

DEPARTMENT OF DESIGN SCIENCES
FACULTY OF ENGINEERING LTH | LUND UNIVERSITY

2019

MASTER THESIS

Elise Eborn & Sara Lindgren

Fail-fast in the Design Process of an

Interactive Voice Response System

Fail-fast in the Design Process of an
Interactive Voice Response System

Elise Eborn & Sara Lindgren

June 7, 2019

Fail-fast in the Design Process of an Interactive Voice Re-
sponse System

©Copyright 2019 Elise Eborn, Sara Lindgren

Published by
The Department of Design Sciences
Faculty of Engineering, Lund University
Box 118, 221 00 Lund

Degree Project in Interaction Design (MAMM01)
Examinator: Johanna Persson
Supervisor: Kirsten Rassmus-Gröhn
Supervisor Telavox AB: Frida Bredberg

Abstract

This paper contains a report of the master thesis, Fail-fast in the design pro-
cess of an Interactive Voice Response System.

The world of creating new software is currently going more and more towards
being as fast and agile as possible to be able to adapt to changing customer de-
mands. The design process of new software should reflect that, which doesn’t
leave much time for scheduling user tests in person. How can feedback from
users be gathered in a scalable way, and the design of a product be made using
a fail-fast method?

To answer these questions we chose to develop a new design of an existing
product. The design was to be for a mobile-first way of viewing and editing
an interactive voice response system in a web application. The old design of
an interactable tree would not be optimal for a smaller screen. Two iterations
of design, implementation and evaluation were performed, before a final eval-
uation of the whole project. The evaluations were performed by releasing the
product to Telavox and one of their customers.

The application improved greatly from one iteration to the next. Between
the two iterations the usability went from poor to acceptable. The different
methods of gathering feedback gave different, but all helpful, results. Gather-
ing feedback was difficult, but in the end the design was deemed usable.

Keywords: fail-fast, minimum viable product, minimum viable user experience, de-
sign process, interactive voice response

3

Sammanfattning

Detta dokument innehåller en rapport av examensarbetet, Fail-fast i design-
processen för ett talsvarssystem.

Utvecklingen av ny mjukvara rör sig mer och mer mot att vara så snabb
och rörlig som möjligt för att kunna anpassa sig efter ändringar i kundens
behov. Desigprocessen för ny mjukvara behöver vara på liknande sätt, vilket
inte lämnar mycket tid till att boka in användartest. Hur kan återkoppling
från användarna samlas in på ett skalbart sätt, och designen av produkten
göras med en fail-fast metod?

För att svara på detta gjordes en ny design av en redan existerande produkt.
Designen var för ett mobilvänligt sätt att kolla på och redigera ett talsvarssys-
tem i en webbapplikation. Den gamla designen med ett interagerbart träd var
inte optimal för en mindre skärm. Två iterationer av design, implementation
och utvärdering utfördes, innan en sista utvärdering av hela projektet gjordes.
Utvärderingarna utfördes genom att släppa produkten till Telavox och en av
deras kunder.

Applikationen förbättrades mycket efter bara en iteration. Användbarheten
gick från en undermålig till en acceptabel nivå mellan de två iterationerna.
De olika testade metoderna av att samla återkoppling gav olika sorters resul-
tat, men alla var användbara för att vidareutveckla applikationen. Att samla
återkoppling var svårt, men designen i slutändan bedömdes vara användbar.

Nyckelord: fail-fast, minimum viable product, minimum viable user experience,
designprocess, talsvar

4

Acknowledgements

We would like to thank our supervisor at LTH, Kirsten Rassmus-Gröhn for all
her help and support.

We would also like to thank Telavox, and especially Frida Bredberg and Zsolt
Demeter for all their help during the course of the entire project. Also thanks
to Sofie Eliasson, Magnus Sillén and the rest of the Webapp team for review-
ing our code and coming with suggestions during this project. Thank you to
Henrik Thorvinger and Magnus Lorentzon for valuable UX input.

A last thank you to all the people who took the time to test our solution.
We really appreciate it!

Lund, May 2019

Elise Eborn & Sara Lindgren

5

Table of contents

Acronyms & abbreviations 8

1 Introduction 9
1.1 Background . 9

1.1.1 Telavox . 9
1.1.2 Telavox’s IVR system . 10

1.2 Purpose . 10
1.3 Research questions . 11
1.4 Method . 12
1.5 Terminology . 13
1.6 Delimitations . 13
1.7 Division of work . 13

2 Theoretical background 14
2.1 User experience . 14
2.2 Iterative design . 15
2.3 Evolutionary prototyping . 15
2.4 Fail-fast . 15

2.4.1 Minimum viable product 16
2.4.2 Minimum viable user experience 16

2.5 React.js . 17
2.6 Usability Evaluation . 17

2.6.1 Heuristic evaluation . 17
2.6.2 Catastrophe insurance 18
2.6.3 Google Analytics . 18
2.6.4 System Usability Scale 18

2.7 Brainstorming . 19

3 Iteration 1: a simple settings menu 21
3.1 Design phase . 21

3.1.1 Method . 21
3.1.2 Result . 22

3.2 Implementation phase . 23

6

TABLE OF CONTENTS

3.2.1 Method . 23
3.2.2 Result . 24

3.3 Evaluation phase . 24
3.3.1 Method . 25
3.3.2 Result . 27

3.4 Discussion . 28

4 Iteration 2: a keypad menu 30
4.1 Design phase . 30

4.1.1 Method . 31
4.1.2 Result . 31

4.2 Implementation phase . 32
4.2.1 Method . 32
4.2.2 Result . 33

4.3 Evaluation phase . 33
4.3.1 Method . 34
4.3.2 Result . 37

4.4 Discussion . 39

5 Discussion 40
5.1 Iteration 1 vs Iteration 2 . 40
5.2 Fail-fast . 41
5.3 Gathering feedback . 42

5.3.1 Heuristic evaluation . 42
5.3.2 Catastrophe insurance 43
5.3.3 Google Analytics . 43
5.3.4 Survey . 44

5.4 Further improvements . 45
5.4.1 Sounds . 45
5.4.2 More than one submenu 46
5.4.3 More than one profile . 46
5.4.4 Creating a new IVR . 46

6 Conclusion 47

A Evaluation form 52

B Google Analytics Data Iteration 1 54

C Google Analytics Data Iteration 2 57

7

Acronyms & abbreviations

IVR Interactive Voice Response. A system where a caller reaches a prere-
corded message which gives the caller alternatives to be redirected to
by pressing a certain digit on the callers phone.

UX User eXperience. A person’s perceptions and responses that result from
the use or anticipated use of a product, system or service[1]. See Section
2.1

MVP Minimum Viable Product. A product which has been developed in a
fast manner where some functionality might be missing. See Section
2.4.1

MVUX Minimum Viable User eXperience. A version of MVP where the user
experience is produced in a fast manner with the intention of testing it
on people at an early stage. See Section 2.4.1.

SUS System Usability Scale. A scale which is formed by 10 statements which
are answered with a Likert scale. A score is produced from which as-
sumptions on the products usability can be made. See Section 2.6.4.

8

Chapter 1

Introduction

This chapter will describe the background for this master thesis. It will also
describe the purpose, research questions, method, terminology, delimitations
and the division of work. The background will include a description of the
IVR system we worked on and information about the company who hosts the
product, Telavox AB.

1.1 Background

An interactive voice response (IVR) system is a system where a caller reaches
a prerecorded message which gives them alternatives to be redirected to by
pressing a certain digit on the callers phone. This in turn can either give the
caller additional choices, or it can redirect them to the right area or phone
number. IVR systems are used in telephony all over the world.

1.1.1 Telavox

Telavox AB is a Swedish IT company that was founded in 2003 as a startup.
Since then, they have grown significantly and can now call over 15000 com-
panies their clients. Their specialty is combining telephony, Private Branch
Exchange, video and chat in a cloud-based solution in a way that expands the
way a business communicates.

9

1. Introduction

1.1.2 Telavox’s IVR system

The IVR system in question is already implemented in a different environment
than the environment worked on in this thesis project, and can be seen in
Figure 1.1. It does not scale well to the smaller screen of a mobile phone, as
seen in Figure 1.2. Three out of four users log in to Telavox’s services via a
mobile phone, and a portion of them only have access to the features provided
to phones. Administrating the IVR-system is today one of those features which
is not reachable from a mobile phone. Therefore our solution should be written
mobile-first, so that it can be responsive first and foremost and reachable by
all of Telavox’s customers. Telavox also wanted to evaluate the use of fail-fast
in the design process. Fail-fast is a method where the distance between idea
and release is as short as possible to gather user feedback early while spending
as little resources as possible. Read more about fail-fast in Section 2.4.

