield different divergences that can be used to train GANs and in
the next section, a GAN utilizing the so-called Wasserstein distance is presented.

4.6 Wasserstein GAN

Minimizing the Jensen-Shannon divergence between pdata(x) and pmodel(x; θ) as the GAN objec-
tive has been shown to cause diminishing gradients during training, and thus other metrics have
been proposed in the literature. The Wasserstein distance has been one of the most popular and this
section presents the idea behind the Wasserstein GAN [1].

The Wasserstein distance is a distance metric between any two probability density functions. In-
tuitively, the distance describes the minimum “cost” of turning one distribution into the other, by
assuming that the cost is proportional to the amount of probability mass that needs to be moved
times the distance it has to be moved. The metric is also called the earth mover’s distance, due to
the analogy of moving mass around.

The Wasserstein GAN (WGAN) proposes to use the Wasserstein distance as the metric to optimize
φ and θ. This metric has been shown to provide useful gradients throughout the entire training
process. In practice, this means that the generator and discriminator give each other encouraging
feedback (non-zero bounded gradient information flow), which in turn leads to stable training. The
Wasserstein GAN objective is formed by defining F such that hφ and h′φ are 1-Lipschitz with re-
spect to the input x and setting hφ(x) = −Dφ(x) and h′φ(x) = −Dφ(x). Here, the discriminator
is not restricted to the interval [0, 1], but allowed to take any value in R. The way in which the
1-Lipschitz constraint is enforced in [1] is not optimal. The authors of [10] therefore enforce the
1-Lipschitz constraint with an extra gradient-penalty (GP) term added to the full objective, yielding
the WGAN-GP objective as

min
θ∈M

max
φ∈F
−Ex∼pθ [Dφ(x)] + Ex∼pdata [Dφ(x)]− λEx̂∼px̂ [(||∇x̂Dφ(x̂)||2 − 1)2], (12)

where λ is a hyperparameter and x̂ is a point sampled uniformly between a real and a fake example,
i.e. px̂ = t ·pdata(x)+(1−t) ·pθ(x), t ∈ U(0, 1). The minimization objectives for the discriminator
and generator thus become

min
φ∈F

Ex∼pθ [Dφ(x)]− Ex∼pdata [Dφ(x)] + λEx̂∼px̂ [(||∇x̂D(x̂)||2 − 1)2], (13)

and
min
θ∈M

−Ex∼pθ [Dφ(x)], (14)

respectively.

5 Related Work

Recently, there has been rapid improvement in the quality of generated images of GANs [14], [19],
[3]. The area of understanding the exact mechanism for controlled image generation is, however,
still underexplored. At the centre lies the problem of understanding the structure of the latent space.
One of the first works considering this problem with GANs is [4], where ideas from information
theory are used to disentangle the image representation by adding an additional latent code to the
original latent space. One drawback of the approach is that the prior distribution of each entry in
the latent code needs to be specified before training, which may be a difficult task when scaling the
system.

7



Inspired by style-transfer, [15] proposes a generator architecture by feeding in latent variables across
many layers and introduces an intermediate latent space with non-convex properties. In [5], the au-
thors also feed in different parts of the latent code at different layers, and use a cascade of convolu-
tional networks within a Laplacian pyramid framework. The authors of [3] study how the choice of
the latent space distribution affects image quality and [2] shapes the latent space by using Gaussian
mixture models. In [20], the authors provide details of how clustering can be made in the latent
space and [23] encourages convexity in the feature space as a means to perform interpolations. The
work of [24] tries to disentangle the feature representation for pose-invariant recognition. Given the
specific task, the method requires explicit attribute supervision and encodes each attribute as a sep-
arate element in the feature vector. Perhaps most similar architecturally to our work is [14] where a
progressively growing GAN is proposed, generating different spatial resolutions at different steps of
training. Their architecture does, however, not consider learning a disentangled representation. To
the best of our knowledge, we are the first to propose a strategy to grow the latent space dimension
of GANs.

6 Latent Space Growing of GANs

This section presents in detail the proposed methodology in order to progressively grow the latent
space dimension in MLP-based GANs and CNN-based GANs. The MLP-case serves as a toy ex-
ample where experiments show the motivation for the idea of growing the latent space dimension
progressively. The CNN-case shows how to scale the method to more interesting use cases.

It is of initial interest to understand more in-depth the reasoning why it could be beneficial to grow
the latent space dimension progressively during training. There are two main arguments.

1. Progressively increasing the latent space dimension implies that parameters are added to
the objective function progressively. This further implies that local optima are effectively
excluded from being reached by the training protocol. Our hypothesis is that entangled
optima are excluded by using the proposed approach.

2. By first training on a restricted set of latent dimensions, these dimensions focus on mod-
eling the aspects of most variation in the data which we assume to lie on a submanifold
of the data manifold with high variance. As more latent dimensions are added, the added
capacity to the model means that also aspects of lesser variation can be taken into account.
This argument is shown empirically using experiments on a Swiss roll dataset in Section 7.

Motivated by the first argument, a conceptual example is constructed in order to show that local
optima are excluded by training the parameters in a progressive manner. Consider a simple case
where the objective function f has at most two optimizable parameters {w1, w2}. First, assume that
the function has one optimizable parameter {w1} and that the function is given by the red curve in
Fig.1a and 1b. Next, assume that when f has two optimizable parameters ({w1, w2}), the function
landscape takes the form given by the complete surface in Fig.1a and 1b. There exist two local
optima in the graph given by the black and gray dots. The black optimum is said to be unwanted
while the gray is sought. Consider the case where a gradient descent based method is used. These
methods require an initialization. If both parameters ({w1, w2}) are trained from scratch, the initial
point could be anywhere in R2. This yields a scheme where it is equiprobable to end up in the black
(unwanted) and the gray (sought) optimum.

Now consider first optimizing with respect to {w1}. This yields restricting the path to the red curve
in Fig.1a and 1b. The local minimum at the bottom of the convex shape is found and the parameter
{w2} is added to the optimizer. Now, {w1, w2} are optimized jointly. Since the gradient at the
minimum of the red curve points in the direction of the sought minimum, the sought minimum will
always be found. In this way, the unwanted minimum has been excluded from ever being found.
It is important to note that this example serves as a conceptual hint. In reality, the loss landscape
is high-dimensional and can not be represented accurately visually. The hypothesis posed is that
the optima that are excluded from the training scheme yield entangled representations of the latent
space. The hypothesis is tested in Section 7 by random walks in the latent space.

