
AI-based machine vision for retail
self-checkout system

by Anton Rigner

Master Thesis in Mechanical Engineering

Faculty of Engineering at Lund University

LU Supervisor: Dr. Carl Olsson

ETH Supervisor: Prof. Konrad Schindler

AIRS Supervisor: Alejandro Garcia

Abstract

In recent years advances in computing power, availability of large
annotated datasets and AI algorithms have enabled the rise of reliable
object identification and tracking. This thesis describes the development
and implementation considerations of a system for object detection in
the retail industry. This project have been conducted as a collaboration
between ETH Zürich and start-up company AI Retailing Systems, who
wants to automate parts of the retailing experience, namely the checkout
procedure in a retail store. A data set of images with corresponding
bounding boxes and pixel-segmentations has been gathered, consisting
of ten Swiss retail products. Relevant theory is discussed and three state
of the art neural network architectures are reviewed and evaluated for the
specific application and dataset. The thesis concludes with a discussion
of the main challenges for this type of solution, a recommendation for
the object detection model to be used and pointers for future work.

Keywords: Object Detection, Retail, Automated Checkout

i

Contents

Abstract . i

1 Introduction 1
1.1 Background . 1

1.1.1 Background on AI Retailer Systems 1
1.1.2 Computer Vision and Object Detection 2

1.2 Aims and objectives . 2
1.2.1 Model evaluation and comparison 3
1.2.2 Data gathering . 3

1.3 Constraints and limitations . 3
1.3.1 Availability of literature and intellectual property 3
1.3.2 Hardware . 4

2 Theory 5
2.1 Object Detection . 5
2.2 Deep Learning for Computer Vision 5

2.2.1 Supervised Learning . 6
2.2.2 Transfer Learning . 6

2.3 State of the Art Models . 6
2.3.1 Faster R-CNN / Mask R-CNN 6
2.3.2 YOLO . 8
2.3.3 RetinaNet . 8

2.4 Segmentation Mask or Bounding Box 9

3 Methodology 10
3.1 Data gathering . 10

3.1.1 Labelling . 11
3.1.2 Data augmentation . 12

3.2 Evaluation metrics and benchmarking 13
3.2.1 Mean average precision (mAP) 13
3.2.2 Run-time . 13

3.3 FPS requirement . 13
3.4 Model optimization . 14

4 Results 15
4.1 Data augmentation test . 15
4.2 FPS test . 16
4.3 Model benchmark results . 17

4.3.1 Accuracy . 17
4.3.2 Failure cases . 18

4.3.3 Run-time . 19
4.4 Brightness variations . 19

5 Discussion, Conclusions, Recommendations 21
5.1 Data augmentation . 21
5.2 FPS requirements . 21
5.3 Model benchmarking . 22

5.3.1 Mask R-CNN . 22
5.3.2 RetinaNet . 22
5.3.3 YOLO . 23

5.4 Model optimizations . 24
5.4.1 Anchor scaling . 24
5.4.2 Image size . 24
5.4.3 Non-max suppression . 24

5.5 Handling occlusions . 25
5.6 Trade-off: Speed vs. Accuracy 26
5.7 Sources of errors . 26
5.8 Integration with prototype system 26
5.9 Recommendation for model to be used 27
5.10 Future work and next steps . 28

5.10.1 Other object detection models 28

6 Conclusions 30

Appendices 33

A Images of Prototype & product demo day 33

1 Introduction

In recent years advances in computing power, research in AI algorithms and
the availability of large datasets have enabled the rise of reliable object iden-
tification and tracking. This thesis describes the development and prediction-
model considerations of a object detection system for retail items. This project
has been conducted as a collaboration between ETH Zürich and the start-up
company AI Retailer Systems, who wants to automate parts of the retailing
experience, namely the checkout procedure in a retail store.

This is to be achieved by tracking and identifying objects that the customer
puts in their physical shopping cart, and then using this information to build a
“virtual shopping cart”, which would potentially remove the need for a cashier
to scan the items and handle payments in a convenience store. Development
steps and considerations, as well as model choice and data dependencies are
discussed, concluding with a final recommendation for which object detection
model should be deployed for the first prototype.

1.1 Background

1.1.1 Background on AI Retailer Systems

AI Retailer Systems is a start-up company active in the retail space, with the
long-term mission to automate the retail experience. Automating the check-
out procedure of the retail market is not a new thing, it has been around since
the 80’s [1] and has worked in various ways, with the self-scanning solution
having been the most prominent one. Making the customer able to scan
the products themselves removes the need for a cashier at every checkout-
point. However, this requires the retail outlet to put trust into their customers,
hoping that they actually scan all the products they are bringing out of the
store.

Routine checks are performed to see if all the items were scanned, but
this is not done for every customer as it would defeat the purpose of the
increased convenience and reduced need of cashiers. This means that there
is a risk of revenue loss from customers not scanning their items correctly.
To combat this, solutions such as the Amazon Go project [2] have utilized
various sensors to fully automate the check-out procedure without the need
for scanning barcodes, instead utilizing cameras, scales and depth-sensors to
understand what is happening in the store and detect when a customer is
taking an item from the shelves.

Utilizing several types of sensors improves the accuracy of such a system,
since more information about the environment is known. However, it also
introduces a large cost, and such investments are a high barrier to already

1

existing retailers operating on small margins and without the means of huge
investments. Therefore this project together with AI Retailer Systems aims
to develop a prototype utilizing only computer vision to identify the retail
products that each customer is picking.

1.1.2 Computer Vision and Object Detection

In order to automate the checkout process the developed system needs to keep
track on what products the customer is picking, without the use of human
input (a cashier). Computer vision is the technology and research area where
a computer is able to use images and other inputs to gain a higher level
of understanding of the environment it is acting in, in a similar way as the
human vision sense. Recent advances in computer vision algorithms based
on statistical learning have made it possible to detect and classify objects in
a given scene (image) and this thesis will discuss a few such algorithms and
apply them to the given problem formulation for the retail space.