Figure 1.1: The current IVR system for a desktop environment

1.2 Purpose
The primary purpose of this master thesis is to investigate the difficulties of
using a fail-fast method in the design phase of a project. More specifically,
the aim is to compare methods of collecting feedback, which is necessary when
continuing to develop a prototype. As Telavox is a rather large company, the
focus will be on scalable methods of collecting feedback. Scalable is used here
to mean methods of collecting feedback from a large amount of users, above
100 and maybe from all over the world, that can not easily be invited in to do

10

1.3 Research questions

a user study.
This design method is evaluated by developing an IVR solution focused on

working on a smaller screen, for example a tablet or a phone. One problem
facing an IVR solution which is specific to a smaller screen is how it should
show the user where they are in the tree structure. Another goal was to put
the product into production and test it on real customers.

Figure 1.2: The current IVR system on a phone

1.3 Research questions
These are the research questions we intend to answer in this master thesis:

• How can feedback be collected in a scalable way when developing a
mobile-first application?

• What are the challenges when working with a fail-fast design process
when developing a mobile-first application?

11

1. Introduction

1.4 Method

The process of this thesis work was as shown in Figure 1.3. We started off with
a research phase where we deepened our knowledge of the fail-fast process and
other suitable methods which could be useful in the thesis work. Afterwards
we began the practical part, which consisted of two iterations which both
consisted of a design-, an implementation- and an evaluation phase. The design
phases were intentionally kept very short due to the fail-fast method and the
implementation phase included implementing the design into a high fidelity
prototype using React.js. From the beginning, the goal was to release a working
product at least internally after seven weeks, to test the fail-fast method.
The evaluation phases included the evaluation of the high fidelity prototypes
in a realistic environment. A selection of more or less scalable evaluation
methods were chosen to test the application. These were heuristic evaluation,
catastrophe insurance, Google Analytics and System Usability Scale. Read
more about these methods in Section 2.6. After the evaluation phase of the
second iteration, a final product was presented.

Figure 1.3: Our process

12

1.5 Terminology

1.5 Terminology
Some terminology to describe an IVR system is used repeatedly in this work.
As the system is visualised as a tree, most terminology is borrowed from graph
theory. The end points of the system, or the leaves of the tree graph are referred
to as nodes. The intermediary nodes in the tree are referred to as submenus.
The entrance point to the system is called the root menu. Callers enter the
tree at the root menu, and press digits until they reach one of the nodes. Then
the action specified by that node happens. A visual representation of such a
tree is shown in Figure 1.4.

Figure 1.4: Terminology in the IVR system

1.6 Delimitations
Fail-fast is a method with many names, like lean startup which is used amongst
startups [2] and think it, build it, ship it, tweak it which is used at Spotify [3].
Fail-fast can also have different meanings in a development environment. We
chose to use the one described in Section 2.4.

1.7 Division of work
Sara has led the work in the design phases and evaluation phases and Elise
has led the work in the implementation phases. Both have worked together
during the whole project.

13

Chapter 2

Theoretical background

This chapter will explain more in depth the theoretical background on which
this master thesis is based. It will shortly explain concepts in designing, im-
plementing and evaluating software products.

2.1 User experience
Users interact with products in a myriad of ways, and many factors influence
how the product is received. When Donald Norman, author of well-known book
The design of everyday things [4], wanted to cover all the ways a user interacted
with a product he coined the term user experience (UX), as confirmed in his
2007 interview with Peter Merholz [5]. UX includes industrial design, graphics,
user interface, physical interaction and manuals. Norman has however also said
that the term has lost some of its meaning in being used so widely as it is.
One way to describe UX is:

Designing things simple enough for people to understand and de-
lightful enough for people to want to use. [6]

Arvola [7] writes that a general guideline for a program to be easy to use
is that it should be broad and shallow, as opposed to being narrow and deep.
He also writes that when the components in the interface follow a pattern it is
restful for the eye, and when something sticks out from this pattern it is more
immediately recognizable.

14

2.2 Iterative design

2.2 Iterative design
Iterative design is one of the important parts of human-centered design [7]. It
is when the design is improved through different iterations.

Preece et al. [8] write that the project stage most likely to cause project
failure is the requirement definition stage. They also write that the factor most
mentioned to cause successful projects was clear and detailed requirements.

In Norman’s book The Design of Everyday Things [4] he recounts a con-
versation with a designer who says that it takes five to six attempts to get a
product right. Also that when introducing a new product to market you only
get two or three attempts to introduce it before no one is interested anymore.
This paradoxical statement means that all new and revolutionary products
are almost guaranteed to fail. Even Norman didn’t get his book right the first
time, as it was released with the title The Psychology of Everyday Things,
which did not interest an as broad reader base as the book has today.

2.3 Evolutionary prototyping
Evolutionary prototyping is when a prototype is evolved into the final product.
A first prototype is created based on the best understood requirement and after
receiving feedback from the customer, the prototype is improved in iterations.
This method of prototyping is often used in agile development, where each
development iteration brings the product closer to its final form [7, 8].

2.4 Fail-fast
In today’s society, it is important for IT companies to get their products on
the market before the competition does. This means that the time between
idea and a released product should be as short as possible, while still retaining
the quality. To facilitate this, a company could use the fail-fast method [9]. It
is based on the idea that the faster a bad idea can be invalidated, the faster it
can be restructured into a good idea. This method includes a shorter planning-
and implementation phase in favour of getting a product on the market as soon
as possible. The product will then be evaluated by users and changed through
a series of iterations. It is called fail-fast due to the fact that a product gets
produced in a fast manner, where some functionality might be missing, and is
then put in front of real customers in a real environment. The customers can

15

2. Theoretical background

then decide in which areas the product needs improvement or if the product
is wanted at all.

Fail-fast is a popular method among startup companies, where resources
are scarce and the time to market has to be fast. However, resources spent and
time to market should be something that larger companies should care about
too.

The first product which is produced during the fail-fast method can be
called a minimum viable product, or minimum viable user experience depend-
ing on the nature of the product.

2.4.1 Minimum viable product

The minimum viable product (MVP) [9] technique involves creating a product
that is as simplistic as possible, but still is able to be put on the market. It lets
the users try the product in a realistic environment and it lets the company
know if it is a product that the users actually want. MVP is based on the
learn-measure-build cycle in Figure 2.1, which represents the fast changes that
can occur in a product in its early stage.

Figure 2.1: The learn-measure-build cycle [10] of which MVP is based
on

Minimum viable product is very similar to the principles of eXtreme Pro-
gramming, for example “Do the simplest thing that could possibly work” [11].

2.4.2 Minimum viable user experience

There is also a quite new term which is minimum viable user experience
(MVUX) [12]. This method is like the MVP method except for the fact that

16

2.5 React.js

it focuses on the user experience of a product instead of the core functionality
of the product. Instead of creating a low fidelity prototype of the product, the
developers will produce a realistic and functioning interface without much in-
put from the end user. This interface can then be tested on end users directly
in a more realistic environment to then be further developed according to the
learn-measure-build cycle in Figure 2.1.

2.5 React.js
React.js is “a JavaScript library for building user interfaces” [13]. JavaScript[14]
is a scripting language often used in the creation of web applications. It was
released in 1995 and there are several frameworks and libraries built on top
of it. React was released in 2013 and is often used for developing front-end
applications due to its modularity and quickness to fetch data when loading
for example a web page. It is modular due to each web page being built up
by components, in a way reminiscent of object-oriented programming. An im-
portant concept in React.js is props and state. Props, short for properties, are
read-only values that are passed from a parent component to its child. State
on the other hand is managed by each component, and can be changed asyn-
chronously. Simple components have no state, but may get values from their
parents state as props.

2.6 Usability Evaluation
There are many different ways to evaluate a product, and many different things
to focus on. Below, some evaluation methods used in this master thesis are
described.

2.6.1 Heuristic evaluation

A heuristic evaluation [15] is when a usability expert with no or little involve-
ment in the project performs a review of the product with the intended user
and usability standards in mind. This evaluation can be done individually or
in groups. It is a cheap alternative [16] and is easy to organize due to the lack
of constraints. However, the success of the evaluation is quite dependent on
the expert who is doing the evaluation, which should be kept in mind while
analyzing the results. A person can be considered a “double expert” if they

17

2. Theoretical background

are well versed in both human factors and the domain area of the product in
question.

2.6.2 Catastrophe insurance

Catastrophe insurance [15] is a form of validation testing where the product is
sent out on an internal system. This will lead to coworkers being able to test
the system and find bugs the developer might have missed before customers
have a risk of finding them. In doing this, the developer have a chance to fix
minor bugs before the product is released to the customers. If the errors are
too large to fix directly, the developers have a chance to warn the support team
which complaints might be incoming when the product has been released.

