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Abstract

In this paper we discuss methods to estimate a monotone frequency of species

in a population when the ordering of species is unknown.

The question arises from [5], where the case of known order was taken

into account, and the method is inspired by [2].

We discuss first a regression approach that however only leads to the

trivial solution, and then a likelihood approach that allows some generali-

sations and provides inspiration for future work. We discuss existence and

uniqueness of the solution, and future work might be related to discussing

consistency as well as asymptotic distribution results and if possible to look

for an analytic expression of it.

4





Contents

Introduction 6

1 Statement of the problem 7

2 The regression problem 16

2.1 Regression of the maximum likelihood estimator . . . . . . . . 17

2.2 The multinomial case . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Other weighted regressions . . . . . . . . . . . . . . . . . . . . 23

3 The likelihood problem 27

3.1 The multinomial case . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 The multivariate Gaussian case . . . . . . . . . . . . . . . . . 36

Conclusions 47

Bibliography 49

5





Introduction

In this work we compare estimators for a finite support probability mass

function with unknown labels.

The motivation for this study comes from neutron detection, in particular

from [5]. There the problem is to estimate the energy or, equivalently, the

wavelength distribution q as well as the probability of transmission p of a

neutron beam pointed at a detector. The authors give an explicit solution

for the maximum likelihood estimator (p̂, q̂) of (p, q) and derived strong

consistency and asymptotic distribution of the estimator.

In this work we address the problem of finding a new estimator, based on

the one found in [5], that satisfies a certain order restriction.

This can be done e.g. by writing a suitable cost function based on a

previous estimator and then looking for the estimator that minimises the

cost function. We have used this in a regression approach in Chapter 2.

Another way of addressing the problem is by assuming a certain distri-

bution for a basic estimator and then formulating a maximum likelihood

problem based on the basic estimator. This has been done in Chapter 3.
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Chapter 1

Statement of the problem

The motivation for the problem treated in this paper originates in a large

scale physics research facility, the European Spallation Source (ESS), cur-

rently being built in Lund, Sweden. In this particular research problem one

is interested in estimating the energy or, equivalently, the wavelength dis-

tribution of a neutron beam. The neutron beam consists of a finite number

s of distinct wavelength neutrons. The beam is pointed at a detector which

consists of a finite number k of layers. At each layer an individual neutron

can be absorbed, and therefore be detected, or it can be transmitted to the

subsequent layer.

The neutron beam can be characterised as consisting of individual neu-

trons with different wavelengths

µ = {µα}α∈A,

and the neutrons are distributed in the neutron beam with corresponding

frequencies

q = {qα}α∈A,
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where A is a set such that |A| = s. The values µα are positive whereas the

values qα are positive and adding up to 1. The reason for using the indices

α ∈ A instead of 1, 2, . . . , s is that we will assume that the wavelengths are,

without loss of generality, sorted in decreasing order. We will assume in this

paper that the parameters µ and q are unknown as well as the ordering of

values in the index set A. This is an extension of the inference problem

treated in [5], where the ordering was assumed to be known.

The model for the experiment can be described as follows. The num-

ber of neutrons that arrives at the detector in the time interval [0, t] can be

modelled as a counting process X0(t) with constant intensity λ. The process

X0(t) can be seen as a sum of the individual counting processes Xα
0 (t), for

α = 1, 2, . . . , s, that count the number of neutrons of type α that arrive at

the face of the detector in [0, t].

The detection of neutrons occurs in the following way. When the inci-

dent beam of neutrons hits a particular layer of the detector, each neutron

in the beam can possibly be absorbed, and then detected, or otherwise not

be absorbed. If the neutron is not absorbed it will go through the present

layer and will subsequently arrive at the next layer. The assumptions in this

setting are that, at each layer, absorption or transmission are the only possi-

bilities for the neutron interactions with the layer and, moreover, that at each

layer different neutron particles interact with the layer independently of each

other, i.e. at each layer the absorptions of different neutrons are independent

events. Each neutron type has a different probability of transmission pα and

hence a probability of absorption 1 − pα, for α = 1, 2, . . . , s, that depends on

the wavelength.
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At every layer i the number of neutrons that are detected in the time

interval [0, t] can be written as

Xi(t) =
∑
α∈A

Xα
i (t)

where Xα
i (t) is the number of detected neutrons of type α. The number of

transmitted neutrons at layer i is Yi(t) = Yi−1(t) − Xi(t) for i = 1, 2, . . . , k

and with Y0(t) = X0(t). Both Xi(t) and Yi(t) are non-decreasing counting

processes, obtained by the thinning of the original Poisson process X0(t), so

that Xi(t) and Yi(t) are independent Poisson processes with intensities

∑
α∈A

pi−1
α (1 − pα)qαλ and

∑
α∈A

pi
αqαλ,

respectively, cf. [6], [8]. Moreover the processes Xi(t) for i = 1, 2, . . . , k are

jointly independent.

Therefore the vector (X1
0 (t), X2

0 (t), . . . , Xs
0(t)) of the numbers of neutrons

of each type reaching the detector in the time interval [0, t] is assumed to

follow a multinomial distribution with parameters �q1, q2, . . . , qs�, i.e.

(
X1

0 (t) = x1
0, X2

0 (t) = x2
0, . . . , Xs

0(t) = xs
0 | X0 = x0

)
∈ Multi(x0, q1, q2, . . . qs)

with

x1
0 + x2

0 + · · · + xs
0 = x0,

q1 + q2 + · · · + qs = 1.

Note that in this setting qr = λr/λ where λr is the intensity of the beam of

neutrons of type r and qr is assumed to be independent of t. This model

was first introduced in [5]. However, in [5], the order of the wavelengths is
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assumed to be known and hence the wavelengths are written as

µ1 < µ2 < · · · < µs.

