
1

DEPARTMENT OF DESIGN SCIENCES
FACULTY OF ENGINEERING LTH | LUND UNIVERSITY
2019

MASTER THESIS

Edvin Havic

UI Builder –

an Interface Building Tool for Generating

React Native Code for Mobile & Web

UI Builder –
an Interface Building Tool for Generating React

Native Code for Mobile & Web

Edvin Havic

June 11, 2019

UI Builder – an Interface Building Tool for Generating React
Native Code for Mobile & Web

Copyright © 2019 Edvin Havic

Published by
Department of Design Sciences
Faculty of Engineering LTH, Lund University
P.O. Box 118, SE-221 00 Lund, Sweden

Publicerad av
Institutionen för designvetenskaper
Lunds Tekniska Högskola, Lunds universitet
Box 118, 221 00 Lund

Subject: Interaction Design (MAMM01)
Supervisor: Joakim Eriksson
Co-supervisor: Hans Löfgren (Jayway)
Examiner: Kirsten Rassmus-Gröhn

Ämne: Interaktionsdesign (MAMM01)
Huvudhandledare: Joakim Eriksson
Bitr. handledare: Hans Löfgren (Jayway)
Examinator: Kirsten Rassmus-Gröhn

Abstract

This thesis investigates how a visual design tool for building cross-platform
application interfaces for iOS, Android, and web can be constructed. While
there are plenty of tools for building and designing mobile and web apps, there
are currently no visual design tools for building cross-platform apps for all three
platforms.

Beyond this, the thesis explores potential solutions for problems related to code
generation, mobile and web app development, as well as accessibility support
across multiple platforms – all while focusing on the user experience of the
visual design tool. To find solutions to the problems within these areas, a
visual design tool was developed with support for several key features: high
quality code generation, an intuitive way to visually build well designed and
accessible user interfaces, and a unified codebase for the three target platforms.

The work process was highly iterative and user-centered, and was split into
multiple phases and utilizing several usability testing methods, such as heuristic
evaluations and user testing.

The results found during this work shows how a visual design tool for cross-
platform development can look and function, as well as giving potential so-
lutions to how high quality code generation and accessibility support can be
implemented, within in the context of cross-platform applications.

Keywords: interface design tool, user-centered design, accessibility, react na-
tive, cross-platform development

1

Sammanfattning

Detta examensarbete undersöker hur ett visuellt designverktyg för byggande av
användargränssnitt till iOS, Android, och webben kan konstrueras. Även fast
det finns en hel del verktyg för att designa och bygga mobil- och webbappar, så
finns det i nuläget inga visuella designverktyg för att bygga en gemensam app
för alla tre plattformar.

Utöver detta, så undersöker arbetet potentiella lösningar till problem relate-
rade till kodgenerering, mobil- och webbapputveckling samt tillgänglighetsstöd
(eng. accessibility support) på flera plattformar – samtidigt som fokus ligger på
användarupplevelsen av designverktyget. För att hitta lösningar till problemen
inom de angivna områdena har ett visuellt designverktyg utvecklats med stöd
för flera viktiga funktioner – högkvalitativ kodgenerering, ett intuitivt sätt att
visuellt bygga väl utformade och tillgängliga (eng. accessible) användargräns-
snitt, samt en gemensam kodbas för de tre målplattformarna.

En iterativ arbetsprocess har använts, och fokus har genomgående legat på
användaren av systemet. Processen delades upp i flera faser, och flera typer av
användbarhetsutvärderingar har använts – bl.a. heuristiska utvärderingar och
användartestning.

Resultaten som presenterats i detta arbete visar hur ett visuellt designverktyg
för flera plattformar kan se ut och fungera. Utöver detta så har även potenti-
ella lösningar till hur högkvalitativ kodgenerering och tillgänglighetsstöd kan
implementeras presenterats.

Nyckelord: designverktyg för användargränssnitt, användarcentrerad design,
tillgänglighet, react native, utveckling för flera plattformar

2

Preface
The work presented in this Master’s thesis was conducted at Jayway Malmö, by me,
Edvin Havic, during the spring of 2019.

I would like to thank the people at Jayway, as well as the people that have provided
guidance, materials, and feedback throughout this process, more specifically:

My supervisor at Jayway, Hans Löfgren, for giving invaluable feedback, ideas, in-
sights, and rewarding discussions.

Jayway’s Quantum Studio Lead, Martin Gunnarsson, for providing me with the nec-
essary hardware, work space, and opportunity to do my work at Jayway.

