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Abstract

We present a generalisation of the flavour-ordering method applied to the chiral nonlinear
sigma model with any number of flavours. We use an extended Lagrangian with terms
containing any number of derivatives, organised in a power-counting hierarchy. The method
allows diagrammatic computations at tree-level with any number of legs at any order in
the power-counting. Using an automated implementation of the method, we calculate
amplitudes ranging from 12 legs at leading order, O(p?), to 6 legs at next-to-next-to-next-
to-leading order, O(p®).
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Popularvetenskaplig beskrivning

Virlden som vi kdnner den halls samman av fyra grundliggande krafter. Gravitations-
kraften drar oss mot jorden och haller ssmman planeter, stjarnor och galaxer. Den elektro-
magnetiska kraften styr i princip allt annat vi upplever i var vardag. Den starka kiarnkraften
haller samman protoner och neutroner i atomkérnor och binder de kvarkar som i sin tur
bygger upp dessa partiklar, och den svaga kdrnkraften styr radioaktivt sonderfall.

Alla dessa krafter ar var for sig val forstadda av vetenskapen, fast bland karnkrafterna
och elektromagnetismen, som forenas av den sa kallade Standardmodellen, #r den starka
karnkraften nagot av ett sorgebarn. Vid extremt hoga energier, som nér partikelfysiker
splittrar materiens allra minsta bestandsdelar i enorma acceleratorer, slapper den starka
kéarnkraften sitt grepp, och de kvarkar och gluoner som den binder kan studeras. Men
sa fort de enorma energierna avtar, blir den starka karnkraften starkare och binder sina
partiklar sa hart att fria kvarkar och gluoner aldrig kan observeras direkt. Tank pa det —
med ett skutt overvinner du for en sekund hela jordens gravitation, och med en ballong
mot haret sliter du lédtt loss miljardtals elektroner mot elekromagnetismens protester, men
ingenting vetenskapen har att uppbringa kan skilja kvarkar at nér den starka karnkraften
binder dem.

Den starka kérnkraftens styrka gor det svart att studera partiklar som halls samman av
den. Innehallet i en atom &r en férhallandevis enkel struktur déar elektroner och en kérna
binds av den elektromagnetiska kraften, men innehallet i en proton &r en ooverskadlig
soppa av kvarkar och gluoner, déir dven partikelfysikens mest avancerade verktyg maste
anstranga sig for att dra ens de enklaste slutsatser.

Denna soppas ogenomtranglighet kan dock anvéndas till var fordel. Den starka kérn-
kraften knyter sina partiklar sa hart att de, om en inte graver runt for mycket, kan uppfattas
som fundamentala punktpartiklar snarare &n de invecklade klumpar de egentligen &r. Med
denna uppfattning gar det att ta fram modeller som beskriver dessa punktpartiklar pa sam-
ma sétt som Standardmodellen beskriver de verkliga elementarpartiklarna. Den enklaste
av dessa modeller &r den ickelinjéra sigmamodellen (engelska: nonlinear sigma model), som
ar vart arbetes fokus. All komplexitet i partiklarnas inre kokas ner till en uppséattning tal,
som kan méatas och sedan stoppas in i modellen for att forutsdga partiklarnas beteende.

Den ickelinjéra sigmamodellen &r vélstuderad, men oftast handskas forskarna bara med
de enklaste och viktigaste bitarna av den. Den kompletta modellen innehaller en oéndlig
lista med allt mer komplicerade, men ocksa allt mer oviktiga, bitar. Vi utvecklar diverse
berdkningsmetoder sa att vi kan inkludera nagra fler av dessa bitar, vilket gor modellens
forutsiagelser mer exakta.

Det vi gor ar viktigt av flera skél, for partiklar sammansatta genom den starka kérn-
kraften spelar en avgorande roll i vetenskapen och universum. Skurar av dessa partiklar
bér fingeravtrycket fran de nya processer, som sker i en partikelaccelerators hjérta, fram till
vara detektorer. Néstan all materia vi kédnner till & uppbyggd av protoner och neutroner,
och andra partiklar (sa kallade mesoner) fungerar som den starka kérnkraftens budbérare
i atomkérnors inre. Allt detta gor forstaelsen av den starka kérnkraftens bundna partiklar
en avgorande pusselbit i ménsklighetens jakt pa kunskap.
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Popular science description

The world as we know it is held together by four fundamental forces. The force of gravity
pulls us to the Earth and holds planets, stars and galaxies together. The electromagnetic
force governs essentially all other things we experience in our daily lives. The strong nuclear
force holds protons and neutrons together in atomic nuclei and bind the quarks that in
turn make up these particles, and the weak nuclear force governs radioactive decay.

All these forces are separately well understood by science, but among the nuclear forces
and electromagnetism, which are united by the so-called Standard Model, the strong nuc-
lear force is a bit troublesome. At extremely high energies, like when particle physicists
shatter the minutest constituents of matter in enormous accelerators, the strong nuclear
force loosens its grip, and the quarks and gluons it binds can be studied. But as soon as the
enormous energies fade, the strong nuclear force grows even stronger and binds its particles
so hard that free quarks and gluons can never be observed directly. Just think of that —
with a jump, you defeat the gravity of the entire Earth for a second, and with a baloon to
your hair, you easily rip off billions of electrons against the protests of electromagnetism,
but nothing science has to offer can ever separate quarks against the pull of the strong
nuclear force.

The strength of the strong nuclear force makes it difficult to study particles built
through it. The contents of an atom is a comparatively simple structure where electrons
and a nucleus are bound by the electromagnetic force, but the contents of a proton is
an intractable soup of quarks and gluons, where even the most advanced tools of particle
physics must struggle to come to even the simplest of conclusions.

The opacity of this soup can be used to our advantage, though. The strong nuclear
force ties its particles so hard that they, as long as one does not dig around too much,
can be seen as fundamental point particles rather than the intricate lumps they actually
are. With this view, one can produce models that describe these point particles the same
way that the Standard Model describes the true elementary particles. The simplest such
theory is the nonlinear sigma model, which is the focus of our work. All the complexity
in the interior of the particles is boiled down to a set of numbers, which can be measured
and plugged into the model to predict the behaviour of the particles.

The nonlinear sigma model is well studied, but scientists usually only handle the
simplest and most important pieces of it. The complete model contains an infinite sequence
of more and more complicated, but also less and less important, pieces. We develop some
calculation methods that allow us to include some more of these pieces, which makes the
predictions of the model more precise.

What we do is important for several readons, as particles built with the strong force play
a crucial role in science and the Universe. Showers of these particles carry to our detectors
the fingerprint of the new processes that take place in the heart of a particle accelerator.
Almost all matter we know of is made from protons and neutrons, and other particles
(so-called mesons) serve as the messengers of the strong nuclear force in the interiors of
atomic nuclei. All of this makes the understanding of the bound particles of the strong
nuclear force a decisive piece in the puzzle of humanity’s search for knowledge.
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1 Introduction

Quantum chromodynamics (QCD) is currently understood to be the complete theory de-
scribing the strong interactions of quarks and gluons within the framework of the the
Standard Model (SM) of particle physics. However, the path from the elegance of its Lag-
rangian to the phenomena it generates is not at all clear. Due to the running of the QCD
coupling, the perturbative treatment that allows predictions from other parts of the SM
breaks down in the low-energy limit. Instead, quark confinement arises, and the interiors
of composite strongly interacting particles (mesons, baryons, and more exotic hadrons)
become intractable soups of quarks and gluons. Even deducing the mass of the such a
familiar particle as the proton from its constituents remains difficult.

There are several approaches to tackling low-energy QCD. One is lattice QCD, where
the continuity of spacetime is sacrificed for the ability to perform direct simulations. An-
other is to use effective field theories (EFTs), that in general model the degrees of freedom
that emerge from an underlying theory in some limit. In the context of QCD, the quark
and gluon degrees of freedom disappear in the low-energy limit and give way to mesons
and baryons. With no direct reference to their interior, these particles can be modeled
perturbatively under a well-chosen EFT. In this work, we follow the EFT approach.

In 1960, Gell-Mann and Lévy [1] proposed a number of models for mesons and nucleons.
Two of these, the linear and nonlinear sigma models, were extended to highly general
quantum field theories that now serve in many different fields (see [2] for an example
in quantum spin systems). The nonlinear sigma model (NLSM) was also found to be a
decent theory of meson interactions, and was extended by Weinberg [3] and by Gasser and
Leutwyler [4, 5] into chiral perturbation theory (xPT), an EFT of low-energy QCD that
is widely used today.

The main focus of this thesis is not yPT but rather its backbone, the NLSM, which
models light mesons as massless pseudoscalar bosons. Its Lagrangian contains an infinite
number of interaction terms organised in a power-counting hierarchy!, so the calculation
of scattering amplitudes beyond the simplest cases is a daunting task. So far, tree-level
scattering has been calculated for up to 10 particles at the leading order in the power
counting [6], and 4-point scattering [7] and pion decays [8] in yPT have been calculated
to high orders. No NLSM results beyond this were known when we started, but near the
completion of our work, the 6-point tree-level amplitude at next-to-leading order in the
power counting was published [9].

We aim to expand both the number of particles and the power-conting order for which
tree-level NLSM amplitudes are known. Both [6] and [9] reached their results using vari-
ous recursion relations, in which amplitudes are constructed recursively from simpler amp-
litudes. We will take the somewhat more direct approach of flavour-ordering, which sim-
plifies diagrammatic computations by reducing the vast number of terms to a subset that
carries all essential information. This method was introduced in [6] and will be generalised

1“The NLSM” often refers to the leading-order term in the power counting, while we use the term to
refer to the generalised form including higher-order terms. See section 2 for more details.



by us. It is analogous to the colour-ordering methods in perturbative QCD, which were
introduced by Berends and Giele [10]; see [11] and particularly [12] for an approach that
is very similar to ours.

1.1 The structure of this thesis

In section 2, we give an introduction to the NLSM and some related models. We aim for
a gradual buildup in line with contemporary introductions such as [13]. We then state the
four lowest power-counting orders of its Lagrangian, the highest of which was only recently
determined [14], and present it in a new, compact notation.

In section 3, we describe the powerful method of flavour-ordering and generalise it to
handle the higher-order Lagrangians. Rather than directly stating the result, the section
is laid out as a gradual development roughly modeled on how we progressed in this work.
It is our hope that this helps with understanding the reasoning behind the method, since
flavour-ordering forms the core result of this thesis.

In section 4, we present some additional technology mainly related to the kinematic
structure of NLSM amplitudes, with an eye to more general EFTs. Much of this is merely
introduced for completeness, but some is generalised to apply to higher-order amplitudes.

In section 5, we introduce the algorithms used for automating the calculation of amp-
litudes using flavour-ordering, and in section 6, we give a tour of some of the more man-
ageable amplitudes produced this way.

Lastly, we introduce some possible ways to extend flavour-ordering to NLSM loop
diagrams and yPT in section 7, and summarise the work in section 8.

2 The NLSM and its Lagrangian

2.1 Some Lie algebra

In this and the following sections, we will make heavy use of the Lie algebra of SU(Ny) or
U(Ny). The main definitions are given here; a more thorough summary and the derivation
of the relevant identities are given in appendix A.

The Lie algebra is given in terms of its generators t*. For SU(Ny), they are a set of
Nf2 — 1 hermitian and traceless Ny x Ny matrices, with a starting at 1. For U(Ny), the
generators also include the non-traceless generator t° oc 1, where 1 is the unit matrix.
The index a is referred to in this context as a flavour index, since it is closely tied to the
flavours of the particles involved in the model.

The generators form a basis for the space of (traceless) hermitian matrices, and obey

the trace orthogonality relation
(t*t") = 76, (2.1)

where (- - ) denotes a trace, and 7 is a normalisation that is left unspecified to conform to



the conventions of various authors. They also obey the (anti)commutator relations

[t %] = inftere,  {t ) = 2T 5 4 kd™te, (2.2)
Ny
where x is another normalisation, and f®¢ and d*¢ are some real numbers called the
structure constants of the algebra. f%¢ is totally antisymmetric in its indices, and d®*
is totally symmetric. Here and in all other places, the Einstein summation convention is
used, with no distinction between upper and lower flavour indices.

2.2 A toy example: the linear sigma model
and its low-energy limit

Rather than directly presenting the NLSM, it is useful to first gain some intuition about
its origin by considering its simpler cousin, the linear sigma model (LSM), as was done
historically [1]. This section closely follows the approach taken by [13].

Let us construct a toy Lagrangian containing a vector of four real (pseudo)scalar fields,
® = (0,7), where a runs from 1 to 3. The ¢*-style Lagrangian is

L= %aﬂqﬂaw — % (®Td —v?)”, (2.3)

and is invariant under SO(4) rotations of ®. With v? < 0, the theory would contain four
degenerate fields of squared mass —\v?, but if v? > 0, the potential assumes a “Mexican
hat” shape, with minima at all field configurations with ®7® = v2. We adopt the vacuum
where (0|c|0) = v and (0|7*|0) = 0, and make the field redefinition o — & + v, so that all
four fields (6, 7%) again have zero vacuum expectation value. After this redefinition, the
Lagrangian has the form

1 A
L= (0,606 + 0, w0 n" — 2\*6°] — A6 (6% 4 n7®) — 1(62 + 77, (2.4)

which endows the redefined 6 with a squared mass 2\v?, but leaves 7% massless. The
vacuum choice has broken the SO(4) symmetry and leaves only SO(3) symmetry among
7 & is left as a singlet. In light of the Nambu-Goldstone theorem, we interpret 7% as
the Nambu-Goldstone fields corresponding to the dim[SO(4)] — dim[SO(3)] = 3 broken
generators of the symmetry. Here, a serves as our first practical example of a flavour index
that distinguishes the elements of a multiplet of otherwise identical fields.

This Lagrangian can be recast in a more illuminating form, bringing us closer to the

NLSM. We rearrange the four fields into a 2 x 2 matrix like
9
Y=o0l+ —Zt“ﬂ“, (2.5)
T

where t* are the generators of SU(2), e.g. the Pauli matrices; as stated in appendix A,
{1,t*} is a basis for all 2 x 2 matrices. In terms of this field, (2.3) becomes

£=1(0,510"%) - 2 ((2'5) — 7). (2.6)

3



Due to the appearance of the trace, £ is explicitly invariant under a global symmetry
SU(2)g x SU(2)r, which can be defined to act as

> L gr2gl, 9= (gr g1) € SUQ2)r x SU(2)y. (2.7)

However, the vacuum expectation value (0|X]|0) = v1 is only conserved by the subgroup
where gr = gr. Therefore, the spontaneous symmetry breaking appears again, this time
in the form SU(2)z x SU(2);, — SU(2)y .2

The reformulation in terms of ¥ mixed the massive and massless fields. We can separate
them again by rewriting > in the polar form

4a da

¢>:@+ﬂﬂ@a (2.8)

2:[v+5]exp(

where (S,¢%) is a new set of scalar fields defined in terms of (6,7%). For consistency,
S must be invariant under SU(2)g x SU(2)., while the composite field U(¢) inherits
the transformation properties of . This, in turn, means that the fields ¢* transform
nonlinearly. With this field redefinition, the Lagrangian becomes

2 2 1 M?2 M2
L= UZ (1 + %) <8MUT8“U> + 3 (8,“98“5 — M2SQ) — %53 — @34, (2.9)
where M? = 2 \v?. This confirms that the ¢ fields are the massless Nambu-Goldstone
bosons of the symmetry breaking, and the polar form (2.8) supports the interpretation that
@ represent rotations within the minimum of the potential, while S represents massive
excitations out of the minimum.

When M is much larger than the momentum scale p of a process, S can be integrated
out from the Lagrangian, in line with the central idea of EFTs. Doing so leaves an effective

Lagrangian for the Nambu-Goldstone bosons with the very simple form
02
Leg = Z<aﬂUTaﬂU>. (2.10)

We have now transitioned from the LSM to our first example of the NLSM: the massive
field has been fully untangled from the massless ones, at the cost of replacing our original
fields 7® with the nonlinear U(¢).

The interactions between ¢ (contained in U) and S in (2.9) give rise to corrections to
this effective Lagrangian. The leading correction is conceptually given by the S-mediated
scattering

¢ ¢ ¢ ¢

S pLM
> ....... < BN >.< | (2.11)
¢ ¢ ¢ ¢

2The existence of two equivalent symmetry breakings is no surprise, since the Lie algebra of SO(4) is
homeomorphic to that of SU(2) x SU(2), and the Lie algebra of SO(3) is homeomorphic to that of SU(2).

4



where the two ¢¢S vertex factors and the propagator, which reduces to ~ 1/M? at the
small momentum scale p, are condensed into a single vertex in the EFT. Doing this for all
possible diagrams gives rise to a series of corrections of the form

1}2

v? 2 '
Log = {UV) + 5 (0U19"U)" + O (W) : (2.12)

where the leading correction is suppressed by a factor of p?/M? < 1 compared to the first
term. Such a series of derivative-coupled interaction terms is typical of an EFT.

2.3 The general NLSM

In the previous section, the effective Lagrangian (2.10) and its extension (2.12) were derived
from a Lagrangian containing the additional massive field o, recast as .S, and then sending
the mass of that field to infinity. A similar but more general model can be derived in a
theory-agnostic fashion, using only the symmetry breaking and not the explicit form of the
underlying fields. We still follow [13] closely.

