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Abstract

Short gamma-ray bursts are often observed at large spatial offsets from their host galaxies.
Neutron star mergers in double neutron star binaries have also recently been confirmed as
a progenitors of short gamma-ray bursts (Abbott et al. 2017). We attempt to constrain
uncertainties in the evolution of burst-producing neutron star binaries by generating a
distribution of burst offsets from the neutron star natal kick, and then compare to a pop-
ulation of observed offsets in spiral galaxies. In order to do so, we model the dynamical
effects of the formation of the second neutron star in a double neutron star binary. We
find the resulting binary velocity and the time it takes for the binary to merge. Using the
velocity and lifetime, we then integrate the trajectories of the binaries within the environ-
ment of a spiral galaxy until they merge. It is found that binaries need to be separated
by . 20 R� before the supernova to produce a burst within Hubble time. No constraints
were found on exploding star mass or kick strength. We also find that kick strengths much
weaker (rms ≈ 50 km/s) than kicks derived from isolated pulsars (rms ≈ 500 km/s) could
potentially produce all offsets in the probed population of observed binaries.



Populärvetenskaplig beskrivning

Bland de mest kraftfulla händelser som människor har observerat är gammablixtar. Blix-
tarna är korta utbrott av gammastr̊alning som ibland dyker upp i rymden. Forskare har
länge misstänkt att kollisioner mellan neutronstjärnor ligger bakom en kategori av blixtar,
de korta gammablixtarna. För n̊agra år sedan bekräftades forskarnas misstankar. De kunde
d̊a, med det nya LIGO-observatoriet, observera gravitationsv̊agor fr̊an en kollision mellan
neutronstjärnor samtidigt som de ocks̊a s̊ag en gammablixt fr̊an samma del av himlen.

Neutronstjärnor är en exotisk typ av stjärnor som föds i explosiva supernovor när
massiva stjärnor dör. De är ocks̊a de mest kompakta föremålen i universum. Medan de
har en diameter p̊a endast n̊agra enstaka mil, är de mer massiva än solen – en matsked av
en neutronstjärna väger mer än 1000 ton.

Att tv̊a neutronstjärnor skulle slumpmässigt kollidera händer inte – det är inte ens
astronomiskt osannolikt. Rymden är helt enkelt för stor: forskare förväntar inte att det
kommer ske n̊agon kollision mellan stjärnor när v̊ar Vintergata kolliderar med Andromeda-
galaxen om n̊agra miljarder år. För att en kollision mellan neutronstjärnor ska ske, måste
de vara bundna till varandra i ett binärsystem, precis som jorden är bunden till solen.

Det är inte enkelt för tv̊a stycken neutronstjärnor att hamna i en binär. De genomg̊ar
flera komplicerade stadier, samtidigt som de m̊aste överleva b̊ada de tv̊a supernovor som
de föds i. Fr̊an dessa explosioner f̊ar binären en spark, vilket gör att de färdas upp till flera
tiotusentals ljus̊ar fr̊an platsen de föds – vilket stämmer överens med de gammablixtar vi
har observerat.

Vi kan göra modeller av hur binären p̊averkas av supernova-explosioner, och hur den
sen färdas genom rymden. Vi kan d̊a förutsäga var neutronstärnorna kommer kollidera och
jämföra med var vi ser korta gammablixtar. Genom att göra detta kan vi bättre först̊a de
komplicerade stadierna som p̊ag̊ar i binären, och även supernovorna som neutronstjärnor
föds i.
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Chapter 1

Introduction

Gamma ray bursts (GRB) are short, highly energetic, non-repeating flashes of gamma rays
followed by an afterglow. GRBs have a bimodal distribution in their durations, separating
them into two distinct populations: the short gamma-ray bursts (SGRB) and the long
gamma-ray bursts (LGRB) with a separation at ∼ 2 seconds (Kouveliotou et al. 1993).
This distinction of two different populations point to SGRBs and LGRBs being different
phenomena, with different progenitors.

SGRBs and LGRBs are not just different in their durations, but also where they are
found. LGRBs are exclusively found in star-forming galaxies, while SGRBs have been
observed in all types of galaxies as well as at large spatial offsets from their host galaxies
(Fong et al. 2010). This points to the progenitors of SGRBs being older than the progenitors
of LGRBs, and that the SGRB progenitors can travel far from their place of birth.

Neutron star mergers have long been seen as a candidate progenitor of SGRBs (Rud-
erman 1975). The timescale, down to 10−4 s, as well as predictions of the energetics of the
merger event, both fit. Furthermore, the natal kicks of neutron stars would also explain
the large offsets that have been observed. The coincident observation of a SGRB with
the Laser Interferometer Gravitational-Wave Observatory (LIGO) detection of the gravi-
tational wave emission from the merger of two neutron stars (Abbott et al. 2017) finally
confirmed neutron star mergers as a progenitor to SGRBs.