My supervisor at LTH, Joakim Eriksson, for providing great guidance, support, and
expertise for both the thesis and research related questions.

3

Contents
1 Introduction 7

1.1 Scope and Goal . 7

2 Technical Background 9
2.1 React for Web . 9
2.2 React for Mobile – React Native . 9
2.3 Expo for React Native . 9
2.4 Unifying Codebases Using React Native for Web 10
2.5 Accessibility Support – Platform Differences 10
2.6 Defining and Measuring Code Quality 11

2.6.1 Formatting with Prettier . 12

3 Theory 13
3.1 User-Centered Design (UCD) . 13
3.2 User Testing . 14
3.3 System Usability Scale (SUS) . 14
3.4 Heuristic Evaluation . 15

4 Method 17

5 Investigation Phase 18

6 Design Phase 21
6.1 User Interface (UI) . 21

6.1.1 UI Builder . 21
6.1.2 Cross-Platform Components . 22

6.2 User Experience (UX) . 22
6.2.1 Building UIs with the UI Builder 22
6.2.2 Live Reload . 23

7 Implementation Phase 24
7.1 Interface Design . 24

7.1.1 Layout Manipulation . 25
7.1.2 React Integration . 26
7.1.3 React Native Integration . 26

7.2 Boilerplate for the Generated Code . 28
7.3 Implementing Cross-Platform Components 29
7.4 Mapping React Components to Code 32
7.5 User Testing . 34

7.5.1 Method . 34
7.5.2 Results . 37

7.6 Accessibility Audit with Lighthouse . 41
7.7 Improving Web Accessibility . 43
7.8 Improving Native App Accessibility . 43
7.9 Improving the UI Based on User Testing 44
7.10 Evaluating the Generated Code Quality 46

4

8 Discussion 48
8.1 Limitations . 48
8.2 Future Work and Improvements . 48

9 Conclusion 50

Appendices 54

A User Tests 54
A.1 Participant 1 . 54

A.1.1 Survey Results . 54
A.1.2 Test Results . 54

A.2 Participant 2 . 55
A.2.1 Survey Results . 55
A.2.2 Test Results . 56

A.3 Participant 3 . 57
A.3.1 Survey Results . 57
A.3.2 Test Results . 58

A.4 Participant 4 . 59
A.4.1 Survey Results . 59
A.4.2 Test Results . 60

A.5 Participant 5 . 61
A.5.1 Survey Results . 61
A.5.2 Test Results . 62

B Generated Code Evaluation 63
B.1 Expert Answers . 63
B.2 Code Sample 1 . 64
B.3 Code Sample 2 . 65

C Source Code 66
C.1 UI Builder . 66
C.2 Generated Code Boilerplate . 66

5

Glossary

API Application Programming Interface.

Backend Backend refers to the data access layer in an
application. For example, the code generator in
UI Builder is a part of the backend.

Boilerplate Boilerplate is a skeleton/structure with code to
get a minimal base to start from.

CSS Cascading Style Sheet.

Document Object Model Document Object Model is a programming API
for HTML documents. It defines the logical tree
structure of a HTML document using tags.

DOM Document Object Model.

Frontend Frontend refers to the presentational layer in an
application, i.e. the things the user interacts
with.

npm Node Package Manager. npm is two things - a
CLI tool and an online repository. npm is used
to fetch npm packages from the npm repository
for use in e.g. a project.

npm package An npm package is a bundled collection of re-
sources (i.e. code) readily available to install
from npm.

OS Operating System.

React Prop A React prop is a property set on a specific Re-
act component to change e.g. a behaviour or
look for that specific component.

UI User Interface.
UI Builder The name of the developed visual design tool.
UX User Experience.

6

1 Introduction
Generating code with visual design tools is nothing new – especially when it comes to
web development. Multiple targets for a programming language isn’t a new concept
either, take Java for example – a programming language popularized because of its
cross-platform support. Within the last five years, technologies such as React and
React Native have transformed both how web and mobile applications are developed.
With these two technologies further blurring the line between mobile and web de-
velopment, combining multiple codebases into one would seem like the next logical
step, pushing the slogan "write once – run everywhere"1 even further.

Building cross-platform, accessible, and well designed apps today is a tedious process
– multiple design tools, programming languages, APIs, and best practices for each
platform creates challenges for both developers and designers. There are of course
already great visual design tools for specific tasks – take Android Studio’s design tool
for example, used specifically for Android app User Interfaces (UIs). While Android
Studio’s design tool is great for Android apps, different tools are needed for other
platforms. Building apps for iOS? Use Xcode’s Interface Builder. Building web apps?
Pick your poison, there’s many to choose from.

