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Abstract 

Throughout history it has always been crucial to accurately measure, track, 

and predict precipitation. This has been done using various methods with 

varying degrees of precision. As the world evolves and as urban areas expand, 

it has become more apparent that there is a need for a more efficient way to 

observe and record precipitation. During the summer of 2018, an X-band 

weather radar located in Dalby, measured precipitation for a large part of 

Scania County in southern Sweden, including Lund and Malmö. This high-

resolution radar allows for a more detailed measurement of precipitation and 

a real time monitoring of storm movement. However, the accuracy of the 

measured rainfall and the need for data adjustment before it can be used in 

any hydrometeorological applications are the questions that are highly 

relevant. By comparing the radar data with data from conventional rain 

gauges, it was evident that the radar overestimates the gauge measurement, 

which led to the need for a bias correction. Using the bias-corrected radar 

data as an input to a neural network model to simulate urban flow shows that 

the use of X-band weather radar data moderately improves the model’s 

ability for prediction of urban flooding.  
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Sammanfattning 

Det har alltid varit viktigt att mäta, följa, och förutspå nederbörd. Det har 

utförts genom att använda olika slags metoder med varierande precision. Allt 

eftersom världen utvecklas och urbana områden expanderar så har det blivit 

allt mer tydligt att det finns ett behov av ett mer effektivt sätt att registrera 

och observera nederbörd. Under sommaren 2018 mätte en X-band-väderradar, 

placerad i Dalby, nederbörd för stora delar av Skåne i södra Sverige, 

inklusive Lund och Malmö. Denna radar med hög upplösning tillåter mer 

detaljerade mätningar av regn och realtidsövervakning av stormar. 

Noggrannheten av det uppmätta regnet och behovet av datajustering innan 

den kan användas för hydrometereologiska tillämpningar är frågor som är 

högst relevanta i sammanhanget. Genom att jämföra radardata med data från 

konventionella regnmätare blev det tydligt att radarn för det mesta 

överskattar värdena från regnmätare, vilket leder till ett behov av korrigering 

av den systematiska avvikelsen. Användandet av det korrigerade datasetet 

som indata i en neural nätverksmodell för att simulera urbana flöden, ledde 

till slutsatsen att nyttjandet av en X-band-väderradar någorlunda förbättrar 

modellens förmåga att uppskatta en mer exakt prognos för översvämningar i 

stadsmiljö. 
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1 Introduction 
Due to expected climate change, the amount of precipitation in Sweden 

would likely increase. The increase in precipitation will present itself as more 

frequent and more intense storms. The more extreme weather and increase in 

precipitation will lead to an increase in flooding as well as cause a strain on 

sewage systems (SMHI, 2019).  

 

In Sweden a report was completed in 2017 for the Ministry of the 

Environment where the costs for climate adaptation in Sweden until 2100 

was investigated. The results show that the total cost for climate adaption will 

reach between 137-205 billion Swedish crowns, 96 percent of this cost is 

related to different types of flooding. Urban flooding caused by heavy rainfall 

represents the major part of the total cost for climate adaption 

(Klimatanpassningsutredningen, 2017). 

 

Urban flooding is often caused by extreme rainfall and the problem is severe 

when the flooded area does not have any natural or man-made water 

drainage. Flooding event and its consequences can be divided into four steps 

during a flood development. The World Bank classifies these four steps as 

Source, Pathway, Receptor, and Consequence (Figure 1).  

 

 

 
Figure 1 Model of urban flooding (Jha, Bloch and Lamond, 2012). 
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The model describes the process of how urban flooding occurs. In the case of 

applying these four steps it will then be easier to identify why an area is 

flooded and how to predict it in the future. Even if it is possible to predict the 

weather it is still hard to know which rain events that will lead to flooding. 

(Jha, Bloch and Lamond, 2012).  

 

The 31st of August 2014 a cloudburst event took place in Scania, mainly in 

Malmö causing basement flooding and heavy loads of sewage to the pumping 

stations. The hope for the future is to use radar data in urban hydrology to be 

able to establish a warning system when cloudbursts are forming in the area. 

This would make it possible to, for example, increase the pumping rate in 

pumping stations and wastewater treatment plants (VA Syd, 2017). 

Thorndahl et al. (2017) describes the expansion of focus during the last 

decades regarding how radar can be used in urban hydrology. A few decades 

ago, the focus was mainly on storm water management and wastewater 

treatment plants. Today, the focus has shifted to urban storm water 

management regarding climate adaption and extreme weather such as 

cloudbursts. An effective way to track and record these extreme weather 

events is to use X-band weather radar. This type of radar has a very high 

spatial and temporal resolution and can easily detect local weather changes. 

However, the rain estimates from the radar must be bias-corrected before any 

hydrological application. A common method for bias correction is the mean 

field bias adjustment, where a ratio between the accumulated radar data and 

the accumulated data rain gauges (Thorndahl et al., 2017). 

 

Both Willems (2001) and Goormans and Willems (2013) discuss the 

potential errors in radar data as an input to hydrological models. They state 

that error in the input data to a model is one of the major causes of inaccuracy 

in the model output. This problem has been investigated in several studies 

and the largest problem seems to be when data has been too simplified 

(Willems, 2001).  
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In this study a neural network model was used in order to analyse simulated 

urban flow and water level in flow stations using gauge and X-band weather 

radar rainfall data. A neural network model is a computer-based model, 

which recognizes and registers variations and patterns to later be able to 

predict the output (flow) by just knowing the input (rainfall). It is therefore in 

high interest to vary the input radar data to see if the outflow becomes more 

accurate or not for different input scenarios. This is a way of using a neural 

network model in urban hydrology. 

1.1 Aims and Objectives  
The aim of this master thesis is to investigate the possibility of an X-band 

weather radar data can in neural network modeling for urban flood forecasts. 

The following questions will be evaluated. 

 

• What are the advantages and disadvantages of using an X-band radar 

data in urban hydrology? 

• How should the radar data be bias-corrected to achieve the best results?  

• What data scenarios (single dataset input or combination of radar and 

gauge data) are needed as an input to improve the neural network 

model prediction? Are the data sets compatible? 

1.2 Delimitations 
This master thesis will deal with data from the X-band radar in a broad sense. 

It will cover a general analysis of the data without going into specific events 

or specific areas. This has been decided based on the available data as well as 

the time frame of the master thesis.   
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2 Theory 

2.1 The Radar 
The radar used in this project is an X-band radar called a Compact Dual 

Polarimetric X-band Doppler weather radar WR-2100 from Furuno. The 

weather radar has a frequency of 9.4 GHz and the antenna rotation is 16 

revolutions per minute, which can be adjusted. The radar’s maximum useable 

range is 60 km and is functional between -10 and +50 degrees Celsius. The 

width of the radar beam is 2.7 degrees both horizontally and vertically, which 

means that the amount of data gathering increases as the distance from the 

weather radar site increases. An X-band radar has, in comparison to the 

conventional C- and S-band radars, a shorter wavelength and a shorter range 

as well as a shorter antenna. This leads to a higher radial resolution, i.e., a 

finer spatial resolution, which gives a more detailed image of the 

precipitation over an area with a 60 km radius (South et al., 2019).  

 

The location for the weather radar was carefully selected for the operational 

testing during the summer of 2018. The weather radar was placed on the roof 

of the water tower in Dalby and was chosen since the area is fenced-in and 

there are no high buildings in the surrounding area to block the radar signal. 

SMHI did a topographic analysis, which to confirm the suitability of Dalby 

water tower location for the X-band weather radar operation (South et al., 

2019). 

 

The possibility to place the radar on an urban location as well as at a 

relatively low height is one of the advantages of the X-band radar relative to 

the C- and S-band radars. The X-band radar’s size allows this placement 

while the bigger C- and S-band radars are usually placed high up at mountain 

tops. This leads, among other things, to the ability for the X-band radar to 

locate nimbus clouds which develop at an altitude of around 500-2000 

meters. (Furuno Electric Co., 2013) 
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The weather radar measures the reflectivity caused by particles obstructing 

the radar signal. However, the short wavelength of the X-band radar is easily 

attenuated by water in liquid form. This means that when there is a large 

downpour with large water drops, the signal from the radar can be completely 

blocked and any precipitation, or more importantly another large storm, 

beyond this point will not be measured by the radar (South et al., 2019). 

 

Because of the differences between the different bands of radars and because 

of the limitations of the X-band radar, scientists believe that a network of the 

radars would give the most realistic image of the precipitation as well as 

minimize the issues with signal attenuation (South et al., 2019). 

