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Abstract

As online services such as e-commerce and mobile applications keeps growing,
the need of optimizing the user experience does as well. By conducting On-
line Controlled Experiments, companies can get an insight to which features,
design choices and implementations that users enjoy the most. This projects
explores two areas in relation to Return on Investment (ROI) calculations for
Online Controlled Experiments. First, challenges and pitfalls with calculating
a reliable ROI metric are described as well as references to research working
to mitigate these challenges. The challenges presented are all related to how
to accurately measure the effect between two candidate variants which sums
up the main challenges with ROI calculation. Secondly, a model based on ex-
pected return on investment is constructed and explored in order to investigate
whether the model can help to optimize test parameters for a two sample t-
test in the setting of Online Controlled Experiments. The results of the model
analysis shows that the model has limited practical use since it maximizes the
ROI - quotient without taking into account to magnitude of potential revenue
increase as well as potential cost.

Key Words: A/B testing, Online Controlled Experiments, Return on Invest-
ment, ROI
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1 Introduction

1.1 Background

As the number of online services such as e-commerce and online advertising
keeps growing, along with proliferation of data generated by user engagement
of these services, opportunities to conduct controlled experiments to empirically
test different versions of the services increases. Tests conducted usually entails
but are not limited to; design variation such as color and layout changes to the
inclusion or exclusion of certain features, functions or technical implementations.

Today, online controlled experiments are used to great extent across the in-
dustry to improve online services. Technology giants such as Amazon, Facebook
and Google conduct more than 10.000 experiments annually and has reported
large gains from the experiments [Kohavi and Thomke, 2017]. For instance, in
2008 Microsoft conducted a test where users would be redirected to a new win-
dow/tab when clicking on the Hotmail link on the MSN home page instead of
staying in the same window. Initial tests confined to 900.000 UK users showed
a user engagement increase measured by number of clicks made on the MSN
home page by 8.9%. Later in 2010, the same test was conducted on the US
market with 2.7 million users where the same metric showed a 5% increase. Till
this day, this simple technique is still widely in use by major websites such as
Facebook and Twitter.

By conducting systematic controlled experiments with scientific rigor, com-
panies can aid their software implementation, user interface and user experience
decisions by iteratively testing different versions. As such, decisions are made
based on data rather than “Highest Paid Person’s Opinion”, which is shown to
yield inferior results compared to controlled experiments [Kohavi et al., 2009].

1.2 Purpose, Problem Definition and Scope

Initiated by a consultancy firm active in the Conversion Rate Optimization
(CRO) business, Conversionista, the inception of this project was rooted in the
lack of literature in measuring return on investment (ROI) on online controlled
experiments. A perceived challenge in the industry is to demonstrate and com-
municate the benefits of controlled experiments to decision makers or clients
and to translate the benefits into business value. This thesis aims to examine
the possibility to construct a ROI framework, or some other similar framework,
that can help to quantify financial value in the context of online controlled
experiments and to mitigate said challenge.

1.2.1 Research Questions

To formalize the objectives, the report aims to investigate the following research
questions:

RQ1 Describe the challenges with ROI calculations in the context of on-
line controlled experiments
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RQ2 Propose a mathematical model for ROI calculations or other similar
model with the purpose to quantify financial value of conducting
tests

1.2.2 Method

In order to answer RQ1, a literature study will be conducted to understand cur-
rent research and challenges within the industry. A study based on interviews
was considered, however a literature review was deemed more suitable due to
mainly two reasons. Firstly, extensive literature on the subject is available ren-
dering other information sources unnecessary. Secondly, given that the problem
and project stems from the industry, a review of academic sources is warranted.

The aim with the literature review is to provide insights as to what problems
are currently being focused on and if these problems can explain the challenges
with ROI calculations. In the literature review, mostly accepted peer reviewed
papers will be used as a references and these sources will be considered vali-
dated and credible. To some extent, publications from industry vendors will be
referenced. These sourced are deemed credible if independent third-party has
validated the source, if such validation is not available, the credibility of each
source will be evaluated on a case by case basis before being used.

The literature search will be performed with the help of general search en-
gine, Google, as well as search engines specialized in academic publications,
Google Scholar and LUBsearch1.

For RQ2, based on the insights gained from the literature review, in con-
junction with discussion with Conversionista, a suitable model will be presented
and analyzed as seen fit depending on the nature of the model presented.

1.2.3 Delimitations

There is considerable amount of literature devoted to experiment design, sta-
tistical methods for measuring controlled experiments and ensuring statistical
significance, as well as literature on best practices on technical infrastructure
and organizational requirements for successful implementations of online con-
trolled experiments. See for instance the recommended reading list provided in
the entry on Online Controlled Experiments and A/B Testing in Encyclopedia
of Machine Learning and Data Mining [Kohavi and Longbotham, 2017]. The
literature review in this report will primarily focus on subjects related to mod-
elling ROI, that is statistics and data science, although other aspects will be
mentioned.

Furthermore, in the realm of online controlled experiments, depending on
the desired objective of an experiment different key metrics can be measured.
Common key metrics could for instance be fraction of newsletter receivers who
engages in the letter content, fraction of people exposed to an ad who clicks on
the ad or the fraction of visitors who end up buying a product on an e-commerce

1Search engine used internally by students and faculty members at Lund University
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website. This thesis will solely focus on the last-mentioned metric, henceforth
generally referred to as conversion rate.

2 Online Controlled Experiments

The following section briefly describes online controlled experiments along with
some preliminary statistics to provide context to the reader.

2.1 Primer

Online Controlled Experiments, also called to as A/B testing, split tests, ran-
domized experiments, control/treatment tests and online field experiments [Ko-
havi and Longbotham, 2017], refers to the practice of conducting controlled
experiments in order to detect causality between changes made to a service or
product and the response of a key metric being measured, often referred to as
Overall Evaluation Criterion (OEC). In controlled experiments, all variables ex-
cept the OEC is assumed to be constant between test subjects as opposed to
uncontrolled experiments. The test population, i.e. users of the service2, are
randomly assigned to a control group or to a treatment group, the experiment
is run, and causality is either confirmed or rejected, see Figure 1.

Figure 1: High level overview of online controlled experiment with one treatment
group and one factor in each group.

The difference of the OEC between the control and treatment are calculated
along with confidence intervals. The difference in OEC is commonly referred to

2Technically, users can for instance be identified by browser-stored cookies [Hohnhold et al.,
2015]
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as uplift in the industry and measures the relative increase (or decrease) of the
OEC. In a correctly designed experiment, exogenous changes such as seasonality
and competitor actions, will be evenly distributed across the groups and any
statistically significant difference in the OEC between control and treatment
can be inferred to have been caused by the intentional change made.

Note that more than one treatment group can be present in an experiment,
this have implications on e.g. sample size to ensure statistical robustness of
the tests, see section 2.2. The interested reader is referred to the seminal work
“Controlled experiments on the web: survey and practical guide” [Kohavi et al.,
2009] for a more comprehensive introduction to the field.

2.2 Preliminary Statistics

Let XA denote the observed mean of the OEC, e.g. conversion rate or rev-
enue/user, of the control group A and XB the observed mean of OEC for treat-
ment group B. Define the test - statistics as

t =
XB −XA

σ̂AB
(1)

Where σ̂AB denotes the empirical standard deviation of XB−XA. Since the
sample size for each group are more than often in the thousands in the setting
of online controlled experiments, the t-statistic as defined above converges to
the Normal distribution by the Central Limit Theorem[Deng et al., 2014]. With
other words, the t-test essentially becomes a z-test.

