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Abstract

The reassignment method is a technique for improving the concentration of signals
in spectrograms and other time-frequency representations (TFR). It achieves this by
displacing the points in a TFR according to the reassignment vector for every point.
By doing so, the reassignment method gives perfect concentration of infinite constant
frequency sinusoids, impulses and linear chirps.

A downside to the reassignment method is that it is fairly sensitive to noise. While
this is well known, the subject of how noise affects the reassignment method is largely
unexplored. Some important groundwork has been laid by Chassande-Mottin et al. In
their report from 1996, they derived the density function of the reassignment vector,
given that the signal is subjected to additive white Gaussian noise (AWGN). For Gabor
(Gaussian windowed) spectrograms, a closed form expression of the density function
is given.

This thesis largely builds on top of said result, and aims to extend the general knowledge
about the statistics of reassigned spectrograms. The focus lies on Gabor spectrograms,
and a rather practical approach is taken. First, some statistical properties of the reas-
signment vector are explored. From this, a Gaussian approximation is suggested which
makes the density function for the reassignment vector feasible to work with.

Then, we look at how the reassigned spectrogram behaves as a whole when subjected to
AWGN. The signals examined are those previously mentioned, all perfectly localized by
the reassignment method. It shows that in the context of reassigning the spectrogram,
these signals are equivalent. The resulting reassigned spectrogram turns out to be of
infinite variance since the distribution is heavy tailed. However, its shape can still be
related to the width of a Gaussian. By doing so, a simple formula is proposed which
states the ratio of concentration given by the reassigned spectrogram compared to the
original spectrogram.

Finally, based on the previous findings, an idea for a new method of resampling reas-
signed noisy spectrograms is proposed. This method attempts to mitigate the issue that
the reassigned spectrogram “deteriorates” when resampled in a naive manner.
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Notation and abbreviations

Abbreviations

FT Fourier Transform
STFT Short-Time Fourier Transform
TFR Time-Frequency Representation
RV Reassignment Vector
NRV Normalized Reassignment Vector
MWR Matched Window Reassignment
AWGN Additive White Gaussian Noise
SNR Signal to Noise Ratio
PDF Probability Density Function
RLF Reassignment Localization Factor
KDE Kernel Density Estimation
RMSE Root Mean Square Error

S Spectrogram
NS Normalized Spectrogram
RS Reassigned Spectrogram
NRS Normalized Reassigned Spectrogram
SRS Smoothed Reassigned Spectrogram

Statistical measures

E Expectation value
V Variance
D Standard deviation
Skew Skewness
Mode Mode
ModeSkew Pearson mode skewness
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Notation

z∗ is the complex conjugate of z. ν is used as the symbol for frequency. Typically, f de-
notes a probability density function (PDF). The Gaussian distribution with mean µ and
variance σ2 is written as N(µ, σ2). The brackets (), [], and {} are used interchangeably
for readability. Additionally, we define the following symbols:

x is distributed as ... x ∼ N(µ, σ2)
x is approximately distributed as ... x Û∼ N(µ, σ2)
x is proportional to y x ∝ y
x is approximately proportional to y x ∝∼ y
x is defined as y x , y

Integrals without limits imply integration over all real numbers R, i.e., from −∞ to∞:∫
�

∫
R
�

∫ ∞

−∞

In a similar fashion, we write integration over the whole complex plane C as:∫
C

f (z)dz �

∬
f (z)d(Re{z})d(Im{z})

Let δ denote the Dirac delta function with the following properties:∫
δ(x) f (x)dx � f (0),

∬
δ(x , y) f (x , y)dx dy � f (0, 0),

∫
C
δ(z) f (z)dz � f (0)

The complex Gaussian distribution is written as

x ∼ CN(0, 1) ⇒ Re{x} ∼ Im{z} ∼ N(0, 1/2)

where Re{x} and Im{z} are independent.

The mode is defined as the value with maximum probability. For a distribution with a
probability density function f (z),

Mode[z] � argmax
z

f (z)
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Chapter 1

Introduction

1.1 Background

Non-stationary stochastic processes are all around us, from the changing temperature
of our globe to the response from a complex radar system. The need for analyzing these
kind of signals arises practically everywhere, and is ever so challenging. For the last of
decades, perhaps more so than ever. With increasing computing power available at our
fingertips, the methods we use grow more and more complex and sophisticated.

One such method is the reassignment method, originally presented by Kodera et al. in
1976 [1], and then re-introduced by Auger and Flandrin in 1995 [2]. It was not until then
that the general interest for the method sparked. Since then, lots of work has been done
around this method.

A modern notable example is the method of synchrosqueezing, presented in 2011 by
Daubechies et al. [3]. Synchrosqueezing is a special case of the reassignment method,
applied in the context of wavelet transforms. We also have the matched window
reassignment by Sandsten et al., presented in 2018 [4]. They showed that all transient
signals with a known envelope can be perfectly localized using a modification to the
reassignment method.

A very important article for this thesis is On the statistics of spectrogram reassignment
vectors (translated) by Chassande-Mottin et al. published in 1996 [5]. In it, they derive
key results on the density function of reassignment vectors for signals subjected to noise.
Overall, it allows us to better understand the shortcomings of the method.

Robustness is key for successful application of many time-frequency methods, and the
reassignment method gets no exception. Since it can be rather fragile, finding improve-
ments for the reassignment method could potentially be useful for many applications.
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1.2 Purpose

The purpose of this thesis is mainly to explore and learn more about the reassignment
method. The focus is on its real world application, in which signals are discrete and
always noisy to some extent. Previous research has shown that reassigned spectro-
gram sometimes behave poorly these situations. By learning about its behavior when
subjected to noise, the aim is to be able to come up with suggestions for improving
the method when applied in practice. Since this thesis is done in collaboration with
Acconeer, a radar sensor company, we would also like to investigate how the method
can be used for their sensors.

1.3 Outline

Chapter 2 walks through the necessary concepts and theory to understand the reas-
signment method.

Chapter 3 explores the statistical properties of the reassignment vector for Gabor (Gaus-
sian windowed) spectrograms.

Chapter 4 takes a step back from just looking at the reassignment vector, and instead
analyzes the reassigned spectrogram as a whole.

Chapter 5 discusses the issue of resampling noisy reassigned spectrograms, and pro-
poses a new method to mitigate the issue.

Chapter 6 discusses some final thoughts on the subject and summarizes the work done
in this thesis. Finally, some suggestions for further work in the field is presented.
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Chapter 2

Spectrograms and the reassignment method

In this chapter, we will walk through the necessary concepts to understand the reas-
signment method. It is assumed that the reader is familiar to the concept of basic
time-frequency analysis. A great introduction to the subject is the book Time-frequency
analysis of time-varying signals and non-stationary processes [6] by Sandsten, found freely
online. The primary focus here will be on the reassignment for Gabor (Gaussian win-
dowed) spectrograms.

2.1 The short-time Fourier transform and spectrogram

We start by defining the Fourier transform (FT) of a signal x as

X(ν) �
∫

x(s) exp(−i2πνs)ds (2.1)

and introducing the Fourier transform operator F :

X � F x (2.2)

The short-time Fourier transform (STFT) of a signal x using a window function h is
defined as

Fh
x (t , ν) �

∫
x(s) h∗(s − t) exp(−i2πνs)ds (2.3)

with the corresponding spectrogram defined as

Sh
x(t , ν) �

��Fh
x (t , ν)

��2 (2.4)

As in [7, 2, 5], we require the STFT window h to be of unit energy:∫
|h(t)|2 dt � 1 (2.5)

The Gabor spectrogram is simply the spectrogram using a Gaussian window function.
We define this function with a scaling parameter (standard deviation) λ as

h(t) � 1
π1/4
√
λ

exp
(
− t2

2λ2

)
(2.6)
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where the normalizing constant satisfies that the window is of unit energy:∫
|h(t)|2 dt �

1√
πλ

∫
exp

(
− t2

λ2

)
dt

(A.1)
�

1√
πλ
·
√
πλ � 1 (2.7)

The Fourier transform of the window is

H(ν) � (F h)(ν) � 1
π1/4
√
λ

∫
e−t2/2λ2

e−i2πνs ds
(A.7)
�
√

2λπ1/4e−2(πλν)2 (2.8)

As in [7, 5] we define the duration ∆tx and bandwidth ∆νx for a signal x as

∆t2
x �

∫
t2 |x(t)|2 dt and ∆ν2

x �

∫
ν2 |X(ν)|2 dν (2.9)

For the Gaussian window h, these become

∆t2
h �

∫
t2 |h(t)|2 dt �

1√
πλ

∫
t2e−t2/λ2 dt

(A.8)
�

1√
πλ
·
√
πλ3

2
�
λ2

2
(2.10)

∆ν2
h �

∫
ν2 |H(ν)|2dν � 2λ

√
π

∫
ν2e−(2πλν)

2
dν

(A.8)
� 2λ

√
π ·

√
π

2(2πλ)3 �
1

23π2λ2 (2.11)

i.e.,
∆th �

λ√
2

and ∆νh �
1√

2 2πλ
(2.12)

Let us show an example. Let x(t) be a signal consisting of two linear chirps:

x(t) � exp
[
i2π ·

(
0.15 − 0.0005

2
· t

)
· t

]
+ exp

[
i2π ·

(
0.30 +

0.0010
2
· t

)
· t

]
(2.13)

The signal and its Gabor spectrogram (λ � 5) can be seen in figure 2.1.

0 20 40 60 80
t

2

1

0

1

2

Re
{x

(t)
}

0 20 40 60 80
t

0.0

0.1

0.2

0.3

0.4

0.5

Figure 2.1: An illustration of the signal x (2.13), consisting of two linear chirps. The left
plot shows the signal, and the right plot shows its Gabor spectrogram (λ � 5).

10



2.2 The reassignment method for spectrograms

Ideally, ignoring all theoretical limitations, we would want the time-frequency repre-
sentation (TFR) of a signal to be perfectly localized. A fully concentrated estimate of
the power and instantaneous frequency. Take for example the signal from before (2.13),
shown in figure 2.1. What we mean by the ideal TFR is shown in figure 2.2.

Unfortunately, this is not attainable due to the Heisenberg-like uncertainty principle [7].
Broadening the window decreases its bandwidth, which improves the localization in
the frequency domain. But this also has the effect of increasing its duration, worsening
the localization in the time domain. Simply put, you can not achieve perfect localization
both in time and frequency.

0 20 40 60 80
t

0.000

0.125

0.250

0.375

0.500

Figure 2.2: The ideal TFR of the signal (2.13) shown in figure 2.1.

The reassignment method aims to improve the concentration of a TFR by reallocating its
energy distribution in the time-frequency plane. It was originally introduced by Kodera
et al. in 1976 [1] and then re-introduced by Auger and Flandrin in 1995 [2]. It works by
estimating the offset in center of gravity for each point in the TFR, then moving them
accordingly. For many signals, the method achieves perfect localization [2, 8, 4], as we
shall soon see for ourselves.

For the original definitions of the reassignment method, see [1]. In this thesis, we will
limit ourselves to the reassignment of spectrograms, and therefore use the formulation
found in [2]. In fact, we will limit further analysis to Gabor spectrograms specifically,
but the following formulation of the reassignment holds for all spectrograms.

Let D and T , respectively, be the operators of differentiation and multiplication by the
running variable:

Dh(t) � d
dt

h(t), T h(t) � t · h(t) (2.14)

Figure 2.3 shows the result of these operators being applied to the Gaussian window.
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t

0.0

0.5

h(t)

4 2 0 2 4
t

0.5

0.0

0.5
h(t) = t h(t)

4 2 0 2 4
t

0.5

0.0

0.5
h(t) = d h(t) / dt

Figure 2.3: The Gaussian window h with unit scale (λ � 1) with the operators T andD
applied to it.

