
An Algorithm for Smarter Heating

LTH School of Engineering at Campus Helsingborg, Department of
Electrical and Information Technology

Bachelor Thesis:
Marlon Abeln
Marcus Sundell



© Copyright Marcus Sundell, Marlon Abeln

LTH School of Engineering
Lund University
Box 882
SE-251 08 Helsingborg
Sweden

LTH Ingenjörshögskolan vid Campus Helsingborg
Lunds universitet
Box 882
251 08 Helsingborg

Printed in Sweden
Lunds Universitet
Lund 2019



An Algorithm for Smarter Heating

Abstract

This report aims to examine the use and development of a more intelligent
heating process in a house. By controlling switches integrated into a fuse, the
techniques that can be used to allow an algorithm to predict how long the heat-
ing process would take are evaluated. Currently users have to, themselves,
estimate how long the heating process will take. The algorithm developed
aims to alleviate this problem and to allow the heating to be turned off as long
as possible. With this kind of automation, the total efficiency of the heating
process aims to be increased.

Using linear regression, an algorithm was developed based on ON/OFF reg-
ulation. The developed algorithm attempts to estimate how fast a house can
be heated. The system was then tested in a simple test facility in order to
determine its functionality. Several mathematical functions for handling the
required matrices for a least squares analysis in conjunction with other oper-
ations were implemented.

It was found that the algorithm performs acceptably when the heating system
is well set up. However, it is slow to adjust its prediction when the thermal
properties of the house change. Nevertheless, it was discovered that the tests
used in this project were biased. This was due to the fact that the testing fa-
cility used had no isolation and the radiator was too weak to heat the facility
adequately.

Keywords: Heating, Automation, API, Least Squares, Linear Regression

I



An Algorithm for Smarter Heating

Sammanfattning

Examensarbetet ämnar att utvärdera användning samt utveckling av en ”in-
telligent uppvärmning” för ett hus. Genom att kontrollera strömbrytare, kop-
plade till en säkring, kan olika tekniker som kan användas för en självlärande
algoritm utvärderas. För tillfället måste användarna själva försöka förutsäga
hur lång tid en uppvärmning kommer att ta. Den utvecklade algoritmen ska
hjälpa användarna att förutsäga detta och se till så att värmen endast är igång
när den faktiskt behöver vara det. Genom att automatisera processen är det
tänkt att energieffektiviteten ska öka.

Med hjälp av linjär regression har en algoritm, baserad på till/från reglering,
utvecklats. Den utvecklade algoritmen försöker uppskatta hur snabbt ett hus
kan värmas upp. Systemet testades i en enkel testomgivning för att upskatta
dess funktionalitet. Det implementerades ett flertal matematiska funktioner,
vilka bland annat inkluderar metoder för hantering av matriser samt minsta
kvadrat-skattning.

Det visade sig att algoritmen presterade acceptabla resultat när värmesystemet
är installerat på ett bra sätt. Det gick dock långsamt för algoritmen att justera
in sig då värmespecifika detaljer i ett hus ändrades. Det visade sig även att
testen som genomfördes under examensarbetet var mindre bra. Detta berodde
på att testutrymmet saknade isolering samt att elementet inte klarade av att
värma upp utrymmet tillräckligt.

Nyckelord: Uppvärmning, Automation, API, Minsta Kvadrat, Linjär Regres-
sion

II



An Algorithm for Smarter Heating

Preface

This project was done in cooperation with Tempiro AB for the Bachelor of
Science degree in Engineering at the Faculty of Engineering at Lund univer-
sity. To be able to fully grasp the contents of this report it would help to have
knowledge about programming, automatic control, and understand the basics
of linear algebra.

Wewould like to thank Tempiro for the opportunity to work with them. In par-
ticularMagnus Lindströmwho helped us with the system, supplied us with the
hardware, and acted as our supervisor from Tempiro. Furthermore, we would
like to thankMiljöbron andMalin Planander who established contact between
us and Tempiro, and also was available as a supervisor for us when help was
needed with our writing. We want to express our exceptionally large gratitude
to Mats Lilja, who acted as our supervisor from the university and helped us
with all aspects of the project from start to finish.

Lastly, we would like to thank our friends and family who have helped and
supported us throughout the project. We would also like to thank them with
providing us with a test facility where we could setup Tempiro’s hardware, as
well as read and review our report.

Marcus Sundell ”Bachelor of Science in Engineering, Electrical Engineering”

Marlon Abeln ”Bachelor of Science in Engineering, Computer Science and
Engineering”

Helsingborg 2019

III



An Algorithm for Smarter Heating Contents

Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Current Status . . . . . . . . . . . . . . . . . . . . . 1
1.3 Purpose . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Goals . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Research Questions . . . . . . . . . . . . . . . . . . . 3

1.5.1 Main Questions . . . . . . . . . . . . . . . . . 3
1.5.2 Secondary Questions . . . . . . . . . . . . . . 3

1.6 Motivation . . . . . . . . . . . . . . . . . . . . . . 3
1.7 Delimitations . . . . . . . . . . . . . . . . . . . . . 4

2 Theory 6
2.1 Linear regression . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Hypothesis function . . . . . . . . . . . . . . . 7
2.1.2 Cost function . . . . . . . . . . . . . . . . . . 7
2.1.3 Linear regression through least squares . . . . . . 7

2.2 API . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 JSON data format . . . . . . . . . . . . . . . . 9

2.3 Controllers . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 ON/OFF . . . . . . . . . . . . . . . . . . . . 10
2.3.2 PWM based . . . . . . . . . . . . . . . . . . 10

Theoretical example . . . . . . . . . . . . . . . 10

3 Method 14
3.1 Database analysis . . . . . . . . . . . . . . . . . . . 15
3.2 Algorithm development . . . . . . . . . . . . . . . . . 15
3.3 Testing . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Source criticism . . . . . . . . . . . . . . . . . . . . 16

IV



An Algorithm for Smarter Heating Contents

4 Implementation 18
4.1 Deciding on a model . . . . . . . . . . . . . . . . . . 18
4.2 Implementing least squares . . . . . . . . . . . . . . . 18
4.3 Matrix operations . . . . . . . . . . . . . . . . . . . 18

4.3.1 Transpose . . . . . . . . . . . . . . . . . . . 19
4.3.2 Inverse . . . . . . . . . . . . . . . . . . . . . 19

Step 1: Create a matrix of minors . . . . . . . . . 20
Step 2: Create a matrix of cofactors . . . . . . . . 22
Step 3: Find the matrix adjoint . . . . . . . . . . 23
Step 4: Find the determinant of the original matrix . 23
Result . . . . . . . . . . . . . . . . . . . . . 26

4.3.3 Matrix multiplication . . . . . . . . . . . . . . 26
Least squares . . . . . . . . . . . . . . . . . . 28
Structuring Tables . . . . . . . . . . . . . . . . 28
Implementation . . . . . . . . . . . . . . . . . 29

4.4 Updating the model . . . . . . . . . . . . . . . . . . . 30
4.5 Handling different outdoor temperatures . . . . . . . . . 30
4.6 Putting the algorithm together . . . . . . . . . . . . . . 32
4.7 Testing . . . . . . . . . . . . . . . . . . . . . . . . 33

4.7.1 Test program . . . . . . . . . . . . . . . . . . 33
4.7.2 Contacting the API . . . . . . . . . . . . . . . 36
4.7.3 Test Environment . . . . . . . . . . . . . . . . 37

5 Results 40

6 Discussion 46
6.1 Evaluation of the linear model . . . . . . . . . . . . . . 46

6.1.1 Accuracy . . . . . . . . . . . . . . . . . . . . 47
6.2 Explaining the changes to the coefficient . . . . . . . . . 47
6.3 Possible changes to the model . . . . . . . . . . . . . . 48

6.3.1 Using a model of higher order . . . . . . . . . . 48
6.3.2 Using an exponential model . . . . . . . . . . . 49

6.4 Potential problems that can cause failure . . . . . . . . . 49
6.5 Possible applications of the algorithm . . . . . . . . . . . 51
6.6 Evaluation of energy optimisation using the algorithm . . . 52
6.7 Ethical aspects . . . . . . . . . . . . . . . . . . . . . 52

V



An Algorithm for Smarter Heating Contents

7 Future work 54
7.1 Integration . . . . . . . . . . . . . . . . . . . . . . 54
7.2 Correlation . . . . . . . . . . . . . . . . . . . . . . 54
7.3 Using a neural network . . . . . . . . . . . . . . . . . 55

8 References 57

9 Appendix 59
A Code . . . . . . . . . . . . . . . . . . . . . . . . . 59
B Tempiro API documentation . . . . . . . . . . . . . . . 85

VI



An Algorithm for Smarter Heating 1. Introduction

1 Introduction

1.1 Background

Tempiro is a company that is developing a product that they refer to as ”smart
fuses”. This entails that a circuit is located within the housing of the fuse.
This circuit enables users to switch a phase on and off in their house through
a server.

The main idea is that users are able to control the indoor temperature in their
house through a mobile device, e.g. a cellphone or a tablet. Currently users
have to manually decide when the server should begin heating.

Our assignment aims to relief the users from having to approximate when to
start the heating process. To do this, we wanted to develop a self-learning pro-
cess to accommodate the users, who only should need to set a specific time
the heating should be finished.

Through the use of this algorithm, it should also be possible to develop some
form of ”personal scheduling” for heating purposes. An example of this could
be that a user know that they will not be home during the day, and have no
need for the house to be heated during a specific time-period. The user could
then schedule that the house should reach a certain temperature for when they
are back home.

1.2 Current Status

The current solution requires the users to, themselves, approximate when to
start the heating-process to reach a target temperature. The system will then
start the process until the target temperature is reached, and then hold it there
until the user actively shuts off the process.

1



An Algorithm for Smarter Heating 1. Introduction

The application also has an option to schedule events. For example, a user
could schedule when to switch on or off certain lights or if they want to,
schedule heating of a house. It is, of course, up to the user what they con-
nect to which switches. The problem with a heating-schedule remains from
before, a user have to approximate the time it takes for the house to be fully
heated. This could lead to high inaccuracies and low energy efficiency.

1.3 Purpose

This Thesis project aims to develop an algorithm for a more intelligent control
of heating in a house. For instance, the algorithm should determine when the
heating in a house should be activated so that a given target temperature is
reached when a given time period is approached.

This algorithm should act as a foundation for Tempiro to develop different
platforms which they can market as different services. Furthermore, our al-
gorithm aims to improve Tempiro’s current product and through this be able
to satisfy their current customers as well as attract new ones.

1.4 Goals

An algorithm, which should calculate when an electric phase should be active
to reach a specific temperature a specific time shall be developed. Compar-
ison between different mathematical models should be done in order to find
the best suited model for this purpose. The input data to the algorithm should
contain the current indoor- and outdoor temperatures as well as the historical
data of these parameters from Tempiro’s database.

From Tempiro, the clients will be given a thermostat for the indoor tempera-
ture while the outdoor temperature is collected through a database. Thismeans
that no modifications on the hardware are necessary to get access to the above
mentioned parameters.

After a model has been developed, an implementation is created to help with
the integration of the algorithm into Tempiro’s current solution. Testing is
performed when a new module has been developed. This is done with help of
simulation and through a test facility. Before integration, the algorithm should
be evaluated and tested through pilot customers. The feedback could then be
used to fix and adjust problems with the algorithm.

2



An Algorithm for Smarter Heating 1. Introduction

1.5 Research Questions

The research questions of the project are separated into main- and secondary
questions. The main questions were meant to guide the research and devel-
opment of the project while the secondary questions were devised in order to
assist in answering the main questions.

1.5.1 Main Questions

• How can an algorithm be designed to get a more energy efficient heating
in a house?

• Which kind of system can be developed on top of such an algorithm to
reduce the amount of time the heating is on without reducing the level
of comfort?

1.5.2 Secondary Questions

• Which kind of measured data is relevant to be used?

• Which type of model structure should be used?

• How should the model parameters be estimated?

• Which type of controller should be used? Examples examined will
include PWM-regulation (which in itself can include P, PI and PID-
regulation) and ON/OFF based regulation.

1.6 Motivation

There are several motivations for this project. Firstly, this project could con-
tribute with positive environmental impacts as heating a house can be seen as
unnecessary in certain scenarios. In other words, the heating should only be
active when necessary. This project also aims to minimize the loss of comfort
to the users of the final product. Given the algorithm works well, the likeli-
hood that the algorithm is adopted into daily usage is deemed high.

Secondly, as of now, the topic of machine learning is widespread in the tech-
nology sector. By creating an algorithm that uses simple machine learning or
a self learning solution, this project can, perhaps, act as a reason to further
integrate this technology into mainstream markets.

3



An Algorithm for Smarter Heating 1. Introduction

Finally, the decrease of energy consumption could not only be better for the
environment, but also gain the individual user in other aspects. One motiva-
tion was that if users could save money using this product, it would become
more attractive. This would help both Tempiro as a company, the individual
users, and the environment in the long term.

1.7 Delimitations

Because the change in temperature is a slow process, the developed algorithm
does not require frequent updates. The previously mentioned updates will in-
stead occur every five to ten minutes. The main reason for this is that the cal-
culations will update the algorithm with identical values intermittently. This
could result in premature wear of the hardware. Additionally, it’s not neces-
sary to update the database with the same values repeatedly.

Furthermore, minor discrepancies in the time when the target temperature is
reached can be tolerated. For instance, it can be tolerated that a room set to 21
degrees is around 20 degrees when the target time is reached. This facilitates
simpler procedures for updating the model, in addition to less complicated ad-
justments to temperature changes throughout the year.

Moreover, the size of the project can limit what is able to be accomplished
during the given time span. This implies that the PWM part of the project
may be reduced to a mainly theoretical section.