 

Antonini et al. (2017) says that a weather radar is an appropriate instrument 

to use in order to manage the effects of ongoing rain events. X-band radars 

are therefore integral to the design of warning systems. The number of X-

band radars in the world is increasing and it has been shown that the 

maintenance and installation costs are lower than the C-band and S-band 

radars. C-band and S-band radars have larger range in their measurements but 

the X-band is more accurate for measuring rain in local areas and better at 

detecting light rain and small water droplets (Antonini et al., 2017). 

 

Weather radars sometimes detects what looks like precipitation, but it is, in 

fact, not precipitation, and these are called false echoes. There are different 

types of false echoes, especially when the radar is located close to mountains 

or other terrain formations. These kinds of echoes can be removed with 

Doppler Effect since they are stationary compared to storms which move. 

Another type of false echo called an inversion echo takes place when colder 

air masses are closer to the ground than warm air masses. The radar beam 

will then break to the ground and give false echoes. This happens usually 

during cool and calm nights over land masses and will look like stationary 

echoes (SMHI, 2017).  
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In ocean areas, false echoes most often happen during spring and early 

summer. Other types of false echoes common in the summer can include 

swarms of insects or when there are distinct differences in temperature in the 

atmosphere. In the autumn, when migrating birds are moving south for the 

winter, the weather radar might detect the birds as false echoes. The sun can 

also return a false echo at sunrise and sunset and is detected as heavy rainfall 

even though it is for a very short period. Human activity can cause false 

echoes, like the location of other weather radars in the nearby area or 

computer networks operating in the same frequency as the weather radar 

(SMHI, 2017).   

 

2.2 Radar and Sewage Systems Today 

2.2.1 Radar System 
Sweden, along with Norway, Finland, Estonia and Latvia are working 

together using multiple radars to create an image that covers almost the entire 

Scandinavia and the Baltic Sea. This cooperation is called NORDRAD and is 

one of the first international cooperations to create an image of this kind. The 

radar that has been used has the frequency band 5.6 GHz and the range of the 

radar is about 250 km. Researchers now are studying how to best use and 

improve weather radar for forecasting (SMHI, 2019).   

 

The weather radar collects information at different heights by pointing the 

radar antenna in different angles of elevations. Depending on the 

characteristics of the elevation angle, the different elevations can complete 

each other to get the best results. Data from the radar that has been sampled 

closest to the ground is considered the best to correspond to the precipitation. 

All radar data in the area is collected as input data and an image is created 

with a map as a background (SMHI, 2018). 
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2.2.2 Combined System 
A sewage system is a combined system when both sewage and storm water 

are flowing in the same pipe. A separate sewer system has different pipes for 

both the sewage and storm water. The risk of combined system sewer 

overflow is therefore much higher when there is a heavy rainfall and a higher 

amount of storm water runoff. A separate sewage system is in theory a better 

solution but in practice there are also uncontrolled inflows to the separate 

system. It is rather difficult to find where these inflows come from (VA Syd, 

2017). 

 

In Lund, only 10 percent of the sewage system is a combined system and in 

Malmö, 30 percent is combined. Mostly the older parts of central Lund and a 

small section of Dalby there still are combined systems. In Malmö, the areas 

with the combined systems do not receive an increased load due to heavy 

rainfalls. This follows from the fact that there have been improvements made 

in the storm water management system. This has led to a lower risk of 

flooding in basements and less combined sewer overflow (VA Syd, 2018a). 

2.3 Probability of Flooding 
Flooding in Sweden is mostly due to rain events and snow melting due to 

seasonal changes. Urban flooding usually occurs from and can be described 

with a couple different concepts: coastal floods, floods due to pluvial, or 

heavy rain, and floods due to groundwater causes. Floods can also occur due 

to over-flowing rivers in the area and failures in the sewage system (Jha, 

Bloch and Lamond, 2012).  

 

If a failure occurs in the sewage system, it might result in flooding similar to 

river flooding. When the capacity in the sewage system is exceeded, the 

overflow might cause flooding in the local area. Exceeding capacity in the 

sewage system will also lead to overflow into the wastewater plant. Other 

reasons for overflow in the system are flash floods and pluvial flooding. Flash 

floods can occur, for example, when a heavy rain falls on hilly terrain. A 

challenging aspect with the flash floods is that they are hard to predict 

because they often occur with little or no warning.  
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Flooding can be predicted with a probability that it will take place. When a 

probability for an event to occur in the future, is estimated, it is based on how 

often it has happened in the past. Many variables make it difficult predict 

since the occurrence of a flooding is not only dependent on a particular heavy 

rain event but also on the probability that flooding will develop, which in turn 

depends on other factors such as the drainage capacity and the infrastructure 

in the area (Jha, Bloch and Lamond, 2012).  

 

The return period for a specific kind of event varies from catchment to 

catchment. This is because the probability that flooding will occur depends 

on factors that are particular to the local area, the climate is one of these 

factors (Jha, Bloch and Lamond, 2012). For example a dry climate with very 

dry silty soil might have a 100 percent runoff, Horton runoff, caused by a 

heavy rain event which sets a high risk of flooding (Horton, 1941). 

 

The amount of historical data available might also vary considerably in 

different countries and on different continents. In European and Asian 

countries for instance, data has been collected for many years but that is not 

always the case for other countries. A lack of historical data must be taken 

into account when developing the probability for flooding, according to the 

World Bank. It also has to be taken into account how the area has changed 

and is currently changing, and if these changes will have an impact on the 

probability for a future flood event (Jha, Bloch and Lamond, 2012).  

A simple equation to calculate the probability using a determined return 

period is:  

 

 𝑝 =
1

𝑇
 (1) 

 

 

where 𝑇 is the return period and 𝑝 is the probability for the event to occur.  
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Here it is important to see the probability for what it is. A return period of 

100 years means that that every year the probability that the flood event will 

happen is 1 percent. It must be emphasized that this does not mean that the 

event will happen every 100th year and could in fact happen two years in a 

row (Jha, Bloch and Lamond, 2012).  

 

2.4 Radar Data Error Analysis 
For the error analysis the radar data were compared to the gauge data. For 

this analysis, accumulated radar data and gauges measurements were used. 

The statistical measures for the error analysis are presented below. 

2.4.1 Root Mean Square Error 

A root mean square error (RMSE) is the standard deviation of the residuals. 

The residual is the difference between the measured value (radar data) and 

the expected value (gauge data). In this case, RMSE was calculated based on 

the difference between the radar value and the rain gauge value. A simple 

formula for calculating the RMSE is as follows (Equation 2), 

 

 
𝑅𝑀𝑆𝐸 =  [∑(𝐺𝑖 − 𝑅𝑖)

2/𝑁

𝑁

𝑖=1

]

1/2

 

 

(2) 

 

where 𝐺 is the expected value (gauge data), 𝑅 is the measured value (radar 

data) and 𝑁 is the number of values (Barnston, 1992). 

 

2.4.2 Other Measurements of Error 
Four factors were calculated each indicating the radar’s ability to spot a 

rainfall. For these calculations to be performed several variables had to be 

produced first. These variables were: 

• H = hits; number of times when both the radar and the gauges 

recorded a rainfall. 
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• M = misses; number of times when only the gauges recorded a 

rainfall. 

• F = false alarms; number of times when only the radar recorded a 

rainfall. 

• C = correct negatives; number of times when both the radar and the 

gauges didn’t record any rainfall 

• N = sample size. 

• E = the expected number of instances that can be correctly identified 

based on random chances alone (Tan et al., 2016),  

 

 𝐸 =  
1

𝑁
[(𝐻 + 𝑀)(𝐻 + 𝐹) + (𝐶 + 𝑀)(𝐶 + 𝐹)] (3) 

 

When all of these variables have been produced, the four factors can be 

calculated as following:  

 

POD or probability of detection shows how well the radar can spot a rainfall 

detected by the rain gauges. A perfect score here is 1. 

 

 

 
𝑃𝑂𝐷 =

𝐻

𝐻 + 𝑀
 

 

(4) 

FAR or false alarm ratio shows how often the radar detects rain when the 

gauges do not. A perfect score here is 0, i.e., no amount of falls alarms. 

 

 

 𝐹𝐴𝑅 =
𝐹

𝐻 + 𝐹
 (5) 
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BID or bias in detection shows if the radar has a habit of overestimating or 

underestimating the amount of rainfalls. Here a value higher than 1 indicates 

overestimation and a value lower than 1 indicates underestimation. 