Now, it is a physical property of the neutron beam that the probability of

transmission decreases with the neutron wavelength, cf. [4] for the functional

form of that dependence in the case of a monochromatic neutron beam.

Therefore, the model assumption that the wavelengths are increasing implies

that the thinning parameters can be modelled as a decreasing sequence

1 > p1 > p2 > · · · > ps > 0.

The experiment consists of a finite number n of trials and thus it is

assumed that during a fixed time interval [0, t] and for fixed intensity λ of

an incident beam there are n repeated measurements. Let xij(t) be the total

number of neutrons that have been observed at layer i at the experiment

round j and in the time interval [0, t]. Hence, xij(t) are realisations of Xij(t),

and are therefore Poisson distributed random variables with expectations

∑
α∈A

(1 − pα)pi−1
α qλt,

for i = 1, 2, . . . , k. Moreover, if we let Xj = (X1j.X2j, . . . , Xkj) denote the ex-

periment round j, the vectors X1, X2, . . . , Xn are assumed to be independent.

Finally, given the data, the goal is now to estimate the wavelength dis-

tribution q, as well as the transmission probabilities p, i.e. the wavelength

values. Then, [5] introduced the maximum likelihood estimator of (q, p) as

(q̂n, p̂n) = arg max
(q,p)∈F

ln(q, p),
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where

ln(q, p) =
n∑

j=1

k∑
i=1

(−λtmi + xi,j log(mi) + xi,j log(λt) − log(xi,j!))

is the likelihood, with

mi =
s∑

r=1
(1 − pr)pi−1

r qr

the total expected number of absorbed neutrons at layer i divided by the

intensity λ and the time t and

F =
{

(q, p) ∈ R2s
+ :

s∑
i=1

qi = 1, 1 > p1 > p2 > · · · > ps > 0
}

the parameter space.

The present work is an extension of [5] in the sense that we assume that

the order of the wavelengths is unknown. In particular we assume that the

estimated order in the maximum likelihood estimator q̂n is not necessarily

correct. The dependence of the estimator q̂n on the amount of data n is here

subsumed and will be dropped in the sequel. Another important assumption

that we make in this work is that in the sample, which dimension is n, at least

one occurrence of each species in the population has been measured. This in

particular requires that n > s and implies that the estimated frequency of

every species is non-zero, i.e. q̂i ̸= 0 for all indices i = 1, 2, . . . , s.

The goal in this paper is thus to estimate the frequency vector q under

the assumption that it is a discrete probability density function but exclud-

ing the condition that we know the order.

A similar problem to the one we will treat here was stated in [2], in which

the aim was to estimate the relative frequencies of the species in a population
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when the total number of species is allowed to be infinite and their underlying

order is assumed to be unknown.

The setting in [2] can be illustrated as follows. First, assume we are

given an i.i.d. sample of dimension n drawn from a population of animals

that belong to different species. Individuals from the population are sampled

one at a time and counted according to their species.

Then, the sample is reduced to the count list N = (N1, N2, . . . ), where

Ni is the number of observed individuals belonging to the i-th most frequent

species in the sample. Clearly the number of observed species in the sample

is finite. However, since in [2] the total number of species is allowed to be

infinite, to the list N it is appended an infinite list of zeros.

Finally, since the data are ordered according to the observed numbers and

not according to the real, population-frequency, order provided by nature, it

is assumed that there exists a map from the species as ordered by the sample

frequencies to the species as ordered by population probabilities, i.e.

χ : N −→ A

defined as χ(i) = α if and only if the i-th most frequent species in the sample

is the α-th most frequent species in the population, with the tie-breaking

rule

Ni = Nj =⇒ χ(i) < χ(j).

The map χ is a permutation and an essential feature of it is that it is random

and unobserved.

Denoting the unknown population frequency vector, indexed by the species

labels A and therefore ordered, by θ, the maximum likelihood estimator was
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defined as

θ̂ = arg max
θ∈F

l(θ),

where the likelihood is

l(θ) =
∑

χ

∏
i

θNi

χ(i), (1.1)

and the parameter space

F =
{
θ ∈ R∞

+ : θ1 ≥ θ2 ≥ . . . ,
∑

i

θi = 1
}

.

Note that (1.1) is the sum over the space S of permutations of likelihoods

for fixed orderings. The outer summing, over all permutations, is in order to

allow for all possible ordering of the labels, since in [2], it is assumed that

the correct order is unknown.

However, the solution to this problem in the infinite support case, i.e.

A = +∞, does not always exist. Because of this, one instead considers

the extended model maximum likelihood estimator which, in addition to the

discrete probability part, also includes a continuum probability mass part.

Here, the further assumption is that the discrete part of the distribution,

θ = (θ1, θ2, . . . ), only satisfies �∑i θi ≤ 1, allowing a remaining probability

mass θ0 = 1 −∑
i θi to be positive.

In this model, the deficit θ0 equals the probability, when we observe just

one individual, that it belongs to one of those species which individually each

have zero probability. Each such species can only be observed at most once

in a sample of dimension n. The converse is not true: if an individual is

observed only once in our sample, we do not know whether it belongs to a

zero probability species or to a positive probability species.

Then the extended MLE, or the pattern maximum likelihood estimator
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(PML), is defined in [2] as

θ̂ = arg max
θ∈F

lext(θ),

lext(θ) =
∑

χ

n!
N0!

∏
i≥1 Ni!

