
Continuous Validation of Multi-Cloud Systems by

Automated Test Scripting

JOSEFINE SANDSTRÖM
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2019

JO
SEFIN

E SA
N

D
STR

Ö
M

C
ontinuous Validation of M

ulti-C
loud System

s by A
utom

ated Test Scripting
LU

N
D

 2019

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2019-704
http://www.eit.lth.se

Continuous Validation of Multi-Cloud Systems by
Automated Test Scripting

Josefine Sandström
elt14jsa@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisors:
Christin Lindholm, Lund University
Richard Niklasson, Elastic Mobile
Richard Pålsson, Elastic Mobile

Examiner:
Christian Nyberg, Lund University

June 17, 2019

c© 2019
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

Scalability, pay-as-you-go, and flexibility are some factors why more and more or-
ganizations are utilizing a cloud environment for their IT systems. Specifically, the
trend is towards multi-cloud, where different cloud providers manage different ap-
plications and services. This environment is however a lot less deterministic than
an on premise solution. For example, if an application from one cloud provider is
updated, this might result in that another application from another cloud provider
stops working. This Master’s thesis investigates how a system owner can vali-
date his/her cloud-based business system continuously, to be able too see that it
functions as expected, as well as to spot anomalies. A measurement method is
developed using Apache JMeter and crontab, with a setup using an Amazon EC2
instance and Raspberry Pis. To test this method, a multiple case study is per-
formed on two different companies with two different cloud environments. Three
tests are performed. One measures the login process, among other things, another
measures the time required to generate a report of inventory values, and the third
measures the response times of an ordering system. The method is successful for
both environments, and all tests, as is shown by this thesis. For the first and third
test, the response times are visualized in graphs. The result of the second test is
shown in a table. The two companies are different in the sense that one is a large
international company, while the other is a medium-sized company just located
in Sweden. Also, the third test is performed because this company experienced
its ordering system as slow, while the other company had no reported anoma-
lies. Hence, this measurement method can be used to test different functions in
a business system for both large and medium-sized companies. Furthermore, if a
company suspects an error in their system, this method can be used to verify its
existence, as well as verify if the error has been solved or not.

i

ii

Popular Science Summary

It has become very popular for organizations to move their IT systems
to the cloud. However, this environment can be quite unpredictable
and changes constantly. How does this affect an organization’s cloud
based IT system? Well, the answer is to measure, to know.

Have you ever used Google’s email
service? Perhaps you have a few doc-
uments saved in Google Drive or use
Dropbox as an additional backup for
your photos? You access them through
the Internet without having to maintain
or support them yourself. This is be-
cause they are all applications based in
the cloud.

Cloud based applications and ser-
vices are maintained by cloud providers,
such as Amazon, Microsoft, and Google.
If an organization would use multiple
cloud providers for their IT system, for
example the storage service from Ama-
zon and the analyzing tools from Mi-
crosoft, they are utilizing a multi-cloud
environment. The providers are inde-
pendent of each other. Thus, an IT sys-
tem in this environment can stop work-
ing as expected if, for example, one
provider adds a new version to its ser-
vice, which is incompatible with the
other providers’ services. To be able
to see how new changes affect a system,
validation can be performed. Also, since
the cloud changes constantly, this can

with advantage be performed continu-
ously.

This Master’s thesis investigates
how continuous validation can be exe-
cuted, and a measurement method is de-
veloped. By performing measurements
on a system continuously, this method
can clarify what normal behaviour is
and what is not. It is used for gain-
ing knowledge about a system, for ex-
ample measuring the time it takes to
log in. It can also be used when try-
ing to solve an error. For example, if
users complain about a system being
slow, this method can tell if the system
has regained its speed again by measur-
ing both before and after the potential
solution took place.

A multiple case study is performed
to evaluate the method, and for both
test cases included, the method is con-
sidered successful. The method includes
a lot of manual work, which might be a
drawback for some organisations. How-
ever, this is considered to have less im-
pact, comparing with the overall advan-
tages with continuous validation.

iii

iv

Acknowledgements

First and foremost, I would like to thank my supervisors, Christin Lindholm,
Richard Niklasson and Richard Pålsson, as well as my examiner Christian Nyberg,
for their guidance and support throughout this thesis. A special thanks also goes
to all colleagues at Elastic Mobile for providing a great work place, as well as to
Kiviks Musteri AB and Company A for being part of this thesis’ multiple case
study. Finally, I would like to express my gratitude to my family, friends, and
boyfriend for their great support during my time at LTH.

v

vi

Table of Contents

1 Introduction 1
1.1 Background . 1
1.2 Project Aim . 2
1.3 Limitations . 2
1.4 Research Questions . 2
1.5 Disposition . 2

2 Related Research 5
2.1 Advantages of continuous validation 5
2.2 Relevant metrics . 6
2.3 Cloud testing tools . 8

3 Technical Background 11
3.1 Cloud computing . 11
3.2 Single cloud vs Multi-cloud . 13
3.3 Amazon Web Services . 14
3.4 Apache JMeter . 14
3.5 Raspberry Pi . 15
3.6 Crontab . 15
3.7 Reverse Proxy . 16
3.8 Apache Tomcat . 16
3.9 Internet Protocol Security (IPsec) 16
3.10 Microsoft SQL server . 16
3.11 Peering . 17

4 Multiple case study 19
4.1 Measurement method . 19
4.2 Test case 1: Kiviks Musteri AB . 20
4.3 Test case 2: Company A . 26

5 Evaluation 37
5.1 The measurement setups . 38
5.2 Requirements of the system . 38

vii

6 Conclusion 39
6.1 Future work . 40

7 Word Definitions 43

References 45

A This thesis’ cloud environments 49

viii

Chapter 1
Introduction

More and more organizations are moving their IT systems to the cloud [42]. Cloud
computing enables on-demand access to computing power, database storage, ap-
plications and other IT resources, often over the Internet. It can also be cheaper,
removing the high costs of hardware, than for a company to own their servers
themselves. The company can choose to adopt a single cloud environment, by
using a single cloud provider to serve all their applications and services, or a
multi-cloud environment, and the trend is towards multi-cloud [13]. In contrast
to single clouds, different applications and services are provided by different cloud
providers in the multi-cloud environment. It uses a mix of cloud offerings and
this is often appealing for companies because of the many choices they are given.
They can single out the service that is both cheapest and most suitable for their
needs. However, multi-clouds are very complex. When companies maintain and
house their own data centers, also called on premises data centers or “on prem”,
the company have full control over the infrastructure. This is not the case for
cloud users, and the behavior in the cloud can be a lot less deterministic.

1.1 Background

A cloud provider is hosting applications and services for multiple users at the same
time. The cloud is a multi-tenant environment and the users are sharing resources
like bandwidth and CPU. If an application or virtual machine uses the majority
of available resources, the others can experience performance issues. This effect
is called noisy neighbor and can for example cause slow speeds and high latency
[14]. For a user this means a worse user experience and possibly a decrease in
productivity. The effect of noisy neighbor can change sporadically. Sometimes it
might not be a problem, sometimes it might.

The multi-cloud contains of many different types of systems from different
cloud providers. These systems are independent of each other and are therefore
not updated at the same time. New features and new versions can for example
be added to one system, which are not compatible with the others. All companies
have a system owner who is responsible for their IT systems, or multi-cloud system
in this case. For the system owner, also referred to as owner, all these scenarios
usually result in complaints about how “nothing works”. Hence, it is essential for
the owner to know if the system will work satisfactory or not. The owner must

1

2 Introduction

find out if something, perhaps a new feature or update, is causing problems. To
gain this knowledge the system owner must validate the system to see if it meets
the expectations and requirements that was once specified by the company.

1.2 Project Aim

The aim with this Master’s thesis is to investigate how a system owner can perform
continuous validation of his/her business system in a multi-cloud environment by
using automated test scripting. By performing the validation continuously, the
owner will get an overview of the system, trends can be spotted, and errors can
be detected fast. During the validation, the system can be seen as a black box.
A stimuli is submitted, which is dependent of what part of the system that is
to be validated, and the response will be evaluated. A measurement method is
developed, including three measurement setups. To test this method, a multiple
case study is performed which includes two companies with two different cloud
environments.

1.3 Limitations

This thesis aims to investigate if anomalies occur in a cloud-based business system,
but not where those anomalies occur or how to solve them.

1.4 Research Questions

Questions which this thesis project aims to investigate and answer are as follows:

• Is it possible to perform continuous validation of a multi-cloud system by
automated test scripting and if so, what advantages are there?

• How can continuous validation by automated test scripting be performed?

• What software tools can be used to perform continuous validation?

• What should be measured to know if the business system is working as
specified for the system owner?

1.5 Disposition

The disposition of this thesis report is as follows. Chapter 2 discusses advan-
tages of continuous validation and how others have tested their cloud systems.
Information about cloud related technologies, technical components, and software
programs is found in chapter 3. The multiple case study performed during this
thesis can be read about in chapter 4. This chapter also discusses the different
test cases, and how measurements were executed. Each test case is followed by a
section where the results are addressed and analyzed. Chapter 5 then evaluates
the measurement method, the used setups, and the requirements of the compa-
nies’ systems. Conclusions and future work, as well as answers to the research

Introduction 3

questions, can be found in chapter 6. Finally, chapter 7 includes explanations of
words and expressions found in this report in italics.

4 Introduction

Chapter 2
Related Research

This chapter aims to partially answer the research questions in section 1.4. Because
there were not enough relevant articles found on continuous validation, this chapter
will also look into non-continuous testing and validation. It will discuss what
metrics one can measure to validate or test a cloud-based system or application,
and what software tools that can be used for this.

2.1 Advantages of continuous validation

Section 1.1 mentions some reasons why continuous validation is of interest. N.
Talens also writes in [1] that ”software development has everything to do with
validations”. He asks for example if a newly added product feature can undo the
effect of another, and if that wouldn’t be valuable to know. Continuous validation
is needed to make sure that software works as intended and that it keeps doing so
[1]. Hence, it is desirable to know how new features or changes affect the system
and, as Talens writes, ”be able to act on them”.

The company xLM, a subsidiary of ValiMation Inc, has introduced a continu-
ous validation framework for cloud apps [2] and they define continuous validation
as follows:

Continuous validation is providing documented evidence to certify
that an app not only met the pre-established acceptance criteria, but
“continuous” to meet thus mitigating the risk of unknown changes.

They explain that continuous validation connects validation in different phases,
for example initial validation or validation after upgrade, with continuous smoke
and regression testing. Hence, this can confirm that an app continues to function
as expected in the present, if it worked well in the past. Furthermore, they write
that the risk of changes that can alter the behaviour of the app are mitigated.
New changes are released in the cloud environment constantly, but the continuous
validation framework can, for example daily, ensure that the requirements are met
despite the changes.