Figure 1: Diagram over the components of the prototype system

1.2 Aims and objectives

The primary deliverable for this thesis project is a working object detection
model that is sufficiently accurate to showcase the prototype of an automated
checkout solution similar to a vending machine. The model needs to be run-
ning in real-time in order to always be able to detect any products picked by
the customer.

2

1.2.1 Model evaluation and comparison

To determine the best architecture and parameters for the object detection
model, three well-known state of the art models will be trained with the gath-
ered data set and evaluated on their performance. The performance indicators
used are the mean average precision (mAP) discussed in Section 3.2.1, in the
same format as the established COCO benchmark [3] for object detection, and
runtime speed.

An empirical evaluation of conditions affecting the accuracy of the system
has also been performed. The differing conditions include FPS, number of
objects in the frame and brightness conditions.

1.2.2 Data gathering

Data in the form of images labelled with the correct descriptive information
is required in order to utilize the computer vision models based on statisti-
cal learning. A data set consisting of 10 different retail products have been
gathered and annotated.

1.3 Constraints and limitations

Developing a prototype for a fully autonomous shop is a very complex task,
and is thus outside the scope of this project. Instead, a simplified version
utilizing the same technology is to be developed as a proof of concept. The
prototype can be thought as a more sophisticated vending machine, utilizing
computer vision to detect the product the customer is picking. This brings
added convenience to the customer, since she can freely retrieve and put back
products from the shelf.

1.3.1 Availability of literature and intellectual property

The field of computer vision is an incredibly wide area expanding in an ex-
plosive manner, pushed forward both by industry research centres as well as
academia. The reason for this is the rich range of applicability, everywhere
from autonomous vehicles, smartphone applications, photo and video analy-
sis, automation to military defence systems. Even if the complexity of these
systems and time taken to develop them are very high the community has
still remained relatively open, with lots of openly available state of the art
research on the topic, as well as open source code available for many of the
best performing methods.

The evaluated models in this thesis are licensed through the MIT-license.
The MIT license permits reuse within proprietary software provided that all

3

copies of the licensed software include a copy of the MIT License terms and
the copyright notice [4].

1.3.2 Hardware

The computational unit consists of a desktop computer with a Nvidia RTX
2080 GPU, which is handling the heavy computations for the deep-learning
models in real time. In the future this computation could be done in a dis-
tributed manner for each vending machine unit, or done in the cloud.

4

2 Theory

The contents of the thesis assumes that the reader has a decent understanding
of deep learning-based computer vision systems and how they work, with some
prior experience within object detection. As such, the most basic concepts
within these fields will not be fully explained and left to the reader to realize.
However, the thesis will discuss architectural considerations and related theory
that distinguishes one model from another.

2.1 Object Detection

Object detection is the task to automatically predict the presence of certain
objects in a given input image. The prediction should output the localization
and object class of the detected objects. This information is usually embedded
in either a bounding box or pixel-precise mask with coordinates in the image,
together with the corresponding object class.

Figure 2: Example of object detection, outputting bounding boxes and clas-
sification for the objects found in the image. [Online]

Classic object detection algorithms rely on detecting key-points, edges and
corners, known as features in an image, and combining a certain set of features
to represent an object, for example a human face. The feature detectors are
often constructed as convolutional filters which are applied to the image one
wants to do object detection on. The convolutional kernels were often hand-
built in order to extract the desired feature, which was a time-consuming
task and was largely reliant on human intuition on which features would best
represent a certain object.

2.2 Deep Learning for Computer Vision

Neural networks are not a new thing, and have been around since the 1970s.
In recent years, very fast progress has been made in several computer vision
tasks, stemming from an increase in computing power, the availability of large

5

public annotated datasetes, and the development in deep neural networks, so
called deep learning. AlexNet [5] sparked a revolution in computer vision,
showing significantly more accurate results in the ImageNet [6] classification
task, utilizing deep neural networks.

2.2.1 Supervised Learning

Deep neural networks are a type of supervised learning algorithm and need
labeled data to train the model. Because of their big parameter (weight) space
they require a large amount of training data to generalize well.

2.2.2 Transfer Learning

To decrease the size of the data set to be gathered, transfer learning can
be used. Transfer learning is a technique where a model is pre-trained with
data from other sources than the target environment you want to run the
model on. By training the model with data that is readily available in large
amounts, such as the COCO dataset [3], the model is tuned to detect low-level
features and objects. Of course such a trained model is not able to detect the
specific products we need to identify, but this can be solved by re-training
the last few layers, the so called ‘heads’ of the network, responsible for high-
level semantics and object classification. This way the weights trained on the
original large COCO dataset are preserved, and are very good at detecting the
low-level features such as edges, corners and colors that make up the higher-
level understanding of objects in the later layers, which are now fine-tuned for
our specific object classes.

2.3 State of the Art Models

As previously mentioned this is a field which moves very fast, but a few differ-
ent architectures have continuously been used and improved on over several
iterations. The object detection model in this project will be based on such a
state of the art neural network architecture. All of the tested models use the
ResNet50 backbone for feature extraction.

2.3.1 Faster R-CNN / Mask R-CNN

The Faster R-CNN architecture [7] for object detection have been developed
over several years and iterations by UC Berkeley and Facebook AI Research
(FAIR), led by Ross Girshick. R-CNN [8] stands for region-based convolu-
tional network. The model takes an image as input and outputs detected
objects in the form of bounding boxes (segmentation masks in the case of
Mask R-CNN [9]), together with the class label for each detected object.

6

The region proposals of the R-CNN architecture are produced by utilizing Se-
lective Search, which groups together pixels of similar color and texture. The
proposed region is then fed through a CNN structure based on AlexNet [5]
for feature detection and this is fed through a SVM for multiple classification.
The SVM outputs a class label and a confidence level for the prediction. As a
final step, the proposed bounding box is refined with the help of a regressor,
with bounding box coordinates and the predicted class of the object as inputs.