While all these tools are great at their specific task, maintaining three different
codebases for iOS, Android, and web is – while many times necessary – tedious. Even
creating simple app prototypes for each platform is time consuming, and depending
on which tech stack you’ve selected, requires knowledge about several programming
languages.

These problems raises some questions:

• Can you create a visual design tool for all three platforms?

• How do you handle platform differences?

• Can you decrease the time spent from idea to prototype? Perhaps even from
idea to functional product?

The goal of this thesis is to explore potential answers to these questions.

1.1 Scope and Goal

The main goal was to create an interface design tool (called the UI Builder from
here on out) able to generate high quality React/React Native code for both iOS,
Android, and web using the same codebase. There was a focus on three main aspects,
which were:

1A slogan popularized by Sun Microsystems to illustrate the features of Java [1].

7

• Code Quality
For the generated code to be usable, it needs to be of high quality – there’s
no point in using a visual design tool to generate code if the code is of poor
quality.

• Handling accessibility in the different platforms
Different platforms have different approaches on how to handle accessibility.
The visual design tool needs to be able to unify the differences in how accessi-
bility is handled on each platform.

• User Experience (UX) of the Interface Design Tool
Using a visual design tool needs to be as painless as possible, something that
can be a go-to tool for creating, for example, prototypes.

There were some limitations made to decrease the size of the scope:

• Web, Android, and iOS only.
There are ports of React Native made to work on for example Universal Win-
dows Platform (UWP). This thesis was limited to the three mentioned plat-
forms.

• Components will only take mobile devices into account.
Responsive components should be a part of the UI Builder, it was however not
implemented and will be considered as future work. Components should work
on both desktop and mobile, but was designed with a mobile viewport in mind.

• No functionality for implementing logic. The UI Builder’s focus was on
accessibility and design, not logic implementation.

The work described in this thesis is split into 8 sections, each describing an integral
part of the process:

• Technical Background
The technical background section goes over all relevant technologies used.

• Theory
This section describes the theories used to support the work.

• Method
This section describes the methods employed throughout the process.

• Investigation, Design, and Implementation Phases
These three sections describe the bulk of the work.

• Discussion and Conclusion
These two sections is where the work done is analyzed and concluded.

8

2 Technical Background
The scope of this thesis spans across multiple types of technologies and platforms,
making it heavily reliant on previous work within areas such as web & mobile ac-
cessibility, and iOS & Android development. This section describes the technologies
related to the work done in this thesis.

2.1 React for Web

React is an open-source JavaScript (JS) library for building user interfaces for the
web, released by Facebook in 2013. Early on, React was coupled with the Document
Object Model (DOM), but was subsequently split into two separate packages, react
and react-dom. This meant that the React core didn’t depend on the browser
anymore – only react-dom did. This made the foundation for React Native.

2.2 React for Mobile – React Native

React Native, much like React, is an open-source JavaScript framework for building
user interfaces for iOS, and Android. It uses the same core library as React, but
instead of manipulating a virtual DOM (using react-dom) it runs as a JavaScript
background process using the device’s JavaScript engine, and manipulates the UI via
a bridge – a part of the react-native package. This is where React Native differs
from traditional apps written in JS – React Native apps are actually native [2].

2.3 Expo for React Native

Expo is a popular tool built as an additional layer on top of React Native [3]. Using
Expo has several benefits such as a more streamlined development process, using
their app for iOS and Android. The app allows developers to test on both plat-
forms without additional setup, such as having an Apple Developer Account. Expo
also provides a Software Development Kit (SDK) for easily using the camera, GPS,
accelerometer, etc.

Expo also comes with drawbacks – mainly bloated application sizes and limitations
on which libraries can be used.

A compelling reason to use Expo instead of purely using React Native is to have a
better Developer Experience – using it enables cross platform (development) support
for both iOS and Android development, whereas using React Native without Expo

9

would disallow iOS development on Windows and Linux. Expo also provides a web
interface for the Metro Bundler2, further simplifying development.

2.4 Unifying Codebases Using React Native for Web

The library react-native-webmakes it possible to use components and APIs written
for React Native on the web, using react-dom. While the name might be confusing
(isn’t react-native-web just regular React?), the aim of the project is to create
a platform agnostic UI framework – meaning that one component should be usable
on both iOS, Android, and web [4]. react-native-web can be seen as a complex
polyfill3, emulating the React Native API using react-dom and CSS.