The reassigned time and frequency (t̂h
x , ν̂

h
x ) for a point (t , ν) in the spectrogram Sh

x can
be calculated from

t̂h
x (t , ν) � t + ct t̃h

x (t , ν) (2.15)
ν̂h

x (t , ν) � ν + cν ν̃h
x (t , ν) (2.16)

where

t̃h
x (t , ν) � Re

{
FT h

x (t , ν)
Fh

x (t , ν)

}
(2.17)

ν̃h
x (t , ν) � −

1
2π

Im
{

FDh
x (t , ν)
Fh

x (t , ν)

}
(2.18)

The reassigned spectrogram can then be expressed as

RSh
x(t , ν) �

∬
Sh

x(t′, ν′) · δ[t − t̂x(t′, ν′), ν − ν̂x(t′, ν′)]dt′ dν′ (2.19)

In the original definitions [1, 2], the parameters ct and cν were not included. Hence, if
c � ct � cν � 1 we obtain the ordinary reassignment. These parameters were introduced
by Sandsten and Brynolfsson in 2015 [8] which has proven useful in their matched window
reassignment [4]. This will be further discussed in section 2.4.

Figure 2.4 and 2.5 show two different representations of the reassigned spectrogram
of the signal/spectrogram seen in figure 2.1. Apart from the prominent edge effects,
the reassigned spectrogram does indeed locate the components in the signal extremely
well. The representations will be discussed more thoroughly in chapter 5.
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Figure 2.4: The reassigned points from the signal/spectrogram in figure 2.1. We refer
to this as the raw representation of the reassigned spectrogram.
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Figure 2.5: What we refer to as the binned reassigned spectrogram from the signal/spec-
trogram in figure 2.1.
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For reasons we will soon see, as done in [5], we define the dimensionless normalized
reassignment vector (NRV) as

r(t , ν) � t̃h
x (t , ν)
∆th

+ i
ν̃h

x (t , ν)
∆νh

�
1
∆th

Re
{

FT h
x (t , ν)
Fh

x (t , ν)

}
− i

2π∆νh
Im

{
FDh

x (t , ν)
Fh

x (t , ν)

} (2.20)

Going backwards from the NRV,

t̃h
x (t , ν) � ∆th · Re{r(t , ν)} and ν̃h

x (t , ν) � ∆νh · Im{r(t , ν)} (2.21)

which is quite practical for implementation.

For the Gaussian window,

Dh(t) � d
dt

h(t) (A.5)
� − 1

λ2 · t · h(t) � −
1
λ2 · T h(t) (2.22)

which, since the Fourier transform is linear, also means that

FDh
x (t , ν) � −

1
λ2 FT h

x (t , ν) (2.23)

Thus, for the Gabor spectrogram,

r(t , ν) (2.20)
�

1
∆th

Re
{

FT h
x (t , ν)
Fh

x (t , ν)

}
− i

1
2π∆νh

Im
{

FDh
x (t , ν)
Fh

x (t , ν)

}
(2.23)
�

1
∆th

Re
{

FT h
x (t , ν)
Fh

x (t , ν)

}
+ i

1
2πλ2∆νh

Im
{

FT h
x (t , ν)
Fh

x (t , ν)

}
(2.12)
�

√
2
λ

Re
{

FT h
x (t , ν)
Fh

x (t , ν)

}
+ i
√

2
λ

Im
{

FT h
x (t , ν)
Fh

x (t , ν)

}
�

√
2
λ
· FT h

x (t , ν)
Fh

x (t , ν)

(2.24)

This eventually leads to another result derived by Chassande-Mottin et al. [5]. It is
presented in chapter 3, and more or less lays the foundation for this whole thesis. This
definition also helps us greatly in deriving the theoretical reassignment for some signals.

2.3 The spectrogram and reassignment of some common signals

There are three signals that we would now like to discuss – the impulse, constant
frequency sinusoid, and linear chirp. Those signals frequently appear in the context
of reassignment. This is with good reason, as they are all perfectly localized by the
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reassignment method. In fact, it can be argued that in this context, the signals are in
some sense equivalent. They are all infinitely spread in the spectrogram, and they all
form an infinite line in it. Chapter 4 deals with this in much further detail. But for now,
let us just convince ourselves that the reassignment actually perfectly localizes these
signals.

Calculation of the Gabor spectrogram and reassignment of these signals is not hard,
although slightly tedious. For the full calculations, see appendix B. The results match
what is presented in [5], except for r0 of the linear chirp which we believe to be off by a
factor

√
4π. Later on, in chapter 3, r0 will defined as the noise-free NRV. But thus far we

have not added any noise to our signal model, so in the current context r0 � r.

We have already seen by example that the reassignment perfectly localizes the linear
chirp. Again, showing that this is true is not hard, but tedious. Instead, we will cover
the impulse and sinusoid, starting with the former. We define it as

s(t) � δ(t − t0) (2.25)

Its spectrogram and NRV is, respectively,

S(t , ν) � 1√
πλ

exp
(
−(t − t0)2

λ2

)
and r(t , ν) � −

√
2
λ
(t − t0) (2.26)

which means that (2.21)

t̃ � −(t − t0) ⇔ t̂ � t0 and ν̃ � 0⇔ ν̂ � ν (2.27)

which in turn means that the localization is perfect. Also, it allows us to reformulate
the spectrogram as

S(t , ν) ∝ exp

[
−1

2

(
t̃
∆t

)2
]

(2.28)

Let us compare this to the sinusoid:

s(t) � exp(i2πν0t) (2.29)

S(t , ν) � 2
√
πλ exp

[
−4π2λ2(ν − ν0)2

]
and r(t , ν) � −i2

√
2πλ(ν − ν0) (2.30)

t̃ � 0⇔ t̂ � t and ν̃ � −(ν − ν0) ⇔ ν̂ � ν0 (2.31)
Here, we can reformulate the spectrogram as

S(t , ν) ∝ exp

[
−1

2

(
ν̃
∆ν

)2
]

(2.32)

which is suspiciously similar to the reformulation of the spectrogram of the impulse.
In fact, in chapter 4, we will show that this kind of reformulation also works for the
linear chirp. This is why we argue that in some way, the three signals can be seen as
equivalent in the context of reassignment.
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2.4 The matched window reassignment

We previously introduced the scaling parameters of the reassignment – ct and cν. Now,
their purpose will be shown. Consider a Gaussian windowed constant frequency signal

s(t) � exp
(
−(t − t0)2

2σ2

)
· exp(i2πν0t) (2.33)

where (t0 , ν0) is its center time and frequency, and σ is its shape parameter (standard
deviation). As noted in [8, 7], this signal is time-frequency and shift-invariant. Hence,
for further analysis we are allowed to let (t0 , ν0) � (0, 0), and the results will still apply
for any (t0 , ν0). To clarify, we will analyze the simplified signal

s(t) � exp
(
− t2

2σ2

)
(2.34)

Calculations (see appendix B.4) give that for this signal,

r(t , ν) � −
√

2λ
λ2 + σ2 (t + i2πσ2ν) ⇒ t̃ � − λ2

λ2 + σ2 · t ⇒ t̂ � t ·
(
1 − ct ·

λ2

λ2 + σ2

)
(2.35)

If we let
ct �

λ2 + σ2

λ2 (2.36)

then perfect localization in time is achieved. But perhaps more interesting is matching
the signal window and STFT window, i.e., letting (σ � λ). Then,

r(t , ν) � − 1√
2λ
(t + i2πλ2ν) ⇒ t̃ � −1

2
· t ⇒ t̂ � t ·

(
1 − ct ·

1
2

)
(2.37)

If we now let ct � 2, perfect reassignment is always achieved! The same result, given
from the same steps, is obtained for the frequency. Therefore, we can let

ct � cν � c � 2 (2.38)

This was originally discovered by Sandsten and Brynolfsson in 2015 [8]. In 2018, Sand-
sten et al. found that this works for any arbitrary window matched to the signal [4].
They refer to this method the matched window reassignment, or MWR for short.
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Let us end this chapter some more illustrative examples. Let s(t) be a Gaussian with
σ � 10 and constant center frequency ν0 � 0.17:

s(t) � exp
(
− t2

2 · 102

)
· exp(i2π · 0.17 · t) (2.39)

First, we let our signal x(t) � s(t). The left plot of figure 2.6 shows the real part of
this signal and its envelope. The right plot shows the corresponding matched Gabor
spectrogram, where the center frequency ν0 is marked. The reassigned spectrogram
simply becomes a dot, perfectly concentrated in a single point. Therefore, we chose not
to show that plot since the point would be barely visible.

What we instead like to do is to show the slice of the spectrogram, as shown by the white
line in figure 2.6. The slice is taken at the frequency that matches the center frequency
ν0 of the signal. It is shown in the leftmost plot in figure 2.7, with its points marked for
clarity. The two right plots shows the reassigned counterpart of the spectrogram slice.
Evidently, perfect localization is indeed obtained.
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Figure 2.6: The signal (2.39) and its corresponding matched Gabor spectrogram. The
center frequency of the Gaussian is marked in the spectrogram.
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Figure 2.7: The leftmost plot shows the slice of the spectrogram at the frequency match-
ing that of the signal, as seen in figure 2.6. The two other plots show the reassigned
counterpart, both raw and binned.
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As a final demonstration, let us show what can happen if noise is added to the signal.
Now, let x(t) � s(t) + n(t) where n(t) is additive white Gaussian noise (AWGN) as
defined in chapter 3, section 3.1. For reference, the standard deviation of the noise
σn � 0.3.

Figure 2.8 and 2.9 shows the signal and spectrogram in the same way as before. It can
be seen that the noise is strong enough that it doubtlessly affects the spectrogram and
its reassignment. This is what the following chapters will be all about. Take special note
of how the amplitude of the binned reassigned spectrogram is much lower than before.
This is because the signal energy now happens to spread over multiple bins. Why this
happens and what we can do about it is the topic of chapter 5. But first, in the next
chapter, we will start with how noise affects the normalized reassignment vector.
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Figure 2.8: Same as figure 2.6 but with noise added to the signal.
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Figure 2.9: Same as figure 2.7 but with noise added to the signal.
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Chapter 3

Statistics of the normalized reassignment
vector for Gabor spectrograms

In 1996, Chassande-Mottin et al. released a paper [5] deriving the probability density
function (PDF) of the normalized reassignment vector for spectrograms when subjected
to Gaussian white noise. The paper is written in French, but luckily they have blessed
the non-French speakers with a summary in English [9]. In this chapter, the statistical
properties of the reassignment vector for Gabor (Gaussian windowed) spectrograms is
explored. Also, an approximation of the PDF is presented which could be useful for
some applications.

3.1 Definitions and assumptions

Throughout the rest of this thesis, we will work with a signal model where a determin-
istic signal is subjected to additive white Gaussian noise. We define this simple model
as

x(t) � s(t) + n(t) (3.1)

where s(t) is an analytic deterministic complex signal, and n(t) is analytic (and circular)
white Gaussian noise with variance σ2

n , as defined in [5] and further discussed in [10].