This initial model architecture was subsequently improved upon by introduc-
ing RoI Pooling. Region of Interest pooling greatly reduces the amount of
forward passes needed, by forward passing the complete image through the
network and saving the different convolutions, which can then be reused for
the proposed regions. The model was further improved on by integrating the
different steps into one single model, Fast R-CNN [10], which makes it much
more convenient to train, since all the steps of the model are optimized con-
currently in one session.

The next iteration for this architecture came with the Faster R-CNN [7] paper,
which paved a way to heavily reduce the cost of the region proposal step. Ren
et. al showed that the interesting regions in a given image is dependent on
the extracted features from the CNN layers. They introduce a region proposal
network, with the feature maps computed from the CNN layers as input. This
means only one CNN needs to be trained, and the cost of the region proposal
step is greatly reduced.

Figure 3: Example output from the Mask R-CNN model. Predicted masks
with corresponding predicted class, for each instance of detected objects, over-
layed on the original. [Mask R-CNN paper]

7

Finally, the Faster R-CNN architecture was further improved by enabling
pixel-by-pixel segmentation masks. A parallel Fully Convolutional Network
is added to the architecture, outputting a segmentation mask in binary form.
Each pixel is classified as either a 1 or a 0, representing whether it belongs to
a detected object or not.

2.3.2 YOLO

Unlike Faster R-CNN and Mask R-CNN, YOLO [11, 12] is a single-stage
model. In the Faster R-CNN architecture regions of different sizes are first
proposed by the RPN, based on the extracted features of the image, with the
goal of proposing only viable and realistic boxes. In the second stage of the
model, each of the candidate boxes are classified. Instead of proposing these
boxes, a large number of boxes are always generated in a static way, without
considering their viability.

This creates a class imbalance problem for the classification of the bounding
boxes, since a large majority of the boxes are part of the background (image
regions not belonging to any object class of interest) and thus the training of
the models can become very biased towards this, while not actually learning
the relevant non-background data, the objects to be detected. The model can
have a low loss but still perform bad on the hard examples, which are what
we actually want to detect.

This problem can be combated by for example online hard example mining,
OHEM, which tries to balance the training by actively selecting the hard ex-
amples, in this case the non-background boxes corresponding to actual objects
annotated in the training images.

2.3.3 RetinaNet

However, this approach only helps to an extent and single stage models usu-
ally have to limit the bounding boxes to ensure the model is still trained on
the relevant hard examples. The main improvement with RetinaNet [13] is
the introduction of Focal Loss, a loss function introduced to try to solve the
problem with class imbalance.

FL(pt) = −(1− pt)γ log (pt) (2.1)

The focal loss function, Equation (2.1), achieves an adaptive total loss
by weighting the easy examples and harder examples in a dynamic manner,

8

prescribing higher weight to the harder examples, with a lower value of pt,
the probability of the prediction being the ground truth class. When pt is
high, for easy examples, the focal loss is close to zero and thus this does not
contribute as much to the model training, but for hard examples with pt <
0.5, the Focal Loss is significant and thus contributes to training a lot more.
The parameter γ is called the focusing parameter and tunes how aggressive
the focal loss disregards the easy examples. Setting the focusing parameter to
0 the focal loss simplifies to regular Cross Entropy loss.

2.4 Segmentation Mask or Bounding Box

Bounding boxes provide location and size of the detected object, whereas a
segmentation mask label provides pixel accuracy of the object. The hypothesis
is that this could aid the object detection, since it is trained on more precise
information.

9

3 Methodology

This section describes the methods used for the data gathering process, how
the object detection was evaluated in this paper as well as explanations on
the experiments and the motivations as to why they were conducted.

3.1 Data gathering

The products to be used in the prototype was photographed by the same
camera to be used for inference of the model, the Raspberry Pi camera. The
Raspberry Pi camera was mounted in the same way as it is intended for in-
ference, see Figure 4. An additional 50 images that were captured by a SLR
camera at a higher resolution for previous development was also included in
the dataset, with the reasoning that more data is better. Each object instance
in every photo was labeled with pixel-accurate mask as well as the class of the
product. The labelling tool VGG Image Annotator was used for labelling.
The complete dataset consists of 486 images with an average of 3,8 objects
per image. The mask labels can easily be converted to bounding boxes to
train the models where the output is not instance segmentation, just bound-
ing boxes. The dataset is stored in the COCO format in JSON files, and
scripts for conversion to other data formats have been developed.

10

Figure 4: Setup for the data gathering process. A Raspberry Pi camera was
mounted inside the shelf and a majority of the training data was captured this
way, to mimic the run-time environment as close as possible.

3.1.1 Labelling

Each image in the data is labeled with the location, size and object class for
all instances of objects in the corresponding image. The labels are in the form
of pixel-by-pixel segmentation masks. The masks can be easily converted
to bounding box labels, depending on the format of the model predictions.
Examples from the dataset can be seen in Figure 5.

11

Figure 5: Example images of the labelled dataset. The outline of each mask
can be seen in yellow. A majority of the images in the dataset contains several
object intances.

3.1.2 Data augmentation

For the models used, more available training data generally leads to more
accurate models. Because of this the dataset is augmented by adding modi-
fied copies of the images to the dataset. To decide what augmentations are
effective an experiment was carried out, training a model on different data
sets corresponding to he use of different augmentations. The augmentations
that show to be effective in increasing the accuracy of the model will be used
in the final prototype. The augmentations that were tested are the following
operations:

• Scale (Resizing of image and annotations)

• Noise (Additive noise layered on top of the image)

• Brightness (up to 50% higher or lower pixel values)

• Shear (Distorted by shearing)

• Mirror (Mirrored in the horizontal and vertical plane)

The Python library imgaug [14] was used for the augmentations.