 

 

 𝐵𝐼𝐷 =
𝐻 + 𝐹

𝐻 + 𝑀
 (6) 

 

HSS or Heidke skill score which is defined as a ‘generalized skill score’ that 

shows if the radar data is better or worse than a value decided by random 

chance. Here a value higher than 0 indicates that the radar is better and a 

value lower than 0 indicates that it is worse. 

 

 

 𝐻𝑆𝑆 =
𝐻 + 𝐶 − 𝐸

𝑁 − 𝐸
 (7) 

 

(Tan et al., 2016). 

 

2.5 Bias Correction 
The data collected by the radar is an estimation and does not necessarily 

reflect the actual value to its full extent. That is most likely due to some 

systematic error such as hardware malfunctions, radar characteristics, and 

precipitation type and intensity. The error needs to be corrected through a 

bias correction technique. In the bias correction the data from the radar must 

be compared to a reference data set (Smith et al., 1991). In this case the 

reference data set is the data from the rain gauges.  

 

Hashemi et al. (2017) showed the importance of using bias correction with 

care since a bias fraction in percentage might misdirect the purpose of the 

bias correction. For example, if the radar shows 0.8 mm rain and the gauge 

measures 1 mm, the bias fraction between these two values is 20 percent. On 

the other hand, if the radar shows 80 mm and the gauge measures 100 mm, 



13 

 

the fraction is till 20 percent but the difference between the measurements is 

considerably higher. It will therefore have to be considered when correcting 

for bias (Hashemi et al., 2017). 

 

There are several simple calculations that can be performed to get a sense of 

how the data differ from the reference value. These calculations will not be 

able to fully take the spatial variations into account, but it will give a broad 

picture of how the radar overestimates or underestimates an actual rain.  

The bias for the radar was calculated by using a relative bias equation 

(Equation 8), where 𝐺 is the gauge data for a specific rain gauge station and 

𝑅 is the radar data for the corresponding location. 𝐺 is the reference value.  

 

 
𝑏𝑖𝑎𝑠 (%) =

(𝑅 − 𝐺)

𝐺
∗ 100% 

 

(8) 

(University of Tartu, n.d) 

2.5.1 Mean Field Bias Correction 

The theory of the mean field bias correction method is that a correction factor 

is calculated by comparing the spatial average of the ratio between the data 

from the radar and the data from the rain gauge at each specific location. The 

equation for the method is the following (Equation 9). 

 

 

 𝐺 𝑅⁄  𝑟𝑎𝑡𝑖𝑜 𝑓𝑎𝑐𝑡𝑜𝑟 =
∑ 𝐺𝑖

𝑛
𝑖=1

∑ 𝑅𝑖
𝑛
𝑖=1

⁄  (9) 

 

 

where 𝐺𝑖  is the precipitation at the ith rain gauge and 𝑅𝑖  is the precipitation, 

measured by radar, at the ith rain gauge (Lee, Kim and Suk, 2015). 
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2.6 The Neural Network 
The neural network that was used to build the model for this project is 

developed in Python programing language. The model considers all input 

data and tries to determine the relationship between the input data and the 

output data. By training the model with known values it can then try to 

predict the future output data by only knowing the input data (Nielsen, 2015). 

 

The name neural network comes from the structure of the human brain which 

consists of neurons. Each of the two hemispheres of the brain consist of 140 

million neurons. A neural network also is designed to work like a human 

brain and recognize different patterns and come to a conclusion about what 

will happen next. A perceptron is an artificial neuron and is the older version 

of the artificial neurons. Sigmoid neurons are the name used today. The 

perceptrons were developed during the middle of the 1900s. The old artificial 

neurons consist of multiple of binary numbers which are used as inputs and 

the perceptron create a single binary value as output. The input values could 

also be given different weights, to prioritize the inputs. Perceptrons always 

have 0 or 1 as an output (Nielsen, 2015). 

 

  
Figure 2 Input values and output from a perceptron (Nielsen, 2015). 

As seen in Figure 2, there is only one layer for the perceptron to take into 

account, multiple layers are used to make the perceptrons give a more 

worked-through output. When multiple layers are used, every perceptron in 

the next layers is analyzing the former layer, the result from this process is 

that every following layer can make a more detailed output. The model can 
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also be constructed in a way that not every perceptron will give information 

to every perceptron in the next layer (Nielsen, 2015). 

 

 
Figure 3 Input and output from perceptrons with multiple layers (Nielsen, 2015). 

A problem with the perceptrons is that if a small change occurs for a specific 

perceptron the output from that perceptron may change the output for the 

whole neural network in an undesirable way. To get around this problem, 

Sigmoid neurons were introduced. The sigmoid neurons are related to 

perceptrons but with the difference that they are not as sensitive to changes in 

the weight and bias in the way it will affect the output. For perceptrons the 

inputs values will be either 0 or 1 but with the sigmoid neurons the input 

values can be any number from 0 to 1. In both cases, the weight and bias will 

have an impact on the output but in the case with the sigmoid neurons the 

output will not be as affected as the perceptrons will be since the numbers 

cannot flip in the same way (Nielsen, 2015). 
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The layer or layers between the input layer and the output layer are called 

hidden layers. The term hidden means that the layer is neither receiving a 

direct input nor putting out an output. The hidden layers can have a more 

complicated design than the input and output layers. The hidden layers are 

often customized for the network they are used in and developed by neural 

network researchers (Nielsen, 2015). 

 

 

 
Figure 4 Image of hidden layers in a neural network (Nielsen, 2015). 

The artificial neural network used in this project is based on Tenserflow 

framework and Scikit-learn library. These are used in the neural network 

modeling to put the layers together and train the model. The standard 

deviation of the calculated output that can be seen in the graph with the 

simulated flow from the model is added by a modeler (Børresen1). 

   

                                                 
1 Lasse Børresen Informetics, e-mail 1 May 2019. 
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2.7 Nowcasting 
Nowcasting includes data from current weather observations as well as 

forecasts which are attained through extrapolation for the next coming hours. 

The extrapolation is possible when working with high detailed data 

containing various characteristics of the moving rain cells. By working just 

into the near future and by using radars and satellites with a high resolution, 

an accurate prediction might be achieved for the upcoming few hours 

regarding rain developments such as local storms. Nowcasting therefore 

allows for warning systems that can give fast responses when the weather 

changes quickly. What follows is the ability to take action at a very early 

stage of a potential flood and thus minimizing the damages to people’s life 

and property as well as to infrastructure and water recipients (World 

Meteorological Organisation, 2017). 

 

The X-band radar has a high spatial and temporal resolution, which produces 

qualified data sets of precipitation for a real-time weather forecast. By 

adjusting the data from the radar and further developing an accurate 

hydrological model, the model could be used for nowcasting. 
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3 Background 

3.1 Malmö 
During the last years, especially large cities in Scania region have been facing 

problems with basement flooding. Between the years 2012-2017 about 3200 

cases of basement flooding were reported to VA Syd in Burlöv, Eslöv, Lund, 

and Malmö. 93 percent of these cases could be related to heavy rain events, 

and the remaining 7 percent is related to the failure in the sewage systems 

without connection to rain events (VA Syd, 2017).  

 

Malmö stands out with nearly 2800 reports of which 2500 occurred during 

2014. On the 31st of August, 2014, a cloud burst event hit Malmö and caused 

damages to both home-owners and to the city infrastructure. It was the largest 

rain event ever recorded in Malmö with over 100 millimeter of rain falling 

during six hours. After this cloudburst, a plan to be better prepared for these 

types of events began and is still in progress whereby the municipality is 

working together with VA Syd. The long term plan, of preparing Malmö for a 

cloud-burst is that the municipality will be ready to handle a 100-year rain 

event in 2045 with minimal consequences (VA Syd, 2017). 

 

In the case of a heavy rain event, the pump stations at Turbinen and Rosendal 

are heavily loaded and if the pump capacity is exceeded it will result in 

combined system sewage-overflow where the sewage will flow untreated into 

the water recipient. At Rosendal pump station the sewage overflow empties 

into the city channel and Sege channel in order to avoid basement flooding in 

the area. Extraneous water is the water in the sewage system that is neither 

storm water nor sewage. This water is added into the system by leaky pipes 

and wrongly connected drainage and surface water pipes. This extraneous 

water is causing an unwanted higher load of sewage overflow and a higher 

consumption of chemicals in wastewater treatment plants (VA Syd, 2017).  
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A separate sewage system is thought to be safe against heavy rainfall and 

should not lead to basement flooding caused by rain. Unfortunately, in reality 

that is not the case. In a separate system a backwash can happen if the 

drainage capacity suddenly decreases due to deposits, leakage in the sewage 

or malfunctions at the pump station. The dimension for the sewage pipe in 

the separate system is only based on the amount of sewage irrespective of the 

probability of the intensity of different rain events. This particular problem 

might also occur when extraneous water penetrates into the sewage pipes 

(Olshammar and Baresel, 2012). 