Consider some general global symmetry breaking G — H, of which the scenario
SU(2)gr x SU(2), — SU(2)y above was a special case. Here, G can be any simple com-
pact Lie group with H as a subgroup. By the Nambu-Goldstone theorem, this gen-
erates Nxgg = dim(G) — dim(H) Nambu-Goldstone bosons ¢,, which we arrange as
¢ = (¢1,...,PNyes)- They will not be invariant under G, but instead transform in some
non-trivial way as

¢ - Gy(9), (2.13)

where g € G. To respect the group structure of G, the mapping G must satisfy G,, (G,,(¢)) =
Gg19.(0) and G.(¢) = ¢, where e is the identity element of G. Furthermore, each field con-
figuration ¢ should be possible to obtain from the vacuum ¢y with some g € G like

¢ =Gy(¢0) = Ggnlo),  heH. (2.14)

The second equality holds for any h € H since H is defined to preserve the vacuum. Thus,
the above defines a mapping from the coset gH = {gh | h € H} to the field configuration
¢.2 This mapping is invertible, since if two cosets g H, goH map to the same ¢, then

Go(00) = Gg(0) = ggflgg(%) =Gld) = g'lgpeH = gegH (215)

Thus, go = g1h' for some b’ € H. But since h’h € H for any h € H, this proves that
g1H = goH. Therefore, each field configuration ¢ corresponds to a unique coset, and may
be replaced by a representative £(¢) taken from that coset. The representatives transform
by group element composition, but if £(¢) is a representative of g; H, then g2£(¢) is not
necessarily the representative that was chosen from g,g; H to represent Gy, (¢). Therefore,

3Recall that gH = {gh | h € H} is the definition of a (left) coset, and that the space of all such cosets
gH for g € G is denoted G/H.



we must apply a compensating transformation h(£ (9), gg) € H to recover our chosen
representative. This endows ¢ with the transformation property

£(0) L5 ge(9)h(£(0),9)" = (G, (). (2.16)

This coset representation forms a convenient basis for further developments.

Let us now restrict ourselves to a highly useful special case, namely when G is the chiral
symmetry group SU(Ng)r x SU(Ny)L. Among other things, this group (with Ny being
the number of quark flavours) is a global symmetry of the massless QCD Lagrangian,

Yoo am, (2.17)

Lqcp = 1qy*Duqr + 1qry* Dypqr — 1 Gl

where the left- and right-handed quark Ng-plets transform as

qr RN qgrqr, qRr 5 9RAR, g = (QL,QR) G (2-18)

and the gluon fields contained in D), and G, are invariant under G. This symmetry is not
conserved in the hadronic spectrum generated in low-energy QCD, but is instead broken to
H = SU(Ny)y. This symmetry breaking generates dim(G) — dim(H) = N7 — 1 Nambu-
Goldstone bosons, which may be identified with the pion triplet (for Ny = 2) or the light
meson octet (for Ny = 3). This identification is supported by the introduction of masses
in section 7.2.

In reality, these mesons are light but not massless, and many are electrically charged,
so the identification with massless Nambu-Goldstone bosons that only interact strongly
can only serve as a first approximation. In section 7.1, we will briefly cover the extensions
that reintroduce masses, electroweak couplings, and other interactions beyond those that
can be derived from (2.17), turning the NLSM into chiral perturbation theory (xPT). Still,
the NLSM serves as the backbone of its more complete counterpart. Therefore, we shall
continue to develop it as the main focus of this thesis without dwelling on its limitations.

2.4 The chiral NLSM Lagrangian

As we saw in the preceding section, the Nambu-Goldstone fields of the chiral NLSM*
can be expressed in terms of coset representatives, which we split to represent the chiral
structure: £(¢) = (£4(¢),Er(9)) € [SU(Ny)r x SU(Ny)g]/SU(Nys)y. In line with (2.16),
they gain the transformation properties

E(0) 2 grér (DT (€(9).9),  €r(0) 2 grér(d)h (£(9), 9). (2.19)

The compensating tranformation h(ﬁ (¢), g) is the same in both cases, since H is invariant
under a parity tranformation that interchanges L and R.

4That is, the NLSM for the chiral symmetry group G = SU(Ny) x SU(Ny)g. From now on, we will
mostly focus on the chiral NLSM, and therefore drop the qualifier and simply call it “the NLSM”.



Without loss of generality, we may choose {g(¢) = ££(q§) = u(¢). A highly convenient
parametrisation of u in terms of ¢ is

() (2.20)

u(¢) = exp (Z@(d))) 7 _ 1o

FV2 VT

with the flavour index with a running from 1 to NJ% — 1. Here, t* are the generators of
SU(Ny), F is an overall scale, and the factor of V/2 is conventional. The above expression
for u(¢) is only one of many possible ways to parametrise the field; for a discussion on
alternative parametrisations, see section 4.1.

We now desire to determine the most general Lagrangian consistent with the chiral
symmetry. However, u still transforms with the nontrivial h(u(gb), g). An object with
simpler transformation properties is

ivV2®d
F

U =u? = exp ( ) , UL gRng, (2.21)

(we drop the explicit dependence on ¢ from now on) which generalises the U we defined in
(2.8). This field serves as a good building block for the Lagrangian, since <(91 UtO,U - - - >
will be invariant under chiral transformations as long as ©; are operators such that QU
transform the same way as U"). For the NLSM, the simplest examples are 1 and Oy

The construction of the Lagrangian is not entirely unconstrained. Lorentz invariance
dictates that the number of derivatives must be even, and parity requires the number of
U’s to be even as well. Thanks to the unitarity of U, we only need to consider Lagrangian
terms with purely derivative couplings, since we can use the identity

0=0,U'U)=0,UU+U'0,U (2.22)

to move all derivative-less U’s together so that UTU = 1 can be used to eliminate them.
With higher derivatives present, derivatives of (2.22) supply the necessary identities.

Instead of building the Lagrangian from U,UT and their derivatives, we will employ
an alternative basis introduced in [15] and used in e.g. [14]. It is less straightforward in
its definition, but is more readable and, most importantly, generalises more readily to full
xPT; see section 7.1. The basis replaces U with the building block

Uy =1 (ufaﬂu — u@MuT) , Uy AN h(u,g)uuh(u,g)f, (2.23)

which includes the obligatory first derivative. Higher derivatives are applied through the
covariant derivative

1
V,X=0,X+[,,X], T,= 3 (u'9,u + ud,ul), (2.24)

which again is defined to make generalisation to xPT easier. It has the properties that
VX transforms the same way as X, and that

V,u, —Vyu, =0 (2.25)
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just as for plain second derivatives.
When no higher derivatives are present, it is easy to convert between the building
blocks. Firstly, unitarity and (2.22) gives

0,U'0,U = —(U'0,U)(U'0,U), (2.26)
and furthermore, using (2.22) and (2.23),
U'0,U = u'u'd,uu — d,u'u = —iu'u,u. (2.27)

This makes U'9,U wholly interchangeable with —iu, as long as a trace is present to
eliminate the excess u’s and uf’s. When higher derivatives are included, the translation is
not as directly obvious, and we will keep to the u, basis alone.

2.4.1 The lowest-order Lagrangian terms

With the above definitions, the simplest valid term in the NLSM Lagrangian is
F? F?
L2 = —(0UT0"U) =~ {u), (2.28)

where the constant in front is chosen such that the first term in the expansion in terms of
¢* becomes the canonical kinetic term %(’Lgﬁa@“qﬁ“. We recognise this from (2.10); this is
the universal lowest-order NLSM term.

Beyond this first term, there is an infinite sequence of increasingly complex terms
permitted by the symmetries.® These can be organised into a hierarchy based on power
counting, using the momentum scale p of whatever process is studied with the model. Since
each derivative in the Lagrangian brings down one factor of p into an amplitude, both w,,
0, and V,, are O(p), whereas U (1) alone contributes nothing to the power counting. Thus,
we may split the Lagrangian as

L= Lo, (2.29)
n=1
where Lo, is O(p**) and contains 2n derivatives carrying n pairs of Lorentz indices. As-

suming a low momentum scale, we may then ignore all terms above a certain n.
The four-derivative O(p*) Lagrangian is, for general Ny [4, 5, 16],

Ly = Lo(uyu,uu”) + Ly (w,ut) (u,u”) + Lo(u,u,) (ufu”) + Ly(uutu,u”). (2.30)

We use the more readable u, basis from here on. The L; are independent coupling con-
stants, so-called low-energy constants (LECs). By comparing with (2.12), we see that
the LSM gives L; = v?/8M? and Ly = L, = Lz = 0. It is in principle possible to de-
rive the LECs from any underlying theory (e.g. QCD), but in practice, they are unknown
parameters that must be measured by experiments or lattice simulations.

®Many authors refer to £, as the full Lagrangian of the NLSM. We instead use “the NLSM” to refer
to the more general version, which includes all permitted terms.



2.4.2 The Cayley-Hamilton theorem

L4 presents the first case in which effects of finite Ny changes the number of independ-
ent Lagrangian terms. These effects manifest themselves through the Cayley-Hamilton
theorem, which states that for any Ny x Ny matrix M, the characteristic polynomial

p(\) = det(AL — M), (2.31)

which is zero whenever A is an eigenvalue of M, also satisfies p(M) = 0 when viewed
as a matrix polynomial. For a traceless Ny = 2 matrix, the characteristic polynomial is
p(M) = M? — 3(M?), and if expanded as M = A+ B (with A and B traceless), we get

0= A2+ {A, B} + B> — %(AQ L{ABI+B) = {AB}=(AB), (232

where we use the fact that A and B satisfy their own characteristic polynomials. With a
traceless 3 x 3 matrix M = A+ B + C, a similar process yields

> (ABCD) = > (AB)(C'D) (2.33)
permutations of cyclic permutations
{ABC} of {ABC}
after muptiplying by a fourth matrix D and taking the trace.

In the context of this Lagrangian, we may choose A = C' = u, and B = D = u,; these
are traceless as a consequence of the identity 9, det(A) = det(A)(A~1d,A), which holds
for any invertible matrix A, and which reduces to (A9, 4) = 0 when A € SU(Ny). In the
Ny = 3 case, this use of the Cayley-Hamilton theorem gives one linear relation between
the terms of L4, so one term (historically, Ly) may be eliminated. In the Ny = 2 case, we
may eliminate two terms. Many terms can be eliminated from higher-order Lagrangians
using these identities.®

2.4.3 Higer-order Lagrangian terms

The explicitly known Lagrangian of yPT (and therefore, the NLSM) also includes Lg [16]
and Lg [14], but the number of terms grows extremely rapidly, so a simple listing such as
(2.30), or even a tabulation of the terms, becomes rather difficult to overview. Instead,
we can look at the more basic ingredients of a Lagrangian term: a pattern of pairwise
contracted Lorentz indices, and a pattern of how they are placed inside traces.

To represent such patterns in a neat fashion, we will use a graphical notation known
as chord diagrams.” A chord diagram is defined as 2n points on a circle, with n chords

6A less-studied effect is how the finite dimension D of spacetime limits the number of independent
terms. For instance, with D = 1, u,u*u,u” = uy,u,ubu” = uguguoug, so the O(p4) Lagrangian has 2
independent terms, not 4. It is easy to check that D = 2 imposes similar restrictions at O(p®). In general,
terms are removed by the Schouten identity (e u,u,u, - --)* = 0, which holds whenever the Levi-Civita
tensor €#VP"" carries more than D indices. Therefore, it gives additional linear relations in the O(p*P+2)
Lagrangian, so the physically relevant D = 4 does not affect any of the Lagrangians used in this work.

"Chord diagrams are familiar in mathematics, but do not appear to have been used in the present
context before. See [17] for a counting formula and generation algorithms for chord diagrams.



connecting the points pairwise so that each point is connected to exactly one chord. For
our purposes, we will generalise these diagrams in several ways.

Lorentz index patterns naturally map to chord diagrams: the 2n indices correspond to
the points in cyclic order, and the n contractions correspond to the chords. This captures
the freedom to relabel dummy indices (all chords look the same) and the cyclicity of the
trace (the circle is round). Compared to directly handling the indices, such a diagram
provides a very clear view of the distinct patterns; consider, for instance,

p v op

(U uPu,u i) = %. more explicitly, %cf (2.34)

o L P

which is a complicated Lorentz index pattern but a simple chord diagram.

Trace patterns can be represented in a visually compatible fashion by using chords that
have been generalised to connect more than two points. Each point is still connected to
exactly one generalised chord, and cyclicity applies within each generalised chord rather
than to the circle as a whole. To capture the fact that traces commute, we can require the
generalised chords to be noncrossing and sorted by size around the circle. Any Lagrangian
term with no higher derivatives can then be created by overlaying an index pattern with a
trace pattern. Thus, the terms of £y in (2.28) and L4 in (2.30) can be represented as

F{._” LO._I_., Ll//, LQ\'\:L2._I_., L3//, (2.35)

where the grey blobs represent the generalised chords of the trace patterns. The cyclicity
of the traces can be used in different ways; for instance, L, can be made to look more
analogous to L; (left) or Ly (right) depending on which is considered clearer. At higher
orders, such display choices get quite involved.

At O(p®) and above, additional covariant derivatives can not be avoided, but repres-
enting them is easy: allow each point to connect to more than one chord. With a 1-chord
point representing u,, a 2-chord point represents V,u,, and so on. Due to (2.25), it does
not matter which chord is which.® For instance, the first term in the O(p°) Lagrangian
(see table 1) is

Lo 1 (w4, Vo, ) (uh VPu') = L6,1<I> — LN, (2.36)

where we use the notation L,,, to denote the nth LEC in the O(p™) Lagrangian.

Using this notation, the 19-term O(p®) Lagrangian and the 135-term O(p®) Lagrangian
are presented in tables 1 and 2, respectively. The O(p®) Lagrangian is taken directly
as the NLSM subset of the full yPT Lagrangian presented in [14], and uses the same
numbering of the terms. The O(p°) Lagrangian is similarly taken from unpublished work
done in conjunction with [14]. The older published version [16] yields redundant terms
when naively constrained to the NLSM, and uses a less convenient notation.

$With more than one covariant derivative, the commutator [V, V,]u, is nonzero, but can be absorbed
into other Lagrangian terms. Therefore, the indices remain interchangeable for our purposes.
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Table 1: The terms of the O(p®) NLSM Lagrangian Lg, represented as generalised chord

diagrams.

Each diagram is associated with a LEC Lg, ., where r and c are its row

and column labels; respectively. An asterisk (*) next to a diagram indicates that it is
asymmetric, and that the full Lagrangian term is the sum of the diagram and its mirror
image, which is not included. A number (2 or 3) next to a diagram indicates the lowest
Ny at which it is kept in the Lagrangian. At Ny = 3 or Ny = 2, all terms with higher
number, or no number at all, are eliminated through the Cayley-Hamilton relations; see
section 2.4.2. The choice of which terms to keep follows that made in [14].

oY | o | 2 3 4 5 6 7 8 9
0 O WP O = O
0 Y > ) W L=
0 | Ly % = & L A 2
00w e B A L N e o O
0 R O N W A S T et A
" 3G ST DS R R
CED GGG G eSS D
AR R R R R
IR R i I R o
IR A
" EEZoELEDEG
SRR
| Lo oo o He K K

Table 2: The terms of the O(p®) NLSM Lagrangian Lg, represented as generalised chord
diagrams. Each diagram is associated with a LEC Lg,., where r and c are its row and
column labels, respectively. See table 1 for further details on the presentations.
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Several new features show up at these orders. Most importantly, some terms are not
PT invariant, so they must be added to their PT conjugate to form a valid term. PT
invariance maps directly to mirror symmetry of the chord diagrams. In the tables, an
attempt has been made to display symmetric diagrams in such a way that they also look
symmetric, although with more complicated trace structures, this is not always possible.

3 Flavour-ordering

With the structure of the NLSM established, we are ready to use it for perturbative calcu-
lations of scattering amplitudes. However, the infinite number of interaction terms requires
the use of some scheme for restricting it to a manageable subset. Even then, the resulting
vertex factors are very intricate, both in their dependence on the particle momenta, and in
their group-algebraic structure. This leaves only the simplest Feynman diagrams tractable
by hand, and even computer algebra becomes highly time-consuming when tackling more
complicated cases directly.

In this section, we will direct much effort towards the development of simpler ways to
perform these calculations. As we will see, the group-algebraic structure of the flavour
indices carried by the particles can be used to condense an amplitude into a much more
easily manageable expression, for which simpler calculation rules exist. We will mostly
follow the derivation of O(p?) flavour-ordering as presented in [6], but insert the notation
to support our own generalisations to higher-order vertices.

3.1 Some notation

In this section, we will write many expressions such as (¢*1¢%3)(t*¢*). Since these describe
how the flavour indices of particles are combined via group algebra, we will call them
flavour structures. In order to make them both more readable and easier to formalise,
we will introduce some shorthand notation. Firstly, we will often omit the ¢’s and write
the indices directly inside the traces: (ajas)(asa4) means the same as (t*1¢%)(t*2t*). We
will use the symbol F,(ry,7q,...,r;) for a general flavour structure split into k traces
with 71, 79,...flavour indices each. Here, 0 € S, is a permutation of {1,2,...,n} that
describes the order in which the indices appear. For example, (aja3)(asas) = Fiz24(2,2),
and (ajas - - a,) = Fiq(n), where id(i) = i is the identity permutation. In general,

Fa(rla T2, ... ,’f’k) = <aa(1) T aa(r1)><aa(rl+l) T aa(r1+7’2)> T <aa(r1+...+rk_1+1) T aa(r1+...+rk)>-

(3.1)
For easier handling, we may encapsulate the arguments r; of F, as a flavour splitting
R ={r,ry,...,7 g}, and write F,(R) rather than F,(r{,...). For a structure with n
indices, we impose the restrictions

Zm:n, r <ry < ... <R (3.2)
i=1
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The second can be imposed without loss of generality, since the traces commute.