Next, the growing strategy of MLP and CNN GANs is described in detail.
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(a) (b)

Figure 1: (a) Top view of loss landscape. (b) Loss landscape. By restricting a gradient-based
optimizer to first optimize parameter w1 and then jointly {w1, w2}, the black (unwanted) optimum
is excluded from being reached.

6.1 Growing MLP GANs

One can think of several ways to add latent space dimensions to an MLP GAN during training. The
simplest way will be explored here and used to show the potential power of this method to produce
representations that are ordered with respect to the saliency of the attributes.

Starting with a simple example to understand the basic concept, consider a generator MLP with
one hidden layer, one latent space dimension and two output dimensions, given by Fig.2a. If one
considers the latent input as a one-component vector z = [z1]

T , the weight matrix of the hidden
layer of Fig.2a takes the form of a 2 × 1 matrix where w11 corresponds to weight one in node one
while w21 corresponds to weight one in node two. The bias terms for each node are excluded for
brevity.

Adding a second latent space dimension yields a generator network given by Fig.2b. Each node
receives another weight and an additional column is added to the weight matrix of the hidden layer
in Fig.2b. The number of bias terms is unchanged and the number of weights in later layers is
also unchanged. Take special note of the fact that the architecture of the discriminator network is
entirely unchanged using this growing strategy. Using this approach, the general recipe to grow the
latent space in any MLP GAN from an n-dimensional latent space to an m-dimensional latent space
(m > n) is to add m− n columns of weights to the weight matrix of the first layer in the generator.
In this work, the new weights are zero initialized.

(a) (b)

Figure 2: (a) An MLP with one hidden layer with two nodes and a one-dimensional latent space and
two outputs. (b) An MLP with one hidden layer with two nodes and a two-dimensional latent space
and two outputs.
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6.2 Growing CNN GANs

Latent Space

Not Grown Grown

Sp
at

.R
es

.

Not Grown bGAN bgGAN, cgGAN

Grown lgGAN clgGAN

Table 1: The growing strategies of all CNN
GANs. “Spat. Res.” refers to “Spatial Reso-
lution”.

In this section, five different GAN architectures are
explained in detail. The baseline GAN (bGAN) is
a standard GAN without any special growing tech-
niques. The layer growing GAN (lgGAN) is the
model proposed in [14]. Here, the resolution of
the training images is progressively grown and ad-
ditional layers accommodate the increase in reso-
lution. The baseline with growing GAN (bgGAN)
grows the latent space progressively and only the fil-
ter channel depth of the first layer is adapted accord-
ingly. The channel growing GAN (cgGAN) takes
this a step further. As the latent space dimension is
grown, the cgGAN progressively grows the number
of input and output channels of each layer of both the generator and discriminator. Finally, the chan-
nel and layer growing GAN (clGAN) combines the cgGAN and lgGAN into one system where both
channel depth as well as the number of layers of the network grow progressively. The models are
summarized in Tab.1.

The bGAN and lgGAN are used as baselines to evaluate the growing strategies of the latent space.
Another important note is that all grown models in Tab.1 end up with the same network architecture
when training finishes.

6.2.1 Baseline GAN

The baseline GAN (bGAN) uses the architecture in Tab.2 and 3 and is a standard GAN without
growing any parts of the network during training. All models in Tab.1 end up with this architecture
at the end of training.

Some clarification of the naming of the layers in Tab.2 and 3 is in order. The first letter in the name
refers to g − generator and d− discriminator, while the following number is the layer identifier.

GANs have a tendency to only capture a subset of the modes present in the data distribution pdata(x).
To alleviate this problem, a trick called minibatch standard deviation is used. The details are covered
in Section 6.2.6 and other architectural details are covered in Section 6.2.8.

Generator Act. Output Shape Name
Latent Vector - 1× 1× 256 -
Conv. 4× 4 LReLU 4× 4× 256 g1

Conv. 3× 3 LReLU 4× 4× 256 g2

Upsample - 8× 8× 256 -
Conv. 3× 3 LReLU 8× 8× 128 g3

Conv. 3× 3 LReLU 8× 8× 128 g4

Upsample - 16× 16× 128 -
Conv. 3× 3 LReLU 16× 16× 64 g5

Conv. 3× 3 LReLU 16× 16× 64 g6

Upsample - 32× 32× 64 -
Conv. 3× 3 LReLU 32× 32× 32 g7

Conv. 3× 3 LReLU 32× 32× 32 g8

Upsample - 64× 64× 32 -
Conv. 3× 3 LReLU 64× 64× 16 g9

Conv. 3× 3 LReLU 64× 64× 16 g10

Upsample - 128× 128× 16 -
Conv. 3× 3 LReLU 128× 128× 8 g11

Conv. 3× 3 LReLU 128× 128× 8 g12

Conv. 1× 1 tanh 128× 128× 3 g13

Table 2: Baseline Generator Architecture.
The “Output Shape” format is: height ×
width × channels.

Discriminator Act. Output Shape Name
Input Image - 128× 128× 3 -
Conv. 1× 1 LReLU 128× 128× 8 d14

Conv. 3× 3 LReLU 128× 128× 8 d13

Conv. 3× 3 LReLU 128× 128× 16 d12

Downsample - 64× 64× 16 -
Conv. 3× 3 LReLU 64× 64× 16 d11

Conv. 3× 3 LReLU 64× 64× 32 d10

Downsample - 32× 32× 32 -
Conv. 3× 3 LReLU 32× 32× 32 d9

Conv. 3× 3 LReLU 32× 32× 64 d8

Downsample - 16× 16× 64 -
Conv. 3× 3 LReLU 16× 16× 64 d7

Conv. 3× 3 LReLU 16× 16× 128 d6

Downsample - 8× 8× 128 -
Conv. 3× 3 LReLU 8× 8× 128 d5

Conv. 3× 3 LReLU 8× 8× 256 d4

Downsample - 4× 4× 256 -
Minibatch std - 4× 4× 257 -
Conv. 3× 3 LReLU 4× 4× 256 d3

Conv. 4× 4 LReLU 1× 1× 256 d2

FC linear 1× 1× 1 d1

Table 3: Baseline Discriminator Architec-
ture. FC - Fully Connected.
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6.2.2 Baseline with Growing GAN

Similar to the approach of growing the latent space dimension in an MLP GAN, the bgGAN takes
the bGAN, and adapts only layer g1 to the size of the latent vector by adding appropriately many
input channels to each filter. The network starts with a latent space dimension of 8 and is trained
until convergence. Then, the latent space dimension is doubled and layer g1 is appropriately grown,
adding new trainable weights. In this manner, the latent space is grown in powers of two to dimen-
sion 256, i.e. zdim = {8, 16, 32, 64, 128, 256}.