Neutron stars are the stellar remnants of massive stars, with main sequence (MS) mass
from about 8 − 20 M�. The iron core of a main sequence star is supported by electron
degeneracy pressure. The degeneracy pressure can only support a core mass up to the
Chandrasekhar mass, mCh = 1.4 M�, and the core collapses once its mass surpasses mCh.
Stars with masses less than 20 M� also have low enough masses for the core collapse to be
halted by neutron degeneracy pressure, resulting in a core collapse supernova which leaves
a neutron star as a remnant. A small asymmetry in the supernova gives the newly born
neutron star a natal kick.

A binary of two neutron stars is required for two to merge and produce a SGRB.
The most obvious production of such a supernova would be a primordial double neutron
star binary, where two stars with appropriate masses are simply formed in a binary. A
dynamical origin in globular clusters has also been proposed (e.g. Davies 1995), but is not
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CHAPTER 1. INTRODUCTION

considered in this paper.
Tauris et al. (2017) show the evolutionary scenario in which a double neutron star

binary is formed from a binary of two main sequence stars. The more massive of the two
stars, m2 goes into its giant phase. The binary must be tight enough that Roche lobe
overflow occurs, and the less massive m1 accretes the hydrogen envelope of m1, leaving m2

a helium star. m2 eventually undergoes core-collapse and explodes in a supernova, leaving
the first neutron star. If the binary survives, m1 eventually also enters the giant phase and
Roche lobe overflow occurs again. This time, the configuration is dynamically unstable
and the binary enters into a common envelope phase where the neutron star of m2 and
helium core of m1 share a common hydrogen envelope. Dynamical friction shrinks and
circularizes the orbit: combined with stellar winds, the dynamical friction also throws out
the hydrogen envelope. Left is the neutron star m2 and naked helium star m1. m1 will
with time also undergo core collapse, forming the second neutron star in the binary. If the
binary remains bound after the second supernova, there are two compact objects orbiting
each other in a tight binary. They will emit gravitational radiation, carrying away energy
and angular momentum. As a result the binary gradually shrinks until the neutron stars
eventually merge.

In this paper, we attempt to find what inputs into the final stages of the double neutron
star binary evolution produce SGRBs consistent with the observed distribution of SGRB
offsets. In order to do this, we produce a model for the dynamical effects of the formation
of the second neutron star in the binary. We then integrate the path of the binary as it
traverses its host galaxy, and compare the resulting offsets to the observed population of
SGRBs.
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Chapter 2

Kick model

We are to develop a model for how the neutron star natal kick affects the double neutron
star binary. First, let us describe the binary system at the start of our model. At this
point, the binary consists of a naked helium star (with mass m1,i) and a neutron star
(with mass m2 = 1.4 M�) on a tight circular orbit, as depicted in figure 2.1. We use
the notation that xi denotes initial, that is pre-supernova, quantities of parameter x that
change after the supernova – no subscript means that the quantity either does not change
or is post-supernova.

In the binary we have an inertial frame in the center of mass

Mi~vcom,i = m1,i~v1,i +m2~v2,i ≡ 0 (2.1)

where M = m1 + m2, ~vj,i is the velocity of star j. We define that the system velocity is
initially ~vcom,i = 0 – the binary is initially stationary in its inertial frame. Note that we
are thus neglecting the history of the binary here, in particular the velocity imparted by
the first supernova. We justify this by the much higher total mass of the system after the
first supernova. At that point, the binary contained a massive MS star – compared to the
two neutron stars comprising the system after the second supernova.

Now, let us assume the supernova explosion occurs instantaneously and isotropically.
I.e, the only thing that occurs at first instance is that the exploding helium star loses mass:

m1 = m1,i − δm = 1.4 M�

Of course, this does impart an impulse on the system. The binary has lost mass and thus
momentum, and is effectively kicked in the direction of −~v1,i.

However, we know that an isotropic mass loss is a poor model; we observe that isolated
neutron stars receive natal kicks (Lai et al. 2001). We will incorporate this in the simplest
way possible, and directly give the exploding star an extra kick velocity ~vk after the mass
loss. Let us express the new binary system velocity:

M~vcom = (m1,i − δm)(~v1,i + ~vk) +m2~v2,i = m1~vk − δm~v1,i +Mi~vcom,i

= m1~vk − δm~v1,i
(2.2)
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CHAPTER 2. KICK MODEL

He-star

m1,i

NS

m2=1.4 M⊙

NS

m2=1.4 M⊙

NS

m1= m1,i  - δm =1.4 M⊙

θ
vk

v2,i

v2,i

v1,i

v1,i

Figure 2.1: Depiction of how we model the second supernova in a double neutron star
binary. A NS (m2) and a He-star (m1,i) are initially on a tight circular orbit, separated by
the semimajor axis ai. In the supernova, the He-star instantaneously loses an amount of
mass δm, and is given a natal kick ~vk. Also shown is the azimuthal angle θ between ~vk and
~v1,i in the plane of the orbit; not shown is the polar angle ϕ between ~vk and said plane.
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CHAPTER 2. KICK MODEL

To reiterate, we model two effects on the velocity of the binary: The impulse imparted
by the instantaneous mass loss of the exploding component, and a correction for our
assumption of isotropic mass loss.