Lastly, we see that the cyclicity of a trace makes F,(n) invariant when o is changed
by a cyclic permutation. Therefore, we can restrict o to be in S,,/Z, rather than the full
group of permutations. Similarly, we define Zg to be the group of permutations that leave
F,(R) invariant. This includes cyclic permutations within each individual trace, but when
several traces are the same size, it also includes reordering of the traces, i.e. swapping
blocks of indices. For instance,

Zaoy = {1234,2134,1243,2143,34 12,43 12,34 21,4321},

3.3
Ziaay = {123456, 21 3456, 12 4563, 21 4563, 12 5634, 21 5634, 12 6345, 21 6345}, (33)

where we have inserted spaces between blocks of indices corresponding to different traces.’

In this notation, we can also generalise the notion of two permutations being equivalent
modulo a cyclic permutaiton: we write 0 = p (mod Zg) if F,(R) = F,(R). For instance,
1234 = 2341 (mod Zy4y) and 1234 = 2134 (mod Zs9}), but not vice versa.

3.2 NLSM vertices

Let us now look at how the NLSM Lagrangian produces vertices and amplitudes. When
expanded in terms of ¢, e.g.

1 1 1 1
£3 = (1°)0,0°0"¢" + — (t¢'tt?) (gwam%ca%d - Ea%”amcawd) L (34

each term in the Lagrangian produces an infinite series of interaction terms, each with
some combinatorial coefficient. If the term contains several traces, like for L; and L, from
L4 in (2.30), the flavour indices will be distributed between the traces in several ways for
each term.

By parity, only terms with an even number of particles are allowed, as can be easily
verified by examining the expansion of 9,U19,U, in which the odd powers of ¢ vanish.!°

9As can be seen by considering compositions of its elements, Zy2,y is isomorphic to the dihedral
group Dy. Other Zg are not isomorphic to named groups, but Zs 4y =~ Zy X Z4, and in general, Zg =~
Zy, X Ly, X --- whenever all r; are different. When some r; are equal (say, m in a row), the group will
be non-abelian and isomorphic to a semidirect product, e.g. Zgs 0y =~ (Zz X Zg X Z3) x S3. In general,
Zp ~ (Zypy X Lpy X -++) X (Spy X Smy X -+ -), where each m; is the length of a stretch of equal r;. The
proof follows from the following definition of the semidirect product: if a group G has a subgroup H and
a normal subgroup N, then G =N x H if G = {nh|n € N,h € H} and N N H = {e}, with e being the
identity element. The groups N ~ (Z,, x ---) of cyclings within traces and H ~ (S,,, X ---) of swaps
of equal-size traces are clearly subgroups of G = Zg, and N is normal since gng~' € N for any n € N,
g € G — any trace swaps in g are cancelled by ¢g~!, leaving only cyclings. Any permutation in Zg is the
composition of a cycling and a trace swap, and the only element shared by N and H is id, which completes
the proof.

107t is possible to make additions to NLSM (or, more generally, YPT) that include an odd number of
U’s contracted with an odd-parity Levi-Civita symbol. This is the so-called Wess-Zumino-Witten term
[18, 19]. For an introduction in the context of xPT, see [13, section 7], and for the EFT point of view,
see [20].
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For the same reason, split-trace terms such as L; only ever allocate an even number of
indices to each trace, so it results in flavour splittings like {2,2} and {2,4}, but never
{3,3}. This is broken at higher orders, since L4 and above contains terms with an odd
number of w,’s in each trace. Therefore, O(p°) interaction terms (for instance, the ones
connected to Lg ;) may be split {3, 3}.

The interaction terms quickly grow complicated and opaque, and listing even the sim-
pler vertex factors of the NLSM is a rather futile exercise. Instead, we organise the invent-
ory of vertices by only looking at their power-counting orders and flavour splittings. Thus,
the 1/F? term in (3.4) makes up the O(p?) {4}-vertex, and the O(p*) {2, 2}-vertex contains
contributions from both L; and Ly. By bundling different interaction terms based on these
properties, we greatly simplify the palette with which we later draw Feynman diagrams.

3.3 Stripped vertex factors

Equipped with these notions and notations, we can express the n-particle vertex factor of
order O(p") and flavour splitting R as

a1a2::Qn

N,R (p17p2-‘-7pn) = Z fo(R)VN,R,U<p17p27'"7pn)7 (35)

UGSn/ZR

where the a’s and p’s are the flavour indices and momenta of the particles interacting
through the vertex, and Vy r, contains whatever kinematic factors come attached to that
specific flavour structure. Here and in all other places, we treat all momenta as ingoing.
Since F,(R) is invariant under Zg, the kinematic factors must also have this symmetry,
ie.

VN7R,U(p1>p2> o Pn) = VN,R,U(pp(l)app(2)> e 7pp(n)) (3.6)

for any p € Zg. Also, Bose symmetry implies that the act of rearranging the legs of the
vertex by any permutation p € S,, must have the effect

VN,R,aop(p17p27 cee 7pn) = VN,R,U(pp(l)upp(Q)v cee 7pp(n))7 (37)

where o denotes composition of permutations. A special case of this is

VN.Ro(P1:D2, - -+ Pn) = VN.R(Do(1); Po(2); - - - » Pon)) (3.8)

where Vy r = Vi rid is called a stripped vertex factor, since it contains the same informa-
tion as the full vertex, but in a smaller format with the flavour structure stripped away.!!
It can be “dressed” into a full vertex factor by the simple act of multiplying by Fiq(R) and
then summing over all o € S,,/Zg.

A stripped vertex factor has the property of being flavour-ordered, since it is the kin-
ematic factor attached to Fiq(R), where all flavour indices are sorted in ascending order.

U The word “stripped” is typical in the context of EFTs. For the analogous concept in perturbative
QCD (where “flavour” is replaced by “colour”), the word “primitive” is used instead; see e.g. [11, 12]. In
older literature, the word “dual” is common.
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Thanks to this, its explicit form can be derived by expanding the relevant Lagrangian
terms and discarding all terms where any flavour index appears out of order. This saves a
significant amount of work for the more complicated vertices.

Stripped vertices serve as the first ingredient in the method we are developing. In the
following sections, we will treat diagrams and amplitudes along the same lines.

3.4 Constructing diagrams

Like the vertices, we may organise the diagrams by their power-counting order and flavour
structure. The order can be determined by using Weinberg’s power-counting formula,

D=2+2L+) (d—2)Ny, (3.9)

which states that a diagram containing L loops and Ny O(p?) vertices is O(p”) overall.
Due to the form (d — 2), any number of O(p?) vertices, and therefore any number of legs,
may be added to a diagram without changing the overall power. To contstruct higher-order
diagrams, a vertex may be “upgraded” by 2 orders of momenta, or a loop may be added,
both of which increase D by 2. Therefore, tree-level O(p*) diagrams may contain a single
O(p*) vertex, while O(p®) tree-level diagrams may contain one O(p%) vertex or two O(p*)
vertices, and so on.

As for the vertex factors, the flavour structure provides a useful handle to the kinematic
and combinatorial intricacies of a diagram. The NLSM Feynman rule for a propagator with
momentum ¢ has the simple form

q i(sab
a b ¢ +ie

(3.10)

so when two ¢’s are Wick contracted together to form a propagator, their corresponding
flavour indices are also contracted by the Kronecker delta. Therefore, we need a contraction
identity for traces of generators, which for SU(Ny) is

LX) = (XY) = - (X)(Y) (3.11)
T f

for arbitrary X and Y (see appendix A for a derivation). This is perhaps the most im-
portant identity in this work, so for future reference, we will name its terms. For reasons
that will become apparent in section 3.6, we will call the first term on the right-hand side
the multiplet term, and the second one the singlet term. Importantly, (3.11) is only valid
for SU(Ny); for U(Ny), the corresponding identity only contains the multiplet term. For
other groups, the analogous identity may be greatly different or not exist at all.

The identity (3.11) describes the effect on the flavour structures when two vertices or
sub-diagrams are joined at tree level by a propagator. The multiplet term concatenates
the structures inside the traces, but the singlet term keeps the traces split. Therefore,
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we would guess that the amplitude represented by a SU(N;) NLSM Feynman diagram
contains traces split in very many ways, both due to vertices with split traces, and because
of the singlet term.

There also exists an alternative version of (3.11) that covers contractions inside a trace:

1 1
—(Xt*Yt") = (X)(Y) — —(XY). (3.12)
T Nf
Like (3.11), the U(Ny) analogue only uses the first term. In the context of diagrams, it only
comes into play when loops are included, but it is useful in other ways; see e.g. appendix B.

3.5 Flavour-ordered diagrams

Even the simplest scattering amplitudes in the NLSM are quite lengthy, and even with
the aid of computer algebra, they quickly grow unmanageable at higher orders and more
legs. The complications mainly come from the fact that for each diagram topology, there
are many different permutations of internal and external particles that contribute to the
amplitude. Therefore, our main goal should be to reduce the number of permutations that
are counted.

In a manner similar to (3.5), we may write the O(p") n-particle amplitude as

?\}722.-.an(p17p27‘~-7pn - Z Z f MNRU(p17p27"'7pn>7 (313)

RER(N,n) 0€Sn /L

where My g, carries all kinematic factors, and R(NV, n) contains all flavour splittings that
contribute to the amplitude.

Now, the same arguments that allowed us to define the stripped vertex factor in sec-
tion 3.3 allows us to define the stripped amplitude My r with the property

MN,R,U(p17p27 < 7pn) = MN,R(pa(l)apcr@)a s 7po(n))' (314)

It is sufficient to compute the stripped amplitude, since plugging it into

7\}76:12“.(1” (p17p2> < 7pn - Z Z F MN R(pa( 1), Po(2)5 - - - 7p0(n)) (315)

RER(N,n) 0€Sn/ZR

to get the full amplitude is a straightforward operation.

The stripped amplitude offers quite a lot of simplification for any group, but with
SU(Ny) or U(Ny), it makes an enormous difference. Since the stripped amplitude is the
kinematic factor associated with Fiq(R), it is flavour-ordered. The amplitude is built from
vertex factors via the contraction identity (3.11), which preserves the flavour-ordering of
X and Y. Therefore, the stripped amplitude only gets contributions from flavour-ordered
vertex factors, and exactly all diagrams constructed from flavour-ordered vertex factors
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contribute to the stripped amplitude. Such flavour-ordered diagrams are quite intuitive to
construct; for 4, 6 and 8 particles at O(p?) with single-trace flavour structures, they are

X
% I I \/ | (3.16)

respectively. In each diagram, each leg should be seen as equipped with a label 7, indicating
flavour index a; and ingoing momentum p;. Flavour-ordering corresponds to having the
labels in cyclic order around the diagram. Since a labeling is not unique, each diagram
should be summed over all cyclically ordered labelings that give distinct kinematic factors.
For instance, the second 6-point diagram above should be seen as the sum of

1 6 2 1 3 2
>_< >_< >_< (3.17)
3 4 4 5 5 6

Labeling clockwise or counterclockwise is a matter of convention. These three labelings ob-
viously give distinct kinematic factors, since they result in propagator momenta (p; + pa + p3)?,
(p2 + ps + pa)?, and (ps + ps + ps)?, respectively. Due to the symmetry of the diagram, the
remaining three cyclic permutations are not distinct from these three (remember that with
all momenta ingoing, » . p; = 0 due to conservation of momentum), so they should not be
counted. All other labelings fail to be flavour-ordered, and can be ignored.

Stripped vertex factors are completely symmetric under cyclings by virtue of (3.6),
so single-vertex diagrams always have only one distinct labeling. Therefore, the 4-point
diagram and the first 6-point diagram in (3.16) should not be summed over other labelings.
The 8-point diagrams have 1, 8, 4, and 8 distinct labelings, respectively, as can be seen
from their symmetry. Note that the last two 8-point diagrams are topologically the same if
viewed as ordinary Feynman diagrams, but must be treated as different for the purposes of
flavour-ordering, and have different symmetry properties. This is a general tradeoff: each
diagram becomes simpler to evaluate, but the number of topologies becomes larger.

Above O(p?), we begin to encounter flavour-split vertices, but they can be integrated
into the flavour-ordering routine. We still label the legs according to the identity permuta-
tion, but instead of summing over cyclic permtuations, we sum over Zg, and once again
only consider distinct labelings.

At higher orders, we also need to distinguish vertices of different order, which is done
by attaching a number to all vertices above O(p?). In order to distinguish vertices with
split flavour structures, we leave a gap in the vertex, so that each contiguous piece of a
diagram resides in a single trace. For instance, the 4-point O(p*) diagrams are

XX

for R = {4} and R = {2,2}, respectively. Neither diagram has more than one distinct
labeling, since they contain only a single vertex each. The four lines in the right diagram
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are still kinematically connected, but are separated flavour-wise. Since there is a direct
correspondence between traces in a flavour structure and flavour-separated pieces of a
diagram, we will simply refer to the pieces as traces.

Some adjustment to the intuition is needed when handling split diagrams. Since
(X)(Y) = (Y)(X), the traces may “float” around the diagram. For instance,

< <

are the same. By our conventions, the distinct labelings of the above diagram are

1 6 1 3 1 4 1 5
2>_<5 2>_<6 2>_<3 >_< - (3.20)
3 4 4 5 5 6 6 3

Labels 1 and 2 are applied to the smaller trace (as per (3.2)), and no cycling is needed due

to the symmetry of the vertex. Labels 3456 must be summed over all four cyclings, since
each cycling gives a different propagator. No other labeling is considered flavour-ordered;

in particular,
5 4
6 >_< 5 (3.21)
1 2

which would be valid on a single-trace diagram, should not be counted, since it has flavour

structure Fiq(4, 2) in disagreement with (3.2). Including it would be double-counting, since

it is obtained from (3.20) via a permutation in Sg/Zs 43 when executing (3.15).
Interesting structures sometimes show up. For instance, the two O(p*) diagrams

\/ “]L (3.22)

4

emerge from different orientations of the same three vertices, but have completely different
properties. In the first diagram, the smaller trace should not be cycled at all, and the
larger trace only halfway, since it is symmetric (compare to the O(p?) 6-point diagram).
In the second diagram, all 4 - 4 combined cyclings of the two traces are distict, but due to
the symmetry of the diagram, swapping them, e.g.

1 N 7 5 ! 3
: >TL< P >TL< : (3.23)
3 5 7 1

4 8

does not produce a distinct kinematic structure and should not be counted.
In the O(p®) diagrams

g <
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the other component of Zg, swapping of equal-size traces, does play a role. In the first
diagram, we may place either 12 or 34 in the trace straddling the propagator, and we must
sum over both placements. In addition to that, we must sum over cyclings of the trace
that straddles the propagator, but not the other two, again due to the symmetry of the
vertices. In the second diagram, the two smaller traces are equivalent under the Z; 2 2y
symmetry of the vertex, and we should not sum over both ways of placing the labels 12
and 34.

3.6 The singlet problem and its solution

The construction of flavour-ordered diagrams hinges heavily on the use of (3.11), or spe-
cifically the muliplet term, (XY). The singlet term, (X)(Y)/Ny, is problematic, since it
is invariant under different permutations. Consider the diagrams

1 6 2 1 3 5

2>—<5 3>—<6 1>—<4. (325)

3 4 4 5 2 6
The first two have the same flavour structure (i.e. (123456)) under the multiplet term,
but not under the singlet ((123)(456) and (234)(561), respectively). On the other hand,
the first and the last diagrams have the same flavour structure (i.e. (123)(456)) under the
singlet, but not the multiplet (the last diagram has (312645)). In fact, the last diagram
should not really be regarded as flavour-ordered, since the flavour indices appear out of
order. This different treatment of the two terms is a serious threat to the methods we are
trying to develop.

There is, however, an elegant solution. As stated previously, the singlet term in (3.11),
which has the potential of breaking flavour-ordering, is not present in U(Ny). Therefore,
in the U(Ny) NLSM we may always do flavour-ordering at any order in the Lagrangian.
We can extend this to SU(Ny) by taking advantage of its similarity to U(Ny).

Remember (see appendix A) that the U(Ny) algebra differs from the SU(Ny) algebra
by a non-traceless generator t that commutes with all other generators. Due to the latter
property, its associated field ¢° forms a U(1) singlet separate from the SU(N;) mutliplet
¢*. With this in mind, a more elucidating form of (3.11) is

fz_ (Xt (t"Y) = 3 (Xt)(tY) — (Xt°)(t°Y), (3.26)

where we temporarily suppress Einstein summation. This expression suggests that a
SU(Ny) propagator (left) represents a U(Ny) propagator (right) minus the singlet propag-
ator, and explains our naming of the terms. The N n ! is absorbed into ¢°.

Now, if we extend our Lagrangian-building field like

b6 0) = "2 4 0(0), 06 0) = exp (Zq’f> = exp (i‘ito ﬁ) U9), (3.27)

\/F
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where U(¢) € SU(N;) and U(¢°, ¢) € U(Ny), we see that

Uto, U = | =2 ) 0,6° + UTo,U 3.8
o (F\/ﬁf L@+ (o ( )

(remembering that UT9,U is equivalent to u,), and therefore

2

L, = %amoa“qso + FZ(uuu“). (3.29)
At this order, the singlet decouples from the other fields and forms a free theory. Therefore,
no O(p?) vertex involves the singlet, so there is no distinction between U(Ny) and SU(Ny)
amplitudes at this order, and we may ignore the singlet term in (3.11).

This observation was sufficient in [6], but we must handle the singlet problem beyond
O(p?). At higher orders, this decoupling does not happen, and indeed £, and all higher-
order Lagrangians introduce vertices that mix the singlet with the other particles. However,
a singlet propagator can only exist if both vertices at its ends couples to it. Since this
requires at least two vertices of at least O(p*), the diagram as a whole must be at least
O(p®) to include such complications.'?'!3 Therefore, we can flavour-order at O(p*) with no
other complications than the introduction of split vertices.