The noise being analytic means that Re{n(t)} ∼ Im{n(t)} ∼ N(0, σ2
n/2), and that

Re{n(t)} and Im{n(t)} form a Hilbert transform pair. This in turn means that the noise
has strictly positive frequency content and that Re{n(t)} and Im{n(t)} are correlated.
In Matlab this can be generated with (T being the signal length)

n = hilbert(randn(T, 1) * sqrt(noise_variance / 2))

This is in contrast to uncorrelated circular white Gaussian noise, where Re{n(t)} and
Im{n(t)} are independent. In this case, the power is spread in the whole spectra, and
as such the power density is halved. This is an important distinction since the signal
to noise ratio later defined will be doubled if uncorrelated noise is used in place of the
analytic. This noise can be generated with

n = (randn(T, 1) + 1j * randn(T, 1)) * sqrt(noise_variance / 2)

The Gabor spectrogram is obtained by transforming the signal x with a STFT using the
Gaussian window h, as presented in chapter 2. The local signal to noise ratio (SNR) ρ is
defined such that it relates to the power ratio between the deterministic signal s and
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noise n at some time t and frequency ν in the spectrogram:

ρ � ρ(t , ν) � Sh
s (t , ν)
2σ2

n
�

��Fh
s (t , ν)

��2
2σ2

n
(3.2)

This exact definition comes from [5]. It can be discussed if the 2 should be left out of the
expression or not, but in this thesis we decided use their definition. Note that ρ ≥ 0. In
the case when ρ � 0, x(t) � n(t), and when ρ � ∞, x(t) � s(t).

In this chapter, we are going to work exclusively with the normalized reassignment
vectors (NRV:s) r from the signal x, which now have some probability distribution since
x has a random component. The definition of r can be found in (2.24). To be able
to work with this model, we also need to define r0 as the noise-free NRV. That is, r0 is
the theoretical value of the NRV for the deterministic signal component s(t). This was
calculated for some common signals in the previous chapter under section 2.3.

3.2 Probability density function

3.2.1 Introduction

With the definitions and assumptions above, the probability density function (PDF) f
of the NRV r is [5]:

f (r) � 1
π
(
1 + |r |2

)2

[
1 + ρ

(
1 + |r0 |2 −

|r − r0 |2

1 + |r |2

)]
exp

(
−ρ |r − r0 |2

1 + |r |2

)
�

1
π
(
1 + |r |2

)2

(
1 + ρ

��1 + rr∗0
��2

1 + |r |2

)
exp

(
−ρ |r − r0 |2

1 + |r |2

) (3.3)

Please note that since f is a PDF, f : C→ R. In the next chapter, f will be written as f r

for clarity.

In the case when ρ � 0, i.e., when x(t) � n(t), the PDF reduces to:

f (r) � 1
π
(
1 + |r |2

)2 (3.4)

When ρ � ∞, i.e., when x(t) � s(t), per definition:

f (r) � δ(r − r0) (3.5)

When r0 � 0:

f (r) � 1
π

(
1(

1 + |r |2
)2 +

ρ(
1 + |r |2

)3

)
exp

(
−ρ |r |2

1 + |r |2

)
(3.6)
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Note that for both the case when ρ � 0 and when r0 � 0, f (r) � f (|r |), meaning that the
distribution only depends on the length of r and is therefore circularly symmetric.

The PDF f (r) depends on r0 and ρ implicitly, which is reasonable since f is a PDF.
However, sometimes we need to be explicit about its dependence on r0. Therefore
g(r, r0) is defined which is the same PDF but with explicit dependence on r0. At other
times it will prove useful to let r � x+i y, in which case we will write the joint distribution
as f (r) � f (x , y) � fx ,y(x , y). The marginal distribution of Re{r} � x and Im{r} � y
are written as fx(x) and fy(y) respectively. To be clear,

fx(x) �
∫

fx ,y(x , y)dy and fy(y) �
∫

fx ,y(x , y)dx (3.7)

3.2.2 Properties

Rotational invariance

The rotation of r0 in the complex plane rotates the PDF f (r) correspondingly. Except
for the rotation, the distribution stays the same. This property is seen from that

g
(
re iφ , r0e iφ)

�
1

π
(
1 +

��re iφ
��2)2

(
1 + ρ

��1 + re iφr∗0e−iφ
��2

1 +
��re iφ

��2
)

exp

(
−ρ

��re iφ − r0e iφ
��2

1 +
��re iφ

��2
)

�
1

π
(
1 + |r |2

)2

(
1 + ρ

��1 + rr∗0
��2

1 + |r |2

)
exp

(
−ρ |r − r0 |2

1 + |r |2

)
� g

(
r, r0

) (3.8)

which implies that

g
(
r, r0

)
� g

(
re−i arg(r0) , r0e−i arg(r0)) � g

(
re−i arg(r0) , |r0 |

)
(3.9)

This is a very useful property, as it allows us to study the PDF with r0 ∈ R, and all
properties will apply no matter how r0 is rotated. Therefore, when r0 ∈ R, we can look
at the real and imaginary arguments to the PDF as the axes along and about r0 in the
general case when r0 ∈ C.
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Symmetry about the noise-free NRV

Let r0 � x0 ∈ R. Then,

f (r∗) � 1
π
(
1 + |r∗ |2

)2

(
1 + ρ

��1 + r∗r∗0
��2

1 + |r∗ |2

)
exp

(
−ρ |r

∗ − r0 |2

1 + |r∗ |2

)
� f (r) (3.10)

since
|r∗ | � |r | and r∗0 � x∗0 � x0 � r0 (3.11)

This means that when r0 ∈ R the PDF is symmetric around the real axis. Combining
this with the previous result (3.9), we can see that the PDF is symmetric about r0 ∈ C:

g
(
re iφ , r0e−i arg(r0)) (3.10)

� g
(
re−iφ , r0e−i arg(r0)) (3.9)

⇒
g
(
re i arg(r0)e iφ , r0

)
� g

(
re i arg(r0)e−iφ , r0

) (3.12)

Dependence of the real and imaginary variable

Let r � x + i y. The marginal distributions for the simplest possible case when ρ � 0 are
[5]:

fx(x) �
1

2 (1 + x2)3/2
and fy(y) �

1
2 (1 + y2)3/2

(3.13)

fx(x) · fy(y) �
1

4 [(1 + x2)(1 + y2)]3/2
,

1
π (1 + x2 + y2)2 � fx ,y(x , y) (3.14)

which shows that in general, Re{r} and Im{r} are dependent. Due to the previous re-
sults, this means that the distributions about and along r0 are generally not independent.
This has also been verified numerically for (ρ, r0) , 0.

3.2.3 Visualized example

Before diving deeper into the properties of the PDF, it is a good idea to get a feeling for
how it looks first. Again, let r0 � x0 ∈ R. The left part in figure 3.1 shows what the PDF
looks like for a reasonable value of x0 and SNR ρ. The expectation value (mean) is close
to x0 � 1, but the mode is not (in the real variable x). Therefore it is easy to see that the
distribution is noticeably skewed in x. The figure also shows the marginal distributions
for the real and imaginary variables. We shall see later on that the marginal distributions
are useful to work with, especially the marginal distribution in the real variable.

The right part of the figure shows the PDF for an extreme case where the SNR ρ is very
low and r0 is very large. This case clearly shows that the distributions about and along
r0 are dependent. Other than that, as we shall also see later on, there is little point in
further studying this case.
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Figure 3.1: The PDF of the NRV with its marginal distributions visualized for two
different sets of parameters r0 and ρ.

3.2.4 A note

In the report by Chassande-Mottin et al. [5], they pointed out that f (r) is approximately
Gaussian for small r0. That is, the exp(·) in f (r) is the dominating factor. Later in this
chapter and also in the following chapters, we will make good use of this property. Note
that this only holds for reasonable values of local SNR ρ, as we shall soon see. Also,
loosely speaking, the distribution approaches another shape for large r0, which can be
seen later in for example figure 3.6, 3.7, and 3.9. It is hard to give a good definition of
what a small or large r0 is, but it will show that sometimes, the small r0 approximation
is quite useful.

3.3 Statistical properties

3.3.1 Expectation value

As Chassande-Mottin et al. [5] also has pointed out, it is rather easy to see that ρ �

0⇒ E[r] � 0 and also that, per definition, as ρ → ∞, E[r] → r0. It follows that when
r0 � 0⇒ E[r] � 0 ∀ ρ. Furthermore, due to the PDF being symmetric about r0, it must
also follow that for r0 , 0,

arg E[r] � arg r0 (3.15)

However, finding a closed expression for the expectation value analytically is seemingly
impossible, or at least very hard. By numerical integration, Brynolfsson [11] has demon-
strated how the expectation value of r varies as a function of SNR ρ, given a single value
of r0. Inspired by this, we shall now see how E[r] behaves for arbitrary values of r0. But
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first, let µn be the normalized expectation value of r for r0 , 0:

µn � E[r] / r0 � E[r/r0] (3.16)

Given (3.15), it must follow that µn ∈ R. A batch of different r0 ∈ C was randomly
selected, r0 ∈ C, 0 < |r0 | < 10. For these arbitrary r0, the normalized expectation
value µn was calculated over a wide range of SNRs, 10−3 ≤ ρ ≤ 103. The results show
that µn is indeed strictly real (within a reasonable margin of integration error). More
interestingly, it showed that µn does not depend on r0, and therefore can be seen as
a function of only SNR ρ. This is a very nice property, as it allows us to draw some
conclusions about the distribution that holds for all r0. The relationship µn(ρ) can be
seen in figure 3.2.
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Figure 3.2: Normalized expectation value µn(ρ) of the NRV over a wide range of SNRs
ρ. The difference between the plots is the scaling of the y-axis.

One can argue that the reassignment is only “useful” when E[r] ≈ r0, i.e., when µn ≈ 1,
otherwise it will be biased. Following this line of thought when studying µn(ρ), it can
be seen that some minimum SNR ρ could be defined from which the reassignment is
“useful”. Up to at least ρ � 1, µn is heavily biased. Thus, studying the case when
ρ < 1 is not relevant for the purpose of this thesis. Table 3.1 shows at what SNR ρ the
normalized expectation value µn reaches a certain value. For ρ ≈ 5, there is a ∼ 1%
bias, and for ρ ≈ 10 the bias is less than 0.1%. Given those results, a rule of thumb is
suggested which states that ρ & 10 � 10 dB gives a practically unbiased reassignment
vector for most applications. This simple rule is easy to keep in mind when doing
further analysis.

3.3.2 Variance

Chassande-Mottin et al. [5] states that as

ρ→ 0+ ⇒ V[r] → ∞ (3.17)
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µn 0.9 0.99 0.999 0.999999

ρ
2.38 5.09 8.36 22.4

3.77 dB 7.07 dB 9.22 dB 13.51 dB

Table 3.1: The inverse relationship of µn(ρ) and ρ for some values of µn . This was solved
numerically using a root-finding algorithm.

and again that per definition as

ρ→∞⇒ V[r] → 0 (3.18)

In a similar fashion as for the expectation value, the variance of the NRV is explored
for a range of reasonable SNR ρ and r0. This was again done by numerical evaluation.
Since the complex variance is the sum of the variance of the real and imaginary parts, it
also makes sense to also look at the two separately. The relationship between variance
and ρ, can be seen in figure 3.3.
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Figure 3.3: Variance of the NRV r as a function of SNR ρ. The plot to the left shows
the combined complex variance, and the plot to the right shows the real (solid) and
imaginary (dashed) parts separated.

Studying the curves in the figure, for reasonably large SNR ρ (& 10),

V[r] ≈ 2 V[Re{r}] ≈ 2 V[Im{r}] ≈ κ(|r0 |) · ρ−1 (3.19)

where κ(|r0 |) is some unknown function, seemingly growing monotonically with |r0 |.
This function explains the relationship between V[r] and |r0 |. To explore what κ(|r0 |)
could be, a similar evaluation was made with a fixed large SNR ρ, instead letting r0 vary
over a reasonable range. The results for ρ � 10 � 10 dB and ρ � 100 � 20 dB can be seen
in figure 3.4.