We have now found one of the parameters we will need in order to find a future position
of our binary: the system velocity ~vcom. However, this velocity is only relevant if the binary
in fact remains a binary; we need to know whether the binary remains bound after the
supernova. In order to find if the binary remains bound or not, we calculate the energy E
of the system. If E < 0, it is bound – it is not bound if E > 0. In order to calculate the
total energy we simply sum the kinetic and potential energies

E =
1

2
(m1v

2
1 +m2v

2
2)− Gm1m2

ai

(2.3)

There are two things to note here. First is that we need to use the velocities of the
component stars in the new inertial rest frame of the binary. These are

v1 = |~v1,i + ~vk − ~vcom| & v2 = |~v2 − ~vcom| (2.4)

Second is that we find the potential and kinetic energies at the moment after the instanta-
neous explosion. That is why we can use the newly found rest frame velocities and initial
separation, even though the velocities and separation will change with time.

We are now able to find which systems would be able to survive the supernova. We can
thus pose a question: Which systems would survive, if there is no kick? Or, in other words,
how massive could we make m1,i before we start to expect that the system is unlikely to
remain bound? We find that

E < 0⇔ δm <
m1 +m1

2
(2.5)

Eq. 2.5 only holds for no kick, as mentioned. The nature of the kick, both its strength
and direction, will have an impact on whether the binary remains bound or not. In
particular, it affects v1 in (2.3). If the kick is strong enough, the system will receive enough
energy that it will not remain bound. More interesting are weak and moderately strong
kicks, where the binary may or may not remain bound depending on the kick direction.
Figure 2.2 shows just how the direction of a kick with strength v1,i affects the system with
m1,i = 4.2 M� – where E = 0 when no kick is given.

We can see an interesting feature of our kick model in figure 2.2. The most bound
systems are the ones with kicks in the −~v1,i-direction, which is also the direction that the
momentum kick from the mass loss imparts on the binary. This means that binaries which
receive kicks strong enough to potentially unbind them, will remain bound if the natal
kick aligns with the velocity imparted by the mass loss. Thus, for a given binary and
kick strength, the binaries which remain bound receive larger system velocities than those
which are unbound. Point being, there is a bias towards large velocities for binaries which
remain bound.

We have made a model for producing a (possibly surviving) double neutron star binary,
that has received some system velocity. As the two neutron stars circle each other, they
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CHAPTER 2. KICK MODEL
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Figure 2.2: Resulting system energy E as simulated in the model. A kick vk = v1,i is given
while varying kick direction, in a system with m1,i = 4.2 M�. θ and ϕ define the angle
between ~vk and ~v1,i, as described in figure 2.1. (θ, ϕ) = (0, π/2) means ~vk ‖ ~v1,i, while
(θ, ϕ) = (π, π/2) means ~vk ‖ −~v1,i

will emit gravitational waves that carry away energy and angular momentum (Taylor &
Weisberg 1982). As a result, the binaries start to inspiral. When the binary components
grow closer the gravitational wave emission grows stronger, meaning there is a strong
feedback loop. The result is that double neutron star binaries have a finite lifetime before
the neutron stars merge. An approximation of this merger time τ is given by Lorimer
(2008).

τ ≈ 9.83 · 106 yr

(
Pb

hr

)8/3(
m1 +m2

M�

)−2/3(
µ

M�

)−1 (
1− e2

)7/2
(2.6)

Here, Pb is the orbital period of the binary, µ = m1m2

m1+m2
the reduced mass of the system,

and e the orbital eccentricity. We have plotted isochromes of τ in a-e space in figure 2.3
to illustrate how changes in orbital period and eccentricity lead to very different merger
times.

The next step is obviously to find the two parameters in (2.6) which we have not already
found - Pb and e. We start with the orbital period, by finding the semimajor axis of the
system. We know that the semimajor axis is related to the potential energy U of the
system, and that the total energy in the two body problem is half the potential energy:

E =
1

2
U = −1

2

Gm1m2

a

⇒ a = −Gm1m2

2E

(2.7)
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Figure 2.3: Isochromes of merger time τ in a-e space.

Then we simply use Kepler’s third law to obtain the period.

Pb =
2πa3/2√

G(m1 +m2)
(2.8)

Meanwhile, the angular momentum J of an elliptical orbit can be found by correcting
the circular angular momentum Jc by the orbital eccentricity

J = Jc

√
1− e2 (2.9)

where Jc is
Jc = µ

√
GMa (2.10)

J is also defined as

J ≡

∣∣∣∣∣∑
j

mj~rj × ~vj

∣∣∣∣∣ (2.11)

so we can solve for e in (2.9)

e =

√
1−

(
J

Jc

)2

(2.12)

We have now found all we need in our kick model to produce a distribution of SGRB
offsets – the system velocity vcom the binary receives, whether it remains bound as well as
the time it takes for the binary to merge.
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Chapter 3

Population synthesis

To produce a population of SGRB, we need a population of initial binaries to use our kick
model upon. I.e, we need an initial distribution of masses m1,i, semimajor axes ai, and
natal kicks ~vk.