At O(p°) and above, we can at last not avoid the singlet term in (3.11) in SU(N;),
but the interpretation of (3.26) still holds. In order to build a SU(Ns) amplitude, we first
work in U(Ny) to build flavour-ordered diagrams using only the multiplet term. Then, we
construct all diagrams with singlet propagators in a similar fashion, maintaining flavour-
ordering independently. For instance, the full suite of O(p°®) 6-point diagrams is

KK XK X
. D\ < \ < >j4 5.30)
5

including one singlet propagator, indicated by a dashed line. It implicitly includes a factor
of —N i !, and its flavour structure is split {3,3} over the propagator, in accordance with
the behaviour of the singlet term. All cyclings of the two traces should be counted as
distinct, since the vertices are invariant under Z,, not Zs.

121f the singlet forms a loop, only one O(p*) vertex is necessary, but the loop itself increases the power
counting, so O(p°) is needed in this case as well.

13 An interesting parallel can be seen in [11], where U(1) gluons similar to our singlets must be introduced
in perturbative QCD. While our singlets only emerge with at least two higher-order vertices, their U(1)
gluons cancel unless the diagram contains at least two quark lines. In general, there are several intriguing
analogies between the inclusion of quark lines in gluon scattering (where there are no higher-order vertices)
and the inclusion of higher-order vertices in the NLSM (where there are no quark lines).
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Once all diagrams are listed, we add the singlet diagrams to the rest, and arrive at
the stripped SU(Ny) amplitude. By keeping the singlet diagrams independent from the
others, we avoid any issues with mismatched flavour-ordering. We can be sure that the full
amplitude will be the same as if we had constructed it directly without flavour-ordering
thanks to the uniqueness of stripped amplitudes, which we will prove below.

3.7 Uniqueness of stripped amplitudes

Above, we have blindly trusted the definition of the stripped amplitude as everything that
comes attached to the flavour-ordered structure Fiq(R). It is this that allows us to treat
the singlet diagrams as diagrams in its own right, and not as order-breaking corrections. If
the stripped amplitude could not be uniquely constructed from this definition, our methods
would break down. However, we can show that the stripped amplitude is indeed unique,
using a generalisation of a method presented by [21] and adapted to flavour-ordering by
[6]. Therefore, we can be sure that our methods are correct.
The uniqueness hinges on an orthogonality relation that reads

1+0 (Nf_Q) if @ =R and o = p (mod Zg),

O (N;7) otherwise (y > 1; see below)
(3.31)

using the notation defined in section 3.1. The dot in the left-hand side indicates contraction

over all flavour indices. If @ # R, v > 1, and if 0 # p (mod Zg), 7 > 2; therefore, the

single-trace version (i.e. that given in [6]) has O(N} %) as its second case. The more

different the flavour structures are, the greater - is.

The relation (3.31) is proven in appendix B and states that any given flavour structure
F(Q) is orthogonal at leading order in Ny to all other flavour structures whose permuta-
tions are not equivalent to o, or whose flavour splittings are not equal to ). The more
different the flavour structures are, the greater v is. In the context of stripped amplitude
uniqueness, it can be applied as follows. In analogy with (3.5) and (3.15), we write some
arbitrary quantity X in the form

X =" N Fo(R) X, (3.32)

ReER UESTL/ZR

Fol@) - [Fo(R)]" = T"Nj2(N} = 1) {

where R is some appropriate selection of flavour splits. Then, we use the orthogonality
relation (3.31) to perform the projection

X [Fa(R)]" = 7" N7 (N7 — 1) {Xidﬁ + 0 (Nif)} : (3.33)

This means that we can always project out the stripped X', and that any overlap with other
terms must come suppressed by at least N . In a stripped amplitude of O(p*) or lower,
the stripped amplitude can not contain any powers of N N ! due to the decoupling of the
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singlet, so there can be no overlap for arbitrary Ny. This proves that stripped amplitudes
are unique at O(p*) or below.

At higher orders, things are not as simple, since there are possibly many factors of N, L
This would allow mixing between different stripped X’s, threatening to break uniqueness.
However, it can be resolved by expressing X® " as a polynomial in N '

1 1
Ao = yen 4 Ff?(f”"'“” + F?X;l'"a" +... (3.34)

such that each X", and therefore also its stripped counterpart, is independent of N, L
We then apply the projection to each X" independently, and ignore the O(N ) com-
pletely. Thus, stripped amplitudes, vertex factors, and other analogous quantities are
unique to all orders.!%1

This result has significant consequences. Most importantly, it guarantees the correc-
tenss of our method of flavour ordering with split traces and singlets: it provides a way
to produce something with the properties of a stripped amplitude, so its result must in
fact be the unique stripped amplitude. Also, uniqueness allows many properties of the full
amplitude to carry over to the stripped amplitude, as is discussed below.

A second consequence is worthy of note. The full amplitude of some O(p") n-particle
process is constructed from |R(N,n)| different stripped amplitudes. When summed over
permutations according to (3.15), the total number of flavour structures grows to

Nyw~ Y 1Sul (3.35)

RER(N,n) |Z|

which is a very rapidly growing number — even at O(p?), N'(2,n) ~ (n—1)!. Since the fla-
vour structures are not truly orthogonal, the expression for the cross section of the process,
proportional to MR " [MY ]!, grows in length as (Ny,)?. However, the expression for
the cross section contracts the flavour structures as in (3.31), which suppresses products
of non-equivalent flavour structures by a factor of N ! for each difference (or N ; % in the
single-trace case). Therefore, in the limit Ny — oo, flavour structures are orthogonal, and
the cross section only grows as Ny ,. Even with finite Ny, most cross-terms will be heavily

suppressed, and can most likely be ignored.

4 NLSM amplitudes

Equipped with the tools of flavour-ordering, we can take on the computation of amplitudes
in the NLSM. However, there exists more useful amplitude-related structure that is worthy
of discussion. This section covers some of these topics.

1 This uniqueness is of course only up to a permutation in Zg, but since we sum over those in the
definition of the stripped quantity, they are unique for our purposes.

15The orthogonality may be broken if there are additional relations among the flavour structures, such
as those given by the Cayley-Hamilton theorem at some fixed N;. In practice, we must assume that such
relations have been exhausted to simplify the Lagrangian, so that no further applications are possible.
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4.1 Dependence on the parametrisation

When defining the NLSM, we used the exponential definition (2.20) of u(¢). However,
this is not the only possible choice, since the equivalence theorem [26] guarantees that all
amplitudes are invariant under a reparametrisation of the form

¢" = "+ FU(¢),  F*=0() (4.1)

Equivalently, we can redefine u(¢) in any desired way as long as the changes only occur
at quadratic order and above. Since stripped amplitudes are unique, they must also be
invariant under such reparametrisations. However, stripped vertex factors are not required
to be invariant, since the full vertex factors are parametrisation-dependent.

A more general form of parametrisation is

wo) =S (DY (42)

k=0

where ag = a; = 1 to conform with (2.20) below quadratic order. In our context, three
parametrisations are relevant:

e The ezponential parametrisation, which corresponds to (2.20) and a, = 1/k!. This is
the “default” parametrisation and is useful for general proofs, such as that of singlet
decoupling in section 3.6. On the other hand, the explicit stripped vertex factors and
diagrams become more complicated than in the other parametrisations considered in
this section.

As was proven in [27], the exponential parametrisation is the only one among the
class (4.2) that is valid for the SU(N;) NLSM at Ny > 2. We have no such restraints
at Ny = 2, or at O(p?) or below, where are amplitudes are identical with those of
U(Ny). There also exist valid parametrisations not in the form (4.2) (see e.g. [28]).

e The Cayley parametrisation [6], which uses a Cayley transform to map an antiher-
mitian matrix (proportional to i®) to a special unitary matrix, u(¢). A convenient

form is
x

1 4 @)
u(g) = ——2

for k > 2, where 2(¢) = i®(¢)/F/2. Due to the simplicity of the a;’s, the stripped
vertex factors assume a very simple form. Many can be easily derived by hand, and
there is a noticeable speedup even with computer algebra. However, the simplification
disappears at the diagram level, where this parametrisation is on equal footing with
the exponential.

e The minimal parametrisation [29], which corresponds to

u(@) = 2(6) +\/1+ [2(0)]", & a%:;%—,lck,l, oy =0 (4.4)
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for k > 1, where C} are the Catalan numbers and z(¢) is the same as for the
Cayley parametrisation. This parametrisation has the peculiar property that at
O(p?), the vertex factors do not depend on whether their legs are on-shell or not.
Therefore, there is no difference between an n-point vertex and an n-particle single-
vertex diagram. This greatly simplifies the expressions at the diagram level, and there
are fewer cancellations when diagrams are summed to form stripped amplitudes. In
6], it is used as the key to computing amplitudes through semi-on-shell recursion
relations. However, its benefits appear to vanish at O(p*) or above, and it is entirely
unusable in the cases where the exponential parametrisation is the only valid one.

4.2 Generalised Mandelstam invariants

At tree level, a general stripped amplitude will be a linear combination of rational functions
of products of momenta. However, using momenta directly leads to cluttered expressions,
and also obfuscates many consequences of on-shellness and conservation of momentum —
for instance, (p; + p2 + p3)* = (ps + ps + ps)? is not at all obvious when the squares are
expanded and intermixed with other terms.

The solution is to use a generalisation of Mandelstam invariants, which for 4-particle
processes with all momenta ingoing are defined as

s=(pi+p2)?=(ps+p)’  t=Ei+ps)’=(p2+p)’  w=(p2+ps)° = (patp).
(4.5)
Since NLSM particles are massless, p? = 0, and we may simply write s = 2p; - py, and so
on. Due to this masslessness, the invariants also obey s 4+t 4+ u = 0, so one is redundant
and can be eliminated in terms of the others.
At higher orders, we similarly define generalised Mandelstam invariants

Sijk = (Di +Dj +Pp+ .. -)27 (4.6)

which are kinematic invariants just like the 4-particle ones. We seek a selection of Mandel-
stam invariants such that any product of momenta can be expressed as a linear combina-
tion of them — that is, a complete basis for the space of kinematic invariants. There are
n(n+1)/2 distinct products p; - p; for an n-particle amplitude, but on-shellness removes the
n products p; - p;. Conservation of momentum allows one momentum to be eliminated in
terms of the others, removing another n products. Thus, there are n(n —3)/2 independent
producs of momenta. This number is consequently the dimension of a complete basis of
Mandelstam invariants.

This counting of the number of invariants does not take the dimension D of spacetime
into account. Since each new momentum adds only D — 1 degrees of freedom (the —1
being due to (p;)> = 0), the number of independent kinematic invariants can only grow
as n(D — 1) ~ n, not n(n — 3)/2 ~ n? when n > D. The first such limitation enters at
n = D + 2, when the Gram determinant becomes zero, adding an extra relation among
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the Mandelstam invariants.'® However, such finite-dimensional effects are algebraically
very messy, so for practical purposes it is better to ignore them and construct Mandelstam
invariants as if D > n.

For n momenta (restricting ourselves to even n), we may derive a practical Mandelstam
basis from the observation that

2p;i - Piv1 = Si(i+1),
2p;  Pir2 = Si(i4+1)(i+2) — Si(i4+1) — S(i+1)(i4+2)>

2Di " Dit3 = Si(i41)(i42)(i4+3) — Si(i+1)(i42) — S(i+1)(i4+2)(i+3) T S(i+1)(i+2)> (4.7)

2pi P = Siy — 5i~~~(j—1) — 8(i+1)...j + 5(i+1)~~-(j—1)-

The principle is to take an invariant containing the desired product, subtract the unwanted
cross-terms, and then add back the cross-terms that were subtracted twice. All terms on
the right-hand side are generalised Mandelstam invariants with consecutive indices, and
since this formula clearly allows description of all possible products of momenta, such
invariants form a complete basis. With indices cycling around, i.e. p;_, = p; = pin = - - -,
we see that the distance between i and j never exceeds n/2, so we only need invariants
with up to n/2 indices. Furthermore, since conservation of momentum implies that

Sieee(ith—1) = S(itk)-(i—1)5 (4.8)

we only need half the complete set of invariants with exactly n/2 indices. With this
approach, the n = 4 basis is By = {s12, 523} = {s,u}, and the n = 6 basis is

Biey = {12, 523, S34, S45. S56, 561, S123, S234, S345 } » (4.9)

which is complete since, for instance, s456 = s123 by (4.8). In the general case, the basis is

B{n} = {812, 823, -+, Sn(n—1)ySnly,  S123,5234,---,5n12, .-y  S12..(n/2)s - - - ,S(n/2—1)~..(n—1)}-

(4.10)
This contains n/2 — 1 sets of n invariants each, plus one set of n/2 invariants, for a total
of n(n — 3)/2. Therefore, it is complete, but not overcomplete, for all even n.

Using any choice of Mandelstam basis has benefits over just using products of momenta,
since on-shellness and conservation of momentum is automatically taken care of. However,
the basis choice in (4.10) has the further benefit that P? € By, where P = p; + pit1 +
...+ pitj is the momentum of any propagator that appears in a flavour-ordered diagram
with flavour split R = {n}. This means that denominators containing a sum will never
appear in the corresponding stripped amplitudes, which greatly simplifies their algebraic
handling. This property does not hold for most R # {n}.

6Remember that the Gram determinant is the determinant of the n x n matrix whose element ij is
D; - pj. When n > D, any set of n momenta must be linearly dependent, causing the determinant to be
zero. At n = D + 1, this linear dependence is just conservation of momentum, but at n > D + 2, it is an
independent effect.
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4.3 Reduced stripped amplitudes

While we are on the subject of Mandelstam invariants, let us discuss a bit on how the
choice of basis affects the form of stripped amplitudes. As a consequence of invariance
under Zg, any stripped amplitude can be written in the form

MN,R(pla ce apn) = Z mN,R<po(1)a cee apo(n)) = mN,R<p1a ce 7pn) + [ZR]7 (4-11)

OELR

where the second equality uses a shorthand for sums over Zg, generalising the familiar
idiom “+cycl.”.'” Here, m is some smaller expression, which we will dub the reduced
stripped amplitude. In the simpler cases (see e.g. section 6.2), it is obvious what m should
be: (6.11) contains M, and (6.12) contains m. For more complicated amplitudes, writing
m rather than M helps greatly with getting an overview of the amplitude.

Unlike the stripped amplitude, m is not unique, and finding it can be difficult in the
general case. It helps to decompose M into terms of the form

Biolli

M = 7;, 7;: or 7;: iHi; 4.12
Zi: L1 + Biollip + Bisllis + - - - Fiollio ( )

where 3;; are numbers and each II;; is a product of one or more Mandelstam invariants.
This decomposition is unique if we require that there is no factor shared by all II;; in a
term (the same condition on the f3;; is why we have eliminated /3;; in the denominator),
and that 7; oc 7; does not hold for any ¢, 5. If we define a total ordering on the space of
I1;;, we can normalise the terms by requiring that II;; < Il <1z < --- 18

Now, assume that we use some closed basis of Mandelstam invariants Bg with the
property that, if we permute the momenta in any II;; with any o € Zg, the resulting
expression is some other Il ;. Then, Zg will map each 7; in My r to some 7; also in
My r. This divides the terms of My r into separate orbits under Zp, where the terms
in each orbit map only to each other. Picking a single representative of each orbit then
yields my r. One way to do this is to define a total ordering on the space of 7;’s and pick
the smallest term in each orbit.'® This process yields essentially the same choice as if m is
found by hand, but can be automated and applied to much larger stripped amplitudes.

This process hinges entirely on the existence of the closed basis Br. With R = {n}, the
choice (4.10) is sufficient, since each of its elements map to a single other element under
Z,. However, this does not hold if R # {n}, since e.g. so3 — S13 = S123 — S12 — So3 under
213456 € Zy 4y. This would map some II;; to a sum of several different IT’s, breaking the
division into orbits.

1"Remember that Zp is the group of permutations that leaves F, (R) invariant; see section 3.

18This relation is of course not the same as the numerical less-than relation when the Mandelstam
invariants are given fixed values, but should rather be something akin to lexicographic ordering, e.g.
S12 < So3 < -+ < S345 < 8%2 < 812893 < --- for 8{6}. In practice, we employ the internal ordering used by
FORM,; see section 5 for an introduction to our use of FORM.

19As with the II;;’s, we use FORM’s internal ordering in practice.
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It is not easy to find a basis that is closed under some given R. A start is to find a
basis that contains all squared propagator momenta P? admitted by the diagrams with

that flavour structure, since the set of P?’s is by construction closed under Zg. This also
has the benefit that 3;; = 0 for all j > 2. For R = {2,4} and R = {2, 2,2}, one easily finds

8{2,4} = {3123, 8124, 8125, 5126,  S14, 515, 5165 545, 356}7 (4.13)

5{2,2,2} = {3123, S124, S125, 5126 S156, S134;  S23, S45, 561}7

of which the first 4 and 6 elements, respectively, are the P?’s, and the remaining ones are
added to complete the basis. For R = {3, 3}, the only P? is 5193, S0 B33y = By suffices.
However, these are likely to be the only solutions — for R = {2, 6}, the set of P?’s fails to
be linearly independent, and for for R = {2,2,2,2}, there are 24 different P?’s, which is
more than the 20 dimensions of a Mandelstam basis for 8 particles.

Starting with By, we have found closed bases Br = {t1,...,1o} for R = {2,4}, {3,3}
and {2,2,2}, i.e. all 6-particle flavour structures. For the values of ¢; and details on their
derivation, see appendix D. We have not found any closed bases beyond these, but it is
not ruled out that closed bases exist for Z, 6y and beyond, since it is possible to use linear
combinations of P?’s even if the P?’s themselves can not be used for basis elements.