12

3.2 Evaluation metrics and benchmarking

There are several ways to evaluate an object detection model, depending en-
tirely on the constraints and requirements of the application. In general, an
accurate model is of course always better, but it will always be a compromise
between accuracy and complexity, meaning accurate models will usually be
more computationally heavy. With this in mind, the models will be evaluated
both on accuracy, robustness, as well as run-time speed when running the
model online.

3.2.1 Mean average precision (mAP)

Precision is a measure of how many of the total predicted positives are actually
true positives. Average precision for an object class, AP, is a measure of the
precision for all occurrences of a certain class in the test dataset. The mean
average precision, mAP, is the mean AP for all object classes in the model.

3.2.2 Run-time

Run-time is a somewhat lesser discussed topic in object detection research,
where accuracy of the model is the most important benchmark. In real world
applications, however, the run-time of each model is crucial. The model needs
to be able to run online, in a robust manner and not susceptible to customers
trying to trick the system.

This does not necessarily mean that the run-time requirements are as high
as in the autonomous vehicle industry, for example, where typical cameras are
running at a FPS of at least 30 [15]. Thankfully a slightly delayed reaction or
slow response does not mean life or death in a retail setting, but it is of course
important that the model is robust and that the system is responsive enough.

3.3 FPS requirement

To find the approximate required FPS for our system, a number of different
FPS levels were analyzed, running offline. The video snippets used for this
experiment had sequences of items being removed and added in a manner
where the speed of the action was varied, with examples of very fast actions
intended to try and trick the system. The goal is to be able to detect the
hand when it reaches in the cabinet. This is used as a measurement on how
well the system performs, since this is a logical way to detect when a customer
has picked up an object. It should be noted that if using a simplified way of
keeping track of the number of products in the shelf, such as just observing
the product count directly in each frame would negate the need of a high FPS
even more. However, this would mean that the system would need complete

13

vision of all the products on the shelf at once, something that might not be
very practical for an actual application depending on camera position and the
number of products on the shelf.

3.4 Model optimization

Using an established architecture based on the previously mentioned state of
the art models is beneficial, since they are already proven to work well on
the generalized benchmarks used in research. However the models are exactly
that, very general, and to tune them to our specific application the architecture
and the model parameters can be optimized to our needs and constraints.

14

4 Results

This section contains the results obtained from the different experiments con-
ducted in the development process of the prototype. Results on the impact
of data augmentation on the original dataset are reported with regards to
different augmentation operations, the FPS requirement for the system was
evaluated with the help of a FPS test and the result of the benchmarking of
the three models are reported. The benchmark results consists of the accu-
racy, run-time and robustness to brightness variations.

Accuracy of the three state of the art models discussed in Section 2.3 are
presented, measured by the mean average precision across all ten classes of
the model. Results are reported in three columns, following the benchmark
convention of the COCO challenge [3]. Instead of using just the standard preci-
sion at an intersection over union, IoU, of 50%, the COCO benchmark reports
precision of the models as an averaged mAP over 10 different IoU thresholds
of .50:.05:.95. It also reports the conventional precision metric mAPIoU=50

as well as mAPIoU=75. The intention is to better differentiate how good the
different models are at localization.

4.1 Data augmentation test

The results to determine the impact of different augmentation methods are
listed in Table 1. The different data sets were tested on Mask R-CNN at a
resolution of 1024x720 pixels. It is assumed that the different augmentations
would yield similar relative results for the other two models.

The different augmentations were applied in the following way:

• Scale - Resize each image and the corresponding annotations to some-
thing between 50 and 150% of its original size. (imgaug.Resize)

• Noise - Add gaussian noise (white noise) to an image, sampled once per
pixel from a normal distribution. (imgaug.AdditiveGaussianNoise)

• Brightness - Multiply all pixels in an image with 0.5 to 1.5, thereby
making the image darker or brighter. (imgaug.Multiply)

• Shear - Shear images and annotations by -20 to 20 degrees. (imgaug.Affine(shear))

• Mirror - Mirrored images and annotations in the vertical and horizontal
plane (imgaug.Fliplr and imgaug.Flipud)

15

Augmentation mAP mAP50 mAP75
Raw data set 39,3 69,3 56,1
Scale + raw 42,1 70,2 58,6
Noise + raw 44,8 72,9 60,1
Brightness + raw 41,2 72,7 59,0
Shear + raw 37,1 66,2 53,9
Mirror + raw 51,9 73,5 61,8
raw + augmentations (not shear) 60,1 86,5 70,0

Table 1: Results for a Mask R-CNN model trained on different data sets,
including the raw collected data sets and various types of data augmentations.

Four out of the five tested augmentation operations yields improved results
compared to the raw dataset. The shear operation was the only operation with
negative impact, reducing the mAP with 2,2 percentage points. Including all
four of the positive operations yielded an increase in mAP accuracy of 20,8
percentage points, which is a significant improvement.

4.2 FPS test

The results of the FPS test described in Section 3.3 are reported below in
Table 2. The least accurate model (YOLO), was used in order to ensure that
the resulting FPS requirement from this test is a worst case scenario. The
reported percentages are the rate of detections for the hand class. The higher
the rate of detection for the hand class, the better. The accuracy for the other
classes was not evaluated in this experiment, since sensing the hand is seen as
critical in the task of understanding if a customer has picked up an object or
not. Input videos consist of reaching in and out of the shelf at various speeds.

FPS Rate of hand detection (%)
2 74,8
5 93,4
10 95,7
15 96,1
30 96,3
60 96,3

Table 2: Rate of detections for the ’hand’ class. Input videos of reaching in
and out of the shelf at various speeds.

As expected, a very low FPS leads to a system unable to detect all the
movements in and out of the shelf. Accuracies quickly taper out above 5 FPS,
and anything above 10 seems to yield negligible results.