6.2.3 Channel Growing GAN

Extending on bgGAN, cgGAN involves not only changing the very first layer of the generator, but
instead increasing the capacity of all layers in the generator and discriminator progressively during
training. This yields a scheme where the number of input and output channels of each layer is
grown simultaneously with the latent space growing. The idea is that specific filters in every layer
are implicitly targeted to perform a certain task on a specific part of the latent code, which potentially
helps in finding useful representations.

The architecture is given by Tab.4 and 5.

Generator Act. Output Shape 1 2 3 4 5 6 Name
Latent Vector - 1× 1× 8 16 32 64 128 256 -
Conv. 4 × 4 LReLU 4× 4× 8 16 32 64 128 256 g1
Conv. 3 × 3 LReLU 4× 4× 8 16 32 64 128 256 g2

Upsample - 8× 8× 8 16 32 64 128 256 -
Conv. 3 × 3 LReLU 8× 8× 8 16 32 64 128 g3
Conv. 3 × 3 LReLU 8× 8× 8 16 32 64 128 g4

Upsample - 16× 16× 8 16 32 64 128 -
Conv. 3 × 3 LReLU 16× 16× 8 16 32 64 g5
Conv. 3 × 3 LReLU 16× 16× 8 16 32 64 g6

Upsample - 32× 32× 8 16 32 64 -
Conv. 3 × 3 LReLU 32× 32× 8 16 32 g7
Conv. 3 × 3 LReLU 32× 32× 8 16 32 g8

Upsample - 64× 64× 8 16 32 -
Conv. 3 × 3 LReLU 64× 64× 8 16 g9
Conv. 3 × 3 LReLU 64× 64× 8 16 g10

Upsample - 128× 128× 8 16 -
Conv. 3 × 3 LReLU 128× 128× 8 g11
Conv. 3 × 3 LReLU 128× 128× 8 g12
Conv. 1 × 1 tanh 128× 128× 3 g13

Table 4: Generator architecture of cgGAN. The columns numbered 1− 6 refer to the channel depth
at the given training cycle. For clarity of reading the table, if the channel depth remains constant,
the space is left blank.

6.2.4 Layer Growing GAN

The lgGAN replicates the methodology used in [14], which has been shown to produce very high-
quality images. The fully grown model is given, as previously discussed, by Tab.2 and 3. The
lgGAN does not grow the latent space during training and the purpose of this model is to use it in
comparison to the clgGAN. In lgGAN, the number of layers is grown progressively. This results in
a model that first processes a small spatial resolution, which then gradually increases to the desired
spatial size as more layers are added. The network starts with processing a spatial resolution of
4 × 4. The architecture is given by Tab.6 and 7. An additional subscript is added to the name of
each layer. The subscript number signifies the pixel resolution that the architecture outputs. The real
images are represented by 4 × 4 downsampled versions of the full 128 × 128 images. The GAN
is trained until convergence and layers are added to the generator and discriminator to increase the
spatial resolution to 8× 8, given by Tab.8 and 9.
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Discriminator Act. Output Shape 1 2 3 4 5 6 Name
Input Image - 128× 128× 3 -
Conv. 1 × 1 LReLU 128× 128× 8 d14
Conv. 3 × 3 LReLU 128× 128× 8 d13
Conv. 3 × 3 LReLU 128× 128× 8 16 d12

Downsample - 64× 64× 8 16 -
Conv. 3 × 3 LReLU 64× 64× 8 16 d11
Conv. 3 × 3 LReLU 64× 64× 8 16 32 d10

Downsample - 32× 32× 8 16 32 -
Conv. 3 × 3 LReLU 32× 32× 8 16 32 d9
Conv. 3 × 3 LReLU 32× 32× 8 16 32 64 d8

Downsample - 16× 16× 8 16 32 64 -
Conv. 3 × 3 LReLU 16× 16× 8 16 32 64 d7
Conv. 3 × 3 LReLU 16× 16× 8 16 32 64 128 d6

Downsample - 8× 8× 8 16 32 64 128 -
Conv. 3 × 3 LReLU 8× 8× 8 16 32 64 128 d5
Conv. 3 × 3 LReLU 8× 8× 8 16 32 64 128 256 d4

Downsample - 4× 4× 8 16 32 64 128 256 -
Minibatch std - 4× 4× 9 17 33 65 129 257 -
Conv. 3 × 3 LReLU 4× 4× 8 16 32 64 128 256 d3
Conv. 4 × 4 LReLU 1× 1× 8 16 32 64 128 256 d2
FC linear 1× 1× 1 d1

Table 5: Discriminator architecture of cgGAN. The columns numbered 1 − 6 refer to the channel
depth at the given training cycle. For clarity of reading the table, if the channel depth remains
constant, the space is left blank.

Generator Act. Output Shape Name
Latent Vector - 1× 1× 256 -
Conv. 4× 4 LReLU 4× 4× 256 g14
Conv. 3× 3 LReLU 4× 4× 256 g24
Conv. 1× 1 tanh 4× 4× 3 g34

Table 6: lgGAN generator at resolution
4× 4.

Discriminator Act. Output Shape Name
Input Image - 4× 4× 3 -
Conv. 1× 1 LReLU 4× 4× 256 d44
Minibatch std - 4× 4× 257 -
Conv. 3× 3 LReLU 4× 4× 256 d34
Conv. 4× 4 LReLU 1× 1× 256 d24
FC linear 1× 1× 1 d14

Table 7: lgGAN discriminator at resolution
4× 4.