2.6.3 Google Analytics

One way to collect quantitative data is with the help of Google Analytics [17].
The way it works is that different points of measurements are added to the code
of the product. When a user performs a task connected to these measurement
points, it is triggered and data is sent to a Google website. This can then be
viewed on different setups and can be analyzed.

2.6.4 System Usability Scale

A System Usability Scale (SUS) [18] is where 10 statements are assessed on a
Likert scale from 1 - do not agree to 5 - agree fully. The result is then compiled
into a score from 0 to 100 which can indicate how usable a product is, where
a higher number is better.

Tullis and Stetson concluded that a sample size of 8-12 users are sufficient
to reach a reliable result using the SUS questionnaire [19].

One popular way of interpreting the SUS score is to divide them into per-
centiles, where it has been found that the score of 68 is the average score, and
therefore the 50th percentile [20]. Bangor et al. described a SUS score of 70
as passable [21], where high 70s to upper 80s would describe a better product.
They also said that a product with a score of less than 70 should be a subject
of scrutiny and rethought. A product with a score of less than 50 should be
considered a failure and be deemed unacceptable.

18

2.7 Brainstorming

Figure 2.2: SUS translated to adjective ratings [22]

Another way of interpreting the SUS score is like Bangor et al. who trans-
lated the SUS scale to adjective ratings. This was done in their article Deter-
mining What Individual SUS Scores Mean: Adding an Adjective Rating Scale
[22] as seen in Figure 2.2. We will use these adjective ratings while discussing
the SUS result.

2.7 Brainstorming
A brainstorming session [23] is where group of people gather in an open and
constructive environment to solve problems or create ideas. Firstly, an in-
dividual brainstorming is done with the intention of creating and gathering
individual ideas. These ideas are written down and brought to the joint brain-
storming session which is held afterwards. At this session, the participants
read through the ideas from the individual sessions and when discussing the
possibilities improve the existing ideas and create new ones. Every new idea
is written down.

In some cases the joint brainstorming session is held firstly followed by the
individual one, and both can be claimed to work better depending on different
studies. [24, 25]

According to Osborn [26] there are three rules during a brainstorming ses-
sion:

1. Criticism is forbidden

19

2. Theoretical background

2. Quantity is wanted

3. Freewheeling is welcome

These rules are meant to encourage creativity and get the participating mem-
bers comfortable enough to mention any idea that comes to their mind. The
idea is that every idea is a good idea, it just need some work sometimes.

20

Chapter 3

Iteration 1: a simple settings menu

This chapter will describe the first iteration of two. The iteration consists of
a design-, an implementation- and an evaluation phase. The design was based
on the settings menus already in the existing web application. This design was
then implemented in React.js and the functioning solution was then evaluated
with an heuristic evaluation, a catastrophe insurance, Google Analytics and a
Google form.

3.1 Design phase
Due to the fail-fast method we intended to follow, the design phase was pur-
posely kept as short as possible, about a week. The thought was to spend
less resources on the design phase to be able to spend more resources on the
subsequent implementation- and evaluation phase.

3.1.1 Method

It became known to us that the UX department at Telavox had some ideas for
potential solutions to the design. They had made some sketches which can be
seen in Figure 3.1. After evaluating this design, what we wanted to add was a
way for the user to know where in the tree structure they are.

As a next step we held a meeting with people from the UX department
at Telavox. At this meeting we discussed possible design solutions and in the
end established three different design alternatives, hereafter called A, B and

21

3. Iteration 1: a simple settings menu

C. A, as seen in Figure 3.2, was a simplistic settings menu that already existed
in some form in the system, but put together in a way which suited the IVR
system. B was the design from the UX team mentioned above. C was a tree
structure similar to the on in the desktop environment seen in Figure 1.1.
These alternatives was then discussed in terms of pros and cons of both user
impact and implementation cost.

3.1.2 Result

Design C was eliminated due to it working poorly on a mobile platform. It
was decided that we would start implementing design A as there was some
precedent for it in the application already, so it would both be easier to im-
plement and perhaps intuitive for users. What differed between A and B was
the layout element, so implementing A would make it easier to implement B
at a later time.

(a) A submenu in the IVR tree (b) Adding another node

Figure 3.1: Potential prototype B

22

3.2 Implementation phase

Figure 3.2: Potential prototype A

3.2 Implementation phase
After the design phase we implemented our chosen design. We chose to imple-
ment it in React.js, described in Section 2.5, as it was important for us to get
test data of the customers using the application with their real data. It was
also chosen as the rest of the web application is written in React.js.

3.2.1 Method

First we mocked up some layouts by building the user interface as intended
but using placeholder data. When this was done, real data was read from the
database and inserted in the correct places. The last step of the implemen-
tation was to be able to make changes in the database from our application.
Measurement points were also put in the code to produce quantitative data
via Google Analytics. During the implementation we got feedback from the
UX department on design choices as well as from the web application team on
best practices during coding.

23

3. Iteration 1: a simple settings menu

3.2.2 Result

The final version of the application for this phase can be seen in Figure 3.3.
The final product was a fully functional IVR solution with the capability to
alter the database. The features implemented were adding new nodes and
submenus, removing nodes and changing existing nodes. The features that
had not been implemented yet were handling sound in existing nodes and
submenus, and removing submenus.

(a) A submenu in the IVR tree (b) Adding another node

Figure 3.3: Prototype A implemented

3.3 Evaluation phase

The evaluation phase after the first implementation phase is an especially
important phase while working on an MVP. This is the first time the end user
sees the product and it is important to evaluate it properly to be able to make
further developments on the product to the users’ liking.

24

3.3 Evaluation phase

3.3.1 Method

At first, the solution was released under a “secret” URL which could be reached
by navigating to a specific point on the website and adding “/ivr” to the
end of the URL. A new release was made after the heuristic evaluation and
catastrophe insurance which meant that the solution could be reached via a
button for some users and via the “secret” URL for the rest.

Heuristic evaluation

As a first step to evaluate the solution, we called in an expert in interaction
design to do a heuristic evaluation. This evaluation was performed with some
guidelines. At first we asked the evaluator to perform some basic tasks like
“remove a node” or “add a submenu”. After that we let the evaluator roam free
and point out weaknesses. These weaknesses, which are mentioned in Section
3.3.2, were improved before the next step in the evaluation process.

Catastrophe insurance

After the heuristic evaluation was performed and the improvements were made,
we did an internal release. This was done in order to perform a catastrophe
insurance. In our catastrophe insurance, we sent out our product under a secret
URL on the beta branch in the web app. This meant that the coworkers had
to log in on the beta version of the website, which is a version the customers
cannot reach. From this, we gained some insight in bugs that could appear in
our solution. These bugs are mentioned in Section 3.3.2.

Google Analytics

We used the measurement points put in the code to collect quantitative data
of the users behaviours.

The questions we wanted to answer with Google Analytics are:

• How far down the tree does the user go?

• Does the user look to see the possibility to add a new node?

• Are changes made? Which ones?

• Is it used mainly via mobile?

• What is the engagement on mobile versus desktop?

To answer these questions we set a few goals.

25

3. Iteration 1: a simple settings menu

• To measure that the users fully explored the tree, we thought that at least
50% of users that went to level 0 should go on to level 1 if it existed.

• We thought that if less than 10% of users performed actual changes (such
as adding or deleting a node, or changing a node’s sound or action) it
would be a good measure of if something needed to be done to clarify
what could be changed in the IVR tree.

• We wanted a higher percentage of users to use our solution via a mobile
phone than the web application had otherwise. This would mean more
than 5% of users.

• We wanted 50% of users to be looking at adding new nodes. We also
wanted to look at how many users were actually making changes on
mobile platforms.

Google Form

We developed a form to get more information from the people testing. Both
quantitative and qualitative data can be gathered from this form. The quan-
titative data is collected from a System Usability Scale (SUS). We also added
some qualitative questions to gather some more specific feedback to considered
in further development.

The qualitative questions in the form are meant to answer the following ques-
tions:

• How well do users understand the symbols and icons?

• Is the response time a cause of user frustration or errors?

We chose to leave the questions in the form open-ended, even though we were
looking for specific information, so as not to guide the users’ answers. If no one
commented anything about response times or the symbols and icons, it could
be assumed that they were clear enough as to not draw unwanted attention.
The form can be seen in its entirety in appendix A.

This form was sent out to the advisors and lead technicians at Telavox
and one customer. Advisors are the ones who are in direct contact with the
customers and help them with support. Lead technicians are the ones who
facilitate communication between the development teams and the advisors.
The customer in question was a medium sized Swedish company that had
expressed interest in testing our application.

26

3.3 Evaluation phase

3.3.2 Result

When performing the heuristic evaluation, the evaluator uncovered some minor
details which could be changed to improve the user experience. It was mostly
naming of buttons and the color of an unclickable item that was mentioned.