 

 
Figure 5 Reported basement flooding in Malmö in 2014. Red dots represent separate system and dark 

red spots represent combined system (VA Syd, 2017). 
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Figure 6. The sewage system in Malmö. The brown areas have a combined sewage system, the red 

areas have an incomplete separate system and the green areas have a separate system (VA Syd, 2017). 
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Figure 7 Map over most affected areas in Malmö from cloud bursts in 2007, 2010 and 2014. The red 

squares are flooding in buildings. The black circles are flooding in rail way areas and the grey lines 

are flooding in road sections (Malmö stad and VA Syd, 2016). 
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3.2 Lund 
In Lund, 90 percent of the sewage system is a separate system. The remaining 

10 percent is a combined system and is located mainly in the older parts of 

central Lund and in Dalby. Despite this high percentage, Lund has not had 

significant problems with basement flooding to the same extent as in Malmö. 

This is thought to be due to the height variations throughout the city. The 

basement flooding that does occur is most probably extraneous water leaking 

into the system (VA Syd, 2018a).  

 

The main water recipients in Lund are the Kävlinge creek and Höje creek. 

The municipality has classified these two creeks in order to determine their 

capacity to resist differing volumes of sewage waste, pollution and flow 

capacity. These two creeks also work as storm water recipients. The 

conclusion from the municipality is that the Kävlinge creek is very sensitive 

to high amounts of solid sewage waste but less sensitive to high flows. Höje 

creek is most sensitive to pollution, yet also sensitive to solid sewage waste 

and high flows (VA Syd, 2018a).  

 

Presently, there is a wastewater treatment plant in Lund at Källby. However, 

since the population in the region is expanding, there is also a need for higher 

capacity at the Wastewater Treatment Plant (WWTP). The Källby WWTP 

will probably reach its maximum capacity in 2025 if no expansion is 

considered. In the end of 2016, the municipality of Lund decided to further 

study if the wastewater could be relocated to the Sjölunda, a WWTP in 

Malmö, instead of expanding the capacity in Källby. It is decided that the 

wastewater treatment plant in Källby will be closed in 2028, and there will be 

a new pumping station in the area. The current basins will be then used as 

storm water ponds (Lunds kommun, 2019). This decision is based on the 

increase in population that is predicted to happen during the next few years 

(VA Syd, 2016).  
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The urban area of Lund has a number of overflow points where the sewage 

from the combined system can be diverted to the storm water system when 

the capacity in the combined system is exceeded. Also, in Lund, there are 

three overflow storage tanks where overflow water can be stored and, if the 

capacity of these tanks is not exceeded, the sewage will then flow back into 

the combined system. If the capacity is exceeded, it will overflow into the 

storm water system (VA Syd, 2018a). 

  

 

Figure 8 Map over Lund with the overflow points (red dots) and overflow storages (red squares) (VA 

Syd, 2017). 
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3.3 The X-band Weather Radar Project 
During the summer of 2018 VA Syd together with the Faculty of Engineering 

LTH at Lund University, Sweden Water Research, SMHI and Lund 

University carried out a pilot project with an X-band weather radar. The 

weather radar was placed on top of the water tower in Dalby to measure 

precipitation. Informetics and VA Syd analyzed the data from the radar 

together with data from VA Syd, which included data from rain gauges, 

flows, and overflow at the treatment plants. One of the applications with 

using the weather radar is that it will be possible in the future to provide more 

real-time information about cloudbursts and therefore allow municipalities to 

be ready in early stages of a storm to act and prevent flood damage. Such 

prevention could possibly be to start pumping water earlier in order to reduce 

the effects of cellar flooding in homes. A basic difference between the new 

X-band radar and C-band radar, which is currently being used by the Swedish 

Meteorological and Hydrological Institute (SMHI), is that the X-band radar 

has a higher spatial and temporal resolution and can identify cloud formations 

in local areas (VA Syd, 2018b).  
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4 Materials and Methods 

4.1 Data 

4.1.1 Rain Gauges 
The gauge data was collected using tipping buckets, which tip over when it 

reaches 0.2 mm. Every time the gauge tips over an impulse is registered and 

by looking at the frequency of the impulses the amount of rain over time can 

be calculated. The gauges are located across the study area at 21 locations in 

Lund and Malmö. Beyond this, rain data from gauges within other 

municipalities in the radar coverage area were acquired to get a better picture 

of spatial distribution of precipitation in the area. However, in this thesis only 

the data from the rain gauges in Lund and Malmö municipalities were used 

since those are the areas of interest in this thesis.  

 

Figure 9 A tipping bucket (Casella, 2019). 
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4.1.2 X-band Radar 

The radar logged data throughout the summer of 2018, from July 10th to 

September 12th. The data were collected every minute with a spatial 

resolution of 500 m. The weather radar is not able to detect rain that is falling 

over the same area as the weather radar is located.    

 

 
 
Figure 10 The beam of the weather radar (South et al., 2019). 

The X-band radar is capable of collection data from 4 to 6 elevation ranges. 

During the measuring period there was a problem with the connection in the 

fiber optic cable for the radar. This led to the decision to prioritize the data 

for level 2 and 3 since they were assumed to give the best results. Therefore, 

the data for level 1 and 4 are not available. 
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Figure 11 The weather radar station in Dalby in 2018 (South et al., 2019). 

 

 

Figure 12 Map over the detection area of the weather radar. The red circle is the location of the 

weather radar, the stars represent waste water treatment plants and the measuring glasses represent 

the rain gauge stations (South et al., 2019). 
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4.1.3 Outflow Data 
The outflow data were collected at wastewater treatment plants, pumping 

stations and overflow points in Lund and Malmö. There are three locations 

where the flow data were used together with other data as input data to the 

neural network, these locations are at Rosendal, Turbinen, and Källby (Figure 

14).  

 

 
Figure 13. The pumping station in Rosendal (VA Syd, 2019). 
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4.1.4 Water Level Data 

The water level data, which are variations of the water level in the pump, 

caused by in- and outflow, were collected at the same places as the flow data, 

i.e. wastewater treatment plants, pumping stations and overflow points in 

Lund and Malmö.  

4.2 Organizing Data  
Before using the data as input in the neural network model and before bias 

correcting the data, irrelevant data had to be removed. Irrelevant data are 

defined as the erroneous rain gauge data due to gauge malfunctioning, or the 

rain gauge, due to various reasons, did not collect sufficient rain during the 

measuring period to give an accurate number. It could also be the data from 

the gauges with unknown coordinates, or the data from gauges where the 

radar signal was blocked. This kind of data was firstly removed for the bias-

correction since the correction was conducted by comparing the radar data 

with the gauge data, at the pixels associated with the gauge data.  

 

In some data sets where the gauge data and radar data were compared, the 

radar data sometimes showed a rainfall while the gauge data recorded no 

rainfall. It was discussed if this kind of data should be considered as an 

outlier and be removed from the data set, or if it was to be kept and 

considered when bias-correcting. The decision was made to leave it in the 

model. This was decided on the basis that the radar might catch something 

that the rain gauge does not, due to spatial issue with the rain gauge 

measurement. The radar looks at the whole grid cell and then interpolates to 

get a general value for each cell, which would mean that it could be raining in 

parts of the cell just not in the part where the rain gauge is located. The value 

is consequently not necessarily wrong and should therefore be considered in 

the procedure.  

 

After cleaning the data sets accordingly, both rain gauge and radar data were 

accumulated. This was carried out using MATLAB, which is a numerical 

computing program developed by MathWorks. However, before this 

procedure, the gauge data were extended so that it had the same length as the 
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radar data, i.e., one value every minute from 2018-07-10 00:00 to 2018-09-12 

23:59. Unfortunately, in this process some of the values from the rain gauges 

were lost. This happened at times when the rainfall was so intense that there 

were multiple 0.2 mm values during the one-minute. Instead of accumulating 

to get a bigger value per minute only one value was chosen i.e., if the rainfall 

was 1 mm during one minute, the value for that minute will still only be 0.2 

mm, which is the maximum the gauge will hold before it tips over and 

records data. Multiple attempts to correct this error were made, however, it 

was not possible to fix partly due to the limitations of the gauges used. 

Additionally, this problem could not be solved due to the differing intervals 

between the rain events, which complicates the process of designing a code 

for accumulating the gauge data for one minute.  