4.4 Adler zeroes and soft limits

There exists a very general statement about the behaviour of a NLSM amplitude when one
of the external momenta approaches the soft limit. For any effective field theory emerging
from the spontanous beaking of a global symmetry [22], it holds that

lim M an (pl, ey EDiy 7pn) =0, (414)
e—0
for any ¢. Essentially, the amplitude vanishes whenever an external particle approaches
the soft limit. This is known as the Adler zero, and can be proven non-perturbatively in a
very general fashion, see e.g. [23]. More specifically, for a general EFT one can define

MO (gD ey Pa) ~ € (4.15)

as € approaches zero. The value of ¢ > 0 is known as the soft degree, and serves as
a characteristic from which EFTs can be classified and even constructed [20, 24]. The
NLSM has o = 1, so its Adler zeroes are first-order zeroes.?’

Due to the orthogonality of flavour structures and the uniqueness of stripped amp-
litudes, Adler zeroes may only exist in the full amplitude if they also exist, with the same
soft degree, in the stripped amplitudes. Therefore, (4.14) and any statement relying on it
can equally well be applied to the stripped amplitudes.

20This is not entirely true, as O(p") 4-point amplitudes (see section 6.1) have o = N/2. However, the
amplitude up to O(p), including all lower-order contributions, still has ¢ = 1. At 6-point and above,
o = 1 holds order by order.
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The presence of Adler zeroes has profound implications, since all amplitudes can in fact
be derived from a few “seed” amplitudes using the knowledge about the soft degree (see
section 4.5). However, it also has a more directly practical application. Since far from every
term in the amplitude is proportional to p;, the Adler zero must manifest itself through an
intricate scheme of cancellations. Therefore, any error in the amplitude is extremely likely
to break these cancellations, causing a finite right-hand side in (4.14). This fact is highly
useful for validating the correctness of a complicated stripped amplitude.

Beside the Adler zeroes, there also exists identities for the case when two momenta are
sent to zero at the same rate. In some cases, cancellations of the type lim. ,o(e/e) # 0
may cause this double soft limit to be nonzero. For instance, the double-soft limit of the
O(p?) 6-point amplitude presented in (6.12) is

l
4F1

S23(845 + Ss6) _ Se1(S34 + Sa5) }

S45 + Ss6 —
{ 5123 — 512 S612 — S12

}:ig(l) Moy 6y (ep1, €D2, D3s - - - D6) =
(4.16)

If ¢ is instead applied to p; and ps3, or to p; and py4, the limit is zero. The right-hand side

above contains several copies of sy5 4+ S5 and s34 + s45, which are equivalent forms of the
kinematic factor in My 143(ps, ..., Ds), as is presented below in (6.1). In fact, it turns out

that the double soft limit of any (n + 2)-particle amplitude can be expressed in terms of
n-particle amplitudes with the soft particles removed; for the NLSM, the specific form is

lim M™% (ep, eq, pr, ..., pn) =

e—0

abc ra; cpl ) (p ) ai--a da -a
2: idell 27 T2 paraG-ndaaiyan (p oo p Yo (417

This was conjectured in [25] and proven in [6]. Like the Adler zero, it can be projected to a
relation for stripped amplitudes, although the projection is not entirely trivial. The result
for single-trace flavour structures is given in [6]. We derive the counterpart for general
flavour structures in appendix C, with the result being as follows. At any order N in the
power counting and for any flavour split R € R(N,n + 2), the double soft limit

};113(1) MN7R(p17 < s Di—1,EPis -+ - s EPGy Djgls - - 7pn+2> (418)
is zero unless one of the following conditions hold:

1. Indices @ — 1, 4, 7 and j 4+ 1 are consecutive and lie within the same trace.

2. There exists some permutation p € Zg such that the above condition is satisfied by
applying p to the indices and possibly swapping ¢ and j.

If either condition holds, we can without loss of generality assume that the first condition
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does, since My g is invariant under Zg. Under this assumption, the double soft limit is
li_r)%MN,R(pla €D EDGy - P(nt2))

1 (pg+y - Pi—pj)  Pu-1)- (p' — pj ))
- - MNR(ph"‘api—lap'17"'7pn 2)7
(4.19)

where R € R(N,n) is R with the location of the soft particles removed. The result, which
generalises that given in [6], is quite remarkable: for properly chosen i, j, the double soft
limit amounts to removing the soft particles from the amplitude and multiplying by a
simple kinetic factor. The factor is similar to those that arise in IR divergences, which is
understandable — both arise from propagators going on-shell in the soft (IR) limit.

4.5 Reconstruction from soft limits

The existence of Adler zeroes (see section 4.4) is not merely a convenient consequence of the
NLSM symmetries. For a broad class of scalar EFTs, including the NLSM, the soft limit
can be used as an a priori assumption from which the rest of the theory is derived [24].

The explicit construction of theories in this manner follows a program of recursion
relations that allow more complex amplitudes to be built recursively from simpler ones.
The original use of this was BCFW recursion [30, 31] in the context of gauge theories.
An n-point amplitude, viewed as a function of the external momenta, is extended into the
complex plane via the shift

pj — Pj(2) = pj + 2q, pe = Pr(2) = Pk — 2q (4.20)
for some j,k, with ¢> = q-p; = q-pr = 0 to respect on-shellness and conservation of
momentum. All other momenta are left as-is: p;(2) = p;, @ # j, k. At tree level, the
amplitude is a rational function of the momenta, so the shifted amplitude Mn(z) is a
meromorphic function of z. The physical amplitude is recovered as Mn(O), and can be
extracted as a residue of Mn(z) /z through an application of Cauchy’s theorem:

Ka(0) = o E Mt ZR( >>, (4.21)

where the contour of integration is an infinitesimal circle around the origin, and z; are the
locations of the poles of M,, (z). Since the denominators contained in M,, (z) consist of
squared propagator momenta, all the poles of Mn(z) occur when some propagator goes
on-shell. That is,

Prz) =0,  Piz) =) pi(2), (4.22)

iel

where [ is the collection of particle indices on one side of a propagator, and z; is defined
by the above condition. All z; are simple poles, so the residues are

— Res <M> /\/lLI(z[)

Z=Z2r z

PI( )./\/lRI(Z[) (4.23)
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where M, and M g, are the amplitudes corresponding to the sub-diagrams on the left-
and right-hand side, respectively, of the propagator carrying P;. Since the propagator is
on-shell, they are physical amplitudes with all external particles on-shell. They have at
most n — 2 external particles each, so (4.23) and (4.21) together give a recursion relation
for an amplitude in terms of smaller amplitudes. This can be continued until some trivial
single-vertex amplitude is reached.

The method described above does unfortunately not work for EFTs, since (4.21) relies
on the assumption that M,,(z) — 0 sufficiently fast as z — oo. This holds for e.g. gluon
scattering, but EFT amplitudes scale as a positive power of the momentum, so BCFW
recursion fails. In a sense, that is understandable: gluon amplitudes can be recursively
built from three- and four-gluon vertices, but in an EFT, M, may contain an n-point
vertex that is not described in terms of anything that is present in smaller amplitudes.

Despite the failure of BCFW recursion, it possible to construct EFT amplitudes recurs-
ively by taking advantage of the information contained in the soft limit, as was first done
in [32]. First, we define a different shift that preserves the soft limit,

pi = pi(z) = pi(1 — zay), 1<i<n, (4.24)

where a; are chosen to respect conservation of momentum, i.e.

> aip; = 0. (4.25)
=1

For n < D, where D is the spacetime dimension, the momenta are linearly independent
in general, and the only solution is a; = 0. For n = D + 1, conservation of momentum
constrains all a; to be equal. Both these cases are useless for recursion, so we require
n > D + 1. For a general set of p;’s, the vector (ajas ... an)T can be any vector in the
null space of the matrix whose ith column is p;.

The scaling chosen above has the property that

M (2) ~ (1 — za;)° as z— 1/a;, (4.26)

with the soft degree o defined in (4.15). We define the product of all such factors as

n

Fo(z) = [J(1 = a:z), (4.27)

i=1

such that F,(0) = 1 and F,(z) ~ 2" as z — co. We can then apply (4.21) to M,,(2)/2F,(z),
which has strongly suppressed large-z behaviour. Also, F,(z) is engineered specifically to
have exactly the same zeroes as Mn(z), so its presence in the denominator does not give
any new poles. Therefore, all poles follow from propagators going on-shell at z = z4,
where 274 are the two roots of

PP —2P-Qrz+ Q72° =0, br = Zpi, Qr= Z a; ;- (4.28)

i€l i€l
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With the necessary adjustments, [32] turns this into the recursion relation

Ma(0) =33 [1 - Zf—i] - M) M (zr). (4.29)

ZI:F PIQFR(ZH:)

This remarkable result implies that any amplitude where F,,(z) is sufficient to suppress the
high-z behaviour can be recursively constructed. The n-point vertices are not needed as
input, but are fixed by the form of the lower-point vertices along with the soft limit.

The explicit calculation of amplitudes this way is unfortunately a nontrivial algebraic
task, and is not as amenable to automation as our flavour-ordering methods. In [32],
the O(p?) 6-point NLSM amplitude is derived along with analogous results for some other
EFTs. We have laboriously recreated the O(p*) 6-point amplitude (presented in (6.16) and
(6.17)) as well. Some additional related tools have been developed by [9], which allowed
more convenient computation of the same results with these methods. Using a different
kind of recursion that is constrained to O(p?), [6] reached 10-point. There seem to be no
results beyond this.

For the NLSM, the O(p®) 6-point amplitude is not possible to construct recursively,
since Fg(z) ~ 2% does not suppress enough. This construction must in fact be impossible,
since several features (singlets and 15 of the terms in Lg) that have independent soft limits
do not show up at 4-point. In general, the O(p"™) n-point amplitude is only constructible
if N < on, and all lower-point amplitudes must be computed some other way.

5 Practical calculation methods

In the preceding sections, we have demonstrated and generalised methods for calculation
of tree-level stripped amplitudes in the NLSM using flavour-ordered diagrams. While the
methods offer significant simplifications compared to a brute-force diagrammatic approach,
the computation of all but the simplest amplitudes requires algebra with expressions too
large for human handling. Even handling with most computer algebra systems is hampered
with long computation times and memory limitations.

In this work, the computations were successively handled by using FORM, whose ability
to perform simple algebra on enormous expressions is well suited for this kind of problem.?!
In conjunction with this thesis, a library of FORM procedures was written that calculates
stripped amplitudes using flavour-ordering, with support for vertices up to O(p®) by using
the Lagrangian of [14]. The procedures take specifications of vertex factors and diagram
structures as input, and allow checking of Adler zeroes among other things. More details
are given in appendix E.

On its own, the FORM library requires manual input of all diagrams and vertices. As the
order and number of legs increases, flavour-ordered diagrams rapidly grow numerous and
complicated, so it is desirable to automate this tedious and error-prone process. However,
it is difficult to find a computer-based representation that does not obscure the structure

21For information about FORM, see www.nikhef.nl/~form.
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of a flavour-ordered diagram. For instance, a natural representation of a tree diagram is a

tree, but even in

the choice of one vertex as the root hides the symmetry of the diagram. These problems
become worse for larger diagrams.

5.1 Diagrams as polygon partitions

A more fruitful approach, which is somewhat akin to the chord diagrams used in sec-
tion 2.4.3, is to draw an n-leg diagram as a regular n-gon, with each edge of the polygon
representing an external leg. The polygon can then be partitioned by straight, non-crossing
lines, where each k-gon piece corresponds to a k-particle vertex, and pieces sharing an edge
correspond to vertices connected by a propagator.?? For instance,

<O Qe

Any two partitions that represent the same diagram are equivalent under rotation, and
any symmetry of the diagram is manifested as rotational symmetry of the partition. Most
importantly, these properties readily translate into a computer-based representation, as we
will see below. Before going into details, let us first cover the necessary genrealisations for
higher-order diagrams.

Since each piece of a partition corresponds to a vertex in a diagram, vertices of different
orders can be represented as pieces of different colours. Here, we use white for O(p?) vertices
and darker shades of grey for higher orders. For instance, the single-trace O(p®) 6-point

diagrams are
<3< X - 08

Flavour-split vertices can be introduced as a second partition within the pieces, with
the new lines representing where the traces are separated. However, this interferes with
the geometric view of symmetries and equivalent representations. A multi-trace partition
should be imagined as “pulled apart” across the flavour splits, as in

%L% ~ - D 0 (5.4)

where the dotted lines represent flavour splits. In the view on the right, each trace has been
pulled together across the split lines so that only propagators and external legs remain,

22Tf the diagram is thought of as a planar graph with external legs extending to infinity, the polygon
partition is its graph dual.

32



resulting in several 2-gons that have to be drawn with curved lines. A geometric inter-
pretation of the kinematic connection between the traces is hardly possible. With three
or more traces in a single vertex, they must be allowed to commute, which is a rather un-
geometric concept. Therefore, we keep the compact representation as a partitioned n-gon,
from which the symmetries are still visible at least as well as in the diagram view.
Singlet propagators are more straightforwardly introduced by distinguishing certain
lines that separate two pieces of at least O(p*). Using a dashed line, we therefore have

- -

As is stated below (3.30), a singlet line removes any rotational symmetry held by the traces
it connects.

5.2 Generating partitioned polygons

Partitions are generated by taking a blank n-gon and enumerating all distinct ways of
dividing it with a line, giving all 2-piece partitions. Then, 3-piece partitions are generated
by partitioning 2-piece partitions a second time, and so on until the list of partitions is
exhaustive. Higher-order diagrams are generating by, for each new line, also enumerating
all ways of redistributing the order of the partitioned piece. As an example, the three ways
of adding a line to the following partition,

@ - @00 IV IO

gives nine new partitions. The seventh is a duplicate of the fourth, and should be removed
to avoid double-counting.

Flavour splits are generated by adding extra partitions inside the polygons, and care
must be taken to only allow splits that are supported by the Lagrangian. Lastly, singlet
propagators are easily generated by enumerating all ways to substitute one or more internal
lines with special singlet lines, with the requirement that the line separates polygons that
are at least O(p*).

This procedure is guaranteed to generate all flavour-ordered diagrams, but will generate
many duplicates. In order to avoid double-counting, the program must be able to tell
when two partitions are equivalent. This can be achieved by reducing all partitions to a
representation that is unique for each class of equivalent partitions, as is the focus of the
next section.

5.3 A symmetry-respecting representation of partitions

As we will demonstrate below, all information contained in a partition, including kinematic
connections between traces, can be encoded in its perimeter. The perimeter is circular,
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which geometrically represents the cyclicity of flavour traces. For flavour-split diagrams,
each trace gets its own circular parameter by pulling it apart in the manner of (5.4).

From these observations, we can develop a symmetry-respecting representation of par-
titions. To each corner of the perimeter, we assign some symbol that describes the inform-
ation encoded in it. The entire perimeter of an n-gon partition can then be reduced to a
string of n symbols. Cyclically shifting the string corresponds to rotating the partition,
so all strings representing equivalent diagrams are cyclic shifts of each other. By defining
a suitable ordering on the alphabet of such symbols, we can determine the least cyclic
shift (LCS) of the string, i.e. the cyclic shift that makes the string “least” in the sense of
lexicographic ordering. Then, all equivalent diagrams are reduced to the same string, mak-
ing comparisons trivial. The computation of LCSs is a well-known problem with several
efficient solutions such as Booth’s algorithm [33].

In order for such a representation to work, the assignment of symbols can not depend
on the absolute position of any corner. For instance, if we label a corner “1” and state
that it is connected to corner 4 with a line, the representation becomes worthless — an
equivalent partition may label the corresponding corner “2” and say that it is connected
to corner 5. If we instead drop the corner numbers and only state the relative distance —
“this corner is connected to the corner 3 steps down the perimeter clockwise”, or “3” for
short — we can represent all O(p?) partitions. For instance,

where the alphabet of symbols consists of (possibly empty) ordered sequences of line
lengths, read counterclockwise. The obvious ordering for such an alphabet is lexicographic
ordering of the sequences. The LCSs of the representations are shown. The second string is
periodic, which stands in direct correspondence with the partition being symmetric. Note
that each line is described twice, but that this redundancy is necessary — removing it
would break the symmetry of many partitions.

For higher-order diagrams, additional information about order and flavour splits is
needed. These are properties of vertices, and therefore of pieces of the partitions, but
pieces can unambiguously be mapped onto lines: each line has exactly one piece to its left,
in the direction it is drawn. This way, all pieces are described by at least one line, with
the exception of 1-piece partitions. This case is easily covered by also counting the lines
that make up the perimeter.

Flavour splits are, as mentioned above, best represented by separating the partition
into traces and representing each one individually. For each vertex, we may then list the
representations of all other traces connected to it. We may resolve the ambiguity created
by the fact that traces commute by always sorting lists of representations lexicographically.
However, we can not just cross-reference the representations to represent connections, since
this would lead to reference loops that can be shown to make finding LCSs impossible for
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sufficiently complex partitions. Instead, each vertex must maintain a “slave” copy of all
traces connected to it. When a “slave” would list the connection back to its “master”, it
instead inserts a dummy symbol with a fixed place in the lexicographic ordering, thereby
removing all reference loops. The downside of this is that each trace is represented several
times, once as a master and several times as the slave of other traces. However, this
redundancy appears necessary.