5

6 Related Research

2.2 Relevant metrics

The xLM continuous validation mentioned above consists of seven steps. The
first is ”Requirements Definition”, during which the intended use of the cloud app
is defined. Aspects as performance, security and disaster recovery are specified.
”Risk Assessments” is the second step, performed to ensure business continuity
and regulatory compliance, among other things. This step is also performed to es-
tablish the testing models, for example to determine what features to test or what
testing strategies to use. Next step is ”Specification Definition” where the app
specifications are defined based on the intended use. The specifications include
configuration, workflow, log management, etc. Next, various models are devel-
oped to validate the app. This step is called ”Test Automation Scripts”. Here,
xLM uses their Model Based Test Automation framework, and a data designer is
used to generate test data. Then ”Test Model Validation” is performed to ensure
that the test automation model itself meets the specified requirements. The sixth
step is ”Test Execution”. The model based test automation approach makes it
possible to implement various types of tests, for example smoke, regression, load,
or performance tests. The last step is ”Validation Reporting” where for example
summary reports, and test deviation reports are provided by the xLM platform.

2.2.1 Performance evaluation

Performance evaluation of cloud computing is discussed in [12]. N. Khanghahi
and R. Ravanmehr states that ”cloud computing resources must be compatible,
high performance, and powerful”. Users and service providers are influenced by
higher performance of services and anything cloud related. For them, therefore,
performance evaluation is very important. Performance can be affected by several
factors. One example is recovery, which is defined by the time required for errors,
failures or lost data to be retrieved again. Other examples are network bandwidth,
availability, number of users, scalability, and latency. Two different methods for
evaluation are used in the article, evaluation based on criteria and characteristics,
and evaluation based on simulation.

There are several criteria, or metrics, for evaluating the factors that affects the
performance of cloud computing. There is average response time per unit time,
which covers all factors mentioned above. There is network capacity per unit time,
which mainly covers network bandwidth, availability and scalability. There is also
throughput, average processing time, the number of requests executed per unit
time, the number of rejected requests per unit time and so on.

For simulation the authors used the tool CloudAnalyst, which is further dis-
cussed in section 2.3. There are two main components in CloudAnalyst that are
configurable. The first is data centers which shows the hardware configuration,
such as processors, and bandwidth. They can also be defined in different geo-
graphic areas. The second component is users, which can symbolize a person, an
organization or a group. For users, one can configure for example geographical
area and number of requests per hour. Some of the metrics used in the simu-
lations are overall response time, processing time in the overall data center and
response time per user. Different scenarios are simulated where data centers, users

Related Research 7

and geographical region are modified in different ways. Data centers are modified
by changing the virtual machine, memory, and bandwidth. Users are modified
by changing the number of users and volume of work. The geographical region is
modified to see how the result changes when the data centers and users are in the
same region compared to in different regions far away from each other.

2.2.2 Scalability testing

In [3], W.-T. Tsai, Y. Huang and Q. Shao perform scalability testing and they
write that ”the key in scalability testing is the metric used to measure the scal-
ability”. Two examples of metrics are speedup and efficiency. Speedup in this
case refers to how an increasing number of processors also increases the rate of
doing work, compared to one processor, and efficiency refers to the work rate per
processor. According to the authors however, these metrics are not sufficient for
evaluating cloud and Software as a Service (SaaS), see section 3.1.1 for definition.
This is partly because these metrics doesn’t consider the complexity in the cloud
environment, and partly because the performance may differ depending on the
workload on the cloud application.

The authors present other metrics for cloud applications or systems, for ex-
ample performance/resource ratio (PRR). This metric describes the relationship
between the performance of the system under test and the resources used, i.e. both
the required computing time and the resources consumed in the process. Hence,
the metric PRR is dependent of the waiting time, Tw, and the resource consump-
tion, CR. The waiting time for a resource is the sum of the queuing time, Tq, and
the time it takes to execute it, Te. The resource consumption is determined by
the allocation of resource i, which is denoted Ri and can for example be CPU and
memory usage, and the time resource i is used, Ti. The formulas are as follows:

Tw = Tq + Te (2.1)

CR =
∑

Ri ∗ Ti (2.2)

PRR =
1

Tw
∗ 1

CR
(2.3)

When the workload changes, the performance also changes and the scalability
is measured by this change. How this performance change (PC) is calculated can
be seen in equation (2.4) below, where t and t′ represent different time periods.
The workload at these time periods is denoted W .

PC =
PRR(t)W (t)

PRR(t′)W (t′)
(2.4)

The ideal PC is equal to 1. Because of the complexity of the cloud system,
the PC may vary between different test runs. Therefore it could be beneficial
to also consider the performance variance (PV) when testing scalability. It can
be computed by the standard variance of the PC in multiple runs of the same

8 Related Research

workload, as shown in equation (2.5). A good scalability is shown by a PV close
to 0.

PV = E[(PCi −
1

n

n∑
i=1

PCi)
2] (2.5)

2.2.3 Testing as a Service

One approach that has received wide attention when it comes to testing software
based in cloud, is Testing as a Service (TaaS). It is a cloud-based service that
provides a scalable testing environment, a reduction in cost, and on-demand testing
services [4]. Gao et al. [5] proposes a TaaS infrastructure, also referred to as cloud-
based TaaS or CTaaS, which supports automated testing of cloud-based software
and SaaS applications. To support virtual test environments and the TaaS servers,
the authors used Amazon’s EC2 as the cloud infrastructure, which can be read
about in section 3.3. The TaaS infrastructure consists of three layers. The UI-
layer provides the TaaS user interfaces and the SaaS user interfaces. The Test
Space layer refers to the cloud-based virtual test environment. It contains the
SaaS under test and its supporting test frameworks, for example the simulation
agent that simulates system load and the interactions between SaaS, among other
things. The TaaS layer consists of a number of TaaS servers, for example on-
demand test server or test simulation server. The servers can be individually
instantiated in a cloud to support specific testing services by communicating with
their corresponding agents.

SaaS performance validation is supported by CTaaS. The TaaS infrastructure
has a performance validation component that supports several performance eval-
uation metrics. It does this by communicating with Amazon’s EC2 CloudWatch
APIs, a service for monitoring AWS instances [6]. The performance evaluation
metrics that are mentioned by Gao et al. are Computing Resource Allocation
Meter (CRAM), Computing Resource Utilization Meter (CRUM), System Perfor-
mance Meter (SPM), and System Load Meter (SLM). For each SaaS and their
instances, CRAM is the metric for monitoring allocated computing resources, like
CPU or data storage. However, for monitoring the resource usage, the metric
CRUM is used. SPM is used to evaluate and monitor the system performance
in terms of system utilization, such as throughput ratio or network utilization.
Lastly, SLM is used for evaluating the system load based on the user access load,
the network load, and the data access load.

2.3 Cloud testing tools

There are several testing tools available for testing applications or systems in the
cloud. One is Gatling [7], a tool designed for continuous load testing where the
simulation scripts are written in Scala [8]. Gatling supports the HTTP protocol
and can load test any HTTP server. An example of a test scenario can be made
by recording a user’s actions on a web application, and then launch this with an
execution file provided by Gatling. Another testing tool is LoadStorm [11]. This

Related Research 9

is also a load testing tool, designed to test web and mobile applications. Similar
to Gatling it comes with the ability to record the actions on a web application.
LoadStorm is a cloud-based platform which allows testing to be made from any
computer with internet access. It also comes with the possibility to control the
geographic distribution of traffic so that, for example, only traffic from the US will
hit the application under test.

The tool CloudAnalyst [9] that is used in section 2.2.1 is built on top of a
simulation toolkit called CloudSim [10]. This toolkit supports modeling and simu-
lation of infrastructures including data centers, users, user workloads, and pricing
models. CloudAnalyst utilizes the features of and extends some of the capabili-
ties of CloudSim. It enables visual modeling and simulation of applications that
are large-scale and distributed on cloud infrastructures. It provides the ability to
describe application workloads, such as information about geographic location of
users that generate traffic and data center locations, the amount of users and data
centers, and the amount of resources in each data center. With this information,
CloudAnalyst can generate information about the response time or processing time
of a request, and other metrics.

10 Related Research

Chapter 3
Technical Background

3.1 Cloud computing

Cloud computing has gained wide influence on IT systems in recent years [18], and
organizations of all sizes adapts this technology to its business, whether they are
small, mid-sized, or big [22]. The National Institute of Standards and Technology
(NIST) define the concept as follows [19]:

Cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal manage-
ment effort or service provider interaction.

With cloud computing, an organization does not have to plan and obtain
servers and other IT infrastructure weeks or months in advance. Instead, hun-
dreds or thousands of servers can be set up in minutes in the cloud [20]. The
infrastructure can be scaled up or scaled down considering the needs of the orga-
nization and typically the organization only pay for what they use. Cloud com-
puting also allows for consumers to provision computing capabilities, for example
network storage, as needed without human interaction with each service provider.
There are three service models in the cloud [19], Software as a Service (SaaS),
Platform as a service (PaaS), and Infrastructure as a Service (IaaS). There are
also four deployment models. These are public cloud, private cloud, hybrid cloud,
and community cloud.

3.1.1 Software as a Service

SaaS, or cloud application services, deliver applications managed by third party
vendors to its users over the Internet. The majority of SaaS applications requires
no downloads or installations on the client side. Instead they are run directly
through the web browser, which simplifies for businesses by making the appli-
cations easily accessed from any computer. It is the vendors that manage all
potential technical issues, like data, servers, and storage, as well as upgrading
software. Examples of SaaS are Google Apps, and Dropbox [21].

11

12 Technical Background

3.1.2 Platform as a Service

PaaS, or cloud platform services, are used mainly for applications but also provides
cloud components to certain software. With PaaS, developers obtain a frame-
work which they can build upon and use to create customized applications. The
developers can maintain management of the applications while servers, storage
and networking can be managed either by the company itself or by a third-party
provider. In contrast to SaaS, which delivers software over the Internet, PaaS pro-
vides a platform for software creation. This platform is delivered over the web and
provides scalability, high availability, and simple and cost-effective development
and deployment of applications. Examples of PaaS are AWS Elastic Beanstalk,
and Google App Engine [21].

3.1.3 Infrastructure as a Service

IaaS, or cloud infrastructure services, deliver infrastructure components such as
servers, network equipment, operating systems, and storage through virtualiza-
tion technology. It provides the same technology and capabilities as a traditional
data center, but the users do not have to maintain or manage all of it physically.
The users have complete control over the entire infrastructure and can typically
access and monitor it through a dashboard or an API. IaaS enables on-demand
and as-needed purchase of resources, instead of having to buy hardware outright.
Examples of IaaS are Amazon Web Services (AWS), Microsoft Azure, and Google
Compute Engine [21].

3.1.4 Public cloud

Resources are offered as a service in the public cloud, often over the Internet and
users pay only for what they use. The resources can scale depending on the user’s
needs, and services can be used without the purchase of hardware. Third party
organizations owns public clouds and offers different cloud services. The public
clouds are available to the general public and designed to be used by any user with
an internet connection. All data a user creates and submits are typically stored
on the servers of the third party vendor [22].