A rule of thumb formula often used to calculate required sample size is
provided below for significance level α = 0.05 and power β = 0.1 [Wheeler,
1974]

n =

(
4rσ

∆

)2

(2)

Where ∆ is the minimum absolute effect that one wishes to detect, r ≥ 1 the
number of factors and σ the standard deviation of the OEC. Note that in the
case of conversion rates, the conversion rates follow a Bernoulli distribution3

and as such σ2 = p ∗ (1 − p). Furthermore, note that the quotient of the
required sample size between two minimum detectable values is proportional
to the quotient of the values squared. For instance, allowing a 5% minimum
detectable effect (MDE) instead of 1% reduces the required sample size by a
factor of 25 which has obvious effect on the required user traffic for conducting
a test.

Following from this, confidence intervals can be calculated and hypothesis
testing performed using standard classical theory [Box et al., 2005]. Since even

3Consider one visitor to an e-commerce website. The user can either buy something -
convert, or leave the website without converting - no conversion. Let Xi = {1, 0} where 1 and
0 indicates conversion or no conversion respectively for user i. Then, X follows a Bernoulli
distribution with parameter p i.e. probability to convert. Thus, µ = p and σ2 = p ∗ (1− p).
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small absolute changes often translate into non-trivial relative changes, paired
with the often large traffic volumes associated with online services, it is often
interesting to look at relative changes. For instance, an increase by 0.2 percent-
ages in conversion rate from 2% to 2.2% corresponds to a 10% relative increase.
In theory, ceteris paribus, this equals to a 10% revenue increase.

Defining the relative change test statistics and coefficients of variation as

trel =
XB −XA

XA

∗ 100% (3)

cvA =
σ̂A

XA

(4)

cvB =
σ̂B

XB

(5)

We have that the confidence interval of the relative effect [William and
Briggs, 2006] is given by

CIrel = (1 + trel)
1± z1−α ∗

√
cv2A + cv2B − (z1−αcvAcvB)2

1− z1−αcv2A
− 1 (6)

The formula assumes no covariance between the two tested groups. Also,
cautious use of the formula is advisable when the confidence interval of the
denominator in above formula contains zero since there is a risk that one or
both endpoints doesn’t exist.

2.3 A/A - tests

As the name suggests, running an experiment under the same conditions as one
would in an actual A/B – test as described in section 2.1, but instead of using
two different variants, uses the same variant, is called A/A – tests. There are
two reasons for conducting A/A - tests [Kohavi et al., 2009]; when calculating
statistical power, the variability of the OEC can be estimated through A/A -
tests. Secondly, statistical assumptions as well as biases can be checked through
A/A - tests. Recall that by definition, false positives (type 1 error) should occur
with probability roughly equal to the set significance level α. Many experiment
setups have been found to fail this litmus tests for many different reasons [Ko-
havi and Longbotham, 2010]. Two examples are variance underestimation due
to correlated experiment units that violates assumptions for standard variance
calculations, and various biases introduced by e.g. different user browsers or
bots.
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3 Statistical Pitfalls and Challenges when Mea-
suring Effects

The following section describes statistical pitfalls and challenges that have been
observed by practitioners in the industry along with proposed remedies from
previous research. Despite many of the pitfalls being well known statistical
phenomena, they are still often mentioned in the online controlled experiment
literature as common mistakes to avoid.

3.1 Early Stopping and Continuous Monitoring

Early stopping also called peeking, refers to the practice of continuously moni-
toring a test that is performed using classical frequentist null hypothesis testing,
and stopping the test the first time a p – value under the chosen significance
level is observed as opposed to running the test until the pre-defined sample
size is reached. The mistake is caused by practitioners wanting to minimize the
cost of potentially running tests on non-performing treatments, or alternatively,
wanting to declare an early winner with the intention of directing all traffic to
the seemingly better variant as soon as possible in the case of observing a low
early p-value.

This is of course bad practice and will inflate false positives (type I error). To
quickly see why, consider two experiments on the same data; the first of which is
a properly performed test where the p-value is evaluated only once when the pre-
defined sample size is reached, the second where one continuously monitors and
evaluates the p-value along the course of the experiment. Clearly, the second
experiment have many more instances where the p-value is evaluated and thus
the probability of falsely rejecting the null hypothesis is strictly increasing. It
can be shown that the realized false positive probability can easily be inflated
to five to ten times that of the chosen significance level when stopping early
[Johari et al., 2017]. The immediate remedy is of course to simply stick to the
pre-defined sample size.

The above-mentioned reasons for wanting to stop experiments early are
clearly rather attractive from a business perspective and alternative frameworks
have been discussed in the setting of online controlled experiments to allow for
optional stopping times. Sequential tests using mixture sequential probability
ratio test (mSPRT) have been discussed [Johari et al., 2017], however in a recent
paper [Ju et al., 2019], it is pointed out that the framework only allows for the
detection of H0 : θ0 = θ1, H1 : θ0 6= θ1, i.e. unable to determine which variant is
better. Furthermore, the same paper points out that the mSPRT has a power of
one, meaning under any ground truth θ0 6= θ1, the test will eventually reject the
null hypothesis if the tester waits long enough. This implies that the experiment
runs the risk of running a long time which is undesirable for online testing.

A/B testing using Bayesian hypothesis testing have also been discussed
where the authors of the paper apply a stopping rule based on Bayes factor
and controls for the false discovery rate (FDR) instead of type I error [Deng
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et al., 2016a]. As always in the case of Bayesian statistics, a prior distribu-
tion is needed. Although interesting, the forever on-going discussion concerning
Bayesian versus Frequentist statistics are outside the scope of this thesis. The
authors do however point out, that priors can be learned objectively thanks to
the availability of vast empirical data in A/B-testing.

3.2 Multiple Comparison Problem

The multiple comparison problem is a statistical artifact followed directly from
type I error in a multivariate test setting. The multiplicity in an online con-
trolled experiment can refer to various elements, for instance dividing the test
population into multiple segments based on e.g. browser type [Dmitriev et al.,
2017], testing for multiple treatments or multiple features, or a combination of
these. For instance, consider a A/B/4 – experiment with five features, i.e. an
experiment with four treatments and five different variations of the features in
each treatment tested against one control group with the five features, see Fig-
ure 2. Under α = 0.05, we expect one of the features in one of the treatments to
result in a false positive assuming no correlation structure and no true difference
in conversion rate.

Figure 2: One control and four treatments with five variations of each features
in every treatment tested against the control variations of the features. In total,
20 tests are performed.

There are two well-known approaches to control for the multiple compari-
son method [Johari et al., 2017]; The Bonferroni correction and the Benjamin-
Hochberg procedure. The Bonferroni correction controls for the family-wise
error rate (FWER), that is the probability of at least one type I error. The
Benjamin-Hochberg procedure controls for the false discovery rate (FDR), that
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is the expected proportion of incorrectly rejected null hypotheses. Controlling
for FWER is known to be more conservative than controlling for FDR.

In the context of online controlled experiments, a method combining Bon-
ferroni correction and Fisher’s method, which combines p-values from several
independent hypothesis test and combines them to one test statistics, as well
as using known distribution properties have been proposed [Deng et al., 2014].
According to the author of the aforementioned article, the method is strictly less
conservative than Bonferroni correction. For detecting heterogeneous treatment
effects and controlling for multiple comparison problem, two methods control-
ling for FDR has been proposed under the assumption that the true model
follows a linear regression with Gaussian errors [Xie et al., 2018].

