

Department of Automatic Control

Gaussian processes for online system
identification and control of a quadrotor

Sverre Knutsen

MSc Thesis
TFRT-6085
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2019 by Sverre Knutsen. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2019

Abstract

The aim of this master thesis was to develop adaptive control for a quadro-
tor using Gaussian process regression (GP). Online regression with GPs can
provide many benefits as it is a flexible non-linear regression model that can
provide uncertainty measures of the estimate. However, online GP regression
may also gives rise to problems. Because of the high numerical complex-
ity of GPs, sparse approximations are necessary. To this end, the algorithm
Sparse Online Gaussian Processes (SOGP) was used. Adaptive control, how-
ever, requires the ability to estimate time-varying functions which SOGP
does not provide any obvious solution to. To provide time-varying estima-
tions, a Kalman filter interpretation of the update equations in SOGP was
used. This addition to the classical SOGP algorithm provided good adap-
tion to non-stationary disturbances at the same time as it was lowering the
numerical complexity compared to previously proposed algorithms for non-
stationary regression with SOGP. Further, the developed time-varying SOGP
regression can provide valuable estimates even under the lack of persistence
of excitation, which can be a great advantage in adaptive control. The SOGP
algorithm was applied to estimate a model error between a nominal model
of the quadrotor and the observed dynamics. The estimated model error
could then be used in model-based controllers to improve performance under
uncertainties in the dynamics. Two strategies were tested: Model Reference
Control and Model Predictive Control. Through these two control strate-
gies, modeled uncertainties in the form of flap- and drag-induced effects, as
well as parametric uncertainties, could be estimated online for better flight
control. The performance of the proposed controllers was showed through
simulations. Even if it was the aim of the thesis no real-time experiments
were performed due to lack of time.

3

Acknowledgements

I want to thank my supervisor Marcus Greiff for enthusiastic encouragements
and valuable advises, without whom this thesis would have been hard to
finish. The engagement from his side has exceeded all expectations. During
the course of the writing process, he has also provided very help-full advises
that have improved the report substantially. I would also like to express
gratitude to my main supervisor Anders Robertsson for enthusiastic help
and discussion of problems during the way. Finally, I want to thank Malin
Alsved for her support and understanding during times of intensive work.

5

Contents

1. Introduction 9
1.1 Problem formulation and Goals 10
1.2 Outline . 11
1.3 Notations . 11

2. Background 15
2.1 Gaussian Processes . 15
2.2 Quadrotor dynamics . 39

3. Controller Design 51
3.1 Full controller structure . 51
3.2 Rotor feed-forward . 52
3.3 Inversion based MRAC . 52
3.4 Exploiting the predictive uncertainty 56
3.5 Position MPC . 57

4. Adaptive element 64
4.1 Online calculation of model error (∆) 67

5. Simulations 69
5.1 SOGP simulations . 69
5.2 Quadrotor simulations . 77

6. Discussion 96
6.1 Limitations . 99

7. Conclusions 101
7.1 Future work . 103

A. Model appendix 104
A.1 MPC model Linearisation 104
A.2 Discretization . 105

Bibliography 107

7

1
Introduction

The quadrotor is a non-linear and unstable control system, which poses inter-
esting and challenging control problems whose solutions typically generalize
to many other aerial vehicles. Adaptive control for aerial vehicles is often of
high relevance because of various disturbances such as wind and mass loads
that enter the dynamics with complex state variable relations. Another source
of uncertainties can originate from un-modeled dynamics in the form of per-
manent or temporary faults in the system. Since the dynamics are non-linear,
an identification process that can estimate non-linear functions is beneficial.
Parametric models could be designed to account for known uncertainties.
While this might work well for some uncertainties, there is no guaranty that
other uncertainties with unknown structures can be captured. If more general
models are used, one might get problems with identifiability, because of the
typically low order of excitation of the system. This is especially a problem
in online system identification where model validation is not possible. Gaus-
sian processes have been reported to handle situations with low excitation
because of their ability to scale the regression problem with available infor-
mation [Maciejowski and Yang, 2013]. With Gaussian processes’ flexibility to
estimate a large set of unknown but smooth non-linear functions, they could
be a good candidate for non-linear adaptive control.

Gaussian processes (GP) is a nonparametric Bayesian method for the
estimation of unknown functions. The theory of Gaussian processes is not
new but the area has gotten new attention during the last decades. It is
now a well-studied method in the Machine Learning field but has also shown
promising results in other fields. This thesis will explore the use of Gaussian
processes for online system identification and control of a quadrotor. The
usage of GPs in the control community is rather unexplored but has recently
gained more attention [Miao et al., 2018].

A GP can be seen as a distribution over functions which specifies
a mean function m(x) and a covariance function k(x, x′) as f(x) ∼
GP (m(x), k(x, x′)) of the approximated function f(x). An observation y =
f(x) + ε of the function f(x) with some noise ε can then be used as known

9

Chapter 1. Introduction

points in the function domain to predict f(x) in the rest of the domain. The
method’s complexity scales as more observations are collected by adding more
regressors. The GP model is therefore not determined beforehand. This is
why the method is called nonparametric. However, there are still parameters
to be chosen. These parameters are often called hyperparameters and define
the covariance function (kernel function) k(x, x′) [Rasmussen and Williams,
2006]. It is, however, possible to update the hyperparameters online which
could be a way of increasing the method’s ability to adapting to new data.

The possible advantages of a GP control scheme are:

• Nonparametric identification: This means that the number of parame-
ters is not fixed but grows with the number of observations and com-
plexity. This allows for estimation of functions in a large domain with-
out much prior assumptions and knowledge of the function.

• No assumptions on the linearity of the estimated functions are made,
which is useful when dealing with the quadrotor dynamics.

• Incorporation of uncertainty/variance of predictions.

Drawbacks of using GPs in a control scheme:

• Numerical complexity of training scales as O(n3), where n is the num-
ber of observations.

• The basic GP method cannot handle nonstationary functions.

To use GPs in a control setting, these problems have to be considered and
dealt with. The idea of having an online identification of the dynamics is to
be able to compensate for changes in the dynamics both stationary (from
flight to flight) and non-stationary (changes during flight). Therefore modifi-
cations of the algorithm are needed. More advanced GP algorithms have been
developed that partly can solve the above mentioned problems [Rasmussen
and Williams, 2006] [Maciejowski and Yang, 2013] [Zhang and Luo, 2014].
This thesis will focus on exploring these solutions to enable both adaptive
and numerically tractable control using GPs.

To benefit fully from the GP system identifications the control scheme also
has to take advantage of the nonlinear nature of the GP. In the literature some
different methods has been explored, e.g., MPC (Model Predictive Control)
and MRAC (Model Reference Adaptive Control) [Maciejowski and Yang,
2013], [Chowdhary et al., 2013a] [Deisenroth et al., 2015], [Miao et al., 2018].

1.1 Problem formulation and Goals

The main goals of this thesis are:

10

1.2 Outline

• Investigation and implementations of different sparse GP methods to
lower the numerical complexity.

• Investigate methods to enable non-stationary estimation for adaptivity
through some sort of forgetting mechanism, which is closely linked to
making the algorithm sparse.

• Find uncertainties in the dynamics of the quadrotor which could be
estimated with GPs to improve flight performance.

• Implement a learning scheme where a nominal dynamic model of the
quadrotor is known and where the GP is used to improve the dynamics
for better flight control.

• Evaluate the method through comparison to the nominal controller, for
instance MPC or MRAC, in both experiments and simulation.

1.2 Outline

The thesis will be organized as follows. Chapter 2 will first cover the back-
ground of GP regression to explain the foundation on what the sparse ap-
proximation used is based on. The sparse algorithm SOGP will then be in-
troduced and a new extension to the algorithm be explained. The rest of
Chapter 2 introduces a nominal quadrotor model, that is also extended with
models of dynamic uncertainties. The proposed adaptive controllers are then
introduced in Chapter 3 and the design of the adaptive element using GP is
explained. The adaptive controllers are then tested in simulations in Chapter
4 and discussed in Chapter 5.

1.3 Notations

If nothing else is mentioned, the following notations will be used. Scalars
will be denoted with italic font. Vectors will be denoted with lowercase bold
symbols and matrices with upper case bold symbols.

11

Nomenclature

12

1.3 Notations

Acronyms

GP Gaussian Process

GP-MPC Gaussian Process Model Predictive Control, wherein the
adaptive element is a GP

GP-MRAC Gaussian Process Model Reference Adaptive Control,
wherein the adaptive element is a GP.

KL Kullback-Leibler removal policy for SOGP

KLI Test Kernel Linear Independence Test. Used for deciding
when to add samples to BV

MPC Model Predictive Control

MRAC Model Reference Adaptive Control

MRC Model Reference Control

OP Oldest Point removal policy for SOGP

RBF Radial Basis Function used as kernel function

RHKS Reproducing Kernel Hilbert Space

SOGP Sparse Online Gaussian Process

Symbols

q ∈ R4 Quaternion in vector form

p ∈ R3 [m] Position in inertial coordiante frame of quadrotor

η ∈ R3 [rad] Euler angles stacked in vector

ωB ∈ R3 [rad/s] Body attitude rate

Ω ∈ R4 [rad/s] Angular rate of rotors

m [kg] Mass of quadrotor

g [m/s2] Gravitational acceleration.

IB ∈ R3×3 [kg·m2] Moment of inertia of quadrotor in body frame

D Set of data points added to a GP

BV Set of basis vectors added to a SOGP

13

Chapter 1. Introduction

nD Cardinality of D

nBV Cardinality of BV

X Stacked measurment locations in the D set

XBV Stacked measurment locations in the BV set

y Column vector of stacked noisy observations in D or BV

k(x, x′) Kernel function

K Gram matrix, Ki,j = k(Xi,Xj)

kt+1 Kernel vector of new input, Ki = k(Xi, xt+1)

k′ Kernel center value, k′ = k(xt+1, xt+1)

Q Inverse Gram matrix, Q = K−1

σ2
n Measurment noise variance of observations in GP

σ2
p Process noise variance in GP

σk Kernel width vector of the RBF kernel function

C Inverse of the matrix K + Iσn

γt+1 KLI test measure

tr(A) Trace of matrix A

sign(a) Returns the sign of the number a (sign(0) = 1)

x̂ The unit vector x̂ = [1, 0, 0]T

ŷ The unit vector ŷ = [0, 1, 0]T

ẑ The unit vector ẑ = [0, 0, 1]T

14

2
Background

2.1 Gaussian Processes

Gaussian processes (GPs) have been used in many fields such as spatial statis-
tics [Ripley, 1991] and machine learning [Rasmussen and Williams, 2006] for
a long time. The typical applications in these fields do not have the same
demand on computational tractability as when used in online inference. This
is the main reason why GP regression has not been more used in the adaptive
control field.

There are different ways of looking at how a GP works: the function space
view and the feature space view. In the function space view, a GP is thought
of as a distribution over functions, specified by a mean and covariance denoted
as

f(x) ∼ GP(m(x), k(x,x′)) (2.1)

where f(x) is a process described by the mean function m(x) and the covari-
ance function k(x,x′). Let the observation location be of dimension x ∈ Rm.
This specifies the prior information of the process. But the primary interest
is to use observations of an observed process together with this prior distri-
bution over functions to get a posterior distribution over functions by using
Bayes’ formula.

The prior mean, m(x), is often chosen to 0 and the covariance, k(x,x′),
can for example be assumed to be Gaussian. Let y be some training obser-
vations in points X ∈ Rm×nD and let f∗ be some test inputs in X∗. Finally
let K(X,X) ∈ RnD×nD be a matrix consisting of all training point pairs in
X, evaluated by k(x,x′) as

15

Chapter 2. Background

K(X,Z) =

k(x1, z1) k(x1, z2) . . . k(x1, zm)
k(x2, z1) k(x2, z2) . . . k(x2, zm)

...
...

. . .
...

k(xn, z1) k(xn, z2) . . . k(xn, zm)

 (2.2)

X = [x1, x2, . . . ,xn] (2.3)
Z = [z1, z2, . . . ,zm] (2.4)

(2.5)

A joint distribution can then be formed between the training and test points
from the prior. Assume we have a noisy observation of the process y =
f(x) + ε, where ε ∼ N (0, σ2

n) is white noise. The joint distribution is then[
y
f∗

]
∼ N

(
m(X),

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
(2.6)

By conditioning on the stacked observations y in the joint prior distribution,
the following predictive distribution in the test points X∗ is achieved (see
[Rasmussen and Williams, 2006])

f∗|X,y,X∗ ∼ N (f∗,Σf∗) (2.7)

f∗ = K(X∗,X)[K(X,X) + σ2
nI]−1y (2.8)

Σf∗ = K(X∗,X∗)−K(X∗,X)[K(X,X) + σ2
nI]−1K(X,X∗) (2.9)

Here f∗ is the posterior mean of the process and Σf∗ is the posterior covari-
ance of the posterior distribution.

The exact same result can be derived through the feature space view.
This way of looking at GPs is good for understanding the role of the prior
covariance function k(x,x′), which can also be called kernel function for rea-
sons that will become clear later. The idea is to first project the observation
of the process into some feature space or function space which is spanned by
the feature function φ(x). In the one-dimensional case this function could
for example be φ(x) = [1, x, x2, x3 . . . xn]T or many exponential functions
centered in different locations in space. One can then adopt the following
model

f(x) = φ(x)Tw (2.10)
y = f(x) + ε, (2.11)

that can be used in a regression model.

16

2.1 Gaussian Processes

Now, assume that a set of training sample pairs X, y are available. The
aim will be to predict the value of f in a new test point x∗. To this end we
introduce the following notations for convenience: f∗ = f(x∗), φ∗ = φ(x∗)
and let Φ be the stacked φ(x) vectors of the training observations X. Then by
assuming a Gaussian prior on the weights w ∼ N (0,Σp), a Bayesian update
can be preformed to give a posterior distribution of the weights p(w|X,y) as
[Rasmussen and Williams, 2006, p. 9]

p(w|X,y) =
p(y|X,w)p(w)∫
p(y|X,w)p(w)dw

(2.12)

This will result in a predictive distribution of the weights

p(w|X,y) ∝ exp(− 1

2σ2
n

(y − ΦTw)T (y − ΦTw))exp(−1

2
wTΣ−1

p w) (2.13)

∝ exp(−1

2
(w − w̄)T (

1

σ2
n

ΦTΦ + Σ−1
p)(w − w̄)) (2.14)

where w̄ = σ−2
n (σ−2

n ΦTΦ+Σ−1
p)−1Φy. Extending this posterior distribution

over w to the test inputs f∗, the distribution p(f∗|x∗,X,y) is formed as

f∗|x∗,X,y ∼ N (φT∗ΣpΦ(ΦTΣpΦ + σnI)−1y, (2.15)

φT∗ Σpφ∗ − φ
T
∗ΣpΦ(ΦTΣpΦ + σ2

nI)−1ΦTΣpφ∗). (2.16)

By further introducing the notation k(x,x′) = φ(x)TΣpφ(x′) called the
kernel function or covariance function it will be shown that we arrive at
the same GP equations as in (2.7)–(2.9). This last step is often called the
kernel trick and in practice it means that the feature functions, φ(x) is of
secondary interest and we instead specify the kernel function k(x,x′). This
can be very convenient if it is harder to work with the feature functions
compared to the kernel functions which can be seen by this one-dimensional
example. Assume the feature vector φ is built up of n radial basis functions
as φ(x) = [exp(−(x−c1)2

2σ2
k

), exp(−(x−ci)2
2σ2

k
), . . . , exp(−(x−cn)2

2σ2
k

)]T , placed over
the input space in the feature centres ci. By then letting n go towards infinity
it is possible to prove that this results in the Gaussian kernel [Rasmussen and
Williams, 2006]

k(x, x′) = φ(x)TΣpφ(x′) =
√
πlσ2

pexp(− (x− x′)2

4σ2
k

). (2.17)

By now instead using this kernel function k(x, x′) and introducing
K(X,X) = ΦTΣpΦ, K(X,X∗) = ΦTΣpφ∗ and K(X∗,X∗) = φT∗ Σpφ∗, it

17

Chapter 2. Background

is possible to express (2.7)–(2.9) entirely in terms of k(x, x′) (see (2.2)). Be-
cause the number of kernels in a regression problem is the number of available
observations and the features are infinitely many, it is much simpler to work
with the kernels compared to the feature space. While the regression prob-
lem is reduced to a lower dimension the result is equivalent. Note that the
above example uses one-dimensional basis functions. The result can however
be generalized to higher dimensions [Rasmussen and Williams, 2006].

At first glance, it can seem strange that the kernel trick can be used to
lower the dimension of the regression from the number of features to the
number of columns in the gram matrix (number of observations nD). It is
possible because we add one kernel for every new observation instead of
having infinitely many features for the regression from the start. Hence the
regression is scaled with the number of input observations.

The GP framework can be summarized in the following equations

f∗|X,y,X∗ ∼ N (f̄∗,Σf∗) (2.18)

f̄∗ = K(X∗,X)α(X,y) (2.19)
Σf∗ = K(X∗,X∗)−K(X∗,X)CK(X,X∗) (2.20)

C = (K(X,X) + Iσ2
n)−1 (2.21)

α = Cy (2.22)

where α is a weight vector over the placed kernel centers. Both α and C only
depend on the training set and can hence be pre-calculated in the training
phase.

To summarize, GPs can be thought of as a regression with a changing
number of regressors depending on how much information is available. This
is also the reason it is called non-parametric. The GP still has parameters
to be set, the expression only refers to that the kernels are not placed be-
forehand. A GP regression example for a simple one-dimensional function
f(x) = x6 + x3 + 2sin(4πx) can be seen in Figure 2.1. For only one observa-
tion we can see that the covariance has been lowered around the observation.
The width of this area relates to the width parameter σk in (2.23). When
more samples are added the predictive mean converges towards the actual
function f . The regression gets closer to the actual function when the whole
interval gets evenly covered with observations. Since the observations are ran-
domly generated over the interval [0, 1] many observations are needed to get
good coverage. This shows that intelligently selected observation locations
are an advantage.

18

2.1 Gaussian Processes

0 0.5 1

-5

0

5

0 0.5 1

-5

0

5

0 0.5 1

-5

0

5

0 0.5 1

-5

0

5

0 0.5 1

-5

0

5

Figure 2.1 GP regression of the function f(x) = x6 + x3 + 2sin(4πx) (in
blue) with the kernel exp(− (x−x′)2

4σ2
k

) for σk = 0.2. The predictive mean of
the GP regression can be seen in blue when different number of observations
nD are added. The approximate 95% confidence interval of the predictive
covariance Σf∗ is also shown.

Kernel
The parameters to be tuned in a GP are often called hyperparameters. They
determine the characteristics of the kernel. The kernel used in this thesis will
be the Gaussian kernel. This is because it results in analytic expressions and it
encodes local information in a smooth way that can be used to estimate a wide
range of smooth functions. The Gaussian kernel or Radial Basis Function
(RBF) kernel in m dimensions is defined as

k(x,x′) = σ2
gexp

(
− (x− x′)TΣ−1

l (x− x′)
2

)
. (2.23)

The hyperparameters are here the scaling parameter σg and the length scale
vector Σl = diag(σ2

1 , σ
2
2 , ..., σ

2
m). The hyperparameter σg is only a gain or

normalization parameter of the kernel function encoding the variance of the
prior distribution over functions. It is often set to 1. Σl can be interpreted
as the width of the kernel, encoding the covariance of points in input space.
Setting σ2

i small will make the kernel thin, meaning an observation only will
affect points very close in the regression. Equivalently, if the σ2

i values are
large an observation will affect the estimate in a larger region. The length
scale of the RBF kernel will, therefore, have to be set according to the ob-

19

Chapter 2. Background

served function’s variation: a function with high-frequency content will call
for a short kernel width and vice versa. This can be seen in the GP regression
example in Figure 2.2 where the effect of different kernel widths can be seen.
When a very thin kernel is chosen the number of observations is not enough
to get a good estimation in the whole interval. When the kernel widths are
increased the estimation gets better but in the last graph, a too wide kernel
is chosen so that the GP can not capture the fast variations in the function.
This shows the importance of a well-chosen kernel that fits the function to
be estimated.

0 0.5 1

-2

0

2

0 0.5 1

-2

0

2

0 0.5 1

-2

0

2

0 0.5 1

-2

0

2

0 0.5 1

-2

0

2

Figure 2.2 GP regression of the function f(x) = x6 + x3 + 2sin(4πx) (in
blue) with the kernel exp(− (x−x′)2

4σ2
k

) for different σk. The same observations
set has been used in all graphs with the prior mean function m(x) = 0.

Note that the kernel function in (2.23) is a multidimensional function.
In (2.17) the RBF kernel was introduced as a one-dimensional function. The
results can however be extended to the multidimensional case by just re-
placing the kernel function k(x, x′) with the multidimensional kernel k(x,x′)
[Rasmussen and Williams, 2006].

If the structure of the function is known beforehand more complex kernels
can also be chosen. For example, if the function is a sinusoid the kernel could
be chosen to a periodic function. This can greatly improve performance since
one point now will provide information in a periodic way over the input space.
If however, the function is unknown, this is not possible and a more general
kernel has to be used. This is where the RBF kernel comes into the picture.

20

2.1 Gaussian Processes

An RBF kernel will only encode local information in a smooth way enabling
it to cover a large range of smooth functions. It, however, comes with the
downside that more kernel centers have to be collected to get an estimate
over a region.