θN0
0

∞∏
α=1

θ
Nχ−1(α)
α ,

where

F =
{
θ ∈ R∞

+ : θ1 ≥ θ2 ≥ . . . ,
∑

i

θi ≤ 1
}

.

Here, the number N0 of observations of species assigned to the continuous

distribution is defined as

N0 = n −
∞∑

α=1
Nχ−1(α).

Note however that the function χ used here is not the same as defined above

due to the introduction of the continuum mass part. In particular, here the

mappings χ : N → A satisfy that for every α ≥ 1 there exists exactly one i

such that χ(i) = α, with the tie-breaking rule

Ni = Nj =⇒ χ(i) < χ(j),

and such that

χ(i) = 0 =⇒ Ni ∈ {0, 1}.

Note that since the data ends in a block of 1’s, with N0 of them belonging

to continuum mass species, then

∑
i≥1

Ni = n + N0.

To this problem, [2] provides an existence result and also an algorithm to

estimate the value of θ̂.
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The aim for the present work is hence to try to use the work that has

been done in [2] to give an estimator of the frequency vector for the setting

provided in [5] and described earlier in the case that the underlying order of

the frequencies is assumed to be unknown. It is worth stressing that, even if

this works arises from [5], it can be thought as to be independent of it.

The rest of the paper is organised as follows.

In Chapter 2 we used a regression approach to improve the estimate

provided by a given estimator q̂. First we considered the setting to be as in

[5] but then, since it not suitable for the purposes of this work, we detached

from it. For this reason we had to make assumptions on the distribution

of the components of the estimator q̂ in order to formulate an appropriate

regression problem. Finally we analysed the choice of the weights.

In Chapter 3 we moved from a regression approach to a maximum like-

lihood approach. Again one has to assume a certain distribution for the

components of the estimator q̂ in order to write the likelihood function and

here we focused in particular on the multivariate Gaussian case.
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Chapter 2

The regression problem

The aim of this chapter is to present regression methods for improving the

estimation of an ordered frequency vector for species in a population when

their underlying order is unknown.

Let q be the unknown frequency vector of species. Here it is assumed

that the vector q is sorted with respect to an unknown index order. Further

assume we are given an estimator q̂ of the frequencies, in some order. The

vector q̂ is however not necessarily in the correct order, provided by nature.

The aim is to device a method to improve on the estimator, possibly improv-

ing on the estimation of the order. We will have a least squares regression

approach to find a new estimator q̃ of q, based on the starting estimator q̂.
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2.1 Regression of the maximum likelihood es-

timator

In this section we will use the estimator of q provided by [5] as our preliminary

estimator q̂.

The estimator q̂ = q̂n is obtained as the first component in the solution

of a likelihood problem stated in [5], namely

(q̂n, p̂n) = arg max
(q,p)∈F

ln(q, p),

where the log-likelihood

ln(q, p) =
n∑

j=1

k∑
i=1

(−λtmi + xi,j log(mi) + xi,j log(λt) − log(xi,j!))

only depends on the data as the total amount of neutrons xi,j that are de-

tected at the i-th layer at experiment round j. Therefore the log-likelihood

is independent of the neutrons’ kinds, and therefore also independent of the

order.

Hence an attempt here may be to fix the order according to the estimated

values of q̂, and then to do isotonic regression of q̂ with respect to that order.

This means that one estimates the order first and then estimates the value

of q̂.

However, since this new sorted estimator q̂ is already ordered, there is

no need to further do regression. In fact a similar approach in the context

of estimation of a probability mass function was used in [7], and then called

the monotone rearrangement, cf. also [1] for the corresponding probability

density function estimation problem.
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2.2 The multinomial case

To introduce an alternative to the setting given in [5], one can instead for-

mulate the problem along the lines of [2].

Hence, the setting to the regression problem can be described as follows.

Assume that a certain population, of neutrons or of animals, is composed

of a finite number s of different species and denote by q the vector of rel-

ative frequencies of the different species. Further, assume that the relative

frequencies can be sorted in decreasing order as

q1 ≥ q2 ≥ · · · ≥ qs

where qi denotes the relative frequency of the i-th most frequent species in

nature.

Assume now that an i.i.d. sample of n individuals has been drawn from

the population. Individuals in the sample can be divided according to their

species and therefore the sample can be written as a vector (X1, X2, . . . , Xs),

where Xi denotes the number of times that an individual belonging to the

i-th most frequent species in nature has been observed. This implies that the

data (X1, X2, . . . , Xs) can be written as following a multinomial distribution,

i.e.

(x1, x2, . . . , xs) ∈ Multi(n, q1, q2, . . . , qs).

Now, since the underlying order of the species is assumed to be unknown, the

actual data that one collects is unordered with respect to the order provided

by nature, and can without loss of generality be sorted in any order e.g. in

decreasing order according to the observation, and hence they can be written

as

(n1, n2, . . . , ns) = sort(x1, x2, . . . , xs),
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where the function sort(v) sorts a vector v in decreasing order. Thus ni

denotes the number of times that an individual belonging to the i-th most

frequently observed species has been detected.

A naive estimator of q is provided by

q̂ =
(

n1

n
,
n2

n
, . . . ,

ns

n

)
.

To improve on the naive estimator q̂, we introduce a regression approach.

We define the estimator

q̃ = arg min
q∈F

r(q), (2.1)

where the criterion function is

r(q) =
∑

χ∈Ss

s∑
i=1

1
nqχ(i)

(
1 − qχ(i)

) (ni − nqχ(i)
)2

, (2.2)

and the parameter space

F =
{

q ∈ Rs
+ : q1 ≥ q2 ≥ · · · ≥ qs,

s∑
i=1

qi = 1
}

.