Studying the figure, we can see that the relationship g for large ρ is approximately

κ(|r0 |) ≈ 1 + |r0 |2 (3.20)
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Figure 3.4: Variance of the NRV as a function of |r0 | for a fixed SNR ρ. The actual
variance (solid blue line) is compared to an approximation (orange dashed line).

Putting (3.19) and (3.20) together,

V[r] ≈ 2 V[Re{r}] ≈ 2 V[Im{r}] ≈ 1 + |r0 |2
ρ

, V̂[r] (3.21)

While this approximation is quite loose, it will show itself useful when discussing how
the PDF can be approximated in section 3.4.

3.3.3 Mode and Skewness

As previously seen in figure 3.1, the distribution f (r) can be noticeably skewed, with the
mode clearly offset from the mean. In this section, we will explore how the mode and
skewness depends on r0 and SNR ρ. As done previously, let r0 � x0 ∈ R, utilizing the
symmetric properties of the PDF. We will start by analyzing the mode of the distribution
in the same way as we did for the expectation value. When doing so, the normalized
expectation value was defined as µn � En[r] � E[r]/r0. In the same way, we now define
the normalized mode as Moden[r] � Mode[r]/r0. However, now we have to be careful as
Mode[Re{r}] , Re{Mode[r]} due to the dependence of the real and imaginary variable.
Therefore, it makes sense both to look at the mode for the joint distribution, and for the
marginal distribution.

Figure 3.5 shows how the mode of the joint and marginal distribution depends on r0 � x0
and SNR ρ. The lines have different values of x0, sweeping a wide range of reasonable
x0. The same range of x0 is swept both for the joint and marginal distribution. It is clear
that the normalized mode does not have the same nice property that the normalized
mean has in that it does not depend on r0. Furthermore, the mode of the marginal
distribution differs slightly from that of the joint distribution. This is expected as the
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real and imaginary variables are generally dependent. However, they do not differ
significantly, which means that the properties of marginal distribution largely applies
to the joint distribution as well.
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Figure 3.5: Normalized mode of the joint PDF and the marginal distribution of x
compared to normalized expectation value µn (mean). The different lines show a wide
range of values of x0.

The main takeaway from studying the figure is that the mode converges to r0 much
slower than the mean does. Since the normalized mode is roughly the same for different
r0, the distance between mode and mean grows almost linearly with r0. This means
that when r0 is “large enough”, the distribution will be considerably skewed for even
moderately large SNR ρ. We shall soon investigate what “large enough” means, but
first we need to consider the consequences of a skewed distribution.

If the distribution of r is skewed, it is per definition asymmetric. In this case, it is skewed
towards zero, which means that sampling a value less than the mean is more likely than
a value greater than the mean. This is why we do not really care that the mean is correct
if the distribution is skewed, because then the samples will not spread nicely around
the mean anyway. Instead, in the extremely skewed case, most values will be somewhat
smaller than the main, while a few samples will be much greater than the main.

For a bivariate/complex distribution like this one, defining skewness is not as straight-
forward as for the expectation value or variance. However, since the distribution (when
r0 � x0 ∈ R) is symmetric around the real axis, it is per definition not skewed in the
imaginary variable y. This makes things much more simple, as we only have to study
the skewness for the real variable x. As such, we can define skewness as the third
standardized moment of the marginal distribution of x:

Skew[x] � (D[x])−3 ·
∬
(x − µx)3 f (x + i y)dx dy (3.22)
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Another way to define skewness is the Pearson mode skewness coefficient [12]:

ModeSkew[x] � E[x] −Mode[x]
D[x] (3.23)

Figure 3.6 and 3.7 shows the central moment skewness and the Pearson mode skewness
respectively. The two measures differ somewhat in scale, but both tell the same overall
story. Interestingly, and perhaps not too unexpectedly, x0 has a major impact on the
skewness. For small x0, the distribution is barely skewed for any reasonable SNR ρ. In
contrast, for large x0 the distribution is highly skewed up to fairly large SNR ρ.
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Figure 3.6: Skewness of the marginal distribution in the real variable fx(r).
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3.4 Approximative distribution

It was previously noted that for small r0 and large ρ, the exp(·) factor in the distribution
(3.3) will dominate, and as such the distribution will be approximately Gaussian. We
have learned that for ρ & 10, the expectation value of r is approximately r0. Furthermore,
we have also seen that the variance can be approximately expressed as (3.21):

V[r] ≈ V̂[r] � 1 + |r0 |2
ρ

(3.24)

Putting the pieces together,

r Û∼ CN
(
r0 ,

1 + |r0 |2
ρ

)
(3.25)

From this a Gaussian approximation f̂ of the PDF f is proposed, normalized such that∫
C f̂ � 1:

f (r) ≈ f̂ (r) ,
ρ

π
(
1 + |r0 |2

) exp
(
−ρ |r − r0 |2

1 + |r0 |2

)
(3.26)

Note the implied independence of Re{r} and Im{r}.

So how good is this approximation? Naturally, this is a very hard question to answer,
and we will not dive very deep into this issue. Holding on to the rule of thumb of ρ & 10,
we at least know that the expectation value is essentially unbiased. Let us also have a
look at how good the variance approximation is. Figure 3.8 shows the approximative
standard deviation relative to the actual value. For ρ & 10, the error is less than ∼15%
for any |r0 |, and for slightly larger ρ the upper bound of the error quickly shrinks below
∼5%. Based on this, we suggest that as ρ→∞, D̂[r] → D[r].
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Figure 3.8: Comparison of the approximative variance relative to the actual variance.
Note that the plot shows standard deviation.
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Another thing one could do is to look at the statistical distance between the two dis-
tributions. More specifically the f -divergence, which measures the distance between
two probability density functions. Liese and Vajda has a good paper from 2006 dis-
cussing f -divergences [13]. One common measure is the Kullback-Leibler divergence,
proposed in their paper from 1951 [14]. Another common measure is the Hellinger
distance, proposed by Hellinger back in 1909 [15].

Kullback-Leibler divergence:

DKL ,

∫
f1(x) log

(
f1(x)
f2(x)

)
dx +

∫
f2(x) log

(
f2(x)
f1(x)

)
dx (3.27)

Hellinger distance:

D2
H , 1 −

∫ √
f1(x) f2(x)dx (3.28)

These measures can easily be extended to allow for PDF:s in the complex domain
( f : C→ R) – just integrate over C instead.

Figure 3.9 shows the two measures comparing f and f̂ . While it is hard to relate to
the measures in an absolute sense, it is clear that the divergence goes towards zero as ρ
grows large. It can also be seen that |r0 | has a big effect on the divergence measure. For
large |r0 |, the divergence seems to go against some upper limit, although still converging
to zero as ρ grows large.
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Figure 3.9: Kullback-Leibler divergence and Hellinger distance between f and f̂ .
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Chapter 4

Statistics of the reassigned Gabor spectro-
gram

In the previous chapter, we explored the statistics of the NRV for Gabor spectrograms.
We looked at the distribution of the NRV at an arbitrary point in an arbitrary Gabor
spectrogram for an arbitrary signal subjected to AWGN. As such, the conclusions drawn
were general but did not really paint the picture of how the reassigned spectrogram
behaves as a whole given some actual signal. In this chapter, we shall use our knowledge
about some basic common signals presented in chapter 2 to draw further conclusions
about the reassigned spectrogram.

4.1 Approach

The question we are going to try to answer in this chapter is rather simple: what is
the distribution of the reassigned Gabor spectrogram for some known signals subjected
to AWGN? The signal model is assumed to be the same as in the previous chapter
(see section 3.1). The signals to be evaluated are the ones examined in chapter 2 – the
impulse, sinusoid, linear chirp, and the matched Gaussian.

First, we will focus on the impulse, sinusoid, and linear chirp. It will show that these
three signals behave in the same way in the normalized spectrogram, which is presented
and discussed in the next section. Because of that, it is possible to generalize and
draw conclusions about the three simultaneously. These conclusions will include an
approximation of the reassigned spectrogram distribution, which enables us to compare
it to the original spectrogram.

After that, the matched Gaussian case is studied. It will show that this signal behaves
similarly to the previous signals, but in two dimensions. However, due to the sym-
metric properties of the normalized spectrogram and reassignment vector, the resulting
distribution is circularly symmetric. This allows us to once again examine the results
in only one variable. Finally, the theory is tested against some simulations, both for the
sinusoid and matched Gaussian case.
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4.2 The normalized spectrogram

As seen in the previous chapter, it makes a lot of sense to look at the normalized version
the reassignment vector. However, to make practical use of the known properties of the
NRV, it has to be denormalized again. Optionally, it is possible to look at a normalized
version of the spectrogram instead. In that context, the scaling of the NRV matches that
of the spectrogram. We will simply name the normalized version of the spectrogram as
the normalized spectrogram, or NS for short.

The NRV is normalized with the Gaussian window duration ∆t and bandwidth ∆ν
(2.12). Correspondingly, let the normalized time and frequency be defined as tn � t/∆t
and νn � ν/∆ν respectively. The normalized spectrogram is defined as the spectrogram
S expressed as a function of the normalized variables. For example, taking the Gabor
spectrogram of the impulse signal (B.1) centered in t0 � 0:

S(t , ν) (B.4)
�

1√
πλ

exp
[
−

( t
λ

)2] (2.12)
�

1√
πλ

exp
[
−1

2

( t
∆t

)2]
⇒

NS(tn , νn) �
1√
πλ

exp
(
− t2

n

2

) (4.1)

Note that here, |tn | is the normalized distance from the signal in the normalized spec-
trogram. We define this general normalized distance from the signal as dn . Since
the noise-free NRV r0 is perpendicular to the signal in the normalized spectrogram,
|r0 |2 � d2

n . This is also shown by equation (B.8). The main takeaway is that

NS ∝ exp
(
−d2

n

2

)
� exp

(
− |r0 |2

2

)
(4.2)

For a sinusoid (B.10) centered in ν0 � 0, where dn � |νn |, the normalized spectrogram
becomes (as shown in appendix B.2)

NSh
s (tn , νn) �

1√
2π∆ν

exp
(
−ν

2
n

2

)
�

1√
2π∆ν

exp
(
−d2

n

2

)
�

1√
2π∆ν

exp
(
− |r0 |2

2

)
(4.3)

So for both the impulse and the sinusoid, the normalized spectrogram can be written
as (4.2). In fact, this is also the case for a linear chirp, which will now be demonstrated.
The linear chirp previously discussed (B.19) is defined such that the instantaneous
frequency ν � βt. In the normalized spectrogram, given that t � ∆t · tn and ν � ∆ν · νn ,
this corresponds to

∆ν · νn � β · (∆t · tn) ⇒ νn �
∆t
∆ν
· β · tn

(2.12)
� 2πλ2βtn (4.4)

The squared distance from the line to a point (ťn , ν̌n) in the NS is [16]

d2
n �
(ν̌n − 2πλ2β ťn)2

1 + (2πλ2β)2 (4.5)
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and the normalized spectrogram of the chirp is (B.25):

NSh
s (tn , νn) �

2
√
πλ√

1 + (2πλ2β)2
exp

(
−1

2
·
(νn − 2πλ2βtn)2

1 + (2πλ2β)2

)
(4.6)

Substitution with d2
n (4.5) in (4.6) again gives (4.2). With this it is also easy to see that

the NRV is perpendicular to the signal in the normalized spectrogram, see appendix
B.3. The left plot of figure 4.1 illustrates what this looks like. As for the NRV, the
normalized spectrogram can also be written as a function of a complex number; NS(z) �
NS(Re{z}, Im{z}).

tn = t / t

n
=

/

r0

NS

3 2 1 0 1 2 3
x0

N
S

Figure 4.1: An illustration of that r0 always is perpendicular to the signal in the normal-
ized spectrogram. The left plot shows the normalized spectrogram, and the right part
shows a slice of the normalized spectrogram perpendicular to the signal (along r0).