How to choose the kernel hyperparameters is not always trivial. If the
function is low dimensional it can be possible to graphically make a guess
but since the functions will be largely unknown this can be hard. A possibility
is to use hyperparameter optimization to make a better guess. This can be
done by maximizing the marginalized log probability of the posterior infer-
ence, log p(y|X,Θ) with respect to the hyperparameters Θ = [θ1, θ2, ..., θm]
[Rasmussen and Williams, 2006, p. 115]. This could either be done online or
offline. The log marginal probability is [Rasmussen and Williams, 2006]

log p(y|X,Θ) = −1

2
yT (K + Iσ2

n)−1y − 1

2
log|(K + Iσ2

n)| − nD
2

log2π

(2.24)

To find the maximum of this probability with respect to the hyperpa-
rameters Θ by numerical optimization methods, the gradient is needed. The
derivative with respect to one hyperparameter θj is

∂

∂Θj
log p(y|X,Θ) =

1

2
tr((aaT −K−1)

∂K

∂Θj
) (2.25)

a = K−1y (2.26)

where tr(·) denotes the trace of a matrix. The complexity of this operation
is governed by the inverse of K with complexity O(n3

D). When the inverse is
known, the complexity for calculating the gradient is O(n2

D) for each hyper-
parameter if K−1 is assumed to be known [Rasmussen and Williams, 2006].
Any gradient-based optimization technique could be used.

Overfitting
It is sometimes claimed that the Bayesian formalism is immune or robust
against overfitting [Ghahramani, 2013, p. 5]. This is easily misunderstood
since a too complex model fitted through Bayesian formalism to give a pos-
terior prediction still can be highly overfitted. However, since the prediction
is done in a probabilistic manner overfitting will be shown in the uncertainty
of the posterior distribution. The model, therefore “knows” how well fitted
the data is [Ghahramani, 2013]. For GPs this means that, if a too complex
model is chosen, i.e., short length scale in the RBF kernel, this means that
more data will be needed to get a posterior uncertainty low enough. If not
enough data is found the GP will be overfitted but we will know this by

21

Chapter 2. Background

looking at the posterior uncertainty (see Figure 2.2). Also, in the context of
control theory, this gives a great advantage since the model uncertainty can
give information about overfitting and the possibility to act more cautiously
in regions of high uncertainty.

With this information, it is clear that great care has to be taken when
choosing hyperparameters. For time-varying functions, we can not guaran-
tee that the kernel actually will have a kernel width that represents the
observations at all times. As described in Section 2.1 this could be solved
by optimizing the hyperparameters online. However, this introduces another
possibility of overfitting. Depending on how much of the state space that
is explored, gradient descent of the hyperparameters can be very prone to
overfitting if the data are not descriptive enough [Mohammed and Cawley,
2017].

Sparse approximations
The basic GP inference algorithm described above only allows for batch cal-
culation with all data points. This calculation involves taking the inverse of
an nD × nD matrix which has the complexity O(n3

D). In an online setting,
this will become infeasible even for reasonably small batch sizes. Further-
more, the GP will be used in a control scheme where the same point in the
state space might be visited many times. If these points are added to the
GP, the Gram matrix might lose rank or be close to singular. A solution to
these problems must be found. There exist many different techniques to lower
this numerical complexity. The common approximation used in all of these
methods is that a smaller set of observations are used instead of all observed
measurements. If this smaller set of observations contain m observations the
complexity is lowered from O(n3

D) to O(nDm
2) where m << nD [Snelson

and Ghahramani, 2006], [Csató and Opper, 2002]. How these observations
are chosen differ between the methods. Optimization is for example used in
[Snelson and Ghahramani, 2006] to construct new pseudo inputs representing
all observations and the solution in [Csató and Opper, 2002] uses the obser-
vations themselves, but chooses them with care. This thesis will focus on the
solution given in [Csató and Opper, 2002], called “Sparse Online Gaussian
processes” (SOGP), which is more adapted for online inference because of its
sequential nature.

Sparse Online Gaussian Processes
The idea of the SOGP algorithm is to recursively update the GP and limit
the number of kernels by only adding carefully selected observations to a
basis vector set, BV. The observations (XBV , yBV) in BV should span the
input space in a good way. The rest of the observations, not added to BV, can

22

2.1 Gaussian Processes

be used to improve the estimate in the region spanned by BV. The following
four steps summarize the algorithm:

1. When a new observation is available, check whether the new sample
location can improve the estimate according to some measure.

2. If it is beneficial to add the sample to the basis vector set BV, this is
done with a recursive update.

3. If the number of data points nBV in BV exceeds a defined budget nmax
a data point must be deleted.

4. If the new sample was not added to BV a “sparse update” is performed
without increasing the cardinality |BV| = nBV .

A more detailed explanation of the algorithm will now follow but for a
more in-depth explanation of the algorithm and its derivation see [Csató
and Opper, 2002] and [Csató, 2002]. The last reference is an more extensive
thesis from the same author. The results in the SOGP article [Csató and
Opper, 2002] are in some places simplifications of the results in the thesis. The
simplified algorithm found in [Csató and Opper, 2002] will in this document
mostly be used. However, it would be relevant to investigate the more rigorous
SOGP version in the future. Some parts of the proofs given in the full thesis
will, however, be used in the walk-through here.

Assume at time instant t, we have a trained GP with data setD containing
nD observations of the function g. When a new sample is observed it needs
to be added to the GP. With the basic GP algorithm, as described in the
previous section, this will not be possible without making an inversion of the
gram matrix for each new data point. This will become intractable very fast
for real-time applications, hence the algorithm needs modification. One way
would be to do a rank-1 update of the C matrix for each sample. This has
been considered before in literature, see e.g., [Zhang and Luo, 2014],[Csató
and Opper, 2002]. This, however, only solves a part of the problem, since a
bound on the sample set is needed.

The first step will, however, be to construct a recursive update of the GP
equations. To this end, a rank-1 update will be used. For a matrix A = B−1

the new inverse when adding a column vector and scalar as

Ã =

[
B b

bT c

]−1

(2.27)

can be found as

Ã =

[
B b

bT c

]−1

=

[
A+ AbbTA

c−bTAb
−Ab

c−bTAb
−bTA
c−bTAb

1
c−bTAb

]
(2.28)

23

Chapter 2. Background

This can be verified by using the more general block matrix inversion formula
found in [Beal, 2003, p. 262] and Sherman-Morrisons’ inversion formula found
in [Petersen, 2012].

The inversion formula in (2.28) can be used to update C in (2.21). Fist
however we will adopt a seemingly odd notation compared to the GP scheme
described earlier. Let C have the opposite sign of the previously defined C,
making it negative definite. This is adopted from [Csató and Opper, 2002]
since it is needed for compatibility with other definitions used later. This
means the posterior covariance of the GP now is Σ(x,x′) = K(x,x′) +
K(XBV ,x)TCK(XBV ,x

′).
Introducing the notations kt+1 = K(XBV ,xt+1) and k′ = k(x,x) for a

single new observation xt+1 and using (2.28) to update C results in

Ct+1 =

[
−Kt − Iσ2

n −kt+1

−kTt+1 −k′ − σ2
n

]−1

(2.29)

=

Ct −
Ctkt+1k

T
t+1Ct

k′+σ2
n+kT

t+1Ctkt+1

−Ctkt+1

k′+σ2
n+kT

t+1Ctkt+1

−kT
t+1Ct

k′+σ2
n+kT

t+1Ctkt+1

−1
k′+σ2

n+kT
t+1Ctkt+1

 (2.30)

This equation can be used to update C in a recursive manner. The predictive
distribution is now defined by the mean and covariance

f̄t(x) = αTt K(XBV ,x) (2.31)

Σt(x,x
′) = K(x,x′) +K(XBV ,x)TCtK(XBV ,x

′), (2.32)

where the vector αt and the matrixCt are recursively updated variables. The
recursive update of α can be found by inserting (2.30) into the definition of
α in (2.22). The result is summarized as

αt+1 = Tt+1(αt) + qt+1st+1 (2.33)

Ct+1 = Ut+1(Ct) + rt+1st+1s
T
t+1 (2.34)

st+1 = Tt+1(Ctkt+1) + et+1 (2.35)

qt+1 = (y − αTt kt+1)/σ2
x (2.36)

rt+1 = −1/σ2
x (2.37)

σ2
x = σ2

n + k′ + kTt+1Ctk
T
t+1 (2.38)

where et+1 ∈ Rt+1×1 is a unit vector with element t+ 1 set to 1, Tt+1 is an
operator introduced that extends a vector v ∈ Rt×1 to a t + 1 dimensional
vector as

Tt+1(v) =

[
v
0

]
(2.39)

24

2.1 Gaussian Processes

and Ut+1 is an operator introduced that extends a matrix M ∈ Rt×t to a
(t+ 1)× (t+ 1) dimensional vector as

Ut+1(M) =

[
M 0
0T 0

]
. (2.40)

The proof of the recursive update above is an alternative proof using the
rank-1 update directly. Another interesting proof is given in [Csató and Op-
per, 2002] where the GP in the previous iteration is used as a prior distri-
bution that is updated by a Bayesian update with one new observation. The
interested reader is referred to [Csató and Opper, 2002] and [Csató, 2002].

Kernel linear independence test Up till now the only change to the
GP algorithm is that it is formulated in a recursive manner. This will greatly
improve the numerical complexity of adding a sample but we still need some
way of limiting the number of samples in the basis vector set BV. To this
end, we need a measure of how close the new kernel function will be to the
previous kernels. Let us assume that nBV samples have been added to BV
at certain time t. A kernel function, k(x,xt+1), located at some new sample
point, xt+1, could then possibly be described in the function space spanned
by the old kernels as

k(x,xt+1) ≈
nBV∑
i=1

aik(x,xi) (2.41)

This is, as a linear combination of the old kernels. The weighting at+1 =
[a1, a2, . . . , anBV]T would have to be found by some minimization and
represents the projection of k(x,xt+1) into the feature space spanned by the
old kernels. This approximation would be good if the new sample is located
at a point where old samples have been collected and added to BV. The
minimization that finds the projection is

γt+1 = min
at+1

∥∥∥∥∥k(·,xt+1)−
nBV∑
i=1

aik(·,xi)

∥∥∥∥∥
2

RHKS

. (2.42)

Here γt+1 would represent the error between the new feature function
k(x,xt+1) and this feature function projected down on the space spanned
by all the old feature functions. Following [Csató and Opper, 2002] we use
the “reproducing kernel Hilbert space” norm (RHKS) to denote inner prod-
uct as

〈g(·), h(·)〉RHKS =
∑
i,j

cicjk(ui,vi) (2.43)

25

Chapter 2. Background

where g and h are two functions g(x) =
∑
i cik(x,ui) and h(x) =∑

i dik(x,vi). Using this, the Least-Squares (LS) minimization in (2.42) can
be written as

min
at+1

k(xt+1, xt+1) + aTt+1Kat+1 − 2aTt+1kt+1 (2.44)

where K = K(XBV ,XBV). The minimum is easily found by differentiating
the expression and finding the stationary point since K is a positive definite
matrix. The minimum is

γt+1 = k(xt+1,xt+1)− kTt+1K
−1kt+1 (2.45)

with the solution
at+1 = K−1kt+1 = Qkt+1 (2.46)

Here the inverse Gram matrix, Q, will be expensive to compute. A better
idea is to use the same rank-1 update as used for the C matrix in (2.28).
This results in

Qt+1 =

[
K kt+1

kt+1 k∗t+1

]−1

=

[
Qt + γ−1

t+1at+1a
T
t+1 −γ−1

t+1at+1

−γ−1
t+1a

T
t+1 γ−1

t+1

]
(2.47)

or expressed with the operator Tt+1 and Ut+1 as

Qt+1 = Ut+1(Qt) + γ−1
t+1(Tt+1(at+1)− et+1)(Tt+1(at+1)− et+1)T . (2.48)

The minimum of the optimization cost, γt+1, in (2.45) can be interpreted
as the quadratic error between the projected kernel function and the actual
one. This measure could, therefore, be used to decide whether a new kernel
center in this observation point should be added to the GP. The set of re-
cursively added kernel centers is denoted BV and called the basis vector set.
This name originates from the fact that the kernel centers span the input
space in the GP regression. Let the following inequality determine if a new
sample should be added to BV

γt+1 > εtol add sample to BV
γt+1 ≤ εtol do not add sample to BV

This will be referred to as the Kernel Linear Independence Test or KLI
test. The tolerance εtol is a number k(xt+1,xt+1) ≥ εtol > 0 that is user
specified. Another interpretation of this is possible by noting that γt+1 =
k(xt+1,xt+1) − kTt+1K

−1kt+1 actually is the posterior covariance of a GP
containing the BV set without measurement noise, evaluated in the new
point (see (2.20)). Since the covariance is limited by the kernel function gain
k(x,x), this limits the value of γt.

26

2.1 Gaussian Processes

Deleting equations With the KLI Test, the size of the active set of kernel
functions BV will be reduced compared to D but the problem of unbounded
data is not solved. To this end, we will define a “budget” that cannot be
exceeded. The budget will be defined as |BV| = nBV ≤ nmax.

The budget, however, introduces a new problem. What happens when the
budget is exceeded? We do not want to stop learning from the observations.
To solve this problem, samples have to be deleted when this happens. The
question is then, which sample should be deleted and how is this performed.

The deletion of a sample in BV can be done in a similar way to the
rank-1 update but reversed. The equations for this will be presented but the
derivations will be left out. To make deletion possible we define partitions of
α,C and Q as

α =

[
αl

αr

]
, C =

[
Cl cr

crT cr

]
, Q =

[
Ql qr

qrT qr

]
. (2.49)

where Cl and Ql are t× t sub-matrices extracted from the (t+ 1)× (t+ 1)
dimensional matrices C and Q. These partitions are for simplicity showed
for the case when the last sample is removed. It is, however, possible to
extract an arbitrary sample in the same way. The deletion equations can be
formulated as

αt−1 = αl − αr q
r

qr
(2.50)

Ct−1 = Cl + cr
qrqrT

qr2 − 1

qr
[qrcrT + crqrT] (2.51)

Qt−1 = Ql − q
rqrT

qr
. (2.52)

The deletion-equation for C is a bit more complex than for Q and α. The
equation is an approximation that is derived through optimization of the KL
divergence between the GP before and after the deletion [Csató, 2002].

Sparse update When the KLI test suggests that a new sample should not
be added to BV, a fruitful question would be whether it is possible to use
the sample in some other way to improve the certainty of the estimate. This
would imply that the GP is updated without extending the dimensionality
of the α and C vectors. To do this one could first try to add the sample
to BV and then delete the sample with the deleting equations. Since the
deleting equation for C is derived from a KL-divergence optimization this
should yield an approximation that is as close as possible to the recursively
updated GP with respect to some cost function. Inserting (2.30) into (2.51)
results in

27

Chapter 2. Background

Ĉt+1 =Ct −
Ctkt+1k

T
t+1Ct

σ2
x

−
Qtkt+1k

T
t+1Qt

σ2
x

(2.53)

−
Qtkt+1k

T
t+1Ct

σ2
x

−
Ctkt+1k

T
t+1Qt

σ2
x

(2.54)

To denote that the new matrix C, is an approximation the notation Ĉ is
used. The expression can be simplified to

α̂t+1 = αt + qt+1ŝt+1 (2.55)

Ĉt+1 = Ct + rt+1ŝt+1ŝ
T
t+1 (2.56)

ŝt+1 = Ctkt+1 + at+1 (2.57)

This update cannot be done if the new input location is not close enough to
the old kernel centers in BV. But since the update is only done if the KLI test
γt+1 < εtol is fulfilled it is ensured that the approximation is good enough.
What is "good enough" is determined by the user by setting εtol.

Deleting policy It remains to decide which sample to delete when the
budget is exceeded. The problem can be solved in several ways. An appealing
way of doing this when dealing with time-varying functions is to delete the
oldest point (referred to as OP). In the SOGP article [Csató and Opper,
2002], another strategy is used. Instead, the kernel center contributing least
to the predictive mean is removed. This requires some calculation but the
computational cost is only linear in the number of data points in BV. The
idea is to calculate the difference in the predictive mean when adding a new
sample compared to only performing an approximate/sparse update, i.e

∆f̄t+1(x) = f̄t+1(x)− ̂̄ft+1(x) (2.58)

where ̂̄ft+1(x) is the posterior mean after a sparse update. Summing all the
differences for all the data points in BV the total error for not adding the
t+ 1 data point to BV will be [Csató and Opper, 2002]

εt+1 =

nBV∑
i=1

|∆f̄t+1(xi)| = |qt+1|min
at+1

∥∥∥∥∥k(·, xt+1)−
nBV−1∑
i=1

aik(·, xt+1)

∥∥∥∥∥
2

(2.59)

= |qt+1|γt+1 (2.60)

28

2.1 Gaussian Processes

This would give the score for the latest added sample. To get approximate
scores for the other samples lets first note that

εt+1 = |qt+1|γt+1 =
αt+1(t+ 1)

Qt+1(t+ 1, t+ 1)
(2.61)

where αt+1(t+1) is the element with index t+1 in αt+1 andQt+1(t+1, t+1)
is the element with index (row,column)= (t+ 1, t+ 1) in the matrix Qt+1.

If the dependence on the ordering of the samples in the BV is neglected
the score for an arbitrary sample εi is

εi =
αt+1(i)

Qt+1(i, i)
. (2.62)

The score εi will be referred to as the projection induced error for data point
i. Following this rule when deleting observations from the BV set will ensure
that the kernels will span the feature space in a better way compared to the
OP policy.

The whole SOGP algorithm will now be summarized in a more compact
algorithm form, seen in Algorithm 1.

Time-varying SOGP
Work has previously been done on using the SOGP algorithm for uncertainty
adaption in an online setting but time-varying uncertainties are rarely con-
sidered. Attempts to do this have been done by [Chowdhary et al., 2013b] by
introducing a time input to the Gaussian process. This means that kernels
that were added a long time ago will be deleted after a while. How fast the
old kernel centers will get deleted depends on the length scale of the hyper-
parameter in the time dimension and the specified budget. Other attempts
have also been made with other GP algorithms [Zhang and Luo, 2014] but
to my knowledge, this is done by only forgetting kernel centers. This is a
suboptimal solution since the idea of the SOGP algorithm is to find kernel
centers that cover the function space in a good way without exceeding the
budget and then learn with the sparse update over the covered area. Ideally,
the centers should be placed and then not moved so that the sparse updates
makes the estimate converge. However, if a kernel center is removed informa-
tion will be lost and the uncertainty will spike in this area. The deletion of
a kernel can, therefore, lead to drastic changes in the estimate in a real-time
setting. The deletion and reallocation of kernels should, therefore, be seen as
a last resort when the budget is exceeded. Another limitation of having time
as an input to the SOGP is that more kernel centers must be used because
of the extra dimension. Since the method scales as O(nDn

2
BV), this is not a

good idea.

29

Chapter 2. Background

Algorithm 1: SOGP algorithm
1 initialize Ct, Qt, XBV
2 while New observation (xt+1, yt+1) available do
3 kt+1 = K(XBV ,xt+1)
4 k′ = k(xt+1,xt+1)

5 σ2
x = σ2

n + k′ + kTt+1Ctkt+1

6 rt+1 = −1/σ2
x

7 qt+1 = (yt+1 −αTt kt+1)/σ2
x

8 γk+1 = k′ − kTt+1Qtkt+1

9 if γk+1 > εtol then
10 Recursive update
11 XBV = [XBV , xt+1]
12 st+1 = Tt+1(Ctkt+1) + et+1

13 Ct+1 = Ut+1(Ct) + rt+1st+1s
T
t+1

14 lt+1 = Tt+1(at+1)− et+1

15 Qt+1 = Ut+1(Qt) + γ−1
t+1lt+1l

T
t+1

16 αt+1 = Tt+1(αt) + qt+1st+1

17 if nBV > nmax then
18 Delete one sample
19 for i = 1 : nBV do
20 εi = αt+1(i)

Qt+1(i,i)

21 end
22 j = argmini(ε1, ε2, . . . εnBV)
23 Use the deleting equations in (2.49)–(2.52) to delete

sample with index j
24 end
25 else
26 Sparse update
27 ŝt+1 = Ctkt+1 + at+1

28 Ct+1 = Ct + rt+1ŝt+1ŝ
T
t+1

29 αt+1 = αt + qt+1ŝt+1

30 end
31 end

A reasonable question is then to ask, whether it is possible to change the
sparse update to allow for time-varying regression without deleting kernels.
To make this possible one can take inspiration from the classical solutions
in adaptive control where forgetting factors and Kalman filters have been
used traditionally [Åström and Wittenmark, 2013], [Johansson, 1993]. Let us
rewrite the sparse update (2.55)–(2.57) in the following way

30

2.1 Gaussian Processes

αk+1 = αk +
sk

σ2
n + 1 + kTk+1Ckkk+1

εk (2.63)

εk = yk −αTk kk (2.64)
sk = (Ck +Q)kk (2.65)

Ck+1 = Ck −
(Ck +Q)kkk

T
k (Ck +Q)

σ2
n + 1 + kTk+1Ckkk+1

. (2.66)

These equations could be compared to a Kalman filter estimation of the
weights α. By assuming we have noise on the parameters following a multi-
variate Wiener process as

αk+1 = αk + vk (2.67)

E(viv
T
j) = Rδij , ∀i, j (2.68)

E(vi) = 0, (2.69)

where E(·) denotes the expectation operator and the value of δij = 0 if i 6= j
and δij = 1 if i = j. Meaning that ek is an independent noise sequence.
Further, let observations of the function αTk kk be of the form

yk = αTk kk + ek (2.70)

E(eiej) = σ2
nδij , ∀i, j (2.71)

E(ei) = 0 (2.72)
E(viej) = 0. (2.73)

where kk is a regressor vector of the current input xk. In this case the ker-
nel vector kk = K(XBV ,xk). These assumptions let us define an optimal
Kalman filter estimation of αk as [Johansson, 1993, p. 110]

αk+1 = αk +
sk

σ2
n + kTk+1P kkk+1

εk (2.74)

εk = yk − αTk kk (2.75)
sk = P kkk (2.76)

P k+1 = P k −
P kkkk

T
kP k

σ2
n + kTk+1P kkk+1

+R. (2.77)

Comparing this to the rewritten sparse update in (2.63)–(2.66) similarities
can be seen, but it seems like the covariance matrix P k does not appear in

31

Chapter 2. Background

the same way everywhere. However, it is still possible to interpret (2.63)–
(2.66) in the context of the classical Kalman filter. First, we realize that the
matrix Q is actually constant during the sparse update. This allows us to
chose P k = Ck+Q but still only use the matrix Ck in the SOGP algorithm.
Also, remember the KLI test, γk < εtol, that determines if a sparse update
is performed or not. The expression for γk+1 is

γk+1 = k′ − kTk+1Qkk+1. (2.78)

With these observation lets us further rewrite the sparse update as

αk+1 = αk +
sk

σ2
n + γk+1 + kTk+1P kkk+1

εk (2.79)

εk = yk −αTk kk (2.80)
sk = P kkk (2.81)

P k+1 = P k −
P kkkk

T
kP k

σ2
n + γk+1 + kTk+1P kkk+1

+R (2.82)

P k = Ck +Q (2.83)

Here the only actual change to the sparse algorithm is to add the process
noise covariance matrix R. With this last manipulation, the only difference
compared to a Kalman filter is that we instead have a time-varying measure-
ment noise σ2

n + γk+1. Since γk+1 is a measure of the quality of the sparse
approximation, this can be thought of as increasing the measurement noise
if the sparse approximation is bad. However, γk is always bounded in the
sparse update by γk < εtol making the approximation sufficiently good by
choosing εtol sufficiently small. Note also that γk is the predicted covariance
in the noise-free GP.