The tests leading up to the finished algorithm will be made in various small
facilities. This can potentially affect the accuracy of the algorithm negatively
because of a faster heating-process. The data given from the tests will be
essential for going forward testing on a more realistic scenario, where the
results then may differ.

4



An Algorithm for Smarter Heating 1. Introduction

5



An Algorithm for Smarter Heating 2. Theory

2 Theory

This chapter brings up various mathematical theories used in the development
of the algorithm, as well as the various ways the algorithm could be imple-
mented. Explanations of the interfaces used is also brought up in this section.

2.1 Linear regression

Linear regression is a method of estimating a linear relationship between a set
of inputs to a single output. This is a form of supervised machine learning,
which means that for the set of input values, the output values are known. The
result of performing linear regression is going to result in a weighted sum of
the inputs.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

t

f
(t
)

1− e−t

0.75t

Figure 2.1: Heating curve and linear approximation

6



An Algorithm for Smarter Heating 2. Theory

As the heating of a house isn’t linear, to be able to use a linear model, an as-
sumption must be made regarding the validity of linearity. In Figure 2.1 the
linear function and the exponential function approximately follow each other
in the beginning of the functions. After some time, the exponential function
rather quickly begins to go towards its maximum. The assumption is, that as
long as the heating process lay between the red lines of Figure 2.1, the heating
of a house can be assumed linear.

To specify the argument of linearity, the time constant will be assumed to be
very long. Also, the static gain is assumed to lay on a level high above the
measured area. This is described in Figure 2.1.

2.1.1 Hypothesis function

When training, the hypothesis can be estimated. This means that we solve
the weighted sum with our current weights. The hypothesis function can be
expressed as [1, s. 79]:

hw(x) = w0x0 + w1x1 + ...+ wnxn + b (2.1)

(2.1) can later also be used to predict values, however during training this is
called the hypothesis.

2.1.2 Cost function

When training, the cost of the weights will need to be considered. The cost
function expresses how inexact the estimated model is. This function will
need to be minimized in order to get an as exact prediction as possible. The
cost can be expressed as the sum of the difference between the known Y value
and the output from the hypothesis function. This can be written as [1, s. 80]:

RSS(w) =
1

2n

n∑
i=1

(yi − hw(xi))
2 (2.2)

Where n is the number of weights, w are the weights, and x are the inputs.

2.1.3 Linear regression through least squares

Least squares is a method to perform linear regression. If one looks back upon
the cost function, linear regression aims to determine the weights. Given a

7



An Algorithm for Smarter Heating 2. Theory

linear model [2]:

yi = m+ kxi (2.3)

That instead could be written with matrices:
1 x(0)

1 x(1)
...

...

1 x(n)


(
m

k

)
=


y(0)

y(1)
...

y(n)

 (2.4)

And, for ease of use, the matrices could be redefined as:

Φθ = Y (2.5)

Because we want to solve for θ, which contains the coefficients, a first step
would to be multiplying both sides in (2.5) with Φ−1 from the right, which
would result in:

θ = Φ−1Y (2.6)

The inverse ofΦ might not be possible, because it isn’t always a fact thatΦ
is a quadratic matrix. This method is therefore not preferable. Instead, we can
create a guaranteed quadratic matrix, that is probable to have an inverse, and
then repeat the process.

By instead multiplying both sides of (2.5) with ΦT from the right, we can
guarantee the quadratic matrix, which can be inverted as long as the determi-
nant isn’t zero.

ΦTΦθ = ΦTY (2.7)

Solve for θ in (2.7) by multiplying both sides with (ΦTΦ)−1 from the right:

θ = (ΦTΦ)−1ΦTY (2.8)

8



An Algorithm for Smarter Heating 2. Theory

BecauseΦ andY have the same amount of rows, theΦTY will create a ma-
trix with one column and the same amount of rows as the (ΦTΦ)−1 matrix.
When multiplied, the result of the θ matrix will contain one column and the
same amount of rows, where each row will be the sought coefficient from the
initial equation.

2.2 API

Tempiro has an API which can be used to interact with the company’s server
by e.g. sending PUSH and GET requests to the server. Through this, differ-
ent values can be downloaded, such as the outdoor temperature and historic
temperature values.

To protect unauthorized access, an access token is required. This token has to
be sent with a request in order for the server to be able to authenticate a user
and give them access to their information. By sending a series of requests to
the servers API, it’s possible to interact with it and therefore be able to send
commands to it. This could, for example, be used to develop a micro service
or set up a test environment.

2.2.1 JSON data format

The data returned from the server is in the JSON format. JSON stands for
”Java Script Object Notation” and is a format that objects can be serialized
into to be read by a receiver at a later point in time. The syntax gives that,
for example, an object with an ”int” variable that is called x and has the value
”10” can be serialized to the form.
1 {
2 "x" : 10
3 }

This example is constructed using [3].

This can be performed using the ”JavaScriptSerilizer” class using c#.
The previous JSON example could be generated when serializing the follow-
ing example class.

9



An Algorithm for Smarter Heating 2. Theory

Listing 2.1: Example class

1 class EX
2 {
3 int x {get; set;}
4 public EX(int xinit)
5 {
6 x = xinit;
7 }
8 }

Using the ”JavaScriptSerializer” class, this can be serialized to JSON and back
into an object using:

Listing 2.2: Serialising and deserializing the example class

1 EX obj = new EX(10);
2 string json = new JavaScriptSerializer().Serialize(obj);
3 EX newObj = new JavaScriptSerializer().Deserialize <EX>(json

);

This example was created using [4]. After execution of this code, ”obj” and
”newObj” should reference to identical objects.

2.3 Controllers

The controller is the system component which controls the heating. This com-
ponent can control if the heating should be on or off as well as the power of
the heating.

2.3.1 ON/OFF

ON/OFF based regulation implies that the heating is switched on or off to
control the heating. When the heating is on, the power is set to a constant
value. This is a simple type of control, where the measured output will os-
cillate around the desired output. The control signal of this model will only
include zero and the maximum value.

2.3.2 PWM based

Through the use of PWM based regulation, proper values can be calculated.
This allows the possibilities of for example PID controllers to facilitate a more
exact curve than with ON/OFF regulation. This will additionally open up for
the possibility for optimization such as minimizing the used power.

10



An Algorithm for Smarter Heating 2. Theory

Theoretical example

With PWM, ”Pulse Width Modulation”, a duty cycle is used to encode differ-
ent digital values [5]. For example, if a light-emitting diode is connected to a
5 V source and a cycle of 10 milliseconds is assumed, the LED is turned on 5
milliseconds and then turned of for the remaining 5 milliseconds. Therefore
a duty cycle of 50% is created. The LED would have a potential of 5 V over
it for the first 5 milliseconds and a potential 0 V over it for the last 5 millisec-
onds. Through this, the LED appear to have a potential of 2.5 V over it for the
entire cycle.

The same theory can be applied to a radiator that is setup to heat a room.
A theoretical example is given where a duty cycle of 50% is used to hold a
temperature at 23 degrees centigrade.

0 1 2 3 4 5 6 7 8 9 10
12

14

16

18

20

22

24

26

Time [Hours]

Te
m
pe
ra
tu
re
[C
°]

Figure 2.2: Temperature over time

The temperature in Figure 2.2 will oscillate between 24 and 22 degrees centi-
grade. Over the total cycle, the average temperature will be 23 degrees centi-
grade.

The voltage supplied to the radiator is illustrated in Figure 2.3.

11



An Algorithm for Smarter Heating 2. Theory

0 1 2 3 4 5 6 7 8 9 10
0

230

Time [Hours]

Vo
lta
ge

[V
]

Figure 2.3: Output voltage over time

According to Figure 2.3, the radiator is connected to 230 V. While the radiator
is running it is supplied with 230 V, else it is turned off.

Figure 2.4 illustrates a radiator running at 680 W.

0 1 2 3 4 5 6 7 8 9 10
0

680

1,360

2,040

2,720

3,400

4,080

4,760

Time [Hours]

En
er
gy

[W
h]

Figure 2.4: Energy consumption over time

12



An Algorithm for Smarter Heating 2. Theory

While the radiator is turned off, it does not consume any power. Therefore the
used power in Figure 2.4 is constant during this time.

13



An Algorithm for Smarter Heating 3. Method

3 Method

The development process will be divided into several stages. The first will
be a discussion about the type of model to be used for the calculations. The
data provided to the algorithm will consist in part of historic temperature data
of the respective house in addition to the current indoor and outdoor temper-
atures.

This gives, in principle, two types of models to be considered:
• Static energy basedmodel: Based on measured data, an estimate for how
much energy is needed to raise the temperature of the house by one
degree centigrade. This data can then be used to estimate the duration
of the heating process.

• Recursive dynamic model: The algorithm attempts to detect a pattern
in the presented data stored in the database for the respective houses.
This data is then used to create a dynamic equation that can be used to
estimate the thermal processes of the house.

After the models have been analyzed, an algorithm will be developed and
tested through various simulations to verify its functionality. When the algo-
rithm works as expected it will be tested both in a dedicated test facility and,
if possible, with a pilot customer.

The algorithmwill be implemented with the programming language C#, this is
due to the fact that this language is estimated to be the simplest to be integrated
into Tempiro’s server. This is mainly as the back-end solution is developed
with the same programming language on the .NET framework.

The algorithm will be developed outside of Tempiro’s system and only use
the server as a tool. To directly implement the system in the server could lead
to unnecessary time consuming errors to fix. During the development phase,
the algorithm will communicate with the server through an API. After the
algorithm is completed it will be deployed on Tempiro’s server as a back-end
module.

14



An Algorithm for Smarter Heating 3. Method

3.1 Database analysis

The database was examined using Microsoft SQL Server. The data was an-
alyzed to determine what values can be accessed and to see if there are any
patterns. These patterns could be used to determine a model for the thermal
properties of the house a user is living in. For this, access to the historic data
of the users is required. This data can, for example, be graphed to determine
how the house reacts when the heating is enabled. Additionally, the values
present in the database can be compared to known models for heating in a
house to determine which, if any, is suitable.

3.2 Algorithm development

The algorithmwill be developed inMicrosoft Visual Studio. The development
should aim to be as independent from third party libraries as possible. Due to
this, certain low level modules might have to be developed from scratch.

3.3 Testing

The developed systemwill be tested in several dedicated testing environments.
Testing will be done outside Tempiro’s system, and a separate program will
be created for testing purposes only.

The system will be allowed to heat the testing facility to a target temperature,
after which the room will be allowed to cool down again. The procedure
is subsequently repeated for all tests. This is done in order to collect data
regarding the performance of the algorithm.

15



An Algorithm for Smarter Heating 3. Method

3.4 Source criticism

[1] The author has published several books on this subject in addition to sev-
eral articles in academic journals.

[2] Is deemed to be a valid source due to that the mathematical theory is the
same as what have been introduced in the courses ”Mathematics, Linear Al-
gebra” and ”Automation, Advanced Course”.

[3] Is a document outlining the Json standard. The format has even been com-
pared to the output from the ”JavaScripSerializer” class that is included in
Microsoft’s C# standard library.

[4], [8] Is part of Microsoft’s official documentation for their C# language. As
they have developed and maintain the C# language and standard library, the
sources are deemed to be valid.

[5] The author of this article has written several books and articles about em-
bedded programming. The author has also acted as an adjunct professor of
electrical and computer engineering.

[6] Is deemed to be a valid source due to that the creators of the website have
bachelors and masters degrees in mathematics.

[7] The Wolfram|Alpha answer engine is developed by the company Wolfram
Research where the CEO StephenWolfram is well known for his work in com-
puter science, mathematics and theoretical physics.

16



An Algorithm for Smarter Heating 3. Method

17



An Algorithm for Smarter Heating 4. Implementation

4 Implementation

4.1 Deciding on a model

As heating is a slow process the assumption was, which was described in Fig-
ure 2.1, that it would be an almost linear curve for increasing the temperature
of a house. Because access to a database with various variables was available,
the discussion of self learning, or machine learning was also brought up.

Linear regression was an obvious choice, together with ordinary linear equa-
tions. However, since there could be more than one variable in the calcula-
tions, linear regression might not suffice. A natural step forward would be to
implement the least squares method, which can be used with multiple vari-
ables.

4.2 Implementing least squares

The least squares method is to be implemented using matrix-multiplications
as described in (2.8). This includes coding for both calculating the inverse of
a matrix and the transpose of a matrix.

4.3 Matrix operations

To be able to perform a least square analysis, several matrix operations had
to be implemented. The full implementation for the ”matrix class” is given in
Appendix A, Listing: 9.1.

18



An Algorithm for Smarter Heating 4. Implementation

4.3.1 Transpose

The transpose of a matrix is done by switching its rows with its columns. For
a matrixA, the transposeAT will result in:

A =

a1 a2 a3

b1 b2 b3

c1 c2 c3

 ⇐⇒ AT =

a1 b1 c1

a2 b2 c2

a3 b3 c3

 (4.1)

This can be achieved by iterating through a matrix and putting the value on
the diagonal. This is expressed in the Listing 4.1. This code will create a
new matrix, as most matrix operations do, which is then returned. Due to
this, the program will iterate over the entire matrix and put the values in the
correct spots instead of switching places between them, which would have
fewer iterations through the for-loops.

Listing 4.1: Transposing a matrix

1 public Matrix Transpose()
2 {
3 double[,] new_matrix = new double[data.GetLength(1),

data.GetLength(0)];
4 for (int i = 0; i < data.GetLength(0); ++i)
5 {
6 for (int j = 0; j < data.GetLength(1); ++j)
7 {
8 new_matrix[j, i] = data[i, j];
9 }
10 }
11 return new Matrix(new_matrix);
12 }

4.3.2 Inverse

When inverting a matrix two things must be calculated, the determinant and
the indices of the inverse matrix.

The algorithm’s matrix inverse calculations were developed following the
guide in [6]. The guide and calculations were fact checked using the Wol-
fram|Alpha platform [7].