16

4.3 Model benchmark results

The benchmark conducted was based on the metrics discussed in Section 3.2,
with the goals of measuring the accuracy and run-time of the tested models.
The results of the benchmark are listed in the tables below. All the models
were pre-trained on the COCO dataset, and utilizing transfer learning, the
last few layers were trained and evaluated on the gathered dataset specific to
our application. This dataset consisted of the complete training set with the
added data from the four selected augmentations, meaning the total amount
of training images added up to 2430 with an average of 3,8 object instances
per image.

4.3.1 Accuracy

The accuracy of the three tested models are reported in Table 3-6 below, with
the same test dataset for four different resolutions. The results of the models
are given as percentages, in the COCO format, discussed in Section 4.1.

Model (1920x1080) mAP mAP50 mAP75
Mask R-CNN 72,3 93,1 79.3
RetinaNet 71,8 92,6 80,2
YOLOv3 59,9 82,2 70,0

Table 3: The three reported precision metrics for the input image resolution
of 1920x1080.

Using the native image resolution of 1920x1080, Mask R-CNN achieves the
highest accuracy, with a mAP of 72,3% as per Table 3. RetinaNet achieves
similar results, while also surpassing Mask R-CNN on the mAPIoU=75 metric.
The accuracy of YOLO is around 10 percentage points lower on all three
metrics.

Model (1024x720) mAP mAP50 mAP75
Mask R-CNN 60,1 86,5 70,0
RetinaNet 59,1 85,9 71,3
YOLOv3 53,2 74,4 66,3

Table 4: The three reported precision metrics for the input image resolution
of 1024x720.

17

Model (800x600) mAP mAP50 mAP75
Mask R-CNN 37,4 58,9 42,4
RetinaNet 38,1 54,4 40,1
YOLOv3 32,9 52,2 39,0

Table 5: The three reported precision metrics for the input image resolution
of 800x600.

The accuracies of the models seems to be affected roughly to the same
degree when the input resolution is down-scaled to 1024x720 and 800x600, as
can be seen in Table 4 and 5 respectively.

Model (600x400) mAP mAP50 mAP75
Mask R-CNN 23,2 56,9 47,3
RetinaNet 12,3 38,8 26,4
YOLOv3 21,2 31,2 28,0

Table 6: The three reported precision metrics for the input image resolution
of 600x400.

For the lowest resolution of 600x400, the Mask R-CNN model stays around
the same accuracy as for 800x600, whereas the RetinaNet model sees a large
drop in all three metrics, and especially the averaged mAP value, from 38,1%
to 12,3%, as can be seen in Table 5 and 6. This implies that the RetinaNet
model is very inaccurate in terms of localization (large IoU thresholds which
means high demands for localization) for lower resolution images.

4.3.2 Failure cases

Typical failure cases for all the models are images with a lot of overlap between
the objects (see Figure 6), very dark images, distinction between two very
similar products, images with a lot of glare and cases where an object was held
very close to the camera, covering large parts of the frame. Handling occlusions
and overlap between objects is an inherently hard problem, but some of the
failure cases could possibly be avoided with a larger dataset, covering all the
orientations of the products. When demonstrating the prototype live there
was also some issues with reflections in the glass of the shelf, something that
was not anticipated since the training data was gathered with the shelf door
open at all times. This could be easily avoided by changing the camera angle.

18

Figure 6: Example failure case for the RetinaNet model, box A is falsely
classified and localized (this specific product is not included in the training
dataset). Box B is correctly localized but falsely classified, probably due to
the arm covering large parts of the product.

4.3.3 Run-time

The run-time for each model is tested on several different image resolutions,
on a test set with scenes of different complexity (1 to 10 object instances per
image). The results are reported in milliseconds (ms).

Model 1920x1080 1024x720 800x600 600x400
Mask R-CNN 590 343 284 231
RetinaNet 257 199 176 110
YOLOv3 127 83 71 68

Table 7: Runtime in milliseconds for each model, for 4 different resolutions.

4.4 Brightness variations

All three models were tested with regard to robustness against brightness
levels. All three models was trained on the previously mentioned dataset
including the augmented images. The brightness of the test set was varied
between 50 to 150% of the base case, and the input resolution for the test
images was 1024x720. The accuracy, here reported as the averaged mAP
metric described in Section 4.1, is reported in Table 8 below.

19

Brightness (%) −→ 50 75 100 125 150
Model ↓ Accuracy (mAP)
Mask R-CNN 37,4 55,9 60,1 58,3 47,8
RetinaNet 39,5 56,0 59,1 57,8 47,9
YOLOv3 32,9 50,2 53,2 52,5 44,2

Table 8: Accuracy for the different models at different brightness settings (%
of ’optimal’ light conditions used for training).

The results of the models are in line with the general mAP evaluations in
Section 4.3.1, and no model seem to handle brightness variations exceptionally
worse or better than the others.

20

5 Discussion, Conclusions, Recommendations

5.1 Data augmentation

The results in Table 1 show that extending the training data by the means of
data augmentation greatly increases the overall accuracy of the models with-
out much added effort. All methods except shearing the images helps the
model generalize and results in more accurate predictions. Utilizing the com-
plete dataset with all augmentations yields an increase in accuracy of over 17
percentage points for the classic mAPIoU=50 metric and over 20 percentage
points for the mAP averaged over 10 IoU thresholds. This implies that the
augmentations are of even greater importance for the strictest IoU thresh-
olds. The results are comparable with similar works such as the MVTec D2S
Segmented Supermarket Dataset benchmark [16]. It can be argued that ob-
taining extra training data by means of augmentation was extra important
seeing as the available dataset were relatively small, containing 486 images
in total while the D2S dataset contains 4380 images. The D2S dataset also
avoids including complex scenes in the training data, requiring the training
images to "only contain objects with no or marginal overlap without clutter,
and a homogeneous background", instead trusting the models to generalize
well from simpler training data to complex scenes with occlusions and multi-
ple stacked objects. In our case, including complex scenes in the training data
yielded results comparable to [16], but it should be noted with much fewer
classes to distinguish between in our case.