The developers in the catastrophe insurance were able to find some bugs
in the solution. Some of the bugs that arose were already known bugs, but
that we had forgotten to fix, for example some functionality which was not
included in the release but not removed fully from the code, and some crashes
in the system. We were able to solve these before the release to the customers.
However, we were not able to fix other bugs that came up for example problems
with reloading certain pages and some bugs which we could not reproduce.

From the qualitative questions on the form, we found that users found the
lack of visualization of the tree confusing. They did not find it easy enough
to understand and would like some element which would improve the visual
experience. Some also mentioned certain features they found to be missing,
for example the lack of ability to interact with sounds. Neither the icons nor
the response time were mentioned, but this could be because the other issues
were found to be more important.

The SUS form got 8 answers. The score was calculated individually for
the people who answered and then an average score was comprised. The final
SUS score was 51.875, which according to Bangor et al. [21] is below 68 and
therefore is not good. However, it is over 50 which would have been terrible.
According to the Adjective Rating Scale [22] the score is barely over “OK”. We
also calculated a confidence interval with a confidence level of 95% which gave
us a error margin of ±15.844.

When a measurement point from Google Analytics is triggered, it is presented
as an event representing that specific measurement point.

Of the 72 events that were users entering the first level of a tree, 50 of them
were on a tree with only one level, as can be seen in Table 3.1. This leaves 22
events entering trees with more than one level. 24 events were users entering
the second level of the tree. Therefore, 109% of users went on to a lower level
from the first level, assuming all the unknown trees have more than one level.
We did not measure when users backed to a previous page, which could explain
the strange percentage. However, an above 50% result can still probably be
assumed, as users backing to a previous page shouldn’t exceed the number of
users going forward, due to the linear nature of the application.

27

3. Iteration 1: a simple settings menu

Tree 1 2 3 4 5 6 7 8 9 10 11

number of levels in tree 1 1 2 1 2 1 3 2 2 ? ?

nbr. of events entering this tree 29 11 8 6 5 4 3 2 2 1 1

Table 3.1: Table of the trees visited in Iteration 1

26.5% of events were navigation events for creating a new node. 4.7%
events were making changes. But, it should be taken into account that 40% of
the events entering a tree were on “Tree 1” which was Telavox’s main number.
Users would probably be very apprehensive of even trying to make changes
there. With adjustments for this information, the navigation events for cre-
ating a new node were 44.4% and the changes were 7.9%. The changes made
can be seen in Table 3.2.

5.6% events were on mobile, during the same period it was 5.3% on the
web application at large. No changes or attempts at changes were made on
mobile.

Action nbr of events % of total

Saved a change in an existing node 12 60%

Deleted a node 5 25%

Created a new node 3 15%

Table 3.2: Table of the actions making changes in Iteration 1

The results can be seen in their entirety in Appendix B.

3.4 Discussion
Some of the people testing noted certain features missing which they deemed
necessary. These were mostly features we chose to postpone to a later release
due to the time restrictions of the fail-fast method. At least one person was
very negative to the design in this iteration, saying that it was a step back
from the current design. It may not have been communicated well enough
that this was to be a mobile-first application, but this dissatisfaction was also
reflected in the SUS score.

The SUS score is not good, but it could be a lot worse. This showed us
that some major improvements had to be made, both to the design, and to the

28

3.4 Discussion

overall feel of the solution. Bangor et al. [22] mention this when discussing
adjective ratings, that “OK” should not be taken to mean that the product is
not in need of improvement. We are aiming for at least a SUS score of 68 but
preferably the rating of “Excellent” which would mean a SUS score of 85 or
higher.

About half of the Google Analytics measurements reached their set goals,
and the rest made it pretty close. Therefore improvements such as the pro-
cess of making changes should be made clearer in the next iteration. We did
get more engagement on mobile on our part of the application than on the
application in general. Even so, not a lot of people use the web application
on phones. However pages from the web application are also used in the An-
droid and iPhone apps, so it is possible that the mobile-first approach will still
be useful. All users with the possibility to do so navigated to a lower level.
Therefore, the submenu button does not have to be changed.

29

Chapter 4

Iteration 2: a keypad menu

This chapter will describe the second iteration of two. The iteration consist of
a design-, an implementation- and an evaluation phase. The design was based
on the keypad of a phone. This design was developed based on the feedback
from the evaluation phase in the previous iteration and brainstorming sessions.
This design was then implemented in React.js and the functioning solution was
then evaluated with an heuristic evaluation, an catastrophe insurance, Google
Analytics and a Google form.

4.1 Design phase
When the results from the evaluation phase, described in Section 3.3.2, had
been analyzed and ideas of which areas of the first prototype needed improve-
ment was formed, it was time to realize them.

After evaluating the results of the first iteration we gathered some main
goals of improvement to be worked on in this iteration. These were:

1. Improving the overall usability

2. Finding a way to let the user know where in the tree they are located

3. Showing the users the progress when creating a new node

This design phase was kept to just a couple of days, while still finding
solutions for the problems above.

30

4.1 Design phase

4.1.1 Method

As a first step in the second design phase, we held a brainstorming session
ourselves. We focused on the main goals of improvements for this iteration
and brainstormed solutions for these topics.

Afterwards a second brainstorming session was held containing four people,
the authors and two employees from Telavox with insight into the project.

Figure 4.1: The results of the second brainstorming session

4.1.2 Result

To improve the overall usability of the solution, the qualitative questions from
the Google form were considered. From this it was found that design B from
Section 3.1 would be a suitable improvement to the solution. This was consid-
ered the main solution to the first goal of improvement Improving the overall
usability, but the rest of the solutions could also be considered a solution to
this goal.

31

4. Iteration 2: a keypad menu

In the brainstorming sessions, we found that multiple people suggested a
progress bar above the existing function for creating a new node. This to solve
the third goal of improvement, that making changes should be clearer. Since
a progress bar was an easy and clear way to solve this problem, we decided to
implement it.

Another solution which was conceived during the brainstorming sessions
was how to show the user were in the tree they was located at. Many ideas
emerged, as seen in Figure 4.1 and in the end we chose the simplistic, but
clear, solutions of having circles on the top of the screen represent submenus.
The idea was to fill in the circle representing the submenu the user was located
at with a color. It was chosen due to the fact that it was best suitable to be
scaled depending on the screen. It was also the option which gave the most
information to the user without cluttering the screen. This solution was meant
to solve the second goal of improvement for this iteration, to let the users know
where in the tree they were located.

As another solution to the second goal of improvement, to let the users
know where in the tree they were located, we wanted the users to be able
to show the tree in its entirety. We did not want a tree on every page and
therefore wanted a button the user could press to show it. We found on other
places on the website that a button was used in the upper right corner for
settings. Since this was not used in our solution, we found that this was the
best place for the button to show the tree.

4.2 Implementation phase
The second implementation phase was done by reworking the existing solution
from the first iteration in this thesis work. The rework was done in React.js.

Figure 4.2: A Material UI mobile stepper [27]

4.2.1 Method

This time the implementation involved a lot of writing CSS to make custom
components and tweak Material UI components to fit our needs. We created
the “phone button” component completely from scratch, and used Material

32

4.3 Evaluation phase

UI steppers for the progress bar when creating a new node, as seen in Figure
4.2, and to indicate which level of the tree the user was, as seen in Figure 4.3.
Right away when we added the stepper for level indication, we noticed that
we were often trying to click on the different levels to navigate. After some
research, we found that making the icons clickable was possible, and therefore
added that as a sort of shortcut for experienced users of large trees. This
is also explained by Shneiderman [28] where experienced users and beginners
have different needs for good usability. Beginners need more explanations,
while experienced users like shortcuts. Also, icons were increased in size for
the desktop view so that the application would look balanced.

Figure 4.3: A Material UI stepper [27]

Some features that had not been implemented in the first version were also
added, such as handling sounds and deleting submenus. Updating state and
properties was tweaked. A button leading to a view of the tree was added.

4.2.2 Result

The final result of the implementation was made to look like prototype B
(Figure 3.1), with the addition of a navigation bar of sorts at the top of the
page. The menu pages of the application can be seen in Figure 4.5 and the
pages to create a new node can be seen in Figure 4.4. We also added a way to
visualize the tree. How this was done can be seen in Figure 4.6.

4.3 Evaluation phase

The final product from this iteration was evaluated in the same manner as the
result from the previous iteration.

33

4. Iteration 2: a keypad menu

(a) Choosing node type (b) Choosing a queue

(c) Reviewing and finalizing node creation

Figure 4.4: Creating a new node with progress bar

4.3.1 Method

We wanted to make this evaluation phase similar to the previous evaluation
phase described in Section 3.3. This to make the comparison between the two
implementations as fair as possible.