The only thing left, is now to define a suitable matrix R. Some different
solutions can here be designed depending on the application of the GP. Here
two alternatives will be discussed. The simplest design of R would be a di-
agonal matrix, R = σ2

pI. Where σ2
p is a process noise variance chosen by the

user. This would put an equal uncertainty on every kernel so that the un-
certainty will increase the same way independent of the current observation.
This design can, however, cause problems. Assume that observations are only
acquired from a small subset of the input space and that R = σ2

pI is used.
The uncertainty outside this region would then grow unbounded. This could
potentially cause robustness issues in control settings.

Instead, let us try to design a matrix R that only increases the covariance
locally with respect to the observation location inspired by how a sample is
added. To do this one can exploit the matrix structure in the covariance
update in (2.77). The structure is Akkk

T
kA/σ

2
p, for some symmetric positive

32

2.1 Gaussian Processes

definite matrix A and some fixed covariance σ2
p. Let us assume that equal

covariance will be put on all kernels according to this structure. Meaning
A = σ2

pI. This would result in

R = σ4
pkkk

T
k /σ

2
p = σ2

pkkk
T
k (2.84)

This will increase the covariance for every kernel in such a way that is not
proportional to the learning but has the same structure, making the co-
variance far away from the observation untouched. This can increase the
robustness, but it will also limit time-varying learning since you only forget
locally. While this works, there are some side effects that has to be taken
care off. To see this we can look at the predictive covariance of the poste-
rior distribution Σ = k′ + kTkCkk (see (2.32)). The effect in the posterior
covariance only from the process noise in one Kalman iteration would be
k′+ kTkRkk = k′+σ2

p(kTk kk)2. The contribution of the Kalman filter update
would hence be variant with respect to the observation location. This is not
wanted. Instead we define the process noise matrix as

R = σ2
p

kkk
T
k

(kTk kk)2
(2.85)

This would give the contribution of k′ + σ2
p, which is constant with respect

to the observation location. The resulting algorithm for the sparse update
in (2.82) with (2.85) will be referred to as Time-varying SOGP (TV-SOGP)
when used in the SOGP algorithm.

A solution where a forgetting factor was used was also tried. However, this
was not performing as good and no good interpretation was found. Further,
a Kalman filter will be more robust against low PE since the dynamics of Ck

will grow linearly if kt+1 = 0 in a Kalman filter. With a forgetting factor in
the same situation, the growth would be exponential.

Stationary predictive covariance
It can be useful to know what the minimum stationary predictive covariance
Σ = k′ + kTkCkk will be when using TV-SOGP. To analytically calculate
this consider a TV-SOGP where only one observation x has been added
and where many noisy observations in the same point in space are observed
afterward. This will result in kk = 1 and Qk = 1 at all observations in x.
The stationary covariance will fulfil Ck = Ck+1. From this and (2.82) we
have

σ2
p(σ2

n + 1 + kTk+1Ckk+1) = Ckkk
T
kC. (2.86)

Using Σ = k′ + kTkCkk and simplifying, the following second order equation
is found

33

Chapter 2. Background

Σ2
min − σ2

pΣmin − σ2
nσ

2
p = 0. (2.87)

The positive solution is hence the minimum stationary covariance achievable
when using the proposed process noise in (2.85).

Online hyperparameter optimization
The choice of hyperparameters is of high importance to achieve good perfor-
mance in the identification of dynamic systems. Failing to do this will result
in over- or under-fitting the data. If the underlying function change in an
online identification there might suddenly exist parameters that are better
suited. Therefore online hyperparameter optimization would be favorable.
However, there are many problems in doing this. First of all the complexity
of the gradient descent is high since the inverse of the gram matrix has to
be recomputed in each iteration. Another problem is that the optimization
problem is non-convex and could have many local optima. Even if the opti-
mization finds the global optima there are no guarantees of the data being
exciting enough to find a relevant solution.

Online adaption of hyperparameters in the SOGP algorithm has been
tried before by [Grande et al., 2013]. They used stochastic gradient descent
to adapt the hyperparameters and if the parameters are changed enough the
hyperparameters are updated and the matrices C, Q and the weights α are
reinitialized. In the process of doing so, information will be lost but with the
hope that the estimate might get better in the future. The stochastic gradient
descent consists of using the kernel centers in the SOGP algorithm but in
every iteration include the current observation k in the BV set, temporarily,
to make a gradient descent of the logarithmic marginal probability (2.24).

Since it would be desirable to avoid reinitializing α, the Kalman filter
interpretation in TV-SOGP could possibly be very useful here, since it po-
tentially could change the estimate in a more smooth way over time. The
matrices Q and C is still a problem, however. These matrices need to be
reinitialized when changing the hyperparameters. Further, the matrix C that
is needed in the gradient calculation calls for one matrix inversion in every
iteration. An interesting idea that has been investigated during this thesis
was to use recursive updates of the matrices Q and C. The hope was that
this could reduce the numerical complexity. A recursive inversion of a matrix
can be done if a close approximation of a matrix exists as an initialization by
using approximative Newton gradient descent. This method is often called
Hotelling-Bodewig algorithm [Soleymani, 2012] and is found by minimizing
the strictly convex cost function

J(Q) =
1

2
(QK(Θk)Q−Q), (2.88)

34

2.1 Gaussian Processes

where Θk is the hyperparameter vector at iteration k. The unique optimum
to this cost function is Q = K(Θk)−1, found at ∇QJ(Q) = 0. The gradient
and hessian of J(Q) is found as

∇QJ(Q) = K(Θk)Q− I (2.89)

∇2
QJ(Q) = K(Θk). (2.90)

If we assume Θk ≈ Θk+1 the approximation Qk ≈ Qk+1 could be done.
This would imply that an approximative Newton’s method can be used to
construct an update of the form

Qk+1 = Qk −∇2
QJ(Q)−1∇QJ(Q) (2.91)

≈ Qk −Qk(K(Θk)Qk − I) (2.92)

= 2Qk −QkK(Θk)Qk (2.93)

This update could be used to iteratively compute both Q and C during the
hyperparameter optimization. This method implemented with SOGP can
be seen in Figure 2.3. The initial value of the hyperparameter σk in the
one-dimensional example was chosen too large but after the optimization,
the regression can be seen to follow the function much better. The example
exaggerates the importance of correct hyperparameter choice to some extent
since the lower hyperparameter value in the top graph also allows more kernel
centers to be allocated because of the KLI test. The convergence of the length-
scale hyperparameter can be seen in Figure 2.4.

While the algorithm works as expected as it finds better hyperparameters,
it was found that the computational time with the iterative scheme was not
performing as expected compared to a Cholesky factorization. This can be
seen in Figure 2.5 where the profiling times of the inversion in the exact same
experiment are compared with Cholesky factorization in Matlab. No apparent
overhead can be seen with the proposed iterative inversion. The result is
actually even worse since the graph shows only one Newton iteration. It was
found that at least 5 iterations were needed to give reasonable accuracy.
Further, it was also found that the algorithm is sensitive to ill-conditioned
Gram matrices originating from low εtol in the KLI test. This was found to
be very limiting with respect to the accuracy of the SOGP algorithm.

Using the Cholesky factorization is therefore concluded to be a better
alternative. Online hyperparameter optimization will not be considered for
quadcopter control. This is because it proves to be hard to find any opti-
mum for the given optimization problem even in an off-line setting for data
collected during simulation.

35

Chapter 2. Background

Figure 2.3 GP regression of one-dimensional sinus function with a too
broad length scale hyperparameter at the start of the experiment. The top
graph shows the SOGP algorithm when the hyperparameter optimizations is
used over 10000 samples and the bottom graph shows the same experiment
but without optimization.

SOGP for adaptive control
Machine learning strategies often focus on problems where the structure of
the estimated function is not known beforehand. This calls for flexible models
that can capture different structures. For this purpose, neural networks have
lately been drawing much attention. Neural networks, however, have a ten-
dency to overfit the model and need heavy optimization in the training phase.
This makes them hard to use in online settings where no model validation
exists. Gaussian processes, on the other hand, is a regression technique that
has been used by the machine learning community for its ability to adapt to
a wide range of unknown nonlinear functions but simultaneously being more
robust against overfitting. This makes GPs a good candidate for the online
learning of complex nonlinear functions that are not necessarily well known
beforehand. This can be a great advantage in many control situations where
the system is affected by unknown nonlinear uncertainties. The use of GPs in
adaptive control tasks has been investigated before but mainly on stationary
uncertainties [Kocijan, 2016].

The fundamental idea of adaptive control is to be able to learn changes in
the dynamics of the system and be able to counteract them. Different meth-

36

2.1 Gaussian Processes

0 2000 4000 6000 8000 10000

0.1

0.15

0.2

0.25

Figure 2.4 The hyperparameter σk convergence. The value of σk is not
changed continuously in the SOGP but changed when the value in the
hyperparameter optimization is changed more than 0.01.

ods for stochastic online regression have traditionally been used. Among these
Recursive Least Square (RLS) and Kalman filters [Åström and Wittenmark,
2013], [Johansson, 1993]. Both of them incorporate the ability to forget old
information and hence be able to capture new changes in the dynamics. A
fundamental problem that arises when applying these methods in a control
loop is the problem of Persistence of Excitation (PE) [Åström and Witten-
mark, 2013]. Since old information is penalized and hence forgotten after
a long time, it is of uttermost importance that new information about the
system is collected continuously. If this is not the case, the estimate of the
dynamical uncertainty may diverge. The adaptive control strategy will then
fail and the system may become unstable.

PE is a notion of how much an input excites a dynamical system. A high
order of PE in the input signal will give more information about the behavior
of the system. This is often not a problem in a system identification context,
where the model is to be learned only once and not online. One can simply
choose the input signal to be exciting enough. In an online setting, this might
not be the case. Control tasks often focus on stabilizing a system to be sta-
tionary or slowly varying which is not consistent with high order PE. High
order PE typically means we want high spectral content for higher frequen-
cies to estimate the faster dynamics. To tackle the problem of PE different
strategies can be used. Either the “forgetting mechanism” has to be turned off

37

Chapter 2. Background

100 200 300 400 500

0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 2.5 One Newton iteration (2.93) compared to Cholesky factoriza-
tion and inversion for increasing Gram matrix dimension. To achieve good
accuracy for the iterative method 5 iterations was at least necessary. One
iteration is however used here, rendering the result even worse than in the
graph.

when there is a lack of PE, or PE has to be ensured in some way. The problem
of enforcing PE at the same time as stabilizing the system is often referred to
as Dual control [Alpcan, 2011]. To perform dual control, information about
how or what part of the dynamics that have to be excited is needed. In GP
regression, which is based on Bayesian formalism, this information is easily
accessible in the posterior uncertainty in the distribution over functions. This
is not something that the thesis will focus on but something future research
in GPs for control task could focus on.

The uncertainty could however also be used in other ways to achieve
a more robust adaptive control. Since the uncertainty encodes where the
estimate is thought to be less accurate, this could be used to take extra
precautions in these regions. Different ways of doing this could be designed
depending on which control strategy that is used. In [Grande et al., 2014] a
gain was designed to lower the adaptive elements influence on the feedback if
the uncertainty is high. This was done for MRAC control. If for example other
model-based control strategies such as MPC or LQG are used the penalties
could, for example, be chosen differently depending on the uncertainty. When
using MPC even more complex solutions such as tube-based MPC could also
be used [Cao et al., 2017].

38

2.2 Quadrotor dynamics

2.2 Quadrotor dynamics

To model the quadrotor rigid body dynamics, the coordinate frame first has
to be defined. Let the body frame be centered in the center of mass of the
quadrotor. Further let the body frame be rotated and translated with respect
to an inertial fixed frame (see Figure 2.6). To this end we define a rotation
matrix RIB ∈ SO(3), rotating a vector from inertial frame to body frame,
where SO(3) = {R | R ∈ R3×3, RRT = RTR = I, det(R) = 1 } is the
three dimensional rotation group. The full transformation of a point in space
from inertial frame to body frame would then be

xB = RIBxI − p, (2.94)

where p is the position of the body frame in the inertial frame. For future use,
we also define the attitude Euler angles η that is a parametrization of SO(3),
the attitude rate ωB which describes the rotational rate of the quadrotor in
body frame and finally the rotational speed of all four rotors Ω (see Figure
2.7). Let the following notation be used

p =

xy
z

 , η =

φθ
ψ

 , s =

[
p
η

]
, ωB =

ωxωy
ωz

 , Ω =

Ω1

Ω2

Ω3

Ω4

 . (2.95)

Figure 2.7 Orientation of the body frame in relation to the quadrotor
body.

Rotor dynamics
Each individual rotor generates a thrust fi and a torque τMi

around its
own axis. These forces acting on the quad rotor can be approximated as
[Chovancová et al., 2014]

39

Chapter 2. Background

xI

yI

zI

p

φ

θ

ψ

xB

yB

zB

Figure 2.6 Coordinate frame definitions. Inertial fixed frame denoted
with I subscripts and body fixed frame denoted B. The body frame is
rotated relative to the inertial frame by the Euler angles φ, θ and ψ as
described above. Center of mass of the quadrotor is centered in the origin
of the body frame.

fi = kiΩ
2
i , (2.96)

where ki is some experimentally found constant. The torque τMi can be
assumed to be proportional to the squared angular rate and the angular
acceleration [Chovancová et al., 2014]

τMi
= jΩ2

i + bΩ̇i ≈ aΩ2
i (2.97)

It can be assumed that the squared angular rate will dominate the expres-
sion. Depending on how the body frame is defined in relation to the arms
of the quadrotor the combined torque acting on the body will have different
expressions. Since the Crazyflie platform used in this thesis has the xB-axis
oriented between motor 1 and 4 (see Figure 2.7) the following expression will
define the total torques

τB =

τxτy
τz

 =

kl/√2(−Ω2
1 − Ω2

2 + Ω2
3 + Ω2

4)

kl/
√

2(−Ω2
1 + Ω2

2 + Ω2
3 − Ω2

4)
a(−Ω2

1 + Ω2
2 − Ω2

3 + Ω2
4)

 . (2.98)

40

2.2 Quadrotor dynamics

The total thrust will be

T =
∑
i

fi = k(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4). (2.99)

Combining these equations a linear relation between the torques and
forces on the system and the squared angular rates of the rotors can be
formed as

τx
τy
τz
T

 =

−kl/

√
2 −kl/

√
2 kl/

√
2 kl/

√
2

−kl/
√

2 kl/
√

2 kl/
√

2 −kl/
√

2
−a a −a a
k k k k

Ω2
1

Ω2
2

Ω2
3

Ω2
4

 . (2.100)

The rotors can only spin in one direction, but they have different spinning
directions so that the rotor torques will cancel out in steady hover preventing
the quadrotor from spinning in the ψ direction.

Euler angles representation
Using Euler angles the rotation from the inertial frame to body frame is done
by a sequence of rotations around the inertial coordinate axis (see Figure 2.6).
There are many definitions of Euler angles since the order of rotations can be
different. The order chosen here is ZYX (ψ-θ-φ). The rotations around each
axis can be expressed by rotation matrices as

R(φ) =

1 0 0
0 cos(φ) sin(φ)
0 −sin(φ) cos(φ)

 (2.101)

R(θ) =

cos(θ) 0 −sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 (2.102)

R(ψ) =

 cos(ψ) sin(ψ) 0
−sin(ψ) cos(ψ) 0

0 0 1

 (2.103)

The full rotation sequence taking the inertial frame to the body frame
is then RIB = R(φ)R(θ)R(ψ). Since RIB ∈ SO(3) the matrix has the
property RRT = RTR = I, implying that the opposite rotation from body
to inertial frame is RBI = RT

IB = R(ψ)TR(θ)TR(φ)T .
The model of the quadrotor is obtained from the Euler-Lagrange equa-

tions [Castillo et al., 2004]. To this end, define FI as the external force ap-
plied to the quadrotor defined in an inertial frame and let τB be the external

41

Chapter 2. Background

torque acting on the quadrotor defined in body frame. The Euler-Lagrange
equations are then [

F I
τB

]
=

d

dt

∂L(s)

∂ṡ
− ∂L(s)

∂s
(2.104)

Here the Lagrangian L(s) is the sum of kinetic translational, kinetic rota-
tional and potential energy, respectively; L(s) = Etrans + Erot + Epot. To
this end let the rigid body of the quadrotor be defined by its total mas m
and its moment of inertia IB. Further let the gravitational acceleration be
denominated g.

The rotational energy requires extra attention. Expressed in the attitude
rate ωB, defined in the body frame, the rotational energy is

Erot =
ωTBIBωB

2
. (2.105)

Since we now want to express it in η, the mapping between η̇ and ωB has to
be found. LetW (η) denominate the matrix transformation as ωB = W (η)η̇.
The rotational energy can then be rewritten as

Erot =
η̇TW (η)T IBW (η)η̇

2
=
η̇TJη̇

2
. (2.106)

The derivation of W (η) is left out but can be found in [Greiff, 2017]

W (η) =

1 0 −sin(θ)
0 cos(φ) cos(φ)sin(φ)
0 −sin(φ) cos(θ)cos(φ)

 (2.107)

The full Lagrangian can then be written as [Castillo et al., 2004]

L(s, ṡ) =
mṗT ṗ

2
+
η̇TJη̇

2
−mgẑI (2.108)

By simplifying the Euler-Lagrange equations (2.104) and (2.108) the follow-
ing result is found, separating the angular and positional dynamics

mp̈ = F I −mgẑI (2.109)

τB = J(η)η̈ + J̇(η)η̇ − 1

2

∂

∂η

(
η̇TJ(η)η̇

)
(2.110)

= J(η)η̈ +C(η, η̇)η̇ (2.111)

The full expression of the Coriolis matrix, C(η, η̇), is left out. For the full
derivation of the equation see [Chovancová et al., 2014], [Castillo et al., 2004],
[Luukkonen, 2011] or [Greiff, 2017].

42

2.2 Quadrotor dynamics

The last step is now to express total force acting on the body in the
inertial frame F I with the Euler angles η and the body frame force FB .

F I = RBI(η)FB = RBI

0
0
T

 (2.112)

Equation (2.109) and (2.111) will then be coupled to form

mp̈ = RBIF B −mgẑ (2.113)
τB = J(η)η̈ +C(η, η̇)η̇ (2.114)

Quaternion representation
The Euler angle parametrization presented in the last section is a very in-
tuitive way of representing the rotation but it suffers from two major down-
sides. One is the singularities in the inverse of J(η) (see (2.106)) resulting
from what is often called the Gimbal lock, the other is the trigonometric
evaluations needed in the rotation operations [Chovancová et al., 2014]. A
better alternative is to use quaternions as a parametrization of the rotational
group SO(3).