3.1.5 Private cloud

The purpose of private clouds is to use cloud services within an organization,
instead of offering it to the general public. It is operated solely for the organization
and can only be accessed by members of the organization and/or third parties with
granted access. It can be managed either by the organization itself or by a third
party, and it can be placed either on premise or off premise. Private clouds are
more secure than public clouds, since it generally gives the organization more
control over security parameters. It is, however, more expensive [22].

Technical Background 13

3.1.6 Hybrid cloud

A hybrid cloud is composed of at least one private cloud and one public cloud.
Each cloud is a unique entity, but they are connected to each other by standardized
or proprietary technology that allows transmission of data and application. Hybrid
clouds offer benefits of both public and private clouds. For example they offer cost
and scale benefits as public clouds does, but also security and control benefits like
private clouds [22].

3.1.7 Community cloud

A community cloud lies somewhat between public and private clouds. It has sim-
ilarities with private clouds but offers infrastructure and computational resources
to two or more organizations with common privacy, security, and regulatory con-
siderations, instead of a single organization. The bandwidth and data storage in
the cloud is shared among all community members [22].

3.2 Single cloud vs Multi-cloud

According to [13], using a single cloud environment means that all applications
and services an organization migrates to the cloud are served by a single cloud
provider. Examples of cloud providers are Amazon, Microsoft and Google, and
their cloud services are called Amazon Web Services (AWS), Microsoft Azure, and
Google Cloud Platform, respectively. When organizations employ a single cloud
model, they often use the cloud for a single application or service, for example
email, enterprise resource planning (ERP) or customer relationship management
(CRM). The single cloud environment is suitable for smaller or less technically
adept organizations that desire the benefits of the cloud without it becoming too
overwhelming. It is also suitable for organizations who, for the time being, need
less cloud resources but might need more in the future. When that day comes,
and a single cloud server is not enough, the number of virtualized servers in the
single cloud environment can be expanded.

In contrast to single cloud, a multi-cloud environment uses different cloud
providers to serve different applications and services. By employing a multi-cloud
model, an organization can choose the service that is both cheapest and most
suitable considering the needs of the organization. A multi-cloud offers flexibil-
ity. It could be that one provider offers the best solution for storage, another
offers the best solution for email, and a third offers the best solution for testing
environments. Using a single-cloud environment, an organization is limited to use
only that provider’s services and applications. Similarly, multi-clouds also avoids
vendor lock-ins. However, integration between the different cloud providers can be
a problem, because of the complexity of the multi-cloud. For example, one must
consider that different cloud providers have different service level agreements, and
architectures, among other things [13]. Multi-clouds and hybrid clouds are often
used interchangeably, but there are differences between them. A hybrid cloud has
at least one private cloud and one public cloud and these are connected to each
other. A multi-cloud typically consists of multiple public clouds but can also in-

14 Technical Background

clude private clouds. These may or may not be integrated with one another. A
hybrid cloud is a single entity, but a multi-cloud is not [23].

For both test cases in this thesis, the definition of multi-cloud is extended to
also include multiple clouds with different cloud account owners, within a cloud
from one single cloud service provider. For example in section 4.3 there is one AWS
cloud containing multiple clouds owned by two different AWS account owners.

3.3 Amazon Web Services

The cloud environments studied in this thesis is hosted by Amazon’s cloud service
AWS. AWS offers infrastructure services like computing power, databases, and
options for storage, as well as tools to manage these resources, for example user
access control, and monitoring. These services are accessed on-demand and users
only pay for what they use. Resources can be located in different geographically
isolated data centers which, among other things, increase availability [20].

Some AWS resources used in this thesis are VPC, and EC2. VPC stands for
Virtual Private Cloud and is a customizable virtual network, logically isolated
from other virtual networks in the AWS Cloud. It has close resemblance to a
traditional network a user can operate in his/her own data center, but the VPC
is for example scalable [27]. EC2 stands for Elastic Compute Cloud and offers a
virtual machine in the AWS Cloud with scalable computing capacity. This can be
used to launch virtual servers, configure security, or manage storage [28].

3.4 Apache JMeter

The load testing tool Apache JMeter, version 5.0, is used in this thesis for creating
and executing test plans, as well as generating graphs of the results. It is an
open source, Java based application designed to load test functional behavior and
measure performance [16]. It is chosen because it is open source, it is a widely
used tool and there exists much information and tutorials about it. With Jmeter
one can for example create a test plan by recording a web application, simulate a
heavy load, execute the test in command-line mode (CLI mode, non-GUI mode)
and then generate an HTML report to visualize the results. With the HTML
report, results are visualized as different graphs, for example latencies over time
or bytes throughput over time.

JMeter allows for testing to be performed remotely, which makes it possible
to test a business system from the views of a client. This also provides the ability
to simulate a larger load since the test can be replicated across many low-end
computers. One JMeter instance is the master that controls the tests, distributes
them to all remote servers, also called slaves, and collects all data from them. The
slaves are the ones that execute the tests and send requests to the business system,
also referred to as target system. They are placed at the client whose business
system is to be tested. An overview of the setup is shown in figure 3.1.

Technical Background 15

Master

Slave 1

Slave 2

Slave N

Target
System

Figure 3.1: An overview of the setup used for remote testing in
Apache JMeter.

JMeter uses Java Remote Method Invocation (RMI) to communicate between
the master and the slaves. Java RMI allows Java virtual machines to invoke meth-
ods from other remote Java objects [17], and it requires that the JMeter master
and all JMeter slaves are in the same subnet. This is not feasible if, for example,
a client wants to execute a test from different offices. To solve this problem, the
master and the slaves are instead communicating through SSH tunnels by using
SSH port forwarding.

3.5 Raspberry Pi

With the aim to educate people in computing and to increase accessibility to
computing education, the UK charity, Raspberry Pi Foundation, made a series
of single-board computers called Raspberry Pi. These credit-card sized comput-
ers are open source and all models cost $35 or less. They are used for learning
programming, build hardware projects, do home automation, and are also used
in industrial applications [29] [30]. In this thesis, Raspberry Pis are used in the
measurement setups because they are cheap, small, and easy to use.

3.6 Crontab

When it is desirable to schedule a task, for example a test run, crontab is used in
this thesis. Crontab is a file containing instructions which are run by the "cron
daemon" when specified. It is a Linux utility, that allows the "cron daemon" to
run commands in the background at regular intervals, automatically [31]. In the
crontab file, a user specifies a command, or a script containing several commands,
to be executed at a certain time. This time is specified by the minute, hour, day of
the month, month, and day of the week the command should be run. An asterisk
is used to denote that the command should be run for example every hour or every
day of the month. Crontab can also run commands every other minute, or every
tenth minute, as well as specifying time intervals. An example is shown below:

*/30 8-10 * * THU /path/to/the/command

16 Technical Background

In this example, the command is run every month, every Thursday, and every 30
minutes between 8:00 and 10:00, that is 8:00, 8:30, 9:00, 9:30, and 10:00.

3.7 Reverse Proxy

A reverse proxy is a server, placed in front of one or more web servers, which
forwards client requests to those web servers. Client requests can for example be
requests from a web browser. The reverse proxy prevents direct communication
from client machines to the web servers. There are many advantages using a reverse
proxy. It can for example be used for load balancing and distribute requests
to a web site evenly among several web servers so that no web server becomes
overloaded. It can also protect against targeted attacks against the web servers,
such as Distributed Denial of Service (DDoS) attacks. By using a reverse proxy, a
web site does not have to reveal the IP address of their web servers. Attackers can
therefore only target the reverse proxy, which has more resources to fend off a cyber
attack [32]. In this thesis, this component is included in the system environment
of Company A in section 4.3.

The reverse proxy is different from a forward proxy, where the proxy server
instead is placed in front of a group of client machines. The forward proxy prevents
direct communication from web servers to the client machines [32].

3.8 Apache Tomcat

The Apache Tomcat software, also referred to as Tomcat server, is used to develop
web servers in the Java environment. It is an open source implementation of several
Java EE [33] specifications, such as Java Servlet [34] and JavaServer Pages (JSP)
[35]. Tomcat servers are widely used in different industries and organizations and
powers numerous large-scale web applications [36]. In this thesis, a tomcat server
is included in the system environment of Company A in section 4.3.

3.9 Internet Protocol Security (IPsec)

IPsec is a set of protocols which provides a secure exchange of data packets on
the IP layer. The protocols define, among other things, cryptographic algorithms
for encryption, decryption, and authentication of packets, as well as secure key
exchange and key management [40]. In this thesis, an IPsec connection is included
in the system environment of Company A in section 4.3.

3.10 Microsoft SQL server

The Microsoft SQL server is a database management system which uses the rela-
tional model for data management. Users can fetch and store data using T-SQL,
a dialect of SQL. The requests can be made from the same computer, or from dif-
ferent devices across a network [39]. In this thesis, some SQL servers are included
in the system environment of Company A in section 4.3.

Technical Background 17

3.11 Peering

Peering is a method of exchanging traffic directly between internet service providers
(ISPs) instead of routing it through the Internet. Since the ISPs have a direct con-
nection to each other, peering allows for fast traffic at low cost. There is no need
to pay network service providers for access to the Internet backbone [37]. In this
thesis, peering is used between two VPCs. This allows for instances in either VPC
to communicate with each other as if they were within the same network [38].

18 Technical Background

Chapter 4
Multiple case study

This Master’s thesis aims to investigate how continuous validation can be per-
formed, and thus why and in which cases it can be used. Specifically, one method
using JMeter and the setups in section 4.1 is developed, and how well this mea-
surement method works in two test cases is investigated. According to Yin in
[41], there are three situations where case study research is the preferred research
method. The first is if the main research questions are ”how” and ”why” questions,
like the ones above. The second is if the researcher has little or no control over
behavioral events, and thirdly, if the focus on the study is a contemporary set
of events, as opposed to historical. A case study is performed when a researcher
wants to understand a real-world case, in depth [41]. In this thesis, a multiple case
study is performed, covering two test cases with two different cloud environments.
One is the cloud environment of Kiviks Musteri AB, and the other of an, in this
thesis, anonymous company further referred to as Company A. This method is
chosen because the three situations above occurs in each test case. The test case
of Kivik is further branched out to two different test cases, however in the same
cloud environment.

This thesis is done in collaboration with Elastic Mobile Scandinavia AB, a
company which helps businesses to migrate parts of their IT systems to the cloud.
They maintain these cloud environments and make sure that the clients can use
them, and enter applications in them, without problems. Kivik and Company A
are two clients of Elastic Mobile, and they are included in this thesis of different
reasons. Kivik was eager to be a part of it so they could get a better system
awareness. They also already had a Raspberry Pi for use in one of their offices,
which seemed convenient. Company A got involved when an error occurred in their
ordering system, see section 4.3. The employees of Elastic Mobile were ordered to
examine this and the idea rose to also test the system continuously. Thus, the test
case of Company A is based of an anomaly, whereas Kivik had not reported any
such things.