 

4.3 Bias Correction  
Due to the time limitation of the project, a simpler bias correction technique 

was used. This bias correction uses a simple equation which gives an 

adequate value for the radar data. Rather than using software, which would 

take the spatial variations into account. Further, this method was used since it 

is more time efficient as well as more easily operated.  

 

To determine if there actually was a bias in the radar data, a relative bias 

equation (Equation 8) was used. When this was done, and a bias had been 

detected the data had to be corrected through a bias correction. 

 

To determine the equation for the bias correction, the data from the radar and 

the data from the rain gauges were compared at the location of the rain gauge 

in question. By looking at the difference in value at certain times, a bias can 

be detected, using the mean field bias equation (Equation 9) presented in the 

Theory chapter. In this case, MATLAB was used to perform the comparison 

for the values.  

 

For the bias correction accumulated data were used. The choice of working 

with accumulated data came from the fact that the gauge and radar data are 
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collected at different time intervals, and it is difficult to match the time series 

of both data sets. Hence, it was more convenient to accumulate the gauge 

data as well as the data from the radar for the comparison and bias correction 

purposes. 

 

First, the accumulated radar data for each station was plotted against the 

accumulated rain gauge data to get a sense of the accuracy of the data. Ideally, 

the scatter plot would lay as a “cloud”, or cluster around the y=x-line, 

however, this was not the case. More often than not this “cloud” would be 

located around a line with a steeper slope than the y=x-line, which would 

indicate that the radar overestimates the amount of rain relative to the 

measured value from the gauges.  

 

After this a Mean Field Bias Correction, or the GR-factor, which is the ratio 

between rain gauges and radar data, was calculated for each location using 

the mean field bias equation. For each location, two GR-factors were 

calculated, one for level 2 and one for level 3 of the radar. Level 1 and 4 

contained no data and was therefore not included in this project.  

 

Before the application of the bias correction, during the cleaning of the data 

procedure, and after the GR-factors had been calculated, there were some 

stations which contained not enough data or their GR-factor was off (i.e., it 

did not compare well to the other GR-factors). These stations were not 

included in the bias correction. The stations which were used, and the stations 

which were removed are presented in Table A.1 in Appendix A. 
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4.4 Calibrating and Interpreting the Neural Network 

Model  
The code for the neural network model was developed by Informetics in the 

program Python, for which the input data had to be formatted into tables 

where the different types of input data are set in different columns. The 

neural network is then recognizing patterns in the variations from the input 

data.  

 

The radar data were collected from selected coordinate’s positions for mid-

July until mid-September 2018. To make it possible for the model to draw 

conclusions from the input data and provide a relevant simulated flow, the 

input data has to be from the same catchment area. It was decided to 

investigate three different locations where flow and level data for the sewage 

system were recorded. These locations were Källby WWTP, Turbinen 

pumping station (PST), and Rosendal pumping station.  

 
Table 1. Explanation of which gauges that are connected to each specific location. 

Location Källby WWTP Rosendal PST Turbinen PST 

Gauges Lund södra Bulltofta Hammars park 

 Dalby Åkarp Turbinen 

 Södra Sandby   
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Figure 14 Map over Turbinen PST, Rosendal PST and Källby WWTP.  
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Table 2 Check marks for the input data in scenario 2. 

Location Källby Rosendal Turbinen 

Date and time ✓ ✓ ✓ 

Flow at pumping 

station/WWTP 

✓ ✓ ✓ 

Water level 1 at 

pumping 

station/WWTP 

 ✓ ✓ 

Water level 2 at 

pumping 

station/WWTP 

 ✓ ✓ 

Radar Södra Sandby ✓   

Radar Lund södra ✓   

Radar Bulltofta  ✓  

Radar Åkarp  ✓  

Radar Turbinen   ✓ 

Radar Hammars park   ✓ 

 
Table 3 The different input scenarios to the neural network model 

Scenario Description 

1 Only gauges 

2 Radar at gauges location at level 2 and 3 

3 Selected points at level 2 and 3 

4 Average of gauges and radar at level 2 and 3 

 

Different scenarios were chosen as inputs so the results could be analyzed in 

order to investigate when the model produces the most accurate results. For 

this, different types of rainfall data including gauge only, radar only, and 

combination of gauge and radar data were used as input to the neural network 

model. The different scenarios that were considered can be seen in Table 3. 
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In scenario 1 the input data is gauge, flow and level data but no radar data. 

Table 2 shows the input data for scenario 2 with radar data, available flow 

records, and water level data. Källby is the location with the least amount of 

data since there is no present level data for Källby WWTP. In scenario 4 an 

average value of the radar data and the gauge data from the same measuring 

point was calculated and used as input to estimate the outflow for the nearby 

outflow point. 

In scenario 3 some points were selected in the nearby area around the 

location for the pumping station or wastewater treatment plant. There are 

three selected points for each location and the points were chosen in a 

triangle form from around the pumping station or WWTP. These points were 

chosen with respect to some conditions. The points should be located near the 

pumping station or the wastewater treatment plant in question, and they 

should also be evenly spread out around it. 



38 

 

 
Figure 15 Scenario 3. Map showing the locations for the selected points with connection to Turbinen. 
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Figure 16 Scenario 3. Map showing the locations for the selected points with connection to Rosendal. 
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Figure 17 Scenario 3. Map showing the locations for selected points with connection to Källby. 
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Figure 18 Training and test periods in days of the neural network model. Blue bars are training period 

and the green bar shows the test period. 

 

Figure 18 shows the length of the training and test periods of the neural 

network model. During the training period for the model the input data relates 

to the output data. In the test period, the model should have been trained to be 

able to predict the output. The longer the period of training for the model, the 

better the model would be at predicting the output for the test period. 

Therefore, the test period was set to September so that the model would be 

able to train on both the data from July and August.  

1 6 11 16 21 26 31

September

August

July

Training and test periods in days
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Figure 19 A conceptual Bokeh plot 

 

The output from the neural network model is a graph with time on the x-axis 

and simulated flow, in dimensionless quantity, on the y-axis. These graphs 

are called Bokeh plots and are visualizing the output from the neural network 

model in a browser. The thick black line represents the simulated flow. The 

darker purple area around the black line represents the standard deviation, 

and the lighter purple area shows the doubled standard deviation. In the 

bottom of the graph, the thicker purple line represents the error of the model 

and the thinner line shows the models confidentiality with respect to the 

calculated error. For example, if the thinner purple line lays close to zero, it 

means that the model is quite confident of how large the error is.  
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Figure 20 Conceptual graph in Tensorboard format. The blue line presents the RMSE from the training 

period and the red line presents the RMSE for the test period. The x-axis is showing the number of 

steps that has been calculated by the model. 

Figure 20 shows a graph in Tensorboard format. Tensorboard is used to 

visualize the simulated flow from the neural network model but in another 

way than the Bokeh plot. The Tensorboard graph presents the training and the 

test loss (or error). The loss is calculated using the root mean square error 

between the predicted value and the observed value in the model. In this 

graph the blue line shows the training loss and the orange line shows the test 

loss. There is almost no deviation in the line representing the test loss. In the 

case that the line is close to zero it means that the model performs well at 

predicting the outflow for the test period. The blue loss line for the training 

period is more erratic, shifting up and down, which indicates that during the 

training period the model is more insecure in simulating the outflow.  
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5 Results and Discussion  

5.1 Evaluation of X-band Radar in Urban Hydrology 
To get an understanding of how well the radar performs compared to the rain 

gauges, an error analysis was conducted (Equation 2 to Equation 7). The 

analysis was completed using non-accumulated data in MATLAB which 

gave the following results (Table 4 and Table 5): 

 
Table 4. Error analysis for uncorrected data between rain gauge and level 3 radar data at gauge’s 

location. 