Before introducing the quaternion representation the underlying math-
ematical background will be presented briefly. For a more thorough back-
ground see [Sola, 2017]. A quaternion is a hypercomplex number consisting
of three imaginary parts and one real scalar part, giving it four degrees of
freedom. The quaternion can be represented in different ways, but in this
document, we will adopt the vector notation in (2.116) below

q = q0 + q1i+ q2j + q3k (2.115)

q =
[
q0 q1 q2 q3

]T (2.116)

The multiplication of two quaternions follows from the distributive law and
the underlying complex algebraic identities of the hypercomplex number in
(2.115). The multiplication will be denoted with the Kronecker product, de-
noted with ⊗. It is often convenient to represent the quaternion in vector
form as (2.116) and divide it into a real part q0 = <(q) and an imaginary
part qv = =(q) =

[
q1 q2 q3

]T . The quaternion product of two quaternions
q and r can then be formed as

q ⊗ r =

[
q0r0 − qTv rv

q0rv + r0qv + [qv]×rv

]
(2.117)

43

Chapter 2. Background

where [·]× is the skew symmetric matrix corresponding to

v,u ∈ R3 (2.118)
v × u = [v]×u (2.119)

[v]× =

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 (2.120)

Some more identities will also be needed. The norm of a quaternion is
defined as

‖q‖ =
√
q2
0 + q2

1 + q2
2 + q2

3 (2.121)

and the conjugate of a quaternion is defined as

q∗ =

q0

−q1

−q2

−q3

 . (2.122)

This means that the product between the quaternion q and its conjugate will
be

q∗ ⊗ q = q ⊗ q∗ =

[
‖q‖2

0

]
. (2.123)

From this equation the derivation of the inverse of a quaternion follows as

q ⊗ q−1 = q ⊗ q∗

‖q‖2
=

[
1
0

]
(2.124)

The aim of introducing quaternions is to use it as a parametrization of R ∈
SO(3). A rotation of a vector xA ∈ R3 is rotated by the rotation matrix R
as

xC = RxA (2.125)
where xC is the rotated vector in the same coordinate frame. In a quaternion
parametrization of R ∈ SO(3) a unit quaternion q, ‖q‖ = 1 will represent
the rotation as [

0
xC

]
= q ⊗

[
0
xA

]
⊗ q∗ (2.126)

The transformation between inertia frame and body frame can then be ex-
pressed as

xI = RBIxB + p (2.127)

= =(q ⊗
[

0
xB

]
⊗ q∗) + p, (2.128)

44

2.2 Quadrotor dynamics

where p is the position of the origin of the body frame in the inertia frame.
By using this expression instead of the Euler angles as parametrization of
the rotation from body frame to inertia frame, the rigid body equations can
be rewritten. The Euler-Lagrange equation is

L(s, ṡ) =
mṗT ṗ

2
+
ωBIBωB

2
−mgzI . (2.129)

Together with (2.104) the equation is simplified to

[
F I
τB

]
=

[
mI 0
0 IB

] [
p̈B
ω̇

]
+

[
0

[ωB]×IBωB

]
(2.130)

To find the external force direction in the inertial frame F I the rotation from
B to I is used as

F I = = (q ⊗ F B ⊗ q∗) (2.131)

The differential relationship of the quaternion q and the attitude rate ωB
can be expressed as [Chovancová et al., 2014]

q̇ =
1

2
q ⊗

[
0
ωB

]
(2.132)

This will effectively couple the two rows of the Euler-Lagrange equations in
(2.130) forming the full dynamic equations as

mp̈ = = (q ⊗ F B ⊗ q∗)−mgẑI (2.133)

q̇ =
1

2
q ⊗

[
0
ω

]
(2.134)

ω̇B = I−1
B (τB − [ωB]×IBωB) (2.135)

Crazyflie parameters
In this thesis, the focus has been to design controllers for the crazyflie 2.0
platform. All simulations will be performed with parameters identified for
the Crazyflie. The parameters used have been identified by [Greiff, 2017] and
[Landry, 2015] and can be seen in the table below.

45

Chapter 2. Background

Table 2.1 System model parameters for the Crazyflie platform.

Parameter Value

k 2.2 · 10−1 [kg·m/rad2]
l 0.046 [m]
a 10−9 [kg·m2/rad2]

IB

2.3951 0 0
0 2.3951 0
0 0 3.2347

 10−5 [kg·m2]

m 0.027 [kg]

Uncertainty classification
The presented dynamics above do not model many other physical effects such
as viscous friction and dynamics of the rotor blades. All these unmodelled
dynamics will be referred to as uncertainties with different characteristics.
Some commonly used classification of uncertainties will now be explained to
enable further discussion.

The model uncertainties can be divided into three different sub-categories:
unstructured uncertainties, structured uncertainties and parametric uncer-
tainties [Lee et al., 2001]. The unstructured uncertainties can, for example,
be external disturbances/uncertainties with an unknown source. The struc-
tured uncertainties, on the other hand, are uncertainties which depend on a
known source. The external disturbances such as wind acting on the quad-
copter or the so-called near ground effect could be viewed as structured un-
certainties if the wind speed and proximity to the ground were known. Since
this often is not the case, however, they need to be modelled as unstruc-
tured uncertainties. Other internal model uncertainties could also arise if the
dynamical system changes over time. This could, for example, be mass or in-
ertia changes due to external loads attached to the quadrotor. Such changes
of the modelled dynamics are called parametric uncertainties since they can
be modelled as parameter changes in the nominal quadrotor model.

So what uncertainties will be most prominent in the quadrotor dynamics?
The answer to this question will, of course, depend on the intended applica-
tion. Outdoor use will probably be dominated by wind and drag disturbances
and indoor use will be dominated by smaller effects in modeling errors but
also near ground effects. Commonly discussed uncertainties for quadrotors
in the literature are, e.g., near ground effect [Bernard et al., 2017], wind dis-
turbances, and drag/flapping forces [Luukkonen, 2011]. These uncertainties
are often neglected in the attitude dynamics. But it can be highly relevant to
take them into account in some cases. For example when flying with unsym-
metrical loads or under strong wind conditions. But the flight performance
could probably be improved by incorporating drag and flapping forces under

46

2.2 Quadrotor dynamics

normal conditions too.
In the two following sections, uncertainties in both the attitude and po-

sition dynamics will be discussed more thoroughly.

Uncertainties in quadrotor dynamics
If the Euler angle parametrization is used, the attitude dynamic equation will
be (2.114). The attitude dynamics will in this representation contain more
parameters than the moment of inertia tensor. This is because the Coriolis
matrix C(η, η̇) in (2.114) will capture more dynamics that originates from
the attitude subsystem (2.134) relating the rotation and attitude rate. How-
ever, the differential relation between the rotation and the attitude rate in
(2.134) will have no uncertain parameters but is a fundamental trigonomet-
ric relationship. This makes the separation in the quaternion parametrization
(2.134) and (2.134) better suited for uncertainty approximations compared
to (2.114).

The only possible parameter uncertainties in the modeled attitude rate
dynamics is therefore the moment of inertia. Other uncertainties will of course
be present but we proceed with the assumption that the quadrotor follows
the dynamics in eq. (2.135) and that a nominal approximate model of the
attitude subsystem is

ω̇ = Î
−1

B (τ − [ω]×ÎBω) (2.136)

Where ÎB is a close approximation of the true inertial tensor IB.
Other uncertainties in the attitude dynamics would be completely un-

modeled in the nominal model. This could be, e.g., effects of wind giving
moment forces on the quadrotor, lateral speed giving moment forces, gyro-
scopic effects and near ground effects. All of the above-mentioned uncertain-
ties would be unstructured with respect to the nominal inputs ω and τ . They
could be modeled as structured if also wind, lateral speed, and the position
were incorporated as inputs. Due to numerical complexity, it would not be
feasible to have all of these inputs. This is the downside of nonparametric
approaches compared to parametric ones. However, this does not mean the
GP will not be able to capture any of these uncertainties, only that a sta-
tionary solution not will be found when these uncertainties vary. Implying
that the adaptation might be able to capture slowly varying uncertainties in
the rotor dynamics, like a voltage drop over time or a slow wind gust. This
correction will of course not be modeled as a voltage change but rather a
change in unstructured disturbances.

There has been done extensive research in the rotor dynamics of rotary
wing aircraft in the past. It has mostly focused on single rotor helicopters but
work has also been done for the very similar dynamics of multirotor UAVs.
See for example [Kai et al., 2017] and [Bangura et al., 2016] for a more in-
depth introduction. Since this project does not focus on the exact modeling

47

Chapter 2. Background

of these uncertainties the results will only be described briefly to facilitate
the analysis of input variables to the adaptive element.

The dynamics presented above for the quadrotor does only take into ac-
count the force and torque generated by the rotors from their direct per-
pendicular thrust. However, in forward motion and under strong wind other
aerodynamics effects will produce forces and torques on the UAV.Well-known
effects are the gyroscopic torque, the drag and flap induced torques and drag
and flapping induced forces. In high velocities, drag from the viscous friction
of the UAV body will also affect the dynamics. To summarize, the dynamics
could be altered in the following way

mp̈ = RBI(q)F B −mgẑ +RBI(q)F a (2.137)

q̇ =
1

2
q ⊗

[
0
ω

]
(2.138)

ω̇ = I−1
B (τ − [ω]×IBω + τ g + τ a), (2.139)

where F a = F flap + F drag are the lumped flap and drag induced forces
respectively. τ g is the gyroscopic torque and the term τ a is the lumped
aerodynamic torques from flapping and drag.

The induced drag from the blades appears when the UAV is exposed to
wind due to high velocities or air movement. The relative air movement will
make one blade advancing the wind and the other retreating, which creates
different lifts from the blades. This will introduce both parasitic torques
lumped into τ a and forces F drag. To describe these effects some notations
will be introduced. Let an external wind velocity vw, defined in inertial frame,
be present and let via = RIB(ṗ− vw) +ω × di be the relative wind velocity
at rotor i in body frame. Further let di denote the position of rotor i in
body frame and finally we introduce a matrix transformation πẑ = I − ẑẑT
projecting a vector into the xy-plane. The forces induced from the drag effect
can now be expressed as

F drag =

4∑
i=1

F idrag =

4∑
i=1

√
Ticd1πẑv

i
a (2.140)

The torque generated from the drag effect will consist of the different lifts
on the blades, a drag dampening effect and the torques generated by the drag
forces

τ drag = −sign(Ωi)
√
Ticd2πẑv

i
a −

√
Ticd3πẑω + di × F idrag (2.141)

Note that Ωi always is positive for the Crazyflie meaning sign(Ωi) = 1,
always. The difference in lift between the advancing blade and retreating

48

2.2 Quadrotor dynamics

blade will also cause another effect if the rotor blades are flexible. Because
of the different lifts, the blade will be bent so that the rotation plane will be
tilted away from the wind. This is called flapping and causes a force that is
not perpendicular to the body xy-plane. This will cause additional torques
and forces that have a similar structure to the drag effect. Let c1, c2, c3
and c4 be positive constants, then the flapping force from one rotor can be
modelled by [Kai et al., 2017]

F iflap = −
√
Tic1πẑv

i
a + sign(Ωi)

√
Tic2ẑ × via (2.142)

− sign(Ωi)
√
Tic3πẑω −

√
Tic4ẑ × ω (2.143)

The total flapping force F flap =
∑4
i=1 F

i
flap have two components. One is

the translational speed induced flap and the other is the rotational induced
flap. The first will have a structure similar to F drag. The second component
is the rotational induced force which depends on ω, the angular speed.

The last effect is the gyroscopic torque τ g which can be expressed as

τ g = −Iblade
4∑
i=1

ω × Ωie3 (2.144)

where Iblade is the moment of inertia of one rotor. This expression for the gy-
roscopic torque assumes the rotor as completely rigid. However, most quadro-
tors have non-rigid rotors which decreases the gyroscopic effect significantly
which comes with the cost of more flapping induced forces.

Since the flapping and drag effect has a similar structure the induced
forces will be lumped together to form the following simplified system of
equations

mp̈ = RBI(q)FB −mgẑ

+

4∑
i=1

√
Ti

(
RBI(q)ARIB(q)

(
ṗ− vw

)
−RBI(q)Bω

)
(2.145)

q̇ =
1

2
q ⊗

[
0
ω

]
(2.146)

ω̇ = I−1
B

(
τ − [ω]×IBω − τ rg +

4∑
i=1

√
Ti (CRIB(q)(ṗ− vw)−Dω)

)
(2.147)

Here τ rg is the residual gyroscopic effect assuming the rotors are flexible and
vw is external wind speeds in the inertial frame. The matrices A, B, C and

49

Chapter 2. Background

D are constant and depends upon aerodynamic coefficients and geometries
of the blades. The structures of the matrices are A = aπẑ, B = b[ẑ]×,
C = c[ẑ]× and D = d1πẑ + d2ẑẑ

T . Exact values of a, b, c, d1 and d2 are not
known (see [Kai et al., 2017]). The model will however only be used to apply
uncertainties with realistic structure in simulation. It is further possible, to
do the simplification that all rotors will have approximately the same thrust
during near hover conditions for the position dynamics. This will make the
sum in (2.145) disappear and be replaced by a multiplication of 2

√
T , where

T = 4Ti is the total thrust.
Another effect that also will be present even during indoor flight is the

near-ground effect. This effect will increase the force from the rotors in close
proximity to ground [Sanchez-Cuevas et al., 2017]. Since the effect will differ
depending on ground surfaces and the exact distance to the ground a dedi-
cated sensor is typically required to model this uncertainty as structured. The
velocities of the system will typically be small close to the ground, making it
possible to model the near-ground effect as unstructured if a sufficiently fast
time-varying adaption is used.

50

3
Controller Design

3.1 Full controller structure

To provide an overview of the proposed controller, the full cascade controller
structure will here be presented before each controller is explained in more
detail. A schematic figure of the full controller structure can be seen in Figure
3.1. The rotor feed-forward controller will be the inner controller, receiving
trust and torque commands which are translated to rotor angular rates. The
MRAC controller takes attitude commands qref and ωref and sends desired
torques to the rotor feed-forward controller. The MPC will, in turn, give
commands in desired attitude angles and rates to the MRC/MRAC to follow
the given position trajectory. To ease the work for the MPC, a trajectory
generator is used to calculate a feasible trajectory according to the nominal
dynamics. The different controllers will now be explained in detail.

Trajectory
generator MPC MRAC

Rotor
feed-

forward

Quad-
rotor

pr

ψr
r

Tr

qmpc

ωmpc
τ r Ω x

x
ω
q

Figure 3.1 Structure of the full controller with the proposed MPC. The
subscripts r denote a reference variable.

51

Chapter 3. Controller Design

3.2 Rotor feed-forward

The rotor control implemented in the Crazyflie is a simple feed-forward con-
troller that uses the input voltage that gives the desired output in station-
arity. Since no phase compensation is done the lowpass nature of the rotor
dynamics from voltage to thrust will be present in the dynamics. Further, the
rotor speed is not measurable, which creates a problem when calculating the
error dynamics. The difference between two time-series that have different
phase delay will create an error increasing with higher frequency content.
This makes it necessary to account for the rotor dynamics in the nominal
model when the error dynamics are calculated. An approximative identifica-
tion of the dynamics has been performed by [Greiff, 2017]. This model can
be used to design a unit gain filter with the same phase delay properties.
In a real-time implementation, the phase delay would have to be taken care
of. An even better solution would be to use angular speed sensors in the ro-
tors to construct a feedback controller. This is, however, not possible for all
quadrotor platforms. An alternative solution could be to construct a more
complex feed-forward controller by dynamic inversion of the rotor model to
lower the phase-delay.

In simulations, it will be assumed that the rotor controller only is a thrust
to input voltage mapping that does not reduce the phase delay, as on the
Crazyflie platform. However, when the model error is calculated the true
thrust and torques are used.

3.3 Inversion based MRAC

Due to the small inertial tensor of the Crazyflie (see Table 2.1) the attitude
dynamics will be too fast to use sample times low enough for off-board con-
trol. Hence an onboard implementation on the quadrotor will be necessary.
Model Reference Control (MRC) is a control scheme that will be computa-
tionally tractable and at the same time can use the GP estimated model for
control. This section introduces a non-linear inversion based MRC scheme,
modified to fit the attitude dynamics in quaternion form.

Assume first that a system S with state vector x = [x1, x2]T ∈ R2nx ,
x1 ∈ Rnx , x2 ∈ Rnx and input vector u ∈ Rnu has the form

S :

{
ẋ1 = x2

ẋ2 = f(x) + b(x)u.
(3.1)

Further, assume that approximations of the functions f and b, denoted f̂ and
b̂ are known and that b̂−1 has no singularities. It is then possible to construct

52

3.3 Inversion based MRAC

b̂(x)−1(ν−f̂(x)) S+
u

Adaptive element

Reference model

PD regulator

+
ur ẋ2r ν x − +

e

u

−νad

νpd

xr

Figure 3.2 Blockdiagram of the inversion based MRAC. The notation
M−1 symbolizes the dynamic inversion in (3.2).

a dynamic inversion that can be used as input to S as

u = b̂(x)−1(ν − f̂(x)). (3.2)

Using this feedback rule will result in

ẋ2 = f(x) + b(x)u (3.3)

= f(x) + b(x)b̂(x)−1(ν − f̂(x)) (3.4)

= f(x) + b(x)b̂(x)−1(ν − f̂(x)) + (ν − f̂(x))− (ν − f̂(x)) (3.5)

= f(x) + (b(x)− b̂(x))b̂(x)−1(ν − f̂(x)) + (ν − f̂(x)) (3.6)

= f(x)− f̂(x) + (b(x)− b̂(x))u+ ν (3.7)
:= ∆(x,u) + ν (3.8)

where ν is a reference acceleration, referred to as the virtual control signal
(see Figure 3.2). A designer chosen reference model is then used to generate
a trajectory to be followed by the controller as

ẋ1r = x2r (3.9)
ẋ2r = fr(xr) + br(xr)ur, (3.10)

In order to follow the trajectory we define the tracking error

e =

[
x1r − x1

x2r − x2

]
⇒ ė =

[
x2r − x2

ẋ2r −∆(x,u)− ν

]
(3.11)

53

Chapter 3. Controller Design

By now choosing the virtual input ν to

ν = ẋ2r +K1(x1r − x1) +K2(x2r − x2)︸ ︷︷ ︸
νpd(xr,x)

−νad(x,u), (3.12)

we have the full MRAC controller depicted in Figure 3.2 where ẋ2r is the
reference trajectory, νpd(xr,x) is a proportional-derivative compensator and
νad(x,u) an adaptive element term. Using this virtual input in (3.8) will
result in the tracking error dynamics

ė =

[
0 I
−K1 −K2

]
︸ ︷︷ ︸

M

e−
[

0
I

](
νad(x,u)−∆(x,u)

)
(3.13)

By choosing K1 ∈ Rnx×nx and K2 ∈ Rnx×nx to make M ∈ R2nx×2nx

Hurwitz the error dynamics will be globally asymptotically stable under the
assumption νad(x,u) − ∆(x,u) = 0. Consequently, the idea is to design
νad(x,u) to approach ∆(x,u) through the GP-framework. Note that a nec-
essary assumption for νad to be able to cancel the model error ∆ is that
the model error is stationary in the sense that νad(x,u) = ∆(x,u) has a
fixed point solution. This implies that the model error cannot be fully can-
celled under non-stationary disturbances and model errors [Chowdhary et al.,
2013a].

Quaternion based MRAC
In the previous section, it was assumed that the system contained a simple
integrator that is fundamentally known. This would be an appropriate form if
the Euler angle representation would be used (see (2.114)). The Euler angle
representation, however, can give rise to singular rotations at well defined
Euler angles, making it a suboptimal parametrization of SO(3). A better
option is to use quaternions. The attitude dynamics was introduced in (2.134)
and (2.135) and are restated here

q̇ =
1

2
q ⊗

[
0
ω

]
(3.14)

ω̇ = I−1
B (τ − [ω]×IBω) := f(ω) + b(·)τ (3.15)

From these equations, it is clear that the dynamics no longer contains a simple
integrator but some non-linear dynamics in the top equation (3.14). These
non-linear dynamics are however fundamental with no unknown parameters.
The dynamics describe the relationship between the rotation parametrised

54

3.3 Inversion based MRAC

by q and the attitude rate ω. This means that the MRAC scheme in the
previous section can be applied in a similar way. To do this, we will first
construct a PD compensator. As q and −q correspond to the same element
of R(q) = R(−q) ∈ SO(3) a difference between a reference quaternion qr
and q is not relevant. Instead the quaternion difference defined as ∆q =
q∗⊗ qr, will be used. If the demanded rotation is more than π radians away,
the smallest rotation possible will instead be the conjugated one [Fresk and
Nikolakopoulos, 2013]. This situation can be resolved by looking at the sign
of <{q∗ ⊗ qr}. The full PD feedback can then be designed as

τ pd = [Kpd
q Kpd

ω]

[
sign(<{∆q})={∆q}

ωr − ω

]
(3.16)

It now remains to design the feedback parameters Kpd
q and Kpd

ω to make
the error dynamics sufficiently fast. A stability proof for the suggested feed-
back can be found in [Brescianini et al., 2013]. Similar to the previous section
this proof only holds for the case when the true system is known.