In (2.2), Ss denotes the symmetric group of order s and hence the functions

χ are permutations of the indices. The criterion function r(q) in (2.2) is a

sum over all possible reshuffling of the indices of wighted sums of squares of

differences between observed and expected values, with weights provided by

the variances.

In this setting one can prove an existence and uniqueness result for the

solution of (2.1). The proofs follow by considering the gradient of the criterion

function (2.2). In order to simplify the derivations we rewrite the criterion

function. Note that the permutations χ are bijective functions of {1, 2, . . . , s}
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onto A so that we can write

r(q) =
s∑

i=1

1
nqi (1 − qi)

∑
χ∈Ss

(
nχ−1(i) − nqi

)2
 . (2.3)

Now since for each i, χ runs through all permutations in Ss in the sum

∑
χ∈Ss

(
nχ−1(i) − nqi

)2
,

then each j ∈ {1, 2, . . . , s} is exhibited in the index nχ−1(i), i.e. nχ−1(i) = nj

a number s!/s = (s − 1)! of times, because of symmetry. Thus

r(q) = (s − 1)!
s∑

i=1

1
nqi (1 − qi)

 s∑
j=1

(nj − nqi)2

 . (2.4)

The inner sum in (2.4) can be simplified as

s∑
j=1

(nj − nqi)2 =
s∑

j=1
n2

j − 2nqi

s∑
j=1

nj + sn2q2
i

=
s∑

j=1
n2

j − 2n2qi + sn2q2
i

= n2

 1
n2

s∑
j=1

n2
j − 2qi + sq2

i


=: n2

(
c − 2qi + sq2

i

)
.

Note that the constant c depends on the data (n1, n2, . . . , ns) and therefore

is random. However for fixed setting of the experiment, i.e. for fixed sam-

ple size n and number of species s, c assumes values only in the interval

[1/s, 1]. This holds since the two extremal possibilities for the data are ei-

ther (n/s, n/s, . . . , n/s), leading to c = 1/s, or (n, 0, . . . , 0), leading to c = 1.
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Therefore (2.4) can be written as

r(q) = n(s − 1)!
s∑

i=1

sq2
i − 2qi + c

qi (1 − qi)
, (2.5)

and since constant factors do not affect the location of extreme value one can

instead consider

r̃(q) =
s∑

i=1

sq2
i − 2qi + c

qi (1 − qi)
. (2.6)

Proposition 1 (Existence and uniqueness of the solution). The solu-

tion to (2.1) exists and is unique for every choice of the number of species s

and sample size n.

Proof. In order to prove existence and uniqueness of the solution it is suffi-

cient to show that the criterion function (2.6) admits a unique minimum in

the interval (0, 1)s.

Consider first the case of s = 2 when

r̃(q) =
2∑

i=1

2q2
i − 2qi + c

qi (1 − qi)
.

It can be easily checked that the value qi = 1/2 is the only minimum of the

function 2q2
i − 2qi + c and it is the only maximum of qi (1 − qi). This in

particular implies that the point

(1
2

,
1
2

)

is the only minimum of the criterion function in the interval (0, 1)2.

In the general case s > 2, note first that every function

sq2
i − 2qi + c

qi (1 − qi)
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is such that

lim
qi→0+

sq2
i − 2qi + c

qi (1 − qi)
= lim

qi→1−

sq2
i − 2qi + c

qi (1 − qi)
= +∞.

Then it is sufficient to show that every such function admits one and only

one extreme value in the interval (0, 1).

Thus consider the directional derivative of the regression function in di-

rection qi

∂r

∂qi

= ∂

∂qi

c − 2qi + sq2
i

qi (1 − qi)

= (s − 2)q2
i + 2cqi − c

q2
i (1 − qi)2 ,

which vanishes at

qi =
−c ±

√
c(s − 1)

s − 2
. (2.7)

The solution corresponding to the choice of − in (2.7) is not permissible

since it is negative. However the solution corresponding to the choice of + is

a value in (0, 1). In fact we will establish this by showing that the solution

is positive and that is strictly less than 1 separately.

To show that the solution is in fact positive we note that

−c +
√

c(s − 1) > 0 ⇐⇒
√

c(s − 1) > c.

Since the expressions on both sides of the last inequality are positive, one

can square the expression and then obtains

c2 − c(s − 1) < 0. (2.8)

The function c2 − c(s − 1) is a convex parabola that vanishes at c = 0 and

c = s − 1 implying that the inequality (2.8) holds for every c and hence that
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(2.7) is always positive.

To show that it is strictly less than 1, note that

−c +
√

c(s − 1)
s − 2

< 1 ⇐⇒
√

c(s − 1) < c + s − 2.

Again the expressions on both sides of the last inequality are positive, thus

one can square the expression obtaining

c2 + (s − 3)c + s2 + 4 − 4s > 0. (2.9)

The function c2 + (s − 3)c + s2 + 4 − 4s is a convex parabola and it can be

easily seen that it is strictly positive implying that the inequality (2.9) holds

for every c and hence that (2.7) is always strictly less than 1.

Therefore the function (2.6) has unique minimum in the interval (0, 1)s

and the solution to (2.1) is the projection of it to the space F .

However, since the expression in (2.7) does not depend on i, the estimator

q̃, defined in (2.1), is the trivial on, i.e.

q̃ =
(1

s
,
1
s

, . . . ,
1
s

)

independently of the sample size n.

2.3 Other weighted regressions

Suppose we are given an estimator for the frequency of the species of a

certain population, based on a sample from that population. Assume that

the number of species s is at most finite and, further, assume that it is known.