We expect that helium stars of mass 2 − 8 M� will produce neutron stars in isolation
(Hurley et al. 2000). In a binary there is the possibility for the helium star to lose mass
by mass transfer to its companion, while still collapsing into a neutron star – as discussed
in the introduction. We take a conservatively large range for m1,i, between 1.5− 8 M�.

To obtain the distribution of masses, we use the main sequence initial mass function
(IMF) and interpolate to the appropriate helium star mass. We use the Salpeter IMF
(Salpeter 1955)

dN

dmMS

∝ m−2.35
MS (3.1)

which we assume to be constant throughout the history of the host galaxy for all masses. To
interpolate from the main sequence mass to helium star mass we follow the approximation
in Davies et al. (2002):

mHe (mMS) ≈ 0.125m1.4
MS (3.2)

We know that tight binaries are produced by the common envelope evolution. As a
rough approximation to the results of common envelope evolution, we use an inverse (a−1

i )
distribution. We put an ad hoc upper limit of 215/2 R� (i.e. about half an AU) to this
distribution. Later in this paper we show that this limit is justified, as the binaries must
be tighter for a noticeable fraction of them to merge within Hubble time and produce the
SGRBs we are interested in.

The lower limit to the semimajor axis can be justified on physical grounds, however.
The stars cannot be so close to each other that mass transfer occurs, changing the initial
mass parameter. Mass transfer occurs when the helium star exceeds the extent of the
Roche lobe, and the Roche lobe depends on the separation of the binary. We follow the
approximation in Eggleton (1983), where the Roche lobe is approximated as a sphere with
radius

rL =
0.49q2/3

0.6q2/3 + ln (1 + q1/3)
a = f(q)a (3.3)

12



CHAPTER 3. POPULATION SYNTHESIS

where q is the mass fraction m1,i/m2. I.e, we approximate that mass transfer occurs when
the radius R of m1,i is larger than rL. Hence, we also need to find the radius of a helium
star, which we do in Hurley et al. (2000).

R =
0.2391m4.6

1,i

m4
1,i + 0.162m3

1,i + 0.0065
(3.4)

To find the lower limit amin of the semimajor axis we simply consider

R = rL = f(q)amin

⇔ amin =
R

f(q)

(3.5)

Our final free parameter is the kick ~vk. Hobbs et al. (2005) derives a kick distribution
from observing the proper motion of local neutron stars, assuming isotropic distribution.
The derived distribution is a Maxwellian

P (v) =
π

2
(
π
2
σ2

1D

)3/2
v2e
− v2

2σ2
1D (3.6)

with σ1D = 265 km/s. As this was derived assuming isotropic distribution, we also dis-
tribute the kick directions isotropically.

There are two underlying assumptions that should be noted here. The first is that this
distribution was derived for local, observable, neutron stars – i.e. pulsars in the Milky
Way that are young enough that their high frequency radio pulses can still be observed. In
other words, eq. (3.6) was derived from a stellar population with the chemical composition
of stars currently formed in the Milky Way. Neutron stars can remain in a binary orbit
for billions of years before they merge, and therefore may have a very different chemical
composition – and hence also may have different kick distributions.

The second assumption is that we can use kicks derived from isolated neutron stars
for core-collapse supernovae in binaries. E.g Tauris et al. (2017) proposes an evolutionary
scenario where the helium star is stripped of most of its outer layers. They further point
out that this would result in much weaker kicks, on the order of tens of km/s.

Results of

population synthesis

We now have everything that is needed to produce a number of binaries, where we know
whether or not the binary survives, the total system velocity the binary receives from the
supernova, and when the binary will merge. Let us now investigate the model, starting with
the relation between kick velocity vk and system velocity vcom. This relation is presented in
figure 3.1 for a few different m1,i and ai when the system receives different kicks in random
directions.
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Figure 3.1: Shown are the kick velocity vk and resultant system velocity vcom for 500
binaries generated in our model, for different constants ai and m1,i while giving a random
kick direction.
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CHAPTER 3. POPULATION SYNTHESIS

In figure 3.1 we can see that the systems which remain bound are indeed the systems
which receive a larger system velocity for a given kick. We can also see a qualitative
difference between the systems in that the more massive systems can receive a system
velocity larger than the kick velocity, while the less massive ones do not. The reason why
can be found by considering (2.2): there is a larger mass difference δm so there is already
a significant velocity contribution from the mass loss, even before a kick is imparted.

Similarly, the low-ai systems also have larger velocities when a kick is absent, most
clear in the 4 M� systems. Again, the reason why can be seen in (2.2). The velocity of a
body on a circular Keplerian orbit has a proportionality to its semimajor axis as v ∝ a−1/2.
Hence, v1,i is larger for tighter systems and the momentum imparted on the system from
the mass loss larger.

Let us now consider a more central question. For which part of the parameter space of
m1,i and ai can we expect that a binary will survive the supernova? What is the fraction of
systems which are bound given m1,i and ai? We can make some preliminary predictions of
the behaviour of the bound fraction. The larger the initial semimajor axis, the smaller the
initial binding energy of the binary – larger initial semimajor axes should have a smaller
bound fraction. Similarly, a larger initial mass means that more energy is given to the
system from the larger momentum kick of the mass loss – larger initial masses should also
have a smaller bound fraction.