5.2 FPS requirements

Unlike other areas that rely heavily on machine vision to sense its environment,
having a high and smooth FPS is not as critical for the AIRS prototype. For
example, slow processing of the captured images or missing a few frames can
be devastating for an autonomous vehicle relying on such systems detecting
potential obstacles or dangers in its path. However, even if the consequences
of a slow system is not as dire in this case, to ensure that the system can con-
sistently register changes in the product count of the shelf, the computer vision
system needs to be able to detect changes even in a fast-changing environment.

The experiments shows that a FPS of 5-10 is enough in principle, after 10
FPS the returns are very much diminishable. A higher FPS could still be
preferable for responsiveness of the all-around system, i.e the customer should
not have to wait for a long time to see the update in their virtual cart on the
mobile application when a product is taken or put back on the shelf.

21

5.3 Model benchmarking

5.3.1 Mask R-CNN

Mask R-CNN provides the most accurate predictions on the test dataset and
is more robust to downscaled input images, outperforming the other models
by a bigger margin for low resolution images. However, it is also the slowest
model of them all, and the online performance is heavily dependent on the
amount of objects detected in the frame. With 0-4 objects in the frame the
model is able to run at 5 FPS on a Nvidia 2080, with the input video stream
resolution of 1024 by 800 pixels. However, when more objects are present in
the frame, as in the case of our prototype with 8-14 objects on a single level
of the shelf, the FPS drops down to 2-3 FPS, which is generally too slow to
provide a robust prediction of when a customer picks an item, as shown in the
previous FPS test, see Figure 2.

Figure 7: Example of Mask R-CNN inference output on the test dataset.
Pixel-by-pixel segmentation masks as well as corresponding object classes are
output on top of the input image. This is an example of a failure, where the
model detected two objects on top of each other in the lower left corner.

5.3.2 RetinaNet

The RetinaNet model provides good accuracy, even surpassing Mask R-CNN
for the IoU threshold of 75%. It also seems to be slightly more robust in lower
light conditions, as per Table 8. The run-time of the model is higher than
YOLO but significantly lower than Mask R-CNN while still maintaining good
accuracy. However it should also be noted that the accuracy seem to fall off at

22

a faster rate when input images are downscaled, comparing tables 3 to 6, and
this should be taken into consideration for the final model recommendation.
One of the challenges with the architecture was the inference predicting mul-
tiple overlapping bounding boxes. This can be valid if there are occlusions in
the scene, for example when a customer is holding a product, but the model
should not output two different classes for a single object instance, see figure
8. To combat this the original paper uses a non-max suppression threshold of
0,5 [13], but in our case this still resulted in multiple boxes, maybe because the
bounding box regressor responsible for tightening the boxes was not trained
to a high enough level.

Figure 8: Example from RetinaNet inference, showing multiple bounding
boxes for each object instance (undesirable).

5.3.3 YOLO

The main strength of the YOLO architecture is the good run-time. YOLO
achieves the highest FPS of the three models for all tested resolutions. It is
significantly faster than Mask R-CNN, and runs at more than double the FPS
of RetinaNet for all tested resolutions but one. However the downside is that
the achieved accuracy on our dataset is not on par with the other models,
and the precision is at least 7-20 percentage points lower than the best model,
depending on resolution.

23

5.4 Model optimizations

5.4.1 Anchor scaling

Our data set consists of products at approximately the same distance from
the camera in every case, since the environment in the shelf is static with
regards to camera position and the shelf level. Because of this, the objects in
our data set is of approximately the same size, and we do not need to account
for very large or very small objects. This knowledge can be used to simplify
and optimize the model by making sure it proposes regions with a reasonable
scale. This can be achieved by changing the scale of the anchor boxes used
for the region proposals.

5.4.2 Image size

Another important factor for model performance is the size of the input im-
ages. A bigger image will retain more detail, but as a result the model will
need to perform a lot more computations. Run-time is of course determined
by the amount of computations needed for a forward pass, so this is a trade-
off that needs to be explored, and several image resolutions are tested. The
Raspberry Pi camera captures frames natively in the 1920x1080 format, but
can be easily rescaled. For this specific prototype, the image re-scaling is done
locally on the Raspberry Pi, which means this task is not something that will
affect the run-time performance of the system.

5.4.3 Non-max suppression

As shown in Figure 3 and 8, both Mask R-CNN and RetinaNet had problems
with outputting multiple bounding boxes for the same object instance. This
is not desirable for obvious reasons, and to combat this non-max suppression
is used to only include the bounding box with the highest predicted validity
score. The non-max suppression threshold was tuned in order to still allow
multiple bounding boxes in the cases of occlusions, but still avoid the case of
two or more boxes over a single object. The threshold disregards the box with
a lower score, if they overlap above a certain value. Figure 9 below shows the
result after correctly tuning the non-max suppression threshold.

24

Figure 9: NMS solves the issue with multiple bounding boxes for a single
object instance. Left is before proper NMS threshold is applied, right is after.

5.5 Handling occlusions

The system keeping track of the product count in each category is responsible
for updating the back-end and in succession the virtual shopping cart in the
mobile application on a customer’s phone. A big challenge for the prototype
is to distinguish between occluded objects and an actual removal of an item
from the shelf. The system needs to be robust, and it would not be acceptable
to bill a customer for a product she did not actually remove from the machine,
that the computer vision system falsely detected as a product removed.

The evaluated models are able to inherently handle occlusions to an extent,
since the complete object does not need to be visible at all times in order for
it to be detected. However, if a large part of the object is covered the system
will lose track of the object. To combat this, a system to try to distinguish
the two cases was developed. Since the models are trained on human hands,
the system is able to detect when a customer reaches in to grab a product
and detects her hand. Every time the system detects a change in the product
count, the intersection over union, IoU, for the bounding box for the hand and
the detected product are calculated. This measurement gives an indication
for whether a customer was actively interacting with an object at the time it
can no longer be detected. If this is the case, we conclude that the customer
actually removed the object. If we lose track of the object without having a
strong indication for the customer interacting with it, i.e a low IoU score for
the hand and the object, we conclude that we lost track of it because of an
occlusion, and thus do not add it to the bill of the customer.