Station POD FAR BID HSS RMSE 

Åkarp 0.76 0.91 8.17 0.16 0.88 

Billinge 0.12 0.84 0.78 0.13 0.19 

Bulltofta 0.59 0.89 5.40 0.18 0.50 

Eslöv 0.64 0.92 7.58 0.14 0.55 

Genarp 0.76 0.93 11.39 0.12 0.56 

Hammars park 0.26 0.85 1.70 0.19 0.06 

Kungshult 0.52 0.92 6.44 0.13 0.36 

Löberöd 0.62 0.93 8.87 0.12 0.84 

Lund södra 0.20 0.75 0.79 0.22 0.02 

Marieholm 0.26 0.85 1.76 0.18 0.05 

Södra Sandby 0.87 0.95 19.13 0.08 0.90 

Turbinen 0.04 0.91 0.38 0.05 0.23 

Veberöd 0.76 0.91 8.89 0.15 0.53 

      
Mean 0.49 0.89 6.25 0.14 0.44 

 

 
  



46 

 

Table 5. Error analysis for uncorrected data between rain gauge and level 2 radar data at gauge’s 

location 

Station POD FAR BID HSS RMSE 

Åkarp 0.82 0.90 8.43 0.17 1.20 

Billinge 0.51 0.89 4.51 0.18 0.53 

Bulltofta 0.70 0.89 6.28 0.19 0.67 

Eslöv 0.67 0.92 8.17 0.14 0.65 

Genarp / / / / / 

Hammars park 0.55 0.90 5.52 0.16 0.63 

Kungshult 0.71 0.93 9.60 0.13 0.80 

Löberöd 0.70 0.93 9.98 0.12 0.79 

Lund södra 0.30 0.68 0.93 0.31 0.07 

Marieholm 0.72 0.90 6.64 0.18 0.79 

Södra Sandby 0.93 0.95 19.73 0.08 0.93 

Turbinen 0.09 0.75 0.36 0.13 0.13 

Veberöd / / / / / 

      

Mean 0.61 0.87 7.29 0.16 0.65 

 

The error analysis results indicated the noticeable discrepancy between the 

radar and gauge measurements. However, there are circumstances that can 

affect the results.   

 

An example, which can be illustrated by the FAR (or false alarm ratio) 

analysis (Table 4 and Table 5) was briefly discussed in the chapter Data 

Cleaning. The radar ‘points’ where the data is collected, are not really points. 

The radar covers a large area and uses interpolation to set a value for the 

entire grid cell. This value might therefore not be relevant for the entire grid 

cell and more specifically not relevant for the point in the grid cell where the 

rain gauge is located. This means that the radar observed the rainfall within a 

grid cell, but the rain gauge associated to that grid cell, did not. Therefore, the 

radar derived data are not necessarily inaccurate. This would have a major 

influence on the FAR since this value shows how often the radar measures 
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rain when the gauge fails to do so. The fact that the radar covers a bigger area 

and observe rainfall where the gauges does not observe, is one of the main 

advantages of using a weather radar in urban hydrology relative to gauges.  

 

The POD (Table 4 and Table 5), or probability of detection, is in most cases 

quite low considering that a perfect score is 1. This means that the gauges 

sometimes recorded precipitation while the radar did not observe any during 

the study period. This could, to some extent, follow from the same problems 

discussed in the FAR analysis, however, the problem should not be as 

common in this case. Depending on how the radar interpolates and chooses a 

value for each cell, it could be less likely for this problem to affect the POD. 

For example, if it only rains in the small part of the cell where the gauge is 

located  and if the radar chooses the value based on the most common value 

in the cell (i.e. does not take an average of all the values in the cell) this issue 

could definitely affect the POD.  

 

Looking at the BID (Table 4 and Table 5), or bias in detection, clearly shows 

that the radar typically overestimated the amount of rainfall with the 

exception of only a few locations. However, the amount of overestimation 

differed substantially between the stations with values ranging from less than 

1 to more than 19. The values were mostly higher for level 2, which might 

indicate that the radar had difficulties detecting rainfalls at level 3 and 

therefore the overestimation was not as high as at level 2. Furthermore, it can 

be seen that the underestimations were not as significant at level 2 (with the 

exception of Turbinen), which again leads to the conclusion that the radar 

more accurately detects rainfalls at level 2 (Table 5).  

 

The HSS, or Heidke skill score, is constantly higher than 0, which indicates 

that the radar data were, in fact, better than random chance at observing 

precipitation. But not by much. The values do not differ much between the 

stations and there is no clear distinction between the different levels (Table 4 

and Table 5).  
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The reason for inaccuracy of the radar data at the Turbinen station (also seen 

in the bias correction) could be related to the fact that this station is located at 

a rather far distance from the radar (32.2 km). This could affect the radar’s 

ability to detect rain from clouds at a lower altitude as well as running the 

risk of the radar signal being attenuated as a function of distance. On the 

other hand, Billinge, which is the station furthest away from the radar (34.2 

km) does not have this problem when it comes to the error analysis (it does 

however show in the bias correction), which leads to the question of the 

relationship between error in the radar data and distance from the radar. 

Presently, there are no records of there being any gauge malfunctions at the 

Turbinen station, but otherwise that would be another reason for the 

inconsistency between the radar and the gauge values. 

 

The Root Mean Square Error (Table 4 and Table 5) are relatively low for all 

stations, which means that the amount of rain (in mm) measured by the radar 

and the rain gauges were reasonably similar even without correction.   
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5.2 Evaluation of the adjusted X-band Radar Data  
The data from the X-band radar contained a relatively large bias, which was 

calculated by using a relative bias equation (Equation 8). The relative bias for 

each station and level, as well as the mean and median, can be seen in Table 

6.  

 
Table 6. Relative bias in percent 

Station  Level 3 Level 2 

 Relative bias (%) Relative bias (%) 

Åkarp 334 455 

Billinge -61 172 

Bulltofta 172 234 

Eslöv 205 243 

Genarp 254 / 

Hammars park -23 261 

Kungshult 151 336 

Löberöd 279 361 

Lund södra -10 29 

Marieholm -20 298 

Södra Sandby 499 517 

Turbinen -72 -42 

Veberöd 205 /    

Median 172 261 

Mean 147 260 

 

When calculating the relative bias, it became clear that the radar generally 

overestimates the precipitation compared to the rain gauges. This can be 

illustrated by the fact that the values for the relative bias are generally larger 

than 0. The overestimation was typically too large to be disregarded as a 

margin of error.  
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The bias needed to be corrected using the mean field bias correction 

(Equation 9). The results of the bias correction can be seen in Table 7. 

 
Table 7. Specific GR factors for all stations, as well as the mean and median, on both radar level 2 and 

3 

Station Level 3 Level 2 

Åkarp 0.25 0.14 

Billinge 2.05 0.29 

Bulltofta 0.32 0.28 

Eslöv 0.29 0.25 

Genarp 0.27 / 

Hammars park 1.21 0.24 

Kungshult 0.37 0.22 

Löberöd 0.26 0.26 

Lund södra 0.92 0.73 

Marieholm 0.96 0.23 

Södra Sandby 0.18 0.17 

Turbinen 3.01 1.21 

Veberöd 0.30 / 

   

Median 0.32 0.25 

Mean 0.80 0.37 

 

It is noted that the radar data at level 2 were missing for both the Genarp and 

Veberöd stations, hence, the GR-factor were not calculated. This is because 

the time series for both gauge and radar did not match and therefore it was 

not possible to calculate a GR-factor for these stations.  

 

When the GR-factors had been calculated for each location a general GR-

factor had to be calculated for each level of the radar. At this point it was 

debated which value should be used for the bias correction, the mean or the 

median. However, after thoughtful consideration, the median was chosen. 

This decision followed from the discussion of whether or not the high GR-
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factors for a few of the stations should be allowed to influence the majority of 

the values at such a large extent. Using the median value for the GR-factor 

ensured that the GR-factor was adequately representative for the masses 

when looking at the differences between the radar and gauge data. All radar 

data were then corrected using the median GR-factor for each level. 

 

Results of the bias correction concluded once again that the radar almost 

always overestimates the precipitation compared to the rain gauges. 

However, by using the median GR-factor for each layer of the radar it could 

be seen that the overestimation could be partially corrected. 

 

 
Figure 21 Scatter plot between radar level 3 and gauge data in Åkarp station 

Figure 21 shows a scatter plot of the accumulated radar data against the 

accumulated gauge data. Here it can be clearly seen that the radar 

overestimates the rainfall during the operational period. However, this might 
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not be entirely correct since the accumulated rain gauge data were somewhat 

altered in the accumulation process. The values for the gauges might 

therefore be a little bit lower than it should be and this could have a further 

impact on the ratio between the radar data and the gauge data.  

 

 
Figure 22 Corrected radar data with the specific GR factor for the Åkarp station 

Figure 22 shows the corrected accumulated radar data taking into account the 

specific GR-factor for Åkarp station. As can be seen in the figure, the specific 

GR-factor derived from the ratio between the gauge and radar data for the 

Åkarp station corrected the data reference line to line up with the x = y-line, 

as expected.  
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Figure 23 Station Åkarp corrected with the median GR factor for radar level 3 

Figure 23 shows the scatter plot for the case when the median GR-factor was 

used to correct the accumulated radar data. Here the reference line did not 

entirely match the x = y-line compared to the case when the specific GR-

factor was used for correction. Since the median GR-factor is higher than the 

specific GR-factor, it did not correct the data entirely, and that is 

demonstrated by the fact that the reference line shows a connection with the 

x=y-line, but they do not completely match. The median GR-factor will never 

be as accurate as the specific GR-factor for each individual point, however, 

when looking at the radar data for each level as a whole, the median GR-

factor does correct the majority in a satisfactory way. 