Let us now assume that an approximation of the true system in (3.15),
defined by an approximate inertia tensor ÎB, is known. A dynamic inversion
according to (3.2) will then give the control law

τ = ÎBν + [ω]×ÎBω, (3.17)

where ν can be designed similarly to the previous section. To this end we
need to design a reference model that can generate a trajectory ω̇r. Let us
introduce a reference model with states qr and ωr and design the pseudo
control law as

ν = ω̇r + τpd − νad. (3.18)

To facilitate reference commands form the MPC positional controller, that
will be designed later, the reference model must take reference commands
in form of an attitude rate and a rotation, denoted wmpc and qmpc respec-
tively. The constructed reference model, with states qr and ωr, also needs
to produce a reference trajectory that can be followed by the true dynamics.
To achieve this the dynamic model (3.15) will be used with the non-linear
feedback law τ pd in (3.16). Let a reference quaternion denoted qmpc and
a reference attitude rate denoted ωmpc be available from an outer position
controller. With this, a modified feedback law can be introduced as

τ = ÎBτ pd + [ω]×ÎBω. (3.19)

where τ pd is defined as (3.16) with qmpc and ωmpc as reference inputs. If ÎB
in (3.19) only is a diagonal matrix this only scales the feedback. The term

55

Chapter 3. Controller Design

[ω]×ÎBω is used to cancel the same term in (3.15). The resulting closed loop
will then define a feasible reference model as

q̇r =
1

2
qr ⊗

[
0
ωr

]
(3.20)

ω̇r = Kr
qsign(<{∆q})={∆q}+Kr

ω(ωmpc − ωr), (3.21)

where ∆q = q∗r ⊗ qmpc , K
r
q and Kr

ω are positive definite diagonal matrices
specified by a user, determining the convergence rate of the reference model.
By this definition, it can be ensured that the generated trajectory is feasible
under the assumption that no saturations are active in the actuation.

3.4 Exploiting the predictive uncertainty

Since a GP with RBF kernels only learns locally, the model error estimate
quality may be very poor when the system ventures into new regions. This is
a major stability issue when using GPs for adaptive control. A GP, however,
provides possible solutions to this problem, since the posterior covariance
of the GP provides a measure of uncertainty in the function estimate. This
could potentially be used to provide the controller with information on how
cautious it should be. In an inversion-based MRAC there are no natural
ways of directly incorporating the covariance estimate but a solution that
has been used in this setting before can be found in [Grande et al., 2014].
Assume the true system is ẋ = f(x, u) and that a nominal approximate
model is ẋ = f̂(x, u). Further assume a GP estimate of the model error
∆(x, u) = f(x, u) − f̂(x, u) is ∆GP (x, u). The idea is to scale the estimated
model error with a gain depending on the uncertainty measure in the relevant
point Σ(z, z), z = [x, u]T (see (2.32)). To do this, a prior certainty on the
nominal approximate model f̂ is specified as a constant σ2

f . With this, a
heuristic approach to scale ∆GP (x, u) could be designed as

νad(x, u) =
σ2
f

Σ(z, z) + σ2
f

∆GP (x, u) (3.22)

= ρ∆GP (x, u), (3.23)

which results in 0 < ρ < 1, where ρ will be close to zero when Σ(z, z)� σf
and close to one when Σ(z, z) � σf . The MRAC law in (3.12) could then
be designed as ν = ẋrm + νpd − ρ∆GP (x, u). In practice, however, the gain ρ
will jump around when the GP is learning. To this end, a low-pass filter can
be used to smooth the time-varying gain ρ as

ρt+1 = ρt + εgain

(
σ2
f

Σ(z, z) + σ2
f

− ρt

)
(3.24)

56

3.5 Position MPC

where ε ∈ [0, 1) is chosen by the user, determining the low-pass character of
ρ.

A change in this method compared to the original one, outlined above, as
proposed in [Grande et al., 2014] will however be done. Since the TV-SOGP
does not converge to zero covariance because of the process noise, the gain
ρ will never reach one. To this end, we can look at the minimum stationary
covariance for the TV-SOGP. It can be found by solving (2.87) to give

σ2
min =

σ2
p

2
+

√
σ4
p

4
+ σ2

pσ
2
n. (3.25)

A heuristic approach to make the gain ρ closer to one in stationarity is to
change it to

ρ =
σ2
f

Σ(z, z)− σ2
min + σ2

f

(3.26)

before low-pass filtering it.

3.5 Position MPC

To plan and track a positional trajectory, Model Predictive Control (MPC)
will be used. This is because of several reasons. First of all, this thesis focuses
on using an identified dynamic model online to control the quadrotor. This
calls for a model based controller where the model can be changed online.
One control method where this is possible is inversion-based MRAC which
has been described in the previous section. The problem with this method for
the positional dynamics is that an exact inversion of the nominal dynamics
is not possible because the dynamic equation is overdetermined. This is not
a problem in the MPC method since optimization is used to find the optimal
input.

MPC is a finite receding horizon control problem, where the nominal
dynamic model is used to predict the first H time steps given an initial state
x0 at time t. The number of prediction steps into the future H is often called
the horizon. Given a cost function of the states,X = [x1, ... xH] and inputs,
U = [u0, u1, ... uH−1] an optimization over both U and X is performed at
every time instant beginning from the initial state x0. The solution to this
optimization then gives the optimal trajectory H steps ahead. In the MPC
setting only the first control action u0 is actuated in the plant. The next
control action will be given by solving a similar optimization problem at the
next time-step.

The advantage of MPC is that it is easy to incorporate constraints on the
states and controls to guarantee saturations in control signals are not violated
and that infeasible parts of the state space are not visited. To ensure that

57

Chapter 3. Controller Design

the optimal control problem will be feasible under constraints, a sufficiently
large horizon H is needed.

MPC for a discrete non-linear time invariant system can be formulated
as an Optimal Control Problem (OCP) with constraints. To this end let X
be the set of all feasible xt ∈ Rn and U be the set of all feasible ut ∈ Rm.
Further let Q, Qf ∈ Rn×n and R ∈ Rm×m be positive definite matrices. The
OCP can then be formulated as

min
U,X

H−1∑
i=1

xTi Qxi + xTHQfxH +

H−1∑
i=0

uTi Rui (3.27)

subject to (3.28)
xt+1 = f(xt,ut) (3.29)
xt ∈ X (3.30)
ut ∈ U (3.31)

If the constraints permit this would drive the system to the origin by virtue
of the matrices Q, Qf and R being positive definite. Since the quadrotor
dynamics is highly non-linear the general OCP formulation above would
be advantageous. OCPs of nonlinear dynamics, however, generally result in
non-convex problems, and the numerical complexity increases compared to
Quadratic Programming (QP) problems for linear systems. This can result
in an intractable solution for real-time purposes and convergence to a global
optimum is no longer guaranteed. An example of a software tool that han-
dles the intractability of such formulations is the ACADO toolkit that builds
upon the Real-Time Iterating scheme (RTI) [Houska et al., 2011]. This so-
lution only uses one numerical optimization step at every sample time. This
means sufficiently fast sample time is needed to ensure convergence but it
will never be guaranteed. The ACADO toolbox as a whole incorporates more
than just the RTI scheme, but it only supports code generation for RTI.

The different ways of representing rotation in the quadrotor dynamics
have different advantages as explained earlier. The quaternion formulation
uses a vector of dimension four with the added constraint of having unit
L2-norm. This is a non-convex constraint on the quaternion and cannot be
incorporated in a convex OCP. The RTI scheme in ACADO could, however,
be used to solve such non-convex and non-linear problems. This was tested
during the course of this thesis, but it suffered from poor convergence. The
Euler angles, on the other hand, do not suffer from non-convex constraints
but instead, have problems with singularities. However, since the aim of this
thesis is not to fly at extreme attitudes the Euler formalism will be used
to model the dynamical constraint in the MPC. The rest of the thesis will,
therefore, focus on linear MPC using linear approximations of the quadrotor

58

3.5 Position MPC

dynamics parameterized in Euler angles.
Existing methods for Linear Time Invariant systems (LTI) using

Quadratic Programming (QP) are very efficient, and there exist many tools
that facilitate code generation of optimized QP solvers. To use these, the
non-linear dynamics of the quadrotor would have to be linearized. However,
a linearization around the hover point would only be a decoupled double
integrator, which would likely result in bad performance. To improve the
performance a linearization around the current state x0 could be done in
every sample instance. This approximation will be called a Piece-Wise Affine
(PWA) approximation. This makes it possible to use QP optimization tools
for efficient code generation that can be used for real-time control while
simultaneously taking advantage of the non-linear model.

MPC for a discrete LTI system resulting from the PWA approximation
can be formulated as a Quadratic Programming OCP with constraints. To
this end, define A ∈ Rn×n, B ∈ Rn×m, G ∈ Rn×1 and a reference trajectory
[r1, r2, ... rH] ∈ Rn×H . A QP optimization over the trajectory can then be
formulated as

min
U,X

H−1∑
i=1

(xi − ri)TQ(xi − ri) + (xH − rH)TQf (xH − rH) (3.32)

+

H−1∑
i=0

uTi Rui

subject to

xt+1 = Axt +But +G, t = 1, 2...H − 1 (3.33)
Fxt < b, t = 1, 2...H (3.34)
Eut < c, t = 1, 2...H − 1 (3.35)

where F and E are matrices and b and c are vectors with dimensions cor-
responding to the number of constraints. The formulation in (3.5)-(3.35) is
easily implemented in QP code generation tools such as CVXGEN [Mattin-
gley and Boyd, 2012] and µAO-MPC [Zometa et al., 2013]. CVXGEN was
chosen for this project. The CVXGEN tool makes it possible to use sparse
matrices in the constraints to exploit structure in the dynamics and also
change parameters online so that the PWA system approximation can be
used.

Dynamic model
A modification can be made to the dynamic equations in (2.113)-(2.114) to
speed up the optimization problem. The MPC will be operating at a much

59

Chapter 3. Controller Design

longer time-scale compared to the attitude controller since the magnitude of
the inertia tensor is small (see Table 2.1). This makes it reasonable to assume
that including the attitude dynamics in the MPC will have little effect. Just
excluding the attitude dynamics in (2.114) would give a linearised system
of order six. Another possibility is to replace the attitude dynamics with a
simple integrator. This has several advantages: the reference input to the
attitude controller will be smoothened from a zero order hold signal to linear
interpolation and a very sparse structure of the dynamics is achieved.

The proposed nonlinear dynamic model used in the MPC is

mp̈ = RBI(η)ẑT −mgẑ (3.36)

Ṫ = Tslew (3.37)
η̈ = η̇slew (3.38)

where Tslew and η̇slew will be the output of the MPC. The above dynam-
ics is the nominal dynamics used to define the dynamical constraint in the
QP. However, since the aim is to incorporate uncertainties such as the drag
and flap effects estimated by a GP, a term proportional to ṗ must also be
incorporated in (3.36). This could be done in a general manner as

mp̈ = RBI(η)ẑT −mgẑ −Dṗ, (3.39)

where D ∈ R3×3 is a positive definite matrix.

Linearisation and discretization The linearisation can be performed
in an arbitrary point spanned by the states and control inputs and does not
have to be a stationary point. Introducing the state vector x = [p, ṗ,η, T, η̇]T

and the input vector u = [Tslew, η̇slew]T , the linearisation results in an LTI
system of the form

ẋ = Alx+Blu+Gl (3.40)

where the exact matrices can be found in Section A.1.
The outlined LTI system above needs to be discretized to allow for real-

time MPC. The standard zero-order hold discretization of the system in
(3.40) takes the form of a difference equation as

xk+1 = Adxk +Bduk +Gd (3.41)

The matrices Ad,Bd and Gd can be found by a series expansion for fast

60

3.5 Position MPC

real-time calculation as

Ad = lim
n→∞

n∑
i=0

Ai
l∆t

i

i!
(3.42)

Bd = lim
n→∞

n∑
i=0

Ai
l∆t

i+1

(i+ 1)!
Bl (3.43)

Gd = lim
n→∞

n∑
i=0

Ai
l∆t

i+1

(i+ 1)!
Gl (3.44)

The derivation of the zero-order hold approximation can be found in Sec-
tion A.2. By using the symbolic toolbox of Matlab the non zero elements
after convergence in the matrices Ad and Bd were found (see Figure 3.5).
These sparse matrix maps can be used in the CVXgen tool to significantly
lower the complexity of the constraints in the optimization problem.

Figure 3.3 Non-zero elements after convergence by discretization with
(3.42)-(3.43).

Constraints
Since the aim of the thesis is not to do obstacle avoidance or path planning,
state constraints on xk in (3.41) will not be considered. Constraints on the
inputs could, however, be beneficial to avoid saturation. The total thrust
T will be limited by the maximum angular speed of the rotors which is
approximately Ωmax = 2500 rad/s for the Crazyflie [Greiff, 2017]. This yields
a constraint

0 ≤ T ≤ 4kΩ2
max (3.45)

61

Chapter 3. Controller Design

The resulting constraints on the torques are harder to design since the atti-
tude dynamics is approximated with an integrator. Because of this we do not
have access to the torques inside the MPC. To incorporate the constraints
an approximation has to be made. Remember the attitude dynamics in the
Euler angle representation (2.114) and the definition of J(η). If the quadro-
tor is assumed to be close to hover the angles φ and θ will be small while ψ
can be an arbitrary angle. The matrixW (η) will then be close to an identity
matrix resulting in the approximation J(η) ≈ IB if φ ≈ θ ≈ 0,∀ψ. This
would imply τB = J(η)η̈ + C(η, η̇)η̇ ≈ IBηslew, where the approximation
of C(η, η̇)η̇ = 0 has been used. From (2.98) it can be seen that the maximum
torque is

τmax =

√2klΩ2
max√

2klΩ2
max

2aΩ2
max

 (3.46)

The torques and total thrust are however coupled. Thus, if the max trust is
active, no torques can be generated at all. To consider this one can subtract
the hover rotor speed, Ωhover, of approximately 1800 rad/s2 from Ωmax when
calculating (3.46). The available rotor speed for generating a torque would
then be Ωmax − Ωhover.

A reasonable constraint could therefore be

|η̇slew| ≤ I
−1
B τmax = I−1

B

√2kl(Ωmax − Ωhover)
2

√
2kl(Ωmax − Ωhover)

2

2a(Ωmax − Ωhover)
2

 (3.47)

Because of the coupling and that the reasoning is extremely approxima-
tive, the constraints outlined above should be more restrictive when operating
in real time.

Trajectory generation
To exploit the nonlinear model a trajectory can be generated if a six times
differentiable position trajectory and a given yaw angle trajectory is given. If
the dynamic model in (3.36)–(3.38) is used, the velocity ṗ and acceleration p̈
can be obtained through direct numerical differentiation. Now it only remains
to solve the dynamic equation (3.36) for the Euler angles. The solution when
the yaw angle ψ is known can be found as [Limaverde Filho et al., 2016]

T = m
√
p̈2
x + p̈2

y + (p̈z + g)2 (3.48)

θ = tan−1
(p̈xcos(ψ) + p̈ysin(ψ)

p̈z + g

)
(3.49)

φ = tan−1
(sin(θ)(p̈ycos(ψ)− p̈xsin(ψ))

p̈xcos(ψ) + p̈ysin(ψ)

)
(3.50)

62

3.5 Position MPC

Adaptive MPC
There are several ways of using GP model identification in an MPC. The
problem of using offline identified GP models in MPC has been more thor-
oughly investigated than online identification [Kocijan, 2016]. Since a GP
gives a nonlinear model it is natural to use it directly in a nonlinear MPC.
Another possibility is linearising the GP and using the QP MPC formulation.
Here we will use the latter alternative, making use of the PWA approxima-
tion.

Many interesting extensions can be made when using GPs in MPC
schemes. Since GP regression gives an uncertainty measure it facilitates for
example “cautious MPC”. This MPC formulation can make use of informa-
tion on the certainty of a function estimate and change the constraints to
ensure stability [Hewing and Zeilinger, 2017]. Similar strategies could also be
constructed with e.g. tube-based MPC [Cao et al., 2017]. These MPC formu-
lations could also be very interesting in online GP regression and adaptive
MPC where the robustness of the resulting control scheme is a priority.

GPs with their ability to identify a wide range of functions without much
knowledge about their structure has also drawn attention by the fault toler-
ant control field [Maciejowski and Yang, 2013]. Fault tolerant control aims
to detect faults such as actuator degradation or a complete failure and over-
come them. In [Maciejowski and Yang, 2013] it is proposed to use online GP
identification in a linear adaptive MPC formulation to detect and identify
the behavior of faults. A similar strategy will be used here.

Exploiting the predictive uncertainty As described, there are many
ways of incorporating the uncertainty estimate in an MPC. Both cautious
MPC and tube MPC are intuitive ways of doing it. They, however, suffer
from large computational complexity since the uncertainty propagates over
the horizon. Further, tube MPC is often too restrictive and approximations
have to be made to make the optimization problem feasible [Cao et al., 2017].
These limitations make it complicated to implement. This document will not
focus on such methods but we only want to point to the possibility of such
methods. Instead, the proposed ρ gain will be used to limit the influence of
the adaptive element in the same way as in the GP-MRAC.

Linearisation of GP To use the estimated GP regression in the QP based
MPC a linearization of the GP has to be performed. Since the mean func-
tion is a sum of weighted exponential functions this is straightforward. The
expression will be left out.

63

4
Adaptive element

To use GPs to represent the adaptive element in both MPC and MRAC,
some considerations have to be done. Because the number of kernel centers
needed scales exponentially with the number of input dimensions, it might
not be possible to have all state variables as inputs. Consequently, a care-
fully selected subset of input variables has to be chosen. Furthermore, the
online calculation of the dynamic model error could be done in different ways.
Phase delays in both dynamics and discrete time low-pass filters can cause
unacceptable errors. This also requires attention.

Choosing inputs and outputs to GP
Which inputs that might be beneficial to use will now be discussed. The
discussion will be divided into two parts. The first discussing concerns the
uncertainties that could be modeled in the attitude dynamics (MRAC) and
second in the positional dynamics (MPC). Some analysis of the structure of
the uncertainties presented in Section 2.2 will also be made to select good
input variables.

Attitude dynamics The moment of inertia when the body frame axis is
aligned with the quadrotor arms is a diagonal matrix. However, it could be
reasonable to assume this approximation is not perfect and that the off-
diagonal element could be non zero because of attachments of components.
Furthermore, the inertia could also change when the battery is placed in
different ways. Attachments and battery placements that are not symmetrical
will also contribute with torques that are dependent on the orientation q of
the quadrotor. This could also be modeled if q is introduced as an input.

The model error originating from a parametric uncertainty in the approx-
imate inertia tensor ÎB will result in a model error

∆(ω, τ) = I−1
B (τ − [ω]×IBω)− Î

−1

B (τ − [ω]×ÎBω). (4.1)

To estimate ∆(ω, τ) = [∆x,∆y,∆z]
T with GPs, an initial guess of the hyper-

parameters is needed especially if no hyperparameter optimization is used.

64

Chapter 4. Adaptive element

To determine a reasonable guess the analytic model error is illustrated in
Figure 4.1 below, when the actual moment of inertia IB is an identity matrix
and the approximate inertia is ÎB = IB + δδT where δ = [0.1, 0.2, 0.15]T .
Since this is a 6D function it has been illustrated in 15 graphs correspond-
ing to four dimensions being locked (i.e., the 6D room is intersected by 2D
planes).

-5

0

5

-5

0

5

-5 0 5

-5

0

5

-5 0 5 -5 0 5 -5 0 5 -5 0 5

Figure 4.1 Model error ∆x ploted in two-dimensional planes intersecting
the six dimensional room.

To get a good value of the hyperparameters, an optimization of the
marginal likelihood can be done. The optimization is, however, non-convex
and can be hard to solve. For a spherical RBF kernel function with one
hyperparameter, σk (see (2.17)), the cost is one-dimensional. An optimiza-
tion with Matlab’s ’fminunc’ for non-linear problems results in the maximum
likelihood for σk ≈ 15. The optimization over the marginal likelihood can in
many cases be hard since it involves inversion of the gram matrix. If the
kernels are placed too close, the gram matrix might become ill-conditioned.
This means great care has to be taken when choosing observations to op-
timize over. In Figure 4.1 the model error was plotted in the region that
is believed to be visited under normal flight of the quadrotor. Because of
the slowly varying function, it was however found that the kernel width of
σk ≈ 15 is optimal, which is much wider. The high value of σk ≈ 15 is good
since it means that we can hope to estimate the model error with very few
kernel centers. However, there is no guarantee that other uncertainties will

65

Chapter 4. Adaptive element

result in the same conclusion.
Other dynamical model uncertainties could also be modeled by the adap-

tive element. A simplified version of commonly left out aerodynamics can
be seen in (2.145)–(2.147). The gyroscopic term (for the rigid rotor case)
(2.144) depends on the attitude rate and the rotor speeds. The attitude rate
is easily available and should be incorporated since it is the nominal input
of the modeled dynamics. The rotor speeds cannot be measured but one can
make approximations of what they are. Assuming the quadrotor is in near
hover state the total trust will be approximately mg. This together with the
linear equation system in (2.100) facilitates calculation of the rotor angular
rate. It is, therefore, possible that the gyroscopic uncertainty can be approx-
imated if the torque τ is incorporated as an input. The drag and flap terms
are a bit more complex as they depend on the angular orientation q, the
lateral speed ṗ, the rotor trusts Ti, the relative wind speed vw and finally
the angular rate ω. The only variable included in the nominal dynamics is
ω. The rotor thrusts, Ti could possibly be approximated by the adaptive
element if τ is known according to the reasoning above. However, it would
be infeasible to incorporate the rest of the variables in a GP scheme. The
drag and flap uncertainty also consists of one term

∑4
i=1

√
TiDω that could

be approximated with the nominal inputs. This is the induced drag and flap
torque from angular rates. However, we cannot hope to estimate the rest of
the uncertainties in a structured way.