Remember the rotational invariance property of the NRV (see section 3.2.2). With that,
we are allowed to look at a rotated version of the normalized spectrogram such that the
signal becomes a vertical line, like the impulse. By doing so, r0 becomes horizontal –
perpendicular to the vertical line that the signal causes. In other words, we rotated the
normalized spectrogram such that r0 ∈ R, and as such we can let r0 � x0. The reason to
why this is done is the same as when the properties of the NRV was studied – it allows
us to use the real and imaginary axes as the axes along and about r0 respectively.

Now, take a slice along the axis of r0, which in the rotated normalized spectrogram
corresponds to the real axis. No matter where this slice is taken, when expressed as a
function of x0, it will always be the same. The result can be seen in figure 4.1, where the
slice taken along the dashed line in the left plot is viewed in the right plot. To be clear,
this holds for all the three signals we are now working with – the impulse, sinusoid,
and linear chirp.
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4.3 Reassigning the normalized spectrogram

We are now working with a slice from the normalized spectrogram taken perpendicular
to the signal, as discussed in the previous section. Given some thought, this slice can
be seen as the marginal distribution in x of the rotated normalized spectrogram. Again,
for the normalized Gabor spectrogram, this slice will always look the same in terms of
the NRV x0, see equation (4.2).

If the slice is seen as a marginal distribution, it makes sense to define a corresponding
PDF of how the normalized spectrogram NS is distributed in x:

f NS
x (x) ,

1√
2π

exp
(
−x2

2

)
(4.7)

The corresponding PDF for the normalized reassigned spectrogram (NRS) is defined
as f NRS

x . In the noise-free case the reassignment has perfect localization, and as such,
per definition f NRS

x (x) � δ(x). But of course, as thoroughly discussed in the previous
chapter, this is not the case when the signal is subjected to AWGN.

The reassigned distribution f NRS
x is literally a redistributed version of the original

distribution f NS
x . Every point x0 in the original distribution gets redistributed according

to the distribution of the NRV (3.3), which in this chapter is written as f r instead of just
f . Figure 4.2 illustrates how points in the original spectrogram distribution (dashed)
are redistributed to form a new reassigned distribution. Taking care of the direction of
the NRV, some point x in the reassigned distribution can be expressed as:

f NRS
x (x) �

∫
f NS
x (x0) · f r

x (x0 − x)dx0 (4.8)
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Figure 4.2: An illustration of how the normalized Gabor spectrogram distribution
(dashed black line) is redistributed.
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The final piece of the puzzle is in the local SNR ρ. Since it is proportional to the
spectrogram, it too can be written as a function of x:

ρ(x) � ρ0 · exp
(
−x2

2

)
, ρ0 �

NS(0)
2σ2

n
(4.9)

where ρ0 is defined as the peak SNR. This is incorporated into figure 4.2, showing the
case when ρ0 � 12 dB.

To put the pieces together, let r � x+ i y and r0 � x0. Again, x is a point in the reassigned
spectrogram NRS, and x0 is a point in the original spectrogram NS. Note that f NS

x (4.7)
and ρ (4.9) become functions of x0. Plugging ρ(x0) (4.9) into f r (3.3), the marginal
distribution becomes:

f r
x (x)

(3.3)
�

∫
1

π(1 + x2 + y2)2

[
1 + ρ

(1 + xx0)2 + (yx0)2
1 + x2 + y2

]
exp

(
−ρ
(x − x0)2 + y2

1 + x2 + y2

)
dy

(4.9)
�

∫
1

π(1 + x2 + y2)2

[
1 + ρ0 · exp

(
−

x2
0

2

)
·
(1 + xx0)2 + (yx0)2

1 + x2 + y2

]
exp

[
−ρ0 · exp

(
−

x2
0

2

)
·
(x − x0)2 + y2

1 + x2 + y2

]
dy

(4.10)
This is then, together with f NS

x (4.7), plugged into the expression for f NRS
x (4.8), which

makes for a quite cumbersome double integral in y and x0.

Instead of f r we can also use the approximative NRV distribution f̂ r (3.26) presented
in the previous chapter. In that case the resulting reassigned distribution is defined as
f̂ NRS
x . Figure 4.3 shows what the redistribution looks like using the approximate NRV

distribution.
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Figure 4.3: An illustration of how the normalized Gabor spectrogram distribution is
redistributed with the approximative NRV distribution.
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With the approximative NRV distribution f̂ r , the expression for the marginal distribu-
tion f̂ r

x becomes somewhat nicer:

f̂ r
x (x)

(3.26)
�

√
ρ

π (1 + x2
0)

exp

[
−ρ (x − x0)2

1 + x2
0

]
(4.9)
�

√
ρ0

π (1 + x2
0)

exp

[
−

x2
0

4

]
exp

[
−ρ0 · exp

(
−

x2
0

2

)
· (x − x0)2

1 + x2
0

] (4.11)

Still, when plugged into plugged into the expression for f NRS
x (4.8), forming f̂ NRS

x , that
integral also becomes rather cumbersome. However, the resulting integral is only in
one variable instead of two, which makes for much faster numerical evaluation.

Figure 4.4 shows the true and approximative marginal distribution f NRS
x and f̂ NRS

x
respectively evaluated for two different peak SNRs ρ0. It turns out that for ρ0 & 10 dB,
the approximative distribution matches the true distribution almost perfectly. Even for
as low as ρ0 ≈ 0 dB, the distributions still match reasonably well. Note that neither
f NRS
x nor f̂ NRS

x are Gaussian distributions.
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Figure 4.4: The marginal distribution of the NRS f NRS
x obtained from the true and

approximative NRV distributions for two different peak SNRs ρ0.

4.4 Analysis and approximation of the reassigned spectrogram

The fact that the approximative distribution f̂ NRS
x is practically identical to the true

distribution f NRS
x comes with a nice implication. Basically, it tells us that the distribution

can be seen as a weighted sum of zero-mean Gaussians. Studying these Gaussians, see
(4.11), it can be seen that their standard deviations are inversely proportional to √ρ0.
Consequently, the NRS distribution will also scale inversely with √ρ0.
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It would make sense if it followed that the standard deviation DNRS
x [x] ∝ 1/√ρ0, but

this is not the case. When numerically evaluating the variance, the calculations do not
converge. From this, we draw the conclusion that the distribution does not have finite
variance. This is explainable with the fact that the variance of the NRV distribution
grows infinite as the SNR ρ shrinks to zero.

While it is interesting that the resulting distribution has infinite variance, it is not a
very useful result. Perhaps a better measure of spread can be found by relating the
shape of the distribution to some other distribution? Comparisons to other common
distributions has shown that the NRS distribution closely resembles a t-distribution with
two degrees of freedom. A comparison between the true and matching t-distribution
can be seen in figure 4.5.
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Figure 4.5: A comparison of distributions in relation to the true marginal distribution
of the NRS.

The t-distribution with two degrees of freedom has infinite variance, which matches
that of the true distribution. Let us define this t-distribution approximation as Ûf NRS

x . Its
PDF can be written as

Ûf NRS
x (x) , 1

2
√

2 κx

[
1 +

1
2

(
x
κx

)2
]−3/2

(4.12)

where κx is some scaling factor. Given that the NRS distribution f̂ NRS
x scales inversely

with√ρ0, it must follow that κx ∝∼ 1/√ρ0. Fitting Ûf NRS
x to the true distribution gave that

κx ≈ 0.9/√ρ0.

For a t-distribution, as the degrees of freedom grows infinite, it approaches the Gaussian
distribution. By letting the number of degrees of freedom grow infinite in our approx-
imative t-distribution Ûf NRS

x , a new Gaussian distribution Üf NRS
x is formed. Its standard

deviation ÜDNRS
x [x] � κx . Figure 4.5 shows this distribution (green) compared to the

true (blue) and matching t-distribution (orange). This approximation might be a bit on
the optimistic side, so rounding the scale to ÜDNRS

x [x] ≈ 1/√ρ0 makes for an acceptable
and simple rule of thumb.
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By having this Gaussian approximation, we are now able to compare it against the
original normalized spectrogram, which has unit variance. The reassignment localization
factor γ is suggested to be defined as the scaling ratio between the two. Here,

γx ,
DNS

x
ÜDNRS

x
�

1
κx
≈
√
ρ0

0.9
≈ √ρ0 (4.13)

In the next chapter, one potential use of this ratio will be shown.

As a final thought, let us revisit figure 4.2 and 4.3. It can be seen that the heavy tails
of the NRS distribution mainly comes from the redistribution of far out points in the
original spectrogram. In practice, these points could likely be ignored to some extent.
Taking this to the extreme, ignoring all points but the very center, we end up with
a single NRV distribution (with r0 � 0). This distribution is approximately Gaussian
with Dx ≈ 1/

√
2ρ0. Think of this as the very best case scenario, although unattainable.

Figure 4.5 shows this distribution (dashed red) compared to the previously discussed
distributions.

Let us recap the steps taken. In the previous chapter, the NRV distribution f r was
approximated with a Gaussian distribution f̂ r . It showed that this approximation holds
very well in the context of the marginal NRS distribution f NRS

x for the signals examined.
From this, conclusions were drawn about the NRS distribution, and it was approximated
as a t-distribution with two degrees of freedom, Ûf NRS

x . This approximation was not very
useful in the sense of that it was hard to compare to the original spectrogram which
is Gaussian distributed. Therefore, a Gaussian approximation was formed from the
t-distribution approximation, Üf NRS

x .

The scale of the Gaussian approximation Üf NRS
x came from the scaling κx of the t-

distribution Ûf NRS
x . That was a bit optimistic, so it was suggested rounding up the scale

to ÜDNRS
x ≈ 1/√ρ0 for a simple rule of thumb. Having both the scale of the reassigned

and original distribution, the reassignment localization factor γ was suggested to be
defined as the ratio between the two. The scale of the RS was also put in context by
relating it to the NRV distribution in the center point of the original spectrogram, which
has Dx ≈ 1/

√
2ρ0.

4.5 The matched Gaussian case

In section 2.4 the matched window reassignment was introduced. It was seen that scaling
the reassignment vector by a factor of c � 2 gives perfect localization of any transient
signal with an envelope matching the STFT window. We define this scaled NRV as

q � c · r � 2r ⇔ r � q/2 (4.14)

Correcting for the factor c � 2, the distribution of q becomes

f q(q) � 1
4

f r(q/2) (4.15)
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Naturally, the normalized distance from the signal is

|dn |2 � t2
n + ν2

n (4.16)

Since the scaled reassignment gives perfect localization,
��q�� � |dn |. As for the previously

discussed signals, the normalized spectrogram (B.35) can be expressed as a function of
|dn |2, and therefore also of

��q��2:

NS �
√
πλ exp

(
− |dn |2

4

)
�
√
πλ exp

(
−
��q��2
4

)
(4.17)

The corresponding PDF f NS
q : C→ R is now defined such that

∫
C f NS

q � 1:

f NS
q (z) ,

1
4π

exp
(
− |z |

2

4

)
(4.18)

The local SNR ρ function is also defined correspondingly:

ρ(z) , ρ0 · exp
(
− |z |

2

4

)
, ρ0 �

NS(0)
2σ2

n

(B.35)
�

√
πλ

2σ2
n

(4.19)

The expression (4.8) is expanded to allow for the complex PDF:

f NRS
q (x , y) �

∬
f NS
q (x0 , y0) · f q(x0 − x , y0 − y)dx0 dy0 , or

f NRS
q (q) �

∫
C

f NS
q (q0) · f q(q0 − q)dq0

(4.20)

Before putting the pieces together, take note of the symmetric nature of the reassigned
normalized spectrogram. Since (4.18) is circularly symmetric and (4.15) is rotationally
invariant, it must follow that f NRS

q is circularly symmetric:

f NRS
q (q) � f NRS

q
(
qe iφ)

� f NRS
q

(��q��) (4.21)

Thus, in our analysis, we can let q ∈ R. However, we can not assume the reassigned
distribution f NRS

q to simply be a scaled version of f NRS
x (4.8).