What can also be noticed in the bias correction (which has been discussed 

earlier in this chapter) is that the distance from the radar influence the GR-

factor. This can be visualized in Figure 24, where the GR-factor for each 

station is plotted against their distance from the radar.  
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Figure 24. The GR-factor according to the distance from the radar. The blue x: s are representing level 

3 (GR3) and the red circles are representing level 2 (GR2) 

Looking at the values for level 3, it can be seen that the GR-factors were in 

some cases increased at the gauge locations far away from the weather radar 

site. This association could be due to a higher inaccuracy in the radar data 

when the distance is increasing. The gauges, however, cannot be affected by 

the distance from the weather radar since they are measuring the precipitation 

falling at the gauge location. 

 

After the bias correction, the error analysis (Equation 2) was performed again 

using bias-corrected radar data and the gauge data, which gave the following 

results (Table 8): 
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Table 8. Root Mean Square Error for corrected radar data at level 3 and 2 relative to the gauge 

measurements 

 Level 3 Level 2 

Station RMSE  RMSE 

Åkarp 0.10 0.11 

Billinge 0.27 0.10 

Bulltofta 0.04 0.04 

Eslöv 0.01 0.03 

Genarp 0.03 / 

Hammars park 0.05 0.02 

Kungshult 0.05 0.02 

Löberöd 0.06 0.03 

Lund södra 0.17 0.16 

Marieholm 0.20 0.002 

Södra Sandby 0.17 0.10 

Turbinen 0.28 0.27 

Veberöd 0.01 / 

   

Mean 0.11 0.08 

 

The only factor affected by the correction were the Root Mean Square Error 

since the other factors did not depend on the values but rather on the rain 

detection. Even as the data are not bias-corrected (Table 4 and Table 5) the 

RMSE is quite low. However, as can be seen in Figure 25 and Figure 26 (and 

in Table 8), the RMSE values are even lower after the bias correction. The 

values could become even lower if the bias correction was even more 

accurate, but, as a whole, the values are generally really satisfactory. 
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Figure 25. The RMSE for each station at level 3. Before, and after, the bias correction. 

 

Figure 26. The RMSE for each station at level 2. Before, and after, the bias correction. 
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5.3 Agreement between the observed and simulated 
values 

In the analysis of the agreement between the observed and simulated outflow, 

four scenarios with different input data were studied. The scenarios are 

presented in Table 3. The loss and error graphs from Tensorboard and the 

Bokeh plots were analysed as well as the root mean square values from the 

loss graphs. Looking at the loss graph for a scenario in Rosendal (Figure 27), 

the training and test losses for both level 2 and 3 are visualized. The loss that 

is of the highest interest for this study is the test loss, this loss will be used for 

comparison between the different scenarios and levels. The test loss is the 

RMSE, root mean square error, values for the test period in September.  

 

The mean and median RMSE values for Källby are consistently very low in 

relation to the values for Turbinen and Rosendal. The explanation that the 

RMSE values for Källby would be so much lower might be a lower number 

of input data or even irregularities in the data, therefore, Källby is excluded 

from the comparison between the different scenarios. 

 

 
 
Figure 27. Loss graph for Rosendal station using radar, level, and flow data. The pink and the green 

lines show the training loss and the test loss for level 2, respectively. The grey and the orange lines 

show the training loss and the test loss for level 3, respectively 
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Scenario 2 

Level 2 

  Scenario 2 

Level 3 

  

      

Location Mean 

RMSE 

Median 

RMSE 

Location Mean 

RMSE 

Median 

RMSE 

Källby 0.01 0.004 Källby 0.01 0.01 

Rosendal 0.11 0.11 Rosendal 0.13 0.13 

Turbinen 0.16 0.14 Turbinen 0.14 0.14 

 

The orange line in Figure 27 is located below the blue line, which indicates 

that the model is predicting a more accurate outflow for level 3 compared to 

level 2 in Rosendal station considering scenario 2. However, in Table 9 the 

mean and median RMSE values for the test loss is lower for level 2 than level 

3, which does not conform to the conclusion drawn from the graph. The 

difference between the lines in Figure 27 and the values in Table 9 show that 

there is no remarkable difference in accuracy between the two radar levels for 

aforementioned station. 

Table 10 Mean and median RMSE values for scenario 1 

Scenario 1   

   

Location Mean RMSE Median RMSE 

Källby 0.004 0.003 

Rosendal 0.08 0.08 

Turbinen 0.15 0.14 

 

 

 

Table 9 Mean and median RMSE values for scenario 2 
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Figure 28 The test loss graph for Rosendal station for scenarios 1 and 2. The blue and the green lines 

show the test losses for scenario 2 for level 2 and level 3, respectively. The grey line shows the test loss 

for scenario 1. 

According to Table 9 and Table 10, the RMSE values are lower for scenario 

1 relative to scenario 2 for both levels. This is also illustrated in Figure 28 

where the grey line for scenario 1 is located below the test loss lines for 

scenario 2.  

According to RMSE values, the neural network model predicts a more 

accurate outflow with the gauge data (scenario 1) than for scenario 2. On the 

other hand, in Figure 29 to Figure 31, where the predicted flow is presented 

together with the standard deviation, scenario 1 shows a higher standard 

deviation than scenario 2 for both level 2 and 3.  
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Figure 29. Bokeh plot showing training and test period for Rosendal station using gauge, level, and 

flow data (scenario 1). 

 

 

Figure 30 Bokeh plot showing training and test period for Rosendal station using radar, level, and flow 

data (scenario 2) for level 2. 
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Figure 31 Bokeh plot showing training and test period for Rosendal station using radar, level and flow 

data (scenario 2) for level 3. 

The lower standard deviation for scenario 2 than for scenario 1 indicates that 

in the final analysis, the neural network model is better at predicting outflow 

when weather radar data is added to the input. Therefore, it shows the amount 

of data has highest impact on how well the neural network model performs. 

The radar data as input to the model reduce the standard deviation of the 

simulated flow and resulted in a more accurate prediction. 

 

Figure 32 Plot from Tensorboard showing training loss (pink line) and test loss (blue line) for 

Turbinen station using radar, level, and flow data (scenario 2) for level 2. 
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Figure 33 Bokeh plot showing training and test period for Turbinen station using radar, level, and flow 

data (scenario 2) for level 2. 

Figure 33 shows the simulated flow for Turbinen station using scenario 2 for 

level 2. According to the figure the standard deviation is visually larger than 

the calculated standard deviation in Figure 30 for Rosendal station. The 

Turbinen station is located about 32 km away from the weather radar site and 

Rosendal is located about 25 km away, therefore the distance could be a 

reason as to why there is a larger standard deviation for the Turbinen station. 

As shown in Table 2, the input data for both Turbinen and Rosendal include 

flow, water levels, and radar data. The starting point for both locations is the 

same but there could be a difference in number of data points that was 

recorded by the gauges.  

 

The test loss line for Rosendal station for scenario 2 (Figure 27) is more even 

than the line for the test loss for Turbinen station for scenario 2 (Figure 32), 

which supports the reasoning that the simulated flow for Turbinen station has 

a higher level of uncertainties.  
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Table 11 Mean and median RMSE values for scenario 4. 

Scenario 4 

Level 2 

  Scenario 4 

Level 3 

  

      

Location Mean 

RMSE 

Median 

RMSE 

Location Mean 

RMSE 

Median 

RMSE 

Källby 0.004 0.003 Källby 0.005 0.004 

Rosendal 0.11 0.11 Rosendal 0.10 0.10 

Turbinen 0.13 0.13 Turbinen 0.14 0.13 

 

Table 12. Mean and median RMSE values for scenario 3. 

Scenario 3 

Level 2 

  Scenario 3 

Level 3 

  

      

Location Mean 

RMSE 

Median 

RMSE 

Location Mean 

RMSE 

Median 

RMSE 

Källby 0.02 0.02 Källby 0.01 0.004 

Rosendal 0.11 0.11 Rosendal 0.12 0.12 

Turbinen 0.13 0.12 Turbinen 0.14 0.12 
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Figure 34. The test loss graph for scenario 3, level 3. The pink line is the test loss for Turbinen and the 

grey line is the test loss for Rosendal. 

 
Figure 35 The test loss graph for scenario 4, level 3. The orange line is the test loss for Rosendal and 

the pink line is the test loss for Turbinen. 