3.3 Simpson’s Paradox

Consider the results from following hypothetical experiment:

Cumulative Conversion Rate
Control 2.90%
Treatment 2.72%

Table 1: Results at the end of a hypothetical experiment

It appears that control resulted in better conversion rates than treatment.
Consider the following table segmented by days from the same hypothetical
experiment:

M Tu W Th F Sa Su Tot
Conv. (C) 33.6 31.4 29.1 26.8 26.0 12.7 9.0 168.7
Vis. (C) 990 980 950 900 800 700 500 5820
C.r. (C) 3.39% 3.21% 3.07% 2.98% 3.25% 1.82% 1.79% 2.90%

Conv. (T) 0.38 0.68 1.65 3.11 7.0 7.2 12.1 32.1
Vis. (T) 10 20 50 100 200 300 500 1180
C.r. (T) 3.80% 3.42% 3.30% 3.11% 3.50% 2.40% 2.42% 2.72%

Table 2: Visitors (Vis.) is increased over time in Treatment (T) and sub-
sequently traffic is decreased over time in Control (C). Table shows number of
conversions (Conv.) and visitors in thousands along with conversion rate (C.r.).

The treatment performed better than control during all days, despite having
a lower cumulative conversion rate. This statistical phenomenon is known as
Simpson’s paradox and it is a rather known concept among statisticians and data
scientists. The above simplified example illustrates a method used in practice
where the allotted traffic to treatment is increased over time when there is an
uncertainty of the treatment potentially causing large negative effects. This
way, the large negative effects can be discovered early without impacting user
experience across large portions of the users [Kohavi and Longbotham, 2010].
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Some other examples [Crook et al., 2009] where Simpson’s paradox can occur
are:

• Non - uniform sampling, e.g. users from certain browser are sampled at a
higher rate

• Treatment and control allocation vary across segments, for instance across
countries

• Only a fraction of the top spenders are allotted to treatment due to con-
cerns of negative impact to the top spenders

In general, one should be cautious when the proportion between segments are
different between control and treatment or when segment proportions changes
over time. Other instances of Simpson’s paradox is for instance when local
metrics shows bad performance but the site-wide impact might be positive [Xu
et al., 2015].

3.4 Novelty and Primacy Effects

Novelty and and primacy effects refers to the phenomena when actual effects
takes time to materialize. This can arise mainly due to two reasons; one is
due to the novelty effect when users sees new features and explore them out of
curiosity rather than any actual value add to the user. Conversely, some features
takes time for the users to learn before showing up as any positive change, thus
primacy effects refers to some kind of learning effect [Dmitriev et al., 2017].
There have been some model proposals to account for this [Hohnhold et al.,
2015] [Lu and Liu, 2014]

3.4.1 Non-existent Novelty and Primacy Effects

Sometimes, the data can falsely be interpreted as novelty or primacy effect.
Since test subjects arrives sequentially in an online setting, the sample size will
grow over the course of the experiment. Naturally, the confidence interval will
decrease over time as the number of subjects increases for most metrics. Thus,
perceived trends can materialize even under ground truth θ0 = θ1. Figure (3)
illustrates the phenomenon through simulation.

The danger of the non-existent novelty and primacy effects is to extrapolate
perceived trends naively and prematurely, e.g. with simple regression. It has
been reported that even practitioners proficient in statistics have been fooled
by this effect [Kohavi et al., 2012].
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Figure 3: The graph shows five iterations of the difference of the cumulative
conversion rate between two groups where visitors in each group is generated
daily from i.i.d N(1000, 50) and rounded to the nearest integer value and number
of conversions generated from i.i.d. Bin(Users generated by normal distribution,
0.05) during the course of 100 days. The none-zero convergence bias comes from
the rounding error.

3.5 Non - decreasing Confidence Intervals

Assuming i.i.d subjects, same sample size and variance across control and treat-
ment, we expect the confidence interval to be proportional to roughly 1√

n
, and

as such get narrower confidence interval the longer the experiment. However,
for some metrics, e.g. percent changes for session/user [Kohavi et al., 2012] we
rarely see large declines for the confidence interval. The reason for this is that
in cases such as this, the confidence interval will roughly be proportional CV√

n
4

where both the mean and the standard deviation is increasing over time. The
resulting effect will be a confidence interval that does not decrease over time.
For most metrics, especially bounded metrics such as clickthrough rate or con-
version rate, this is not a problem. However, for some count metrics as in the
given example, the only way to reduce variance is to increase the sample size in
control and treatment.

3.6 Variance reduction and metric sensitivity

Reducing uncertainty of the metrics in an online controlled experiment is of
course desirable as in any other statistical setting. Reducing the variance and

4Coefficient of variation as defined in equation 4
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increasing metric sensitivity implies that statistical power can be reached with
smaller sample sizes and thus allowing for faster experimentation.

One of the most influential articles concerning this topic [Deng et al., 2013],
uses known variance reduction techniques, stratification and control variates,
and combines this with a pre-experimental data to achieve variance reduction
up to 50% for some metrics. The greatest variance reductions are achieved
for metrics that varies significantly across the population and where the pre-
experiment data is highly correlated with the metric of interest.

Experimental design, specifically repeated measures design, have also been
discussed in the context of variance reduction [Guo and Deng, 2015]. The au-
thors propose a framework that discusses different designs along with theoretical
variance bounds and practical results from known distributions as well as real
experiments. Some noteworthy properties of the proposed framework are that it
does not impose independence restrictions on e.g. noise and do not assume that
potential missing data have to be random. Results from real experiments have
shown that up to 2/3 of the sample size can be reduced for some metric when
applying this framework along with the previous mentioned variance reduction
technique using pre-experiment data.

Other articles include an introduction to the notion of Overall Acceptance
Criterion (OAC) that incorporates the OEC as well as statistical significance test
to measure sensitivity [Drutsa et al., 2015]. Furthermore, improving sensitivity
by accounting for delays in treatment effects have also been explored where it
is shown that these modifications can improve the sensitivity for some loyalty
metrics [Drutsa et al., 2017].

3.7 Randomization level

Randomization level or randomization unit refers to on what level the random-
ization algorithm assigns subjects to control and treatment, often on user or page
view – level. The choice of randomization level is partly driven by what type
of metrics are of interest but also the technical feasibility when it comes to the
implementation of the randomization algorithm. Naturally, user-level metrics
such as revenue per user, won’t be measurable under page-view randomization
[Deng et al., 2011]. Another important aspect to consider is the user experience
where by design, the same user might be exposed to both control and treatment
when randomization is done on page view level.

The statistical implications of the choice of randomization level concerns
mainly variance estimation. It has been shown that page level randomization
yields smaller variance estimation than user level randomization when analyzing
page level metrics [Deng et al., 2011]. The randomization level will also affect
the i.i.d assumption often assumed resulting in either underestimation or over-
estimation of the variance when using the standard empirical variance formula.
Theoretical and practical results have been provided where a unified formula
has been proposed where the authors also claims works when the randomiza-
tion level is unknown [Deng et al., 2017].
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3.8 Heterogenous Treatment Effects

Most causal inference frameworks are based on Average Treatment Effects (ATE),
including e.g. frameworks that allows for optional stopping time as previously
discussed. While ATE can answer questions such as “what metrics” are being
effected and “how much”, inferences about “who” they effect and “why” are
harder to make, which warrants the use of models that accounts for Heteroge-
nous Treatment Effects (HTE). For instance, how does treatment vary across
demographics such as country, age and sex? Does a technical change effect
different browsers or different mobile operating system differently? Perhaps
certain user segments, such as top 1% spenders on an e-commerce site will react
differently from the average spenders for a given treatment?