The last thing to add is singlet propagators, which act as lines on the perimeter of a
trace. The quality of being a singlet, as well as a reference to the trace it connects to,
can simply be added to the list of properties of that line. With these rules in place, an
illustrating example is given in figure 1.

e Length 1, O(p°)
>_ ./ e Length 1, O(p*), connected to:
MR — Length 1, O(p*), connected to: master
— Length 1, O(p?), connected to: master

Length 2, O(p°)

e Length 1, O(p%)
Length 3, O(p?), connected to:

— Length 1, O(p*), connected to: master
— Length 1, O(p?), connected to: master

Length 1, O(p®), singlet connected to:
— Length 1, O(p*)

N — Length 1, O(p*)
— Length 1, O(p*)

)

— Length 1, O(p?), singlet connected to: master

E B

Figure 1: An O(p'?) diagram showcasing most features of flavour-ordered diagrams. The
diagram is translated to a polygon partition, which is pulled apart into traces in the
manner of (5.4). On the right, the LCS of the representation of the 4-trace is shown,
with each bullet point being one symbol in the string. The trace is traversed in the order
indicated by the numbers in the pulled-apart version of the partition. To find the LCS,
the alphabet of symbols has been ordered by recursively applying lexicographic order to
their subcomponents. Note how both the other traces appear as slaves least once.

With this representation defined, the method of generating flavour-ordered diagrams

is completed. However, the most error-prone part of manually listing flavour-ordered dia-
grams is often the correct compensation for symmetries when applying Zg. At high orders,

35



many intricacies and caveats appear. An efficient solution to this issue is presented in the
next section.

5.4 Determining diagram symmetries

As stated below (5.7), rotational symmetries of a diagram translates into periodicity in
its representation. This holds also for the more detailed representation developed in the
previous section — if it did not, the representation would not be valid. Therefore, the
answer to the question “how many cyclic permutations should this trace be summed over?”
is “the period of its representation”. This covers all the cycling rules described in section 3;
specifically, any trace that is contained in a single vertex does not require cycling, since its
string represenation is always a repetition of a single symbol. The only exception is that
the presence of a singlet breaks all cyclic symmetries of a trace, a rule which is easy to
apply to the representation.

At a first look, symmetry under swapping equal-size traces appears equally straightfor-
ward: two traces are equivalent under swaps if and only if their representations are equal.
Therefore, we should perform all swaps of traces that are equally large but not equivalent.
Let us investigate this using the diagrams

<) PLQ HEQ

In the first diagram, the rule works correctly: the 2-traces are identical, and are not
swapped. In the second diagram, the 2-traces “see” different mirror images of the non-
symmetric 4-trace, and are therefore considered inequivalent, prompting a correct swap.
In the third diagram, the 4-trace is symmetric, so the 2-traces end up identical. This
gives symmetry under swapping the 2-traces, and a separate symmetry under cycling of
the symmetric 4-trace, but this is wrong — we only have symmetry under both operations
combined. If we were to blindly trust the symmetry of the representation, we would have

8 6 8 4
1 4 1 4 3 2 3 2
N | oS = e | oS - N | oS = Ne | oS
2 3 f— 2 3 f— 4 1 f— 4 1 5
5 7 7 5 5 7 7 5
6 8 6 8

(5.9)
while only the first and the last labeling are actually equivalent. More such problems

emerge in
< -@

I 1v

(5.10)

where we have distorted the 12-gon partition to make it more readable. The first diagram
has four 2-traces, which we have labeled for the purposes of this example. The repres-
entation suggests symmetries under exchange of trace I and IV, and under exchange of
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IT and III, while the diagram is in fact only symmetric under both exchanges performed
together. In the second diagram, the 4-trace has period 1 and all 2-traces are identical,
but the diagram is only symmetric under cycling of the 4-trace combined with a similar
cyclic permutation of the 2-traces.

These problems have a common cause: since traces are unlabeled, equivalent traces are
seen as freely interchangeable, so we fail to recognise that we often need both a cycling and
a swap to arrive at an equivalent labeling. The solution is the following rule: Whenever
a symmetry relies on the equivalence of two or more traces, that equivalence shall not be
used for any other symmetry. By further adding that cyclic symmetries are determined
before swapping symmetries, all the above problems, and most likely all other problems of
the same kind, are solved. The cyclicity of the 4-traces in (5.8-5.10) rely on the equivalence
of the 2-traces, so the excessive swapping symmetry is removed. In the first diagram of
(5.10), the equivalence of each pair of traces depends on the equivalence of the other pair,
so swapping symmetry is only invoked once.

With these methods and rules laid down, we at last have a fully functional way to
generate all flavour-ordered diagrams that contribute to a given process. In conjunction
with this thesis, an implementation called fodge (flavour-ordered diagram generator),
which interfaces with the FORM library used to perform the calculations, was written in C
and used for the calculation of some of the larger amplitudes. More details can be found
in appendix E.

6 Examples of amplitudes

Using the methods developed in the previous sections, we have computed several stripped
NLSM amplitudes, some of which have not previously been determined. This section lists
and explains some of those that are simple enough to write down in a sensible way.

6.1 4-point amplitudes

These amplitudes are by far the simplest, since their tree-level diagrams contain no propag-
ators and only carry two flavour structures ({4} and {2,2}), or only one in the O(p?) case.
At O(p®) and above, they only receive contributions from the Lagrangian terms with no
more than four u,’s, which is a tiny subset of the total Lagrangian.

6.1.1 The O(p*) amplitude

This is the simplest amplitude in all of the NLSM. It is given by a single diagram and a

simple stripped amplitude,
t
>< — i Ma =5, (6.1)

where t is the Mandelstam invariant (p; + p3)?. We have pulled factors of ¢ and F' over

to the left-hand side for clarity. The form of the right-hand side could in fact be guessed
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based on symmetry, since t is invariant under Z,, whereas s and u transform into each
other under it. The only other invariant kinematic structure would be s + u, which is
simply —t due to conservation of momentum.

If we plug (6.1) into (3.15) and apply some SU(2) group algebra, we recover the familiar
Ny = 2 amplitude
—4q
2
with the Mandelstam invariants defined as in section 4.2.

M;ch(S, t, U) — [Séabécd + t(gacabd + uaad(sbc} (62)

6.1.2 The O(p!) amplitude

This amplitude consists of the two diagrams

>< — Z'F4M47{4} = 2L3<U2 + 52) + 4L0t2, (63)

>< — iF* My 20y = 8L15” + 4Lo(1* + u?), (6.4)

which includes the simplest example of a flavour split. There are now two independent Z,4-
invariant kinematic structures, t> and s? 4?2, and likewise two independent L3 2y-invariant

ones, s2 and t? + u2. All four are reflected in one term each, and neatly correspond to the
LECs.

In analogy with (6.2), the complete SU(2) O(p*) amplitude is

g
M (s,t,u) = F—Z{ [4Lo(u? + us) + 2L15% + Lo(t? + u?) + 21357 575
+ [4Lo(s% + st) + 2L1t* + Loy(u® + %) + 2Lgt?] 56" (6.5)

-+ [4L0(t2 + tu) + 2L1u2 + L2(82 + t2) + 2L3U2:| 5ad5bc}.
The Ly, Ly sector is valid for any N (using 7 = 2) due to the simplicity of 2-traces.

6.1.3 The O(p°) amplitude

Like its lower-order analogue, this amplitude has only two diagrams,
>< — iF4M6’{4} = —L673t(82 + UZ) — 2L674t3, (66)

. 2 .
>6< — iF4M6’{2’2} = —2L671(t3 -+ US) + §L672<83 -+ t3 + U3>. (67)

Like at O(p?), there are two independent Z,-invariant kinematic structures, t* and ¢(s* +
u?), and two independent Zgs oy-invariant ones, s®> and s(t* + u?). These four corrsespond
to the four LECs — s® 4+ ¢* 4+ u? is a linear combination of s* and s(t* + u?). We will not
state the full amplitude, but its form is analogous to (6.2) and (6.5).
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6.1.4 The O(p®) amplitude

This is the only O(p®) amplitude that is even remotely simple to calculate, although the
time consumption of the direct computation is comparable to that of much more complex
amplitudes, such as the O(p*) 8-point. Like all its analogues above O(p?), it has only two
diagrams,

1
>< — ’L'F4M8’{4} = L87452u2 + §L8’5t2<82 + U2) + Lg’6t4, (68)
>8< — ’l'F4M8’{2’2} = L87182 <t2 -+ U2> + L&Q(t4 + U4) + 2[;8731%21[,2, (69)

There are now three independent Z,-invariant kinematic structures, t*, #*(s*> + v?) and
s*u?, and coreespondingly three for Zs 3. This is reflected in the six LECs.

This sequence of diagrams can be continued to even higher orders, and determining the
terms in the O(p') and O(p'?) Lagrangians that conly contain four u,’s should not be
excessively difficult.?> However, this is getting ahead of the more interesting problems of
going to higher order or increasing the number of legs. Without dwelling longer on this,
we will therefore move on with the latter.

6.2 The O(p?) 6- and 8-point amplitudes

The leading order in the power counting offers a relatively simple playground for flavour-
ordering, free from splittings and singlets. It is relatively well explored, and the amplitudes
presented here were also calculated in [6]. Therefore, this section is mainly for comparison
with the more complicated amplitudes below.

The 6-point amplitude is given by the diagrams

(6.10)

and has the amplitude

—4Z'F4M2,6 = S12 + S23 + S34 + S45 + Ss6 + Se1
B (812 + 523) (545 + 556)  (S23 + S34)(S56 + S61) B (534 + S45) (861 + 512)

- 5

S123 5234 5345
(6.11)
which suggests the reduced form (see section 4.3)*!
1
_ 4iF4/\/l2,6 _ {312 -3 (512 + 8238,)(845 + S56) } +[Z), (6.12)
123

2 M 10,{4} Will be a linear combination of 5%, s3tu and st?u?, and Mg 12,2y Will be a linear combination
of 7, t3us and tu?s?, since these are the only independent O(p!®) kinematic structures that are invariant
under Zyy and Z(s 2y, respectively. The coefficients will be linear combinations of the LECs of the terms
in L10 that only contain four u,’s. These terms, along with the rest of L1, are currently unknown.

24The above amplitude has 6+ 12 terms in the form (4.12), organised into two separate orbits under Zg.
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where the expression in braces is my (6}, and [Zg] indicates summation over all cyclic per-
mutations. Note the factor of 1/2, which contains the statement that the second term
has twofold symmetry under rotation, a trait that is shared by the second diagram. In
the minimal parametrisation, the two terms (plus their cyclings) are in fact exactly the
respective values of the two diagrams. In other parametrisations, additional terms show
up and cancel to give this parametrisation-independent expression.

The 8-point amplitude is given by the diagrams

% I I \VAV4 (6.13)

and its stripped amplitude is, in a similarly reduced form,

As1o + S1234  (S12 + S23)(Sa5 + S56 + Se7 + S78 + Saser + Sz678)

— 8iF°Myg = { -

2 S123
i 1(812 + 593)(S1234 + Sas67) (S56 + S67)
2 51238567
S12 + S S + s Sg7 + S
+( 12 + S23)(S1234 + S45) (S67 78)} +(Zs] (6.14)
51235678

where there is again a rather direct correspondence between terms and diagrams, which is
most manifest in the minimal parametrisation. This is the only 8-point amplitude that is
simple enought to be presented in this fashion with any degree of readability.

6.3 The O(p') 6-point amplitude

This is a novel result of this work, and hinges decisively on the use of split-trace flavour
ordering. It was also recently arrived at in a different form by [9]. The amplitude is given
by the four diagrams

K K 3L y<

Note that unlike its O(p?) counterpart, the third diagram is not symmetric due to the
asymmetric placement of vertices. The single-trace stripped amplitude is

) S12t+ S 53 + 52
—_ ZF6M4,6 = L3 {812 (512 + S34 + 845) — ( 12 21) ( 15 56) } + [Z6]
123

(512 + 523) (545 + 356)2 } + [Zg]

+2Lg {512 (S12 + S34 + 2545) + S123 (Se12 — S61) — S
123

(6.16)
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In order to find the reduced form of the flavour-split basis, it is extremely helpful to have
a closed Mandelstam basis. In terms of the basis By 4y of (D.1), it is

L to +t3 +t4)2 ts — 2(ts + ¢
—iF My oy = = {t1 [t1+ 2ty +t3 — 3(ts +t6) | + ettt t) 2[153 (s - to)] }HZ{M}]
1

2

L t
+ ﬁ {t1 {tl + 2ty + 53 — 3(ts + tﬁ)] + 4t2 — 2t2

N [(ta + t3 + ta)* + 4(t7 + ts + to)?] [t3 — 2(t5 + t6)]
2t

} + [Z{QA}]. (617)

Note that the summation over cyclic permutations is replaced by summation over Zgy 43.

6.4 Further amplitudes

We have computed the O(p®) 6-point amplitude, and using the closed mandelstam bases
presented in appendix D, it is possible to present its reduced form in two or three pages.
However, the discovery of these bases came so late in the process of this work that we
have not had the time to organise the amplitude in a satisfactory manner. Rather than
presenting the raw result produced by FORM without the manual adjustments that place
the amplitude in its most readable form, we have chosen to leave it out.

We have also computed several amplitudes whose expressions are too large to overview.
They have been verified by checking their Adler zeroes, and in some cases by running brute-
force Feynman diagram calculations. Further beyond that, we have generated the flavour-
ordered diagrams of many more amplitudes using fodge. Evaluation of those amplitudes
require more optimised handling in FORM, more computing power, or simply more time.
Here, we only summarise the number and general properties of the diagrams to give an
idea of how the complexity scales. The summary is given in table 3.

In the table, we note that the number of diagrams grow more rapidly with n (the number
of particles) than with N (the power-counting order). Especially when N > n, the number
of new diagrams is very small. This is also reflected in the computational effort needed:
the O(p?) 10-point, O(p°) 8-point and O(p®) 6-point amplitudes took approximately 10
minutes each to calculate with FORM, while the O(p*) 10-point amplitude took almost
and hour and the O(p?) 12-point amplitude took over 2 days. At high N, the calculation
of vertex factors takes significant time, while at high n, the conversion to Mandelstam
variables is very time-consuming due to the large dimension of kinematic space.

As the table shows, we have calculated all amplitudes with less than 100 diagrams,
excluding N > 10, where the Lagrangian is not yet known. If we decide to push the
frontier of large n further in the future, we can expect the required computational effort
to be severe.
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Number of diagrams

N

0T sy, vy sUE) UE) su@ o) | Comrued
4 1 Yes (6.1)
6 2 These columns equal SU(Ny) Yes (6.12)

9 8 4 Yes (6.14)
Ow’) 10 16 Yes (see [6])
12 73 Yes*

14 414 No

1 2 1 1 | Yes (6.4)

6 4 These columns equal SU(Ny) 2 2 | Yes™ (6.16-6.17)
O(p*) 8 18 8 8 | Yes™

10 90 43 43 | Yes*

12 577 283 283 | No

1 2 2 2 2 1 T | Yes (6.7)

6 6 10 9 9 8 4 3 Yes'™

OW) g | 50 45 48 43 18 14 | Yes'

10 358 316 348 316 128 97 | No

1] 2 2 > 2 1 T | Yes (6.9)
O@p®) 6 11 10 10 9 4 3 | Yes*

8 104 84 97 7 34 21 | No

Table 3: Summary of the number of O(p") n-point diagrams. The SU(N;) column shows
the general count, and the U(Ny) column shows the count without sinlget diagrams. The
SU(3) and SU(2) columns show the number of distinct diagrams left when some Lagrangian
terms have been eliminated in the manner of section 2. Note that the distinction for Ny = 2
and N; = 3 emerges first at O(p*) and O(p®), respectively, and that the distinction between
SU and U emerges first at O(p®). The rightmost column states whether an amplitude has
been computed by us, and provides references to the explicit amplitudes when possible.
Amplitudes marked with an asterisk have to our knowledge not been calculated before; the
O(p*) 6-point amplitude was only recently reproduced by [9]. Amplitudes marked with a
dagger have been verified with a brute-force Feynman diagram calculation; the remainder
rely only on Adler zeroes for verification.
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7 First steps towards generalisation

As the final part of the thesis, we will briefly cover some areas outside of its main scope.
This includes the basic principles of how our flavour-ordering methods could be extended
to the full xPT and to loop diagrams, with the hope that it might serve as the basis of
future work.

7.1 A brief look at YPT

The NLSM is a very general theory, but as mentioned before, it does not describe the full
suite of meson properties when applied to low-energy QCD. Chiral perturbation theory
(xPT) adds extensions to cover such shortcomings. This thesis makes very limited use
of full xPT (the main exception is section 7.2), but it is illuminating to see the broader
context in which our version of the NLSM lives.

XPT can be derived from an extended QCD Lagrangian,

Lacp, ext. = Laep + @7 (vy + v5a,)q — G(s — iv5p)q, (7.1)

where Lqocp is as in (2.17), and v, a,, s and p are Ny x Ny matrices that parametrise the
additional couplings. In spacetime, they transform as a vector, axial vector, scalar, and
pseudoscalar, respectively.

It is convenient to define the linear combinations r, = v, + a,, which couples to right-
handed quarks, and ¢, = v, — a,, which couples to left-handed ones. The Lagrangian is
invariant under chiral symmetry if the fields are given the transformation properties

Cu == 9ulugl, +i910,9L,  Tu = GRTUGR + i9ROuGR, 5+ D = gr(s + ip)g],
(7.2)
with ¢ = (g1,9r) € G as usual. Any symmetry-consistent coupling can be introduced
through these fields; for instance, much of the Standard Model is contained in

ry=—eQA,, by = —eQA, —e(W,T + TTWM_), s=M, p=0, (7.3)

where M = diag(my, mg, ms, . ..) is the quark mass matrix, Q = diag(3, —3, —3...) is the
quark charge matrix, e is the elementary charge, A, and Wf are electroweak gauge fields,
and T is a quark mixing matrix. What remains is Z couplings in ¢, and Higgs couplings
in s, but more exotic couplings can be introduced if desired.?