Assume furthermore that the sample dimension n is large enough for all the
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species to have been detected at least once. Denote the given estimator as

q̂ = (q̂1, q̂2, . . . , q̂s),

where the dependence on the sample size n is here suppressed in the notation.

Let

q = {qα}α∈A

denote the unknown probaility mass function for the different species. The

estimator q̂ is sorted in decreasing order with respect to the observations,

meaning that q̂i represents the estimated frequency of the i-th most frequent

specie in the sample, while q is sorted in decreasing order with respect to the

unknown ordering of the species. The two ordering might not be the same

and hence there exists an unknown map

χ : {1, 2, . . . , s} −→ A

defined as χ(i) = α if and only if the i-th most frequent species in the sample

is the α-th most frequent species in the population, with the tie-breaking

rule that if the estimated frequency of 2 species i, j is the same, i.e. q̂i = q̂j,

then χ(i) < χ(j). The map χ is assumed to be random and not observed.

In this section our aim is to find suitable weights for a regression problem

similar to (2.1). The weighted regression problem can be stated as

q̃ = arg min
q∈F

r(q̂), (2.10)

with

r(q) =
∑

χ∈Ss

s∑
i=1

ω(i, χ)
(
q̂i − qχ(i)

)2
, (2.11)
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and where

F =
{

q ∈ Rs
+ : q1 ≥ q2 ≥ · · · ≥ qs,

s∑
i=1

qi = 1
}

.

Note that in this setting we allow weights to be depend on both the empirical

ordering and the permutations of such order.

We suggest the following weigths

ω(i, χ) = σi(χ(i))
vχ(i)

where vχ(i) is the empirical variance of the χ(i)-th species and σi(χ(i)) is a

distance-based weight, to be specified below. The empirical variance depends

on the underlying probability model that could be e.g. a Poisson distribution

or a multinomial distribution. On the other hand, we introduce the weight

σi(χ(i)) since we would like to give more importance, while estimating the

real value of the frequency of the χ(i)-th specie, to the species that appear

close to it in the empirical ordering. For this reason we have been looking

for weights σi having a bell shape with the peak over the χ(i)-th specie and

decreasing with the distance from it. Moreover, even though it is not stressed

here, the weights depend on the sample size n and in particular we picked σi

such that

σi −→ δi,

as n → +∞, where δi is the Kronecker delta .

We considered 2 different scenarios depending on the weights σi.

The first one comes from setting σi to be a binomial weight, i.e. to be

the probability mass functions of a binomial distribution B(s, i) evaluated at
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the point χ(i).

The second is to set σi to be

σi(χ(i)) =


logs(n)

c(logs(n)+s) for i = χ(i)

1
c(|i−χ(i)| logs(n)+s) for i ̸= χ(i)

where c is a normalising constant.

In both the setting we have introduced in this section, one can prove

an existence and uniqueness result for the solution to (2.10) with a method

analogous to the one used to prove the result in previous section.

However, since neither of the two choices lead to a reshuffling of the

order provided by q̂, we moved to a different problem and did not consider

consistency for this estimator.
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Chapter 3

The likelihood problem

The inference problem defined above will next be stated as a maximum like-

lihood problem. We would here like to emphasise that our suggestion can be

seen as a novel approach to estimating a monotone probability mass func-

tion, when one has no knowledge about the labels.

Let q be the unknown frequency vector of species. It is assumed that the

vector q is sorted with respect to an unknown index order. Again assume we

are given an estimator q̂ of the frequencies which is not necessarily ordered

in the correct species order. The aim is to improve on this estimator, and

possibly to correct the order. For this reason we will make assumptions on

the distributions of the estimator’s components, in order to state an appro-

priate likelihood function for the estimator. Finally the new estimator q̃ is

derived as the maximiser of the likelihood function over the parameter space

F .

Improvements to this method can be done if an asymptotic distribution

result is provided for the estimator q̂.
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3.1 The multinomial case

The setting we consider here is the same as the one described in Section 2.2.

In particular we assume that the partially unobserved data is modelled by

the multinomial distribution, i.e.

(x1, x2, . . . , xs) ∈ Multi(n, q1, q2, . . . , qs).

Since the underlying order is unknown, the actual observed data is

(n1, n2, . . . , ns) = sort(x1, x2, . . . , xs),

thus ni denotes the number of times that an individual belonging to the i-th

most frequently observed species has been detected.

One, naive, estimator of q consists of the relative frequencies of the ob-

served species, sorted by their observed occurencies, i.e.

q̂ =
(

n1

n
,
n2

n
, . . . ,

ns

n

)
.

This is also the maximum likelihood estimator of q, under the assumption

that the observed species order is the correct one.

We introduce a maximum likelihood estimator as

q̃ = arg max
q∈F

L(q), (3.1)

where

L(q) =
∑

χ∈Ss

l(q, χ)

=
∑

χ∈Ss

s∏
i=1

qni

χ(i), (3.2)
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is a sum over all permutations of the likelihoods, and where the parameter

space is

F =
{

q ∈ Rs
+ : q1 ≥ q2 ≥ · · · ≥ qs,

s∑
i=1

qi = 1
}

.

Note that in (3.2) we could actually write the full likelihood by introducing

the multinomial factors (
n

n1 . . . ns

)
,

which, since they are the same for all terms in the sum, can be factored out.

One can immediately note that the function L(q), defined in (3.2), is

continuous over the closed parameter space F implying that the estimator

q̃, defined in (3.1), exists. This proves the following result.

Proposition 2 (Existence of the solution). In the setting described in

this section, the maximum likelihood estimator, defined in (3.1), exists.

Now in order to discuss the uniqueness of the estimator q̃, we make two

claims that we will prove afterwards. First we claim that the likelihood

function L(q) is invariant under permutations of the axis and then we also

claim that every likelihood function l(q, χ) admits a unique maximum.