Articles have discussed different approaches to detect and account for HTE
e.g. using nonparametric Bayesian Analysis [Taddy et al., 2016] and Total Vari-
ation Regularization [Deng et al., 2016b]. As previously mentioned, models
controlling for FDR and accounting for the multiple comparison problem have
also been proposed [Xie et al., 2018]. The last resource also includes a compre-
hensive discussion about previous work concerning HTE.

3.9 Metric design

The importance of good metrics is essential for successful experimentation. In
a recent industry survey [Fabijian et al., 2018], among 44 respondents, only two
respondents stated that their organization had successfully designed metrics
that fully captured and were aligned with their business goals. The authors
behind this survey also states that designing good metrics remains the biggest
challenge for organizations who want to perform successful online experiments.

Two important qualities for metrics are the directionality and sensitivity of
a metric [Deng and Shi, 2016]. The directionality refers to the degree of ambi-
guity of a metric. Take for instance the metric distinct queries/user. Greater
value of this metrics implies higher user engagement which in many times is a
desirable outcome. However, consider the metric in an online search setting,
where a higher value might imply poor relevance of the search results. It is thus
important to define metrics to accurately capture what one wishes to measure
and complement metrics to each other to minimize ambiguity. Sensitivity of a
metric is important since it implies faster detection of changes and thus cost
savings when both required time and sample size are reduced when increasing
sensitivity.

A comprehensive treatment of metric design is available [Deng and Shi, 2016],
also examples of metric development frameworks from industry can be found
[Dimitriev and Wu, 2016].
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4 Discussion about RQ1

Note that the topics discussed until now are by no means an exhaustive com-
pilation of previous research5. Also note that many of the sources referenced
in the various sections also discusses many of the other topics in other sections
where one particular source might not be referenced despite being relevant. Al-
though not fully exhaustive and complete, the idea behind this exposition is to
illustrate some underlying reasons as to why ROI calculations are challenging.

As seen in section 3, why ROI calculations are challenging and why for
instance a 5% increase in conversion rate don’t result in a 5% revenue increase
can be due to several reasons; the practitioner can have misinterpreted the
metric in question due to a statistical artifacts6 such as Simpson’s Paradox
or the model can have failed to take into account important factors that have
considerable effect on the OEC. It can of course also simply be the result of a
random error inherent in all statistical tests. Although not discussed in length
here, technical failures are often also a source of inaccurate test results.

Thus, it is rather straightforward as to why ROI calculations are challenging;
we can’t accurately compute what we can’t accurately measure, and in the above
sections we have illustrated some of the reasons to this inaccuracy and how to
mitigate them.

5 Theory - The Risk Management Model

The following section provides a review of the statistical concepts utilized to
build the model. The model itself will be described in Section 6.

5.1 Hypothesis Testing

Difference in means is usually tested with a two sample student’s t-test and we
will use this test to determine the difference between control and treatment.
Since we are interested in knowing if control is better than treatment and to
gauge the magnitude of the difference we define our null hypothesis and alter-
native hypothesis as:

H0 : t ≤ 0 H1 : t > 0 (7)

Let Xc and Xt denote the average treatment effect of control and treatment
respectively, our t-statistics is defined as

t =
Xt −Xc√
σ2
c

nc
+

σ2
t

nt

(8)

5Some resources for reference: Comprehensive seminal work on A/B-testing Kohavi et al.
[2009], A/B testing Online Encyclopedia [Kohavi and Longbotham, 2017] and a recent Map-
ping Study on the A/B research field [Ros and Runesson, 2018]

6An inference that does not reflect the real world due to bias in data collection, unintended
consequences of measurement error or research design[OxfordIndex]
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where ni, σi denotes the sample size and standard deviation for control and
treatment respectively.

5.2 Type I and Type II error

In statistical hypothesis testing, two types of inference errors are often of inter-
est. Type I error refers to the error of incorrectly rejecting the null hypothesis
even though it is true. Conversely, type II errors refers to the error of falsely
accepting the null hypothesis given the alternative hypothesis being true. By
convention, the probability of these errors are denoted α and β respectively. α
is commonly known as statistical significance and 1− β as statistical power.

Type I and II error table

H0 True H0 False

Accept H0

Correct Inference
True Negative

Probability: 1-α

Type II error
False Negative
Probability: β

Reject H0

Type I error
False Positive
Probability: α

(stat. significance)

Correct Inference
True Positive

Probability: 1-β
(stat. power)

Table 3: Visualization of the different errors along with the probabilities and
associated terms

5.3 Sample Size Calculation

In the following section a sketch of the derivation of the sample size formula is
provided. In order for us to commit a type I error when doing two sample, two
side, student’s t-test the following inequality must hold

t =
Xt −Xc√
σ2
c

nc
+

σ2
t

nt

≥ tα =⇒ Xt −Xc ≥ tα

√
σ2
c

nc
+
σ2
t

nt
(9)

Likewise, when a true difference ∆ (absolute minimum detectable effect) is
present, the following inequality holds when committing a type II error

Xt −Xc −∆√
σ2
c

nc
+

σ2
t

nt

≤ −tβ =⇒ Xt −Xc ≤ ∆− tβ

√
σ2
c

nc
+
σ2
t

nt
(10)

From the two inequalities (9) and (10), we get

∆ = (tα + tβ)

√
σ2
c

nc
+
σ2
t

nt
(11)
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Let us now assume that nc = nt = nct i.e. sample size in control and
treatment are the same. Furthermore, since each observation in both control and
treatment is treated as i.i.d. Bernoulli trials7, in inequality (9) when H0 is true,
we have that σ2

c = σ2
t = pc(1−pc) where pc denotes the current conversion rate of

control8. In inequality (10) under which H1 is true, we have that σ2
c = pc(1−pc)

and σ2
t = pt(1− pt). Thus, substituting and solving for n∗ in (11) we get

∆ = tα

√
2pc(1− pc)

nct
+ tβ

√
pc(1− pc) + pt(1− pt)

nct

=⇒ nct = (tα
√

2pc(1− pc) + tβ
√
pc(1− pc) + pt(1− pt))2∆−2

(12)

which is the formula used for optimal sample size calculation.

6 Risk Management Model

The model is inspired by a blog post[Georgiev, 2018] describing a commercially
available software ”ROI Calculator”. Since no description of the math behind
the software could be found, in conjunction with Conversionista, it was decided
to purse this idea by creating a mathematical model based on the same idea
and analyze the model.

The aim of the model is to provide a statistical tool to aid the A/B - testing
practitioner to optimize sample sizes along with Type I & II error tolerance and
minimum detectable difference. The main metric of interest is a version of a
Return of Investment - ratio where the numerator is defined and quantified as
expected uplift and the denominator as the expected loss based on a normal
prior distribution specified by the practitioner. As such, the main metric of
interest is conceptually defined as:

ExpROI =
RiskAdjustedUplift

RiskAdjustedCost
(13)

The ratio can be thought of intuitively as a factor of how much larger our
gains would have been compared to our costs if the same test with the same
assumptions and parameters would be repeated many times. This is the concept
which the model is inspired from, although in the blog post the quotient in
question is referred to as a risk-reward ratio and is the inverse of equation 13.
While an assumption about the normal distribution and a max effective size as
presented in the following subsections are inspired from the blog post, the rest
of the constructed model could not be found in existing literature.