However, we can also quantify the bound fraction theoretically. First, consider the
bound condition of the binary in the reduced mass formalism:

E =
1

2
µv2

b −
Gm1m2

ai

= 0 ⇒ v2
b =

2G(m1 +m2)

ai

(3.7)

We are saying that if the relative velocity vr is less than the critical velocity vb, i.e. if
vr < vb, the system is bound. The relative velocity is frame invariant – so we can put
ourselves in the frame of m2. In this frame, m1 has a velocity

v2
c =

Gm1,im2

ai

(3.8)

before the supernova. After the supernova it has a new relative velocity

v2
r = [vc + vk cos(Θ)]2 + [vk sin(Θ)]2 = v2

c + v2
k + 2vcvk cos(Θ) (3.9)

where Θ is the angle between ~vc and the kick ~vk. The normalized integral over all possible
vk and Θ (i.e, all possible kicks) is∫ π

0

∫ ∞
0

1

2
sin(Θ)P (vk)dvkdΘ = 1 (3.10)

If we would only count the systems which end up bound, we receive the bound fraction.
So let us only count the bound systems by introducing

H(v2
r − v2

b) =

{
1 if v2

r − v2
b < 0

0 if v2
r − v2

b ≥ 0
(3.11)
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Figure 3.2: Fraction of bound systems generated in the model allocated over 100×100 bins
of initial semimajor axis ai and mass m1,i. 250,000 binaries generated in total.

to the integrand:

Pbound =

∫ π

0

∫ ∞
0

1

2
sin(Θ)P (vk)H(v2

r − v2
b)dvkdΘ (3.12)

The resulting bound fraction from running the model can be seen in figure 3.2. Com-
paring the values computed numerically from the theoretical expression in (3.12) confirms
that they indeed produce the same results, which also agree with our preliminary predic-
tion. Note also the ”forbidden” region in lower part of the plot. It is the part of parameter
space where the semimajor axis ai results in a Roche lobe rL > R for the given mass.

We are still interested in the system velocity of the binaries which remain bound. We
can confidently predict the general behaviour beforehand, as there is a straightforward
relation from ai and m1,i. If ai is low v1,i is high and if m1,i is high δm is high. Looking
back to (2.2) we see that a low ai and high m1,i favours high system velocities. Looking
at the average system velocities generated in the model in figure 3.3 confirms this. Note
that system velocities of about 200 km/s are reached for tight low mass binaries (see figure
3.3). We will later argue that system velocities of this strength are key to the distribution
of SGRB.

The merger time of the binaries which remain bound is also of interest, to be able to
find where they merge. The general behaviour is much less straightforward here. However,
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Figure 3.3: Average system velocity vcom of bound systems generated in the model allocated
over 100×100 bins of initial semimajor axis ai and mass m1,i. 250,000 bound binaries
generated in total.
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Figure 3.4: Average of merger time log τ for bound systems generated in the model allo-
cated over 100×100 bins of initial semimajor axis ai and mass m1,i. 250,000 bound binaries
generated in total. All bins with 〈log(τ/Myr)〉 > 5 set to black, to show which part of
parameter space represents binaries that do not merge within Hubble time.

τ has a very strong dependence on a as seen in (2.6). The binaries that start wide will
most likely also end up comparatively wide after the supernova, and therefore have longer
merger times. Furthermore, for a given ai, a low mass binary will most likely end up more
bound than a large mass binary – and therefore have a smaller a. Low mass binaries should
hence also favour short merger times. The actual distribution generated in the model can
be seen in figure 3.4.

The histogram in figure 3.4 shows just how strong the dependence of τ on ai is. We
can neglect the majority of the phase space which we are probing, as systems with ai & 20
R� only merge after 100 Gyr on average – far greater than the Hubble time. Furthermore,
we also saw in figure 3.2 that such wide systems are also unlikely to remain bound. In
contrast, 〈log(τ/Myr)〉 is much less dependent on m1,i, although τ still spans several orders
of magnitude for a given ai.

We claim that the majority of investigated semimajor axes are unlikely to provide
binaries that merge within Hubble time, and thus are not of interest. To justify this, we
need to look more deeply into the distribution of τ for a large ai. It is conceivable that
a significant portion of binaries actually merge within Hubble time for the given large ai,
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Figure 3.5: Shown here, the cumulative distribution of merger times for two different sets
of initial parameters while varying kick strength and direction. On the left, ai = 2 R� and
m1,i = 2 M�. On the right, ai = 20 R� and m1,i = 2 M�.

even though the average is far greater. The right plot of figure 3.5 shows that ∼ 15% of
systems with a conservative ai = 20 and m1,i = 2 merge within Hubble time. Still, only
∼ 10% of binaries with said initial parameters survive the supernova in the first place –
both these numbers are less for systems with higher ai.

In a similar vein, the left plot of figure 3.5 shows the cumulative distribution for a tight,
low mass system. Here, we see that the majority of systems merge between a Myr and a
few Gyr. Let us show why the relevant time scale is within this range, given that SGRB
are observed at offsets up to a few tens of kpc.