19



An Algorithm for Smarter Heating 4. Implementation

To demonstrate how the algorithm finds the matrix inverse, theAmatrix from
(4.1) will be used:

A =

a1 a2 a3

b1 b2 b3

c1 c2 c3

 (4.2)

Step 1: Create a matrix of minors

The values of the indices for the new matrix of minors are determined by the
following calculations:

ā1 =

◦ b2 b3

c2 c3

 = b2 ∗ c3 − c2 ∗ b3 (4.3)

ā2 =

 ◦
b1 b3

c1 c3

 = b1 ∗ c3 − c1 ∗ b3 (4.4)

ā3 =

 ◦
b1 b2

c1 c2

 = b1 ∗ c2 − c1 ∗ b2 (4.5)

b̄1 =

 a2 a3

◦
c2 c3

 = a2 ∗ c3 − c2 ∗ a3 (4.6)

b̄2 =

a1 a3

◦
c1 c3

 = a1 ∗ c3 − c1 ∗ a3 (4.7)

20



An Algorithm for Smarter Heating 4. Implementation

b̄3 =

a1 a2

◦
c1 c2

 = a1 ∗ c2 − c1 ∗ a2 (4.8)

c̄1 =

 a2 a3

b2 b3

◦

 = a2 ∗ b3 − b2 ∗ a3 (4.9)

c̄2 =

a1 a3

b1 b3

◦

 = a1 ∗ b3 − b1 ∗ a3 (4.10)

c̄3 =

a1 a2

b1 b2

◦

 = a1 ∗ b2 − b1 ∗ a2 (4.11)

The white dot in the matrices represents the index value that is to be calcu-
lated. The row and the column where the new index value is calculated are
blanked out. The index value is then calculated with the same method used to
determine the determinant of a 2 x 2 matrix. The determinant calculations is
written out for each matrix index.

For further reference, the matrix of minors will hereafter be represented as:ā1 ā2 ā3

b̄1 b̄2 b̄3

c̄1 c̄2 c̄3

 (4.12)

The described method can be expressed in C#.

21



An Algorithm for Smarter Heating 4. Implementation

Listing 4.2: Creating a matrix of minors

1 private Matrix Minors()
2 {
3 double[,] minors = new double[data.GetLength(0), data.

GetLength(1)];
4 for (int row = 0; row < data.GetLength(0); ++row)
5 for (int col = 0; col < data.GetLength(1); ++col)
6 {
7 minors[row, col] = DeterminantRekur(Decompose(

data, row, col));
8 }
9 return new Matrix(minors);
10 }

As the operation to create a matrix of minors uses partly the same procedure as
calculating the determinant of part matrices, the same recursive method can be
used to implement this function. Here we iterate over the matrix and calculate
the determinant for every index.

Step 2: Create a matrix of cofactors

To create the matrix of cofactors, change every other of (4.12) indices to the
negative value. This is done in a square pattern, where the diagonal is positive:

+ − + − · · ·
− + − + · · ·
+ − + − · · ·
− + − + · · ·
...

...
...

... . . .

 (4.13)

The matrix of cofactors will be represented as: ā1 −ā2 ā3

−b̄1 b̄2 −b̄3

c̄1 −c̄2 c̄3

 (4.14)

This gives a checkerboard pattern that can be laid over the matrix of minors.

22



An Algorithm for Smarter Heating 4. Implementation

Listing 4.3: Creating a matrix of cofactors

1 private Matrix Cofactors()
2 {
3 double[,] cofactors = Minors().data;
4 for (int row = 0; row < data.GetLength(0); ++row)
5 {
6 for (int col = 0; col < data.GetLength(1); ++col)
7 {
8 //Om raden är udda OCH kolonnen är jämn ELLER

om raden är jämn OCH kolonnen är udda
9 if ((row % 2 != 0 && col % 2 == 0) || ((row % 2

== 0 && col % 2 != 0)))
10 {
11 cofactors[row, col] = -cofactors[row, col];
12 }
13 }
14 }
15 return new Matrix(cofactors);
16 }

The method simply iterates over the matrix and based on certain parame-
ters, the value is multiplied with -1. The parameters give the aforementioned
checkerboard pattern. As multiplying anything with a positive one has no ef-
fect on the value, only the case in which the value is multiplied with -1 has to
be handled.

Step 3: Find the matrix adjoint

To find the matrix adjoint, transpose all the elements from (4.14) as explained
in (4.1). The matrix adjoint will then be represented as: ā1 −b̄1 c̄1

−ā2 b̄2 −c̄2

ā3 −b̄3 c̄3

 (4.15)

This is simply implemented as a call to the transpose method of the cofactor
matrix.

Step 4: Find the determinant of the original matrix

Formostmatrix operations, such as the inverse, amatrix determinant is needed.
This was implemented using a recursive method that breaks down the matrix

23



An Algorithm for Smarter Heating 4. Implementation

into minor matrices and calculates the determinant of each of them. Through
this, the determinant of matrices of any size can be found. If it’s not possible
to find the determinant of a matrix, an exception is thrown.

For this example, the determinant is calculated by taking the original matrix
index values of any row and multiply them by the cofactors of the same in-
dices. For the top row, the determinant equation would be:

detA = a1 ∗ ā1 + a2 ∗ (−ā2) + a3 ∗ ā3 (4.16)

Using a recursive approach, the determinant of any matrix can be calculated.
This is done by calculating the determinant of smaller ”part matrices” and
adding them together using (4.16).

Listing 4.4: Recursive determinant calculation

1 private double Determinant()
2 {
3 return DeterminantRekur(data);
4 }
5 private double DeterminantRekur(double[,] values)
6 {
7 if (values.GetLength(0) == values.GetLength(1))
8 {
9 if (values.GetLength(0) == 1)
10 {
11 return values[0, 0];
12 }
13 double det = 0;
14 if (values.GetLength(0) == 2)
15 {
16 return (values[0, 0] * values[1, 1]) - (values

[0, 1] * values[1, 0]);
17 }
18 for (int i = 0; i < values.GetLength(0); ++i)
19 {
20 if (i % 2 == 0)
21 {
22 det += values[0, i] * DeterminantRekur(

Decompose(values, 0, i));
23 }
24 else
25 {
26 det -= values[0, i] * DeterminantRekur(

Decompose(values, 0, i));
27 }
28 }
29 return det;

24



An Algorithm for Smarter Heating 4. Implementation

30 }
31 throw new MatrixDimensionException("Unable to find

Determimant for non-square Matrix");
32 }

The matrix is decomposed and added to the determinant sum. This method
will then recursively calculate the determinant for all the smaller matrices that
are generated when the matrix is decomposed. For this, a decompose-method
was needed which removes the row and column just as when the matrix of
minors was calculated.

Listing 4.5: Decomposing a matrix for finding the determinant

1 private double[,] Decompose(double[,] values, int row, int
col)

2 {
3 double[,] new_dat1 = new double[values.GetLength(0) -

1, values.GetLength(1)];
4 double[,] new_dat = new double[values.GetLength(0) - 1,

values.GetLength(1) - 1];
5
6 //remove row
7 int rowindex = 0;
8 int newrowindex = 0;
9 while (rowindex < values.GetLength(0) && newrowindex <

new_dat1.GetLength(0))
10 {
11 if (rowindex == row)
12 if (++rowindex == values.GetLength(0))
13 break;
14 for (int i = 0; i < values.GetLength(1); ++i)
15 new_dat1[newrowindex , i] = values[rowindex, i];
16 ++rowindex;
17 ++newrowindex;
18 }
19 //remove col
20 int colindex = 0;
21 int newcolindex = 0;
22 while (colindex < new_dat1.GetLength(1) && newcolindex

< new_dat.GetLength(1))
23 {
24 if (colindex == col)
25 if (++colindex == new_dat1.GetLength(1))
26 break;
27 for (int i = 0; i < new_dat1.GetLength(0); ++i)
28 {
29 new_dat[i, newcolindex] = new_dat1[i, colindex

];
30 }

25



An Algorithm for Smarter Heating 4. Implementation

31 ++colindex;
32 ++newcolindex;
33 }
34 return new_dat;
35 }

The decompose-method removes the row and the column that a given index
is in. This is exactly like the matrix of minors. A determinant can then be
returned to the caller.

Result

When all of the sub calculations are done, the inverse of the matrix can be
calculated using the determinant and the adjoint:

A−1 =
1

detA

 ā1 −b̄1 c̄1

−ā2 b̄2 −c̄2

ā3 −b̄3 c̄3

 (4.17)

4.3.3 Matrix multiplication

When multiplying two matrices, a new matrix is created.

AB = C (4.18)

To be able to multiply two matrices, the amount of columns in the first matrix
must be equal to the amount of rows in the second matrix.

For this example, theA andB matrices will be represented as:

A =

(
a11 a12 a13

a21 a22 a23

)
(4.19)

B =

b11 b12

b21 b22

b31 b32

 (4.20)

26



An Algorithm for Smarter Heating 4. Implementation

To complete the multiplications and createC , multiply the indices of the rows
inA with the column indices inB and add them together. As an example, to
calculate the first index inC :

(
a11 a12 a13

a21 a22 a23

)b11 b12

b21 b22

b31 b32

 =

(
a11b11

)
(4.21)

(
a11 a12 a13

a21 a22 a23

)b11 b12

b21 b22

b31 b32

 =

(
a11b11 + a12b21

)
(4.22)

(
a11 a12 a13

a21 a22 a23

)b11 b12

b21 b22

b31 b32

 =

(
a11b11 + a12b21 + a13b31

)
(4.23)

The same calculations are done for the remaining indices, which will result
in:

C =

(
a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32

a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32

)
(4.24)

Matrix multiplication implemented in C#:

27



An Algorithm for Smarter Heating 4. Implementation

Listing 4.6: Multiplying two matrices

1 public Matrix Multiply(Matrix other)
2 {
3 if (data.GetLength(1) == other.data.GetLength(0))
4 {
5 double[,] c = new double[data.GetLength(0), other.

data.GetLength(1)];
6 for (int i = 0; i < c.GetLength(0); i++)
7 {
8 for (int j = 0; j < c.GetLength(1); j++)
9 {
10 c[i, j] = 0;
11 for (int k = 0; k < data.GetLength(1); k++)

// OR k<b.GetLength(0)
12 c[i, j] = c[i, j] + data[i, k] * other.

data[k, j];
13 }
14 }
15 return new Matrix(c);
16 }
17 throw new MatrixDimensionException("Unable to multiply

two Matrixes where the collumn count of first non
equal to row count of second");

18 }

If the matrices have incorrect dimensions, an exception has to be cast as they
cannot be multiplied.

Least squares

After all the matrix operations were implemented, the mathematical opera-
tions to perform a least squares analysis, as shown in (2.8), were ready. How-
ever the structure for the input data had to be determined. This implies that
some sort of interface for callers to the last squares function needed to be cre-
ated.

Structuring tables

In order to easily read and structure data, a table class was devised. The pur-
pose of this class was to give an interface which the least squares operations
could easily read. This would also allow to have a better overview of the data
for debugging purposes. The full implementation for this class is given in Ap-
pendix A, Listing; 9.2. Using a one dimensional array of strings, each column
of the table can receive a label. Using this label, the least squares method will
not require to know which column the features and targets are located in. This

28



An Algorithm for Smarter Heating 4. Implementation

allows the least squares to take a table and find the correct columns given that
they have the correct labels.

Implementation

Using the created table class, the least squares method was implemented by
using (2.8). Initially, the data from the table class is read and placed inside
a matrix object. Subsequently, the operations for performing a least squares
analysis are executed. The program then instantiates a model object which
contains the calculated function in addition to the cost.

Listing 4.7: Least squares calculation

1 public static Model LeastSquare(Table data, int nbrFeatures
)

2 {
3 Matrix features = new Matrix(data.numberRows(),

nbrFeatures + 1);
4 Matrix targets = new Matrix(data.numberRows(), 1);
5 for (int i = 0; i < data.numberRows(); ++i)
6 {
7 targets.put(i, 0, data.get("Y", i));
8 for (int j = 0; j < nbrFeatures; ++j)
9 {
10 features.put(i, j, data.get("Feature" + j, i));
11 }
12 features.put(i, nbrFeatures , 1);
13 }
14 Matrix output = new Matrix(nbrFeatures , 1);
15 Matrix weights = (features.Transpose().Multiply(

features)).Inverse().Multiply(features.Transpose())
.Multiply(targets);

16 for (int i = 0; i < nbrFeatures; ++i)
17 {
18 output.put(i, 0, weights.get(i, 0));
19 }
20 double bias = weights.get(nbrFeatures , 0);
21 return new Model(new Functions.

MultiVariableFirstOrderPolinomial(output, bias),
cost(features , weights, targets));

22 }

The majority of the given code is to read the table class, as the actual calcula-
tions are implemented in only a single line. The general approach of a table
relieves the user, or someone who later wants to use the method, from needing
to know how the matrices required to perform the least squares calculations
have to be setup. However, this requires the caller of this method to specify
the number of features for the least squares. An additional requirement is, that

29



An Algorithm for Smarter Heating 4. Implementation

in the table that is given to the least squares method as an input, one column
has the label ”Y” and the features have the labels ”Feature 0” until ”Feature
n-1”, where n is the number of features. These columns are the targets and the
features respectively.

4.4 Updating the model

When a model is estimated, there are several factors which may change the
coefficient. One example of such noise might be an open window where
heat may escape. Due to this, an estimated model will need to be moderated
through several different estimates. By calculating the average between the
different estimated coefficients, the influence of such noise can be reduced.