Generator Act. Output Shape Name
Latent Vector - 1× 1× 256 -
Conv. 4× 4 LReLU 4× 4× 256 g18 (=g14)
Conv. 3× 3 LReLU 4× 4× 256 g28 (=g24)
Upsample - 8× 8× 256 -
Conv. 3× 3 LReLU 8× 8× 128 g38
Conv. 3× 3 LReLU 8× 8× 128 g48
Conv. 1× 1 tanh 8× 8× 3 g58

Table 8: lgGAN generator at resolution 8×8.
The notation gn8 (= gn4) means that layer n
in the 8× 8 resolution model shares parame-
ters with layer n in the 4×4 resolution model.

Discriminator Act. Output Shape Name
Input Image - 8× 8× 3 -
Conv. 1× 1 LReLU 8× 8× 128 d68
Conv. 3× 3 LReLU 8× 8× 128 d58
Conv. 3× 3 LReLU 8× 8× 256 d48
Downsample - 4× 4× 256 -
Minibatch std - 4× 4× 257 -
Conv. 3× 3 LReLU 4× 4× 256 d38 (=d34)
Conv. 4× 4 LReLU 1× 1× 256 d28 (=d24)
FC linear 1× 1× 1 d18 (=d14)

Table 9: lgGAN discriminator at resolution 8×
8. The notation dn8 (= dn4) means that layer n
in the 8×8 resolution model shares parameters
with layer n in the 4× 4 resolution model.

Note that layers g34 and d44 are not transferred to the grown network. These layers are, however,
used in a smoothing operation in order to gently introduce the new layers, which is covered in
Section 6.2.7.
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6.2.5 Channel and Layer Growing GAN

The clgGAN combines the ideas from the cgGAN and the lgGAN in order to combine the benefits
of both models by both growing the number of layers and channels progressively during training.
In this way, the clgGAN grows the latent space dimension as the spatial size is increased, which
enables specific filters at each layer to target coarse to fine features naturally.

Starting with a spatial resolution of 4 × 4 yields the network given by Tab.10 and 11. The grown
network is then given by Tab.12 and 13.

Generator Act. Output Shape Name
Latent Vector - 1× 1× 8 -
Conv. 4× 4 LReLU 4× 4× 8 g14
Conv. 3× 3 LReLU 4× 4× 8 g24
Conv. 1× 1 tanh 4× 4× 3 g34

Table 10: clgGAN generator at resolu-
tion 4× 4.

Discriminator Act. Output Shape Name
Input Image - 4× 4× 3 -
Conv. 1× 1 LReLU 4× 4× 8 d44
Minibatch std - 4× 4× 9 -
Conv. 3× 3 LReLU 4× 4× 8 d34
Conv. 4× 4 LReLU 1× 1× 8 d24
FC linear 1× 1× 1 d14

Table 11: clgGAN discriminator at reso-
lution 4× 4.

Generator Act. Output Shape Name
Latent Vector - 1× 1× 16 -
Conv. 4× 4 LReLU 4× 4× 16 g18 (⊃ g14)
Conv. 3× 3 LReLU 4× 4× 16 g28 (⊃ g24)
Upsample - 8× 8× 16 -
Conv. 3× 3 LReLU 8× 8× 8 g38
Conv. 3× 3 LReLU 8× 8× 8 g48
Conv. 1× 1 tanh 8× 8× 3 g58

Table 12: clgGAN generator at resolution 8×8.
The notation gn8 ( ⊃ gn4) means that a subset
of layer n in the 8× 8 resolution model shares
parameters with layer n in the 4× 4 resolution
model.

Discriminator Act. Output Shape Name
Input Image - 8× 8× 3 -
Conv. 1× 1 LReLU 8× 8× 8 d68
Conv. 3× 3 LReLU 8× 8× 8 d58
Conv. 3× 3 LReLU 8× 8× 16 d48
Downsample - 4× 4× 16 -
Minibatch std - 4× 4× 17 -
Conv. 3× 3 LReLU 4× 4× 16 d38 (⊃ d34)
Conv. 4× 4 LReLU 1× 1× 16 d28 (⊃ d24)
FC linear 1× 1× 1 d18 (⊃ d14)

Table 13: clgGAN discriminator at resolution
8× 8. The notation dn8 ( ⊃ dn4) means that a
subset of layer n in the 8× 8 resolution model
shares parameters with layer n in the 4×4 res-
olution model.

For clarity, the growing process is shown again. The network is grown to resolution 16 × 16 and
the architecture is shown in Tab.14 and 15. This growing recipe is repeated until resolution 128 ×
128.

Generator Act. Output Shape Name
Latent Vector - 1× 1× 32 -
Conv. 4× 4 LReLU 4× 4× 32 g116 (⊃ g18)
Conv. 3× 3 LReLU 4× 4× 32 g216 (⊃ g28)
Upsample - 8× 8× 32 -
Conv. 3× 3 LReLU 8× 8× 16 g316 (⊃ g38)
Conv. 3× 3 LReLU 8× 8× 16 g416 (⊃ g48)
Upsample - 16× 16× 16 -
Conv. 3× 3 LReLU 16× 16× 8 g516
Conv. 3× 3 LReLU 16× 16× 8 g616
Conv. 1× 1 tanh 16× 16× 3 g716

Table 14: clgGAN generator at resolution 16×
16.

Discriminator Act. Output Shape Name
Input Image - 16× 16× 3 -
Conv. 1× 1 LReLU 16× 16× 8 d816
Conv. 3× 3 LReLU 16× 16× 8 d716
Conv. 3× 3 LReLU 16× 16× 16 d616
Downsample - 8× 8× 16 -
Conv. 3× 3 LReLU 8× 8× 16 d516 (⊃ d58)
Conv. 3× 3 LReLU 8× 8× 32 d416 (⊃ d48)
Downsample - 4× 4× 32 -
Minibatch std - 4× 4× 33 -
Conv. 3× 3 LReLU 4× 4× 32 d316 (⊃ d38)
Conv. 4× 4 LReLU 1× 1× 32 d216 (⊃ d28)
FC linear 1× 1× 1 d116 (⊃ d18)

Table 15: clgGAN discriminator at resolution
16× 16.