This idea worked quite well in principle, but it was hard to find the cor-
rect threshold to determine if the user actually grabbed a product or not.
Especially smaller products which can be completely grasped by the hand

25

and thus not detected at all, turned out to be tricky. For bigger products they
were always detectable even when held, and thus the IoU score was consistent.
Because of these reasons, it was found to not be robust enough on its own,
but this method together with other logic could potentially be used to handle
occlusions.

5.6 Trade-off: Speed vs. Accuracy

As expected, the more accurate model is also slower. This is an important
trade-off, since minimizing the computing power for the system is crucial,
while still maintaining an acceptable accuracy. The current stock losses for
retailers in Germany, a comparable market to Switzerland, is approximately
1,2% [17, 18], so the overall accuracy of the model should be close to 98% if
it wants to lower the losses. One has to take into account that the customer
is able to add or subtract products that they deem a mistake by the system,
again giving the customer the benefit of the doubt as in current self-scanning
solutions available.

5.7 Sources of errors

The results from the benchmark are realistic and in line with works in the same
area [16]. Possible sources of errors are mis-labeled images, class imbalance in
the dataset, though RetinaNet should tackle this issue especially well with its
focal loss [13]. Overfitting [19] can always be an issue with deep learning mod-
els, where the model memorizes the training data instead of learning a general
mapping that works outside of the training dataset as well. This is combated
with reguralizations of the weights, validation sets and early stopping in all of
the tested models, but it can still be a factor.

5.8 Integration with prototype system

A Raspberry Pi was mounted in the prototype shelf together with a Raspberry
Pi camera. The camera is able to capture video at 1920 by 1080 at 60fps.
This video stream is then fed to the computer vision system over a websocket
connection. The PC handling the object detection model is also acting like
a webserver with one or more Raspberry Pi’s as clients, sending continuous
video over a WiFi connection. The computer vision system is responsible for
the object detection, but this information needs to be provided to the rest of
the system logic. A backend in Java with a connected MongoDB database
is handling the state of the system. A frontend application is provided to
the customer as well as the manager or stocking personnel of the product
shelf. The computer vision system, the front end interface and the backend

26

system is able to communicate with each other through a RESTful API. The
complete prototype can be seen in figure 10, setup in the Zürich central station
to showcase the idea and gather feedback from potential investors as well as
end customers.

Figure 10: The complete prototype with the shelf with products, the front-end
application running on the iPad in the stand as well as a visualization of the
model running live on the big PC screen.

The logic for computer vision system contains a hysteresis with regards
to the product count, in order to be more robust against flickering detections
between frames. Only when there has been a consistent change over several
frames in a row is it reported as a change in product count.

5.9 Recommendation for model to be used

Even if Mask R-CNN provides a slightly more accurate prediction, the com-
putational complexity is high and leads to a slow performing model when run
online. Having a high FPS is not critical, as previously discussed, but it means
the prototype would be harder to scale up to several modules. If the run-time
is faster than needed, the computations from several camera streams could be
done on one server / GPU. These considerations together with the extremely
time-consuming task of labeling pixel-by-pixel segmentation masks, which can

27

take up to 10 times as long as for regular bounding boxes annotations, means
the Mask R-CNN model is not optimal for this type of prototype and product.

RetinaNet seem to offer better accuracy, but with added computation time.
The achieved FPS is still within acceptable boundaries but if an optimized
YOLO architecture can yield similar accuracy results, it would be a clear win-
ner. AIRS is therefore recommended to look more closely into the YOLO
architecture as well as other similar models such as SSD [20]. For the time
being they are recommended to use the RetinaNet object detection architec-
ture for the next step of the prototype, as it provides a solid baseline with a
good balance between good accuracy and acceptable run-time. An input res-
olution of 1024x720 or 1920x1080 seem to be necessary to reach an acceptable
accuracy, which is higher than what most networks use in other models. The
model is robust enough to showcase the idea, but the system as a whole have
a lot of optimizations to be done before it would be commercially viable.

The hypothesis of complete segmentation mask aiding in the distinction
between very small stacked products does not seem to hold in a significant
manner, since RetinaNet with its bounding box annotations achieved an ac-
curacy very close to the one of Mask R-CNN with complete segmentation
masks.

5.10 Future work and next steps

The results from this work are promising, but there are still a lot of things to be
done and to optimize before a commercialization of the prototype is possible.
The requirements on accuracy are high, since the security of the system is lost
if the system has to let the customer adjust the products picked themselves. If
the customer is allowed to add or remove products by themself in the front end
application, the convenience of the system is lost. At that point the solution
reduces to a self-scan solution with a lot higher implementation costs, which
is not very useful. Future research into single shot models such as optimizing
a YOLO model or looking into SSD would be beneficial. Another question
that remains unanswered is why RetinaNet and YOLO dropped off so much
in accuracy for the tests with lower input images.

5.10.1 Other object detection models

This work has focused on established state of the art models on well known
optimized for object detection benchmarks, but this is a field that is moving
at a very fast pace, with extremely high research interest from both academia
as well as large corporations. Because of this there are already interesting
works to look into, such as [1] and [2]. Works that optimize for the specific
problems in this application such as the Fribourg Grocery Dataset [21] and

28

the recent work on Data Priming for Automatic Checkout [22] that optimizes
the training process and data augmentation steps are also of high interest.

Further validation on the recommended model is needed, with regards to
accuracy on a dataset with more classes, further validation on the failure cases
of the model as well as runtime optimizations to reduce the computational
resources needed. Finally, the need of more labeled data is a requirement,
especially for models with more classes and higher complexity scenes.