Figure 3.6 shows how binaries generated in the model are scattered over system veloc-
ities and merger times. Also shown are several isodistance lines. These isodistance lines
show the maximal distance a binary could possibly travel before they merge, demonstrat-
ing what time scales are relevant for an observed high-offset SGRB. To find the actual
trajectory of one of the binaries is more complicated, however.
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Figure 3.6: Scatter of 250 binaries produced in the model for system velocity and merger
times. Also shown are four isodistance lines where vcom · τ = 1 kpc, 10 kpc, 100 kpc, and
1000 kpc.
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Host galaxies

So far, we have made a model in which we can find the system velocity a binary will
receive from the supernova explosion, and how long it lives until it merges. To find its
trajectory we also need to know the dynamics of the galactic environment it is travelling
in: we need to know the potential of the host galaxy. We use the simplest type of potential,
a spherically symmetric potential. Specifically, we adopt the potential Φ arising from a
density profile given in Thomas et al. (2009)

ρ =
v2

h

4πG

3r2
h + r2

(r2
h + r2)

2 (4.1)

which yields the logarithmic potential

Φ =
v2

h

2
ln
(
r2

h + r2
)

(4.2)

where r is the distance from the center of the galaxy, rh the scale radius of the galactic
dark matter halo, and vh the circular velocity which is asymptotically approached at large
r.

We have now defined the environment of the binary. What is left before we can integrate
over the potential and find the offset of the SGRB is defining the initial conditions of the
binary: where was it and what velocity did it have before the supernova?

We place the binaries in an exponential disc, i.e according to

2πre−r/re (4.3)

where re is the radius of the baryonic matter of the galaxy. Note that we place the binaries
in a disc, i.e. in a spiral galaxy. This is done intentionally; we do not aim to take into
account the dynamical and star formation histories of elliptical galaxies in this paper.

As for the initial velocity vi, we approximate initially circular orbits. I.e,

v2
i =
−∇Φ

r
(4.4)
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vcom ε
0 kms−1 3.2 · 10−12

20 kms−1 6.1 · 10−12

200 kms−1 3.3 · 10−10

500 kms−1 2.5 · 10−9

vcom ε
0 kms−1 2.4 · 10−5

20 kms−1 3.2 · 10−5

200 kms−1 7.2 · 10−5

500 kms−1 1.3 · 10−4

Table 4.1: The maximal fractional energy error max(ε) of our integrator as we calculate
the trajectory of a particle through a test galaxy, while giving different kicks vcom. On the
left, as we integrate over 1 Gyr with a timestep of 1 Myr. On the right, as we integrate
over 14 Gyr with a timestep of 14 Myr.

Galactic integration

The equation of motion for the potential in (4.2) is not analytically solvable. A numerical
method to integrate the equation of motion and find the trajectory of a binary is required.
We have built and use a fourth order Runge-Kutta integrator. We present the results of
our integrator when tested in a hypothetical host galaxy with rh = 10 kpc, vh = 140 km/s
in figure 4.1. The test is performed by putting the test particle on an initially circular orbit
and then applying a velocity kick vcom in the direction of motion and integrating over one
Gyr.

When we later use the integrator we keep the number of timesteps constant at 1000
steps (as used in the integration for figure 4.1), regardless of the length of time we integrate
over. To ensure that our integrator is still calculating the correct trajectories, we investigate
the fractional energy error ε

ε =

(
|εx − ε0|

ε0

)
(4.5)

where ε0 is the specific energy at the starting position, while εx is the specific energy at
some timestep. ε increases in a linear trend over the course of the integration. The maximal
fractional energy error, as presented in table 4.1, shows that the error in the integrator
never grows large enough to change the final position qualitatively while integrating over
Hubble time, however.

GRB/Galaxy population

The point of this paper is to compare the SGRBs produced in our model to observed
SGRBs. For that we need a set of observed bursts, which we take from Church et al.
(2011). Church et al. (2011) also attribute a host galaxy to the bursts based on least
chance probability, as well as predicting the properties of the host. We present the relevant
properties of the SGRBs and host galaxies in table 4.2. Where an observed effective radii
was not available, the authors took the radius as the half-light radius of the galaxy. Note
that the link between the baryonic galaxy matter and dark matter halo used by the authors
is based on observations in the local Universe – not necessarily accurate for higher redshifts.

22



CHAPTER 4. HOST GALAXIES

3 2 1 0 1 2 3

x/kpc
3

2

1

0

1

2

3

y/
kp

c

vcom = 0 kms 1

4 2 0 2 4

x/kpc

4

2

0

2

4

y/
kp

c

vcom = 20 kms 1

40 20 0 20 40

x/kpc

40

20

0

20

40

y/
kp

c

vcom = 200 kms 1

400 200 0 200 400

x/kpc

400

200

0

200

400

y/
kp

c

vcom = 500 kms 1

Figure 4.1: Trajectories calculated using our integrator. Test galaxy has rh = 10 kpc,
vh = 140 km/s. Test particle put on a circular orbit, and then given a further vcom in
direction of motion. Particle trajectory integrated over one Gyr.
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GRB R σoff re robs
e rh vh z T