Heuristic evaluation

As a first step in the evaluation phase, we contacted an expert to evaluate the
IVR solution. This time it was the UX department at Telavox who evaluated
it. They can be considered experts in human factors as well as in the domain
area, which makes them a so called “double expert”. The test was performed
by letting the UX department test the IVR solution freely. There was no more
scheduled implementation time when the heuristic evaluation was completed,
but since we found the feedback to be sensible and would give our solution a

34

4.3 Evaluation phase

real boost in usability, we added a few days extra of implementation to resolve
it before the test was sent out to the advisors and the lead technicians of the
company.

(a) Mobile view (b) Desktop view

Figure 4.5: Prototype B implemented

Figure 4.6: Tree View

35

4. Iteration 2: a keypad menu

Catastrophe insurance

At the same time as the heuristic evaluation was being performed, we held a
catastrophe insurance. This to, with the help from the developers at Telavox,
find hidden bugs before the solution reached the customers. It was sent out
on the beta branch of the web app. The test was done as described in Section
3.3.1. This test resulted in some feedback which we improved on before the
next step in the evaluation phase.

Google Analytics

Some additional measurement points were added to the code before any of
the testing was done. These measurement points represented the new features
which were added this iteration to see if the features were used.

The questions we want to answer with Google Analytics this iteration are:

• How far down the tree does the user go?

• Does the user look to see the possibility to add a new node?

• Are changes made? Which ones?

• Is it used mainly via mobile?

• What is the engagement on mobile versus desktop?

• Are the shortcuts being used?

• Is the tree view shown?

To answer these questions, we again set up some goals. The percentages in
the goals were decided on by the authors. For the first four items in the list,
we used the same goals as in Section 3.3.1.

• To evaluate if shortcuts were being used sufficiently, we wanted at least
25% of the users on trees with more than one level to use them.

• We wanted 25% of users to show the tree view to see if the button leading
to it was visible enough or not.

Google form

A Google form was sent out to the testers of the solution to gather the feedback
that can not be gathered from Google Analytics. This form consisted of a SUS
questionnaire and some additional qualitative questions. As stated previously,
we wanted continuity between the evaluation phases of the two iterations. This

36

4.3 Evaluation phase

meant that the questionnaire was identical to the form in Section 3.3. It can be
seen in its entirety in Appendix A. This also meant that we wanted to answer
the same questions as in Section 3.3.1. This to make it easy to evaluate the
design against each other for a sort of comparison testing.

The form was again sent out to the advisors and the lead technicians at
Telavox.

Figure 4.7: The landing page on a phone

4.3.2 Result

From the heuristic evaluation, we got the feedback to add a landing page
containing the customers IVR tree before the page where the IVR can be
edited. This can be seen in Figure 4.7. We also got the feedback to use auto-
back on selection when e.g. editing a node. This to make the IVR solution
more consistent to the rest of the application. Some feedback was also received
on formulations on our help texts. All of this feedback was incorporated into
the IVR solution.

From the developers in the catastrophe insurance testing, we got some
feedback that the tree view button was a bit hard to find. We also got feedback
that it was confusing when the tree view disappeared because of the boundaries
of the content pane in the application as in Figure 4.8a. This was rectified by

37

4. Iteration 2: a keypad menu

adding a light grey background and border, as in Figure 4.8b.

(a) Tree disappearing in the top of the im-
age.

(b) A grey border and background to
make the disappearing tree seem less odd.

Figure 4.8: The problem and solution of the disappearing tree.

From the qualitative questions on the form, we got some feedback. One
thing that was mentioned was that we had missed changing one helptext which
referred to a node. This was seen as confusing. One person also wanted to
be able to search for a certain colleague, or the phone number of a colleague,
when adding them to a node. Otherwise the feedback was really positive.

The SUS form got 8 answers. The score was then calculated individually
for the people who answered and then an average score was comprised. The
final SUS score was 68.1. Also according to Bangor et al. [21] is over 68
and can therefore be considered a usable product and to the Adjective Rating
Scale [22] is right under “Good”. We also calculated a confidence interval with
a confidence level of 95% which gave us a error margin of ±4.699.

When a measurement point from Google Analytics is triggered, it is presented
as an event representing that specific measurement point.

The percentage of mobile events was lower this time, only 5.3%, perhaps
due to less time. 84% looked at creating a new node, this rose to 94% after
removing the Telavox number, which was in use and should not be edited
unnecessarily. 52% made changes, 59% without Telavox number. 26% went to
a lower level, 42% when only counting the trees with more than one level. 26%
showed the tree view from parts of the tree. 37% used the quick navigation, or
58% when only counting the trees with a lower level. No changes or attempts
at changes were made on mobile.

38

4.4 Discussion

Tree 1 2 3 4 5 6 7 8 9 10

nbr. of levels in tree 2 1 ? 1 1 2 ? ? 2 1

nbr. of events entering this tree 3 2 2 2 2 2 2 2 1 1

Table 4.1: Table of the trees visited in Iteration 2

The results can be seen in their entirety in Appendix C.

4.4 Discussion
We did not get that much feedback from the qualitative questions during this
iterations, but the feedback we received was useful. If we would have done
another iteration this feedback would have been considered.

The SUS score was over 68, which indicates that the improvements made
during this iteration made an improvement on the overall usability of the
solution. The score did not reach the internal goal of the adjective rating
scale [22] of “Excellent”, which would have been a SUS score of 85 or higher.
However it can still be considered an acceptable score.

According to the Google Analytics the number of users that viewed the
tree view was just above 25%, but to be able to use it as a good way to get
to know exactly where in the tree the user is it should probably have a more
visible button or be located in another place.

The changes were way over the set goal, which hopefully means that the
stepper and throw away changes button helped the testers feel sure of what
they were doing. Looking at creating a new node was a good bit over the
goal, which compared to last iteration is a great improvement. No one used
the shortcuts in the beginning, but this could be due to most of the tested
trees being only one level, and therefore the shortcuts being hidden. However,
some of the testers in the end of the testing period used the shortcuts so this
measurement also reached its goal.

39

Chapter 5

Discussion

This chapter will discuss the implications of the results of this thesis work. It
will discuss the advantages and disadvantages of the methods used and also
what we have learned by using them. Suggestions on future work will also be
made.

5.1 Iteration 1 vs Iteration 2
The difference between iteration 1 and 2 is the design of the submenus, the two
different kinds of steppers added in iteration 2, as well as some functionality.
Iteration 2 kept a lot of the features from iteration 1, but with a lot of rework
on the design.

From the qualitative questions on the survey, we found that iteration 1
was very lacking when it came to usability. Iteration 2 did not get nearly as
much constructive criticism as iteration 1. It was also a lot less extensive, from
which we drew the conclusion that the second iteration did not have as many
frustrating or confusing aspects as iteration 1.

The SUS score was very different depending on the iteration. It was sig-
nificantly higher in the second iteration compared to the first, rising to an
acceptable score. It went from 51.875 in the first iteration to 68.1 in the
second iteration, which is quite a large improvement. This indicates that the
IVR solution went from not usable to usable in one iteration.

As for Google Analytics, iteration 2 did not improve all the goals. Espe-
cially the goals of how many were using the application on mobile as well as
how many were going to a lower level went down. The engagement on mobile

40

5.2 Fail-fast

would hopefully improve when including the application into the mobile ap-
plications. As for going to a lower level, this could be due to different trees
being visited.

A goal that was greatly improved by iteration 2 was if the users were making
changes. This measurement went up by a factor ten. The goal of looking into
creating a new node also made a small improvement, as it more than doubled.
Goal 3 of this iteration, showing the users the progress when creating a new
node, seems to have had an effect.

5.2 Fail-fast

While using the fail-fast method we found some advantages and some disad-
vantages.

One advantage was the time we saved on not inviting people for focus
groups or going to the clients office and observing. When working with a more
classic design process these costs would have been guaranteed, while fail-fast
has a low cost due to more guess-work. We also did not need to spend time
and energy in creating and testing low- and high fidelity prototypes. Another
advantage was that once a working product was produced, it was not as costly
as we predicted to rework the design. This was in fact done quite smoothly.

The disadvantages are that without design experience or an understanding
of the clients needs, the first design could be way off mark, which could lead
to more work down the line. Since we chose to work closely with the UX
department at Telavox, we got a understanding of the clients via their expe-
riences. Companies with established customers might not be affected by this
disadvantage as much as startup companies, but it might not be the case for
all companies.

Another disadvantage that can occur is when choosing one design and doing
evolutionary prototyping on it can lead to the design reaching a local maximum
of optimal design. A more open brainstorming process could find a possible
global maximum, as mentioned in Henrik Kniberg’s presentation about how
Spotify builds products [3].

Since the first iteration had a strong focus on making a working solution and
releasing it, the design did not become the most beautiful. If more focus was
put on the design and not making something that was also easy to implement,
a better design may have been found.