As before, we are able to use the approximative NRV distribution f̂ r in place of f r . In
that case, the NRS distribution is written as f̂ NRS

q . Figure 4.6 shows both f NRS
q and

f̂ NRS
q for two different peak SNRs ρ0. Note that now the cases when ρ0 � 10 dB and
ρ0 � 20 dB are shown instead. The results show that for the matched Gaussian case,
in this context, the Gaussian approximation f̂ r is slightly worse than for the previously
examined signals. However, it still holds reasonably well for ρ0 & 10 dB. Also, it is
worth noting that it is on the pessimistic side.
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Figure 4.6: The true and approximative NRS distribution f NRS
q and f̂ NRS

q respectively,
showing two cases for the peak SNRs ρ0.

Numerical evaluation of f NRS
q showed that it is of infinite variance, just as for the

previously examined signals (evaluating f NRS
x ). By comparison to other common dis-

tributions, it was again found that the distribution resembles a t-distribution with two
degrees of freedom. In this case it is the bivariate/complex and circularly symmetric
version. Its PDF, named Ûf NRS

q , can be written as

Ûf NRS
q (z) � 1

2πκ2
q

[
1 +

1
2

(
|z |
κq

)2
]−2

(4.22)

Since the Gaussian approximation f̂ r also works well for the matched Gaussian case,
it again follows that κq ∝∼ 1/√ρ0. Fitting Ûf NRS

q (z) to the true distribution gave that
κq ≈ 2.3/√ρ0. Figure 4.7 shows the true f NRS

q distribution compared to the t-distribution
approximation Ûf NRS

q . As before, by letting the number of degrees of freedom grow
infinite for the t-distribution approximation Ûf NRS

q , a new Gaussian approximation Üf NRS
q

is formed. This approximation is also shown in figure 4.7. Its PDF can be written as

Üf NRS
q (z) � 1

2πκ2
q

exp

(
|z |2

2κ2
q

)
(4.23)

where κq is the scaling factor for the matched Gaussian case. This fills two purposes,
the first of which is the same as before – to be able to compare the width to the original
distribution. Its second purpose is to obtain a distribution which factorizes into the
marginal distributions, which the t-distribution does not.

For the matched Gaussian case, the normalized spectrogram does not have unit variance
as for the previous signals. Instead, DNS

q � 2. Compared to the Gaussian approximation
Üf NRS
q with ÜDNRS

q �
√

2κq , the reassignment localization factor γq becomes

γq �
DNS

q

ÜDNRS
q

�
2√
2κq
≈
√

2
2.3
· √ρ0 ≈ 0.6 · √ρ0 (4.24)
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Figure 4.7: A comparison of distributions in relation to the true distribution of the NRS
in the matched Gaussian case.

4.6 Comparison to simulations

Concluding this chapter, the derived distributions are tested against simulations. Before
looking at the results from the simulations, let us recap on the approach of deriving the
NRS distributions. To do so, we redistributed the NS according to the NRV distribution
in each point. Noise was modelled by assuming a peak SNR ρ0 which shapes the NRV
distributions. However, no actual noise floor was added to the spectrogram prior to (or
post) redistribution. Yet, in the simulations, we expect the simulated spectrograms to
have a noise floor.

Throughout the chapter, we have only worked with normalized spectrograms. Going
back the the denormalized variables is straightforward, multiplying the normalized time
tn and frequency vn by the window duration∆t and bandwidth∆ν respectively. Taking
for example the sinusoid, this means scaling the normalized marginal distribution by
the bandwidth ∆ν.

Two signals are examined – the sinusoid and the matched Gaussian, starting with the
former. In this case, the reassignment is only done in frequency since we are looking at
the marginal distribution. Figure 4.8 shows the results from the simulation, which is the
mean of 10 000 realizations. In the log-scaled plot, the noise floor is clearly seen, but its
overall effect on the shape of the distribution is negligible. In practice, the t-distribution
approximation Ûf NRS

x seems to hold very well.

For the matched Gaussian, the simulations are done in both variables. To compare to
the circularly symmetric theoretical t-distribution approximation Ûf NRS

q (4.22), tn and νn

are reduced to one variable
��q�� � |dn | �

√
t2

n + ν2
n . Figure 4.9 shows the results from the

simulation, which is the mean of 2000 realizations. In contrast to the previous result, it
is presented in the normalized variables, making it easier to translate to the distribution
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of one variable |dn |. Again, the simulations seem to align well with the theory, and
we draw the conclusion that the distribution derived in this chapter are conceptually
legitimate.
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Figure 4.8: A comparison of the simulated and theoretical marginal distributions of the
reassigned spectrogram for the sinusoid. ρ0 � 15 dB and λ � 50. The shown simulation
is the mean of 10 000 realizations. The difference between the plots is the scaling of the
axes.
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Figure 4.9: The mean of 2000 realizations of the normalized reassigned spectrogram for
the matched Gaussian signal at ρ0 � 20 dB, λ � 20. A comparison to the theoretical
t-distribution approximation Ûf NRS

q is shown in the right plot.
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Chapter 5

On the resampling of noisy reassigned Gabor
spectrograms

In this chapter, we touch upon the subject of resampling discrete reassigned spectro-
grams when the signal is subjected to noise. First, we will go through the problem of
naively resampling (binning), and how this is sometimes avoided by not resampling at
all. Then, a method is presented that utilizes the now known properties of reassigned
spectrograms to resample them in a better way. Finally, an evaluation of the method is
presented, discussing the performance of the method.

5.1 The issue of resampling

In current literature, the reassigned spectrogram (RS) of a discrete signal is often repre-
sented in one of two ways. In the first way, hereafter referred to as the raw representation,
the RS is not resampled. Instead, the individual reassigned points from the spectrogram
are shown. Sometimes, they are plotted with an intensity proportional to their energy.
This method is used by for example Fitz et al. in [17]. An example is shown in chapter
2, figure 2.4. In the second way, hereafter referred to as the binned representation, the
RS is naively resampled by assigning each point to the closest time and frequency point
in the original spectrogram. Figure 2.5 shows an example of this method.

The representations are best understood by example. Figure 5.1 shows the reassigned
spectrogram for a matched Gaussian pulse. To make it easier to illustrate and under-
stand, we only look at the slice of the spectrogram which frequency matches that of
the signal. That is, we only look at the spectrogram and its reassignment in the time
domain. Plot A shows the real part of the signal, with (orange) and without (blue)
noise. Note that the peak SNR ρ0 � 25 dB, which is more than enough for all our pre-
vious approximations to hold well. The Gaussian’s width λ � 10 and the reassignment
localization factor (4.24) γq ≈ 0.6 · √ρ0 ≈ 19. Thus, the corresponding width of the
reassigned spectrogram is approximately λ/γq ≈ 0.5.

Plot B shows the spectrogram, and plot C and D, respectively, show the raw and binned
representation of the reassigned spectrogram. Note that the two right plots (C and
D) are zoomed in by a factor of 8. If it is not already, it will soon be clear that both
representations have their drawbacks.
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The raw representation (C) is fairly good for visualization, as the spread of the points
does not affect the perceived energy in the signal. However, it does not show the total
energy of the signal, and is not a very suitable representation for further processing.
Contrastingly, the binned representation (D) does the exact opposite. For the noise-free
signal, the total energy is correctly obtained in the peak, but when it is subjected to
noise, the binned RS spreads and deteriorates. For reference, the dashed line shows the
total energy in the spectrogram.

Deterioration of the binned RS could perhaps be compensated with wider bins. But
then, the localization of the peak would be subject to a larger quantization error. Also,
no matter the bin width, if the reassigned points align between two bins, the energy is
often split between the two. We have observed that if this happens, the robustness of
the binned RS is drastically worsened.

To put it shortly, both of these representations have their often unacceptable drawbacks.
The question naturally arises – how do we represent/resample the reassigned spectro-
gram in a suitable and balanced way? Is it possible to find a middle ground where
the total energy can be obtained in the peak while simultaneously being robust against
noise?
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Figure 5.1: An example of the reassigned spectrogram (RS) of a matched Gaussian
pulse, shown both with and without noise. Plot A shows the signals. B shows the
spectrograms. C and D shows the raw and binned RSs respectively. The figure is
thoroughly explained and discussed in section 5.1.
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5.2 Proposal of the smoothed reassigned spectrogram

Now, we present an idea for a method attempting to mitigate the issue presented in the
previous section. Let us call this method the smoothed reassigned spectrogram, or SRS for
short. Its main goal is to be able to obtain a stable measure of the signal energy/power
in its peak. The basic idea is to place a kernel on each reassigned point with some scale
relating to that of the RS or RV1 distribution. Essentially this means smoothing the
reassigned points before sampling to obtain a well behaved representation of the RS. In
contrast to the binned method, this representation can be sampled as finely as desired
without deteriorating. The concept is similar to kernel density estimation (KDE) or kernel
smoothing.

The SRS makes the most sense in the discrete case, where it actually will be applied.
To express it, let the discrete spectrogram be written as Si(ti , νi), i ∈ {1..N}, where N
is the number of points in the discrete spectrogram. The value Si will sometimes be
referred to as the mass. Let its corresponding reassigned time and frequency be written
as (t̂i , ν̂i). Then,

SRS(t′, ν′) ,
∑

i

Si · Ki(t′ − t̂i , ν
′ − ν̂i) (5.1)

where K is a kernel, possibly a Gaussian:

KG(t , ν) � exp

[
−1

2

(
t2

σ2
K,t

+
ν2

σ2
K,ν

)]
(5.2)

or a parabola:

KP(t , ν) � max

[
0, 1 − 1

2

(
t2

σ2
K,t

+
ν2

σ2
K,ν

)]
(5.3)

where σ2
K,t and σ2

K,ν are scaling parameters. The scale of a kernel Ki may depend on Si

or S(t̂i , ν̂i), but more on that later. In continuous variables, the SRS can be expressed as

SRS(t , ν) ,
∬

RS(t′, ν′) · K(t − t′, ν − ν′)dt′ dν′ (5.4)

If K is fixed, this is simply a convolution with the RS, which is convenient for theoretic
calculations.

Before showing an example, let us think of a desirable property of the SRS. Consider a
Gaussian centered in (t0 , ν0). Its noise-free RS is perfectly localized in the center point
with the total signal energy E. That is, RS(t , ν) � E · δ(t − t0 , ν − ν0). The SRS should
retain that SRS(t0 , ν0) � E, which corresponds to the mass in RS(t0 , ν0). Given this
requirement, K(0, 0) � 1.

1Reassignment Vector
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It is not uncommon that in other contexts, kernels are constrained to be of unit energy.
Combining this constraint with K(0, 0) � 1 would imply a fixed kernel width. This
goes against the idea of relating the kernel width to that of the RS or RV distribution.
Hence, the kernels can not be constrained to be of unit energy. It follows that the SRS
does not have the energy conservation property that the spectrogram and reassigned
spectrogram both have. But remember – the goal is to reliably find the energy/power
in the peak.