To prove the symmetry of the function L(q) consider first the function

l(q, χ) for a fixed but arbitrary permutation χ. It is easy to see that

l(q, χ) = l(qχ−1 , id), (3.3)

where

qχ−1 =
(
qχ−1(1), qχ−1(2), . . . , qχ−1(s)

)
,
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and id denotes the identity element in Ss. This can equivalently be stated

as, if χ1 and χ2 are two different permutations, then

l(q, χ1) = l(qχ2◦χ−1
1

, χ2).

Now using (3.3) we see that the we can rewrite L(q) as

L(q) =
∑

χ∈Ss

l(qχ−1 , id)

=
∑

χ∈Ss

l(qχ, id), (3.4)

where the last equality holds since χ−1 is a permutation if and only if χ is.

The expression (3.4) implies that L(q) is invariant under permutation of the

axis, i.e. that

L(q) = L(qχ)

for any permutation χ ∈ Ss.

To instead prove the second claim, without loss of generality we may

consider the function l(q, id), since for every other χ, the likelihood lq, χ) is

obtained from l(q, id) by an appropriate permutation of the axis. Then one

can make use of the condition

s∑
i=1

qi = 1

to replace one of the qi, say qs, in the formulation of l(q, id) thus obtaining

l(q, id) =
s−1∏
i=1

qni
i︸ ︷︷ ︸

f(q)

(
1 −

s−1∑
i=1

qi

)ns

︸ ︷︷ ︸
g(q)

. (3.5)
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where the functions

f, g : G −→ R+

are defined on the set

G =
{

q ∈ Rs−1
+ : q1 ≥ q2 ≥ · · · ≥ qs−1,

s−1∑
i=1

qi ≤ 1
}

.

The functions f and g are non-negative on the set G. Furthermore it is

easy to prove that, with respect to the following partial order defined on G,

sometimes called the matrix order,

x, y ∈ G, x ≤ y iff xi ≤ yi ∀i,

the function f is increasing, whereas the function g is decreasing. Note also

that the function f vanishes on the set Zf defined as

Zf = {q ∈ G : ∃j s.t. qj = 0} ,

whereas the function g vanishes on the set Zg defined as

Zg =
{

q ∈ G :
s−1∑
i=1

qi = 1
}

.

Since

∂G = Zf ∪ Zg

then the function l(q, id) defined in (3.5) vanishes at G’s boundary and since

it is non-negative then it has at least one maximum in G.

To complete the proof of the second claim then one has to prove that

there is exactly one maximum. In order to do so observe that the directional
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derivative of the function l(q, id) in the direction j is

∂

∂qj

l(q, id) = ∂

∂qj

s−1∏
i=1

qni
i

(
1 −

s−1∑
i=1

qi

)
︸ ︷︷ ︸

h(q)

ns

=
s−1∏
i=1
i ̸=j

qni
i · njq

nj−1
j · h(q)ns − f(q) · ns · h(q)ns−1

=
s−1∏
i=1
i ̸=j

qni
i · q

nj−1
j · h(q)ns−1·

︸ ︷︷ ︸
>0

(njh(q) − nsqj) ,

where f(q) is defined in (3.5).

Therefore the directional derivative vanishes if and only if

njh(q) − nsqj = 0

allowing for the condition ∇l(q, id) = 0 to be written as


n1h(q) − nsq1 = 0

n2h(q) − nsq2 = 0
...

ns−1h(q) − nsqs−1 = 0

(3.6)

Now since h(q) = qs, one can rewrite the system of equation (3.6) as


q1 = n1
ns

qs

q2 = n2
ns

qs

...

qs−1 = ns−1
ns

qs
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and, recalling that ∑s
i=1 _i = 1 has to hold, it is easy to see that the maxi-

mum is attained at the point

q =
(

n1

n
,
n2

n
, . . . ,

ns

n

)
.

Motivated by a simulation study, defined below, we would like to claim

that, independently on q̂, the function L(q) has exactly one peak that satis-

fies the order restriction provided by F . Therefore we propose the following

conjecture.

Conjecture 1 (Uniqueness of the solution). In the setting described in

this section, the maximum likelihood estimator, defined in (3.1), exists and

is unique.

The motivation for the last claim about the uniqueness, that we have

not been able to prove, comes from some simulations we did in dimension

s = 3, one of which is illustrated in Figure 3.1 and Figure 3.2. We have

chosen this dimension since it is the biggest in which one can still plot the

likelihood function. However the solution to (3.1) can be estimated also in

bigger dimension and analogous results can be shown as well.

In the following s is assumed to be 3 and q̃ is estimated 4 times on samples

of dimension 15, 30, 100, 150 respectively. The choices for the sample sizes

is to show the different behaviours of the likelihood function depending on

the relation between the peaks location and amplitude.

Figure 3.1 shows the level sets of the likelihood function L(q) together

with the location of the permutations of q whereas Figure 3.2 shows the

likelihood function. Note that in Figure 3.1 a circle has been used to mark
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the real solution while its permutations have been marked with a dot. The

same notation will be used in next figures. We have chosen to plot the results

in barycentric coordinates in order to improve the visualisation of the domain

of the likelihood function that is a subspace of the simplex bounded by the

points (1, 0, 0), (0, 1, 0), (0, 0, 1) in R3.

Figure 3.1: Level sets for the likelihood function

34



Figure 3.2: Likelihood function

From the plots in Figure 3.1 and in Figure 3.2 one can see the behaviour

of the likelihood function depending on the different sample sizes n.