41

5. Discussion

5.3 Gathering feedback
We focused on a scalable way of gathering feedback. This to see if it was a
viable way for a company to work or if there were some drawbacks.

One aspect which was difficult when gathering feedback remotely was the
instructions. It was quite difficult to give directions on an appropriate level.
The text had to be detailed enough to not assume the people testing knew too
much and at the same time not full of a lot of explanatory text which would
be skipped leading to important information being lost. For example, to make
the secret URL more clear in the second iteration, we included an example
URL where some characters, marked as XXXXX, were to be replaced with the
ID number of the IVR. But this led to some testers going to the URL without
replacing the X:es.

Another aspect which had to be considered was when the instructions
should be sent out to maximize the feedback. Variables which had to be
considered was which weekday, which time of day and if the people were likely
to be on holiday or not. We noticed in Google Analytics that if the testers did
not have time to test when they received the e-mail, they were unlikely to test
at all without further prompting. Therefore, some thought should be put into
when potential testers are likely to have time to test the application.

5.3.1 Heuristic evaluation

The heuristic evaluation is the one evaluation method we used which is not
scalable. This due to the fact that if too many experts are used, they will
eventually not discover any new usability problems [29]. It is therefore not
beneficial for the project to use this method in a scalable manner. However,
since it meant a one time occurrence with the expert and since it produced such
qualitative and usable results, we considered it a viable evaluation method for
us to use even though it was not scalable.

We found that the result from the evaluation differed a lot depending on
who the evaluator was. The way the produced feedback differed was the area
the evaluators focused on. The first evaluator was new to the system and
produced feedback which focused on how new users see the solution, while the
second evaluation was done by people who was experienced with the rest of the
system, but not our solution. This produced feedback which focused on making
our solution a part of the rest of the system. Based on this information, it could
have been useful to have both kinds of evaluators evaluating both iterations,
to be able to receive both kinds of feedback for each iteration. However,
the difference in the feedback could also have been a result of the solution
appearing less finished in the first iteration and in need of more feedback which

42

5.3 Gathering feedback

would help the user. This was then not as much of a problem in iteration 2
which gave the evaluators more freedom to notice other improvements.

One important thing we noticed when doing the heuristic evaluation was to
have some time scheduled afterwards to implement the feedback which came
from the evaluation. Almost every comment which were brought up in the
evaluation were, from our experience, worth implementing. We found that the
feedback from the evaluators were things we agreed with them on, and in some
cases were things we had thought of but forgotten. Many comments were also
things we had missed due to the fact that we were used to our own system,
but when pointed out it became apparent that it needed improvement. This
was namely naming of items and help texts, which needed improvements in
both iterations.

5.3.2 Catastrophe insurance

We found the catastrophe insurance to give us some peace of mind before
sending the solution to customers, or in our case testers. What was mentioned
in Section 2.6.2 Catastrophe insurance was correct, namely that the test would
find bugs which the developers might have missed. We were then fortunate to
be able to fix the bugs that came up, but if this were not the case we would
at least have known of the bugs existence. Even if the people performing the
catastrophe insurance did not find all of the bugs in the IVR solution, they
found more bugs than the developers alone. We also sent out an survey with
the catastrophe insurance where we asked for feedback on the design. In the
first iteration, the people performing the test did not give any design feedback,
they only found bugs. However, in iteration 2 the people performing the test
came with some feedback regarding the design of the solution. This might
have been due to the fact that less bugs appeared in the second iteration and
that gave the people performing the test more room to evaluate the design. It
could also be that the people performing the test was more used to the IVR
solution in the second iteration and felt more comfortable giving feedback.

5.3.3 Google Analytics

We found from the Google Analytics measurement points that there were a
large number of people testing our solution who did not give feedback via the
form. Without those measurement points, we would not have known that.
The measurement points gave us the possibility to measure every step the user
took, which made it easy to collect exactly the data we needed to evaluate
the solution. However, the fact that we could measure everything made it
harder to decide exactly what data we needed to collect. To decide this,

43

5. Discussion

we formulated some questions we wanted to answer with the test, as seen in
Section 3.3.1. From these questions we calculated which measurement points
that would answer them and implemented those. Since everything was possible
to collect with these measurement points, the Google Analytics website was
at times very complex with a large amount of features we did not use. This
made the tool a bit harder to use at first, but after some practice it got easier.
Someone with a lot of experience in using Google Analytics may use it to get
even more advanced information than we did, making it a very handy tool to
gather feedback.

5.3.4 Survey

We chose to have a SUS survey and some additional qualitative questions in
the same survey due to the fact that we only had three additional qualitative
questions and because the SUS survey itself is quite short. We also did not want
the people testing to have to navigate multiple ways to give their feedback.
Even with this, there was not a lot of answers to the survey and it was good
that we had multiple ways to gather user data.

We tried to make the qualitative questions very open as to not steer the
users answers, but that also meant that we didn’t get any answers about
the more specific questions we were asking about, the response times and
the icons. Therefore, we had to assume that since they were not mentioned
they were acceptable. The questions asked “Did you experience anything as
confusing” and “Did you experience anything as frustrating” gave us a lot of
useful feedback which we would not have gotten via the SUS score alone. Even
though the questions were quite similar, they provided differing feedback. They
also both provided the appropriate feedback to make further developments to
the solution.

When evaluating the SUS score we relied on two different evaluation tech-
niques. One was the more common “over 68 rule”, which stated that if a
product got a SUS score of over 68, it was probably a usable product, and if it
got a SUS score of under 50, it was probably a very unusable product. How-
ever, we did not think this method gave a very nuanced picture of the product,
and therefore we chose to complement this technique with a second technique,
the “adjective ratings scale”. Together, these techniques gave a indicator of
how to best interpret the SUS score.

One thing that stood out in the SUS surveys were that a lot of the testers,
even if they were otherwise positive, gave very low scores on the first statement
of the survey. This statement, “I think that I would like to use this system
frequently”, might have caused a slightly lower SUS scores for our application.
The applications main feature, editing an IVR system, is not something that
is supposed to be used frequently.

44

5.4 Further improvements

Other forms of surveys

Another scalable method of gathering feedback is having a small survey or
rating directly in the application, so that after a certain amount of time the
user is prompted to review the application. One kind of rating method which
was considered was having a thumbs up or down. This would give the user
a quick and easy way to indicate if they liked the solution or not. However,
this would not have given us the qualitative feedback we needed to make
improvements to the design which means that there would still be necessary
to have some sort of survey. We considered having both thumbs and a survey
for a while but after some research we found that too many feedback options
most likely would give the testers respondent fatigue [30], a phenomenon when
the testers are tired of giving feedback and therefore do not give as good
feedback. To avoid this, we decided to gather the qualitative and quantitative
feedback in the same Google Form to make sure the testers only had one place
for giving feedback.

5.4 Further improvements
An IVR solution has the possibility to have a lot of and very complex features.
Therefore the thesis work had to narrow down the amount of features to be
able to keep the time plan of 20 weeks. In this section we will discuss some
features that would have been implemented and general improvements that
would have been made if the time frame was different.

5.4.1 Sounds

At the moment a customer can choose to add a sound to be played before a
certain submenu or a certain node. However, some features are missing which
could lead to large improvements to the product.

Adding new sounds

When choosing a sound to be played, the customer can choose from a list of
sounds which are connected to this specific user. However, in the future it
would be added that the customer could add a new sound to this list. Since
the platform is mobile first, it could also be added that the customer could
record their own sound using the microphone on their mobile phone.

45

5. Discussion

Rearranging sounds

In the final implementation, the customer is able to add multiple sounds to
the list of sounds playing before the submenu or node. They can also remove
a specific sound from the list of sounds playing. As a further development of
this, the customer should be able to rearrange the order of specific sounds in
this list. This would lower the amount of effort significantly for the customer
if, for example they accidentally added the sounds in an incorrect order.

5.4.2 More than one submenu

One thing we would have changed if we got to redo this thesis work is the way
we handle submenus. At the moment when a submenu is chosen, we search
the list of possible choices for the current level in the tree of which the user is
located and find a submenu to navigate to. This means that there can only be
one submenu at each tree level.

If more time were given, the code could be rewritten to incorporate a
depth first search to more fully map the tree. Depth first search is a class of
algorithms that allow for complete traversal of a graph, and as a tree is just a
special case of graph, it would work in this case [31].

5.4.3 More than one profile

As a standard, a customer at Telavox with an IVR receives two profiles, open
and closed. This can be expanded into more profiles at the customers request.
This regulates which actions shall be taken when a caller reaches the IVR.
A customer can set during which days in the week and during which time
frame a certain profile shall be active. The “Open” profile is the one we have
implemented and consists of a tree. However the other profiles proved to be
a lot more complex due to the fact that they did not consist of a tree. For
example, when the “Closed” profile is active the caller will be sent to an end
point directly without them pressing a button on their phone. This could seem
straight forward, but due to the fact that the profiles was constructed a lot
differently in the database it would have taken a lot of time to solve.