The remainder of Section 6 is organized as follows:

7As explained in section 2.2
8Notice that the sample size formula is derived for H0 : t = 0 i.e. pc = pt and thus σ2

c = σ2
t

for Bernoulli trials. We do this to avoid estimating pt under our defined H0 while we under
H1 estimate pt = pc(1 + µ) where µ is defined in Section 6.2. Compared to our defined null
hypothesis H0 : t ≤ 0, i.e. σ2

c ≥ σ2
t when pc < 0.5, this will yield slightly more conservative

sample size and slightly underestimate the sample size when pc > 0.5 i.e. σ2
c ≤ σ2

t .
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• 6.1 Model Assumptions describe what assumption goes into the model

• 6.2 Prior Normal Distribution explains the idea of which the practitioner
incorporate his subjective beliefs of the test outcome into the model

• 6.3 Effective Size describes how long the effect of any positive test will last

• 6.4 ExpROI specification describes the mathematical components of the
quotient

• 6.5 Fixed Cost and Revenue per User describes a simple extension the
description in 6.4

6.1 Model Assumptions

As we have seen, there are several different monitoring and measuring schemes
in use among practitioners. For this reason, we chose to build our model on
the assumption that a classical fixed horizon testing scheme is used, i.e. that
sample size along with statistical significance, power and MDE is chosen in
advanced and not altered or adjusted during the course of the test. The fixed
horizon testing scheme is arguably the scheme most widely in use as well as the
least controversial, thus providing a good starting point for the proposed model.
Furthermore we make the following assumptions in order to start with a model
that is not too complex:

• We test for average treatment effects, that is any heterogeneous treatment
effects (see 3.8) are not accounted for

• Visitors are treated as i.i.d. random variables - that is we assume no
interaction between the users

• Revenue per user (RPU) is constant and only conversion rate changes
when there is a difference between control and treatment

• We assume one control and one treatment group

6.2 Prior Normal Distribution

The first step of the model is for the practitioner to provide a subjective prior
normal distribution on relative uplift of the conversation rate, that is the quan-
tity

U =
pt − pc
pc

∼ N(µ, σ) (14)

where pi is the conversion rate for treatment, i = t, and control, i = c.
Furthermore, note that the minimum detectable effect in the sample size for-

mula in equation (12) is the absolute difference, define δ as the relative minimum
detectable effect and we have
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∆ = pt − pc = δpc (15)

The observant reader will notice that with the notation we have used we have
seemingly defined U = δ. However, there is an important difference. While
U denotes the random variable for relative uplift that we assign a subjective
normal distribution to, δ denotes the relative minimum detectable effect which
is a fixed testing parameter value. Admittedly, this is an unfortunate use of
notation however there should be no confusion after this clarification.

The distribution in equation 14 reflects the practitioner’s beliefs of the par-
ticular experiment to be conducted and can either be based on expertise, histor-
ical test results of similar experiments or pilot tests. For instance, one industry
vendor have published a paper [Qubit, 2017]9 where data from 6700 large scale
online experiments are aggregated to estimate normal distribution parameters
for a number of categories such as ”up-sell”, ”page redesign”, ”free delivery”,
”landing page” etc.

6.3 Effective size

When a successful test is conducted and changes implemented, the observed
difference between control and treatment is not always sustained over longer
period of times. For instance, a 5% site wide conversion rate increase rarely
results in a permanent 5% sales increase over time. To account for this, we
model this by letting the practitioner set a max size nmax. Furthermore, define
ne as the number of visitors that will be affected by implemented changes post
testing.

ne = nmax − 2nct

Clearly, the sample size for control and treatment will always be 2nct ≤ nmax
thus setting a constraint for the testing sample sizes when optimizing ExpROI,
see Figure 4.
nmax can be interpreted in a number of different ways. For instance, setting
nmax to one year traffic to the website can be interpreted as any potential
changes made will only have a constant effect over a year starting from the
testing period or alternatively, having a two year effect with any effect decreas-
ing linearly to zero over time. Furthermore, it also allows the practitioner to
incorporate any future growth (or decrease) in number of visitors by varying
nmax.

9Independently assured by PwC
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Figure 4: Visualization of the testing period and post - test effective test and the
corresponding sample sizes to each period.

6.4 ExpROI specification

In this section we define the numerator and denominator in ExpROI. In the case
of testing, the expected uplift will consist of three terms while the expected cost
will consist of two terms.

ExpROI =
RiskAdjustedUplift

RiskAdjustedCost
=
R1 +R2 +R3

C1 + C2
(16)

R1, R2 and R3 denotes the contribution from a True Positive result, a False
Negative result and an undetectable difference respectively. Conversely, C1 and
C2 denote the contribution from a False Positive result and a True Negative
result respectively. We use the following notation in this section:

Let Φ(x) denote the CDF for the standard normal and φµ,σ(x) the PDF for
a normal distribution with parameters µ and σ.

P (H1) = 1− Φ(
−µ
σ

)

P (H0) = 1− P (H1)

P (t > δ) = 1− Φ(
δ − µ
σ

)

Ea<t<b(U |H1) =

∫ b
a
xφµ,σ(x)dx

Φ( b−µσ )− Φ(a−µσ )

Recall that U denotes the random variable that the practitioner assigns
a subjective normal to, H0 and H1 the null hypothesis and the alternative
hypothesis respectively.
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6.4.1 Risk adjusted Uplift

The formula for risk adjusted uplift when implementing immediately without
testing is fairly straightforward.

RiskAdjustedUplift = P (H1)E(U |H1)nmax (17)

Some corrections to equation 17 is made in the case of testing to account for
the statistical power and minimum detectable effect:

1. True Positive - here we account for the probability of the true uplift being
greater than the minimum detectable difference as well as accounting for
the power. This effect applies to ne + ntc since it will be implemented if
and when detected. Since we will never reap the benefits from a positive
change below δ after implementation, our expectation will have δ as lower
bound.

R1 = P (t > δ,H1)(1− β)Eδ<t(U |H1)(ne + ntc) (18)

= P (H1)P (t > δ|H1)(1− β)Eδ<t(U |H1)(ne + ntc) (19)

= P (H1)
P (t > δ)

P (H1)
(1− β)Eδ<t(U |H1)(ne + ntc) (20)

= P (t > δ)(1− β)Eδ<t(U |H1)(ne + ntc) (21)

In other words, this is the contribution from a test outcome where treat-
ment truly is better than control and we are able to detect it.

2. False Negative - when a true uplift greater than δ is not detected, it
implies that the test statistics given, i.e. the observed difference in cu-
mulative conversion rate has not been big enough relative to δ. However,
benefits during testing period has most probably occurred. We model this
by taking the expectation over the positive support up to δ as well as
accounting for type II error probability and applying the effect to the test
sample size since it will not be implemented.

R2 = P (t > δ)βE0<t<δ(U |H1)ntc (22)

3. Undetectable difference - in case of the true uplift lying between zero
and δ, the effect will not be detected and thus control will be kept. How-
ever, being a positive uplift still, the effect during testing is accounted for
in down below formula.

R3 = P (0 < t < δ)E0<t<δ(U |H1)ntc (23)

With the three terms above, we have specified the numerator in our key
metric, accounting for all events where a the net revenue is positive compared
to status quo as well as adjusting for the probability of the events.
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6.4.2 Risk adjusted Costs

Analogously to the risk adjusted uplift, the risk adjusted costs for implementing
immediately without testing becomes:

RiskAdjustedCost = P (H0)E(U |H0)nmax (24)

The risk adjusted cost associated with testing is also corrected, this time
for statistical significance. Note that assigning a prior normal centered in zero,
that is that uplift and loss is equally likely, would result in an ExpROI of one
when implementing immediately without testing.