Listing 4.8: Updating a model

1 public void update(Model data)
2 {
3 double new_coeff = data.GetFunction().GetCoeff().get(0,

0);
4 coeff = ((coeff * nbrVals) + new_coeff) / (nbrVals + 1)

;
5 ++nbrVals;
6 }

The above given function is part of the ”HeatingCoefficient” class. The full
implementation for the class is given in Appendix A Listing 9.7. For this there
are two attributes that are stored. These are the average coefficient, named
”coeff”, and the denominator, named ”nbrVals”. The average is then mul-
tiplied with the denominator to get a sum of the previous values. The new
coefficient is then added to the sum and is divided by the incremented value
for the denominator.

4.5 Handling different outdoor temperatures

The least squares estimate will give a coefficient that states howmany degrees
centigrade per hour a house can be heated. However, this may change depend-
ing on the outdoor temperature. In a well isolated house, this relationship may
be less noticeable. However, in a house with less isolation, the relationship
could be quite significant. Other factors that might play a role is if the out-
door temperature affects the indoor temperature, the size of the house, and
how many rooms the house has.

30



An Algorithm for Smarter Heating 4. Implementation

Therefore, the estimated model from the least squares analysis will take into
account how fast the house heats up under certain conditions, when the data
was collected. To have a more general approach to this, the outdoor temper-
atures are divided into intervals of five degrees centigrade. The intervals are
treated using one single equation. This means that the system will have to be
set up for different outdoor temperatures. The different generated models are
stored in a Hash-Map and can be accessed using a key, calculated from the
outdoor temperature.

Listing 4.9: Calculating the map index

1 public int DictIndex(double OuterTemp)
2 {
3 int DictIndex = (int)System.Math.Round(OuterTemp);
4 if (OuterTemp < 0)
5 {
6 DictIndex -= 5;
7 }
8 return DictIndex /= 5;
9 }
10 }

For this, the outdoor temperature is first rounded into an integer. If it is nega-
tive it is shifted by -5, to avoid using zero twice as an index. The value is then
divided by 5 using integer division. Because of this, everything within the
interval is generalized into one index. However due to this, one interval will
be between -1 and -4, which means that there will only be four temperatures
in that interval. This allows for several models to be stored and used in the
system.

Using the given calculation, an array or Hash-Map can be used to hold the
models. An example of this is given in Appendix A, Listing: 9.7. The class
”HeatingAgent” contains the implementation through a Hash-Map.

31



An Algorithm for Smarter Heating 4. Implementation

4.6 Putting the algorithm together

Figure 4.1: Example implementation of the algorithm

Figure 4.1 displays how the execution of the algorithm transpires. First, user
input is required to setup the target temperature and at what time this target

32



An Algorithm for Smarter Heating 4. Implementation

should be reached. Subsequently, it will be checked whether there is a model
stored for a given interval of outdoor temperature. Given there is a stored
model, it is used. Otherwise the algorithm will assume heating with one de-
gree centigrade per hour. After the given calculation, the system has to wait
for the adequate time to start heating. As the environmental conditions are
subject to change, there is the possibility that the heating would have to be
started at a different time than the one that was given. Due to this, every time
the temperature is updated, the time when to start heating would need to be
re-evaluated. Once the time to start heating has been reached, the algorithm
will proceed to the next stage.

The system will then simply wait for the target temperature to be reached.
Once this condition has been met, the current temperature should be held and
the model should either be updated or a newmodel should be created, depend-
ing on whether there is a previous model stored or not. Once new information
is given to the system on the new target temperature, the system should aim
to reach this temperature again.

When this is integrated into a system, several changes to the structure in Figure
4.1 can be made to better fit the target architecture. For instance, if a system
updates from a thermometer every five minutes, the new prediction can be
done when the temperature is updated.

4.7 Testing

In order to evaluate the method used in the algorithm, a testing scenario was
devised. This was done in order to draw conclusions about the type of model
used and to give improvement ideas for the system developed as well as the
algorithm.

4.7.1 Test program

The test program that was developed utilized Tempiro’s API to communicate
with the server. The Implementation for the program and the API connection
is given in Appendix A Listing 9.6. The program first creates an API object
using the access token that the user needs from the server. As this is a program
designed for testing, the token is hard-coded into the program. Using this, the
program attempts to download a list of thermostats from the server. The pro-
gram then needs to instantiate a ”heating agent”, which requires the API and
the device that the user has chosen. This class handles both the models and

33



An Algorithm for Smarter Heating 4. Implementation

their respective updates.

The program later requests the user to enter at which time it should be warm
and what target temperature should be reached. The system then attempts to
predict how long it will take for the house to reach the target temperature.
Initially, this will be one degree centigrade per hour. The system then waits
for the predicted moment. However, to account for changes in the indoor and
outdoor temperatures, the system will re-predict when the heating should start
regularly. Once the predicted moment is reached, the system sets the servers
target temperature and triggers the fuses to turn on and the starting time is
recorded.

While the system is heating, the temperature is monitored and once the target
temperature is reached the fuses are turned off, the servers target temperature
is set to zero and the agent is told to update the model from the data between
the two recorded time periods. This process then repeats until the user exits
the program. This is designed so that the change of the model can be moni-
tored to test whether the model will adjust after heating.

The test program is also aimed to act as an example application to show how
such an algorithm can be implemented in a system. Therefore it follows Figure
4.1 closely with the exception that once the heating is complete, it does not
hold the temperature but allows the room to cool down so that more tests can
be performed.

34



An Algorithm for Smarter Heating 4. Implementation

Figure 4.2: Class diagram over the test implementation

35



An Algorithm for Smarter Heating 4. Implementation

Figure 4.2 describes the test program. It can be seen that the ”Matrix” class is
only used in the ”MultiVariableLinearRegression” class. This is because the
”Table” class acts as the interface between the ”LeastSquare” function and the
caller. There are some classes that are only required for the ”APIConnector”
class, which are used to deserialize the data returned from Tempiro’s server.

4.7.2 Contacting the API

The API object, mentioned in 4.7.1, communicates between the test program
and Tempiro’s server. Also mentioned in 4.7.1 is that the access token is hard-
coded into the application code. This was done due to that it was deemed im-
practical to ask for a username and password every time the program started.
The application sends ”GET” requests to get information from the server and
”PUT” requests to send information to the server. The full implementation for
the API class is given in Appendix A: Listing 9.6.

Listing 4.10: Sending a GET request

1 private string SendGET(string url)
2 {
3 HttpWebRequest request = (HttpWebRequest)WebRequest.

Create(url);
4 request.Method = "GET";
5 request.ContentType = "application/json";
6 request.Headers.Add("Authorization","Bearer " +

AuthToken);
7 request.AutomaticDecompression = DecompressionMethods.

GZip | DecompressionMethods.Deflate;
8 using(HttpWebResponse response = (HttpWebResponse)

request.GetResponse())
9 using(Stream stream = response.GetResponseStream())
10 using(StreamReader reader = new StreamReader(

stream))
11 {
12 return reader.ReadToEnd();
13 }
14 }

A ”GET” request is sent to Tempiro’s server using a bearer token. This is the
type of access token used. Using a ”StreamReader”, the servers response is
read and returned.

For example, a possible ”GET” request for the server could be ”/api/Devices”.
The server would then return an array of an object in the form of a JSON string
that can be deserialized.

36



An Algorithm for Smarter Heating 4. Implementation

Using theAPI, ”PUT” requests can be sent, which requests the server to update
its information.

Listing 4.11: Sending a PUT request

1 private void SendPut(ValueUpdate VU , string url)
2 {
3 var httpWebRequest = (HttpWebRequest)WebRequest.Create(

url);
4 httpWebRequest.ContentType = "application/json";
5 httpWebRequest.Method = "PUT";
6 httpWebRequest.Headers.Add("Authorization", "Bearer " +

AuthToken);
7
8 using (var streamWriter = new StreamWriter(

httpWebRequest.GetRequestStream()))
9 {
10 string json = new JavaScriptSerializer().Serialize(

VU);
11 streamWriter.Write(json);
12 streamWriter.Flush();
13 streamWriter.Close();
14 }
15 var httpResponse = (HttpWebResponse)httpWebRequest.

GetResponse();
16 using (var streamReader = new StreamReader(httpResponse

.GetResponseStream()))
17 {
18 var result = streamReader.ReadToEnd();
19 }
20 }

This sends a ”PUT” request that contains a ”ValueUpdate”, formatted to JSON,
to the server. This method is meant to update the value of the switches and
thermostats using the API endpoints ”api/Switch” and ”/api/DeviceConfigu-
rations”.

The relevant documentation for the API functions can be found in Appendix
B.

4.7.3 Test Environment

For testing purposes, a dedicated test environment that would not be used for
anything else than testing during the project was set up. At first, this was a
small basement unit in Helsingborg. During the development of the test pro-
gram, this was also used to monitor whether the fuses could be turned on and
off reliably.

37



An Algorithm for Smarter Heating 4. Implementation

The test environment used was a small basement area where an empty fuse-
box was mounted. The fuse-box contained a single fuse mount where one of
Tempiro’s smart fuses was installed. The fuse-box itself was connected to a
regular wall output. A cut of extension cord was attached to the fuse output.
The radiator was subsequently plugged into this, allowing the fuse to turn the
radiator on and off. The gateway for the fuse was connected to an ethernet port
in a router. It was then verified that the test program and the application could
reliably control the fuse. A trap door allowed access to the basement from a
main building that was isolated and heated to around 22 degrees centigrade.
The side walls and the floor of the basement had no isolation. This allowed
the room to cool down quickly after a test. However, this also had an effect
on the heating of the facility.

After some testing, this setupwasmoved to a storage unit in Lund that was a bit
larger and had better isolation. It was hoped that this would be a more accurate
representation of an actual house for the testing purposes. This environment
had one drawback, there was no dedicated internet in the facility. This meant,
unfortunately, that the connection to the setup was unreliable and many tests
had to be canceled as the system was unable to control the fuses. After this,
the setup was moved back to Helsingborg where it was possible to monitor,
and easier fix potential problems that could occur.

38



An Algorithm for Smarter Heating 4. Implementation

39



An Algorithm for Smarter Heating 5. Results

5 Results

The test environment, described in 4.7.2, was used to run the developed test
program ten times. The results for ”Model 2” where noted and can be pro-
cessed to allow drawing conclusions about the performance of the algorithm.

Table 5.1: Unprocessed set time and temperature values for model stored at
index 2

Trial Target time Target temperature [C°] Start temperature [C°]
1 10/05/2019 20:00:00 21 17.06
2 11/05/2019 10:40:00 21 17.75
3 11/05/2019 13:50:00 23 18.81
4 11/05/2019 18:30:00 23 20.43
5 12/05/2019 11:00:00 22 18.18
6 12/05/2019 18:30:00 23 20.37
7 13/05/2019 10:50:00 21 18.68
8 13/05/2019 13:00:00 22 19.12
9 13/05/2019 18:30:00 23 20.31
10 13/05/2019 21:30:00 23 19.31

The data in Table 5.1, excluding the outdoor temperature, was set to gather
data about the algorithms performance. The outdoor temperature was queried
from Tempiro’s server, which in turn queried an external service.

40



An Algorithm for Smarter Heating 5. Results

Table 5.2: Unprocessed calculated data for the model saved at index 2

Trial Estimated start time Actual start time Actual end time Coefficient
1 10/05/2019 16:03:36 10/05/2019 19:28:53 10/05/2019 20:37:58 3.60
2 10/05/2019 09:45:50 11/05/2019 10:10:38 11/05/2019 10:57:41 4.38
3 11/05/2019 12:52:38 11/05/2019 13:06:05 11/05/2019 14:28:10 3.85
4 11/05/2019 17:49:55 11/05/2010 17:49:55 11/05/2019 18:57:55 3.54
5 12/05/2019 09:55:20 12/05/2019 10:01:06 11/05/2019 10:57:10 3.78
6 12/05/2019 17:48:15 12/05/2019 17:56:38 12/05/2019 18:47:46 3.74
7 13/05/2019 10:12:49 13/05/2019 10:13:39 13/05/2019 10:37:43 4.49
8 13/05/2019 12:21:33 13/05/2019 12:21:33 13/05/2019 13:07:01 4.52
9 13/05/2019 17:54:19 13/05/2019 17:54:19 13/05/2019 18:47:07 4.47
10 13/05/2019 20:40:29 13/05/2019 20:48:15 13/05/2019 22:17:30 4.29

It is important to note that some tests in Table 5.1 and Table 5.2 were started
after the time that was predicted. Due to this, the heating will start and end
after the set time. During the first trial, the system has no approximated model
yet and therefore estimates one degree centigrade per hour. This gives the es-
timated duration of over 3 hours. In subsequent trials, the algorithmwill know
an approximated model for the heating.

The data that should be examined is the estimated- and the actual duration of
the heating process and also the difference between the estimated- and actual
duration. This is due to the fact that the algorithm estimates howmany degrees
centigrade per hour the facility is being heated.

Table 5.3: Estimated heating- and actual heating duration

Trial Target [C°] Estimated duration Actual duration Difference (hh:mm:ss) Difference (%)
1 21 03:56:24 01:09:05 -02:47:19 -70.78
2 21 00:54:10 00:47:03 -00:07:07 -13.14
3 23 00:57:22 01:22:05 00:24:43 43.09
4 23 00:40:05 01:08:00 00:27:55 69.64
5 22 01:04:40 00:56:04 -00:08:36 13.30
6 23 00:41:45 00:51:08 00:09:23 22.48
7 21 00:37:11 00:24:04 -00:13:07 -35.28
8 22 00:38:27 00:45:28 00:07:01 18.25
9 23 00:35:41 00:52:48 00:17:07 47.97
10 23 00:49:31 01:29:15 00:39:44 80.24

The Estimated duration was calculated as the difference of the target time and
and the estimated start time. Through this, the duration that the algorithm

41



An Algorithm for Smarter Heating 5. Results

estimated to heat up the house is calculated. The actual duration was the dif-
ference between the actual start time and the actual end time. This gives the
actual time that the heating process took, regardless when it was started. This
was done as some tests predicted an earlier time thanwhen the trial was started.
This can be seen in Table 5.1 and Table 5.2. The percentage difference was
calculated with (5.1).