Before further discussing kernels, let us first show a practical example. Figure 5.2 shows
two examples of placing kernels on the reassigned points of the spectrogram. The figure
shows the same signal as figure 5.1 but with some points removed to reduce clutter in
the plot. As before, to simplify, we only look in the time domain. In both examples,
Gaussian kernels are used, but with different scales. The top plots use kernels as wide
as the RS distribution (theoretically), and the bottom plots use a 3 times wider kernel.
Those kernels were picked arbitrarily – the point here is only to illustrate how the kernel
scale affects the SRS.
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Figure 5.2: Two examples of placing Gaussian kernels on each reassigned point. The
two examples have different kernel scales, which affects the resulting SRS, shown in
green in the right plot. For comparison, in the right plots, the bars show the binned RS,
and the dashed lines shows the total energy.

The main point of figure 5.2 is to show that if the smoothing kernels are wide enough,
the peak of the SRS will provide a more stable estimate of the signal power. By “more
stable”, we mean less biased and with lower variance over multiple realizations. But of
course, if a too wide kernel is used, there is no point in reassigning at all.
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Now that we have an idea of how the SRS behaves, let us discuss kernels. There is two
more desired properties of the SRS that we would like to suggest. It should retain that a
noise-free Gaussian with a total signal energy E is unambiguously located in its center
(t0 , ν0). I.e., SRS(t , ν) < E for (t , ν) , (t0 , ν0). For the kernel, this means that K(t , ν) < 1
for (t , ν) , (0, 0). This rules out using, for example, a rectangular window. Finally, the
SRS should never be negative, so K ≥ 0.

5.3 Kernel selection

Both the kernels mentioned – the Gaussian (5.2) and the parabola (5.3) – fulfill the
properties stated in the previous section. Also, the scaling factors σK,t and σK,ν can be
chosen such that the kernels become circularly symmetric in the normalized variables.
We will limit the scope to these two kernels, but of course, other choices are possible.

The subject on kernel selection for kernel smoothing and KDE is still today widely
discussed, and stands without universal consensus. Going down that rabbit hole would
also be outside the scope of this thesis. Instead, a rather brief, practical, and nonrigorous
approach is taken.

As done in the previous chapter, we continue to approach this problem by only looking
at the marginal distribution. For the matched Gaussian case, extension to both the time
and frequency domain is trivial since the NRS distribution is circularly symmetric. For
the other signals examined, this is a subject of further research. But for now we suggest
treating this case as also circularly symmetric in the normalized variables.

In the previous chapter, section 4.4, we approximated the RS marginal distribution as
a Gaussian. Using this Gaussian approximation together with a fixed Gaussian kernel
results in some nice properties. For a fixed kernel, the SRS becomes a convolution of the
RS and kernel, which means that it too will be Gaussian. Here, we define the RS with
unit energy and variance as

RS(x) � 1√
2π

exp
(
−x2

2

)
(5.5)

and the kernel K scaled with a factor a relative to the RS as

K(x) � exp
(
− x2

2a2

)
(5.6)

The SRS is the convolution of the RS and kernel K:

SRS(x) [18]
�

1√
1 + 1/a2

· exp
(
− x2

2 (1 + a2)

)
� ESRS

0 · exp

(
− x2

2 σ2
SRS

)
(5.7)
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As the kernel grows wider, i.e., as a → ∞, then ESRS
0 → 1 and asymptotically, σSRS �√

1 + a2 → a. In other words, the energy is recovered, and the SRS width becomes that
of the kernel. The relationship between the kernel width a and energy recovered ESRS

0
can be seen in figure 5.3. If we want to recover 95 % of the energy, we pick a ≈ 3.0. This
gives an SRS scaling of

√
1 + a2 ≈ 3. To clarify, if we use Gaussian kernels ∼ 3 times

wider than the estimated RS width, we expect to recover 95 % of the signal energy in
the SRS peak. The bottom plots of figure 5.2 shows an example of exactly this.
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Figure 5.3: The relationship between kernel scale a and expected energy recovered ESRS
0 .

This is fine, but how is the RS distribution width obtained? A simple solution would
be to estimate the global peak SNR ρ0 to calculate the reassignment localization factor
γ, which in turn is used to estimate the width. This works fine if there is only one
component in the signal, but what if there are multiple components with different
energy? Clearly, in that case, the kernel width will need to be adapted locally.

To adapt the kernel width locally, we would need to somehow use the local SNR instead
of the global peak SNR. The obvious straight forward solution would be to simply use
the pointwise SNR, estimated from the points’ individual energy. But what will happen
then is that points with low SNR will get spread out more, creating heavy tails around
peaks and increasing the noise floor of the SRS. This is likely not a desired behavior.

What do we propose to do instead? One idea is to not use the energy of the point itself,
but the local SNR at where the point is reassigned to. That is, ρ(t̂ , ν̂) instead of ρ(t , ν).
All points (in the marginal) for a signal component are ideally reassigned to the same
central point. Thus, all those points will ideally be assigned the same SNR – the peak
SNR for that component. This technique will later be demonstrated on some real world
data.

A desirable kernel property not mentioned before is finite support. This makes the SRS
practically feasible to compute. Otherwise, if the kernels have infinite support, every
point in the RS contributes to every point in the SRS. This results in some rather bad
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time complexity, and should be avoided. Of course, the Gaussian kernel can simply be
cut to make it finite support, but there are other kernels which have finite support by
nature. For example, the parabola previously presented 5.3.

The parabola is often used in KDE since it is optimal in the sense that it minimizes
spread [19]. We will not dive into what this means for our application, but it could be
an argument for its feasibility. In the context of the marginal distribution, we define the
kernel as

K(x) �
{

1 − x2/2a2 for x2 < 2a2

0 otherwise
(5.8)

Note that it matches the first two terms of the Taylor series of the Gaussian kernel.
In other words, it resembles the Gaussian kernel close to its center. One drawback of
any other kernel than the Gaussian is that the resulting SRS distribution will not be
Gaussian. However, we can still calculate the expected energy recovery:

ESRS
0 � SRS(0) �

∫ √
2a

−
√

2a

1√
2π

exp
(
−x2

2

)
·
[
1 − x2

2a2

]
dx (5.9)

Again, the relationship between scale a and recovered energy ESRS
0 is plotted in figure

5.3. It can be seen that in this regard, the parabolic kernel behaves similarly to the
Gaussian. Recovering 95 % of the energy again gives a scale a ≈ 3. Finally, studying the
plot, we suggest that reasonable choices of scale a fall somewhere between 2 and 4.

5.4 Suggestions for practical enhancements

To further enhance the reassigned spectrogram, there are some more things we can do.
In this section, we suggest a set of criteria which a point must meet to be included.
These criteria have hard thresholds – either a point is included or ignored. The reason
for this is that it drastically speeds up the average computation time for the SRS.

In chapter 3, section 3.3.1, we learned that points with an SNR ρ . 5 dB have a signif-
icantly biased expectation value. If we know that the reassignment will be incorrect,
there is no point of reassigning at all. Therefore, we suggest that points below a certain
SNR ρ, somewhere around ρ . 5 dB, are ignored.

We can also look at the SNR where the point is reassigned (t̂ , ν̂). If that SNR is too low,
it is likely that the point was not properly reassigned. Therefore we suggest ignoring
points which are reassigned to a location with a SNR below some threshold. This
threshold should be at least as high as the previous. As this SNR is suggested to be
used for the kernel width, this rule also prevents kernels from becoming too wide.

In chapter 3 and 4, we learned that points that are reassigned long distances have
higher variance and contribute to the heavy tails of the RS distribution. In section 4.4, it
was mentioned that these far out points can be ignored to some extent. But how do we
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decide what is a “far out” point? Consider the marginal distribution of the spectrogram,
which is a Gaussian. Let σ be its standard deviation. If we want to recover ∼ 95 % of
its energy, this corresponds to reassigning all points from within ±2σ. Therefore, we
suggest ignoring points which are reassigned a distance longer than ∼2σ.

To summarize, ignore points which do not meet the following criteria:

– The point’s SNR ρ(t , ν) & 5 dB.
– The SNR at the location which the point is reassigned to ρ(t̂ , ν̂) & 5 dB.
– The point is reassigned a distance smaller than ∼ 2σ, where σ is the standard

deviation of the spectrogram marginal distribution.

There is one more idea that we would like to present. It briefly touches the topic on
what happens for multi-component signals. Chassande-Mottin et al. have done some
research on the topic, presented in [20]. One takeaway is that the reassignment breaks
down between signal components which are too close. Let us take a look at what
happens. Figure 5.4 shows an example where two Gaussians are placed fairly close to
each other in time. The signal can be seen in plot A. Plot B shows the RS and SRS with
the enhancements previously discussed. The SRS uses parabolic kernels 3 times wider
than the theoretical RS distribution width. It can be seen that there is some interference
between the signal components.
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Figure 5.4: A typical scenario for a signal with multiple close components. Plot A shows
the signal which is two Gaussians close in time. Plot B shows the RS and SRS. Plot C
shows the actual (blue) and ideal (orange) scaled reassignment in time ct t̃. Plot D shows
the derivative of ct t̃.

To understand what is going on, we look at plot C. The reassignment in time (ct t̃) is
shown by the blue line. Remember, ct � 2 for the matched window reassignment. The
ideal reassignment in time for each component is shown in orange. What happens
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between the centers of the components is a transition from reassigning points to one
center to the other. During the transition, the points are incorrectly reassigned. While
it might not be possible to fix this due to the nature of reassigning spectrograms, these
points could perhaps be ignored instead.

So how can we classify which points to be ignored? We know that ideally, ct t̃ � t0 − t,
which is shown in plot C. This means that ideally, d

(
ct t̃

)
/dt � (ct t̃)′ � −1, which is what

plot D shows. It can be seen that when the reassignment is well behaved, (ct t̃)′ ≈ −1.
Therefore, we suggest discriminating points which have (ct t̃)′ 0 −1. Exactly how to set
the limits has not been thoroughly studied. For the results later shown, the limits used
are −1.5 < (ct t̃)′ < −0.5.

The result of taking the example signal discussed (figure 5.4) and applying this rule
can be seen in figure 5.5. It can be seen that most of the interference between the two
components is removed. Having this smoothed reassigned spectrogram, it would be
trivial to locate the components.
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Figure 5.5: The RS and SRS from figure 5.4 after applying the rule related to (ct t̃)′.

5.5 Performance evaluation

Remember, the main goal of the SRS is to be able to obtain a stable measure of the signal
energy/power in its peak. Now that we have built up some theory around the SRS, let
us put it to the test. We will use the same signal as before – a single matched Gaussian
with λ � 10. Again, for simplicity, we only look at the spectrogram and its reassignment
in the time domain. All enhancements proposed in the previous section are applied,
and a parabolic kernel with a relative scale of 3 is used. That is, the kernel scale

σK,t � 3 · λ
γq

� 3 · 10
0.6
·
[
ρ(t̂)

]−1/2 (5.10)

With this kernel, the expected energy recovery is ∼ 94 %. Also, since we ignore points
reassigned further than 2σ, that in itself limits the energy recovery by ∼4 %.
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In the following simulation study, the spectrogram, binned RS and SRS was realized
N � 5000 times. From each realization, the peak value from each of the three TFRs was
saved. To avoid corner cases, the center time and frequency (t0 , ν0) was randomized
every realization. For the binned RS and SRS, the estimated energy Ê was obtained
directly from the peak. To estimate the total energy Ê from the spectrogram peak,

Ê � max
t
[S(t)] · λ

√
2π (5.11)

The spectrogram is the baseline which the binned RS and SRS are compared against.
The point here is that we wish to retain this information when reassigning.

A wide range of peak SNRs ρ0 was swept, from 12 dB to 44 dB. For every peak SNR, the
mean, 25th and 75th percentiles, and root mean square error (RMSE) was calculated.
The RMSE is defined as

RMSE �

[
1
N

∑N

n�1
(E − Ên)2

]1/2
(5.12)

where E is the theoretical energy in the noise-free signal. Figure 5.6 shows the RMSE,
and figure 5.7 shows the mean and 25th/75th percentiles.