29

6 Conclusions

A prototype to showcase the use case of deep learned-based object detection in
the retail space have been successfully developed and showcased to potential
investors and customers. The use of state of the art object detection models
optimized for this specific use case have shown to be accurate enough to show
the general concept, but still needs further development and optimization to
be ready for commercialization. The project implemented a complete solu-
tion, from data gathering, annotation, image processing, hardware solutions
and front end interfaces facing the end-customer. Models providing full seg-
mentation masks did not provide significantly better results than the bounding
box models and the best out of the three tested models is RetinaNet.

The goal of purely vision based automation of the retail checkout process
is deemed to be a challenging problem, since even the most accurate models
do not provide accuracies close to 100%, which a customer and retail outlets
would expect in order to implement this system in a real environment. As
always the case with supervised learning, this project again highlights the
need of a lot of annotated data, an area where data augmentation proves to
be a key tool to extend the dataset. There are a lot of future work possible in
object detection models, data augmentation techniques and optimizations for
the retail sector.

Figure 11: Prototype showcase in the Zürich HB (central station), the team
behind the prototype.

30

References

[1] TrigoVision. Evolution of the retail checkout experience. url: https:
//www.trigovision.com/evolution- of- the- retail- checkout-
experience/ (visited on 04/07/2019).

[2] Amazon Website. Amazon Go”. url: https://www.amazon.com/b?ie=
UTF8&node=16008589011 (visited on 06/07/2019).

[3] Tsung-Yi Lin et al. “Microsoft COCO: Common Objects in Context”. In:
CoRR abs/1405.0312 (2014). arXiv: 1405.0312. url: http://arxiv.
org/abs/1405.0312.

[4] Open Source Initiative. MIT License. url: https://opensource.org/
licenses/MIT (visited on 04/07/2019).

[5] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet
Classification with Deep Convolutional Neural Networks”. In: Advances
in Neural Information Processing Systems 25. Ed. by F. Pereira et al.
Curran Associates, Inc., 2012, pp. 1097–1105. url: http://papers.
nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-
neural-networks.pdf.

[6] J. Deng et al. “ImageNet: A Large-Scale Hierarchical Image Database”.
In: CVPR09. 2009.

[7] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detec-
tion with Region Proposal Networks”. In: CoRR abs/1506.01497 (2015).
arXiv: 1506.01497. url: http://arxiv.org/abs/1506.01497.

[8] Ross B. Girshick et al. “Rich feature hierarchies for accurate object
detection and semantic segmentation”. In: CoRR abs/1311.2524 (2013).
arXiv: 1311.2524. url: http://arxiv.org/abs/1311.2524.

[9] Kaiming He et al. “Mask R-CNN”. In: CoRR abs/1703.06870 (2017).
arXiv: 1703.06870. url: http://arxiv.org/abs/1703.06870.

[10] Ross B. Girshick. “Fast R-CNN”. In: CoRR abs/1504.08083 (2015). arXiv:
1504.08083. url: http://arxiv.org/abs/1504.08083.

[11] Joseph Redmon et al. “You Only Look Once: Unified, Real-Time Object
Detection”. In: CoRR abs/1506.02640 (2015). arXiv: 1506.02640. url:
http://arxiv.org/abs/1506.02640.

[12] Joseph Redmon and Ali Farhadi. “YOLOv3: An Incremental Improve-
ment”. In: CoRR abs/1804.02767 (2018). arXiv: 1804.02767. url: http:
//arxiv.org/abs/1804.02767.

31

[13] Tsung-Yi Lin et al. “Focal Loss for Dense Object Detection”. In: CoRR
abs/1708.02002 (2017). arXiv: 1708.02002. url: http://arxiv.org/
abs/1708.02002.

[14] Alexander Ljung. imgaug library. https://github.com/aleju/imgaug.
Version 0.2.9. 2019.

[15] Lex Fridman et al. “MIT Autonomous Vehicle Technology Study: Large-
Scale Deep Learning Based Analysis of Driver Behavior and Interac-
tion with Automation”. In: CoRR abs/1711.06976 (2017). arXiv: 1711.
06976. url: http://arxiv.org/abs/1711.06976.

[16] Patrick Follmann et al. “MVTec D2S: Densely Segmented Supermarket
Dataset”. In: ECCV. 2018.

[17] IMCO-Berlin. Wake Up Call for Retail: Organized Crime Winning the
“Shoplifting War”. url: https://www.imco- berlin.de/en/blog/
article/view- article/ein- weckruf- fuer- den- einzelhandel-
organisierte-bandenkriminalitaet-gewinnt-oberhand/ (visited on
06/07/2019).

[18] Trading Economics.Germany Retail Sales YoY. url: https://tradingeconomics.
com/germany/retail-sales-annual (visited on 06/07/2019).

[19] Rich Caruana, Steve Lawrence, and C Lee Giles. “Overfitting in Neural
Nets: Backpropagation, Conjugate Gradient, and Early Stopping.” In:
vol. 13. Jan. 2000, pp. 402–408.

[20] Wei Liu et al. “SSD: Single Shot MultiBox Detector”. In: CoRR abs/1512.02325
(2015). arXiv: 1512.02325. url: http://arxiv.org/abs/1512.02325.

[21] Philipp Jund et al. “The Freiburg Groceries Dataset”. In: CoRR abs/1611.05799
(2016). arXiv: 1611.05799. url: http://arxiv.org/abs/1611.05799.

[22] Congcong Li et al. “Data Priming Network for Automatic Check-Out”.
In: CoRR abs/1904.04978 (2019). arXiv: 1904.04978. url: http://
arxiv.org/abs/1904.04978.

32

Appendices

A Images of Prototype & product demo day

Figure 12: Prototype showcase in the Zürich HB (central station), the team
behind the prototype.

33

Figure 13: Prototype showcase in the Zürich HB (central station) with in-
vestors from a major retail chain in Switzerland.

34