Durationactual

Durationestimated
− 1 (5.1)

This gives an approximation on how exact the algorithm performed for the
time it took to heat up the test environment. Furthermore, this can be compared
to the thermal properties of the test environment to draw conclusions about the
power of the heating element in a given facility. In order to evaluate this, the
temperature was graphed over time in minutes.

0 10 20 30 40 50 60
18

18.5

19

19.5

20

20.5

21

21.5

22

22.5

23

Time [minutes]

Te
m
pe
ra
tu
re
[C
°]

Figure 5.1: Temperature over time up to 22 degrees C° from Trial 5

The temperature curve in Figure 5.1 was found to have a part (between 10
and 40 minutes) which was rather linear. However another problem that was
to be analyzed are the large spikes in error, which can be seen in Table 5.3
under the difference column, that were observed when heating to 23 degrees
centigrade. In order to analyze this, the temperature over time for heating was

42



An Algorithm for Smarter Heating 5. Results

graphed around this temperature.

0 10 20 30 40 50 60 70 80 90
19

19.5

20

20.5

21

21.5

22

22.5

23

23.5

Time [minutes]

Te
m
pe
ra
tu
re
[C
°]

Figure 5.2: Heating over time up to 23 degrees C° from Trial 10

Figure 5.2 shows the decreasing slope in the temperature, which increases the
time it takes to reach the specified temperature.

Another aspect to note is how the coefficient changes with each trial. This can
be used in order to draw conclusion about how the model can handle errors
and adjust based on new data.

43



An Algorithm for Smarter Heating 5. Results

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Trial

C
oe
ffi
ci
en
t

Figure 5.3: Coefficient average for each trial

Figure 5.3 shows how the coefficient average changes for each trial. The co-
efficient oscillates between approximately 4.5 and 3.5 in the given data.

44



An Algorithm for Smarter Heating 5. Results

45



An Algorithm for Smarter Heating 6. Discussion

6 Discussion

6.1 Evaluation of the linear model

As can be seen in Figure 5.1 and Figure 5.2, the model doesn’t quite seem lin-
ear. In the beginning of the heating process, it seems to be rapid and in the end
section of the graphs, it seems to slow down. However, in both graphs there
is a linear relation between different points of time. For example, in Figure
5.1, a linear relation can be assumed between the span of 10 and 40 minutes.

In the beginning of a heating process, the radiator will use its maximum power
to heat itself up, which is a rapid increase. When the radiator is at max ca-
pacity, a linear heating process will begin. Depending on the environment,
the heating process will slow down once the loss of energy begins to slowly
overtake the gain of energy.

The testing facility, explainedmore in dept in 4.7.2, was a basement in a house.
This space was very small, so the radiator was set to as low power as possible
to test temperature heating over time. This testing facility also lacked any iso-
lation. It only takes a short amount of time to heat up a small space. However,
due to the lack of isolation and loss of heat, the low power of the radiator made
it impossible for the temperature to reach over a certain limit.

The result is, that the heating will be quicker in the beginning while the radi-
ator is going towards maximum power. The heating will be linear while the
radiator is at its maximum power, and the heating will slow down when the
room begins to approach its temperature threshold.

In a house however, there is isolation and radiators which are set to increase
temperature as fast as possible, with maximum power. There is less loss of
heat, and if there is a loss of heat it will be however, due to the lack of isolation
and loss of heat, the low power of the radiator made it impossible for the

46



An Algorithm for Smarter Heating 6. Discussion

temperature to reach over a certain limit. temperatures than 22-23 degrees
centigrade, which seems to be the threshold of our testing facility.

6.1.1 Accuracy

The accuracy of the model was deemed acceptable as long as the apparent
temperature threshold wasn’t reached. In the tests, the temperature threshold
seemed to lie somewhere above 22 degrees centigrade. If we study Table 5.2
it can be seen, that when the target temperature was below 23 degrees centi-
grade, the percentage difference was around 15-20% too early or too late. If
we instead look at the target temperature set to 23 degrees centigrade, the
model was highly inaccurate.

The reasons behind the lack of accuracy was discussed in 6.1. However, in
a scenario where the heating process is longer and the coefficient lay around
1-2, this model should work fine with a somewhat linear behaviour.

6.2 Explaining the changes to the coefficient

It can be observed in Figure 5.3 that the coefficient oscillates between approx-
imately 4.5 and 3.5 degrees centigrade per hour. In order to explain this, Table
5.2 has to be taken into account. Firstly, the large jump in the beginning occurs
because, before the first trial is complete, the standard model of one degree
centigrade per hour will be used. The model is then setup with the first learned
coefficient. During the second trial, the new coefficient is used. According
to Table 5.2, this gave a difference of approximately 7 minutes. Therefore,
it can be argued that the model has successfully learned to estimate the time
required in order to heat to 21 degrees centigrade.

During Trial 3 and Trial 4, the facility was heated to 23 degrees centigrade.
Here it can be seen that the algorithm performs worse. Due to this, the coef-
ficient decreases in order to counteract the fact that the algorithm performed
too slow during the heating process. The facility is then heated to 23 degrees
again. The coefficient then decreases again in order to compensate for the
estimate that was not strict enough.

For the next trial when the facility is heated to 22 degrees centigrade, the esti-
mate is too generous as the algorithm has reduced the coefficient for when it
was wrong with heating to 23 degrees centigrade. Due to this, the algorithm

47



An Algorithm for Smarter Heating 6. Discussion

compensates with increasing the coefficient.

In Trial 7, the facility is heated to 21 degrees centigrade. The algorithm is quite
a bit off for this trial, percentage wise. Therefore, the algorithm raises the co-
efficient. The curve seen in Figure 5.3 represents the algorithm attempting
to compensate for a too strict or too generous estimation. If the system were
heated to the same temperature repeatedly, the algorithm would aim to get a
more exact estimation and reduce the effect of errors. Due to the properties
discussed earlier in 6.1, the estimation might not be accurate. However, in
a more accurate environment, this approach could perform better and have a
better estimation range. Perhaps if the model would have been trained for the
higher temperature from the beginning, the algorithm would have performed
better during all the tests.

From this, it was obvious that the model had some trouble adjusting to un-
trained temperatures. One possible explanation for this is the reason discussed
in 6.1 and that we operated at a range of temperatures where the linear section
of the heating curve ended. Therefore, when we attempted to heat to 23 de-
grees, we operated at a temperature range that the algorithm was not used to.
It can be inferred that the algorithm would have performed better if a radiator
with a higher output power had been used in the tests. In theory, if the rela-
tionship is linear, and the coefficient has a similar magnitude, the algorithm
should be able to adjust relatively quickly. If the algorithm has not yet learned
a model for a given temperature range, the adjustment should be done after
the facility has been heated once. The difference is that if the algorithm has al-
ready learned a model for a temperature range, new and different data will be
treated as noise. When enough new data is gathered, the average calculation
will treat the original data as noise.

6.3 Possible changes to the model

It can be observed, that in some cases, the linear model does not suffice. While
for normal use, the model should suffice, in some cases the model can be
modified to give a more accurate prediction.

6.3.1 Using a model of higher order

Due to the fact that the radiator was overwhelmed, the system is not com-
pletely linear. As this is not something that should become a problem in
a practical application, a linear approximation should suffice. However, to

48



An Algorithm for Smarter Heating 6. Discussion

counteract the symptoms shown in the given results, a second order model,
for example, could be used. If implemented, the input to the least squares
method would need to be changed, as well as the ”HeatingCoefficient” class.

The system might more accurately adjust to the properties of the test system,
and the model could instead be in the form of (6.1).

yi = m+ k1xi + k2x
2
i (6.1)

It follows that, perhaps, this model would give a benefit in the case of a build-
ing with little to no isolation and a weak radiator. In the general case of good
isolation and a powerful radiator, this should not become a problem as the
temperature would probably not reach the point where the temperature planes
out. It can be investigated how much of a practical benefit a model of higher
order would give.

Perhaps another input parameter can be used. This other parameter could be
the power of the radiators used. Through this, the amount of power that the
room is heated with is taken into account. This could help to make the model
more exact. However, this has to be further investigated.

6.3.2 Using an exponential model

It can be seen in Figure 2.1 as well as the presented results that the model can
be written in the form of:

k(1− e−
t
T ) (6.2)

Due to this, an exponential model could be introduced in order to, more ex-
actly, estimate the time taken to heat the facility. This would allow the model
to accurately predict the time it would take to heat the facility outside of the
acceptable window for a linear approximation.

6.4 Potential problems that can cause failure

There are sources of error that can cause the algorithm to fail to work properly.
One example of this is when a user installs other- or extra radiators in their
house. The algorithm will in this case predict a too long heating time as it is
trained for a lower total output effect. Given time, the model should be able
to adjust as the average will adjust. This can however also be a weakness for a

49



An Algorithm for Smarter Heating 6. Discussion

model that is trained over a large number of trials. The model would take the
same amount of training that it already has to even begin to properly adjust.
This can be seen as a very inefficient effect.

For this, a remedy can be proposed. This is that the model checks whether
a very large difference in coefficient exists when the model is updated. The
model then sets the coefficient to the new one and sets the counter for the
number of values in the average to ”1”. This effectively sets the sum to to the
new value, and returns the ”HeatingCoefficient” class to a newly initialized
state.

Alternatively, the user could be given an option to reset the stored models.
This would imply that the stored models are simply removed, causing the al-
gorithm to default to the standard one degree centigrade per hourwhen the next
heating is started. However the reset is performed, the algorithm will need to
perform a heating which will be wrong in order to estimate a newmodel to use.

Another possible error that can occur over time is due to the data types used
to represent the amount of values in the average. In very extreme cases, this
counter can overflow. The probability of this for normal use was evaluated.

According to Microsoft’s documentation for the .NET framework, an int is
represented as a signed 32 bit integer [8]. From this definition i follows that:

231 − 1

365.25 ∗ 24 ∗ 602
≈ 68.05 (6.3)

If the algorithm updates once per second, it will take approximately 68 years
in order for the counter to overflow. Therefore regarding regular use, it is very
improbable that the algorithm will overflow. It is however worth noting that
there exists a possibility for an overflow. However, in the rare case that this
does occur, the value will become negative and eventually zero. While a neg-
ative value will generate a problematic result, dividing by zero will cause the
system to become unstable or even crash depending on the implementation as
in regular arithmetic a division by zero is undefined.

The previouslymentioned problem can easily be handled using a data type that
can handle larger numbers or by handling the overflow by setting the number
of values to ”1” in time.

50



An Algorithm for Smarter Heating 6. Discussion

When the value of the counter is one, during the next run in the given im-
plementation, it will take the previous average and use this as a value for the
average calculations with the next estimated coefficients.

Given, for any reason, the determinant of the of the features matrix in the least
squares method becomes zero, the matrix does not have an inverse. Therefore
the least square method will not be performed.

When inverting a matrix, it’s determinant can not be zero. As explained in
(4.17), calculating the inverse requires division with the determinant. The
features matrix is defined as the input variables for the least squares, which
can be seen in Listing 6.1:

Listing 6.1: Example class

1 Matrix weights= (features.Transpose().Multiply(features)).
Inverse().Multiply(features.Transpose()).Multiply(
targets);

The system will throw an exception in the given implementation if this oc-
curs. This will need to be handled through either another method to perform
linear regression, such as a gradient descent analysis or by simply canceling
the update to the model and skipping this part.

6.5 Possible applications of the algorithm

Several systems can be built using this algorithm. The first is the previously
mentioned scheduling. However the algorithm can even be used to analyse
the thermal properties of a house. This is due to the fact that the algorithm es-
timates how fast the house can be heated up given a set effect. Through this,
conclusions can be drawn about how the heating in a given house should be
setup. Furthermore, this can be used to determine if the heating in the house
is above or below average.

This can also be used to collect data to perform further analysis on. This
analysis can include the estimation about how the isolation in a house is. As
this algorithm is intended for a more intelligent scheduling for the application
of heating a house, this would be the most adequate use for this algorithm.

51



An Algorithm for Smarter Heating 6. Discussion

6.6 Evaluation of energy optimisation using the algo-
rithm

One idea could be to minimize the energy consumption. As the current system
uses ON/OFF control, the radiator will always use the maximum amount of
energy possible. Therefore, to optimize the energy consumption, the time that
the radiator is turned on would need to be minimized. This is the aim of this
algorithm. When trained well, this will hopefully be achieved.

However, if one would use a different type of controller, more types of op-
timizations can be done. For example if PWM control would be used, the
radiator would only be turned on a certain time during a duty cycle to reduce
the effect. The practicality of this would however need to be examined as it
would take time for the radiator to start cooling down. This could give that
the duty cycle would need to be so long that it would not be practical to add
PWM control. If this were an option, a PI controller could be used to control
the heating.

If a PWM approach is used, the model will need to be updated to include
the equation that the controller would use. Furthermore, the wear of compo-
nents such as the relay, currently used to hold the power, must be considered.
Perhaps, in this case, a solid state switch for the fuses would first need to be
introduced.

6.7 Ethical aspects

During the project, a copy of Tempiro’s database was analyzed. This pre-
sented one problem. The database contained customer information. In order
to protect the customers privacy, the data was anonymized. All names, email-
addresses, physical addresses, user ID- and locations where removed. The
user ID was replaced with another unique number. This resulted in a anony-
mous data that could not be connected to Tempiro’s customers in any fashion,
while still retaining the relationships of the data. Through this, the privacy of
the customers was ensured.

Furthermore, in order to contact the API, an IP address was used to connect
to Tempiro’s server. It was requested that this IP address remain a secret.
Therefore this was removed from the source code in the implementation given
in Appendix A. As the access tokens used by Tempiro’s server are long-lived,
it is also not included in the source code. This will protect access to Tempiros

52



An Algorithm for Smarter Heating 6. Discussion

server and the privacy of the authors.