5.4.4 Creating a new IVR

At this point, a customer can only view and edit an already existing IVR sys-
tem. As a further development, this could be extended to creating a new IVR
system. This feature would give the customer more liberties in the product and
make them less bound to the desktop application or the advisors at Telavox.

46

Chapter 6

Conclusion

This chapter will draw conclusions based on the research questions stated in
Section 1.3.

After two iterations of designing, developing and evaluating an application for
viewing and editing an IVR-system, a lot of insights into gathering feedback
and working with a fail-fast method in design have been reached. The evalua-
tion phase in both iterations included scalable methods of collecting feedback.
Each method were intended to gather different kinds of feedback to help with
the further development of the product.

How can feedback be collected in a scalable way when developing a mobile-
first application?

We found it quite challenging to get feedback from real customers, especially
with surveys. This due to the fact that a sent out survey is less personal,
which yields less incentive to actually give feedback. In the end there was only
a small percentage who actually gave their feedback. However, if this had been
done in a larger scale, the small percentage would still have yielded a lot of
useful feedback to the company. We also did not have a lot of people testing
via their mobile phone. This might have been a higher percentage if we sent
out a direct link to their phone instead of via email.

The scalable ways we collected feedback were all useful in their own way.
Every method brought their own sort of feedback which were all useful.

47

6. Conclusion

What are the challenges when working with a fail-fast design process?

One challenge is how to not reach a local max instead of a global max. It
is quite difficult to know if the beginning is too narrow and therefore will not
reach the best product after some development.

Another challenge is knowing when to stop. When producing a MVP, it
can be hard to know if the implementation is enough to produce results and
at the same time not implementing it fully.

If the company does not know which customers to focus on, or their cus-
tomers’ needs, they might want to do some sort of pilot study before the start
of the implementation. This to have some indication of where to start. If
a company already have established customers, this might not be necessary.
This due to the fact that they already have knowledge of what their customers
want. We found that we had a lot of knowledge from Telavox about their
customers to support our starting designs, which meant that a pilot study was
not necessary.

48

Bibliography

[1] International Organization for Standardization. Ergonomics of Human-
system Interaction: Part 210: Human-centred Design for Interactive Sys-
tems. ISO, 2010.

[2] Laura Hokkanen, Kati Kuusinen, and Kaisa Väänänen. Early product
design in startups: Towards a ux strategy. In Product-Focused Software
Process Improvement, pages 217–224. Springer International Publishing,
2015. ISBN 978-3-319-26844-6.

[3] Henrik Kniberg. How spotify builds products, 2013. https:
//www.dcc.fc.up.pt/~mcoimbra/lectures/SIM_1415/SIM_1415_
T2.3_HowSpotifyBuildsProducts.pdf. Fetched 2019-01-16.

[4] Donald A. Norman. The Design of Everyday Things. The MIT press,
Cambridge, Massachusetts, 2013.

[5] Peter Merholz. Peter in conversation with don norman about ux & innova-
tion, 2007. https://www.adaptivepath.com/ideas/e000862/. Fetched
2019-04-16.

[6] Laura Klein. UX for Lean Startups: Faster, Smarter User Experience
Research and Design. O’Reilly Media, Inc., 2013.

[7] Mattias Arvola. Interaktiondsdesign & UX: Om att skapa en god använ-
darupplevelse. Stundentlitteratur AB, 2014.

[8] Jennifer Preece, Yvonne Rogers, and Helen Sharp. Interaction Design:
Beyond Human-Computer Interaction. John Wiley and Sons, third edi-
tion, 2002.

[9] Martina Maria Keitsch. Design driven innovation - minimum viable prod-
ucts for local entrepreneurship in nepal, 2015.

[10] Siddharth. How to go from a minimum viable product to a minimum
marketable product. https://www.snyxius.com/how-to-go-from-a-
minimum-viable-product-mvp-to-a-minimum-marketable-product-
mmp/. Fetched 2019-01-30.

49

https://www.dcc.fc.up.pt/~mcoimbra/lectures/SIM_1415/SIM_1415_T2.3_HowSpotifyBuildsProducts.pdf
https://www.dcc.fc.up.pt/~mcoimbra/lectures/SIM_1415/SIM_1415_T2.3_HowSpotifyBuildsProducts.pdf
https://www.dcc.fc.up.pt/~mcoimbra/lectures/SIM_1415/SIM_1415_T2.3_HowSpotifyBuildsProducts.pdf
https://www.adaptivepath.com/ideas/e000862/
https://www.snyxius.com/how-to-go-from-a-minimum-viable-product-mvp-to-a-minimum-marketable-product-mmp/
https://www.snyxius.com/how-to-go-from-a-minimum-viable-product-mvp-to-a-minimum-marketable-product-mmp/
https://www.snyxius.com/how-to-go-from-a-minimum-viable-product-mvp-to-a-minimum-marketable-product-mmp/

BIBLIOGRAPHY

[11] M O’Reilly. Extreme Programming Pocket Guide. O’Reilly Media Inc,
2003.

[12] Laura Hokkanen, Kati Kuusinen, and Kaisa Väänänen. Minimum viable
user experience: A framework for supporting product design in startups.
In Agile Processes, in Software Engineering, and Extreme Programming,
pages 66–78. Springer International Publishing, 2016. ISBN 978-3-319-
33515-5.

[13] React - a javascript library for building user interfaces.

[14] Javascript. Collins English Dictionary – Complete & Unabridged
2012 Digital Edition., 2012. https://www.dictionary.com/browse/
javascript. Fetched 2019-04-29.

[15] Dana Chisnell and Jeff Rubin. Handbook of Usability Testing: How to
plan, design and conduct effective tests. Wiley Publishing, Inc., 2008.

[16] Rolf Molich and Jakob Nielsen. Heuristic evaluation of user interfaces,
1990.

[17] Google. Analytics. https://marketingplatform.google.com/about/
analytics/, 2019. Fetched 2019-03-14.

[18] John Brooke. Sus - a quick and dirty usability scale. in jordan, pw, thomas,
b., weerdmeester, ba & mcclelland, al (eds.) usability evaluation in indus-
try, 1996.

[19] Thomas S Tullis and Jacqueline N Stetson. A comparison of question-
naires for assessing website usability. In Usability professional association
conference, volume 1. Minneapolis, USA, 2004.

[20] Jeff Sauro. A practical guide to the system usability scale: Background,
benchmarks & best practices. Measuring Usability LLC Denver, CO, 2011.

[21] Aaron Bangor, Philip Kortum, and James Miller. An empirical evaluation
of the system usability scale. International Journal of Human-Computer
Interaction, 24(6):574 – 594, 2008. ISSN 10447318.

[22] Aaron Bangor, Philip Kortum, and James Miller. Determining what in-
dividual sus scores mean: Adding an adjective rating scale. Journal of
usability studies, 4(3):114–123, 2009.

[23] How to facilitate a brainstorming session: The effect of idea generation
techniques and of group brainstorm after individual brainstorm. Creative
Industries Journal, 11(3):263 – 277, 2018. ISSN 17510694.

50

https://www.dictionary.com/browse/javascript
https://www.dictionary.com/browse/javascript
https://marketingplatform.google.com/about/analytics/
https://marketingplatform.google.com/about/analytics/

BIBLIOGRAPHY

[24] Paul B Paulus and Huei-Chuan Yang. Idea generation in groups: A
basis for creativity in organizations. Organizational behavior and human
decision processes, 82(1):76–87, 2000.

[25] Jonali Baruah and Paul B Paulus. Effects of training on idea generation
in groups. Small Group Research, 39(5):523–541, 2008.

[26] Alex Osborn Faickney. Applied imagination. New York.: Scribner, 1957.

[27] Matt Brookes. Steppers, 2018. https://material-ui.com/demos/
steppers/. Fetched 2019-04-16.

[28] Ben Shneiderman. Designing the User Interface: Strategies for Effective
Human-Computer Interaction. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 3rd edition, 1998.

[29] Jakob Nielsen. Finding usability problems through heuristic evaluation.
In Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 373–380, 1992.

[30] Pazit Ben-Nun. Respondent fatigue. Encyclopedia of survey research
methods, 2:742–743, 2008.

[31] Shimon Even and Guy Even. Graph Algorithms. Cambridge University
Press, 2011. URL https://books.google.se/books?id=m3QTSMYm5rkC.