6.2.6 Minibatch Standard Deviation

While the architectural strategy of growing layers and channels has been covered, some extra details
are required to successfully train the models. This section presents a way that computes the mini-
batch standard deviation in order to increase image variation.

GANs have a tendency to only capture a subset of the modes present in the data distribution pdata(x).
Mode collapse ensues when GANs focus solely on one such mode, generating identical images for
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all latent vectors, and is a result of unhealthy competition between the generator and discriminator.
In order to alleviate this potential problem, minibatch standard deviation is proposed by [14]. Be-
fore describing the idea, the notion of a feature tensor needs to be introduced. A feature tensor is a
multidimensional matrix consisting of four dimensions: (batch size, width, height, channels). Each
row in any of the architectural tables describes feature tensors with shape (width, height, channels),
omitting the batch size. Given a feature tensor, the minibatch standard deviation method calculates
the standard deviation for each feature and spatial location over the minibatch. Then, all standard
deviations are averaged resulting in one scalar value. This value is replicated to form a constant fea-
ture map which matches the spatial resolution (width, height) of the input feature tensor. The feature
map is then concatenated at the end of the input feature tensor. The computations are visualized in
Fig.3. This operation gives the discriminator an explicit tool to discover if mode collapse is immi-
nent as the standard deviation would be low, while batches of real images have a higher standard
deviation.

(a) (b)

(c) (d)

Figure 3: Computation procedure of minibatch standard deviation. (a) One minibatch consisting of
two examples with spatial size 2 × 1 and channel depth 2. (b) The standard deviation is computed
across the minibatch for each feature and spatial location. (b) The standard deviations are averaged.
(d) The result is concatenated as an additional constant feature map to each example in the minibatch.

Some changes to this method are needed in order to make a smooth transition when growing the
number of channels in the cgGAN and clgGAN. Consider the second channel in Fig.3a, i.e. the set
{e, f, g, h}, to be the additional feature map as a result of increasing the number of filters at some
layer. As the standard deviation of the new feature channel is not trustworthy in the beginning of
training the grown network, a weighted average is constructed such that Fig.3c is replaced by

stdf = (1− τ)std2 + std2
2

+ τ
std3 + std4

2
, (15)

where τ ∈ R is a smoothing parameter that starts at 0 at the beginning of training the grown network
and linearly increases to 1/2 during training. As a final detail, the filter in layer d3 that processes the
last feature map as a result of minibatch standard deviation, is restored in the grown network such
that the filter still processes the final feature map.

6.2.7 Smoothly Feeding in New Channels and Layers

Another design detail that is necessary in order to obtain good results consists of certain operations
to both feed in new weights smoothly when the network is grown, and to present the discriminator
with finer details as training proceeds.

We start with introducing finer details as training proceeds for the bgGAN and cgGAN. As discussed
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in Section 4.3, the dimension of the image manifold is, under mild regularity conditions, specified by
the latent space dimension. For small latent space dimensions, the generator has trouble modeling
all aspects in images at resolution 128 × 128, which span a manifold that is too complex for the
given latent space dimension. This is because there is not enough capacity in a latent space with
few dimensions to express the variation present in images of spatial size 128 × 128. In practice,
this gives too much power to the discriminator and the generator never learns anything useful. To
alleviate this problem, the real images are first downsampled to a smaller spatial resolution (causing
information loss) and then nearest neighbor upsampled to spatial size 128 × 128 again. The level
of downsampling depends on the current latent space dimension according to Fig.4. This scheme
naturally encourages the filters of the network to first focus on learning coarse features in the images
before improving their ability to model finer details.

For the lgGAN and clgGAN, the images are not downsampled and upsampled to resolution 128 ×
128. Only downsampling to the appropriate resolution is needed.

There exists an additional trick, also on the topic of adapting the real images fed to the discriminator
to the capacity of the network. As the network is grown, the finer resolution real images are smoothly
introduced via a weighted average between the current resolution and the previous resolution. When
introducing for example resolution 32 × 32, a snapshot is given by Fig.5. The parameter α ∈ R is
linearly increased from 0 to 1 during training.

(a) (b) (c)

(d) (e) (f)

Figure 4: An example image from the CelebA dataset at different resolutions. (a) Full 128 × 128
resolution at latent space dim. 256. (b) 64 × 64 resolution at latent space dim. 128. (c) 32 × 32
resolution at latent dim. 64. (d) 16 × 16 resolution at latent space dim. 32. (e) 8 × 8 resolution at
latent space dim. 16. (f) 4× 4 resolution at latent space dim. 8.

Figure 5: Smoothing scheme at α = 0.5 when introducing finer resolution real images. In this
example, resolution 32× 32 is introduced.

The next training detail to consider is that the new weights need to be smoothly fed in when the
network is grown. Contrary to the MLP GAN where the new weights are zero-initialized, the CNN
GAN requires more careful initialization. The smoothing operation is done in two ways, depending
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on if channels or layers are added during the growing process.

We start with growing the number of channels. This trick is thus used for the bgGAN, cgGAN and
clgGAN. When the network is grown, it is crucial that the transition is smooth. If the new weights
are given as much priority as the reused weights, the loss landscape will change too drastically
and the solution found from the previous network cycle will not remain near a local optimum. To
alleviate this problem, the new weights are multiplied at runtime with a smoothing factor β ∈ R that
linearly increases from 0 to 1 during training, i.e. ŵ = β · w, where w is the new weight, and ŵ
the weight that is used at runtime. When β is 0, the network is identical to the network at the last
training iteration of the previous cycle. This trick guarantees that the reused weights serve as a good
starting point in the new loss landscape.

Next, we move on to the smoothing operation when the number of layers of the network is grown.
This trick is thus used for the lgGAN and clgGAN. Recall from Section 6.2.4 that layers g34 and d44
are not transferred to the grown network when the spatial size is increased from 4×4 to 8×8. These
layers are, however, used in a smoothing operation in order to gently introduce the new layers. The
technique builds on the intuition that the grown network should behave identically to the previous
network at the initial step of training. An illustration of the smoothing operation is given by Fig.6a
and 6b. The smoothing parameter α ∈ R varies linearly from 0 to 1 during training. As a final

(a) (b)

Figure 6: (a) Smoothing operation of the generator using parameter α ∈ R. (b) Smoothing operation
of the discriminator using parameter α ∈ R.

caveat, when introducing the new layers for the clgGAN, the process described by Fig.6 is slightly
modified. The block for layer g34 is extended to handle 16 input channels instead of 8 and the block
for layer d44 is extended to output 16 channels instead of 8. The new weights required for this
modification are also gently introduced via the smoothing operation using β.