kpc kpc kpc kpc kpc km/s Gyr
051221A 1.53 0.31 2.42 2.17 15.66 157.30 0.546 8.31
060801 19.7 14.0 3.00 18.20 170.23 1.130 5.41
061006 1.44 0.29 1.26 3.67 9.92 123.65 0.438 9.09
061201 33.9 0.4 1.20 1.80 9.59 121.45 0.111 12.28
061210 10.7 6.9 2.62 16.54 161.88 0.410 9.32
061217 55 20 1.81 12.81 141.48 0.827 6.67
070429B 4.7 4.7 2.10 14.19 149.31 0.902 6.32
070714B 3.08 0.47 0.94 8.90 111.02 0.923 6.23
070809 19.61 1.9 0.92 8.00 110.42 0.219 11.07
071227 16.1 0.2 3.13 18.77 173.00 0.394 9.45
080905A 18.11 0.42 2.98 18.14 169.92 0.122 12.15

Table 4.2: Offsets of the SGRBs investigated, along with details of the host galaxy. By
column from the left: burst identifier, measured offset R, one-sigma error σoff in the mea-
sured offset assuming Gaussian point spread function, predicted radius re of host galaxy,
observed radius robs

e of host galaxy where available, scale radius rh of the host galaxy dark
matter halo, asymptotic rotational velocity vh of the host galaxy, redshift z of the host
galaxy, and age T of the Universe at the redshift of the host galaxy (Church et al. 2011).
T calculated from z according to Wright (2006).

T , the local Hubble time in each host galaxy, was calculated according to Wright (2006)
assuming Hubble constant H0 = 69.6 kms−1Mpc−1, ratio of density of the Universe to the
critical density ΩM = 0.286 and cosmological constant density Ωλ = 0.714 (Bennett et al.
2014).
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Results

For each of the galaxies in table 4.2 we have produced one million bound binaries. Of
these million binaries we kept those with τ < T , i.e. the binaries with lifetimes less than
the age of the Universe at the burst redshift. This is an upper approximation to the time
the galaxy has been producing stars. We have then integrated the trajectory of the kept
binaries until the time they merge. We present the resulting offsets in the xy-plane (parallel
to the disc) as well as the xz-plane in figure 5.1, for the galaxy hosts of 060801 and 061201.
The galaxies are chosen as the youngest and oldest of our sample, respectively. We expect
there to be some difference in the distribution of offsets between the planes, as we initially
place the binaries in – and with velocities in – the disc of the xy-plane.

In figure 5.1 we can clearly see that we are able to produce all observed bursts in
our model. This means that the Hobbs et al. (2005) natal kick is capable of producing
all observed offsets. However, there seems to be a an overrepresentation of large offsets,
especially in 061201: here, an offset of > 100 kpc is more likely than one with < 2 kpc.
As expected we also see some difference between the offsets in the xy and xz-planes. Low
offsets are more probable in the xz-plane and high offsets are equally probable in both
planes, consistent with the binaries initially being placed at z = 0 with vz = 0.

We have also investigated the binaries which produce bursts consistent with the ob-
served burst for each galaxy. Bursts were chosen according to a Gaussian centered on the
observed offset with σoff ; these are then compared with the total population of bursts in
the galaxy. m1,i-ai, vcom-τ , and a-e parameter space were investigated. There is a clear,
gradual change between the close and distant bursts; the results for 061006 and 061201
are shown in figures 5.2 and 5.3. 061006 is chosen as the observed GRB with the smallest
offset, while 061201 has the second largest offset. GRB 061217, with the largest observed
offset, is not chosen to represent the distant bursts. This is due to the large error in the
offset, which makes the data less clear and harder to read. Comparison to the rest of the
bursts can be found in the appendix, ordered from smallest to largest observed offset.

From figures 5.2 and 5.3 we see that all binaries with m1,i in the range 1 − 8 M�
are capable of producing SGRBs with the offsets we observe. Furthermore, as already
discussed, binaries separated by more than ∼ 20 R� do not produce bursts due to the
combination of long lifetimes and low bound fraction. The produced population of close
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Figure 5.1: First row: Original binary position in blue and position at merger in black,
for the xy-plane parallel to the disc of the galaxy. Second row: Same, but for xz-plane.
Third row: Histograms of the burst offsets in the planes. Left column for GRB 060801,
right column for GRB 061201.
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Figure 5.2: Produced bursts in m1,i-ai, vcom-τ , and a-e space in the host galaxy of 061006.
On the left half, bursts generated with τ < T . On the right, bursts are further constrained
according to the probability of a Gaussian centered on R with σoff .
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Figure 5.3: Same as figure 5.2, but for GRB 061201.
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bursts in figure 5.2 are mainly concentrated at tight binaries and low masses. This is
consistent with the majority of these bursts having low lifetimes. In contrast, the observed
distant bursts of 061201 (seen in figure 5.3) favour intermediate masses. Again, this is
consistent with the distant binaries having exclusively longer lifetimes (gtrsim100 Myr)
and mainly receiving vcom ≈ 200 km/s (c.f. figures 3.4 and 3.3).