In summary, the nominal inputs ω and τ will be necessary for all un-
certainty estimations in a structured way. This already involves six input
variables, which are on the limit of what could be feasible in an online set-
ting. The gyroscopic term could be approximated but the effect is often very
small and the approximation is of high uncertainty. The translational drag
and flap uncertainty is complex with many variables that can not be incorpo-
rated. Finally the rotational flap and drag uncertainty

∑4
i=1

√
TiDω could

be possible to estimate in a structured way with the nominal inputs.
Note that all of the reasoning above assumes that Ti is known. This

would imply that T would have to be incorporated in the adaptive element.
Assuming T = mg will only be a reasonable approximation in near hover
state where the uncertainties described are very small. Since the attitude
dynamics is a reasonably fast dynamics it is not reasonable to assume the GP
can capture much of unstructured uncertainties by a time-varying estimation.

Position dynamics In the position dynamics (2.145), the only parametric
uncertainties that could arise from a poor estimation of parameters in the
nominal dynamics is the mass of the quadrotor m and the gravitational
constant that should be well known. Further, it is possible that a voltage drop
in the battery gives a lower thrust than expected. But this is an unstructured
uncertainty since it actually changes the rotor dynamics.

66

4.1 Online calculation of model error (∆)

With some assumptions, it is possible to account for the lateral drag
and flap effect with a reasonably small set of input variables. From equation
(2.145) the uncertainties not modelled in the nominal dynamics is

4∑
i=1

√
Ti (RBI(q)ARIB(q)(ṗ− vw)−R(q)Bω) . (4.2)

The nominal inputs to the position dynamics in (3.39), which is used in
the MPC formulation are q, T and ṗ. With these inputs, it will be hard to
model the second term consisting of the rotational induced drag. The first
term originating from the lateral drag, however, has inputs that could be
feasible to model. Assuming that the quadrotor is close to hovering, meaning
that T1 ≈ T2 ≈ T3 ≈ T4 ≈ T/4 and B = 0, the uncertainty can be written
as

2
√
T (RBI(q)ARIB(q)(ṗ− vw)) . (4.3)

In this expression, the only unknown variable is the wind speed vw in the
inertial frame. Assuming that the wind is slowly time-varying the adaptive el-
ement could learn this as an unstructured uncertainty. The adaptive element
input variables would then be q, ṗ and T .

By exploiting the structure of the matrix A = I − ẑẑT that extracts the
x and y component of the body lateral motion and assuming the quadrotor is
close to hovering it is a reasonable assumption that the z component of ṗ will
contribute least to the drag and flap effect. It can, therefore, be disregarded
under not too aggressive flights.

4.1 Online calculation of model error (∆)

Generally, if we want to estimate the model error in a scalar system

ẋ = f(x, u) (4.4)

with respect to the approximate model f̂(x, u) the dynamic model error
would be ∆ = ẋ − f̂(x, u). To evaluate this error both x and ẋ has to be
known. In the best of worlds, ẋ can be measured but this is often not the
case. Instead, a numerical differentiation of x has to be performed. When
numerically differentiating the measured x an anti-aliasing and noise sup-
pression filter has to be used. This, however, introduces a phase delay that
can cause errors when taking the difference ∆ = ẋ − f̂(x, u). To solve this
both signals have to be filtered through the same filter. Let p denote the
differentiation operator and T denote a time constant that is smaller than
half of the sampling frequency of x. Then

67

Chapter 4. Adaptive element

∆ =
p

(p/T + 1)2
x− 1

(p/T + 1)2
f̂
(
x, u

)
(4.5)

will give an estimate of ∆ that has no error resulting from phase delays in
the anti-aliasing filter. However, the model error will with this model error
calculation contain the dynamics of the implemented filter. Since this is the
case it is important that the model error is calculated in a much higher
sampling rate than the actual control sampling rate to minimize the effect of
low-pass filter dynamics in the model.

It should be noted that problems still can arise if there exist other low
pass characteristics in the actuation dynamics itself. This is the case of the
quadrotor process where u is a desired thrust while the actual trust will be
achieved when the rotors have reached their stationary angular speed. Even
if the rotor dynamics is very fast compared to the controlled positional or
attitude dynamics the phase delay might cause unacceptable errors when
calculating the difference in (4.5). The best solution to this would, of course,
be to measure u directly. The other alternative is to identify the low pass
character and filter the desired input u with this filter.

In the attitude dynamics, the derivative of the attitude rate ω̇ is not
measurable so the method outlined above is needed. For the position dy-
namics, however, we have access to the accelerometer measurements. Let the
accelerometer measurement be denoted aacc. It can be expressed as [Mueller
et al., 2015]

aacc = RIB(p̈+ ẑg). (4.6)

If then the true rotation is known the acceleration p̈ is measurable. The
rotation will then have to be observed through a Kalman filter. Since the
acceleration is known the filtering in (4.5) will not be needed. The difference
between the model acceleration and the true acceleration can be done directly.
An anti-aliasing filter can, however, be necessary.

An alternative way of estimating p̈ would be to use an Extended Kalman
filter. Implying that model error states has to be included in the Kalman
filter state vector. This would help to improve the estimates of all states
under large model errors due to e.g., wind disturbances and additionally
providing estimates of the model error.

68

5
Simulations

The first part of this chapter will give two simulation examples of the pro-
posed TV-SOGP algorithm. The first simulation compares TV-SOGP to an-
other time varying SOGP algorithm previously proposed by [Chowdhary et
al., 2013b]. This shows the benefits of TV-SOGP and validates the ability to
adapt to time-varying functions. The second experiment compares TV-SOGP
to parametric regression with a linear Kalman filter under low PE and uniden-
tifiability due to feedback. The experiment shows that TV-SOGP avoids these
problems by local learning and forgetting encoded by the RBF kernel. In the
second part of the chapter, the TV-SOGP is applied to the quadrotor prob-
lem together with the attitude controller and position controller described
in Section 3. First, the GP-MRAC scheme is shown under parametric in-
ertia tensor uncertainties together with strong wind disturbances entering
the dynamics through flap and drag effects. Because of the low content of
high frequencies in the model error it was possible to use wide kernels that
facilitates real-time performance for sampling times sufficiently short for the
attitude controller. The focus will then be directed to the GP-MPC scheme
for the rest of the chapter. Two simulations will be done: one with a periodic
trajectory in space and one with a random trajectory designed to visit a
larger region of the state space. By visiting a large region of the state space
it is shown that the SOGP scheme can be used under normal flight without
the need of unfeasibly many kernel centers. To show the time-varying ability
of TV-SOGP in an adaptive control setting different process noise values σp
is compared for the periodic trajectory and lastly the TV-SOGP and MPC
is profiled to show the real-time performance of the method.

5.1 SOGP simulations

TV-SOGP Simulation example A simulation example of the pro-
posed TV-SOGP algorithm is given with a time-varying polynomial function
f(t, x, y) = (0.3cos(πt/150) + 0.7)(y2−x2) in a two-dimensional space (x, y).

69

Chapter 5. Simulations

Observations are collected along a circular trajectory that can be seen in Fig-
ure 5.2. The estimation in the current point over time can be seen in Figure
5.1, where the basic SOGP algorithm, the proposed time input in [Chowd-
hary et al., 2013b] and the TV-SOGP ()Kalman filter interpretation) are
compared. The “agent” moving along the trajectory in Figure 5.2 observes
noisy measurements fobs = f(t, x, y) + ε, ε ∼ N (0, 0.01). The agent tries
to estimate the function value in the current point by using previous obser-
vations. It is possible to see that the basic SOGP converges to a stationary
estimate while the TV-SOGP has a time-varying estimate following the func-
tion f better. Another important thing to note is the noisy estimate at the
start of the experiment for all methods. They originate from drastic changes
when the SOGP adds new kernels. Using the strategy of [Chowdhary et al.,
2013b] with a time input to the GP, these oscillations will persist throughout
the experiment while forgetting old kernels. This can be seen in the bottom
graph of Figure 5.1 where spikes in the estimate can be seen throughout the
whole experiment.

Note that the experiment in Figure 5.1 is designed to show the limita-
tions of the proposed algorithm of [Chowdhary et al., 2013b]. The limita-
tions mainly occur when a small budget together with a large εtol is chosen.
Choosing a longer length scale parameter in the time dimension would give
a smoother but slower estimate in the same way as a smaller process noise
could be chosen in the Kalman filter. The main advantage of our proposed
algorithm is however that no extra input has to be added. This means signif-
icantly fewer kernels have to be allocated. The sparse update is in itself also
less computationally expensive than the algorithm proposed in [Chowdhary
et al., 2013b].

It could be argued that the proposed Kalman filter interpretation is more
easily tuned and used since the forgetting speed is only determined by one pa-
rameter σp. This is in contrast to when using the time input, where both the
budget and the kernel width in the time dimension will affect the forgetting
speed.

70

5.1 SOGP simulations

Figure 5.1 In the top graph, the basic SOGP is used on a noisy obser-
vation of the time varying function (see Figure 5.2). The true function f is
shown without noise. In the second graph, the SOGP regression with the
proposed Kalman filter update is used on a time-varying function. In the
bottom graph the SOGP is used with the time t as an input. The predictive
mean f̄ (in black) is calculated before the observation in the relevant point
is added. The values σn =

√
E(ε2) = 0.1 and εtol = 0.01 were used. The

length-scale hyperparameter was σk = 1 in the x and y dimensions, and the
length-scale hyperparameter in the time dimension was chosen to 1000 for
the bottom graph. The maximum budget was chosen to 20 and the process
noise in the middle graph was chosen to σp = 0.008.

71

Chapter 5. Simulations

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Observation location

Figure 5.2 The underlying two-dimensional function observed in the sim-
ulation seen in Figure 5.1. The polynomial function is f(0, x, y) = y2 − x2.
The observations of the function f along the circle trajectory is plotted as
red dots.

72

5.1 SOGP simulations

Persistence of excitation and TV-SOGP
Since a GP encodes information locally and places kernel centers in the input
space according to what has been observed we will see that the PE is not
needed to get valuable information about the underlying function that can
be used in adaptive control. The problem when using parametric models for
identification online is that sufficient excitation of the system is necessary to
get a valuable estimate of the underlying function. This can be seen in the
following example. Let s denote the Laplace variable and assume we have a
first-order linear system

G(s) =
1

s+ 0.1
(5.1)

X(s) = G(s)U(s) (5.2)

A zero-order-hold approximation of G(s) with the sample time ∆t = 1/20 s
can be found as

xk+1 = 0.9950xk + 0.0499uk, (5.3)

The system can then be controlled by a proportional controller uk =
−1.5(xk + vk) in discrete time, where vk is zero mean white measurement
noise with standard deviation σn = 0.05. For an initial value of x0 = 5 the
system response can be seen in Figure 5.3.

If now a system identification would be done with the parametric model
xk+1 = aestxk + bestuk it could be possible to identify a = 0.9950 and b =
0.0499 if the data is sufficiently exciting enough. The data form Figure 5.3
however has a relationship between the input and output uk = −1.5(xk+vk)
that makes the parameters a and b unidentifiable. Intuitively, this is because
all observations will lay on a line in the input space (xk, uk) which makes
it impossible to estimate the function over the whole two-dimensional plane.
To use a time-varying regression such as a Kalman filter would also need PE
over the whole interval, which can be seen to be far from true for the data
in Figure 5.3. To show that this is a Kalman regression according to (2.74)–
(2.77) with regressor kk = [xk, uk]T and process noise R = σ2

pI, σp = 0.01
can be seen in Figure 5.4. It is clear that the estimate cannot recover the
parameters a and b because of the feedback relation. Another problem is that
the covariance matrix P of the estimates of a and b will grow unbounded
over time as can be seen in the top graph of Figure 5.5 because of the lack
of PE.

While the problems outlined above are impossible to get around for esti-
mates of a and b we will now see that GP models and especially TV-SOGP
get around the problem by forming a regressor vector that always will be
non-zero if a prediction is done after updating the TV-SOGP. This will make

73

Chapter 5. Simulations

0 5 10 15 20 25 30

-10

0

10

0 5 10 15 20 25 30

-10

0

10

Figure 5.3 Initial value simulation of G(s) (see (5.1)) with initial value
x0 = 5. Data sample time is ∆t = 1/20 s.

regressor covariance matrix PGP = C + P bounded. Intuitively, it can be
seen since the kernel centers only will be placed in parts of the input space
that is visited. The regressor vector kk will hence always be non-zero in the
neighborhood of the observations. A TV-SOGP regression was done for the
same data seen in Figure 5.3 and as can be seen in the bottom graph of Fig-
ure 5.5 the regressor covariance matrix C + P will remain bounded. When
the cardinality of BV has converged it can be seen that the covariance even
decreases until convergence. The discrete jumps in the covariance originate
from the allocation of new kernel centers and the decrease afterward origi-
nates from the sparse Kalman update. To visualize the local learning of the
SOGP the covariance over the input space is plotted in Figure 5.6. All allo-
cated kernel centers can be seen together with the feedback line uk = −1.5xk.
The SOGP has hence only learned the function values along this line but ef-
fectively avoiding the problem of low PE and the unidentifiable parameters
a and b. It is also clear that local process noise designed in (2.85) does not
make the covariance grow in other areas of the state space. This can be seen
since almost all observations is collected in (xk, uk) = (0, 0). If the process
noise addition would not be local the covariance would be larger in the kernel
centers far from (xk, uk) = (0, 0). This is the reason the covariance C + P
can stay bounded even for time-varying regression under lack of PE.

The properties of TV-SOGP outlined above can be very useful in an
adaptive control setting since the regression always gives valuable informa-

74

5.1 SOGP simulations

0 5 10 15 20 25 30

-1

-0.5

0

0.5

1

1.5

Figure 5.4 Kalman filter regression (see (2.74)–(2.77)) of data in Figure
5.3 with regression model xk+1 = [aest, best][xk, uk]T = αTkk, process noise
σp = 0.01 and measurement noise σn = 0.05.

tion from the local data even if no estimation over the whole input space is
achieved. Since controlled systems often only visit limited parts of the in-
put space this is not always a problem. The problem is however that the
SOGP regression is much more computationally expensive than parametric
regression.

75

Chapter 5. Simulations

0 5 10 15 20 25 30

5

5.05

5.1

0 5 10 15 20 25 30

0

1

2
10

6

Figure 5.5 The Frobenius norm of the covariance matrices for both the
Kalman filter regression (top) and the TV-SOGP regression (bottom).

-8 -6 -4 -2 0 2

-2

0

2

4

6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 5.6 Predictive covariance (see 2.32) of the TV-SOGP regression
over the covered input space (xk, uk).

76

5.2 Quadrotor simulations

5.2 Quadrotor simulations

Attitude Model Reference Adaptive Control
To show the performance of the MRAC scheme for the attitude dynamics it is
separated from the positional dynamics. This, however, raises the question of
what the total thrust would be during the simulation since the uncertainties
described under Section 2.2 will depend on the individual trusts Ti during
the simulation. To this end the total thrust close to the value at hover will
be used T = mg + 0.01sin(πt). This trust will not affect the MRC controller
but add unstructured effects in the model error for the GP to handle. This
choice of the signal can be somewhat validated in MPC simulations in the
next section. This only aims to make the model error unstructured with
respect to the GP inputs [ωx, ωy, ωz, τx, τy, τz] as in a real-world problem.

One simulation will be shown with two uncertainty changes. The first
change will occur in the moment of inertia and the second in an external
wind speed entering through the flap and drag dynamics (see Figure 5.7).
The input quaternion reference is a randomly generated steps in three di-
mensions that is low-pass filtered. The legend in Figure 5.7 shows the color
coding used for all three-dimensional vectors plotted below. An approxima-
tive low-pass character rotor dynamics are included. This introduces a phase
delay between the command torque and the actual torque. This will limit
the performance of the controller. It also makes the calculated model error
unacceptably inaccurate. Because of this, the torque is assumed to be known
exactly when calculating the model error. This would imply that the rotor
speeds are measured, which is not possible for the Crazyflie platform.

The uncertainty matrices C and D in (2.147) were chosen to

D =

 0 −0.1 1
0.1 0 −1
−1 1 0

 10−8 (5.4)

C =

0 −1 0
1 0 0
0 0 0

 10−7. (5.5)

These values are believed to be exaggerated compared to their true values,
but chosen so that the performance of the controller can be evaluated in
extreme conditions.

The settings and parameter choices used in the MRAC and TV-SOGP can
be found in Table 5.1 and 5.2, respectively. The GP-MRAC scheme will here
be tested during changes in the moment of inertia and a wind disturbance.
The changes will take place at different times. The changes can be seen in
Figure 5.7. The performance of the GP-MRAC tracking error can be seen in
Figure 5.9 and should be compared to the MRC under the same disturbances

77

Chapter 5. Simulations

Table 5.1 Parameters choices for MRAC

Parameter Value

Ts (sample time) 1/300 [s]
Kr
q diag([20, 20 , 20])

Kr
w diag([50, 50 , 50])

Kpd
q diag([10, 10 , 10])

Kpd
w diag([7, 7 , 7])

Table 5.2 Parameters choices for TV-SOGP. To make ω and τ on the
same order of magnitude, τ is multiplied by 105.

Parameter Value

input variables [ωx, ωy, ωz, τx105, τy105, τz105]
σk

[
15 15 15 15 15 15

]
Ts (sample time) 1/300 s

εtol 0.001
nmax (budget) 60

σn 0.05
σp 0.0001

which can be seen in Figure 5.10. It can be seen that the disturbance in the
form of a moment of inertia change does not give a stationary error. The
error following from a constant wind will however result in a stationary error
seen in Figure 5.10. Introducing the GP adaptive element however resolves
the stationary error, seen in Figure 5.9.

In Figure 5.11 the estimated model error can be seen together with actual
model error. Even in stationary small deviations between the estimated model
error and the true value can be seen. This is because of the unstructured
nature of the flap and drag uncertainty and possibly because a large length
scale of the kernel is chosen. Note that the speed ṗ is assumed to be zero
here. Introducing ṗ would add even more unstructured uncertainty in the
model error.

The number of kernel centers can be seen in Figure 5.12. The budget
of 60 is not reached. This is due to the wide kernel chosen. The choice of
this wide kernel is necessary for making the GP-MRAC feasible but it works
since the underlying model error function is slowly varying with respect to
the covered state space. When studying the projection error in the bottom
graph of Figure 5.12 and comparing the peaks in the error to the events of
adding new observations to BV in the top graph, it is possible to see that
the KLI test efficiently keeps the projection error below the specified value
εtol = 0.01. This is done by adding new kernels when the KLI test is violated.

78

5.2 Quadrotor simulations

0 10 20 30 40 50

0

2

4
10

-5

0 10 20 30 40 50

0

2

4

Figure 5.7 Top graph shows the moment of inertia matrix entries over
time. The bottom graph shows the wind speed in 3 dimensions.

0 10 20 30 40 50

-1

0

1

0 10 20 30 40 50

-1

0

1

Figure 5.8 The states η and ω when following the random trajectory
during adaptive control with GP-MRAC.

79

Chapter 5. Simulations

State errors with GP-MRAC

0 10 20 30 40 50

-0.1

0

0.1

0 10 20 30 40 50

-0.1

0

0.1

0 10 20 30 40 50

-1

0

1
10

-4

Figure 5.9 State errors for MRAC with GP adaptive element. Top graph
shows the error between the reference model and the actual Euler angles.
The middle graph shows the error between the reference model attitude
rates and the actual attitude rate. The bottom graph shows the control
torques.

State errors with MRC

0 10 20 30 40 50

-0.5

0

0.5

0 10 20 30 40 50

-0.2

0

0.2

0 10 20 30 40 50

-1

0

1
10

-4

Figure 5.10 State errors for MRC without GP adaptive element.

80

5.2 Quadrotor simulations

0 10 20 30 40 50

-5

0

5

0 10 20 30 40 50

0

0.5

1

Figure 5.11 The top graph shows the GP estimated model error. The
bottom graph shows the low-pass filtered ρ gain.

0 10 20 30 40 50

0

10

20

0 10 20 30 40 50

0

0.01

Figure 5.12 SOGP data over time. The top graph shows the number of
observations added to BV and the bottom graph shows γk+1. The tolerance
εtol is 0.01 which can be seen on the highest peaks.

81

Chapter 5. Simulations

Adaptive position MPC
Two trajectory simulations will here be shown to demonstrate the perfor-
mance of the GP-MPC controller under structured flap and drag uncertain-
ties and unstructured wind disturbances. The first simulation shows a figure-8
trajectory that visualizes the accuracy achieved. This periodic trajectory is
designed to visualize the learning over time in a good way. However, since
the state space is only visited along the specific trajectory it does not show if
the GP-MPC would work in a setting where a larger part of the state space
is visited. To this end, a second simulation is also shown where a random
trajectory is simulated. The trajectory is generated through low-pass filtered
steps in three dimensions. This also shows that the GP-MPC scheme can
be feasible for more general flight maneuvers. Both of the simulations are
designed so that the TV-SOGP design is necessary for the adaption to wind
changes.

The simulations are done with an approximate model of the rotors con-
sisting of a simple low-pass filter. Since the rotor dynamics are included it
adds a low-pass dynamic that delays the actual trust from the given thrust
command. The model errors in the attitude dynamics are neglected but the
flap and drag in the position dynamics are included with the parameters
A = diag([2 2 0])10−5 and B = diag([0 0 1])10−7. The values are only
chosen to give visible model errors and are not claimed to be realistic in
magnitude.

The designed MRC controller is used to control the attitude dynamics,
but with slightly different settings because the adaptive element is turned
off. Since the GP computational time was the main reason for having a
longer sample time of 1/300 in the GP-MRAC simulation a shorter sample
time of 1/500 will now be used. The MRC controller will also have slightly
different parameters seen in Table 5.4. The input to the GP adaptive element
was chosen to [vx, vy, φ, θ, ψ, T] with the corresponding hyperparameter
length scale vector [0.5, 0.5, 0.3, 0.3, 0.3, 0.07]. All parameter choices for
the MRC and the MPC can be seen in Tables 5.3 and 5.4, respectively.