Observing the figures, it is worth stressing that the likelihood function

is symmetric and that it has one peak corresponding to every permutation

of q. However when the sample size is small, then every peak’s amplitude

is big enough for all the peaks to sum up to one peak over the trivial so-

lution. This is what happens for example in the case n = 15, i.e. in the

plot in the top left corner in Figure 3.1 and in Figure 3.2. Then, for bigger

sample sizes, each peak’s amplitude gets smaller and the number of peaks

increases to s, then to s(s − 1) and so on up to s!. Also one can see that for

every sample dimension there is only one peak satisfying the order restriction.
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3.2 The multivariate Gaussian case

Assume in this setting that the components of the estimator q̂ are distributed

as independent Gaussian variables around the actual value of the frequency

and with variance σ2, i.e.

q̂i ∼ N (qi, σ2)

for i = 1, 2, . . . , s. This is however a restrictive assumption and the setting

here can be generalised in different ways. First, one would want to extend

the analysis to the case in which the components of the estimator q̂ are

independent Normal distributed with different variances. Second, it is of

particular interest the case in which the components are not assumed to be

independent. These cases will be discussed more in detail later on.

In the case of independent Normal distributed components with fixed

variance σ2, one can write the likelihood as

L(q) =
∑

χ∈Ss

l(q, χ)

=
∑

χ∈Ss

s∏
i=1

1√
2πσ2/n

exp
(

−
n(q̂i − qχ(i))2

2σ2

)

=
∑

χ∈Ss

1√
2πσ2/n

exp
(

−
s∑

i=1

n(q̂i − qχ(i))2

2σ2

)
. (3.7)

The maximum-likelihood estimator is then defined as

q̃ = arg max
q∈F

L(q), (3.8)

where F is the parameter space

F =
{

q ∈ Rs
+ : q1 ≥ q2 ≥ · · · ≥ qs,

s∑
i=1

qi = 1
}

.
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Since the function L(q) is continuous and F is a closed set, the estimator

q̃, defined in (3.8), exists. Thus the following result holds.

Proposition 3 (Existence of the solution). In the setting described in

this section, the maximum likelihood estimator, defined in (3.8), exists.

Now with a reasoning analogous to the one shown in Section 3.1, one can

show that

L(q) =
∑

χ∈Ss

l(qχ−1 , id)

=
∑

χ∈Ss

l(qχ, id), (3.9)

implying that L(q) is invariant under permutation of the axis, i.e. that

L(q) = L(qχ)

for any permutation χ ∈ Ss.

Further, in this setting it is cleat that each l(qχ, id), being Gaussian,

admits exactly one maximum that is attained at qχ. We would like to claim

that the function L(q) has exactly one maximum that satisfies the order

restriction provided by F allowing to state the following conjecture.

Conjecture 2 (Uniqueness of the solution). In the setting described in

this section, the maximum likelihood estimator, defined in (3.8), exists and

is unique.
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We illustrate the behaviour of the estimator in Figure 3.3 and in Figure

3.4. Again, to show the behaviour of the likelihood function L(q) with plots,

s needs to be no bigger than 3.

In the following s is assumed to be 3, σ2 to be 5 and q̃ is estimated 4 times

on samples of dimension 100, 350, 1500, 2000 respectively. The sample sizes

are chosen in order to show the different behaviours of the likelihood function

depending on the relation between the standard deviation and the distances

among the peaks. Figure 3.3 shows the level sets of the likelihood function

L(q) together with the location of the permutations of q whereas Figure

3.4 shows the likelihood function. Both figures are plotted in barycentric

coordinates for the 4 different choices of the sample size. For every plot the

correspondent standard deviation is indicated.

Figure 3.3: Level sets for the likelihood function
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Figure 3.4: Likelihood function

From the plots in Figure 3.3 and in Figure 3.4 one can see that the

behaviour of the likelihood function reflects what has been stated above.

It would be of great interest to study the sample dimensions correspon-

dent to each peak’s split but this has not been done here.

We will now generalise the assumptions on the starting estimator.

First, one can assume that the components of the estimator q̂ are dis-

tributed as independent Gaussian variables around the actual value of the

frequency and with variance σ2
i , i.e.

q̂i ∼ N (qi, σ2
i ),

fori = 1, 2, . . . , s. Under this assumption we can define a maximum-likelihood
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estimator by

q̃ = arg max
q∈F

L(q), (3.10)

where

L(q) =
∑

χ∈Ss

l(q, χ)

=
∑

χ∈Ss

s∏
i=1

1√
2πσ2

i /n
exp

(
−

n(q̂i − qχ(i))2

2σ2
i

)
. (3.11)

Existence of the maximum-likelihood estimator follows by the continuity of

L(q), and since the parameter space is closed.

Proposition 4 (Existence of the solution). In the setting described in

this section, the maximum likelihood estimator, defined in (3.10), exists.

Here we conjecture that the likelihood function L(q), defined in (3.11),

admits unique maximum satisfying the order restriction provided by F .

Conjecture 3 (Uniqueness of the solution). In the setting described in

this section, the maximum likelihood estimator, defined in (3.10), exists and

is unique.

The motivation for the claim of uniqueness of the maximum likelihood

estimator comes from simulations in dimension s = 3, one of which is illus-

trated in Figure 3.5 and Figure 3.6.

In the following s is assumed to be 3, σ2 to be (5, 0.1, 1) and q̃ is

estimated 4 times on samples of dimension 30, 100, 200, 500 respectively.
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The choices for the sample sizes is to show the different behaviours of the

likelihood function depending on the relation between the peaks location and

amplitude.