6.2.8 Architecture Details

To conclude Section 6, some final training details are given in this section.

A deterministic nearest neighbor upsampling method is used. This refers to replicating each pixel
into a 2 × 2 grid which doubles the input spatially. Downsampling utilizes average pooling. Leaky
ReLU with leakiness factor c = 0.2 (Section 4.4) is used for all layers except the final layer in the
generator and discriminator.

The first layer of the generator is a 4 × 4 convolution with full padding, meaning that the input is
implicitly padded with zeros as far as needed, and an output pixel is generated for every offset where
there is an overlap between the input and the kernel. Thus, when the input is 1× 1 spatially and the
kernel is 4 × 4, the output is 4 × 4 too. This is equivalent to a fully connected layer without bias
followed by a reshape and then adding the bias, because each of the values in the output tensor is a
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unique linear combination of the input values.

All weights are initialized using the so-called He initializer [11]. This initialization procedure is
adaptive with respect to the number of input nodes to the specific weight that is initialized.

7 Experiments

In this section, the experimental setup is described in detail as well as comments on the results. The
section starts with experiments on a Swiss roll dataset, which covers training of an MLP GAN from
scratch versus training it with a progressively growing latent space dimension. The section then
proceeds with experiments on the CelebA dataset using the models described in Tab.1 and entails
interpolations in the latent space.

The models were implemented in Tensorflow 1.5.0 and trained using Nvidia Geforce GTX Titan and
Titan XP GPUs. The code can be found on Github.

7.1 MLP GAN on Swiss Roll

The experiments in this section use the 2D Swiss roll dataset available from the Scikit-learn li-
brary. For all experiments, Gaussian noise is added to the Swiss roll with standard deviation 0.5.
The latent space distribution p(z) is a uniform distribution from -1 to 1. Three experiments are
conducted.

1. Training a standard MLP GAN with a learning rate that is too high. This experiment shows
how the latent space behaves when the solution is in an optimum resulting in poor quality
data from the generator. Fig.7a shows the generated dots, colored in the corresponding
discriminator value. Fig.7b visually shows the structure of the 2-dimensional latent space
where each point is colored by the corresponding discriminator value.

2. Training a standard MLP GAN with a well-tuned learning rate. This experiment shows
how the latent space behaves when the solution is in an optimum resulting in good quality
data from the generator. Fig.8a shows the generated dots, colored in the corresponding
discriminator value. Fig.8b visually shows the structure of the 2-dimensional latent space
where each point is colored by the corresponding discriminator value.

3. Training an MLP GAN by progressively growing the latent space dimension from 1 to 2 as
described in Section 6.1. The result is given by Fig.9a and 9b. This experiment shows how
the latent space behaves when the solution is in an optimum resulting in good quality data
from the generator when training the latent space progressively.

One can note in Fig.7a that a local optimum that generates data, which is easily recognized as fake,
leads to an entangled latent space in Fig.7b. An entangled latent space may thus not be preferable.
In Fig.8a, when training a standard GAN, data more or less indistinguishable from real data is
generated. Interestingly, from Fig.8b, the latent space is disentangled without having enforced this in
any way during training. Traversing along a diagonal path in the latent space corresponds to walking
along the Swiss roll and the diagonal direction thus encodes the direction of most data variation.
While the major direction of variation is not aligned along the coordinate axis, a disentangled latent
space seems preferable naturally. It is, however, not optimal to express the variation diagonally in
the latent space. It is more natural to express the representation such that the variation is encoded
along the coordinate axis. This is achieved by training the latent space dimension progressively
according to Fig.9. By training the latent space progressively, the major variation in the data is
focused from two dimensions to one. This can be seen as a form of dimensionality reduction, while
also generating a representation that is more natural for downstream tasks.

The training details are as follows. The architecture uses four hidden layers with 32 nodes each plus
one output layer in both the generator and discriminator. Leaky ReLu is used as activation function
with leakiness factor c = 0.2 (Section 4.4) for all layers except the output layers where linear
activation is used. The optimizer is RMSprop and the minibatch size is 128. The non-saturated
GAN loss function from (6) and (8) is used and in total, the discriminator is shown 1.92M real
examples during training. This means that in experiment 3, the discriminator sees 1.92/2M real
examples when trained using a 1-dimensional latent space and 1.92/2M real examples when trained
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using a 2-dimensional latent space. For each minibatch, the generator and discriminator are updated
ten times.

(a) (b)

Figure 7: MLP GAN trained from scratch. Learning rate: 5. (a) Generated dots colored in the
corresponding discriminator color. The colorbar is in (b). Real crosses in blue. (b) Latent space
discriminator values and corresponding colorbar. A local optimum that gives poor quality data leads
to an entangled latent space.

(a) (b)

Figure 8: MLP GAN trained from scratch. Learning rate: 0.001. (a) Generated dots colored in the
corresponding discriminator color. The colorbar is in (b). Real crosses in blue. (b) Latent space
discriminator values and corresponding colorbar. A local optimum that gives good quality data
leads to a disentangled latent space. The direction along which the data varies most is, however, not
aligned along the coordinate axis.

7.2 CNN GAN on CelebA

The experiments in this section use the CelebA dataset [18], which consists of 202,599 images of
faces. Faces serve as a good starting point when analyzing our method since they provide both
large semantic variation, meaning evaluation of our method is visually feasible, while still being a
homogeneous class in regards to face placement and size, giving the best conditions for successful
learning.

18



(a) (b)

Figure 9: MLP GAN trained progressively. Learning rate: 0.001. (a) Generated dots colored in the
corresponding discriminator color. The colorbar is in (b). Real crosses in blue. (b) Latent space
discriminator values and corresponding colorbar. The direction in the latent space corresponding to
most data variation is aligned along the coordinate axis.