1. False Positive - this term quantifies the risk of implementing a treatment
worse than control. The statistical significance is accounted for and the
effected size is all visitors.

C1 = P (H0)α|E(U |H0)|(ne + ntc) (25)

2. True negative - the cost associated with correctly identifying a bad treat-
ment comes from the testing period when testing the bad treatment.

C2 = P (H0)(1− α)|E(U |H0)|ntc (26)

Thus, the risk adjusted costs for testing become the sum of the above two
terms. The absolute sign of the expectation in equation (25) and (26) respec-
tively is simply to get the cost and thereby the ratio positive.

6.5 Fixed Costs and Revenuer per User

Conducting tests will of course incur other costs than the two risk adjusted cost
term described above. Such costs can for instance be costs related to setting up
the infrastructure needed for testing or the payroll for the developers and data
scientists working with the tests. How to accurately estimate these kind of fixed
costs is outside the scope of this thesis but given a fixed cost we can incorporate
the costs into the formula. Note that revenue per user (RPU), defined as the
mean of revenue per user, have to be included in the formula where it otherwise
would be canceled out when no fixed costs is assumed.

ExpROI =
(R1 +R2 +R3)RPU

(C1 + C2)RPU + Cf
(27)

7 Analysis

In this section we perform exploratory analysis of the model, starting with the
case of varying one variable and fixing the others and progressively varying more
variables. In each addition of a new varying variable, the function is optimized
again without any results from past optimizations carrying over. Lastly, we add
the fixed cost parameter and examine the effect of fixed costs compared to no
fixed cost term.
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7.1 Optimal MDE

In this section we analyze the optimum of the minimum detectable difference
(MDE), denoted δ throughout this project, under what is arguably standard
default values for statistical significance and power, α = 0.05, β = 0.2.

In Figure (5), we notice how some graphs are undefined on some parts of the
domain. This is due to the fact that for the given parameters values, at those
values of δ, the sum of the sample size of control and treatment exceeds the
maximum effective size nmax, rendering a test undefined for the given effective
time in the model. Thus, many of the optimal MDE is quite large relative to
the standard deviation, many times the MDE is a factor of one to two of the
standard deviation. This implies that or ability to detect a true difference suffers
since the true difference would have to be larger than MDE, with a large MDE
the probability of the true difference being greater than the MDE is low.

Furthermore, we see how maximum ExpROI often is reached around roughly
1-5% MDE when a maximum is within the visible domain suggesting (wrong-
fully) a fairly robust range of values for δ. Comparing subplot 4 and 5 we can
see how a nonchalant selection of the value of δ can completely undermine a
test’s legitimacy. With assumed parameters in subplot 5, the optimum MDE
is just shy of 5%. A 5% in the setting of subplot 4 however, would give us a
value of less than 0.5, certainly less than 1, suggesting that our expected losses
would be greater than any expected uplift. On the other hand, the optimal δ in
subplot 4 around 2%, runs the risk of resulting in a sum of testing sample sizes
bigger than nmax in the setting of subplot 5.
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Figure 5: Plotting ExpROI against 0 < δ < 0.2 for a number of values for
µ, σ, nmax and pc. Depending on service and industry, different control con-
versions pc can be seen as typical conversion rates. Here we different control
conversion rates, 0.05 & 0.7, to illustrate the difference.
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Other noteworthy insights are how optimal MDE relates to the variance of
the relative increase in uplift. We can consistently see, for instance comparing
subplot 1 to 5 or 13 to 17, that under a greater assumed variance ceteris paribus,
the optimal MDE becomes larger. This matches our intuition; if there is any
deviations from zero, those differences are bound to be larger on average the
greater the variance is, allowing for less strict and thus larger MDE.

Lastly, focusing on subplot 13 - 20, that is when µ < 0, the range of most of
these plots are below one suggesting that conducting tests might not be worth
it, which makes sense in a business setting - why test something you believe
have greater probability to fail than succeed? However, if either the variance
σ2, maximum effective size nmax or baseline pc or a combination of these are
large enough, our ExpROI may exceed one as seen in Figure (6) , suggesting
that doing tests might be beneficial under these assumptions.

Figure 6: Negative µ with increased σ and nmax

7.2 Optimal α and β

To get a sense of how ExpROI behaves while varying α and β, we fix δ. These
δ : s are chosen based on the optimal MDE in Figure (5). Letting the x- and
y-axis represent α and β respectively, and the z-axis represent ExpROI we get
the following surfaces for some chosen parameter values.
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Figure 7: ExpROI vs. α and β for some selected parameter values

In our plots, we see that in our visible domain a global maximum exist.
Furthermore, ExpROI seems to premier large β for small control conversion
rate, far larger than what is usually accepted in statistical tests as seen in Table
4. Also, for large control conversion rates, drastically smaller sample sizes are
needed and high statistical significance can be achieved relatively cheaply as
indicated by the low α.
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Subplot Parameters Results
δ µ σ pc nmax ExpROI αopt βopt nct

1. 0.04 0.023 0.025 0.05 1e6 28.4506 0.0400 0.4700 79250
2. 0.06 0.023 0.025 0.05 1e6 22.4815 0.0150 0.4100 60840
3. 0.02 -0.01 0.02 0.05 2e6 0.4977 0.0600 0.5300 207850
4. 0.04 -0.01 0.02 0.05 2e6 0.3700 0.0100 0.3700 168210
5. 0.03 0 0.01 0.7 1e6 1.2557 0.0050 0.1100 13680
6. 0.04 0 0.01 0.7 1e6 0.7411 0.0050 0.0100 12700

Table 4: Results of optimized ExpROI for α and β with fixed δ. Note that the
surface function is evaluated at discrete increments of α and β, 0.005 and 0.02
respectively.

The parameter values are chosen so that the only difference between subplot
1 and 2, 3 and 4, 5 and 6 respectively, is the MDE. We notice how both α and
β decreases as MDE increases. This is explained by as our MDE increases, our
ability to detect true difference suffers. To compensate for this, α decreases i.e.
the statistical significance increases so that the false positive term (25) is given
less weight and the true negative term (26) more weight. Likewise, a decrease
in β results in increased power and thus less weight in false negatives (22) and
increased weight in true positive (18). To summarize; tests with less sensitivity
are compensated with more precision.

7.3 Optimizing for all covariates

We investigate the existence of a global maximum visually by plotting a 3d -
heatmap letting the three axis represent α, β and δ respectively and introduce
the fourth dimension, ExpROI, as the colour of the plot.
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Figure 8: ExpROI vs. α, β and δ for some selected parameter values

As seen in Figure (8), from the the looks of it, it seems that a global maxi-
mum exists when optimizing over our covariates for the given parameter values.
To conclusively prove the existence of a global maximum, one would have to
prove it analytically. While such a derivation will not be explored in this project,
based on the plots and our intuition, we claim it is quite likely that global max-
imum exists for all parameter values.

Subplot Parameters Results
µ σ pc nmax ExpROI αopt βopt δopt nct

1. 0 0.015 0.05 1e6 1.2305 0.0850 0.5500 0.0200 147480
2. 0 0.025 0.05 1e6 1.8619 0.0550 0.5300 0.0300 97860
3. 0.023 0.015 0.05 1e6 116.3298 0.0550 0.5500 0.0300 91440
4. 0.023 0.025 0.05 1e6 28.4414 0.0350 0.5100 0.0400 75810
5. -0.01 0.015 0.7 1e6 1.4652 0.0050 0.3900 0.0150 31020
6. -0.01 0.025 0.7 1e6 7.2916 0.0050 0.2700 0.0250 13900

Table 5: Results of optimized ExpROI for α, β and δ.