We start by looking at what happens for the binned RS. Clearly, it suffers from significant
deterioration, worsening as noise is added. Even for a peak SNR ρ0 as high as 25 dB,
its mean peak value is heavily biased. At even higher SNRs, when its no longer much
more biased than the SRS, it still has a much higher RMSE.

Perhaps more interesting is looking at the SRS. In contrast to the binned RS, it has a
fairly constant bias. For the lower SNRs, the RMSE of the SRS is only slightly worse
than the spectrogram baseline. At higher SNRs, the RMSE goes to some lower limit
caused by the bias. Overall, its behavior is very similar to that of the spectrogram.
This is great since it means that using the SRS, we can reassign the spectrogram while
retaining information of signal energy/power.
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Figure 5.6: RMSE of the energy estimated from the spectrogram, binned RS, and SRS.
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Figure 5.7: The energy estimated from the peak the spectrogram, binned RS, and
SRS. Solid lines show the mean and the fill shows the span between the 25th and 75th
percentile. For reference, the theoretical noise-free signal energy is shown by the dashed
black line.

5.6 Application on real world radar data

One of the original purposes of this thesis was to find new techniques for processing
data from the Acconeer A1 radar sensor. The A1 is a tiny pulsed coherent 60 GHz
radar with very low power consumption, ideal for small battery powered devices. It is a
time-of-flight based system, meaning that it measures the time between transmitting and
recieving a reflected pulse, which corresponds to some distance in space. Measurements
are taken by correlating the recieved pulse with a time delayed version of the transmitted
pulse. By repeating measurements over a range of delays, like a sliding correlator, the
reflected pulse is reconstructed. This is referred to as sweeping, and the data from
sweeping a range of delays is simply called a sweep. The resolution in delay is ∼ 3 ps
which corresponds to ∼0.5 mm in distance.

In a sweep, a reflection from an object will appear as the radar pulse correlated with a
matched filter. Since the pulse envelope approximately has the shape of a Gaussian, the
output from the matched filter also will be Gaussian. The top plot in figure 5.8 shows
a sweep where two objects has been placed in front of the sensor. It also shows the
matched Gaussian STFT window, obtained by matching it by hand (λ � 27 mm). Other
methods of matching the STFT window exists, such as minimizing the Rényi entropy
[8].
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The two objects placed in front of the sensor were of different material and shape, thus
creating slightly different pulses in the sweep. Also, the two objects were close enough
that the pulses interfere with each other. On top of that, there are some nonlinear effects
and slight correlation between the points in the sweep. Overall, a not so favorable
situation for the RS and SRS, even though a maximum SNR of 41 dB is reached. In
the figure, the standard binned RS (orange) can be seen breaking down, especially for
the peak further away. However, the SRS recovers the peaks rather well. For both the
binned RS and SRS, all enhancements presented in the previous section are used.
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Figure 5.8: An example of processing data from the Acconeer A1 sensor. The top plot
shows the data in which two pulses can be seen. It also shows the manually matched
STFT window. The bottom plot shows the slice of the spectrogram (blue), binned
RS (orange), and SRS (green), matching the frequency of the signal. Note that the
spectrogram has been scaled up from demonstration purposes.
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Chapter 6

Conclusions and future work

6.1 Conclusions

In this thesis, we explored the reassignment method for Gabor spectrograms. The main
interest was analyzing what happens when deterministic signals are subjected to addi-
tive white Gaussian noise (AWGN). A practical approach was taken, and many of the
conclusions drawn were a result of numerical evaluation. While perhaps nonrigorous,
this allowed us to progress faster, greatly extending the scope of this thesis.

In chapter 3, we started by looking the statistics of the normalized reassignment vector
(NRV). A key observation was that the NRV has some nice symmetric properties, sim-
plifying future analysis. We saw that over a certain local SNR, it always holds that the
NRV is practically unbiased. The variance of its distribution was studied, and an ap-
proximation for it was made. Then we looked at its mode and skewness, trying to better
understand its behavior. Finally, from the knowledge gained, a Gaussian approximation
of the distribution was made. It assumes that the NRV is unbiased, meaning that the
SNR is reasonably high. The main purpose of the approximation was to simplify future
analysis.

Chapter 4 took a step back from just looking at the distribution of the NRV to looking
at that of the whole reassigned spectrogram. A normalized spectrogram was presented
in which the impulse, sinusoid, and linear chirp are, in the context of reassignment,
practically equivalent. The distribution of their reassigned spectrogram was derived,
both using the true and approximative NRV distribution from chapter 3. It showed that
the approximative NRV distribution holds well in this context, allowing us do draw
further conclusions.

One conclusion drawn about these signals’ reassigned distribution was that it is not of
finite variance. By first making a t-distribution approximation, we could then from that
form a Gaussian approximation. While not super accurate, it still allowed us to relate
the width of the reassigned distribution to the original spectrogram distribution. This
relation was defined as the reassignment localization factor. It basically tells us that the
localization provided by the reassignment is proportional to the square root of the SNR.

Chapter 5 brought up the subject on how reassigned spectrogram are represented/re-
sampled in practice. A big shortcoming with naively resampling the reassigned spec-
trogram is that it deteriorates when subjected to noise. To mitigate this, a new method
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was presented – the smoothed reassigned spectrogram. By utilizing the knowledge from
previous chapters, applying kernels to the reassigned points, a more well behaved
distribution was obtained.

6.2 Future work

There are many areas in this thesis that are open for future work. Overall, a more
rigorous approach could be taken to many of the presented results. For example, one
could attempt analytically showing that the normalized expectation value of the NRV
r is independent of the noise-free NRV r0. Or, finding a closed expression for said
value, variance, or skewness. This also goes for the calculations on the distribution of
the reassigned spectrogram. Perhaps one could generalize to any arbitrary window,
maybe using the matched window reassignment. Of course, we also think it would
be interesting to dive deeper into the proposed smoothed reassigned spectrogram. What
are the theoretical statistical properties? How do we optimally select kernels? The
questions are many, but there is only so much that can be done in one thesis.
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Appendix A

Formulas for Gaussian functions

For a , b ∈ C, Re(a) > 0: ∫
exp

(
−ax2) dx �

√
π
a

(A.1)∫
exp

(
−ax2) exp(−2bx)dx �

√
π
a

exp
(

b2

a

)
(A.2)∫

x exp
(
−ax2) exp(−2bx)dx � − b

a

√
π
a

exp
(

b2

a

)
(A.3)∫

C
exp

(
−a |z |2

)
dz �

π
a

(A.4)

For all a:
d

dx
exp

(
−ax2)

� −2ax · exp
(
−ax2) (A.5)

Hence, for a , 0:
x · exp

(
−ax2)

� − 1
2a
· d

dx
exp

(
−ax2) (A.6)

For a > 0:(
F exp

(
−at2) ) (ν) � ∫

exp
(
−at2) exp(−i2πνt)dt

(A.2)
�

√
π
a

exp
(
−π

2ν2

a

)
(A.7)

For a > 0: ∫
x2 exp

(
−ax2) dx �

√
π

2a3/2 (A.8)
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Appendix B

Calculations for the spectrogram and reassignment of
some common signals

B.1 Impulse

s(t) � δ(t − t0) (B.1)

Fh
s (t , ν) �

1
π1/4
√
λ

∫
δ(τ − t0) exp

(
−(τ − t)2

2λ2

)
exp(−i2πντ)dτ

�
1

π1/4
√
λ

exp
(
−(t − t0)2

2λ2

)
exp(−i2πνt0)

(B.2)

FT h
s (t , ν) � (t0 − t) · Fh

s (t , ν) (B.3)

Sh
s (t , ν) �

��Fh
s (t , ν)

��2 �
1√
πλ

exp
(
−(t − t0)2

λ2

)
(B.4)

r0 �

√
2
λ

FT h
s (t , ν)
Fh

s (t , ν)
� −
√

2
λ
(t − t0) (B.5)

|r0 |2 �
2
λ2 (t − t0)2 (B.6)

With t0 � 0:

NSh
s (tn , νn) �

1√
2π∆t

exp
(
− t2

n

2

)
(B.7)

t2
n �

t2

∆t2
(2.12)
�

2
λ2 t2

� |r0 |2 (B.8)

NSh
s (r0) �

1√
2π∆t

exp
(
− |r0 |2

2

)
� NSh

s (0) · exp
(
− |r0 |2

2

)
(B.9)
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B.2 Sinusoid

s(t) � exp(i2πν0t) (B.10)

Fh
s (t , ν) �

1
π1/4
√
λ

∫
exp[i2π(ν0 − ν)τ] exp

[
−(τ − t)2

2λ2

]
dτ

�
1

π1/4
√
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∫
exp[i2π(ν0 − ν)(τ − t)] exp

[
− τ
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]
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�
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π1/4
√
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∫
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[
− τ

2

2λ2

]
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(A.7)
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√
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(B.11)
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√
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√
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·
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√
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2
λ

FT h
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√
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B.3 Linear chirp

s(t) � exp
(
i2π

βt
2

t
)
� exp

(
iπβt2) (B.19)
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B.4 Gaussian

s(t) � exp
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In the case when σ � λ, i.e., the matched window case:

Sh
s (t , ν) � λ

√
π exp

(
− t2 + (2πλ2ν)2

2λ2

)
(B.32)

r0 � − 1√
2λ
(t + i2πλ2ν) (B.33)

|r0 |2 �
1

2λ2

(
t2

+ (2πλ2ν)2
)

(B.34)

NSh
s (tn , νn) � λ

√
π exp

(
− t2

n + ν2
n

4

)
(B.35)

63



Appendix C

Popular science summary

This thesis explores and improves the reassignment method, used for analyzing signals that
change over time. With our newfound knowledge, a special smoothing can be applied, enhancing
its performance.

Signals varying over time, so called non-stationary signals, appear all around us. From
the changing temperature of our globe to the response from a complex radar system.
The need for analyzing them arises practically everywhere, and is ever so challenging.
A fundamental tool in this field of research, called time-frequency analysis, is the
spectrogram. It takes the signal and decomposes it into its frequency content at any
given point in time.

A problem with the spectrogram is that it is not very precise. Let’s say we want to
analyze some bird chirps. Perhaps we want to know both when the chirp happened,
and what pitch it had. This corresponds to localizing the signal in time and in frequency
respectively. Unfortunately, we can not obtain sharp measures of both simultaneously.
Either the time or frequency will, to some extent, appear to be smeared out.

This is what the so called reassignment method seek to compensate. For some signals,
we can obtain a perfect concentration of a signal both in time and frequency. In other
words, it allows us to clearly see both when and with what pitch a bird has chirped,
which is great! However, the reassignment method comes with a drawback – it is quite
sensitive to noise and disturbances.

If there is some way to work around this, we would get the best of two worlds. And this
is exactly what our thesis project is all about. We present a method that mitigates the
effects that noise has on the reassignment. To get there, we had to build up a thorough
understanding of the method.

In some sense, the (Gabor) spectrogram can be seen as normal distributed. However, we
saw that this is actually not the case for the reassigned spectrogram. Actually, it turns
out to be of infinite variance (a measure of spread), which might seem counterintuitive.
This is not as bad as it seems, and we suggest that the reassigned spectrogram can be
roughly seen as normal distributed as well.

Knowing how the reassigned spectrogram behaves, we had an idea on how to modify
it to make it more robust against noise. By smoothing it corresponding to its theoretical
distribution, its behavior becomes much more predictable. Our method is basically a
way to sacrifice some concentration for the gain of robustness. The concept is similar
to kernel density estimation or kernel smoothing. We call it the smoothed reassigned
spectrogram, or SRS for short.
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