4.1 Measurement method

Three different, but similar, measurement setups are used in this thesis. The first
test case for Kivik uses the remote testing setup discussed in section 3.4. An
Amazon EC2 instance is used as the JMeter master because it allows for testing

19

20 Multiple case study

to be done continuously with an ”infinite” amount of resources. One Raspberry
Pi is used as a JMeter slave because of its low price and user-friendliness. This
Raspberry Pi acts as a user of Kivik’s ERP system and is therefore placed at
Kivik. The EC2 instance and the Raspberry Pi are communicating through SSH
tunnels. This is configured by specifying which ports the master and slave should
listen/send data to. The configuration is done in the respective property file. For
the second test case for Kivik, tests were run from a Raspberry Pi placed at Elastic
Mobile. This Raspberry is owned by Kivik and the original idea was to copy the
correct test to it and then send it back. However, it was later decided that during
the course of the thesis, the Raspberry should stay where it was. This meant that
no new configurations needed to be done, and tests could be executed without
interruption. The third setup, for Company A, also used the EC2 instance but
the tests were executed directly from it and not remotely. The reason why no
Raspberry Pi was used as a user in this case was that Company A had a problem
which they needed knowledge about fast. There was no time to configure a remote
setup and send the Raspberry Pi to them.

The tests are produced by performing, and simultaneously recording, the ac-
tions a user would do. JMeter uses a proxy to catch the HTTP requests made
by the tester. A specific port is chosen and a JMeter certificate is added to the
web browser used for accessing the web application. On the web browser, manual
proxy configuration is chosen and the chosen port is entered. After the test has
been recorded, small changes were made by manual scripting in Groovy, a dy-
namic programming language for the Java platform [26]. These changes could, for
example, be an ID that is unique for a certain login session, and which is given to
the user during the login process. Some results are shown in graphs as response
times over time, and they are generated by JMeter as an HTML report. Graphs
showing statistical values were made in Microsoft Excel. The tests were validated
by comparing the HTTP requests recorded by JMeter with the requests shown
using the web browser’s developers tool. The tests were produced locally on a
computer at Elastic Mobile, and later copied to the device that would execute it.

4.2 Test case 1: Kiviks Musteri AB

Kiviks Musteri AB started out as a small apple orchard in 1888, but is today a
beverage company of 190 employees which produces both food and drinks [25].
This chapter describes Kivik’s cloud and business system environment, as well as
the two tests performed to increase system awareness about these.

4.2.1 The cloud environment

The business system, or ERP, used in this thesis is M3 by Infor. M3 is an applica-
tion on the ”Infor cloud” and Infor is using AWS to support it. It offers function-
ality for a broad range of industries, for example food and beverage, chemicals, or
fashion [15]. It offers a complete ERP suite and the functionality includes quality
management, inventory management, risk management, supply chain planning,
and so on. Kivik uses M3 for managing orders, inventory, invoicing, purchasing,
manufacturing, logistics, and finance. This system is the main reason of why Kivik

Multiple case study 21

started to use cloud. This is their most important system and they moved it to
the cloud so that others, with specialized competence, could maintain it. Figure
4.1, see appendix A for a larger figure, shows the IT environment of Kivik. The
different offices and on-prem components are shown at the bottom of the figure.
The Raspberry Pi which executes tests and simulates a user is located at the office
”Kivik”. Above the offices is the AWS cloud, which includes the Infor cloud, and
the cloud of Elastic Mobile. The latter includes, among other things, applications
that exchange information with M3, but are not included in the Infor SaaS of-
fer. One example is Opto (KMC-OPTO01) which is an invoice scanning system.
Another example is TaGS (KMC-GS01), a production optimization tool. An em-
ployee from Kivik enters their M3 application via the Elastic Mobile Cloud, just
like an employee from Elastic Mobile would do. Not included in the figure is an
Azure cloud, containing SaaS applications for ordinary work tasks, such as Skype
for business, and Office 365.

Figure 4.1: The cloud environment of Kiviks Musteri AB.

4.2.2 Login test

This test is done mostly to familiarize with the environments, but it also has an-
other purpose. To access M3 and start utilizing its functions, a user has to login.
If this takes too long, the user will complain about the system being slow and the
user satisfaction decreases. Kivik does not have any documented requirements on
the login process, but the expectations from the organization is a fast response.
Besides the login process, this test also lists future transactions of pear juice con-
centrate. This is done by entering ”Material plan”. This M3 feature shows all
planned transactions for the combination of item and warehouse. It also contains
information about an item’s on-hand balance, and safety stock level. The exact
steps this test simulates are the following:

22 Multiple case study

1. Enter credentials to M3 login window and click ”Log in” (M3 start page
appears)

2. Click ”Material plan”

3. Enter the article number for pear juice concentrate, i.e. 23840 (list of
planned transactions appears)

4. Exit ”Material plan”

5. Exit M3 and click ”Leave page”

As stated, the login process, i.e. step 1, is the interesting part of this test. It
includes all steps from when a user clicks the login button to when the start page
appears and has finished loading. Notice how step 4 says ”Exit M3, and click ”Leave
page”, instead of, for example, ”Log out”. The M3 application used by Kivik does
not have a logout function. However, if the user closes the web browser with the
M3 application, and clicks ”Leave page” on the pop-up window, he/she have to
enter his/her credentials again when entering M3 in a new browser window. The
time it takes to perform each step above is measured and visualized in figure 4.2,
in the result section below.

Results

Figure 4.2 below is a graph of the response times over time for each step in section
4.2.2 from May 4 to May 14. The login process is the red line, and have higher
response times than the other steps. On weekends, the login times varies approx-
imately between 3 s and 8 s. On weekdays they vary approximately between 3 s
and 11 s. When measuring the time manually, a weekday at 10:12 and 10:33, it
took approximately 7 s and 10 s, respectively, which are close to the times from
JMeter. However, lower response times have also been manually measured during
the measurement period. The lower times might sometimes be explained by the
lack of log out function in Kivik’s M3 application. If a user ”logs in” to M3 in
a new browser window, while still signed in in another, the application does not
have to re-load all data and the ”login process” becomes shorter.

The upper response times, i.e. 8 s and 11s, can seem like a long time for a
login. However, a user typically only logs in once a day and then stays logged
in until his/her working day has ended. Because of this, the login time has little
importance compared to other actions a user performs in M3.

The most distinct peaks, for example during May 4, May 5, and May 12,
occurred at 1:00 or 1:20 in the morning. Most peaks for entering ”Material plan”
are also outside of working hours. These can for example be caused by scheduled
updates and does not necessarily imply any anomalies. There is also a gap, i.e. no
test results, between 15:40 - 17:40, as well as 18:00 on May 13. This is, with great
probability, due to anomalies from the environment of Company A, see section
4.3.4. The response times of the tested system were too high, so another test
started before the last one was finished. As can be seen, this prevented JMeter
from executing the login test. It is not clear why this happened. The only thing
that can be said is that somehow JMeter was too busy with the test at

Multiple case study 23

Company A, to execute the test at Kivik. This has not occurred any other time
during testing.

Figure 4.2: Response times over time for each step in the login test.

Below are graphs of how the average and median response time, as well as
standard deviation, has changed per day during this measurement period. The
graphs 4.3 - 4.7 show that the average response time for each step in section
4.2.2 is 6513 ms, 177 ms, 37 ms, 33 ms, and 62 ms, respectively. The average
values are denoted with a blue line, the median values with an orange line, and
the standard deviation with a gray line. Since the average times are so different,
these graphs must be compared carefully. For example, at first glance it may look
like the standard deviation in graph 4.5 varies more than in graph 4.3, which is
incorrect. Except from the login time, the response times for the other steps are
quite regular. The graph for the login process shows that the average response
time increases during workdays, and decreases during weekends. For the other
steps, the standard deviation shows some variations, but since the times are so
low those variations have little impact on the user experience.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2019-05-04 2019-05-05 2019-05-06 2019-05-07 2019-05-08 2019-05-09 2019-05-10 2019-05-11 2019-05-12 2019-05-13 2019-05-14

M
illi

se
co

nd
s

Login process

Average Median Std. Dev

Figure 4.3: Daily changes of the avg. and mdn. response time, as
well as std. dev., for the login process.

24 Multiple case study

0

50

100

150

200

250

300

350

2019-05-04 2019-05-05 2019-05-06 2019-05-07 2019-05-08 2019-05-09 2019-05-10 2019-05-11 2019-05-12 2019-05-13 2019-05-14

M
illi

se
co

nd
s

Enter Materialplan

Average Median Std. Dev

Figure 4.4: Daily changes of the avg. and mdn. response time, as
well as std. dev., for clicking ”Material plan”.

0

10

20

30

40

50

60

2019-05-04 2019-05-05 2019-05-06 2019-05-07 2019-05-08 2019-05-09 2019-05-10 2019-05-11 2019-05-12 2019-05-13 2019-05-14

M
illi

se
co

nd
s

Enter article 23840

Average Median Std. Dev

Figure 4.5: Daily changes of the avg. and mdn. response time, as
well as std. dev., for entering the article number for pear juice
concentrate (23840).

0

5

10

15

20

25

30

35

40

2019-05-04 2019-05-05 2019-05-06 2019-05-07 2019-05-08 2019-05-09 2019-05-10 2019-05-11 2019-05-12 2019-05-13 2019-05-14

M
illi

se
co

nd
s

Exit Materialplan

Average Median Std. Dev

Figure 4.6: Daily changes of the avg. and mdn. response time, as
well as std. dev., for exiting ”Material plan”.

Multiple case study 25

0

10

20

30

40

50

60

70

2019-05-04 2019-05-05 2019-05-06 2019-05-07 2019-05-08 2019-05-09 2019-05-10 2019-05-11 2019-05-12 2019-05-13 2019-05-14

M
illi

se
co

nd
s

Exit M3, leave page

Average Median Std. Dev

Figure 4.7: Daily changes of the avg. and mdn. response time, as
well as std. dev., for exiting M3.

4.2.3 Generate report of inventory values

The other test performed in Kivik’s environment generates a report of inventory
values every Sunday at 15:00, and measures the time it takes to do so. The
report is big, and it is therefore generated on Sundays so it does not interfere
with ordinary work. The report contains inventory values of all items in the whole
factory, including warehouses, which depend on what location and what stage of
the production and logistic process the items are at.

This test was partially done for familiarization, for example it required more
manual scripting than the login test. Some obstacles included calculating the time
difference of when the report started to be generated until it was finished. The
test was, however, mainly done for having the report generated automatically and
scheduled. Previous to this test the report was generated manually and because of
that, it was sometimes forgotten. This is of course irritating and results in having
to generate two reports the next Sunday, which takes much longer time. This test
therefore enables free time for the system owner and an assurance that the report
will be generated.

Kivik does not have any requirements, considering time, on this report. Since
it is generated when no other employees are using the system, it is acceptable if
it takes a long time to generate. However, by knowing the time it usually takes
to generate the report, Kivik will instantly know if something extends that time
and can start investigating that. It also adds knowledge of when the data in the
report can be visualized and analyzed.