Table 5.3 Parameters choices for MPC

Parameter Value

H 15
Ts (sample time) 0.1 [s]

Q diag([10, 10, 10, 15, 15, 15, 10, 10, 10, 10, 10, 10, 10])
Qf diag([10, 10, 10, 15, 15, 15, 10, 10, 10, 10, 10, 10, 10])
R diag([3, 3 , 3 , 3])

82

5.2 Quadrotor simulations

Table 5.4 Parameters choices for MRC

Parameter Value

Ts (sample time) 1/500 [s]
Kref
q diag([20, 20 , 20])

Kref
w diag([50, 50 , 50])

Kpd
q diag([10, 10 , 10])

Kpd
w diag([5, 5 , 5])

Figure-8 trajectory The following simulations show the quadrotor follow-
ing a figure-8 movement under sudden wind disturbance (see Figure 5.13).
The simulations are done without any noise and the wind load disturbance
is smooth in a way that the GP model error estimation can be analyzed
easily. The legend in Figure 5.13 shows the color coding used for all three-
dimensional vectors plotted below. The SOGP adaptive element is here de-
signed so that the budget will not be reached and a small kernel width is
used compared to what is believed to be optimal. This choice is to show the
performance of the TV-SOGP when no reallocation of kernels is done. All
SOGP parameters can be seen in Table 5.5.

Table 5.5 Parameters choices for SOGP

Parameter Value

input variables [vx, vy, φ, θ, ψ, T]
σk [0.5, 0.5, 0.3, 0.3, 0.3, 0.07]

Ts (sample time) 0.1 [s]
εtol 0.001

nmax (budget) 200
σn 0.05
σp 0.01

In Figure 5.14 the quadrotor trajectory can be seen with and without the
GP adaptive element during the wind disturbance. It is a clear improvement
when using GP estimation. The chosen process noise of σp = 0.01 also makes
the controller attenuate the wind disturbance very fast (see Figure 5.16).
This makes the quadrotor following the reference trajectory closely without
venturing into new regions of the state space. This can be seen in Figure 5.15
where the number of kernel centers is approximately 60 after convergence.
This can also be seen in the middle graph where γ is kept under εtol during
most of the experiment. Adding new kernels online is always a sensitive thing
in a controlled setting as will be seen later. When adding new kernel centers at
the start of the experiment the gain ρ makes the influence of the GP adaptive

83

Chapter 5. Simulations

element small. This makes the initial transients from noisy GP estimation
smaller. The influence of the gain during the simulation is minimal.

In Figure 5.17 the estimated model error can be seen. The adaption to the
model error change after the wind disturbance is very fast. It is questionable
whether the high process noise compared to the measurement noise is reason-
able in a real-time implementation. At the same time, it is hard to compare
the process noise choice to parametric Kalman filter regression. Since forget-
ting only affects the close neighborhood, it is reasonable that higher process
noise is necessary. The question of whether the forgetting is too high or not
will also depend on the measurement noise on the model error observation.
In this simulation, no measurement noise is present.

0 20 40 60 80 100

-2

-1.5

-1

-0.5

0

Figure 5.13 Wind speed during figure-8 flight trajectory.

84

5.2 Quadrotor simulations

-1 0 1

-1

-0.5

0

0.5

1

-1 0 1

-1

-0.5

0

0.5

1

Figure 5.14 Simulation trajectories for adaptive GP-MPC (left) and
MPC (right) without adaptive element under wind disturbances seen in
Figure 5.13. Red line represents the desired trajectory and the blue line
represents the actual simulated trajectory.

0 20 40 60 80 100

0

100

200

0 20 40 60 80 100

10
0

0 20 40 60 80 100

10
0

Figure 5.15 GP The top graph shows the number of samples in BV in
blue and the maximum limit of the set (budget) in read. The second graph
shows the KLI test value γt in blue (logarithmic scale) and the tolerance in
εtol in red. The bottom graph shows the predictive covariance in the current
state space point (logarithmic scale).

85

Chapter 5. Simulations

0 20 40 60 80 100

-0.1

0

0.1

0 20 40 60 80 100

-1

0

1

0 20 40 60 80 100

0.262

0.264

0.266

0.268

0.27

0 20 40 60 80 100

-5

0

5

10
-6

Figure 5.16 The top graph shows the difference between reference tra-
jectory and the actual position. The second graph show the actual speed.
In the third graph the total trust is shown and lastly the the bottom graph
shows the torques.

86

5.2 Quadrotor simulations

0 20 40 60 80 100

0

0.2

0.4

0 20 40 60 80 100

0

0.5

1

Figure 5.17 The top graph shows the estimated model error and the
actual model error. The bottom graph shows the ρ gain which limits the
adaptive element gain.

87

Chapter 5. Simulations

Process noise validation To show the importance of the designed process
noise in the TV-SOGP the same experiment with a figure-8 trajectory was
performed with different process noise σp. The same wind disturbance as in
Figure 5.13 was used. The result for σp = 0.01, σp = 0.001 and σp = 0 can be
seen in Figure 5.18. It is clear that higher process noise makes the reaction
to a wind disturbance step faster. For σp = 0.001 the reaction is a bit slower,
but other things can also be seen in the resulting estimate. If one looks closely
on the estimated model error it possible to see small oscillations around the
time of the wind disturbance step. This is not because of the Kalman filter in
the sparse update but because the quadrotor ventures into new regions and
allocates new kernel centers. When the kernel centers are added the estimate
may change drastically in the current point. This is an effect that always will
be present when venturing into new regions of the state space, but it will be
larger when the speed of the measurement “agent” is fast compared to the
sampling rate. In the bottom graphs where no process noise is present at all,
these oscillations get even worse and the system is on the verge of getting
unstable. Note that the system would not become unstable because of the
wind disturbance if the adaptive element was turned off altogether (as can
be seen in Figure 5.14). The oscillations in the GP estimate is the most likely
cause for the aggressive behavior for σp = 0.

The reason for the two first experiments (with σp = 0.01 and σp = 0.01)
being stable is hence that the forgetting is rapid enough to prevent the sys-
tem from venturing into new areas and hence preventing oscillations in the
estimate.

The oscillations can, however, be prevented to some extent by other meth-
ods than high process noise. In Figure 5.19 the KLI projection error γ and
the dimension of the SOGP nBV can be seen for the same experiment with
different process noises. The graphs suggest that smaller process noise leads
to a higher exploration of the state space since the dimension increases much
more at the time of the disturbance entrance. In the projection error graph,
something even more interesting happens. The projection error γ exceeds the
tolerance εtol by far, especially in the last graph. This means that during one
sample time the system has ventured too far out into new regions without
adding new kernels, suggesting that the sample time is too long compared to
the kernel width. This is the main reason for the estimation becoming noisy
as can be seen in Figure 5.18. If a shorter sample time is not wanted this
suggests a greater kernel width. This shows another danger with too short
kernel widths other than overfitting the underlying function.

88

5.2 Quadrotor simulations

0 20 40 60 80

-0.2

0

0.2

0 20 40 60 80

0

0.2

0.4

0 20 40 60 80

-0.2

0

0.2

0 20 40 60 80

0

0.2

0.4

0 20 40 60 80

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 20 40 60 80

0

0.2

0.4

Figure 5.18 Comparison of different choices of process noise during the
figure-8 simulation. Note the different scale in the position error graph for
σp = 0.

89

Chapter 5. Simulations

0 50 100

0

0.005

0.01

0 50 100

0

50

100

150

0 50 100

0

0.005

0.01

0 50 100

0

50

100

150

0 50 100

0

0.005

0.01

0 50 100

0

50

100

150

Figure 5.19 Comparison of the projection error γ and the cardinality of
BV for different choices of process noise during the figure-8 simulation.

90

5.2 Quadrotor simulations

Random trajectory In this section simulation results from a flight over
a randomly generated trajectory during wind disturbances are shown. The
random trajectory is chosen to show that the GP-MPC scheme is not only
feasible for periodic trajectories.

In previous GP-MPC simulations, the kernel width was chosen short com-
pared to what was believed to be optimal. A hyperparameter optimization
of the simulation data in this experiment has been tried but it renders in
solutions of the length scale hyperparameter σk > 300. At hyperparameter
values of these magnitudes, the cost function will be ill-conditioned since the
distance between observations will be too small, suggesting that the data is
not exciting enough to perform hyperparameter optimization. What could be
concluded from the optimization is that the gradient is positive at the initial
value chosen as the hyperparameter vector in Table 5.5. A positive gradi-
ent suggests that the length-scale parameter should be increased. However,
since the optimum could not be found with the considered quasi-Newton al-
gorithms, the hyper-parameters were tuned manually (see Table 5.6). The
higher kernel length scale will cause the GP to allocate fewer kernel centers.
If no bound is put on the BV set, the simulations below would render in
nBV ≈ 60. However, to make the simulation more interesting a budget of
nmax = 20 was chosen so that the SOGP algorithm has to dynamically real-
locate kernels centers. All other parameters of the SOGP for this simulation
can be found in Table 5.6. The wind is now modeled as a Wiener process
added to a step function (see Figure 5.20). This is a more realistic wind dis-
turbance that will be harder to follow for the GP. It can, however, be seen
that the position error is kept down in a good way in Figure 5.23 considering
the rather aggressive wind changes. From Figure 5.23 it is also clear that the
control signals are smooth even with rather fast and noisy changes in the
wind.

Table 5.6 Parameters choices for SOGP

Parameter Value

input variables [vx, vy, φ, θ, ψ, T]
σk [2.5, 2.5, 1.5, 1.5, 1.5, 0.1]

Ts (sample time) 0.1 [s]
εtol 0.001

nmax (budget) 20
σn 0.05
σp 0.001

In the graph of the estimated model error in Figure 5.21, it can be seen
that the estimated model error follows the error, quickly adapting to the

91

Chapter 5. Simulations

abrupt change in error induced by the change in wind speed. Most of the
high-frequency content is however smoothed out. In the same figure, the
gain ρ can be seen to stabilize close to one.

In the top graph of Figure 5.22 showing the cardinality of BV, it can be
seen that |BV| = nBV is kept below 20 s. This forces the SOGP to reallocate
kernel centers dynamically after t ≈ 20. The reallocation will happen each
time γ hits the tolerance εtol. This happens several times as can be seen in
Figure 5.22.

0 20 40 60 80 100

-4

-3

-2

-1

0

Figure 5.20 Wind disturbance in form of steps and an additive Wiener
process with noise covariance matrix diag([16, 16, 0]).

92

5.2 Quadrotor simulations

0 20 40 60 80 100

0

0.2

0.4

0.6

0 20 40 60 80 100

0

0.5

1

Figure 5.21 In the top graph a comparison between the model error and
the estimated model error can be seen. The model error seen by the MPC
is scaled with the gain in the bottom graph.

0 20 40 60 80 100

0

10

20

0 20 40 60 80 100

10
0

0 20 40 60 80 100

10
0

Figure 5.22 GP data along the trajectory. The top graph shows the
number of samples in BV with the budget marked in red. The middle graph
shows the KLI test measure γ togheter with the limiting tolerance εtol
marked in red. The bottom graph shows the predictive covariance over
time.

93

Chapter 5. Simulations

0 20 40 60 80 100

-0.4

-0.2

0

0.2

0.4

0 20 40 60 80 100

-1

0

1

0 20 40 60 80 100

0.22

0.24

0.26

0.28

0.3

0.32

0 20 40 60 80 100

-2

0

2

10
-5

Figure 5.23 States and controls during the experiment. The top graph
shows the error between the reference position and the actual position.

94

5.2 Quadrotor simulations

Profiling To validate the controller for real-time schemes the computation
times of the MPC and the SOGP are here profiled. The histogram for two
different choices of the size of the set BV and the MPC can be seen in
Figure 5.24. The profiling time for SOGP only shows the result for one GP
regression. In the GP-MPC three GP regressions are used, but as can be
seen, the computation time of one SOGP iteration never exceeds 0.004 s if
the budget is chosen to 200. The total computation time of both the MPC
and the SOGP will therefore with very high probability not exceed 0.015 s.
Since the sample time of the MPC was chosen to 1/10 s this is well within the
deadline. The code for SOGP was implemented in Matlab and the generated
MPC C-code was called through a MEX file in Matlab. The computer used
was a Mac 1.5 GHz Intel Core i5 processor with 4 GB memory.

0 0.002 0.004 0.006 0.008 0.01

0

50

100

0 0.002 0.004 0.006 0.008 0.01

0

200

400

0 0.002 0.004 0.006 0.008 0.01

0

20

40

Figure 5.24 Profiling times for the SOGP in the top two histograms and
for the MPC in the bottom histogram. The profiling of the SOGP includes
both prediction and update for two different choices of budget on BV.

95

6
Discussion

The aim of the thesis was to investigate different sparse formulations of GPs.
The main focus has however been a single sparse approximation, namely
SOGP. The reason for this is that the nature of this approximation is sequen-
tial, which is beneficial for online learning. To my knowledge, other sparse
approximations do not aim to learn online but rather reduce the complexity
of the learning in a batch setting (see for example [Snelson and Ghahramani,
2006]).

While the few previous articles on adaptive control with GPs [Maciejowski
and Yang, 2013], [Chowdhary et al., 2013a], [Grande et al., 2014] have incor-
porated time-varying learning in different ways, it was found that improve-
ments could be done. Different sparse approximations allow for different so-
lutions to the problem of time-varying functions. Previous work has used
methods resulting in a sliding window of allocated kernels. In [Maciejowski
and Yang, 2013] a batch strategy was used so that the batch could be se-
lected as a sliding window. In the more related work of [Grande et al., 2014] a
time input was used. The time input essentially results in the same strategy
since the budget of SOGP will be exceeded faster and the oldest sample will
be deleted. While these methods use a very intuitive way of incorporating
forgetting, the work done in this thesis proves that forgetting can be done in
a numerically much less expensive way. This is especially true if a very slow
forgetting is wanted. A longer sliding window would thus be needed which
in turn means that the number of kernels must be increased too. This is
completely avoided in the TV-SOGP algorithm.

Another interesting feature is the locality in the forgetting of the TV-
SOGP, which does not change the behavior of the GP to the same extent
as a time input does. Since the information in the whole state space is not
penalized by the process noise of one Kalman update, an interesting question
is how the sensitivity to low PE is affected. Since the TV-SOGP uses a
forgetting mechanism that only affects the covariance locally, information
far away from the current observation in the input space is preserved to
a larger extent. This, in turn, means that information that was collected a

96

Chapter 6. Discussion

long time ago does not necessarily get “thrown away”. Only information about
regions in state space where new information is collected is forgotten. The
local forgetting should be held in contrast to parametric regression where one
regressor often has a global influence. This effect can be seen in Section 5.1.
This feature of TV-SOGP is a great advantage when designing adaptive
controllers. Since PE is not needed for the TV-SOGP estimate to converge
in the region where samples have been collected the controller gets enough
information to control the plant in the close surroundings of the observations.
If instead a parametric model would be used the covariance will diverge over
time making the adaptive controller very sensitive to low PE.

The dynamics of the quadrotor was investigated by using a nominal model
commonly used in literature for control and simulation of quadrotors. The
aim of the thesis is, however, to perform adaptive control of the quadrotor dy-
namics with unknown uncertainties. Parametric uncertainties in the nominal
dynamics constitute one such example. However, since one of the benefits of
GP regression is its flexibility to estimate functions of unknown structure it is
an advantage to show the ability to adapt to completely un-modeled dynam-
ics. To this end, flap and drag uncertainties were investigated. The flap and
drag effects are also very relevant, especially for outdoor-flight where wind
might be present. When analyzing what inputs should be included to model
these uncertainties, it was realized that a full model of the drag and flap ef-
fects could not be hoped to be identified online with a GP model. The reason
for this is that the GP regression problem scales exponentially in complexity
with the input dimensions. Already for the nominal dynamic estimation, an
input dimension of six was needed. This dimension size is believed to be on
the verge of what is feasible for online control of the quadrotor. This casts
light on the big limitations of GP regression. Since a bound on the BV set
is needed, allocating enough kernel centers to cover the input space will in
many cases not be possible. In the model error plotted in Figure 4.1, six
input dimensions are needed. If only three kernel centers would be placed
along each dimension in the visible grid, this would lead to 36 = 729 kernel
centers. This would hardly be feasible to run at 10 Hz together with the
MPC on a desktop computer. The question is then if the dynamic allocation
strategy used in SOGP can be used to estimate the function only locally
in the current region of state space. The possibility to learn new parts of
the state space when the budget is exceeded will imply that information in
another part of the state space is forgotten. This possibility, to dynamically
allocate new kernels is important and analysis of the behavior of the SOGP
in these situations could be investigated further. This thesis has mainly been
focusing on the problem where a sufficiently small part of the state space is
visited to stay within the budget. In Figure 5.18 this problem is indirectly
seen as oscillations in the estimate. Designing robust control while venturing
into new state space regions needs to be investigated further. The simple

97

Chapter 6. Discussion

attempt to use the predicted covariance to design the gain ρ (as proposed in
[Grande et al., 2014]) showed that it might help in the start of the experiment
where new kernels are allocated. The usefulness of the gain when venturing
into new regions is however very limited. As can be seen in all simulations,
the gain is almost constant over the experiment, even for the simulation in
Figure 5.21 when the system dynamically reallocates kernels when venturing
into new regions. The reason for this is that the parameter σf expressing the
certainty of the nominal model is chosen high. This is unfortunately neces-
sary when using the TV-SOGP algorithm if a value of ρ = 1 is wanted in
stationarity. This is mainly because the predictive covariance indirectly will
be limited by εtol, since the covariance is very related to the projection error
γ. This means that the variation of the covariance always will be small if the
SOGP succeeds to allocate kernels sufficiently fast. The gain ρ will, therefore,
be of little help during slow explorations but could help if the kernel width
is too narrow compared to the exploration speed, as was the case for the
experiment in Figure 5.19.

Another problem is that the gain needs to be low-pass filtered, which
introduces a phase delay that will limit the estimate’s ability to quickly react
to changes in the uncertainty. The MPC framework could, however, provide
a solution to this since predictions along the horizon could be used to predict
future estimation uncertainties, introducing an overhead. This is a possibility
that could be tested in future work. The main limitation of the gain ρ is that
it only restricts the influence of the adaptive element. Intuitively a better
alternative could be to change the controller to be more cautious in low
certainty situations as discussed in Section 3.5.

It is in general hard to give stability proofs for adaptive controllers. Fur-
ther, this thesis has focused on adaptive controllers for unstable non-linear
systems. This combines two complex fields and it is often hard to give any
guarantees of stability. If the amplitude of the model error is not known it
can be questionable whether any stability analysis is possible at all. This
thesis does therefore not aim to give any proof but instead design controllers
and verify them through simulations and real-time implementation. No im-
plementation of the designed adaptive controllers could, however, be imple-
mented in real time because of lack of time. This is a serious limitation in
the validation of the proposed controllers. Simulation environments do only
incorporate what is known of the system and real-time experiments will have
to deal with un-modeled uncertainties, colored noise and load disturbances
of largely unknown structure. This might, first of all, make the nominal con-
troller perform worse than expected and further the model error calculation
could be a problem. If the model error not can be assumed to represent the
true error the hope of using it in adaptive control to result in a stable closed
loop is rather naive. For the case of the position control, the model error
can be measured through the accelerometer. This measurement is however

98

6.1 Limitations

obtained in body frame and needs to be rotated to the inertial frame. Hence
good estimates of the rotation are needed, which assumes the rotations are
observable through other measurements. In the case of the Crazyflie, these
measurements consist of gyroscope and ultra-wideband position measure-
ments [Greiff, 2017].

The model error calculation on the Crazyflie platform is however believed
to be a serious problem. This is because the rotor controller only consists of
a feedforward controller that sets a PWM signal to the motors that give
the desired behavior in stationarity. This means that rather large phase de-
lays will be present. When making the difference in (4.5) this might lead
to significant errors. It is believed that this could be a serious problem in
real-time implementations. Even in simulations, it proved to be hard to solve
the model error calculation. The simulations done is assuming that the real
values of the thrust are available. Without out this, the performance will be
significantly reduced of the adaptive controller.

The GP-MRAC scheme has previously been validated in real time for a
quadrotor [Grande et al., 2014]. This raises the question of how the problem
of phase delay in the rotor dynamics was solved there. No explanation can be
found in the article. A possible reason is that rotor controllers use feedback
to lower the phase delay. It is, therefore, possible that a different platform
than the Crazyflie could be very beneficial. The only solution available on the
Crazyflie would be to run a model of the rotor dynamics on the quadrotor
to approximate the real rotor speeds. If the model provided in [Greiff, 2017]
is accurate enough for this would have to be investigated.

6.1 Limitations

The work done during the course of the thesis covers much of the background
theory of the proposed controllers and GP regression. The validations are
however more limited and much remains to be done. The simulations could
be complemented with noise models and observers to more realistically sim-
ulate the Crazyflie platform and validate the controller under noise and load
disturbances.

To fully validate the GP-MPC scheme a real-time implementation would
be needed. The simulations made here, only prove the effectiveness of the
proposed adaptive controller in a simulation environment. In a real-time set-
ting, the controller needs to tackle colored noise and other disturbances. To
this end, good observers have to be designed. Since the Crazyflie platform
has a well developed open source firmware where this is included this has
not been a focus of this thesis. The most pressing issue with the real-time
implementation is believed to be the accuracy of the model error calculation
on the Crazyflie platform as explained earlier.