Lagrangian building blocks similar to U, U can be constructed as
X = 2By(s+1ip), FIY = oy —over —i[en, 07], FE = oM'r? = o"rt —i[rt, r"], (7.4)
where By is a new LEC.?® These building blocks are O(p?) and transform as

X 5 grxgt,  FF L g FRgl, FR L grFR gL (7.5)

%50ne could also introduce the 2-tensor term 3 [v,,, 7, ]t"* to (7.1) to complete the family of Dirac bilinears
and introduce couplings of 2-tensor nature through ¢*¥. This option is not considered in [13] and [16, 14],
but is explored in [34].

%Ff ", are analogous to the field-strength tensor of a gauge theory, and are indeed equal to the electro-
magnefic field-strength tensor if only the electromagnetic couplings are added.
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Note that Ff r are hermitian, but that x, in general, is not.
Following [14, 16], less cumbersome building blocks in the same family as u,, V, can
be defined as
e = ulyu £ uylu, Y = uFtut + ul Firu. (7.6)

When the gauge fields v, a,, are introduced, local invariance requires modification of w,,:
n (2.23), we must change d,u — (9, — ir,)u and 9,u’ — (p, — il,)u’. The same changes
apply to (2.24), and the right-hand side of (2.25) becomes —f_,,.

These building blocks (u,, x+, f”) along with the covariant derivative of (2.24) form
the foundation of the full O(p®) Lagrangian of [14] and the unpublished O(p®) Lagrangian
associated with it. At O(p?), xPT introduces only one additional term compared to the
NLSM Lagrangian, since y_ has odd parity and f{* = 0:

pr_ I
Ly = Z(uuu“ + X+4)- (7.7)

The additional LEC that would emerge is absorbed into By. At O(p*), the full xPT
Lagrangian [4, 5] takes the form

Ly = Lo(uuu'u”) + Li{u,ut)(u,u”) + Lo(u,w,) (ufu”) + La(uw,uu,u”)
+ Law ) (x+) + Ls(uuu'x+)

+L6<X+>2 +L7<X7>2 n Lg + H2< +> < > (7.8)
— Lo ) + QHQ;L“W o)+ MU“”LM

where some LECs appear in linear combinations to conform with the original formulation
in [4, 5], which uses x and F’ fl;% The H; correspond to terms where all instances of ¢* can
be eliminated, leaving only the additional fields.

7.2 Flavour-ordering and mass

In order to more realistically model the light but non-massless mesons of low-energy QCD,
we may borrow a minimal part of yPT where

X = 2BUM7 g,u =Ty = 0, (79)

where M = diag(m,, mg, . . .) is the N-quark mass matrix. This inclusion adds the x term
to the O(p?) Lagrangian in (7.7), and includes Ly, ..., Lg and Hy in the O(p*) Lagrangian
n (7.8).

7.2.1 Scalar meson masses

The xPT addition to £, generates masses through the expansion

F? By F
I<X+> :

<|v| (U+U")) = BoF*(M) — Bo(M®?) + O(d*). (7.10)
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The first term on the right is merely an additive constant, but the second expands to the ca-
nonical mass terms of the fields. However, it turns out that all ¢* are not mass eigenstates;
instead, the SU(2) Lagrangian grants well-defined masses to the linear combinations

1:|:‘ 2
ﬂ_ﬁ::¢ i¢ 0

N

where we have identified the states as the three lightest mesons. These are also charge
eigenstates, and including electromagnetic interactions in yPT confirms that 7 are indeed
the charged pions. All three fields gain the mass M2 = By(MO) = By(m., + my).

For Ny = 3, the mass eigenstates and masses are

= ¢°, (7.11)

1:|:7, 2
71':': = %, M,?i = BO(mu + md)7
(254:|:i¢5 )
K¥f="""' M2, = By(my +m,), 7.12
7 i+ = Bol ) (7.12)
_ 6:|:Z 7
K% K° = gL Mo = By(mg + my)

N

for six of the fields. For the remaining two, ¢* and ¢®, there is a nontrivial mixing angle
0, so we define the mass eigenstates

70 = ¢ cos § + ¢°sin g, n=—¢>sind + ¢°cosd. (7.13)
Carrying out the algebra for diagonalising the mass matrix, we arrive at

—V/3(my, — mg)

tan(29) = T pep——

(7.14)

which is a very small value when the conventional quark mass ratios ms ~ 20mg ~ 40m,,
are used.?” To leading order in §, we have

My, + Mg + 4my,

: YetrOE?),  (7.15)

™

M2 = By(my +mq) —e+ O(e?),  M!=DB,

using the small parameter

By (mu —mg)?

— ~ 1073 M2, 7.16
2 2mg — (my +my) i ( )
These masses offer a reasonably accurate first approximation of the measured meson

masses, although ¢ is significantly smaller than the physical difference between M2, and
M?2.. More xPT corrections can be introduced for greater accuracy; see e.g. [8].

271f the quark masses are instead taken to be equal, the mass eigenstates become degenerate and 6 is no
longer well-defined.
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This process can of course be carried on to larger Ny, but the difficulty increases
while the physical relevance decreases, since the lightest vector mesons are lighter than
the lightest scalar mesons containing charm quarks. The mass calculation can also be
extended to U(3) to include the singlet particle ' = ¢°, which mixes with 7¥ and 7. This
is algebraically messy, though, and offers a very poor approximation of the n" mass.

The x+-containing terms in £4 generate mass-dependent interaction vertices, some of
which are 2-point, which makes them similar to the canonical mass term. The resummation
of these gives corrections to the leading-order masses, and their presence gives rise to several
new mass-dependent interaction vertices that must be taken into account. However, this
is outside the scope of this thesis.

7.2.2 Massive propagators, equal-mass case

If all particles are granted equal masses, with m being that mass, the NLSM propagator
generalises straightforwardly as
iéab iéab

q2 q2 __TnQ'

(7.17)

This is easy to implement and does not interfere with flavour-ordering, but its effect on
the soft limit is dramatic. Sending p; — 0 is not compatible with p? = m?, so our previous
definition of Adler zeroes is invalidated. The simplest yPT amplitude,

t
—iF?Myy = 3~ m?, (7.18)
does vanish at t = 2m?, but this is not a permutation-invariant statement, and the dressed

amplitude has different soft limits. With the Ny = 2 mesons,

M(77% — 7%7F) oc t — M2, M(rtr™ = ataT) oct — 2M2, (7.19)
M(rE = m8n) oc s — 2M2, M(77° — 77%) o M2 '
All other combinations yield zero — charge conservation is a global symmetry.
The lack of easily accessible Adler zeroes removes the main error checking procedure
from our methods, and hides the fact that higher-ordered vertices are constructible from
lower-order ones. It might be possible to circumvent this with generalised definitions of
the soft limit, but due to these issues, no actual amplitude calculations involving massive
particles have been carried out in this work.

7.2.3 Massive propagators, general case

Regardless of the problems introduced by masses, let us press on to the more general case.
When the particle masses are inequal, the simple extension (7.17) is not possible. Instead,
we will have

iéab

e iA(q), (7.20)
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where A is some flavour-space matrix, which may be very messy in the general case. If all
particles are mass eigenstates, it will have diagonal entries A%(q) = 1/(¢?> — M?2), with all
other elements zero. Even in this simpler case, it is still not possible to apply (3.11) to
achieve flavour ordering.

In order to diagonalise A, we must change basis from ¢ to a basis of mass eigenstates
7%, accompanied by a corresponding change to a different basis of generators t* — 7%, so
that ® = ¢*t® = n%r%. If the fields are also to be charge eigenstates, such as the meson
fields in (7.12), we must abandon the requirement that the generators be hermitian, but
we can require that 7% = 7° for some b given a, since 7*" = 7®. This allows us to generalise
trace-orthogonality and commutation relations as

a

<T“7’bT> = 769, [7’“, Tb} = ik = %= _—Z< [7’“, Tb} TC>, (7.21)
TK
where ¢ are the structure constants of the new basis. They are totally antisymmetric
but not necessarily real; for instance, Ny = 2 has ¢'* = —i. With these definitions, we
recover the familiar identities (3.11) and (3.12):
1 a at 1 1 a at 1
—( XN 1Y) = (XY) — —(X)(Y), —(X7Y ) = (X)(Y) — —(XY). (7.22)
T Nf T Nf
With A%(g) not proportional to §%°, this is still not enough to do flavour ordering, but
the generators offer a way to salvage it. In the adjoint representation (see appendix A, the

generators
()¢ = —ip* (7.23)

are (N7 — 1) x (N} — 1) matrices rather than Ny x Ny, but can still be shown to have
the same properties as 7. For our purposes, the important thing is that one can form a
basis for diagonal (NJ% —1)x (Nf2 — 1) using squares of adjoint generators. That is, we can

express

2
fol

A%(q) = ) (a)"ax(q) (7.24)

k=1

for some coefficients xj(q). For instance, with N; = 2 we have
oF = diag(0, -1, —1), a3 = diag(—1,0, —1), a3 = diag(—1,—1,0), (7.25)
which can be used to represent A like

1/2 1
q2 - Mio q2 - M,%i

Alg) = 3 [+@tvan | 2| )

q* — M,?:t

where the bracketed expressions are the z4(¢). A similar construction is possible for Ny = 3,
where there are 5 different masses and 5 linearly independent 8 x 8 diagonal matrices
constructible from the generators. Most likely, the construction is possible for any Ny, but
we have not checked larger values.
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With an expression like (7.24) available, we can generalise the flavour contraction over
a propagator like

(XTYA®(Q)(TTY) = an(g)(X7%) (a)*(7Y)

= > w(@)(XT) ™™ (1Y)
(7.27)

_ Z 71 (q) <X7_a><7_aT [TM, ch} >< [Tc’ Tk]Tb><7_bTy>

T2K2

STy ] [ v,

K2
k

making repeated use of various identities. When all masses (i.e. all x) are equal, this
reduces to (3.11).

The above expression represents a weakened form of flavour ordering. The ordering
of X and Y is conserved, and x;(q) are readily absorbed into the kinematic factors, but
various extra generators are inserted into the traces. It is not entirely clear how their
presence interacts with the orthogonality of flavour structures, but it seems likely that this
allows a more complicated, but still valid, form of flavour-ordering to be carried out even
with particles of inequal masses.

7.3 Flavour-ordering and loops

So far, all discussion has been about tree diagrams, but the flavour-ordering techniques
developed here can be extended to loop diagrams. When connecting two legs of a diagram
through a loop, the relevant flavour structure contraction is carried out through (3.12) if
both flavour indices reside in the same trace. The first (multiplet) term splits the flavour
structure into (X)(Y), where X and Y can be interpreted as the “inside” and “outside”
of the loop.?® Therefore, the three diagrams

[ ] \ \J >4< (7.28)

are all O(p*) and have the same flavour structure, but have different symmetry proper-
ties. We have drawn the loops in odd shapes to emphasise the interpretation as further
connections applied to an underlying tree diagram. Since (t*) = 0, the first diagram among

S S 2 % o

281t is of course arbitrary which side is considered the inside, but the naming is nonetheless intuitive.
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is zero, while the other two have the same order and flavour structure. The middle diagram
gains a factor of (1) = N from the empty inside.

When a loop connects two flavour indices residing in different traces, (3.11) is used, and
the multiplet term joins the flavour structures. This applies equally well when adding a
second loop between the inside and outside of another loop to form a non-planar diagram.

Therefore,

are all O(p®) and have the same flavour structure.

In both cases, the singlet term can be interpreted as the subtraction of a diagram with
a singlet particle in the loop. As can be seen from (3.11) and (3.12), singlet loops leave the
existing flavour structures unchanged: insides and outsides are not separated, and separate
flavour structures are not joined. Therefore, in the singlet loop diagrams

the first pair of diagrams shares order and flavour structure, as does the second pair. The
last diagram is zero, since its flavour structure is split {1, 3}.

No actual loop calculations are carried out in this work, but the above flavour-ordering
rules should hopefully simplify future developments.

8 Summary, conclusions and outlook

In this work, we have successfully developed a fully general framework for performing tree-
level calculations in the NLSM with any number of legs and any number of derivatives
in the Lagrangian. The methods significantly lessen the efforts needed to compute the
amplitudes, and shortens the expressions needed to write them. We have shown how the
procedure of obtaining an amplitude can be efficiently automated rather than depending
on laborious hand-construction of diagrams. Lastly, we have as a side-effect simplified the
act of squaring the amplitude into a cross-section (see the end of section 3.7).
Flavour-ordering has its limitations, though. It is constrained to the massless NLSM
at tree-level, although extension to massive yPT and loop diagrams might be possible, as
shown in section 7. The main limitation is that it is constrained to theories based on the
group algebra of SU(Ny) and U(Ny), since it relies on the existence of (3.11-3.12). In a
different group, flavour-ordering is not guaranteed.?® This limitation is not seen in soft

29SO(Ny) has the (3.11)-analogue (Xt*)(t*Y) = 2((XY) — (XYT)), where the transpose reverses the
order of the indices. This is less useful than true flavour-ordering, but might still offer some advantage
compared to brute-force Feynman diagrams.
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recursion (section 4.5), where a much larger range of theories (see examples given in [32]),
many of which do not have the notion of stripped amplitudes, can be constructed.

Thus, we have a trio of methods with different advantages and drawbacks. Flavour-
ordering is powerful, but specialised to SU(Ny)- or U(Ny)-based theories, and suffers from
a rapidly growing number of diagrams. Soft recursion is more widely applicable, but al-
gebraically involved and not as readily automated. The developments of [9] offers some
improvements, but soft recursion is either way unable to calculate O(p") n-point amp-
litudes in a theory with soft degree o if n > o N. This mostly excludes O(p°) calculations
in the NLSM, since the very complicated 6-point amplitude is required as a seed. Lastly,
brute-force Feynman diagrams are universal and cover the cases where the other methods
fail, but require orders of magnitude more tedious algebra than flavour-ordering.?’

Most of the work in this thesis has been geared towards calculating amplitudes with
more legs at higher orders, but as seen in section 6.4, we are approaching the limit of our
current computational ability. The usefulness of such extreme amplitudes is limited, since
even 6-point scattering can be expected to be rare in reality. Also, the large number of
unknown LECs limits the predictive power of the high-order interactions. Another issue
is that all tree-level diagrams beyond O(p?) share power-counting order with several loop
diagrams, so there is no use in pursuing higher orders at tree-level until the corresponding
loop level has been reached. On the other hand, our methods and results can hopefully
serve as a useful backbone for such efforts, as outlined in section 7.

There are also other interesting directions to develop. We define flavour structures in
a basis of traces, but such a basis is non-orthogonal (although section 3.7 shows that the
SU(Ny) version comes close to orthogonality, especially for large Ny) and overcomplete.
In perturbative QCD, more well-behaved bases such as the DDM basis [35, 36| and mul-
tiplet bases [37, 38] have been used to define colour structures and perform e.g. BCFW
recursion [39]. In light of the many analogies we have seen between our methods and per-
turbative QCD, similar constructions could be possible also for the NLSM, and may offer
computational advantages.
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A The Lie algebra of SU(N;) and U(Ny)

This is a more thorough description and derivation of the group algebra used above.

A.1 General definitions

In their usual representation, U(Ny) is the group of Ny x Ny unitary matrices, and SU(Ny)
is the subgroup of unitary matrices with determinant 1. Since a general complex matrix
of that size has QNJ% degrees of freedom, a unitary matrix has half that, so the dimension
(number of generators) of the U(Ny) algebra is N7. The extra constraint on SU(Ny)
reduces this by 1.

In order to generate an infinitesimal element U with these properties through

U(a) = exp(iat?), (A.1)

unitarity dictates that (t%)7 = ¢, and since detU = exp(ia®(t*)), SU(N;) places the
further constraint that (t*) = 0. It is convenient to let the generators of U(Ny) be the
same as those of SU(Ny), plus an extra non-traceless generator t° that effectively generates
det U.

A sensible basis of generators should have an orthonormality relation. The most sensible
option is to base it on the trace,

(t*") = 76, (A.2)

where 7 is some normalisation, for which multiple conventions exist. This relation is
satisfied also for U(Ny) if t° = 14/7/Nj.

The SU(Ny) generators form a basis for the space of traceless hermitian matrices, and
traces can be included by adding t°. Therefore, for any N; x Ny matrix A,

1

1
= A"+ A, = —(4t°), = =
A= AT + A% A® At? A°
T Ny

{4), (A.3)

where 1 is the Ny x Ny unit matrix. In U(Ny), we can simply let a run from 0 to Nj? —1
and drop the separate A° term. When the coefficients A and A? are real, A may be any
hermitian matrix, so when they are purely imaginary, it may be any antihermitian matrix.
Therefore, complex coefficients allow A to be any matrix.

Being a Lie algebra, the basis of generators is closed under application of the commut-
ator, so we may define

[, 1] = ik feere, (A4)

where f%¢ are called the structure constants of the algebra, and & is another normalisation.
The values f%¢ depend on the particular choice of basis. The structure constants are real,
since the commutator is antihermitian, and they are antisymmetric in a and b, since the
commutator is. They are in fact antisymmetric in all indices, since f2¢ o <[t“, tb} tC> makes
them cyclic in the indices. As a consequence, the U(Ny) structure constants are zero when
any index is zero, since t° commutes with all matrices.
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Lastly, the generators also have well-defined anticommutation relations. They are fixed
by <{ta,tb }> = 2<i§“tb>7 so the anticommutator must consist of something that satisfies
(A.2), possibly plus something that is traceless and hermitian. In a similar fashion to the
commutator, we therefore have

p
{1,1°) = Fﬂsab + rdabere (A.5)
f

where d¢ are the anticommutator analogues of the structure constants. Based on argu-
ments similar to those for f¢ they are real and totally symmetric. In SU(2), f®¢ o e
and d®° = 0, where € is the Levi-civita symbol with €23 = 1.