53



An Algorithm for Smarter Heating 7. Future work

7 Future work

7.1 Integration

As of now, the algorithm is a standalone software, running outside of Tem-
piro’s system. This software is to be integrated into Tempiro’s system and to
be written into the Temprio mobile application. If integrated, the algorithm
will be easier to use for the company’s clients and, if needed, easier to man-
age if Tempiro someday wants to change or update the algorithm.

Currently, there are two constraints as to why integration is not possible in the
scope of this project. The first is the time constraints on this project. This will
prevent from an integration into Tempiros server to be possible at this point.
Secondly, Tempiro’s server is not setup to handle the algorithm in its current
form. The manner in which their current back-end solution handles jobs will
need to be extended before an integration of the algorithm can be done.

Furthermore, as integration of the algorithm into Tempiro’s system wasn’t
possible at this time, it was decided, togetherwith Tempiro, that testing through
pilot customers also couldn’t be done in the scope of the project. This, how-
ever, can be done by Tempiro at a later stage, when integration has been im-
plemented into their current software.

7.2 Correlation

When integrated, Tempiro will be able to acquire alot of data from their users.
Tempiro can look at that data to find some correlations between different out-
side temperatures and the algorithm. Instead of doing a test run every time a
new index is triggered or a new client wants to use the algorithm, the coef-
ficient can be approximated and the service can be used immediately. This
cannot be done without data from many different situations.

54



An Algorithm for Smarter Heating 7. Future work

For instance, Tempiro notices, that overall, the coefficient between two spe-
cific vector indices, which are described in section 4.5, is approximately 15
percent. A client could have one well trained vector index, where the algo-
rithm triggers an index beside this one. For now the index must learn what
coefficient should be there. With data however, Tempiro could use the work-
ing index with the 15 percent increase or decrease. The learning algorithm
will correct the hopefully small error over time.

7.3 Using a neural network

The developed algorithm aims to tune its own coefficient in order to increase
its own accuracy to predict the time it will take to heat a facility. However, the
same result could be achieved with a neural network. The error would then
be corrected using backward propagation in order to change its weights. The
value of this approach has to be investigated. Furthermore, several extensive
changes to the test implementation and the given algorithm needs to be done
in order to allow this.

55



An Algorithm for Smarter Heating 7. Future work

56



An Algorithm for Smarter Heating 8. References

8 References

[1] A. Ghatak, Machine Learning with R, Singapore: Springer eBooks, 2017,
s. 79-113, [E-book] (Last accessed 2019-04-04)

[2] A. Chamberlain, ”The Linear Algebra View of Least-Squares Regression”,
medium.com, december 2016 [Online] Available: https://medium.com/@an
drew.chamberlain/the-linear-algebra-view-of-least-squares-regression-f67044b
7f39b (Last accessed 2019-05-19)

[3] “Standard ECMA-404,” Standard ECMA-404 The JSONData Interchange
Syntax. [Online]. Available: https://www.ecma-international.org/publication
s/standards/Ecma-404.htm. (Last accessed 2019-05-21).

[4] “JavaScriptSerializer Class (System.Web.Script.Serialization).” [Online].
Available: https://docs.microsoft.com/en-us/dotnet/api/system.web.script.ser
ialization.javascriptserializer. (Last accessed 2019-05-21).

[5] M. Barr, “Introduction to Pulse Width Modulation (PWM),” Barr Group,
01-Sep-2001. [Online]. Available: https://barrgroup.com/Embedded-System
s/How-To/PWM-Pulse-Width-Modulation. (Last accessed 2019-05-21).

[6] ”Inverse of a Matrix using Minors, Cofactors and Adjugate”, MathIs-
Fun, [Online] Available: https://www.mathsisfun.com/algebra/matrix-inver
se-minors-cofactors-adjugate.html?fbclid=IwAR2TWgb38xwC9snI98FQMa
b4LXpQw9UnNdTyt0-RjpOu6ZfFWdViI0v2cqs (Last accessed 2019-03-27)

[7] ”Wolfram|Alpha” https://www.wolframalpha.com/ [Online] (Last accessed
2019-05-19)

[8] B. Wagner, “int - C# Reference”, int (C # Reference), [Online] Avail-
able: https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/key

57

https://medium.com/@andrew.chamberlain/the-linear-algebra-view-of-least-squares-regression-f67044b7f39b
https://medium.com/@andrew.chamberlain/the-linear-algebra-view-of-least-squares-regression-f67044b7f39b
https://medium.com/@andrew.chamberlain/the-linear-algebra-view-of-least-squares-regression-f67044b7f39b
https://www.ecma-international.org/publications/standards/Ecma-404.htm
https://www.ecma-international.org/publications/standards/Ecma-404.htm
https://docs.microsoft.com/en-us/dotnet/api/system.web.script.serialization.javascriptserializer
https://docs.microsoft.com/en-us/dotnet/api/system.web.script.serialization.javascriptserializer
https://barrgroup.com/Embedded-Systems/How-To/PWM-Pulse-Width-Modulation
https://barrgroup.com/Embedded-Systems/How-To/PWM-Pulse-Width-Modulation
https://www.mathsisfun.com/algebra/matrix-inverse-minors-cofactors-adjugate.html?fbclid=IwAR2TWgb38xwC9snI98FQMab4LXpQw9UnNdTyt0-RjpOu6ZfFWdViI0v2cqs
https://www.mathsisfun.com/algebra/matrix-inverse-minors-cofactors-adjugate.html?fbclid=IwAR2TWgb38xwC9snI98FQMab4LXpQw9UnNdTyt0-RjpOu6ZfFWdViI0v2cqs
https://www.mathsisfun.com/algebra/matrix-inverse-minors-cofactors-adjugate.html?fbclid=IwAR2TWgb38xwC9snI98FQMab4LXpQw9UnNdTyt0-RjpOu6ZfFWdViI0v2cqs
https://www.wolframalpha.com/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/int
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/int


An Algorithm for Smarter Heating 8. References

words/int (Last accessed 2019-05-11).

58

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/int
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/int


An Algorithm for Smarter Heating 9. Appendix

9 Appendix

A Code

Listing 9.1: Matrix.cs

1 namespace Math
2 {
3 public class Matrix
4 {
5 private double[,] data;
6 public Matrix(double[,] init) => data = init;
7 public Matrix(int rows, int cols) => data = new

double[rows, cols];
8 public void put(int row, int col, double val)
9 {
10 data[row, col] = val;
11 }
12 public Matrix Multiply(Matrix other)
13 {
14 if (data.GetLength(1) == other.data.GetLength

(0))
15 {
16 double[,] c = new double[data.GetLength(0),

other.data.GetLength(1)];
17 for (int i = 0; i < c.GetLength(0); i++)
18 {
19 for (int j = 0; j < c.GetLength(1); j

++)
20 {
21 c[i, j] = 0;
22 for (int k = 0; k < data.GetLength

(1); k++) // OR k<b.GetLength
(0)

23 c[i, j] = c[i, j] + data[i, k]
* other.data[k, j];

24 }
25 }
26 return new Matrix(c);
27 }

59



An Algorithm for Smarter Heating 9. Appendix

28 throw new MatrixDimensionException("Unable to
multiply two Matrixes where the collumn
count of first non equal to row count of
second");

29 }
30 public Matrix Transpose()
31 {
32 double[,] new_matrix = new double[data.

GetLength(1), data.GetLength(0)];
33
34 for (int i = 0; i < data.GetLength(0); ++i)
35 {
36 for (int j = 0; j < data.GetLength(1); ++j)
37 {
38 new_matrix[j, i] = data[i, j];
39 }
40 }
41 return new Matrix(new_matrix);
42 }
43 public override string ToString()
44 {
45 string return_str = "";
46 for (int i = 0; i < data.GetLength(0); ++i)
47 {
48 for (int j = 0; j < data.GetLength(1); ++j)
49 {
50 return_str += data[i, j];
51 return_str += " ";
52 }
53 return_str += '\n';
54 }
55 return return_str;
56 }
57 private double Determinant()
58 {
59 return DeterminantRekur(data);
60 }
61 private double DeterminantRekur(double[,] values)
62 {
63 if (values.GetLength(0) == values.GetLength(1))
64 {
65 if (values.GetLength(0) == 1)
66 {
67 return values[0, 0];
68 }
69 double det = 0;
70 if (values.GetLength(0) == 2)
71 {
72 return (values[0, 0] * values[1, 1]) -

(values[0, 1] * values[1, 0]);

60



An Algorithm for Smarter Heating 9. Appendix

73 }
74 for (int i = 0; i < values.GetLength(0); ++

i)
75 {
76 if (i % 2 == 0)
77 {
78 det += values[0, i] *

DeterminantRekur(Decompose(
values, 0, i));

79 }
80 else
81 {
82 det -= values[0, i] *

DeterminantRekur(Decompose(
values, 0, i));

83 }
84 }
85 return det;
86 }
87 throw new MatrixDimensionException("Unable to

find Determimant for non-square Matrix");
88 }
89 private double[,] Decompose(double[,] values, int

row, int col)
90 {
91 double[,] new_dat1 = new double[values.

GetLength(0) - 1, values.GetLength(1)];
92 double[,] new_dat = new double[values.GetLength

(0) - 1, values.GetLength(1) - 1];
93
94 //remove row
95 int rowindex = 0;
96 int newrowindex = 0;
97 while (rowindex < values.GetLength(0) &&

newrowindex < new_dat1.GetLength(0))
98 {
99 if (rowindex == row)
100 if (++rowindex == values.GetLength(0))
101 break;
102 for (int i = 0; i < values.GetLength(1); ++

i)
103 new_dat1[newrowindex , i] = values[

rowindex , i];
104 ++rowindex;
105 ++newrowindex;
106 }
107 //remove col
108 int colindex = 0;
109 int newcolindex = 0;
110 while (colindex < new_dat1.GetLength(1) &&

61



An Algorithm for Smarter Heating 9. Appendix

newcolindex < new_dat.GetLength(1))
111 {
112 if (colindex == col)
113 if (++colindex == new_dat1.GetLength(1)

)
114 break;
115 for (int i = 0; i < new_dat1.GetLength(0);

++i)
116 {
117 new_dat[i, newcolindex] = new_dat1[i,

colindex];
118 }
119 ++colindex;
120 ++newcolindex;
121 }
122 return new_dat;
123 }
124 private Matrix Minors()
125 {
126 double[,] minors = new double[data.GetLength(0)

, data.GetLength(1)];
127 for (int row = 0; row < data.GetLength(0); ++

row)
128 for (int col = 0; col < data.GetLength(1);

++col)
129 {
130 minors[row, col] = DeterminantRekur(

Decompose(data, row, col));
131 }
132 return new Matrix(minors);
133 }
134 private Matrix Cofactors()
135 {
136 double[,] cofactors = Minors().data;
137 for (int row = 0; row < data.GetLength(0); ++

row)
138 {
139 for (int col = 0; col < data.GetLength(1);

++col)
140 {
141 //Om raden är udda OCH kolonnen är jämn

ELLER om raden är jämn OCH
kolonnen är udda

142 if ((row % 2 != 0 && col % 2 == 0) ||
((row % 2 == 0 && col % 2 != 0)))

143 {
144 cofactors[row, col] = -cofactors[

row, col];
145 }
146 }

62



An Algorithm for Smarter Heating 9. Appendix

147 }
148 return new Matrix(cofactors);
149 }
150 private Matrix Adjugate()
151 {
152 return Cofactors().Transpose();
153 }
154 public Matrix Inverse()
155 {
156 if (data.GetLength(0) == data.GetLength(1))
157 {
158 if (Determinant() != 0)
159 {
160 if (data.GetLength(0) == 2)
161 {
162 return easyInverse();
163 }
164 if (data.GetLength(0) == 1)
165 {
166 double[,] Res = new double[1, 1];
167 Res[0, 0] = 1 / data[0, 0];
168 return new Matrix(Res);
169 }
170 else
171 {
172 double[,] inverse = new double[data

.GetLength(0), data.GetLength
(1)];

173 double coeff = 1 / Determinant();
174 double[,] adjugate = Adjugate().

data;
175
176 for (int row = 0; row < data.

GetLength(0); ++row)
177 for (int col = 0; col < data.

GetLength(1); ++col)
178 inverse[row, col] = coeff *

adjugate[row, col];
179 return new Matrix(inverse);
180 }
181 }
182 throw new MatrixLogicException("The

Determinant of the Matrix was 0, it is
not invertible");

183 }
184 throw new MatrixDimensionException("No inverse

for a non-sqaure Matrix");
185 }
186 public double get(int row, int col)
187 {

63



An Algorithm for Smarter Heating 9. Appendix

188 if (row < data.GetLength(0) && col < data.
GetLength(1))

189 return data[row, col];
190 throw new MatrixDimensionException("The indexes

you wanted where out of bounds");
191 }
192 private Matrix easyInverse()
193 {
194 double a1 = data[0, 0];
195 double a2 = data[0, 1];
196 double b1 = data[1, 0];
197 double b2 = data[1, 1];
198
199 double denominator = a1 * b2 - b1 * a2;
200 double coefficient = 1 / denominator;
201
202 double[,] temp = new double[2, 2];
203 temp[0, 0] = b2 * coefficient;
204 temp[1, 1] = a1 * coefficient;
205 temp[1, 0] = -b1 * coefficient;
206 temp[0, 1] = -a2 * coefficient;
207
208 return new Matrix(temp);
209 }
210
211 public Matrix Add(Matrix other)
212 {
213 if ((data.GetLength(0) == other.data.GetLength

(0) && (data.GetLength(1) == other.data.
GetLength(1))))

214 {
215 double[,] result = new double[data.