99

Chapter 6. Discussion

The proposed controllers are in some sense not designed to perform as
well as possible. They are designed to show the performance of the adaptive
element. This means that no integral action has been included in any of
the controllers. This is especially a limitation in the GP-MPC. Since the
identified dynamics are linearised the controller sometimes showed signs of
not driving the stationary error to zero. Another reason for this might be
that the nominal dynamics are used to generate the reference trajectory. To
this end, integral action could be added to further improve the controller.

While GPs for adaptive control certainly have possible advantages such as
the ability estimate a wide range of unknown functions, providing predictive
uncertainty measures and the ability to identify usable models with very
little data there are also limitations. The most pressing is the complexity
that scales exponentially with the inputs. However, for the model errors in
the simulations of this document, the underlying function proved to have
mostly low-frequency content allowing very wide kernels. In some situations
when the model error structure is known, it can instead be very beneficial
to use a parametric regression instead of GPs. These methods will, however,
have problems for low order of PE which TV-SOGP does not have.

As seen when venturing into new regions of the state space the SOGP
is forced to allocate more kernels as described earlier in the discussion. The
stability and robustness in these situations are not well explored in this work.
It was observed that it might be a big problem in some situations because of
noisy estimates.

100

7
Conclusions

TV-SOGP The work on GP-MRAC by [Grande et al., 2014] includes some
attempts of doing time-varying estimation by using time as an input to the
SOGP. These attempts have some limitations and do not exploit the locality
in GP learning (see Section 2.1). In addition, the BV set, has to be larger
when having one additional input, increasing the dimensionality and numer-
ical complexity significantly. The main contribution of this thesis has been to
design a time-varying SOGP that does not suffer from the above-mentioned
limitations. This was done by introducing a time-varying Kalman filter in
the “sparse update” and enables time-varying learning without deleting ker-
nel centers, resulting in more smooth learning which is beneficial in a control
setting (see Section 5.1). It was also shown that the TV-SOGP performed
better in terms of smooth adaption compared to a SOGP with a time input
in situations where the budget is chosen too restrictive. The main advantage
of TV-SOGP is, however, that one less input is needed. This will greatly
improve the numerical complexity of the algorithm since a smaller BV set is
needed.

One of the greatest advantages of TV-SOGP compared to parametric
models in an adaptive control setting is that there is no need for PE to get
valuable estimates of the dynamics locally in the input space. The price for
this is, however, higher computational complexity compared to parametric
models.

A problem that was observed with SOGPs in the adaptive element was the
sometimes noisy learning of the model error. This is however not a problem
originating from high process noise in the Kalman filter in TV-SOGP, but
rather from the SOGP algorithm itself. Since the kernel centers are placed
online a new kernel will possibly change the estimation drastically if the
new observation is far from the old ones. This is something that is a clear
disadvantage of GP learning in a control setting. The effect can, however, be
reduced by choosing a large length scale hyperparameter if the underlying
function permits or increasing the sample time. Even if the drastic changes
may lead to better estimation it might make the system unstable. Even worse

101

Chapter 7. Conclusions

is that these discontinuities in the estimation happen in sensitive situations
when the dynamics venture into new regions of the state space, see Figure
5.18. Using the uncertainty prediction to solve this problem is an interesting
direction of possible future work.

Controller structure The simulations of the proposed GP-MRAC scheme
for the attitude dynamics showed that the GP adaptive element efficiently
could attenuate wind load disturbances but also adapt to structured uncer-
tainties in the inertia tensor, drag, and flap dynamics. Since the plant model
is perfectly known in simulations, tuning of the hyperparameters can easily
be done. In a real-time setting however it could be hard to collect data that
is exciting enough for hyperparameter optimization. In this specific prob-
lem, the length scale hyperparameters had to be chosen large to allow for a
tractable SOGP running at 300 Hz. The large length scale was however vali-
dated through hyperparameter optimization of the parametric inertia tensor
model error. Since the problem of numerical tractability often is a more press-
ing issue, this will call for wider kernels that might be suboptimal. This is
especially true for controllers that must run at high rates. It is questionable
if the GP-MRAC scheme can run onboard the Crazyflie platform in a suf-
ficiently high sample rate for the attitude controller. The results here only
show that it is feasible to run with a desktop computer in the loop.

Designing an inversion-based MRAC for the position dynamics is a sub-
optimal solution in the sense that the dynamic model is overdetermined and
hence not invertible. This would call for an approximate inversion which
does not draw full benefit from the nominal model. Instead, a solution us-
ing MPC to control the positional dynamics was used. The MPC controller
was designed to operate at 10 Hz. The rather slow sample rate allows for
more possibilities and freedom to choose the hyperparameters. The simula-
tions suggest that reasonably large part of the state space can be estimated
through GP regression with a sufficiently small BV budget to run on a desk-
top computer in real-time. The simulations also show that the adaptive con-
troller is good at attenuating changes in the dynamics. For this to be possible
a large process noise was chosen compared to the measurement noise. It is
possible that lower process noise has to be chosen in a real-time controller.
Since the forgetting is only local it is, however, reasonable to expect that a
lager process noise is needed compared to a parametric Kalman regression.

The simulations here show that GP-MPC has the potential to provide
adaptivity and can be made numerically tractable for many problems if the
number of inputs is limited. This is especially true for GPs representing
distributions of functions with low-frequency content.

102

7.1 Future work

7.1 Future work

To clearly state interesting directions for future work, a brief summary of the
points made in earlier sections is given below.

• As pointed out in [Maciejowski and Yang, 2013] a sophisticated way
of using the uncertainty would instead be to change the optimization
problem to be more cautious in situations where there are high uncer-
tainties in the function estimate. Earlier work has been done exploiting
this in offline identified GP dynamic models (see for example [Cao et
al., 2017]). The problem does, however, suffer from the propagation of
uncertainties that become unfeasible in many real-time settings. To my
knowledge, no attempts to use these methods have been done for online
GP identification.

• Since GP regression incorporates prediction uncertainties a possibility
that is interesting could be to use the uncertainty function for intelli-
gently exciting the system to gain information in uncertain regions of
the state space. This is a problem often referred to as dual control. GPs
for dual control have been investigated before [Alpcan, 2011], but the
field remains an open research question.

• To my knowledge, no GP-MPC has yet been tested in a real-time set-
ting. The results in this thesis, however, show that it could be feasible
in a real-time setting for reasonably large problems.

103

A
Model appendix

A.1 MPC model Linearisation

The linearisation of the nominal model designed for the MPC (see 3.36–3.38)
results in an LTI system of the form

ẋ = Alx+Blu+Gl (A.1)

Al =

0 I3×3 0 0
0 −D/m Aη AT

0 0 0 I4×4

0 0 0 0

 ∈ R13×13 (A.2)

Bl =

0
0
0

I4×4

 ∈ R13×4 (A.3)

Gl =

ṗ0

p̈0

η̇0

04×4

 ∈ R13×1 (A.4)

and

104

A.2 Discretization

Aη =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 (A.5)

A11 =
T0

m
(cos(φ)sin(ψ)− cos(ψ)sin(φ)sin(θ)) (A.6)

A12 =
T0

m
cos(φ)cos(ψ)cos(θ) (A.7)

A13 =
T0

m
(cos(ψ)sin(φ)− cos(φ)sin(ψ)sin(θ)) (A.8)

A21 = −T0

m
(cos(φ)cos(ψ) + sin(φ)sin(ψ)sin(θ)) (A.9)

A22 =
T0

m
cos(φ)cos(θ)sin(ψ) (A.10)

A23 =
T

m
(sin(φ)sin(ψ) + cos(φ)cos(ψ)sin(θ)) (A.11)

A31 = −T0

m
cos(θ)sin(φ) (A.12)

A32 = −T0

m
cos(φ)sin(θ) (A.13)

A33 = 0 (A.14)

AT =

(sin(φ)sin(ψ)+cos(φ)cos(ψ)sin(θ))

m
−(cos(ψ)sin(φ)−cos(φ)sin(ψ)sin(θ))

m
cos(φ)cos(θ)

m

 (A.15)

Note the zeros in the vector Gl, corresponding to linearising around u =
0. This is not a restriction since this part of the dynamics is linear. The
expressions are derived with Matlab’s symbolic toolbox.

A.2 Discretization

The discretization of an LTI system of the form (A.1) through zero-order
hold takes the form of a difference equation as

xk+1 = Adxk +Bduk +Gd (A.16)

Zero-order hold discretization assumes that the input signal is piece-wise
constant between samples to calculate the next sample prediction. By using
the integrating factor e−Alt the linear dynamics in (3.40) become

e−Altẋ(t)− e−AltAlx(t) =
d

dt
(e−AltAlx) = e−Alt(Blu(τ) +Gl). (A.17)

105

Appendix A. Model appendix

The fundamental theorem of calculus then gives

e−AltAlx(t) = e−Alt0Alx(t0) +

∫ t

t0

e−Alt(Blu(τ) +Gl)dτ. (A.18)

By using the zero-order hold approximation of u over an interval ∆t = tk+1−
tk and introducing the substitution τ = s+ t0 the following discretization is
achieved

x(tk+1) = eAl∆txk +

∫ ∆t

0

eAlτBldτuk +

∫ ∆t

0

eAlτGldτ. (A.19)

Identification of terms gives

Ad = eAl∆t (A.20)

Bd =

∫ ∆t

0

eAlτdτBl (A.21)

Gd =

∫ ∆t

0

eAlτdτGl. (A.22)

The calculation of the matrix exponential can be done by a series expansion
for fast calculation in a real-time setting

eAl∆t = lim
n→∞

n∑
i=0

Ai
l∆t

i

i!
(A.23)

∫ ∆t

0

eAlτdτ = lim
n→∞

n∑
i=0

Ai
l∆t

i+1

(i+ 1)!
. (A.24)

106

Bibliography

Alpcan, T. (2011). “Dual control with active learning using Gaussian process
regression”. arXiv preprint arXiv:1105.2211. (Visited on 2019-05-27).

Åström, K. J. and B. Wittenmark (2013). Adaptive control. Dover publica-
tions, Mineola, New York. isbn: 0486462781.

Bangura, M., M. Melega, R. Naldi, and R. Mahony (2016). “Aerodynamics
of rotor blades for quadrotors”. arXiv preprint arXiv:1601.00733. (Visited
on 2019-05-27).

Beal, M. J. (2003). Variational algorithms for approximate Bayesian infer-
ence. PhD thesis. The Gatsby Computational Neuroscience Unit, Univer-
sity of London, 17 Queen Square, London.

Bernard, D. D. C., F. Riccardi, M. Giurato, and M. Lovera (2017). “A
dynamic analysis of ground effect for a quadrotor platform”. IFAC-
PapersOnLine 50:1, pp. 10311–10316.

Brescianini, D., M. Hehn, and R. D’Andrea (2013). Nonlinear quadrocopter
attitude control. Tech. rep. 7387. Institute for Dynamic Systems and Con-
trol, ETH Zurich, Switzerland.

Cao, G., E. M.-K. Lai, and F. Alam (2017). “Gaussian process model pre-
dictive control of unknown non-linear systems”. IET Control Theory &
Applications 11:5, pp. 703–713.

Castillo, P., R. Lozano, and A. Dzul (2004). “Stabilization of a mini-rotorcraft
having four rotors”. In: IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS) (IEEE Cat. No.04CH37566) (Sept. 28–
Oct. 2, 2004). Vol. 3. 8359372. Sendai, Japan, pp. 2693–2698. doi: 10.
1109/IROS.2004.1389815.

Chovancová, A., T. Fico, L. Chovanec, and P. Hubinsk (2014). “Mathematical
modelling and parameter identification of quadrotor (a survey)”. Procedia
Engineering 96, pp. 172–181.

107

https://doi.org/10.1109/IROS.2004.1389815
https://doi.org/10.1109/IROS.2004.1389815

Bibliography

Chowdhary, G., H. A. Kingravi, J. P. How, and P. A. Vela (2013a). “A
Bayesian nonparametric approach to adaptive control using Gaussian
processes”. In: Decision and Control (CDC), 2013 IEEE 52nd Annual
Conference on (Dec. 10–13, 2013). IEEE. Florence, Italy, pp. 874–879.

Chowdhary, G., H. A. Kingravi, J. P. How, and P. A. Vela (2013b). “Bayesian
nonparametric adaptive control of time-varying systems using Gaussian
processes”. In: 2013 American Control Conference (June 17–19, 2013).
IEEE. Washington, DC, USA, pp. 2655–2661. doi: 10.1109/ACC.2013.
6580235.

Csató, L. (2002). Gaussian processes: iterative sparse approximations. PhD
thesis. Department of Computer Science & Applied Mathematics, Aston
University, Birmingham, United Kingdom.

Csató, L. and M. Opper (2002). “Sparse on-line Gaussian processes”. Neural
computation 14:3, pp. 641–668.

Deisenroth, M. P., D. Fox, and C. E. Rasmussen (2015). “Gaussian processes
for data-efficient learning in robotics and control”. IEEE Transactions on
pattern analysis and machine intelligence 37:2, pp. 408–423.

Fresk, E. and G. Nikolakopoulos (2013). “Full quaternion based attitude con-
trol for a quadrotor”. In: European Control Conference (ECC), (July 17–
19, 2013). IEEE. Zurich, Switzerland, pp. 3864–3869.

Ghahramani, Z. (2013). “Bayesian non-parametrics and the probabilistic ap-
proach to modelling”. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences 371:1984, p. 20110553.

Grande, R. C., G. Chowdhary, and J. P. How (2013). “Nonparametric adap-
tive control using Gaussian processes with online hyperparameter estima-
tion”. In: 52nd IEEE Conference on Decision and Control (Dec. 10–13,
2013). IEEE. Florence, Italy, pp. 861–867.

Grande, R. C., G. Chowdhary, and J. P. How (2014). “Experimental vali-
dation of Bayesian nonparametric adaptive control using Gaussian pro-
cesses”. Journal of Aerospace Information Systems 11:9, pp. 565–578.

Greiff, M. (2017). Modelling and control of the crazyflie quadrotor for aggres-
sive and autonomous flight by optical flow driven state estimation. MSc
thesis TFRT-6026. Department of Automatic Control, Lunds University,
Lund, Sweden.

Hewing, L. and M. N. Zeilinger (2017). “Cautious model predictive control
using Gaussian process regression”. arXiv preprint arXiv:1705.10702.

Houska, B., H. J. Ferreau, and M. Diehl (2011). “ACADO toolkit—an open-
source framework for automatic control and dynamic optimization”. Op-
timal Control Applications and Methods 32:3, pp. 298–312.

108

https://doi.org/10.1109/ACC.2013.6580235
https://doi.org/10.1109/ACC.2013.6580235

Bibliography

Johansson, R. (1993). System modeling and identification Prentice Hall infor-
mation and system sciences series. Englewood Cliffs, NJ: Prentice Hall.
isbn: 0134823087.

Kai, J.-M., G. Allibert, M.-D. Hua, and T. Hamel (2017). “Nonlinear feed-
back control of quadrotors exploiting first-order drag effects”. IFAC-
PapersOnLine 50:1, pp. 8189–8195.

Kocijan, J. (2016). Modelling and control of dynamic systems using Gaussian
process models. Springer, Cham, Switzerland. isbn: 9783319210216. url:
https://link.springer.com/book/10.1007%2F978-3-319-21021-6
(visited on 2019-05-27).

Landry, B. (2015). Planning and control for quadrotor flight through cluttered
environments. MSc thesis 932228932. Department of Electrical Engineer-
ing and Computer Science, Massachusetts Institute of Technology, Cam-
bridge, MA. url: https://dspace.mit.edu/handle/1721.1/100608.

Lee, H. J., J. B. Park, and G. Chen (2001). “Robust fuzzy control of nonlin-
ear systems with parametric uncertainties”. IEEE Transactions on fuzzy
systems 9:2, pp. 369–379.

Limaverde Filho, J. O. d. A., T. S. Lourenço, E. Fortaleza, A. Murilo,
and R. V. Lopes (2016). “Trajectory tracking for a quadrotor system:
a flatness-based nonlinear predictive control approach”. In: 2016 IEEE
Conference on Control Applications (CCA) (Sept. 19–22, 2016). IEEE.
Buenos Aires, Argentina, pp. 1380–1385.

Luukkonen, T. (2011). Modelling and control of quadcopter. Aalto Univer-
sity. url: http://sal.aalto.fi/publications/pdf-files/eluu11_
public.pdf (visited on 2019-06-10).

Maciejowski, J. M. and X. Yang (2013). “Fault tolerant control using Gaus-
sian processes and model predictive control”. In: Control and Fault-
Tolerant Systems (SysTol), 2013 Conference on (Oct. 9–11, 2013). IEEE.
Nice, France, pp. 1–12.

Mattingley, J. and S. Boyd (2012). “CVXGEN: a code generator for embed-
ded convex optimization”. Optimization and Engineering 13:1, pp. 1–27.

Miao, L., G. Chowdhary, B. Castra da Silva, L. Shih-Yuan, and J. How
(2018). “Gaussian processes for learning and control: a tutorial with ex-
amples.” IEEE Control Systems Magazine 38:5, pp. 53–86. issn: 1066-
033X. doi: 10.1109/MCS.2018.2851010.

Mohammed, R. O. and G. C. Cawley (2017). “Over-fitting in model selec-
tion with Gaussian process regression”. In: International Conference on
Machine Learning and Data Mining in Pattern Recognition. Springer,
pp. 192–205.

109

https://link.springer.com/book/10.1007%2F978-3-319-21021-6
https://dspace.mit.edu/handle/1721.1/100608
http://sal.aalto.fi/publications/pdf-files/eluu11_public.pdf
http://sal.aalto.fi/publications/pdf-files/eluu11_public.pdf
https://doi.org/10.1109/MCS.2018.2851010

Bibliography

Mueller, M. W., M. Hamer, and R. D’Andrea (2015). “Fusing ultra-wideband
range measurements with accelerometers and rate gyroscopes for quadro-
copter state estimation”. In: 2015 IEEE International Conference on
Robotics and Automation (ICRA) (May 26–30, 2015). IEEE. Seattle, WA,
USA, pp. 1730–1736.

Petersen, K. (2012). The matrix cookbook. Version: November 15, 2012. Tech-
nical University of Denmark, Lyngby, Denmark. url: http://www2.imm.
dtu.dk/pubdb/views/publication_details.php?id=3274 (visited on
2019-05-27).

Rasmussen, C. E. and C. K. I. Williams (2006). Gaussian processes for ma-
chine learning. Adaptive computation and machine learning. Cambridge,
Mass. : MIT Press, cop. 2006. isbn: 026218253X.

Ripley, B. D. (1991). Statistical inference for spatial processes. Cambridge
university press, Cambridge, United Kingdom. isbn: 0521352347.

Sanchez-Cuevas, P., G. Heredia, and A. Ollero (2017). “Characterization of
the aerodynamic ground effect and its influence in multirotor control”.
International Journal of Aerospace Engineering 2017:1823056.

Snelson, E. and Z. Ghahramani (2006). “Sparse Gaussian processes using
pseudo-inputs”. In: Weiss, Y. et al. (Eds.). Advances in Neural Infor-
mation Processing Systems 18. MIT Press, Cambridge, MA, pp. 1257–
1264. url: http://papers.nips.cc/paper/2857-sparse-gaussian-
processes-using-pseudo-inputs.pdf.

Sola, J. (2017). “Quaternion kinematics for the error-state Kalman filter”.
arXiv preprint arXiv:1711.02508. (Visited on 2019-05-27).

Soleymani, F. (2012). “A rapid numerical algorithm to compute matrix inver-
sion”. International Journal of Mathematics and Mathematical Sciences
2012:134653.

Zhang, Y. and G. Luo (2014). “Fast algorithm for non-stationary Gaussian
process prediction”. In: Twenty-Eighth AAAI Conference on Artificial In-
telligence (July 27–31, 2014). Vol. 800. Québec, Canada, pp. 3150–3151.

Zometa, P., M. Kögel, and R. Findeisen (2013). “muAO-MPC: a free code
generation tool for embedded real-time linear model predictive control”.
In: Proc. American Control Conference (ACC), 2013 (June 17–19, 2013).
Washington D.C., USA, pp. 5340–5345. doi: 10 . 1109 / ACC . 2013 .
6580668.

110

http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3274
http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3274
http://papers.nips.cc/paper/2857-sparse-gaussian-processes-using-pseudo-inputs.pdf
http://papers.nips.cc/paper/2857-sparse-gaussian-processes-using-pseudo-inputs.pdf
https://doi.org/10.1109/ACC.2013.6580668
https://doi.org/10.1109/ACC.2013.6580668

Document name

Date of issue

Document Number

Author(s) Supervisor

Title and subtitle

Abstract

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN

Language Number of pages Recipient’s notes

Security classification

	Introduction
	Problem formulation and Goals
	Outline
	Notations

	Background
	Gaussian Processes
	Quadrotor dynamics

	Controller Design
	Full controller structure
	Rotor feed-forward
	Inversion based MRAC
	Exploiting the predictive uncertainty
	Position MPC

	Adaptive element
	Online calculation of model error ()

	Simulations
	SOGP simulations
	Quadrotor simulations

	Discussion
	Limitations

	Conclusions
	Future work

	Model appendix
	MPC model Linearisation
	Discretization

	Bibliography