Barring the insights we gained from the previous two sections, we see how
small changes in our parameter values have drastic effects on our results. Com-
paring subplot 1 and 2 in Table 5, ExpROI indicates that a test is barely worth
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it whereas performing tests under the same assumptions with greater variance
as seen in the results of subplot 2 yields more promising indications.

We can also see how a greater variance implies less benefits of test when
µ > 0 as seen in subplot 3 and 4 in Table 5, which is expected since P (t < 0)
increases as σ increases ceteris paribus and vice versa. Naturally, it makes sense
intuitively too since a positive expected uplift paired with a low uncertainty
means less need for testing.

7.3.1 Sensitivity Analysis

As seen in Figure (9), which is a zoomed in and rotated version of Figure (8),
a large yellow band can be identified in the plots indicating similar values of
ExpROI over the volume of the yellow sections. Using a built-in numerical
optimization routine in matlab10, we maximize ExpROI for four different cases
for each of the subplots to examine the sensitivity of ExpROI. The results are
presented in Table 6.

As we can see from our results, for some parameter values, standard values
for the statistical significance and power yields ExpROI values close to the
numerically optimized value. Furthermore, fixing β to 0.2 and optimize for α
and δ yields values of ExpROI that is greater than 90% of the global maximum
in all of our tested cases. This raises the question whether ExpROI is a reliable
metric and what it really means to maximize this quotient.

Figure 9: Zoomed in and rotated version of Figure 8

10The routine in question is fminunc() which uses the BFGS Quasi-Newton to optimize the
function [MathWorks]
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Subplot Fixed Results
(µ, σ, pc, nmax) α β ExpROI α β δ ExpROI % of Max

1.
(0, 0.015, 0.05, 1e6)

- - 1.237 0.102 0.574 0.018 100%
- 0.2 1.123 0.185 - 0.020 90.8%

0.05 - 1.212 - 0.646 0.021 98.0%
0.05 0.2 1.09 - - 0.028 88.1%

2.
(0, 0.025, 0.05, 1e6)

- - 1.864 0.052 0.518 0.031 100%
- 0.2 1.677 0.08 - 0.034 93.0%

0.05 - 1.864 - 0.522 0.031 99.4%
0.05 0.2 1.656 - - 0.037 92.8%

3.
(0.023, 0.015, 0.05, 1e6)

- - 116.76 0.062 0.544 0.028 100%
- 0.2 102.28 0.115 - 0.030 90.3%

0.05 - 116.28 - 0.576 0.029 99.9%
0.05 0.2 97.193 - - 0.035 88.2%

4.
(0.023, 0.025, 0.05, 1e6)

- - 28.486 0.036 0.486 0.041 100%
- 0.2 25.729 0.054 - 0.043 90.3%

0.05 - 28.217 - 0.446 0.039 99.1%
0.05 0.2 25.717 - - 0.044 90.3%

5.
(-0.01, 0.015, 0.7, 1e6)

- - 1.500 0.007 0.350 0.016 100%
- 0.2 1.447 0.008 - 0.016 96.5%

0.05 - 1.044 - 0.203 0.012 69.6%
0.05 0.2 1.044 - - 0.012 69.6%

6.
(-0.01, 0.025, 0.7, 1e6)

- - 7.756 0.002 0.302 0.029 100%
- 0.2 7.612 0.002 - 0.030 98.1%

0.05 - 3.231 - 0.114 0.017 41.7%
0.05 0.2 3.162 - - 0.016 40.1%

Table 6: Numerical optimization of six set of parameter values with four cases
in each set.

7.4 Simulations for β

As we have seen in above sections, around the maximum value of ExpROI, the
changes along β is relatively small as seen in the relative flat shape along the β -
axis in Figure (7) and the elongated yellow part in Figure (9). This warrants us
taking a closer look on β. For the same parameters combination as Table 6 we
first find the optimal α and δ along with β. We then vary β between 0.1 - 0.6
with 0.1 increments and simulate 10,000 iteration for each combination. Lastly,
we sort the result of each iteration for each combination and plot the results.
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Figure 10: Iterations on x-axis and outcome on y-axis. Legend can be found in
bottom right plot.

As seen from Figure 10 and Table 7, the number of times we win are fairly
consistent over the different β i.e. conducting test with different values for the
statistical power will not increase our likelihood to win. It does however as
expected effect how often we correctly choose a better treatment. The jumps
in the graph corresponds to the contribution of true positive R1, equation (18),
while the modest upwards slopes are contributions from R2 and R3, equation
(22) and respectively (23). Empirical density functions corresponding to the six
cases can be found in appendix A.

7.5 Fixed Cost ExpROI

Here we add a fixed cost parameter as well as including revenue per user as
defined in equation (27). Adding positive RPU and fixed cost term to the
quotient will add more weight to the denominator compared to the vanilla case.
To offset this, the relative value of the numerator has to increase as well. The
most straightforward way to do this is to increase the weight of R1, i.e. decrease

32



β. Looking at equation (27), we hypothesize that the more dominating Cf is
relative the other terms in the quotient, the greater the beta reduction is.

To examine this we evaluate and optimize 100 combinations of fixed cost and
RPU where fixed cost ranges from 10,000 to 100,000 and RPU 100 to 1,000 for
the same set of parameter values as in Table 6. A visualization of the changes
is included in Figure 11.

Figure 11: Relative changes when optimizing ExpROI after introduction of RPU
and fixed cost for the same set of parameter values as Table 6. Note that the
graphs are only indicative since the graph shows the mean changes of only six
parameter combinations.

.

Not only do β decrease but we see a reduction in δ as well as relatively
large increase in α. With other words, we managed to increase the statistical
power and the sensitivity by introducing a large fixed cost and trading statistical
significance; there is no such thing as a free lunch. See appendix B for table of
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full results for some selected parameter values.

Subplot Results β
(µ, σ, pc, nmax) 0.1 0.2 0.3 0.4 0.5 0.6

1.
(0, 0.015, 0.05, 1e6)

ExpROI NA NA 1.1497 1.2715 1.3970 1.3504
% of Max NA NA 82.3% 91.0% 100% 96.7%
Win Rate NA NA 50.5% 50.1% 49.9% 50.2%

2.
(0, 0.025, 0.05, 1e6)

ExpROI 1.2881 1.6804 1.8129 1.8471 2.0800 2.1320
% of Max 60.4% 78.8% 85.0% 86.6% 97.6% 100%
Win Rate 49.2% 50.3% 50.5% 50.3% 50.7% 50.1%

3.
(0.023, 0.015, 0.05, 1e6)

ExpROI 76.0867 92.5744 112.6850 125.9870 147.1618 128.5313
% of Max 51.7% 62.9% 76.6% 85.6% 100% 87.3%
Win Rate 93.8% 93.6% 93.8% 93.9% 94.2% 93.8%

4.
(0.023, 0.025, 0.05, 1e6)

ExpROI 20.7896 24.8373 27.6183 32.8742 31.5968 25.4261
% of Max 63.2% 75.6% 84.0% 100% 96.1% 77.3%
Win Rate 82.3% 81.4% 81.5% 82.2% 83.0% 82.0%

5.
(-0.01, 0.015, 0.7, 1e6)

ExpROI 1.2313 1.4205 1.4797 1.6193 1.3709 1.2788
% of Max 76.0% 87.7% 91.4% 100% 84.7% 79.0%
Win Rate 24.1% 24.9% 25.2% 25.4% 25.0% 25.7%

6.
(-0.01, 0.025, 0.7, 1e6)

ExpROI 7.4330 8.4925 7.5939 7.1491 8.3816 5.6299
% of Max 87.5% 100% 89.4% 84.2% 98.7% 66.3%
Win Rate 35.3% 35.2% 34.4% 34.3% 34.3% 34.1%

Table 7: Results from simulations. 10,000 iterations run for each parameter
combination. Note that the maximum value from the simulations are greater
than those found in table 6. This is because we correct for a lower mean in our
formula given a false negative (equation 22) whereas the simulation simulates
false negatives invariant to the size of the uplift, as long as it is positive, thus
resulting in slightly higher values of ExpROI.