The test creates a report by entering information about inventory valuation
round, exchange rate type, name of report, inventory valuation date, whether it
should include lines with zero quantity, usage of zero as actual value, whether it
should exclude goods in transit, valuation type, report layout, and optional text
for report header. The report is sent to the email address of the system owner
and this is confirmed after entering the information above. Finally, the report
is scheduled to ”now” in M3. Crontab is used to schedule the report generation
to every Sunday at 15:00. The measured times for generating reports on several
Sundays can be read in table 4.1 in the result section below.

26 Multiple case study

Results

The table below shows the total amount of time it took to generate the report
of inventory values, as well as the date when each report was generated. The
average generating time is 23 min and 40 s. When speaking to the system owner
about this test, he said that it took approximately 20 minutes. The results given
from the test is therefore considered reasonable and good. The generating time
is similar on all Sundays, but it increases each week. This is most likely not an
anomaly, but instead due to the fact that Kivik have the majority of their sales
during summer. As summer approaches there occurs more transactions to be able
to keep the warehouses full when summer has arrived. There are more data to
process and this has an impact on the report generating time. However, since the
results are analyzed the workdays after the report has been generated, it does not
matter much if the generating time takes a few minutes longer or not. Also, as
already has been mentioned, this report does not interfere with actual users of the
system since it is generated on Sundays when no employees are working.

Date Total time
2019-04-21 23 min 4 s
2019-04-28 23 min 24 s
2019-05-05 23 min 52 s
2019-05-12 23 min 57 s
2019-05-19 24 min 6 s

Table 4.1: The total time it took to generate reports of inventory
values and what date the reports were generated.

4.3 Test case 2: Company A

Since Company A in this thesis is anonymous, not much can be revealed about
it. However, what can be said is that it is a large company, much larger than
Kivik, and it has several offices abroad. After an update of Company A’s ordering
system, the users said they experienced it as ”very slow”. Everyday tasks took
very long to perform, but it was not slow constantly. This varied and therefore it
was hard to be sure if the problem still existed or not. To see if there still was a
problem, continuous testing was performed. The following sections will discuss the
system environment, the test, and how continuous testing was used when trying
to find a solution to the problem.

4.3.1 The system environment

Figure 4.8 below, see appendix A for a larger figure, shows the system environment
after the update. This environment is hosted by AWS. When the tester wants to
access the ordering system, which is done via a web browser, it starts off by enter-
ing the VPC in Dublin through a firewall. This VPC is part of AWS account 1,

Multiple case study 27

owned by Company A. The user then enters subnet 1 and the reverse proxy. This
component sends the user’s request to the tomcat server in subnet 3, which pro-
vides the interface of the ordering system to the user. This component exchanges
information with M3, and receives data about the articles’ inventory balance,
among other things. To receive this, the tomcat server sends requests to the IPsec
in subnet 2. With the IPsec connection, the requests transfers from AWS account 1
and the VPC in Dublin, to AWS account 2, owned by Infor, and the Infor M3 VPC
in Frankfurt. The requests are sent to the application server which communicates
with the Microsoft SQL server and then sends back the requested information.

AWS ACCOUNT 1

VPC | DUBLIN

SUBNET 1

REVERSE
PROXY

1
SUBNET 2

IPsec

SUBNET 3

TOMCAT
SERVER

2 3

4

AWS ACCOUNT 2

INFOR M3 VPC | FRANKFURT

APPLICATION
SERVER

IPsec

5

MICROSOFT
SQL	SERVER

Figure 4.8: The system environment after Company A’s update.

4.3.2 The test

The test simulates a user who logs in to the ordering system, creates an order of 52
articles, 5 of each, which ends up in a cart, deletes the order, and lastly logs out.
After logging in, the user can choose to work in either the test environment or the
production environment. Since this test is to simulate an actual user, the testing
occurred in the production environment. The test was executed every 15 minutes,
first only on evenings and during a weekend, to make sure that real employees
were not disturbed. It was later also desirable to execute it during the day so that
any potential anomalies would be spotted. No noticeable effects for real employees
were reported when the test was executed during work hours. When trying to fix
the problem, the test was run to immediately be able to tell if the fix was successful
or not. The actual steps the simulated user performed are the following:

1. Enter URL to ordering system (login page appears)

2. Enter credentials and click ”Log in”

3. Choose production environment (the start page appears)

4. Click items (all available articles are listed)

5. Write quantity 5 on the first 52 articles and click ”Buy chosen” (the articles
are placed in the cart)

6. Click on shopping cart (window with chosen articles appears)

7. Click ”Confirm order” (order finalization appears)

28 Multiple case study

8. Click ”Remove order”

9. Log out

4.3.3 The continuous testing process

While investigating all steps of the process, it was discovered that the applica-
tion server was overloaded, so more memory was assigned to it. Employees who
accessed M3 and the application server in Frankfurt directly said that they expe-
rienced faster responses. However, measurements show, see graph in figure 4.11,
that this was not the case for employees who entered the ordering system and the
tomcat server in Dublin. It is also important to note that in this case, the load
on the system had no impact on the response times. The graph shows that the
response times were basically the same during the afternoon, when the load is
high, and during night, when the load is at its lowest. The slowness of the system
was ”greater” than the impact of the load.

It was also discovered that there was a latency of approximately 23 ms between
the tomcat server in Dublin and the application server in Frankfurt. A new VPC,
located in Frankfurt, was created by AWS account 1 and the tomcat server was
moved to this VPC. Figure 4.9, see appendix A for a larger figure, visualizes the
system environment after the move. After entering the reverse proxy in the Dublin
VPC, the user request reaches the tomcat server in the Frankfurt VPC via peering.
A new IPsec connection was established between the VPCs in Frankfurt, which
carried the tomcat server’s requests to the application server. As can be seen by
the graph in figure 4.12, this appeared to solve the problem. The response times
became lower, especially for writing the quantity and clicking ”Buy chosen”.

AWS ACCOUNT 1

NEW VPC | FRANKFURT

IPsecTOMCAT
SERVER

VPC PEERING

4 5

VPC | DUBLIN

SUBNET 1

REVERSE
PROXY

1

VPC PEERING

2

SUBNET 2

IPsec

3

6

AWS ACCOUNT 2

INFOR M3 VPC | FRANKFURT

APPLICATION
SERVER

IPsec

7

MICROSOFT
SQL SERVER

Figure 4.9: The system environment after moving the tomcat server
to a new VPC in Frankfurt.

Multiple case study 29

The test was first not allowed to be performed during the day when real em-
ployees used it so after the above result was generated, the testing stopped. How-
ever, when starting to use the system again, some employees still experienced slow
response times. It turned out that there still were some dependencies left in Dublin
for the tomcat server. A Microsoft SQL server remained, which provided user data
and some frameworks to the tomcat server. For example, one framework created
the grid used when listing the articles. The grid is then filled with data by the
SQL server communicating with the application server. The remaining SQL server
was also moved to the new VPC in Frankfurt, and the new layout of the system
environment is shown in figure 4.10. A larger figure can be found in appendix A.
The test was run during the move, but it was run every 5 minutes instead of every
15 minutes as before. The response times were so high that the test exceeded 5
minutes and another test started before the last one was finished. Therefore, the
file with all results included results from a new test in between the results of an
unfinished test. This caused an error in JMeter when trying to generate the graph.
It was not known where the errors in the file occurred or their exact appearance,
so troubleshooting had to be done manually. Since the resulting file included so
much data it was not possible to go through it line by line and large parts of data
were therefore removed without having been looked at first. This resulted in that
only a few test runs were saved and generated. The graph in figure 4.13 shows the
result from four test runs before the move. The graph in figure 4.14 shows results
from after the move, but with 15 minutes intervals.

AWS ACCOUNT 2

INFOR M3 VPC | FRANKFURT

APPLICATION
SERVER

IPsec

7

MICROSOFT
SQL SERVER

AWS ACCOUNT 1

NEW VPC | FRANKFURT

IPsecTOMCAT
SERVER

VPC PEERING

4 5

VPC | DUBLIN

SUBNET 1

REVERSE
PROXY

1

VPC PEERING

2

SUBNET 2

IPsec

SUBNET 3

3

6

MICROSOFT
SQL SERVER

Figure 4.10: The system environment after moving the SQL server
to the new VPC in Frankfurt.

30 Multiple case study

4.3.4 Results

Below are graphs showing the continuous testing process, that is the response
times over time when trying to fix the problem. Each graph shows a different
time period of the process. Figure 4.11 shows when more memory was assigned to
the application server. Figure 4.12 shows when the tomcat server was moved to
Frankfurt. Figure 4.13 shows a few test runs before the remaining SQL server was
moved to Frankfurt. Finally, figure 4.14 shows multiple test runs after the move
was finished. These graphs were very helpful when trying to solve the problem.
They show in a clear way if the response times have improved or not, and can give
this answer ”immediately”. There is no need to involve users and see how they
experience the system after a potential solution. It could also be that some users
experience it differently than others, as was the case when assigning more memory
to the application server. This test can confirm if the problem is solved or not.
The three actions that take the longest to perform is ”Click items and list articles”,
”Write quantity and click Buy chosen”, and ”shows order finalization”. Therefore,
it is the response times of these actions that were mostly analyzed.

This test case is only relevant because Company A has its ordering system in
the cloud. If this was not the case, it would be extremely hard to put an application
server in Frankfurt, if all other components are in Dublin, and not noticing it in
time. In the cloud however, it is much easier to make such mistakes.

Figure 4.11: Response times over time after more memory was
assigned to the application server.

Multiple case study 31

Figure 4.12: Response times over time after moving the tomcat
server to Frankfurt.

Figure 4.13: Response times over time before moving the remaining
SQL server to Frankfurt.

Figure 4.14: Response times over time after all fixes.

32 Multiple case study

The graphs below, figure 4.15 - 4.24, show how the average and median re-
sponse time, as well as standard deviation, changes daily for each step in section
4.3.2 after the last fix, namely between April 18 and May 12. All median response
times are quite linear, the exception being for the login process. However, since
the login times are so low, this has little impact on the user experience. There are
some interesting peaks regarding the standard deviation during this period. The
peak on April 26 in figure 4.17 and 4.18, is caused by one single peak at 18:15.
Since there are no other peaks that day, this could be a coincidence. After this,
however, an extra eye were kept on the ordering system’s response times.

Next large change in standard deviation occurred on April 29, which was
experienced for all steps. That day there were several peaks in response time,
approximately between 15:30 and 17:45. For executing step 4, i.e. ”clicking items
and listing all articles”, the average response time is 30 s. This day, however, the
highest measured value was 518 s (approximately 8.6 min) and occurred at 16:15.
This time is quite alarming. The rest of the week, the times were normal but next
Monday, May 6, similar issues occurred again. There is one peak for performing
step 4 at 13:15, and then there are several peaks approximately between 14:30 and
17:00. The highest response time was measured to 271 s (approximately 4.5 min)
and occurred at 16:00. The time is lower but still alarming. Each workday that
week has some period of peaks in response time, often around 16:00 or 17:00. The
reason for these high values is unclear. It could be that more people are using the
system at these times, perhaps because of an ordering deadline, but the times are
still very high. Interesting is that no user have complained about it yet. Perhaps
they experience it as temporary and want to wait awhile before reporting it.