7.2.1 Latent Space Interpolation

All models are first successfully trained according to the training details given at the end of the
section. The experiments are structured as follows. Each model in Tab.1 is evaluated using a la-
tent space random walk protocol. First, recall that the training protocol encourages high attribute
variability in the initial entries of the latent vector and gradually lower variability in the remaining
entries. In order to test if this property can be shown empirically, the evaluation protocol performs
random walks in a restricted latent space determined by specific sets of dimensions that are allowed
to vary at a time. The sets of the latent space dimensions that are varied independently of each other
are: {1−8, 9−16, 17−32, 33−64, 65−128, 129−256}. The sets reflect the latent space growing
strategy, which starts with an 8-dimensional latent space and then multiplies the dimension by a
factor of two for each growing procedure. The specifics of the protocol are as follows. First, a ref-
erence latent vector of size 256 is sampled. Then, dimensions 1− 8 are resampled four times. Now,
five latent vectors, which only vary in dimensions 1− 8 exist, and linear interpolation is performed
from one vector to the other. In the next stage of the protocol, instead of resampling dimensions
1 − 8, dimensions 9 − 16 are resampled, while keeping dimensions 1 − 8 and 17 − 256 fixed. In
this manner, one can visually inspect the resulting images when interpolation is performed between
the sampled vectors. For brevity, only the experiments where dimensions 1-8 and 129-256 vary, are
included. Remaining experiments are available as gifs on Github.

We begin the discussion with our baseline models bGAN (a regular GAN) and lgGAN (the model
of [14]). Fig.10 and 11 show the results for the bGAN using the interpolation protocol. Each row
signifies one random walk between five samples from (a)-(e). In the same way lgGAN: Fig.12-13.
It is clear that the variability is proportional to the number of degrees of freedom in the latent space,
i.e. the more latent dimensions are varied, the more variability is achieved. This is also expected
since the training protocol of these models does not enforce any particular structure on the latent
space.

The results from the interpolation protocol for the bgGAN, cgGAN and clgGAN are given by Fig.14-
15, Fig.16-17 and Fig.18-19 respectively. Most interestingly, the roles are now reversed compared
to the bGAN and lgGAN case. It is clear that the variability is determined by what dimensions
are altered, not the number of dimensions. Changing dimensions 1-8 clearly affects the variability
more than changing dimensions 129-256. The effect is most evident for the clgGAN. This shows a
successfully designed system where the variability is ordered by the dimensions of the latent space.
This is analogous to the Swiss roll experiment in Fig.9b where the latent space dimensions are also
structured in an order related to the variability of the generated data.
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(a) (b) (c) (d) (e)

Figure 10: Generated faces using bGAN
where, for each row, only dimensions 1-8 in
the latent vector differ between (a)-(e).

(a) (b) (c) (d) (e)

Figure 11: Generated faces using bGAN
where, for each row, only dimensions 129-256
in the latent vector differ between (a)-(e).

(a) (b) (c) (d) (e)

Figure 12: Generated faces using lgGAN
where, for each row, only dimensions 1-8 in
the latent vector differ between (a)-(e).

(a) (b) (c) (d) (e)

Figure 13: Generated faces using lgGAN
where, for each row, only dimensions 129-256
in the latent vector differ between (a)-(e).

(a) (b) (c) (d) (e)

Figure 14: Generated faces using bgGAN
where, for each row, only dimensions 1-8 in
the latent vector differ between (a)-(e).

(a) (b) (c) (d) (e)

Figure 15: Generated faces using bgGAN
where, for each row, only dimensions 129-256
in the latent vector differ between (a)-(e).
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(a) (b) (c) (d) (e)

Figure 16: Generated faces using cgGAN
where, for each row, only dimensions 1-8 in
the latent vector differ between (a)-(e).

(a) (b) (c) (d) (e)

Figure 17: Generated faces using cgGAN
where, for each row, only dimensions 129-256
in the latent vector differ between (a)-(e).

(a) (b) (c) (d) (e)

Figure 18: Generated faces using clgGAN
where, for each row, only dimensions 1-8 in
the latent vector differ between (a)-(e).

(a) (b) (c) (d) (e)

Figure 19: Generated faces using clgGAN
where, for each row, only dimensions 129-256
in the latent vector differ between (a)-(e).

Some more comments on the bgGAN, cgGAN and clgGAN are in order. While changing the latent
dimensions 1-8 induces more variability than changing dimensions 129-256 for all three models,
the effect is least clear for the bgGAN. This may be due to the fact that only one of the filters of
one layer of the bgGAN are progressively grown, meaning that most filters in the network can not
be learned in a progressive manner. This yields a network that cannot assign certain aspects of the
data to specific filters as easily as cgGAN, where the system has a better ability at assigning certain
filters to discover coarse to fine features. The cgGAN has, however, problems of its own. While
the cgGAN introduces a way to grow the latent space while appropriately adding capacity to the
network, it always processes images of the same spatial size. Recall that the real images fed to
the discriminator follow a downsampling-upsampling scheme which depends on the latent space
dimension. The upsampling step consists of replicating the pixels to form a spatially larger image.
As an example, to highlight a problem of the cgGAN, consider the case when the latent space is
8-dimensional and where the generator tries to replicate a real 128 × 128 image that has first been
downsampled to spatial size 4× 4 and then upsampled to spatial size 128× 128. For the generator,
this means that at best, the convolutional layers after resolution 4 × 4 will perform the identity
mapping. This means that the convolutional layers, which process a spatial resolution larger than
4× 4, are used and trained, but are in fact completely unnecessary. To solve this problem, the layers
are grown using the clgGAN methodology. As the experiments in Fig.18 show, this network induces
not only most variability in dimensions 1-8, but also achieves an image quality that outperforms
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(a) (b) (c) (d) (e)

Figure 20: Generated faces using a bGAN with latent space dimension 8. Each row represents five
distinct points, (a)-(e), between which linear interpolation is performed.

all other models. More experiments need to be conducted in order to determine if the improved
image quality is consistent. In order to get a sense of the variability obtained from the clgGAN
in Fig.18, a bGAN was trained using only an 8-dimensional latent space and faces were generated
using linear interpolations in the latent space given by Fig.20. It is clear that higher variability is
achieved in Fig.20 than in Fig.18, but this is at a significant cost regarding image quality. The result
is also expected, since the bGAN traverses its entire latent space, while the clgGAN only traverses
a restricted set of the 256-dimensional latent space.