51

https://material-ui.com/demos/steppers/
https://material-ui.com/demos/steppers/
https://books.google.se/books?id=m3QTSMYm5rkC

Appendix A

Evaluation form

Figure A.1: Qualitative questions

52

Figure A.2: SUS questions

53

Appendix B

Google Analytics Data Iteration 1

Figure B.1: The usage of the application during the first evaluation

Table B.1: Google Analytics data from the first evaluation

Beginning of Table

Event Label Segment Total Events Unique Events

Went to Node on Level 0
All Users 80 17

Mobile Traffic 2 1

Clicked on IVR
All Users 61 27

Mobile Traffic 6 4

Went Back When Creating
New Node

All Users 44 12

Mobile Traffic 0 0

Started Creating New
Node on Level 0

All Users 37 13

Mobile Traffic 0 0

Showed Sound in Submenu
All Users 30 13

Mobile Traffic 1 1

54

Continuation of Table B.1

Event Label Segment Total Events Unique Events

Showed Ivr Tree in Refer
With Key Refer-21878

All Users 29 17

Mobile Traffic 5 3

Went to Parent on Level 1
All Users 24 6

Mobile Traffic 0 0

Went to Next Step in
Creating New Node

All Users 23 9

Mobile Traffic 0 0

Showed Actions in Node
All Users 12 6

Mobile Traffic 0 0

Showed Ivr Tree in Refer
With Key Refer-1259423

All Users 11 1

Mobile Traffic 0 0

Showed Sound in Node
All Users 10 6

Mobile Traffic 0 0

Saved a Change on an
Existing Node on Level 0

All Users 8 4

Mobile Traffic 0 0

Showed Ivr Tree in Refer
With Key Refer-1620303

All Users 8 1

Mobile Traffic 0 0

Started Creating New
Node on Level 1

All Users 7 3

Mobile Traffic 0 0

Showed Ivr Tree in Refer
With Key Refer-2088065

All Users 6 2

Mobile Traffic 0 0

Deleted a Node on Level 0
All Users 5 4

Mobile Traffic 0 0

Showed Ivr Tree in Refer
With Key Refer-1298062

All Users 5 1

Mobile Traffic 0 0

Showed Ivr Tree in Refer
With Key Refer-2141030

All Users 4 1

Mobile Traffic 0 0

55

B. Google Analytics Data Iteration 1

Continuation of Table B.1

Event Label Segment Total Events Unique Events

Showed Ivr Tree in Refer
With Key Refer-500241

All Users 3 3

Mobile Traffic 0 0

Went to Node on Level 1
All Users 3 2

Mobile Traffic 0 0

Created a New Node on
Level 0

All Users 2 2

Mobile Traffic 0 0

Saved a Change on an
Existing Node on Level 1

All Users 2 2

Mobile Traffic 0 0

Saved a Change on an
Existing Node on Level 2

All Users 2 1

Mobile Traffic 0 0

Showed Ivr Tree in Refer
With Key Refer-1231433

All Users 2 1

Mobile Traffic 0 0

Showed Ivr Tree in Refer
With Key Refer-1620275

All Users 2 1

Mobile Traffic 0 0

Started Creating New
Node on Level 2

All Users 2 1

Mobile Traffic 0 0

Created a New Node on
Level 1

All Users 1 1

Mobile Traffic 0 0

Showed Ivr Tree in Refer
With Key Refer-1198275

All Users 1 1

Mobile Traffic 0 0

Showed Ivr Tree in Refer
With Key Refer-1585990

All Users 1 1

Mobile Traffic 0 0

Went to Parent on Level 2
All Users 1 1

Mobile Traffic 0 0

End of Table

56

Appendix C

Google Analytics Data Iteration 2

Figure C.1: The usage of the application during the second evaluation

Table C.1: Google Analytics data from the second evaluation

Beginning of Table

Event Label Segment Total Events Unique Events

Clicked on IVR
All Users 15 10

Mobile Traffic 3 1

Went to Node on Level 0
All Users 15 8

Mobile Traffic 1 1

Went to Next Step in
Creating New Node

All Users 13 5

Mobile Traffic 0 0

Started Creating New
Node on Level 0

All Users 8 6

Mobile Traffic 0 0

Showed Actions in Node
All Users 7 3

Mobile Traffic 1 1

57

C. Google Analytics Data Iteration 2

Continuation of Table C.1

Event Label Segment Total Events Unique Events

Started Creating New
Node on Level 3

All Users 6 1

Mobile Traffic 0 0

Went Back When Creating
New Node

All Users 4 3

Mobile Traffic 0 0

Showed Treemap From
Submenu

All Users 3 3

Mobile Traffic 0 0

Went to Parent on Level 1
All Users 3 3

Mobile Traffic 0 0

Created a New Node on
Level 0

All Users 2 2

Mobile Traffic 0 0

Deleted a Node on Level 0
All Users 2 2

Mobile Traffic 0 0

Saved a Change on an
Existing Node on Level 3

All Users 2 1

Mobile Traffic 0 0

Showed Ivr Tree in Refer
With Key Refer-1193233

All Users 2 1

Mobile Traffic 2 1

Showed Ivr Tree in Refer
With Key Refer-1907065

All Users 2 1

Mobile Traffic 0 0

Showed Ivr Tree in Refer
With Key Refer-1922919

All Users 2 1

Mobile Traffic 0 0

Showed Ivr Tree in Refer
With Key Refer-2000805

All Users 2 1

Mobile Traffic 0 0

Showed Ivr Tree in Refer
With Key Refer-2056978

All Users 2 1

Mobile Traffic 0 0

Showed Ivr Tree in Refer
With Key Refer-2180964

All Users 2 1

Mobile Traffic 0 0

58

Continuation of Table C.1

Event Label Segment Total Events Unique Events

Showed Ivr Tree in Refer
With Key Refer-2273675

All Users 2 1

Mobile Traffic 0 0

Showed Ivr Tree in Refer
With Key Refer-500241

All Users 2 1

Mobile Traffic 0 0

Showed Treemap From
Node

All Users 2 1

Mobile Traffic 0 0

Used Shortcut to Go to
Parent on Level 0

All Users 2 2

Mobile Traffic 0 0

Used Shortcut to Go to
Parent on Level 1

All Users 2 1

Mobile Traffic 0 0

Used Shortcut to Go to
Parent on Level 2

All Users 2 1

Mobile Traffic 0 0

Backed to Root of Refer
With Key Refer-1907065

All Users 1 1

Mobile Traffic 0 0

Created a New Node on
Level 1

All Users 1 1

Mobile Traffic 0 0

Created a New Node on
Level 2

All Users 1 1

Mobile Traffic 0 0

Created a New Node on
Level 3

All Users 1 1

Mobile Traffic 0 0

Saved a Change on an
Existing Node on Level 0

All Users 1 1

Mobile Traffic 0 0

Showed Ivr Tree in Refer
With Key Refer-1839897

All Users 1 1

Mobile Traffic 0 0

Showed Ivr Tree in Refer
With Key Refer-21878

All Users 1 1

Mobile Traffic 0 0

59

C. Google Analytics Data Iteration 2

Continuation of Table C.1

Event Label Segment Total Events Unique Events

Started Creating New
Node on Level 1

All Users 1 1

Mobile Traffic 0 0

Started Creating New
Node on Level 2

All Users 1 1

Mobile Traffic 0 0

Used Shortcut to Go to
Parent on Level 3

All Users 1 1

Mobile Traffic 0 0

Went Back to Tree
Without Saving New Node

All Users 1 1

Mobile Traffic 0 0

Went to Parent on Level 2
All Users 1 1

Mobile Traffic 0 0

Went to Parent on Level 3
All Users 1 1

Mobile Traffic 0 0

End of Table

60

	Acronyms & abbreviations
	Introduction
	Background
	Telavox
	Telavox's IVR system

	Purpose
	Research questions
	Method
	Terminology
	Delimitations
	Division of work

	Theoretical background
	User experience
	Iterative design
	Evolutionary prototyping
	Fail-fast
	Minimum viable product
	Minimum viable user experience

	React.js
	Usability Evaluation
	Heuristic evaluation
	Catastrophe insurance
	Google Analytics
	System Usability Scale

	Brainstorming

	Iteration 1: a simple settings menu
	Design phase
	Method
	Result

	Implementation phase
	Method
	Result

	Evaluation phase
	Method
	Result

	Discussion

	Iteration 2: a keypad menu
	Design phase
	Method
	Result

	Implementation phase
	Method
	Result

	Evaluation phase
	Method
	Result

	Discussion

	Discussion
	Iteration 1 vs Iteration 2
	Fail-fast
	Gathering feedback
	Heuristic evaluation
	Catastrophe insurance
	Google Analytics
	Survey

	Further improvements
	Sounds
	More than one submenu
	More than one profile
	Creating a new IVR

	Conclusion
	Evaluation form
	Google Analytics Data Iteration 1
	Google Analytics Data Iteration 2