On May 13, the response times were so high that they exceeded 15 minutes
and caused an error when trying to generate the graph. Why the response times
were so high is not clear, but it seems as if they were so high that they kept Jmeter
from running the test for Kivik. This is something a system owner must have in
mind. The conclusion to draw from this is that it is probably better, and safer, to
execute one single type of test from one single type of device. To make the testing
process even more secure, the JMeter AutoStop Listener can be used. This plugin
can stop a test if it exceeds a chosen average response time, average latency, or
error rate. The result from May 13 did not, however, have any seemingly impact
on the results on May 14. For executing step 4, there are some peaks starting from
11:15 to 17:45, and the highest response time is 73 s, measured at 13:30, which is
relatively low.

There are more peaks during the recent weeks compared to just after moving
the remaining SQL server. The response times have not increased gradually, but
by looking at the results from May 6 to May 10, it seems as if the peaks start to
appear quite regularly. The graphs and response times will keep being analyzed
and watched carefully, but until a user actually complaints, not much resources
will be assigned to look into this anomaly.

Multiple case study 33

0

500

1000

1500

2000

2500

201
9-0

4-1
8

201
9-0

4-1
9

201
9-0

4-2
0

201
9-0

4-2
1

201
9-0

4-2
2

201
9-0

4-2
3

201
9-0

4-2
4

201
9-0

4-2
5

201
9-0

4-2
6

201
9-0

4-2
7

201
9-0

4-2
8

201
9-0

4-2
9

201
9-0

4-3
0

201
9-0

5-0
1

201
9-0

5-0
2

201
9-0

5-0
3

201
9-0

5-0
4

201
9-0

5-0
5

201
9-0

5-0
6

201
9-0

5-0
7

201
9-0

5-0
8

201
9-0

5-0
9

201
9-0

5-1
0

201
9-0

5-1
1

201
9-0

5-1
2

M
illi

se
co

nd
s

Enter URL

Average Median Std. Dev.

Figure 4.15: Daily changes of the avg. and mdn. response time, as
well as std. dev., for entering the URL (and showing the login
page).

0

500

1000

1500

2000

2500

3000

201
9-0

4-1
8

201
9-0

4-1
9

201
9-0

4-2
0

201
9-0

4-2
1

201
9-0

4-2
2

201
9-0

4-2
3

201
9-0

4-2
4

201
9-0

4-2
5

201
9-0

4-2
6

201
9-0

4-2
7

201
9-0

4-2
8

201
9-0

4-2
9

201
9-0

4-3
0

201
9-0

5-0
1

201
9-0

5-0
2

201
9-0

5-0
3

201
9-0

5-0
4

201
9-0

5-0
5

201
9-0

5-0
6

201
9-0

5-0
7

201
9-0

5-0
8

201
9-0

5-0
9

201
9-0

5-1
0

201
9-0

5-1
1

201
9-0

5-1
2

M
illi

se
co

nd
s

Login

Average Median Std. Dev.

Figure 4.16: Daily changes of the avg. and mdn. response time, as
well as std. dev., for logging in.

0
500

1000
1500
2000
2500
3000
3500
4000
4500

201
9-0

4-1
8

201
9-0

4-1
9

201
9-0

4-2
0

201
9-0

4-2
1

201
9-0

4-2
2

201
9-0

4-2
3

201
9-0

4-2
4

201
9-0

4-2
5

201
9-0

4-2
6

201
9-0

4-2
7

201
9-0

4-2
8

201
9-0

4-2
9

201
9-0

4-3
0

201
9-0

5-0
1

201
9-0

5-0
2

201
9-0

5-0
3

201
9-0

5-0
4

201
9-0

5-0
5

201
9-0

5-0
6

201
9-0

5-0
7

201
9-0

5-0
8

201
9-0

5-0
9

201
9-0

5-1
0

201
9-0

5-1
1

201
9-0

5-1
2

M
illi

se
co

nd
s

Choose PROD and show start page

Average Median Std. Dev.

Figure 4.17: Daily changes of the avg. and mdn. response time,
as well as std. dev., for choosing production environment (and
entering start page).

34 Multiple case study

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

201
9-0

4-1
8

201
9-0

4-1
9

201
9-0

4-2
0

201
9-0

4-2
1

201
9-0

4-2
2

201
9-0

4-2
3

201
9-0

4-2
4

201
9-0

4-2
5

201
9-0

4-2
6

201
9-0

4-2
7

201
9-0

4-2
8

201
9-0

4-2
9

201
9-0

4-3
0

201
9-0

5-0
1

201
9-0

5-0
2

201
9-0

5-0
3

201
9-0

5-0
4

201
9-0

5-0
5

201
9-0

5-0
6

201
9-0

5-0
7

201
9-0

5-0
8

201
9-0

5-0
9

201
9-0

5-1
0

201
9-0

5-1
1

201
9-0

5-1
2

M
illi

se
co

nd
s

Click items and list articles

Average Median Std. Dev.

Figure 4.18: Daily changes of the avg. and mdn. response time, as
well as std. dev., for clicking items (and listing all articles).

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

201
9-0

4-1
8

201
9-0

4-1
9

201
9-0

4-2
0

201
9-0

4-2
1

201
9-0

4-2
2

201
9-0

4-2
3

201
9-0

4-2
4

201
9-0

4-2
5

201
9-0

4-2
6

201
9-0

4-2
7

201
9-0

4-2
8

201
9-0

4-2
9

201
9-0

4-3
0

201
9-0

5-0
1

201
9-0

5-0
2

201
9-0

5-0
3

201
9-0

5-0
4

201
9-0

5-0
5

201
9-0

5-0
6

201
9-0

5-0
7

201
9-0

5-0
8

201
9-0

5-0
9

201
9-0

5-1
0

201
9-0

5-1
1

201
9-0

5-1
2

M
illi

se
co

nd
s

Write quantity and click "Buy chosen"

Average Median Std. Dev.

Figure 4.19: Daily changes of the avg. and mdn. response time, as
well as std. dev., for writing quantity and clicking Buy chosen.

0
200
400
600
800

1000
1200
1400
1600

201
9-0

4-1
8

201
9-0

4-1
9

201
9-0

4-2
0

201
9-0

4-2
1

201
9-0

4-2
2

201
9-0

4-2
3

201
9-0

4-2
4

201
9-0

4-2
5

201
9-0

4-2
6

201
9-0

4-2
7

201
9-0

4-2
8

201
9-0

4-2
9

201
9-0

4-3
0

201
9-0

5-0
1

201
9-0

5-0
2

201
9-0

5-0
3

201
9-0

5-0
4

201
9-0

5-0
5

201
9-0

5-0
6

201
9-0

5-0
7

201
9-0

5-0
8

201
9-0

5-0
9

201
9-0

5-1
0

201
9-0

5-1
1

201
9-0

5-1
2

M
illi

se
co

nd
s

Click on shopping cart

Average Median Std. Dev.

Figure 4.20: Daily changes of the avg. and mdn. response time, as
well as std. dev., for clicking on shopping cart.

Multiple case study 35

0

200

400

600

800

1000

1200

1400

201
9-0

4-1
8

201
9-0

4-1
9

201
9-0

4-2
0

201
9-0

4-2
1

201
9-0

4-2
2

201
9-0

4-2
3

201
9-0

4-2
4

201
9-0

4-2
5

201
9-0

4-2
6

201
9-0

4-2
7

201
9-0

4-2
8

201
9-0

4-2
9

201
9-0

4-3
0

201
9-0

5-0
1

201
9-0

5-0
2

201
9-0

5-0
3

201
9-0

5-0
4

201
9-0

5-0
5

201
9-0

5-0
6

201
9-0

5-0
7

201
9-0

5-0
8

201
9-0

5-0
9

201
9-0

5-1
0

201
9-0

5-1
1

201
9-0

5-1
2

M
illi

se
co

nd
s

Click "Confirm order"

Average Median Std. Dev.

Figure 4.21: Daily changes of the avg. and mdn. response time, as
well as std. dev., for clicking Confirm order.

0

5000

10000

15000

20000

25000

201
9-0

4-1
8

201
9-0

4-1
9

201
9-0

4-2
0

201
9-0

4-2
1

201
9-0

4-2
2

201
9-0

4-2
3

201
9-0

4-2
4

201
9-0

4-2
5

201
9-0

4-2
6

201
9-0

4-2
7

201
9-0

4-2
8

201
9-0

4-2
9

201
9-0

4-3
0

201
9-0

5-0
1

201
9-0

5-0
2

201
9-0

5-0
3

201
9-0

5-0
4

201
9-0

5-0
5

201
9-0

5-0
6

201
9-0

5-0
7

201
9-0

5-0
8

201
9-0

5-0
9

201
9-0

5-1
0

201
9-0

5-1
1

201
9-0

5-1
2

M
illi

se
co

nd
s

Shows order finalization

Average Median Std. Dev.

Figure 4.22: Daily changes of the avg. and mdn. response time, as
well as std. dev., for showing the order finalization.

0

1000

2000

3000

4000

5000

6000

7000

201
9-0

4-1
8

201
9-0

4-1
9

201
9-0

4-2
0

201
9-0

4-2
1

201
9-0

4-2
2

201
9-0

4-2
3

201
9-0

4-2
4

201
9-0

4-2
5

201
9-0

4-2
6

201
9-0

4-2
7

201
9-0

4-2
8

201
9-0

4-2
9

201
9-0

4-3
0

201
9-0

5-0
1

201
9-0

5-0
2

201
9-0

5-0
3

201
9-0

5-0
4

201
9-0

5-0
5

201
9-0

5-0
6

201
9-0

5-0
7

201
9-0

5-0
8

201
9-0

5-0
9

201
9-0

5-1
0

201
9-0

5-1
1

201
9-0

5-1
2

M
illi

se
co

nd
s

Click "Remove order"

Average Median Std. Dev.

Figure 4.23: Daily changes of the avg. and mdn. response time, as
well as std. dev., for clicking Remove order.

36 Multiple case study

0
500

1000
1500
2000
2500
3000
3500
4000

201
9-0

4-1
8

201
9-0

4-1
9

201
9-0

4-2
0

201
9-0

4-2
1

201
9-0

4-2
2

201
9-0

4-2
3

201
9-0

4-2
4

201
9-0

4-2
5

201
9-0

4-2
6

201
9-0

4-2
7

201
9-0

4-2
8

201
9-0

4-2
9

201
9-0

4-3
0

201
9-0

5-0
1

201
9-0

5-0
2

201
9-0

5-0
3

201
9-0

5-0
4

201
9-0

5-0
5

201
9-0

5-0
6

201
9-0

5-0
7

201
9-0

5-0
8

201
9-0

5-0
9

201
9-0

5-1
0

201
9-0

5-1
1

201
9-0

5-1
2

M
illi

se
co

nd
s

Logout

Average Median Std. Dev.

Figure 4.24: Daily changes of the avg. and mdn. response time, as
well as std. dev., for logging out.