By combining the commutation and anticommutation relations, one gets the generator

product rule
to o] + {to, b
[ } { } — Ldab + /i(dabc 4 ifabc)tc, (A6)
2 Ny

which is useful for evaluating traces of more than two generators.

tatb —

A.2 Conventional values

For Ny = 2, the Pauli matrices make up the canonical choice of generators: t* = . Here,
the (anti)commutator relations reduce to f%¢ = €2 (the levi-civita symbol being the only
totally antisymmetric 3 x 3 x 3 object) and d*® = 0. For N; = 3 the most common choice
in particle physics is the Gell-Mann matrices: t* = A®. Both these bases usually have the
normalisation 7 = k = 2.

When discussing the generators for general N, different authors use different values for
7 and k. Depending on the context, a particular choice of normalisation may reduce the
amount of factors of 2 or v/2 that show up in expression. Besides (7, x) = (2,2) mentioned
above, common choices include (3, 1) [40], (1,+/2) [6], and (1,1) [7]. For compatibility with
different sources, we choose to keep the normalisation general.

A.3 Contractions in traces

The contraction identity (3.11), which is central to flavour-ordering, can be derived from
a more general identity based on (A.3). Starting with an arbitrary complex matrix A and
writing out the internal indices of the matrices, we have

1 1 1 1
A <A>]l + —<Ata>ta = Aij - <_Akk6m + —Agktzzt%) =0. (A7)
Nf T

:Ff -

With a few more ¢’s, we can rewrite this as

1 1
Agk |:5i€6jk - <Ff5kg(5ij + ;t%tze)] =0. (AS)
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Since A was arbitrary, the bracketed expression must be zero in general, so

a

1 1
;tutzz = iﬂéjk - Ff@]ékz (A9)

This can now be used to contract two traces containing arbitrary matrices X and Y:

%(Xta><tay> _ %Xﬂtgj 4 Yy = XYy — NiiniYkk (XY — Nif<x><y>, (A.10)
which proves (3.11). Similarly,
1(Xt“Y75a> = ngit?ijkt%g = XY — LX@Y}[ = (X)(Y) — i<XY> (A.11)
T T Ny Ny

proves (3.12).

In U(Ny), the 1/N; term in (A.3) is not used, since t° takes over its function. This
carries through to (A.9), which loses its last term. Therefore, the 1/Ny terms in (3.11) and
(3.12) are not present in the U(Ny) case.

A.4 The adjoint representation

For each set of Lie algebra generators t*, one can also find a complementary set F'* known
as the adjoint representation. A conventional definition is

(F")pe = —in [, (A.12)

where the last two flavour indices assume the role of the internal indices of (¢%);;. No
distinction is made between upper and lower indices. The adjoint generators are(N7 —1) x
(N7 — 1) matrices, and are traceless and hermitian due to the antisymmetry of fo.

The adjoint generators have mostly the same algebraic properties as t%; for instance,

(FUFY) = —w? oot o = (e, ) (1, 1)) = 2Ny, (A.13)

where the last equality is found by inserting (3.11) and (3.12) into the traces. Therefore,
going to the adjoint representation changes the normalisation as 7 — 27 Ny.
The commutation relations of the adjoint generators is a direct consequence of the
Jacobi identity
fabefcde + fbcefade + facefdbe — O, (A14)

which holds for the structure constants of any Lie algebra, and can be verified by examining
nested commutators. With some index shuffling, the Jacobi identity can be recast to

[F, F"] =ik f*F°. (A.15)
The placement of k in (A.12) preserves the normalisation of this relation.
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The adjoint representation does not have anticommutator relations analogous to (A.5).
Being closed under anticommutation is not a general feature of Lie algebras, and its occur-
rence in the SU(Ny) and U(Ny) algebras does not carry over to the adjoint representation.
The existence of (A.5) hinges on t* being a complete basis for traceless hermitian Ny x Ny
matrices, and since F'* are not a complete basis for traceless hermitian (N7 —1) x (N7 —1)
matrices, an analogue can not be expected.

B The orthogonality of flavour structures

Here, we prove the orthogonality relation (3.31) used in section 3.7 to prove the uniqueness
of stripped amplitudes. It relies on notation defined in that and previous sections.

Let o, p € S, be two permutations, and ), R be two flavour splittings of total length n.
We use these to build two flavour structures, and begin by focusing on the trace in F,(Q)
that contains a,(,) and the trace in F,(R) that containis a,(,), where we have picked
m such that p(m) = o(n). If there are more traces present, we leave them as passive
“spectators” for the time being. Then, we use (3.11) to contract ay(,) in

fg(Q) : [fp(R>]* =T <Xag(n_1)ap(m_1)Y> - Nif<XaU(n_1)><ap(m_1)Y> . (spectators),
(B.1)
where the product is defined as in (3.31).

From here on, we work only to leading order in NNy, so we can omit the second term
above. (Note that we do not do this because Ny is necessarily large, but because we wish
to use power counting of Ny to separate orthogonal flavour structures.) We then move on
to contracting o(n — 1), followed by o(n — 2), and so on. Each time we contract o(n — i),
the situation may be one of the following cases:

1. p(m —i) = o(n —1i). We carry on through a special case of the contraction identity
(3.12), and find

(X o(n—i)Uo(n-)Y ) =T L (XY). (B.2)

This may be repeated as long as there are indices left, and we gain a factor of Ny
(plus O(NJZI), which we ignore) each time.

2. p(m —1i) # o(n —1), but p(m’) = o(n — i) is in the same trace as o(n — ). Here,
(3.12) (after some reshuffling of X and Y') gives

(Xasin—i)Y Qoniy) = T [{(X)(Y) — N%(XY) : (B.3)

the second term is suppressed by a factor of N ! and the first must eventually take
a detour through (B.1) before continuing; in any case, this case falls behind case 1
by at least two factors of NNy.
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3. p(m’) = o(n —1) is in a different trace than o(n — ). This forces us to bring in the
spectator trace containing p(m’) and go back to (B.1), so this case falls behind case
1 by at least one factor of Ny.

4. The trace is empty. We gain a factor of (1) = Ny, and if there are no spectator traces

left, we are done. Otherwise, we bring in the next pair of spectators and continue
from (B.1).

If Q=R ={n} and 0 = p (mod Zg), we will only encounter case 1 until we finish with
a case 4, and will gain a total factor of 7" N}[1 + O(N]TQ)]. If @ = R # {n} on the other
hand, we will encounter case 4 at each split, but the leading power of N stays the same.

If 0 # p(mod Zg), we must eventually encounter case 2, so this falls behind the
o = p (mod Zg) case by at least two powers of N;. If Q # R, we will encounter case 3
(without a corresponding case 4) whenever there is a mismatch in the flavour splits, so we
will fall behind the ) = R case by at least one power of N;. This is the reason for the
values of v stated below (3.31).

Thus, we have proven

Fo(Q) - [FAR)]" = 7" N} 2(N? — 1) {y( ]CV’)f (j;; ) ffe :WR(VdZJj p (mod Zp),
(B.4)

which is (3.31). The factor of (N7 —1) is common to all cases, since the final pair of indices
is always contracted as <a0(1)a0(1)>.

C The double soft limit

This appendix provides a derivation of (4.19), which is used to calculate the double soft
limit of stripped amplitudes. We start by quoting (4.17), which is proven in [6] and gives
the double soft limit of the full amplitude:

. abai---a o
ll_r)%MN,n+2 n<€p7 €q,pP1,--- 7pn) -
n

1 abe pa;dePi (p_Q) ai-ag_1dagii)an
—am 2T g M ) (G

=1

In order to find the corresponding expression for a stripped amplitude, we project it out by
contracting both sides with [Fiq(R)]* over all flavour indices (see (3.15) and section 3.7).
On the left-hand side of (C.1), this will project out lim. o My n12r. For simplicity, we
start with R = {n + 2} before moving on to the general multi-trace case. According to
(3.15), the right-hand side of (C.1) has the form (schematically, with kinematic terms
omitted)

D P aga) - gy dasg - Qo)) (C.2)

Uesn/Zn
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plus flavour-split structures, but those can be ignored due to (3.31). We have omitted the
algebra generators for readability; a; means t*. The structure constants can be contracted
in using (3.11) and [ = T_—;<ta [tb, tc} >, leaving

1
- ?<aa(1) ©r Ao (i-1) “CL, b]v ao’(z’)] Ao (i+1) * " aa’(n)>~ (03)

With appendix B in mind, we immediately see that this is orthogonal to Fiq(n + 2) unless
o = id. The nested commutators expand to

[[a,b], a;] = aba; — baa; — a;ab + a;ba. (C.4)

Since a comes before b in Fiq(n + 2), the second and fourth terms vanish under the projec-
tion. Also, ab occurs at the beginning (or, equivalently, the end) of the flavour structure,
so the first term only contributes when i = 1, and the third term only contributes when
i = n. This collapses the sum in (C.1) to those two cases, leaving

lim MN,n+2,{n+2} (5]), €q,p1, - - - 7pn) =
e—0

I [p-lp—q) pu-(P—4q)
RAE? {pl (p+aq) pn'(p+Q)}MN’”’{”}(pla"' ;). (C.5)

If we now move on to general R, we see that a and b must reside in the same trace, since the
nested commutator on the right-hand side is inside a single trace. This is essentially the
condition stated for the validity of (4.19), with (p,,p,q, p1) mapping to (pi—1, pi, Pj, Pj+1)-
The trace they reside in can be treated exactly like the single-trace flavour structure of
(C.5), and all other traces in the flavour structure follow along as “spectators”, as in a
normal application of (3.31). The reduction {n + 2} — {n} in (C.5) then generalises to
R — R’ as described below (4.19). This generalisation therefore results in (4.19), which is
thereby proven.

D Closed Mandelstam bases

Here, we show the derivation of closed Mandelstam bases for all 6-particle flavour structures
as described in section 4.3. Note that neither basis is unique, and that better basis choices
may exist.

D.1 The basis for R = {2,4}

This is the only basis other than Bygy that is needed at O(p*). Since Zgy 4y is abelian, the
last 5 elements of Bys 4y in (4.13) transform rather simply. It is therefore possible to form
closed linear combination by inspection with a little help from trial and error. This gives
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the closed basis 3{274} = {t1,...,to} with elements

t1 = 8123, T2 = S124, 13 = S125, T4 = S126,

b = 545 + S124 ; 81237 te = 556+ S125 ; 5124,
t7:S14+S15+w7 t82315+816+w, (B-D)
lg = s14 + S16 + w
Under the action of Zgj 4y, they transform as
213456 : {t1,.. . ts, tr,ts,to} — {t1,...,ts, —t7,—ts, —to}, (D.2)
124563 : {t1,.. . ts, t7,ts,to} — {ta,t3,t4,t1, 16,15, +ts, —l7, —to},

where the first permutation cycles the 2-trace, and the second cycles the 4-trace; together,
they generate all of Zys 4. Note that Zy, 43 does not act as a true permutation on the basis,
since some elements change sign. This appears to be unavoidable, but is not a problem —
in fact, any complex phase can be applied without breaking the m-finding procedure.

D.2 The basis for R = {3,3}

The group Zys 3y is generated by the permutations g; = 231456 and g, = 456 123. They do
not commute, so the group is non-abelian, which makes its effects less predictable. Among
all kinematic invariants, only s;23 maps to itself under both generators, and is also the only
squared propagator momentum permitted by this flavour structure. The 15 invariants s;;
decompose into a sextuplet and a nonet under the group, and can be mapped out in a
variant on a Cayley graph:

Each node in the graph represents s;; and is marked with i5. The action of g, is represented
by following the solid-drawn triangles clockwise, and gy is represented by following the
dashed lines. The 9 distinct invariants s;;;, with 75k # 123 also form a nonet with the same
structure as the one above, replacing 14 by 126, etc.

We must now extract the 8 basis elements to, ..., tg (with t; = s193) such that they are
closed under Zgsz 3. In the nonet, we have marked three sets of invariants with , e and o.
They map to each other as (*,®,0) — (e 0,%) under g; and as (,®,0) — (x,0,e) under
g2, so suitable linear combinations of the elements in each set will be closed under Zjs 3;.
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Similarly, we can find two sets, ¢ and *, from the sextet. The corresponding sets from the
nonet of s;;;’s are not linearly independent from sj3 and the sets of s;;’s, so they can be
ignored.

Unfortunately, it appears impossible to form real linear combinations without sacrificing
either linear independence or closedness. Guided by the fact that g; has period 3, we instead
insert the third root of unity, w = e*™/3, and find the closed and complete basis 3{3,3} with

t1 = S123,
2 2 2
tQ = So4 + WS35 + W 516, t3 = S15 + WSo + W 534, 254 = S36 + WS14 +w S95,

2 2 2 (D4)
l5s = w"Soy + WS35 + S16, L6 = W S15 + WS26 + S34, t7 = W S36 + WS14 + S5,
tg = S12 + WS93 -+ w2531, tg = 845 -+ WSse -+ CL)2864,
where t,,...,t; come from the nonet (t; and t5 from e, etc.) and tg,t9 come from the
sextet. They transform as
g1 : {tlat27t37t47t57t67t7at87t9} — {tlaWt37Wt47WtZaw2t6aw2t77w2t57Wt87Wt9}7 (D 5)
92 : {tlut27t37t47t57t67t77t87t9} — {tlat37t27t47t67t57t77t97t8}' '

Since stripped amplitudes are real, the complex basis must be compensated for by complex
coefficients. Still, Bys 3y is just as valid as a real basis, and is useable for finding m.

D.3 The basis for R ={2,2,2}

The group Zys 29y is also non-abelian, and can be tackled similarly to Zgs 3. We choose
the generators g; = 213456, go = 345612 and g3 = 654321 with the hopes that they
be well-behaved, since By is closed under the latter two. This flavour structure admits
the six distinct propagators included in By g9y of (4.13). We arrange the corresponding

invariants as
134

126 -
<[> (D.6)
where g; and g, are represented as in (D.3), and the dotted lines represent the action of

g3. The four remaining s;;;,’s are not useful, but the s;;’s decompose into a well-structured
triplet and 12-plet:

61 62

45 -
34 QgI &24
...... 13 ﬂ j
'i.:— - 36
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Like in (D.3), we have marked three closed sets of s;;’s. From these, it is possible to
construct three linearly independent elements that close the basis without need for the
triplet. Thus, By 2y has elements

t1 = S123, 12 = S126, 13 = Sis6, L4 = S124, 1I5= S125, Tl = S134,

861 — S62 1T Sp2 — Ss1 523 — Sp4 + S14 — 513 845 — S46 1T S36 — S35
t? — ) t8 - ) t9 - ’

2 2
(D.8)
where the factors of 1/2 remove some large powers of 2 that show up when writing amp-
litudes in this basis. Unlike in 3{3’3}, there was no need to resort to complex numbers.
The basis transforms as

g1t {tlut27t37t47t57t67t7at8)t9} — {tlat2)t67t47t57t37 _t77 _t87t9}7
g2 {ti,ta, ts, ta, ts, s, tr, ts, to } — {t2, 13,11, 15, t6, ta, ts, to, 7}, (D.9)
g3 : {t1,t2, 13, ta, ts, te, tr, ts, to} — {t1, 83, ta, ta, ts, ts, t7, to, ts}.

No basis element is a fixed point, which makes the basis harder to work in.

E Implementation details

This is a brief summary of the code used in this work. It can be obtained from www.github.
com/mssjo/flavour-order and www.github.com/mssjo/fodge, and more information is
available in the documentation found in the source code itself. The FORM library requires
FORM, which can be acquired from nikhef.nl/~form.

The code was written gradually during the process of this work, and therefore contains
deprecated sections, different nomenclature than used in this thesis, and several bugs and
incomplete features. Fixes and improvements may be uploaded in the future.

E.1 The FORM library

This library contains FORM procedures for calculating flavour-ordered amplitudes. It is
based on brute-force Feynman diagram calculation procedures written by Johan Bijnens.
The library contains several files with names foMnpN .frm that are used to compute the
n-point O(p") amplitude using flavour-ordering.

All definitions needed to use the library are included in defs.hf, and the flavour-
ordering routines are initiated by init-fo.hf. The procedure sfrule creates a stripped
Feynman rule (i.e. stripped vertex factor) at a given order and flavour splitting using the
vertex procedure, which contains all NLSM Lagrangian terms up to O(p®). Diagrams are
then drawn using the diagram function followed by a call to the diagram procedure; how
to do this is documented in that procedure. Finally, the mandel procedure rewrites the
amplitude in terms of Mandelstam invariants, and prettymandel may be called to write
the result in a more human-readable fashion.
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The amplitude may be checked for Adler zeroes by calling the adler procedure. For
complicated amplitudes, the symbolic algebra capabilities of FORM may not be enough to
reveal a zero, and mandelrand can be called to give all Mandelstam invariants pseudo-
random numerical values. Instead of checking Adler zeroes, reduced stripped amplitudes
can be found by using the group and uncycle procedures together with a change of Man-
delstam basis like those contained in mandelbasis.

The library contains several other more-or-less useful procedures, most of which are
sufficiently documented in their source code to use without an introduction here.

E.2 The diagram generator fodge

The program fodge (flavour-ordered diagram generator) generates flavour-ordered dia-
grams using the methods described in section 5. It runs on the command line and has a
man page containing information on how to use it. It can generate a .tex file for drawing
the diagrams (in polygon form) using TikZ, or generate a set of .hf files for use with the
FORM library. It can also print a summary of the generated diagrams, which was used to
generate table 3. The program is fully general, and can generate diagrams at any order as
long as the TikZ drawing functions are modified to draw higher-order vertices.
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