8 Model Discussion

The aim with the model was to investigate whether the model could provide
practitioners an easy way to gauge the financial viability of conducing test based
on certain beliefs about the outcome and if test parameters could be optimized
accordingly. The entire model rests on the assumption that the difference be-
tween the conversion rate in control and treatment can be described by a normal
distribution. Firstly, there is the question whether such a assumption is valid at
all. Secondly, suppose the difference actually can be accurately described by a
normal distribution, the question remains how to accurately specify the param-
eters to the distribution. Despite this, an argument to why such an assumption
is viable is to compare it to the alternative; if no other models and methods
are readily available, an informed guess might be a better option than blindly
choosing test parameter values or revert to default ones.

From our exploratory analysis we have identified and characterized certain
behaviour of ExpROI. We have also shown how ExpROI are unable to account
for one important factor. The magnitude of loss and wins is something ExpROI
is naturally agnostic to it being a quotient; it does not discriminate between
1:10 and 10:100. With other words, it does not optimize the frequency of which
we are able to correctly identify a better treatment. This effect results in high
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β and δ when maximizing the quotient. We can increase power and sensitivity
to some degree by introducing a fixed cost and trading α, still, this does not
entirely address the aforementioned issue. A possible remedy to this would
be to include complimentary metrics that measures mean or the rate of which
a positive treatment is correctly identified. However, this would most likely
decrease the ease of use and interpretability of the model when introducing
additional metrics. To this end, to blindly maximize ExpROI as we have done
in this project would not be advisable. However, as a standalone metric, it
could be used as a sanity check to see if a with some chosen test parameters
are expected to have higher possibility of success than failure by keeping the
quotient above one.

9 Further Research

As discussed above, the immediate extension would be to include additional
metrics to account for the magnitude and frequency of wins. If such a model
is proven to viable there are many venues to explore as seen in the literature
review.

A possible extension of the model is to include more treatments into the
model as well as model the dependencies of tests that follow each other sequen-
tially in a customer buying journey. For instance, when running concurrent
tests on the landing page as well as the checkout page, the outcome of the the
test on the landing page will undeniably affect the test on the checkout page. A
second natural extension, is to model changes in revenue distribution as opposed
to assuming that treatments only affect conversion rate.

Other possible areas to explore includes taking the general idea of ExpROI,
along with its’ complimentary metrics, and applying it on statistical frameworks
that allows continuous monitoring or detection of heterogeneous treatment ef-
fects. This way, parameters in such models can be tuned based on financial
sound metrics.

Lastly, it can be interesting to properly examine the fixed cost term in the
formula or add other relevant terms both in the numerator and the denominator.
One could easily argue for instance, that there is inherent value of gaining
insights when conducting tests e.g. that practitioner can infer certain customer
behaviours from tests that are successful. Other costs that might be relevant to
include could be costs accounting for buggy implementation or other technical
failures.
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Appendices

A Empirical density functions

Figure 12: Empirical density function corresponding to the simulation run in
Table 7
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B Results after introducing fixed cost and RPU

Subplot Fixed Results
(µ, σ, pc, nmax) α β ExpROI α β δ ExpROI % of Max

1.
(0, 0.015, 0.05, 1e6)

- - 1.155 0.131 0.504 0.017 100%
- 0.2 1.074 0.211 - 0.019 93.0%

0.05 - 1.115 - 0.568 0.022 96.5%
0.05 0.2 1.036 - - 0.027 89.7%

2.
(0, 0.025, 0.05, 1e6)

- - 1.746 0.060 0.470 0.030 100%
- 0.2 1.606 0.086 - 0.033 92.0%

0.05 - 1.742 - 0.487 0.031 99.8%
0.05 0.2 1.580 - - 0.036 90.4%

3.
(0.023, 0.015, 0.05, 1e6)

- - 54.969 0.206 0.245 0.023 100%
- 0.2 54.752 0.226 - 0.023 99.6%

0.05 - 49.883 - 0.304 0.029 90.7%
0.05 0.2 49.033 - - 0.031 89.2%

4.
(0.023, 0.025, 0.05, 1e6)

- - 21.551 0.056 0.348 0.037 100%
- 0.2 20.792 0.068 - 0.039 96.5%

0.05 - 21.526 - 0.356 0.038 99.9%
0.05 0.2 20.647 - - 0.041 95.8%

5.
(-0.01, 0.015, 0.7, 1e6)

- - 1.234 0.009 0.277 0.015 100%
- 0.2 1.220 0.009 - 0.015 98.9%

0.05 - 0.954 - 0.190 0.011 77.4%
0.05 0.2 0.954 - - 0.013 77.3%

6.
(-0.01, 0.025, 0.7, 1e6)

- - 5.586 0.003 0.208 0.025 100%
- 0.2 5.585 0.003 - 0.025 100%

0.05 - 2.967 - 0.108 0.017 53.1%
0.05 0.2 2.893 - - 0.016 51.8%

Table 8: Fixed cost 50,000, RPU 500.
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Subplot Fixed Results
(µ, σ, pc, nmax) α β ExpROI α β δ ExpROI % of Max

1.
(0, 0.015, 0.05, 1e6)

- - 0.951 0.237 0.371 0.014 100%
- 0.2 0.925 0.340 - 0.015 97.2%

0.05 - 0.891 - 0.391 0.023 93.7%
0.05 0.2 0.876 - - 0.026 92.1%

2.
(0, 0.025, 0.05, 1e6)

- - 1.441 0.087 0.372 0.028 100%
- 0.2 1.383 0.108 - 0.030 96.0%

0.05 - 1.415 - 0.400 0.031 98.2%
0.05 0.2 1.343 - - 0.035 93.2%

3.
(0.023, 0.015, 0.05, 1e6)

- - 25.800 0.999 0.00 0.00 100%
- 0.2 22.676 0.800 - 0.00 87.9%

0.05 - 17.577 - 0.174 0.028 68.1%
0.05 0.2 17.557 - - 0.027 68.1%

4.
(0.023, 0.025, 0.05, 1e6)

- - 12.462 0.113 0.216 0.032 100%
- 0.2 12.455 0.116 - 0.032 99.9%

0.05 - 12.060 - 0.238 0.036 96.8%
0.05 0.2 12.025 - - 0.037 96.5%

5.
(-0.01, 0.015, 0.7, 1e6)

- - 0.802 0.014 0.186 0.013 100%
- 0.2 0.802 0.014 - 0.013 100%

0.05 - 0.721 - 0.157 0.011 89.8%
0.05 0.2 0.717 - - 0.010 89.4%

6.
(-0.01, 0.025, 0.7, 1e6)

- - 3.092 0.005 0.125 0.021 100%
- 0.2 3.044 0.005 - 0.020 98.5%

0.05 - 2.256 - 0.091 0.016 73.0%
0.05 0.2 2.173 - - 0.015 70.3%

Table 9: Fixed cost 100,000, RPU 200.
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