The mean RMSE values are higher for scenario 3 than for scenario 4 for level 

3 (Table 11 and Table 12; Figure 34 and Figure 35). According to the RMSE 

values the neural network model performs better at predicting outflow when 

the combined weather radar data and the gauge data are used as input to the 

model. Conversely, in Figure 36 and Figure 37 where the standard deviation 

for scenario 3 and 4 is presented, the standard deviation is higher for scenario 

4 than for scenario 3. This suggests that scenario 4 not necessarily is a better 

way to create an input than scenario 3.  
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Figure 36 Bokeh plot for Rosendal station for scenario 3, level 3. 

 
Figure 37 Bokeh plot for Rosendal station for scenario 4 level 3. 

 



66 

 

 
Figure 38 Bokeh plot for Turbinen station for scenario 3 for level 3. 

 
Figure 39 Bokeh plot for Turbinen station for scenario 4 level 3. 

 

Regarding Turbinen station for scenario 3 and 4 for level 3, there is no major 

difference between the standard deviations. In Figure 38, there is a spike in 

the standard deviation otherwise, the two graphs (Figure 38 and Figure 39) 

could not easily be separated meaning no major difference in standard 

deviation between both scenarios. The mean RMSE values for Turbinen 

station regarding scenario 3 and 4 are the same, 0.14. In this case, the 
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difference between the input rainfall data in the two scenarios yielded a 

minor impact on the prediction of the outflow.  

 

5.4 Sources of Error 
When measuring precipitation using rain gauges there are usually some 

general errors present, such as ‘resolution errors’, ‘error on calibration 

curve’, and ‘error by varying wind velocities and local disturbances of air 

flow’ (Willems, 2001). These errors are relatively hard to assess but they 

need to be noted. In addition to these general errors, there are some errors 

specific to this project. These errors are discussed below. 

 

When bias-correcting the radar data, it was discussed which GR-factor to use 

for each level: the mean or median. The decision to use the median came 

from the discussion that outliers should not be heavily considered in the 

correction. It seemed more reasonable to use the median and thus keep the 

majority of the values even though they are seen as less accurate. By 

choosing to work with the median, the bias was substantially removed from 

the radar data as compared to the gauge measurement. The decision to use the 

median was essentially a judgement call and, since it has such a big effect on 

the outcome, this choice can certainly be seen as a significant source of error. 

 

The radar gives an average of the grid cell, which might not correspond to the 

value for the rain gauge. The gauge might be located in one of the extreme 

parts of the grid cell (i.e. no rain or major rain) and might therefore give a 

different result than the radar. This would affect the bias-correction as well as 

the error analysis.  

 

The condition of the rain gauges was not always up to standard during the 

measuring period. During the gauge’s inspections, conducted during 2018, by 

VA Syd, clogging by bugs, leaves and dirt were observed. Using the rain 

gauges as reference without confirming the reliability of the measurement as 

well as the well-functioning, is an important source of error that affects the 



68 

 

accuracy of the gauge measurements. This is a type error which could be 

rather easily resolved by regular maintenance. 

 

The fact that the study period was during a rather dry summer does affect the 

results negatively. If there would have been more precipitation during the 

study period, there would be more data to use for comparison and training the 

model, hence, the quality of the achieved results would most likely have been 

higher. 

 

During the study period, a couple of heavy rainfalls occurred. In those cases, 

the radar signal was fully blocked by the large amount of precipitation. This 

led to zones in the grid where no precipitation was recorded. The loss of 

precipitation data led to large biases in the radar data hence, impacted the 

results.  The X-band weather radar is sensitive to heavy rainfalls as the signal 

is attenuated to a large extent. This is one of the disadvantages of using an X-

band radar in rainfall measurements. However, a network of radars can solve 

this issue. 

 

The fact that some of the data from the rain gauges were lost in the 

accumulation process could also be a reason as to why the radar often 

overestimated the measured precipitation.  
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6 Conclusions  
Overall, the weather radar performed well in urban hydrology and, in some 

cases, detected and recorded precipitation better than the rain gauges. The 

mean FAR value for both level 2 and 3 were about 0.90 and indication the 

radar has a higher detection rate of precipitation than the gauges. 

A major bias was detected in the radar data, which needed to be corrected. A 

general bias correction using mean field bias correction gave an adequate 

result for each radar level in question. The mean field bias correction gave 

0.25 as correction factor for level 2 and 0.32 as correction factor for level 3. 

Therefore, in this project, the X-band radar somewhat overestimated the 

precipitation compared to the rain gauges. The high spatial and temporal 

resolution of the radar data facilitated the bias correction through comparison 

of the values from the radar associated with the values from the rain gauges. 

An efficient bias correction is necessary when working with weather radar 

data to better correct overestimation from either radar or gauge data. 

The results of this study show that the neural network model performed better 

in the case when a larger amount of data is used as an input. This is an 

argument for the X-band radar, since it has the capacity to provide a 

significant amount of data in a short time period over a large geographical 

area.  

The result from the four different input scenarios investigated showed that it 

is difficult to draw conclusions regarding the type of input data and spatial 

distribution of the data points throughout the studied domain for the limited 

time period. The standard deviation and the RMSE values calculated by the 

neural network model were not clearly favorable for any of the studied 

scenarios.       

 

 



70 

 

The sources of error in this project were primarily due to the short trial 

period. Some of these error sources might be quite easily removed by 

relatively minor change, for example, the accuracy of the gauges could be 

ensured by regular maintenance of the gauges. Other sources of errors could 

be corrected with more funding and a longer study period and could include, 

for example, the using of more accurate rain gauges placed over a larger area 

to collect rain data. 
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7 Further Investigations in the Area  
For future investigations, there are a number of factors that could be studied. 

Factors in this master thesis have been limited by time, or their importance 

have become apparent during the process. 

 

A more advanced bias-correction could be performed, which would take the 

spatial variations into account. This would probably give a more accurate 

result since it is reasonable to assume that the radar return signal differs with 

distance. For example, in Figure 24, it was presented how the GR-factors and 

the distance from the weather radar relate to one another. The bias-correction 

could also be improved by adding data from additional rainfall periods when 

it is available. The weather radar in Dalby is functioning, permanently, again 

since the end of April 2019, but with some interruptions due to software 

problems.  

 

To get an even better understanding of how the radar functions and interprets 

rain, it would be good to increase the number of rain gauges in the area. The 

increase in the number of gauges, could give a better sense of how the radar 

differs over distances. Increasing the number of gauges over a small area 

could show how the radar interprets the precipitation within one cell. 

 

During this thesis, four input scenarios were chosen when running the neural 

network model. By expanding the scope for these scenarios, the results and 

conclusions may become more accurate. For example, it could be useful to 

input the entire radar domain data over a specific area, Lund for instance, to 

get a better sense of how the flow is dependent on the spatial variation of the 

precipitation measured by the radar.  

 

By adding more data and thus adding more parameters to the model, a more 

accurate result could be attained. However, it is difficult to know beforehand 

which data might affect the result. Therefore, data such as temperature and 

pressure could be added to the model in the future and that might lead to an 

even better result. 
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Appendix A 
 
Table A.1. Showing the different stations and whether or not their values were used 

in the bias correction and beyond.  

 

Station  Used in bias correction Comment 

Billinge Yes.   

Bulltofta Yes.   

Dalby No 

No radar data for this point. Not used in 

bias correction but in the model for 

Källby. 

Eslöv Yes.   

Genarp Yes, for level 3. 

Error in radar data for level 2, not used in 

bias correction for this level. 

Hammars 

park Yes. To some extent. The GR-factor for level 3 was rather bad. 

Höja No 

Low amount of data gave a bad GR-

factor. Was removed before bias 

correction. 

Klagshamn No 

No coordinates received for this rain 

gauge. 

Kungshult Yes   

Limhamn No Low amount of data collected. 

Löberöd Yes   

Lund södra 

Yes, but not taken too 

much into account. 

No data at certain times due to 

malfunction. 

Lund norra No 

Low amount of data collected due to the 

rain gauge being taken out of use during 

the measuring period 

Marieholm Yes   

Oxie No 

No coordinates received for this rain 

gauge. 

Stångby No No data recorded for this rain gauge. 

Södra 

Sandby Yes   

Turbinen 

Yes, but not taken too 

much into account. 

The GR-factor was rather bad for both 

levels. 

Veberöd Yes, for level 3. 

Error in radar data for level 2, not used in 

bias correction for this level. 
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Åkarp Yes   

Örtofta No Low amount of data collected. 

 

 

 

 

 