To summarize what see regarding the inputs into the final stages of the evolution of
DNS binaries: After the CE evolution, the NS-He-star binary requires a semimajor axis ai

greater than ∼ 20 R� for the binary to eventually merge within Hubble time; the He-star
can have any mass m1,i within the range of NS-producing masses; a natal kick vk derived
from isolated neutron stars in the Milky Way is more than enough to produce a SGRB at
the most distant observed offsets.
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Discussion

We see some distinction between close and distant burst offsets. In the vcom-τ plots of
both the close bursts of figure 5.2 and distant bursts of figure 5.3, we also see another
separation into two distinct populations. These are ”escaping” and ”remaining” binaries.
By escaping, we mean binaries which receive a strong enough kick that they escape the
galactic potential – in contrast, remaining binaries remain bound to the galaxy.

Let us consider how the remaining and escaping binaries build up the bimodal popu-
lation for the close bursts. We have a binary which is escaping the galaxy. This binary
can only be observed as a close burst if it has a short lifetime. We see this in figure 5.3:
binaries with vcom & 200 km/s all have short lifetimes. Meanwhile, all remaining binaries
have the possibility of being observed as close bursts, regardless of lifetime. We produce
enough short-lived binaries for them to dominate the population of close bursts, regardless
of whether they remain or escape.

What about the distant bursts? Escaping binaries are obviously part of the distant
burst population. In the context of the 061201 burst, those with τ · vcom ≈ 34 kpc are seen
as an isodistance line in figure 5.3 (c.f. figure 3.6). There is scatter around the isodistance
line due in part to σoff , in part to the details of initial position and direction of vcom. If
a burst comes from a remaining binary at these distances, the binary must be on a very
eccentric orbit and then merge closer to apoapsis. These eccentric binaries can do a number
orbits before merging, meaning a large range of lifetimes are possible. If the binary is on
an eccentric orbit, they should have received a vcom comparable to the galactic rotational
velocity. Indeed, seen in figure 5.3 are binaries with a large spread in lifetimes at velocities
slightly larger to the rotational velocity vh = 121.45 km/s. In fact, most of the distant
bursts received velocities at ∼ 150 km/s, and some received velocities as small as 100 km/s.

This last point, that a) vcom as small as ∼ 150 km/s can generate even the most distant
bursts and b) it is binaries with vcom ≈ 150 km/s which are most efficient at producing
distant bursts, is a key result. It means that it is not necessary to have strong natal
kicks to produce the SGRB we have been able to observe. E.g. Tauris et al. (2017) have
proposed much smaller kicks, with a σ1D of 50 km/s – meaning kicks of 100 km/s are
regularly obtained. These small kicks are specifically proposed for m1,i ≈ 1.4M�. Thus, it
is ambiguous to what extent these weak kicks could produce double neutron star binaries
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with vcom of at least 100 km/s, in the context of our model (see figure 3.1). However,
remember that we have neglected the first supernova in the binary in our model, which
can potentially boost the system velocity.

Note that there is a strong bias behind our thought of smaller vk producing the largest
observed offsets, as there is a strong bias against observing larger offsets. The host galax-
ies, and hence offsets, of the observed bursts were attributed according to least chance
probability. If a binary travels far enough away from its host, we would perceive it to be
close enough to another galaxy on the night sky for us to misattribute the host – hence
bias against large offset observations (see e.g. Tunnicliffe et al. 2014). As we continue to
observe more SGRBs and better understand their distribution, the risk of misattributing
a burst grows smaller.

Future extensions

It would be interesting to test the offset distributions from weak kicks. Investigating
the vcom distribution would tell us how regularly systems with vcom & 100 km/s, that
potentially merge at large offsets, are produced. A natural extension is of course to include
the first supernova in the system, and see if the chance alignment of the two kicks helps
or hinders large system velocities. If that is done, the set of observed SGRBs should also
be expanded to include more of the SGRBs observed from spiral galaxies since 2008 to
improve statistics.

We could also expand the sample by attempting to model SGRB from elliptical host
galaxies. To do so would require a hydrodynamical simulation of the formation of such a
galaxy, as the dynamics of a galactic merger will obviously affect the trajectory of a binary
within the galaxy. While challenging, such a simulation would also provide two powerful
tools: A detailed dynamical and star formation history of the galaxy. The star formation
history would give a better constraint on the initial mass of the binary. Together with the
dynamic history of the galaxy we would receive a more realistic distribution of offsets of
SGRB which are conceivably observable today.
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Conclusion

We have built a model for the dynamical effects of the second supernova in a compact
double neutron star binary. After, we synthesize a population of binaries and integrate
their trajectories up until they merge, in an environment of spiral galaxies. The produced
burst offsets are then compared to observed SGRB offsets. We find that compact binaries
separated by more than ∼ 20 R� before the second supernova do not merge before Hubble
time. No such restrictions were found for the other two free parameters, exploding star
mass and natal kick strength. We do however find that natal kicks much weaker than the
ones derived from isolated pulsars could potentially be sufficient to produce the sample of
burst offsets which we compare to.
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