GetLength(0), data.GetLength(1)];
216 for (int i = 0; i < data.GetLength(0); ++i)
217 {
218 for (int j = 0; j < data.GetLength(1);

++j)
219 {
220 result[i, j] = data[i, j] + other.

data[i, j];
221 }
222 }
223 return new Matrix(result);
224 }
225 throw new MatrixDimensionException("Unable to

add two matrixes of different sizes");
226 }
227 public Matrix Subtract(Matrix other)
228 {
229 if ((data.GetLength(0) == other.data.GetLength

64



An Algorithm for Smarter Heating 9. Appendix

(0) && (data.GetLength(1) == other.data.
GetLength(1))))

230 {
231 double[,] result = new double[data.

GetLength(0), data.GetLength(1)];
232 for (int i = 0; i < data.GetLength(0); ++i)
233 {
234 for (int j = 0; j < data.GetLength(1);

++j)
235 {
236 result[i, j] = data[i, j] - other.

data[i, j];
237 }
238 }
239 return new Matrix(result);
240 }
241 throw new MatrixDimensionException("Unable to

add two matrixes of different sizes");
242 }
243 public Matrix SquareAllSeparate()
244 {
245 double[,] result = new double[data.GetLength(0)

, data.GetLength(1)];
246 for (int i = 0; i < data.GetLength(0); ++i)
247 {
248 for (int j = 0; j < data.GetLength(1); ++j)
249 {
250 result[i, j] = data[i, j] * data[i, j];
251 }
252 }
253 return new Matrix(result);
254 }
255
256 public Matrix Multiply(double d)
257 {
258 double[,] result = new double[data.GetLength(0)

, data.GetLength(1)];
259 for (int i = 0; i < data.GetLength(0); ++i)
260 {
261 for (int j = 0; j < data.GetLength(1); ++j)
262 {
263 result[i, j] = d * data[i, j];
264 }
265 }
266 return new Matrix(result);
267 }
268 public int numberRows()
269 {
270 return data.GetLength(0);
271 }

65



An Algorithm for Smarter Heating 9. Appendix

272 public int numberCols()
273 {
274 return data.GetLength(1);
275 }
276 }
277 }

66



An Algorithm for Smarter Heating 9. Appendix

Listing 9.2: Table.cs

1 namespace Math
2 {
3 public class Table
4 {
5 private string [] lables;
6 private double [,] data;
7 public Table(int rows, int cols)
8 {
9 this.lables = new string[cols];
10 for(int i =0; i<cols; ++i)
11 {
12 lables[i] = i+"";
13 }
14
15 this.data = new double [rows,cols];
16 }
17 public void setLable(int col, string value)
18 {
19 if(col<lables.GetLength(0)&&col>=0)
20 {
21 lables[col] = value;
22 }
23 else
24 {
25 throw new TableException("Unable to set the

Lable of Collumn: " + col + " It does
not exist");

26 }
27 }
28 public int LableIndex(string Lable)
29 {
30 for(int i = 0; i<lables.GetLength(0); ++i)
31 {
32 if(lables[i].ToLower().Equals(Lable.ToLower

()))
33 {
34 return i;
35 }
36 }
37 throw new TableException("The lable: " + Lable

+ " does not exits");
38 }
39 public double get (string colLable, int rowNumb)
40 {
41 return get(rowNumb, LableIndex(colLable));
42 }
43 public double get(int row, int col)
44 {

67



An Algorithm for Smarter Heating 9. Appendix

45 if(row<data.GetLength(0)&&col<data.GetLength(1)
&&row>=0&&col>=0)

46 {
47 return data[row,col];
48 }
49 throw new TableException("Attempting to get

data outside of table size");
50 }
51 public int numberRows()
52 {
53 return data.GetLength(0);
54 }
55 public int numberCols()
56 {
57 return data.GetLength( 1);
58 }
59
60
61 public void put(int row, int col, double val)
62 {
63
64 if(row<data.GetLength(0)&&col<data.GetLength(1)

&&row>=0&&col>=0)
65 {
66 data[row,col]= val;
67 }
68 else
69 {
70 throw new TableException("Attempting to put

data outside of table size, row, col
was " + row + " , " + col);

71 }
72 }
73 public void put(string lable, int row, double val)
74 {
75 put(row,LableIndex(lable), val);
76 }
77 public override string ToString()
78 {
79 string result = "";
80 for(int i = 0;i<lables.GetLength(0); ++i)
81 {
82 result += lables[i] + " | ";
83 }
84 result += "\n";
85
86 for(int i =0; i<data.GetLength(0); ++i)
87 {
88 for(int j =0; j <data.GetLength(1); ++j)
89 {

68



An Algorithm for Smarter Heating 9. Appendix

90 result += data[i,j] + " | ";
91 }
92 result+="\n";
93 }
94 return result;
95 }
96 public void AddRow(double[] vals)
97 {
98 if(numberCols()==vals.GetLength(0))
99 {
100 double[,] NewData = new double[numberRows()

+1,numberCols()];
101 for(int i = 0; i<numberRows(); ++i)
102 {
103 for(int j = 0; j<numberCols(); ++j)
104 {
105 NewData[i, j] = data[i, j];
106 }
107 }
108 for (int j = 0; j < numberCols(); ++j)
109 {
110 NewData[numberRows(), j] = vals[j];
111 }
112 data = NewData;
113 return;
114 }
115 throw new TableException("Row to add has

different amount of collumns");
116 }
117 public Table connectTables( Table second, string

col) {
118 int nbrCols = numberCols() + second.numberCols

() - 1;
119 int nbrRows = numberRows();
120 Table temp = new Table(nbrRows, nbrCols);
121 temp.setLable(0, col);
122
123 //Namnge kolonnerna
124 for(int i = 0; i <numberCols(); i++) {
125 if(!lables[i].Equals(col)) {
126 temp.setLable(i, lables[i]);
127 }
128 }
129
130 int Track = numberCols();
131 for(int i = 0; i < second.numberCols(); i++) {
132 if(!second.lables[i].Equals(col)) {
133 temp.setLable(Track, second.lables[i]);
134 ++Track;

69



An Algorithm for Smarter Heating 9. Appendix

135 }
136 }
137
138 //Fyll raderna
139 for(int i = 0; i < temp.numberRows() ; i++) {
140 for(int k = 0; k < temp.numberCols(); k++)

{
141 int labelIndex = -1;
142 bool firstFlag = false;
143 bool secondFlag = false;
144 for(int j = 0; j < numberCols(); j++) {
145 if(lables[j].Equals(temp.lables[k])

) {
146 firstFlag = true;
147 labelIndex = j;
148 }
149 }
150 if(firstFlag) {
151 temp.put(i, k, get(i, labelIndex));
152 } else {
153 for(int j = 0; j < second.

numberCols(); j++) {
154 if(second.lables[j].Equals(temp

.lables[k])) {
155 secondFlag = true;
156 labelIndex = j;
157 }
158 }
159 if(secondFlag) {
160 temp.put(i, k, second.get(i,

labelIndex));
161 }
162 }
163 }
164 }
165 return temp;
166 }
167 }
168 }

70



An Algorithm for Smarter Heating 9. Appendix

Listing 9.3: MultiVariableLinnearRegression.cs

1 namespace Math
2 {
3 namespace LinnearRegression
4 {
5 public class MultiVariableLinnearRegression
6 {
7 private static Matrix hypothesis(Matrix Weights

, Matrix features)
8 {
9 /**
10 weights - 1 collumn andx x rows for the

weights
11 features - 1 row per measurement , 1 col per

feasture
12 retrurn - 1 col and 1 row per prediction
13 */
14 return features.Multiply(Weights);
15 }
16 private static double cost(Matrix features,

Matrix Weights, Matrix targets)
17 {
18 /**
19 weights - 1 collumn andx x rows for the

weights
20 features - 1 row per measurement , 1 col per

feasture
21 target = 1 col, 1 row per target
22 */
23 double n = targets.numberRows();
24
25 Matrix predictions = hypothesis(Weights,

features);
26
27 Matrix A = (predictions.Subtract(targets));
28 Matrix SquareError = A.SquareAllSeparate();
29
30 double sum = 0;
31 for (int i = 0; i < SquareError.numberRows

(); ++i)
32 {
33 sum += SquareError.get(i, 0);
34 }
35
36 return (1.0 / (2 * n)) * sum;
37 }
38 public static Model LeastSquare(Table data, int

nbrFeatures)
39 {
40 Matrix features = new Matrix(data.

71



An Algorithm for Smarter Heating 9. Appendix

numberRows(), nbrFeatures + 1);
41 Matrix targets = new Matrix(data.numberRows

(), 1);
42 for (int i = 0; i < data.numberRows(); ++i)
43 {
44 targets.put(i, 0, data.get("Y", i));
45 for (int j = 0; j < nbrFeatures; ++j)
46 {
47 features.put(i, j, data.get("

Feature" + j, i));
48 }
49 features.put(i, nbrFeatures , 1);
50
51 }
52 //System.Console.WriteLine(features.

ToString());
53 //System.Console.WriteLine(targets.ToString

());
54 Matrix output = new Matrix(nbrFeatures , 1);
55 Matrix weights = (features.Transpose().

Multiply(features)).Inverse().Multiply(
features.Transpose()).Multiply(targets)
;

56 for (int i = 0; i < nbrFeatures; ++i)
57 {
58 output.put(i, 0, weights.get(i, 0));
59 }
60 double bias = weights.get(nbrFeatures , 0);
61 return new Model(new Functions.

MultiVariableFirstOrderPolinomial(
output, bias), cost(features, weights,
targets));

62 }
63 }
64 }
65 }

72



An Algorithm for Smarter Heating 9. Appendix

Listing 9.4: Model.cs

1 using Math.Functions;
2 using System;
3 namespace Math
4 {
5 public class Model
6 {
7 private MultiVariableFirstOrderPolinomial Function;
8 private double Cost;
9
10 public Model(MultiVariableFirstOrderPolinomial func

, double Cost)
11 {
12 this.Function = func;
13 this.Cost = Cost;
14 }
15
16 public double predict(Matrix values)
17 {
18 return Function.solve(values);
19 }
20 public override string ToString()
21 {
22 return Function.ToString() + " Cost: " + Cost;
23 }
24 public MultiVariableFirstOrderPolinomial

GetFunction()
25 {
26 return Function;
27 }
28 }
29 }

73



An Algorithm for Smarter Heating 9. Appendix

Listing 9.5: Function.cs

1 namespace Math
2 {
3 namespace Functions
4 {
5
6 public class MultiVariableFirstOrderPolinomial
7 {
8 Matrix Coeff;
9 double Bias;
10 public MultiVariableFirstOrderPolinomial(Matrix

coeff, double bias)
11 {
12 this.Bias = bias;
13 this.Coeff = coeff;
14 }
15 public override string ToString()
16 {
17 string result = "y=";
18 for(int i =0; i<Coeff.numberRows(); ++i)
19 {
20 result += (Coeff.get(i,0) + "x" + i + "

+");
21 }
22 result +=Bias;
23 return result;
24 }
25 public double solve(Matrix values)
26 {
27 return values.Multiply(Coeff).get(0,0) +

Bias ;
28 }
29 public Matrix GetCoeff()
30 {
31 return Coeff;
32 }
33 }
34 }
35 }

74



An Algorithm for Smarter Heating 9. Appendix

Listing 9.6: Api.cs

1 using Math;
2 using System;
3 using System.Net;
4 using System.IO;
5 using System.Collections.Generic;
6 using System.Web.Script.Serialization;
7
8 public class APIConnector
9 {
10 string AuthToken;
11 static string BaseUrl = @"URL";
12 static string DevLink = "/api/Devices";
13 static string ValLink = "/api/Values";
14 static string DevconfLink = "/api/DeviceConfigurations"

;
15 static string switchLink = "/api/Switch";
16 static string WeatherLink = "/api/Weathers";
17
18 public APIConnector(String AuthToken)
19 {
20 this.AuthToken = AuthToken;
21 }
22
23 private string SendGET(string url)
24 {
25 HttpWebRequest request = (HttpWebRequest)WebRequest

.Create(url);
26 request.Method = "GET";
27 request.ContentType = "application/json";
28 request.Headers.Add("Authorization","Bearer " +

AuthToken);
29 request.AutomaticDecompression =

DecompressionMethods.GZip |
DecompressionMethods.Deflate;

30 using(HttpWebResponse response = (HttpWebResponse)
request.GetResponse())

31 using(Stream stream = response.
GetResponseStream())

32 using(StreamReader reader = new
StreamReader(stream))

33 {
34 return reader.ReadToEnd();
35 }
36 }
37 public List<Device> ParentDevices()
38 {
39 string Devices = SendGET(BaseUrl + DevLink);
40 List<Device> parents = new JavaScriptSerializer().

Deserialize <List<Device >>(Devices);

75



An Algorithm for Smarter Heating 9. Appendix

41 return parents;
42 }
43 public Device SingleMasterDevice(string parentID)
44 {
45 string Devices = SendGET(BaseUrl + DevLink+"/"+

parentID);
46 Device Master = new JavaScriptSerializer().

Deserialize <Device >(Devices);
47 return Master;
48 }
49 public List<ValueEntry > Values(string DeviceID ,

DateTime StartDate , DateTime EndDate )
50 {
51 List<ValueEntry > result = new List<ValueEntry >();
52 DateTime current = StartDate;
53 while (current <=EndDate)
54 {
55 string vals = SendGET(BaseUrl + ValLink + "/" +

DeviceID + "/" +current.Year+"-"+current.
Month+"-"+current.Day);

56 List<ValueEntry > Values = new
JavaScriptSerializer().Deserialize <List<
ValueEntry >>(vals);

57 foreach(ValueEntry VE in Values)
58 {
59 if ((VE.stamp.CompareTo(StartDate) >0 || VE

.stamp.CompareTo(StartDate)==0) && (VE.
stamp.CompareTo(EndDate) < 0 || VE.
stamp.CompareTo(EndDate)==0))

60 {
61 result.Add(VE);
62 }
63 }
64 current = current.AddDays(1);
65 }
66 return result;
67 }
68 private void SendPut(ValueUpdate VU , string url)
69 {
70 var httpWebRequest = (HttpWebRequest)WebRequest.