Chapter 5
Evaluation

This thesis work uses Apache JMeter to create tests for validation and crontab
to run them continuously. Both of these programs are accessible in an easy way.
JMeter is an open source application, free to download to any computer. Crontab
is available for all Mac and Linux users. Both programs are experienced as user-
friendly with much information and many tutorials available. Using the JMeter
recording template was very convenient and a test could be produced in an easy
way. However, the manual scripting was sometimes experienced as troublesome,
for example to save a value to an already defined variable. This may be explained
by inexperience in Groovy. It was also desirable to be able to validate the JMeter
tests in an easier way, for example that JMeter played back what it had recorded.
Using the developers tool in the web browser requires some understanding of the
protocol HTTP, and all the manual work can be a drawback for some companies.
For the multiple case study in this thesis, it did not give the desired certainty
that the test actually performed the correct actions. When using crontab it is
important to know what time zone the device executing the test is located in. For
example, when first using crontab it was believed that it did not work properly
since the test was not executed in time. Troubleshooting showed, however, that
the clock of the device was 2 h behind.

This measurement method is considered easy to use and relatively easy to
start using. However, there are a lot of manual steps included, for example when
validating that the test is doing what is expected, or changing login IDs. It can
take some time to have a validated and finished test ready. During the thesis,
monitoring was encountered, particularly OpsRamp which another client of Elastic
Mobile was going to start to use. This Monitoring as a Service is designed for IT
in hybrid and multi-cloud environments. It can monitor applications, servers,
networks, storage, and database instances, to capture behavioral and performance
metrics [24]. For companies, who generally are looking for a tool which requires
the least amount of work, perhaps OpsRamp had been better in that sense.

37

38 Evaluation

5.1 The measurement setups

Three setups are used in this thesis, where tests are executed either from an EC2
instance, from a Raspberry Pi, or from a Raspberry Pi using remote testing. All
three setups can be useful for a system owner. The EC2 instance has a scalable
size and can therefore carry multiple tests. More tests can also be added over
time, and this setup does not require any extra physical device. However, as can
be read in section 4.2.2 and 4.3.4, it is probably better to carry out only one single
test on each single device. If the system or application to be tested is behind a lot
of firewalls and similar network elements, it might be troublesome to execute tests
from the cloud. Because of its size, price, and user-friendliness, the Raspberry Pi
can be used instead. This device can easily be placed within the same network as
the target and execute tests to it directly. However, it has limited memory and
is not scalable. If the target is to be tested from several different offices or by a
large load, the remote testing setup is the best choice. The JMeter master does
not have to be an EC2 instance. It can, for example, also be a Raspberry Pi.
However, since an EC2 instance can hold such a large amount of memory it can
be better to use this instead of a device with limited memory. Of course one must
remember that if more memory is assigned, it will also cost more money.

5.2 Requirements of the system

One starting point of this thesis was that companies have specified requirements
of their systems, such as a maximum login time. It was soon realized that this
was not the case. The companies in the test cases had no specific requirements
considering response time on their systems other than that the users should be
satisfied. If the system owner does not hear any complaints, he/she expects that
the system is working. However, all complaints might not reach the system owner,
for example if a user thinks its problem is minor. An anomaly can also reach the
owner much later after its first occurrence, if a user first thinks it is temporary.
This measurement method gives a company the opportunity to gain the knowledge
of what response times a user can expect. The company gets a baseline of their
system and can use this after updates or upgrades to validate that the system
still works as expected. Instead of having employees saying that the system feels
slow, this test can validate if this is the case or not. The system owner can also
see anomalies directly and does not need to wait for a user to report it. Finally,
as this thesis shows, this measurement method works both for large international
companies, as well as medium-sized Swedish companies.

Chapter 6
Conclusion

In this thesis, a method to perform measurements on a business system in a multi-
cloud environment, as defined by the last paragraph in section 3.2, is developed.
To evaluate this method, a multiple case study is performed on two different com-
panies. These are Kivik, a Swedish medium-sized company, and Company A, a
large international company. The measurement method is considered successful
for both test cases. It provides both companies with more knowledge of how their
business systems are working, as well as knowledge that they keep working as ex-
pected. Anomalies can be detected fast, which provides the possibility that the
anomaly can be resolved fast. Test case 2 shows that this measurement method
also can be used in such a case. JMeter and crontab are used to construct the
tests and run them continuously. They are relatively easy to use. The main prob-
lems encountered with JMeter are the manual scripting and the validation process,
which can be explained by inexperience and uncertainty. All three measurement
setups were successful, and easy to use. However, the testing process show that
executing several tests from the same device can cause problems if one of the tests
experiences errors. To further secure that no test interrupts another, the JMeter
AutoStop Listener can be used where JMeter will stop the test on a certain run-
time basis. In total, there were three different tests performed, one testing a login
process, one generating a report of inventory values, and one testing an ordering
system. The measurement method worked well for all tests. With this Master’s
thesis, the research questions in section 1.4 can be answered. These answers are
found below.

Is it possible to perform continuous validation of a multi-cloud system
by automated test scripting and if so, what advantages are there?

For the definition of multi-cloud stated in the last paragraph in section 3.2, this
thesis shows that it is possible to perform continuous validation of a multi-cloud
system by automated test scripting. Some advantages of continuous validation
is mentioned in section 2.1. For example, continuous validation gives knowledge
about how changes and new features affect a system. It also gives evidence that an
application, or in this case a system, continues to work as expected in the present
if it worked well in the past.

39

40 Conclusion

How can continuous validation by automated test scripting be per-
formed?

This thesis presents a measurement method with three different, but similar,
setups. JMeter and crontab are used together for creating tests and then run them
continuously. The tests are either run from an EC2 instance in the AWS cloud, a
Raspberry Pi or a combination of the two in a remote testing setup. Khanghahi
and Ravanmehr in [12] measures performance based on simulation by using the
tool CloudAnalyst. With this tool they configure data centers, geographic areas,
and users, to be able to test the wanted scenario. Gao et al. [5] perform tests
on cloud-based software using Testing as a Service. They use EC2 as the cloud
infrastructure and by using Amazon’s EC2 CloudWatch APIs they can use their
TaaS infrastructure for performance validation.

What software tools can be used to perform continuous validation?
As stated, this thesis uses JMeter to create tests for validation and crontab to

do this continuously. Another tool for continuous validation is the continuous val-
idation framework from xLM, mentioned in Section 2.1. Section 2.3 also mentions
several other software tools for creating tests, for example Gatling and LoadStorm
which are similar to JMeter. However, in contrast to JMeter and Gatling, Load-
Storm is cloud based which allows for testing to be done from any computer with
internet access. The section also mentions CloudAnalyst which is built on top of
the simulation toolkit CloudSim. More software tools exists however, and the ones
mentioned here have been selected randomly.

What should be measured to know if the business system is working as
specified for the system owner?

Basically, the only specification present in each test case is that the users
should be satisfied and not complain. Measurements are done on a login process,
the process of generating a report, and the process of laying an order in an order-
ing system. The response times are saved and visualized in graphs. These tests
are measuring the performance. Other metrics one can measure to gain more in-
formation about the performance, as stated in section 2.2.1, are recovery, network
bandwidth, availability, number of users, scalability, and latency. Section 2.2.2
gives more metrics to measure the scalability, for example performance/resource
ratio, performance change, and performance variance. With the TaaS infrastruc-
ture by Gao et al. one can monitor allocated computing resources, like CPU or
data storage. One can also monitor resource usage, and system performance in
terms of system utilization. Finally, one can also evaluate the system load based
on the user access load, the network load, and the data access load.

6.1 Future work

The next step for the measurement method would be to automate it more and
decrease the manual work. A script would be written so that after a test have
been executed several times, for example every half hour during a week, those
results would be generated to graphs. To secure the testing process, different ways

Conclusion 41

to stop the test if it exceeds a chosen time would be investigated. If, for example,
the JMeter AutoStop Listener would be the best choice, this would be implemented
in the tests. Currently, the response times for different actions may be analyzed
several days after the actions were performed. This could mean that potential
anomalies are not spotted in time. This could be solved by sending some sort of
warning to the tester if, for example, the test was stopped because it exceeded
a chosen response time. If more time was assigned to this thesis, how a warning
can be sent would be investigated. Also, more advanced tests involving more
parts of the business systems would be performed to further test the developed
measurement method and investigate its limits.

42 Conclusion

Chapter 7
Word Definitions

The following list contains definitions and explanations of expressions from this
report in alphabetical order.

API stands for Application Programming Interface and is a set of commands,
functions, protocols, and objects that can be used to create software or
interact with external systems.

DDoS attacks denies access to a server, service, or network by overwhelming it
with internet traffic so normal traffic is disrupted.

Enterprise Resource Planning (ERP) is an adaptive software system which
unifies the main functional areas of an organization’s business processes to
one system.

Latency is measured from just before sending a request to just after the response
has started to be received.

Load testing is the process of testing the behavior of a system when it is subject
to a load close to the limits of its specifications.

Network Utilization is the amount of network traffic at a given moment, com-
pared to the maximum amount of traffic the network can handle.

Regression Testing is the process of testing a system after changes have been
introduced, to make sure that existing functionality is still intact.

Response Time is defined as the total amount of time it takes for a request to
be sent until a response has been fully received.

Service Level Agreement is an agreement between a service provider and a
client, containing requirements of a certain service, such as costs and speeds.

Smoke Testing is the process of ensuring that the most critical or basic functions
of a system is working.

SSH Port Forwarding is a method for directing data from a client machine to
a server machine, or vice versa, over an encrypted SSH connection.

Vendor Lock-in means that a customer of a product or service becomes depen-
dent of the vendor offering it and can not, in an easy way, switch to the
product or service of a competitor.