Figure 3.5 shows the level sets of the likelihood function L(q) together

with the location of the permutations of q whereas Figure 3.6 shows the

likelihood function. Both figures are plotted in barycentric coordinates for

the 4 different choices of the sample size.

Figure 3.5: Level sets for the likelihood function
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Figure 3.6: Likelihood function

From the plots in Figure 3.5 and Figure 3.6 it can be seen that the

behaviour of the likelihood function is different from the previous setting in

the sense that the peaks do not split together. It is also worth stressing that

the orientation of the ellipses in Figure 3.2 depends on the ratio between the

variances σ2
i . In this case, being σ2

1 bigger than the major axis of all ellipses

is oriented along the q1 direction. We have picked instead the variance vector

to be (0.1, 5, 1) and all the other parameters to be same and illustrated the

results in Figure 3.7.
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Figure 3.7: Level sets for the likelihood function

In Figure 3.7 one does not the dependence on the variance σ2
3 since the

third variable is implicitly defined by the other 2 due to the conditions pro-

vided by the parameter space F . For this reason, in both the preceding cases

σ2
3 has been taken to be 1.

The final generalisation is to the case in which an asymptotic distribution

result is given for the starting estimator. In our setting this can be for

example the result provided in Theorem in [5], namely

Theorem 1. (Anevski, Pastukhov [3.4]) The mle (q̂n, p̂n) is strongly con-

sistent

(q̂n, p̂n) a.s.−−−−→
n→+∞

(q, p)
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and asymptotically normal

√
n ((q̂n, p̂n)(q, p)) d−−−−→

n→+∞
N (0, Σ2),

as n → +∞ where

Σ2 = [∂ψ(u)]1:2s,2:2s × Σ2
A × [∂ψ(u)]T1:2s,2:2s

and the notation [·]1:2s,2:2s is used to denote a matrix without the first column.

Using the asymptotic distribution for q̂, we can state an (asymptotically

valid) likelihood for the problem that we treat, namely

l(q) =
∑

χ∈Ss

1√
(2π)s|Σ|2

exp
(

−1
2

(q̂ − qχ)Σ−2(q̂ − qχ)T
)

,

and introduce the maximum-likelihood estimator

q̃ = arg max
q∈F

l(q). (3.12)

As in the previous setting, existence of the solution follows with a similar

proof. We are not able to prove uniqueness and therefore state a conjecture.

Conjecture 4 (Existence and uniqueness of the solution). In the set-

ting described in this section, the maximum likelihood estimator, defined in

(3.12), exists and is unique.

The motivation for the claim of uniqueness of the maximum likelihood

estimator comes from simulations in dimension s = 3, one of which is illus-

trated in Figure 3.8 and Figure 3.9.
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In the following s is assumed to be 3, the covariance matrix to be

Σ2 =


5 −1 0.1

−1 1 0.4

0.1 0.4 1


and q̃ is estimated 4 times on samples of dimension 30, 100, 200, 500 respec-

tively. The choices for the sample sizes is to show the different behaviours of

the likelihood function depending on the relation between the peaks location

and amplitude.

Figure 3.8 shows the level sets of the likelihood function L(q) together

with the location of the permutations of q whereas Figure 3.9 shows the

likelihood function. Both figures are plotted in barycentric coordinates for

the 4 different choices of the sample size.

Figure 3.8: Level sets for the likelihood function
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Figure 3.9: Likelihood function

From the plots in Figure 3.8 and Figure 3.9 it can be seen that now the

function is completely not symmetric because of the correlation structure.
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Conclusions

The goal of this thesis has been to improve on some previous results on the

estimation of the wavelength distribution, and in particular if possible to

correct for errors in the order. A further goal, and we would like to argue

more important, has been to study estimators of a monotone probability

mass function when the labels are unknown, from a general perspective.

Concerning the first goal, we have not been able to solve the rearrange-

ment problem as we wanted to. This is because the statement of the problem

as either a regression or a likelihood one on the parameter space

F =
{

q ∈ Rs
+ : q1 ≥ q2 ≥ · · · ≥ qs,

s∑
i=1

qi = 1
}

does not give raise to any reshuffling of the indices. In fact the original paper

in [1] on the monotone probability mass function estimation for unknown

labels was not concerned with rearranging the order but rather with providing

an estimate of the distribution for unseen species.

Further work related to this might be done either relaxing the order

restriction

q1 ≥ q2 ≥ · · · ≥ qs

and introducing appropriate weights or considering an analogous problem on

the permutations’ space S.
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It is worth stressing that the present work allows for several extensions

and future research.

It would also be interesting to revisit the missing species problem that

was treated in [1]. It can be first considered the case in which only one

species is missing and an estimator of q can be found. This can be later

extended to the case in which a known finite number of species are missing

in the sample and finally to the case in which an unknown finite number of

species is missing.

Concerning the likelihood problem that has been dealt in Section 3.2, one

can improve the results that have been presented here by studying consis-

tency and asymptotic distribution of the estimator provided by (3.12). It

would also be of great interest to look for an analytic expression or a charac-

terisation of (3.12). To do so one can start by considering the i.i.d. setting

as in (3.8) and then move to a more general setting.

Further, as it has been stated earlier one can also consider the issue of

finding the sample dimensions corresponding to each time a peak of the

likelihood function splits in the different settings that have been presented in

Chapter 3. Most likely, however, a good result for this can be achieved only

with numerical methods.

Related to this, one can also consider the problem of finding the least

sample dimension nϵ required to have a fixed accuracy ϵ in the frequency

estimation.

Lastly, simulations of the problem in (3.12) can be improved by writing

an algorithm that considers the dependence of both the estimator q̂ and of

the covariance matrix Σ2 on the sample dimension n.
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