Create(url);
71 httpWebRequest.ContentType = "application/json";
72 httpWebRequest.Method = "PUT";
73 httpWebRequest.Headers.Add("Authorization", "Bearer

" + AuthToken);
74
75 using (var streamWriter = new StreamWriter(

httpWebRequest.GetRequestStream()))
76 {
77 string json = new JavaScriptSerializer().

76



An Algorithm for Smarter Heating 9. Appendix

Serialize(VU);
78 streamWriter.Write(json);
79 streamWriter.Flush();
80 streamWriter.Close();
81 }
82 var httpResponse = (HttpWebResponse)httpWebRequest.

GetResponse();
83 using (var streamReader = new StreamReader(

httpResponse.GetResponseStream()))
84 {
85 var result = streamReader.ReadToEnd();
86 }
87 }
88 public void UpdateTargetTemp(Device d, double

TargetTemp)
89 {
90 ValueUpdate VU = new ValueUpdate();
91 VU.Id = d.Id;
92 VU.Value = TargetTemp;
93
94 SendPut(VU, BaseUrl + DevconfLink + "/" + VU.Id);
95 }
96 public void UpdateSwitches(List<Device> switches , bool

onState)
97 {
98 foreach(Device d in switches)
99 {
100 ValueUpdate VU = new ValueUpdate();
101 VU.Id = d.Id;
102 VU.Value = onState ? 1 : 0;
103 SendPut(VU, BaseUrl+switchLink+"/"+d.Id);
104 }
105 }
106 public double OutsideTemp()
107 {
108 string weather = SendGET(BaseUrl + WeatherLink);
109 return new JavaScriptSerializer().Deserialize <

Weather >(weather).Temperature;
110 }
111 }
112
113 public class ValueUpdate
114 {
115 public string Id { get; set; }
116 public double Value { get; set; }
117 }
118 public class Device
119 {
120 public string Id { get; set; }

77



An Algorithm for Smarter Heating 9. Appendix

121 public string Name { get; set; }
122 public string parentID { get; set; }
123 public List<Device> Children { get; set; }
124 public double Value { get; set; }
125 }
126 public class ValueEntry
127 {
128 public DateTime stamp { get; set; }
129 public double Value { get; set; }
130 }
131 public class Weather
132 {
133 public double Temperature { get; set; }
134 }

78



An Algorithm for Smarter Heating 9. Appendix

Listing 9.7: Program.cs

1 using System.Collections.Concurrent;
2 using Math;
3 using Math.Functions;
4 using Math.LinnearRegression;
5 using System;
6 using System.Collections.Generic;
7
8 namespace Tempiro
9 {
10 class Program
11 {
12 static void Main(string[] args)
13 {
14 //setup
15 APIConnector Conn = new APIConnector("Access

Token");
16 Console.WriteLine("Coose a device (0-x)");
17 Console.WriteLine(Conn.ParentDevices().ToString

());
18 foreach (Device D in Conn.ParentDevices())
19 {
20 Console.WriteLine(D.Name);
21 }
22 int choice = Int32.Parse(Console.ReadLine());
23 Device device = Conn.ParentDevices()[choice];
24 Console.WriteLine(device.Name + " Selected");
25
26 //setting up the agent for handling the model
27 HeatingAgent agent = new HeatingAgent(Conn,

device);
28
29 //beginning the loop for the user to schedule

the testing temperature
30 while (true)
31 {
32 int Year = 0;
33 int Month = 0;
34 int Day = 0;
35 int Hour = 0;
36 int Minute = 0;
37 int TargetTemp = 0;
38 DateTime Target = DateTime.Now;
39
40 Boolean setupDone = false;
41 while (!setupDone)
42 {
43 try
44 {

79



An Algorithm for Smarter Heating 9. Appendix

45 //getting user parameters
46 Console.WriteLine("Year when it

should be warm");
47 Year = Int32.Parse(Console.ReadLine

());
48 Console.WriteLine("Month when it

should be warm");
49 Month = Int32.Parse(Console.

ReadLine());
50 Console.WriteLine("Day when it

should be warm");
51 Day = Int32.Parse(Console.ReadLine

());
52 Console.WriteLine("Hour when it

should be warm");
53 Hour = Int32.Parse(Console.ReadLine

());
54 Console.WriteLine("Minute when it

should be warm(This should be
an even multiple of 10)");

55 Minute = Int32.Parse(Console.
ReadLine());

56 Console.WriteLine("How Warmn should
it be");

57 TargetTemp = Int32.Parse(Console.
ReadLine());

58
59 Target = new DateTime(Year, Month,

Day, Hour, Minute, 0);
60 setupDone = true;
61 }
62 catch (Exception e)
63 {
64 Console.WriteLine(e.Message);
65 Console.WriteLine("Please try again

");
66 }
67 }
68 //setting up the different timers using the

models predicition
69 double StartingTemp = Conn.

SingleMasterDevice(device.Id).Value;
70 Console.WriteLine("Current inner

Temperature is: " + StartingTemp);
71 double OuterTemp = Conn.OutsideTemp();
72 Console.WriteLine("Current outer

Temperature is: " + OuterTemp);
73
74 DateTime prediction = agent.Predict(Target,

TargetTemp , StartingTemp , OuterTemp);
75 Console.WriteLine("Predicting to start

80



An Algorithm for Smarter Heating 9. Appendix

heating: " + prediction.ToString());
76 Console.WriteLine("Now is: " + DateTime.Now

);
77 Console.WriteLine("Using Model: " + agent.

DictIndex(OuterTemp));
78 //waiting to start heating
79 Console.WriteLine("Waiting for predicted

Moment");
80 while (prediction.CompareTo(DateTime.Now)

>0)
81 {
82 System.Threading.Thread.Sleep(60000);
83 StartingTemp = Conn.SingleMasterDevice(

device.Id).Value;
84 Console.WriteLine("Current Temperature

is: " + StartingTemp);
85 OuterTemp = Conn.OutsideTemp();
86 Console.WriteLine("Current outer

Temperature is: " + OuterTemp);
87 Console.WriteLine("Using Model: " +

agent.DictIndex(OuterTemp));
88 prediction = agent.Predict(Target,

TargetTemp , StartingTemp ,OuterTemp)
;

89 Console.WriteLine("New predicting to
start heating: " + prediction.
ToString());

90 }
91 Console.WriteLine("Starting heating");
92 //StartHeating
93 Conn.UpdateSwitches(device.Children , true);
94 Console.WriteLine("Triggered Switches");
95 Conn.UpdateTargetTemp(device, TargetTemp +

1);
96 Console.WriteLine("Setup Server Target");
97
98 DateTime Start = DateTime.Now;
99 Console.WriteLine("Waiting for Target

Temperature");
100 //Waititng for it to be warm
101 double currentTemp = StartingTemp;
102 while ( currentTemp < TargetTemp)
103 {
104 currentTemp = Conn.SingleMasterDevice(

device.Id).Value;
105 Console.WriteLine("Current Tempertaure:

" + currentTemp);
106 System.Threading.Thread.Sleep(60000);
107 }
108 Console.WriteLine("Stopping Heating");
109 //Stopping the heating

81



An Algorithm for Smarter Heating 9. Appendix

110 Conn.UpdateSwitches(device.Children , false)
;

111 Conn.UpdateTargetTemp(device, 0);
112 DateTime End = DateTime.Now;
113 Console.WriteLine("Procces Finished: " +

End.ToString());
114
115 //telling the agen to update the model
116 agent.UpdateModel(Start, End, OuterTemp);
117 Console.WriteLine("New Model: " + agent.

ToString(OuterTemp));
118 Console.WriteLine("Model saved under: " +

agent.DictIndex(OuterTemp));
119 Console.ReadKey();
120 }
121 }
122 }
123
124 class HeatingAgent
125 {
126 Dictionary <int, HeatingCoefficient > Coeffs;
127 APIConnector Conn;
128 Device Parent;
129
130 public HeatingAgent(APIConnector connector ,Device

Parent)
131 {
132 Coeffs = new Dictionary <int, HeatingCoefficient

>();
133 Conn = connector;
134 this.Parent = Parent;
135 }
136 public DateTime Predict(DateTime Target, double

TargetTemp , double StartingTemp , double
OuterTemp)

137 {
138 if(Coeffs.ContainsKey(DictIndex(OuterTemp)))
139 {
140 //calculate backwards
141 return Target.Subtract(TimeSpan.FromHours(

Coeffs[DictIndex(OuterTemp)].
SolveForTime(StartingTemp , TargetTemp))
);

142 }
143 else
144 {
145 //divided by one is implied as 1 C/h
146 return Target.Subtract(TimeSpan.FromHours(

TargetTemp - StartingTemp));
147 }

82



An Algorithm for Smarter Heating 9. Appendix

148
149 }
150 public void UpdateModel(DateTime StartTime ,

DateTime EndTime, double OuterTemp)
151 {
152 List<ValueEntry > Temps = Conn. Values(Parent.Id

, StartTime , EndTime);
153 Table TempTable = new Table(0, 2);
154 TempTable.setLable(0, "Date"); TempTable.

setLable(1, "Temp");
155 double j = 0;
156 foreach (ValueEntry VE in Temps)
157 {
158 double[] NewRow = new double[2];
159 NewRow[0] = j; NewRow[1] = VE.Value;
160 TempTable.AddRow(NewRow);
161 j += 1.0/6.0;
162 }
163
164 Console.WriteLine("Data that will be used for

Least Square: ");
165 Console.WriteLine(TempTable.ToString());
166
167 //Setting up table meta data for the linnear

regression
168 int ycol = TempTable.LableIndex("Temp");
169 int x0col = TempTable.LableIndex("Date");
170
171 TempTable.setLable(ycol, "y");
172 TempTable.setLable(x0col, "feature0");
173 if (Coeffs.ContainsKey(DictIndex(OuterTemp)))
174 {
175 //Updating the stored model in the interval
176 Coeffs[DictIndex(OuterTemp)].update(

MultiVariableLinnearRegression.
LeastSquare(TempTable , 1));

177 }
178 else
179 {
180 //adding a nerw model for the interval
181 Coeffs.Add(DictIndex(OuterTemp), new

HeatingCoefficient(
MultiVariableLinnearRegression.
LeastSquare(TempTable , 1)));

182 }
183 }
184 public string ToString(double OuterTemp)
185 {
186 return "Model Saved at: " + DictIndex(OuterTemp

) + "is: " + Coeffs[DictIndex(OuterTemp)].

83



An Algorithm for Smarter Heating 9. Appendix

ToString();
187 }
188 public int DictIndex(double OuterTemp)
189 {
190 int DictIndex = (int)System.Math.Round(

OuterTemp);
191 if (OuterTemp < 0)
192 {
193 DictIndex -= 5;
194 }
195 return DictIndex /= 5;
196 }
197
198 }
199
200 class HeatingCoefficient
201 {
202 double coeff;
203 int nbrVals;
204 public HeatingCoefficient(Model data)
205 {
206 coeff = data.GetFunction().GetCoeff().get(0, 0)

;
207 this.nbrVals = 1;
208 }
209 public void update(Model data)
210 {
211 double new_coeff = data.GetFunction().GetCoeff

().get(0, 0);
212 coeff = ((coeff * nbrVals) + new_coeff) / (

nbrVals + 1);
213 ++nbrVals;
214 }
215 public double SolveForTime(double StartTemp ,

double TargetTemp)
216 {
217 // Y=AX+B
218 // (Y-B)/A = X
219 return (TargetTemp - StartTemp) / coeff;
220
221 }
222 public override string ToString()
223 {
224 return "Coefficient is: " + coeff + " Number

Values is: " + nbrVals;
225 }
226 }
227 }

84



An Algorithm for Smarter Heating 9. Appendix

B Tempiro API documentation

85



An Algorithm for Smarter Heating 9. Appendix

86



An Algorithm for Smarter Heating 9. Appendix

Figure 9.1: Device Documentation

87



An Algorithm for Smarter Heating 9. Appendix

Figure 9.2: Value Documentation

88



An Algorithm for Smarter Heating 9. Appendix

Figure 9.3: Switch Documentation

Figure 9.4: Weather Documentation

89


	Introduction
	Background
	Current Status
	Purpose
	Goals
	Research Questions
	Main Questions
	Secondary Questions

	Motivation
	Delimitations

	Theory
	Linear regression
	Hypothesis function
	Cost function
	Linear regression through least squares

	API
	JSON data format

	Controllers
	ON/OFF
	PWM based
	Theoretical example



	Method
	Database analysis
	Algorithm development
	Testing
	Source criticism

	Implementation
	Deciding on a model
	Implementing least squares
	Matrix operations
	Transpose
	Inverse
	Step 1: Create a matrix of minors
	Step 2: Create a matrix of cofactors
	Step 3: Find the matrix adjoint
	Step 4: Find the determinant of the original matrix
	Result

	Matrix multiplication
	Least squares
	Structuring Tables
	Implementation


	Updating the model
	Handling different outdoor temperatures
	Putting the algorithm together
	Testing
	Test program
	Contacting the API
	Test Environment


	Results
	Discussion
	Evaluation of the linear model
	Accuracy

	Explaining the changes to the coefficient
	Possible changes to the model
	Using a model of higher order
	Using an exponential model

	Potential problems that can cause failure
	Possible applications of the algorithm
	Evaluation of energy optimisation using the algorithm
	Ethical aspects

	Future work
	Integration
	Correlation
	Using a neural network

	References
	Appendix
	Code
	Tempiro API documentation