43

44 Word Definitions

References

[1] N. Talens, 2015, After continuous integration there is continuous val-
idation, Codecentric. https://blog.codecentric.de/en/2015/08/
after-continuous-integration-there-is-continuous-validation/
(Accessed: 2019-02-18)

[2] https://www.continuousvalidation.com/ (Accessed: 2019-02-18)

[3] W.-T. Tsai, Y. Huang, Q. Shao, 2011, ”Testing the Scalability of SaaS Appli-
cations”, Proceedings of IEEE International Conference on Service-Oriented
Computing and Applications (SOCA)

[4] X. Bai, M. Li, B. Chen, W.- T. Tsai, J. Gao, 2011, ”Cloud testing tools”,
Proceedings of the 6th IEEE International Symposium on Service Oriented
System Engineering (SOSE)

[5] J. Gao, K. Manjula, P. Roopa, E. Sumalatha, X. Bai, W. -T. Tsai, T. Uehara,
2012, ”A cloud-based TaaS infrastructure with tools for SaaS validation, per-
formance and scalability evaluation”, Proceedings of IEEE 4th International
Conference on Cloud Computing Technology and Science (CloudCom’12)

[6] https://aws.amazon.com/cloudwatch/ (Accessed: 2019-03-05)

[7] https://gatling.io/ (Accessed: 2019-02-20)

[8] https://www.scala-lang.org/ (Accessed: 2019-02-20)

[9] B. Wickremasinghe, R. N. Calheiros, R. Buyya, 2010, ”CloudAnalyst: A
CloudSim-Based Visual Modeller for Analysing Cloud Computing Environ-
ments and Applications”, 24th IEEE International Conference on Advanced
Information Networking and Applications (AINA)

[10] R. Buyya, R. Ranjan, R. N. Calheiros, 2009, ”Modeling and Simulation of
Scalable Cloud Computing Environments and the CloudSim Toolkit: Chal-
lenges and Opportunities”, Proc. of the 7th High Performance Computing and
Simulation Conference (HPCS 09)

[11] https://loadstorm.com/ (Accessed: 2019-03-11)

[12] N. Khanghahi, R. Ravanmehr, 2013, ”Cloud computing performance eval-
uation: issues and challenges”, International Journal on Cloud Computing:
Services and Architecture (IJCCSA), vol. 3, no. 5

45

https://blog.codecentric.de/en/2015/08/after-continuous-integration-there-is-continuous-validation/
https://blog.codecentric.de/en/2015/08/after-continuous-integration-there-is-continuous-validation/
https://www.continuousvalidation.com/
https://aws.amazon.com/cloudwatch/
https://gatling.io/
https://www.scala-lang.org/
https://loadstorm.com/

46 References

[13] S. Vonnegut, 2017, Cloud or Clouds? How and Why to Choose a Single or
Multi-Cloud Approach, Stratoscale. https://www.stratoscale.com/blog/
it-leadership/cloud-clouds-choose-single-multi-cloud-approach/
(Accessed: 2019-03-13)

[14] M. Rouse, 2014, Definition: noisy neighbor (cloud computing perfor-
mance), TechTarget. https://searchcloudcomputing.techtarget.com/
definition/noisy-neighbor-cloud-computing-performance
(Accessed: 2019-03-13)

[15] https://www.infor.com/products/m3 (Accessed: 2019-03-13)

[16] https://jmeter.apache.org/ (Accessed: 2019-03-14)

[17] https://www.oracle.com/technetwork/java/javase/tech/
index-jsp-136424.html (Accessed: 2019-03-14)

[18] M. Hauck, M. Huber, M. Klems, S. Kounev, J. Müller-Quade, A. Pretschner,
R. Reussner, S. Tai, 2010, ”Challenges and opportunities of cloud computing”,
Karlsruhe Reports in Informatics 19

[19] P. Mell, T. Grance, 2009, ”The NIST definition of cloud computing”, National
Inst. Standards Technol., vol. 53, no. 6

[20] https://aws.amazon.com/about-aws/ (Accessed: 2019-03-15)

[21] S. Watts, 2017, SaaS vs PaaS vs IaaS: What’s The Differ-
ence and How To Choose, BMC. https://www.bmc.com/blogs/
saas-vs-paas-vs-iaas-whats-the-difference-and-how-to-choose/
(Accessed: 2019-03-26)

[22] S. Goyal, 2014, ”Public vs Private vs Hybrid vs Community - Cloud Com-
puting: A Critical Review”, International Journal of Computer Network and
Information Security (IJCNIS), vol. 6, no. 3

[23] S. D. Lowe, 2018, Multi-cloud vs. hybrid cloud: Assessing the pros
and cons, TechTarget. https://searchstorage.techtarget.com/feature/
Multi-cloud-vs-hybrid-cloud-Assessing-the-pros-and-cons
(Accessed: 2019-04-05)

[24] https://www.opsramp.com/ (Accessed: 2019-04-05)

[25] https://www.kiviksmusteri.se/en/ (Accessed: 2019-04-08)

[26] http://groovy-lang.org/ (Accessed: 2019-04-08)

[27] https://docs.aws.amazon.com/vpc/latest/userguide/
what-is-amazon-vpc.html (Accessed: 2019-04-15)

[28] https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.
html (Accessed: 2019-04-15)

[29] https://opensource.com/resources/raspberry-pi
(Accessed: 2019-04-26)

[30] https://www.raspberrypi.org/ (Accessed: 2019-04-26)

https://www.stratoscale.com/blog/it-leadership/cloud-clouds-choose-single-multi-cloud-approach/
https://www.stratoscale.com/blog/it-leadership/cloud-clouds-choose-single-multi-cloud-approach/
https://searchcloudcomputing.techtarget.com/definition/noisy-neighbor-cloud-computing-performance
https://searchcloudcomputing.techtarget.com/definition/noisy-neighbor-cloud-computing-performance
https://www.infor.com/products/m3
https://jmeter.apache.org/
https://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html
https://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html
https://aws.amazon.com/about-aws/
https://www.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-the-difference-and-how-to-choose/
https://www.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-the-difference-and-how-to-choose/
https://searchstorage.techtarget.com/feature/Multi-cloud-vs-hybrid-cloud-Assessing-the-pros-and-cons
https://searchstorage.techtarget.com/feature/Multi-cloud-vs-hybrid-cloud-Assessing-the-pros-and-cons
https://www.opsramp.com/
https://www.kiviksmusteri.se/en/
http://groovy-lang.org/
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://opensource.com/resources/raspberry-pi
https://www.raspberrypi.org/

References 47

[31] https://www.adminschoice.com/crontab-quick-reference
(Accessed: 2019-05-02)

[32] https://www.cloudflare.com/learning/cdn/glossary/reverse-proxy/
(Accessed: 2019-05-02)

[33] https://www.oracle.com/technetwork/java/javaee/overview/index.
html (Accessed: 2019-05-02)

[34] https://www.oracle.com/technetwork/java/index-jsp-135475.html
(Accessed: 2019-05-02)

[35] https://www.oracle.com/technetwork/java/javaee/jsp/index.html
(Accessed: 2019-05-02)

[36] https://tomcat.apache.org/ (Accessed: 2019-05-02)

[37] https://www.techopedia.com/definition/2450/peering
(Accessed: 2019-05-03)

[38] https://docs.aws.amazon.com/vpc/latest/peering/
what-is-vpc-peering.html (Accessed: 2019-05-03)

[39] https://www.microsoft.com/sv-se/sql-server/sql-server-2017
(Accessed: 2019-05-03)

[40] M. Rouse, 2014, Definition: IPsec (Internet Protocol Security),
TechTarget. https://searchsecurity.techtarget.com/definition/
IPsec-Internet-Protocol-Security (Accessed: 2019-05-03)

[41] R. K. Yin, 2014, ”Case study research : design and methods”, 5 ed., London:
SAGE.

[42] M. A. AlZain, E. Pardede, B. Soh, J. A. Thom, 2012, ”Cloud Computing
Security: From Single to Multi-clouds”, Proceedings of The 2012 45th Hawaii
International Conference on System Science (HICSS)

https://www.adminschoice.com/crontab-quick-reference
https://www.cloudflare.com/learning/cdn/glossary/reverse-proxy/
https://www.oracle.com/technetwork/java/javaee/overview/index.html
https://www.oracle.com/technetwork/java/javaee/overview/index.html
https://www.oracle.com/technetwork/java/index-jsp-135475.html
https://www.oracle.com/technetwork/java/javaee/jsp/index.html
https://tomcat.apache.org/
https://www.techopedia.com/definition/2450/peering
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://www.microsoft.com/sv-se/sql-server/sql-server-2017
https://searchsecurity.techtarget.com/definition/IPsec-Internet-Protocol-Security
https://searchsecurity.techtarget.com/definition/IPsec-Internet-Protocol-Security

48 References

Appendix A
This thesis’ cloud environments

Below are larger figures of the cloud environments in this thesis, i.e. the environ-
ments of Kiviks Musteri AB and of Company A.

49

50 This thesis’ cloud environments

Figure
A
.1:

T
he

cloud
environm

ent
of

K
iviks

M
usteriA

B
.

This thesis’ cloud environments 51

AW
S A

C
C

O
U

N
T 1

VPC
 | D

U
B

LIN

SU
B

N
ET 1

R
E
V
E
R
S
E

P
R
O
X
Y

1
SU

B
N

ET 2

I
P
s
e
c

SU
B

N
ET 3

T
O
M
C
A
T

S
E
R
V
E
R

2
3

4

AW
S A

C
C

O
U

N
T 2

IN
FO

R
 M

3 VPC
 | FR

A
N

K
FU

R
T

A
P
P
L
I
C
A
T
I
O
N

S
E
R
V
E
R

I
P
s
e
c5

M
I
C
R
O
S
O
F
T

S
Q
L
	
S
E
R
V
E
R

Figure
A
.2:

C
om

pany
A
’s
ordering

system
environm

ent
after

their
update.

52 This thesis’ cloud environments

AWS ACCOUNT 1

NEW VPC | FRANKFURT

IPsecTOMCAT
SERVER

VPC PEERING

4 5

VPC | DUBLIN

SUBNET 1

REVERSE
PROXY

1

VPC PEERING

2

SUBNET 2

IPsec

3

6

AWS ACCOUNT 2

INFOR M3 VPC | FRANKFURT

APPLICATION
SERVER

IPsec

7

MICROSOFT
SQL SERVER

Figure A.3: Company A’s ordering system environment after moving
the tomcat server to a new VPC in Frankfurt.

This thesis’ cloud environments 53

AWS ACCOUNT 2

INFOR M3 VPC | FRANKFURT

APPLICATION
SERVER

IPsec

7

MICROSOFT
SQL SERVER

AWS ACCOUNT 1

NEW VPC | FRANKFURT

IPsecTOMCAT
SERVER

VPC PEERING

4 5

VPC | DUBLIN

SUBNET 1

REVERSE
PROXY

1

VPC PEERING

2

SUBNET 2

IPsec

SUBNET 3

3

6

MICROSOFT
SQL SERVER

Figure A.4: Company A’s ordering system environment after moving
the SQL server to the new VPC in Frankfurt.

Continuous Validation of Multi-Cloud Systems by

Automated Test Scripting

JOSEFINE SANDSTRÖM
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2019

JO
SEFIN

E SA
N

D
STR

Ö
M

C
ontinuous Validation of M

ulti-C
loud System

s by A
utom

ated Test Scripting
LU

N
D

 2019

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2019-704
http://www.eit.lth.se

	Josefine Sandström_report_toBePrinted_704.pdf
	Introduction
	Background
	Project Aim
	Limitations
	Research Questions
	Disposition

	Related Research
	Advantages of continuous validation
	Relevant metrics
	Cloud testing tools

	Technical Background
	Cloud computing
	Single cloud vs Multi-cloud
	Amazon Web Services
	Apache JMeter
	Raspberry Pi
	Crontab
	Reverse Proxy
	Apache Tomcat
	Internet Protocol Security (IPsec)
	Microsoft SQL server
	Peering

	Multiple case study
	Measurement method
	Test case 1: Kiviks Musteri AB
	Test case 2: Company A

	Evaluation
	The measurement setups
	Requirements of the system

	Conclusion
	Future work

	Word Definitions
	References
	This thesis' cloud environments