7.2.2 Coordinate Axis Walk

In this section, coordinate axis walks are performed in order to evaluate the variation along specific
dimensions in the latent space. Specifically, given a 256-dimensional latent vector, one coordinate
is varied between [−0.125, 0.125] and the resulting images are captured four times which yields
Fig.21-26, where coordinate axes 1, 2, 5, 90, 195, 250 are varied respectively. Points captured out-
side of the range [−0.125, 0.125] did not yield accurate images, since the points are too unlikely in
the latent distribution p(z).

It is clear that salient attributes are captured by dimensions 1, 2 and 5. While the system is not
designed to capture isolated semantic attributes in each dimension, changing dimension 90 seems to
isolate the attribute determining how open the eyes are. Changing dimensions 195 and 250 induces
very small changes to the hairstyle and minute background alterations. For better visualizations,
please visit the Github page.

7.2.3 Training Details

The training details are as follows. A random seed of 547 is used for all experiments. Leaky ReLu
is used as activation function with leakiness factor c = 0.2 (Section 4.4) for all layers except the
output layers of the generator and discriminator. The optimizer is Adam with α = 0.0001, β1 = 0,
β2 = 0.99 and ε = 10−8 and the minibatch size is 16. The WGAN-GP loss function from (13) and
(14) is used with λ = 10. For each minibatch, the generator and discriminator are updated once. In
total, all models are trained for 44 epochs. For the models that grow the layers and/or channels, the
initial network is trained for 4 epochs, while the grown networks are trained for 8 epochs. When
the network is grown, the new layer and/or channel weights are smoothly introduced over 4 epochs
by increasing β : 0 − 1, α : 0 − 1 and τ : 0 − 0.5 linearly over 4 epochs. The models are then
trained for 4 more epochs to stabilize the weights. The distribution p(z) of the latent space is a
256-dimensional Gaussian with identity covariance matrix that is normalized to unit length. This
distribution is used regardless of the latent space dimension of the network. This means, if the
latent space is 8-dimensional, 8 elements are extracted from the normalized 256-dimensional latent

22

https://github.com/tfy14esa/master_thesis


(a) (b) (c) (d)

Figure 21: Generated faces using clgGAN
where, for each row, only dimension 1 in
the latent vector differ between (a)-(d).

(a) (b) (c) (d)

Figure 22: Generated faces using clgGAN
where, for each row, only dimension 2 in
the latent vector differ between (a)-(d).

(a) (b) (c) (d)

Figure 23: Generated faces using clgGAN
where, for each row, only dimension 5 in
the latent vector differ between (a)-(d).

(a) (b) (c) (d)

Figure 24: Generated faces using clgGAN
where, for each row, only dimension 90 in
the latent vector differ between (a)-(d).

vector. The training images are cropped to size 128 × 128 from the middle of the CelebA images
and transformed to range [−1, 1].

8 Discussion

In this section, a brief discussion on training time is given as well as a summary of the advantages
to the proposed clgGAN.

An additional advantage of the clgGAN is that it trains faster than any of the other models in Tab.1.
The clgGAN uses around 1000 times fewer parameters than the lgGAN at the beginning of training
while also maintaining comparatively few parameters over all epochs. The number of parameters
over epochs for all models in Tab.1 can be seen in Fig.27a and 27b in logarithmic and linear scale
respectively.

In summary, the clgGAN model offers several sought properties of a generative model.
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(a) (b) (c) (d)

Figure 25: Generated faces using clgGAN
where, for each row, only dimension 195 in
the latent vector differ between (a)-(d).

(a) (b) (c) (d)

Figure 26: Generated faces using clgGAN
where, for each row, only dimension 250 in
the latent vector differ between (a)-(d).

(a) (b)

Figure 27: Parameter count over epochs for the five models. (a) Logarithmic scale. (b) Linear scale.

1. The image quality appears at least as good as the state of the art model given by [14].

2. The model trains faster than any of the other models in Tab.1.

3. The training scheme induces a beneficial structure on the latent space where the dimensions
are ordered in regard to the saliency of the attributes that they encode. This structure could
be useful for tasks like dimensionality reduction or transferring coarse to fine attributes
from one image to the other, which could be seen as a form of style-transfer.

4. The entire training scheme is unsupervised and does not change the commonly used
WGAN-GP loss function.

9 Future Work

The proposed strategy of growing the latent space dimension progressively during training appears
to be a promising direction for future research. In this section, some aspects not covered in the thesis
are discussed.

First and foremost, objective evaluation techniques are required in order to establish the quality of
the images when using the proposed training protocol. The quality of the images can be evaluated
using techniques like FID [12]. Orthogonal to evaluating image quality, it is important to measure
the variability for each restricted set of latent space dimensions {1−8, 9−16, 17−32, 33−64, 65−
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128, 129 − 256}. This can, for instance, be done by generating n images from each restricted set
(keeping the other dimensions fixed) and calculating the standard deviation across the sample batch
identical to calculating minibatch standard deviation in Section 6.2.6. This yields one scalar value
for each set of dimensions, where a high number signifies high variability.

As discussed briefly in Section 8, an application of interest is to use the model for style-transfer. One
could, in theory, choose to transfer coarse to fine features from a source image to a reference image
by copying specific sets of the latent code from the source image to the latent code of the reference
image.

An underlying idea behind the training protocol is to encourage filters early in training to focus
on coarse features, while filters added later to the model are encouraged to focus on finer details.
This implies that certain dimensions of the latent vector will implicitly encode coarse to fine details.
Currently, we believe that the filters may mix more than necessary, which means that there is room
for improvement on our method.

10 Conclusion

In conclusion, the purpose of this thesis is to show a potential direction for future research on learn-
ing interpretable representations. By gradually increasing the latent space dimension during training
of a GAN, while appropriately adding capacity to the model, the dimensions of the latent space are
ordered in regard to the saliency of the attributes that they encode. This structure could be useful
for tasks like dimensionality reduction or style-transfer. The model also trains faster than and yields
images of at least equal quality to state-of-the-art methods.
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