React Native made it possible for cross-platform development between iOS and An-
droid, and using react-native-web the target platforms expand to include the web
as well. This does of course come with its drawbacks – but the benefits outweigh
them.

2.5 Accessibility Support – Platform Differences

Accessibility, in the context of software, is the design of a product for people with
different kinds of disabilities, such as visual or motor impairment [5]. Each platform
handles accessibility differently, with varying support. Both mobile platforms provide
APIs for their assistive technologies, such as screen readers – VoiceOver on iOS [6]
and TalkBack on Android [7]. For the web there are different types of screen readers,
either available as a plugin in the browser or natively in the OS, such as ChromeVox
[8] for Chrome and VoiceOver [9] for macOS. React Native has unified the two mobile
APIs [10] into one – making it possible to develop with accessibility in mind with
React Native as well.

While support for accessibility is more limited on mobile, the web has more clear
defined standards and guidelines on how to make accessible applications – WCAG
[11] being the most notable guideline and WAI-ARIA [12] being the most notable
technical specification for the web.

Even though React and React Native code is generally similar, the accessibility sur-
face API differs a bit. React Native uses different types of (React) props, such
as accessible, accessibilityLabel and accessibilityHint, whereas React (or
to be more precise – HTML) uses different types of aria-* attributes, such as
aria-label, role, and aria-controls. react-native-web provides some common
API integrations for simplifying accessibility without having to write separate code
for each platform; accessible, accessibilityLabel, accessibilityLiveRegion,

2Metro Bundler is the JavaScript bundler used by React Native.
3A polyfill is code that emulates a feature in e.g. browsers, that do not support the feature

natively.

10

Table 2: Example on how accessibilityRole is mapped to each platform

accessibilityRole React Native React (HTML Equivalent)
article <View accessibilityRole="article" /> <article role="article" />
banner <View accessibilityRole="banner" /> <header role="banner" />
label <Text accessibilityRole="label" /> <label />
link <Text accessibilityRole="link" />
main <View accessibilityRole="main" /> <main role="main" />

accessibilityRole, and importantForAccessibility. Each prop is mapped dif-
ferently depending on the platform [13].

Table 2 lists an example of how the accessibilityRole prop is mapped depending
on the target platform.

2.6 Defining and Measuring Code Quality

A measurement of code quality is hard to quantify – many aspects of the code are
somewhat subjective, while some aspects are considered more objective. For example:
JavaScript has a feature called Automatic Semicolon Insertion, making semicolons
for ending lines unnecessary in most cases. Whether or not to use semicolons is a
highly subjective matter for the most part, and has sparked many discussions in the
JavaScript community on whether or not using them is considered good practice.
It’s essential to be able to distinguish which aspects of the code are subjective, and
which ones aren’t.

There are some standards trying to quantify code (or more generally, software) quality
– such as the CISQ Quality Model [14]. Google Lighthouse [15] is a great tool as
well (and is partially based on the WAI-ARIA specification), since it provides audits
for e.g. performance and accessibility, with the downside of being for the web only.
Using parts of it as a base for measuring quality would give an objective view of the
quality in some areas.

Since the generated code from the application is in the range of around a hundred
lines of code, CISQ’s model doesn’t translate very well. It does, however, serve
as a base for what to look for. Combining CISQ’s Quality Model and parts of
Lighthouse’s measurements would serve as a solid, measurable foundation of aspects
that, at least partially, defines code quality in an objective way. A concise list of
what defines (a subset of) code quality in the context of the generated code would
be the following:

• Accessibility

• Readability

• Maintainability

• General best practices

11

There are many more aspects of code quality, such as different coding principles
(DRY, SOLID, etc.)4 and tests (unit testing, regression testing, etc.). These aspects
are important as well – however, they are outside of the scope of this thesis and hard
to apply to the generated code.

2.6.1 Formatting with Prettier

A large part of the readability aspect of the code is based on formatting. Pret-
tier is an opinionated code formatter for multiple programming languages, including
JavaScript [16]. It integrates with several popular code editors, and has a command
line interface as well, which the UI Builder will use. All auto generated code will run
through Prettier with the following settings:

Table 3: Prettier formatting options

Rule Value Description
print-width 100 The line width. Lines longer than 100 characters will be

split at a suitable place.
trailing-comma es5 Whether or not to use trailing commas in objects and ar-

rays. Setting it to ’es5’ allows the code to be formatted
with trailing commas complying with the ECMAScript 5
spec.

single-quote true Whether or not to use single or double quotes for strings.
no-semi true Whether or not to use semi colons.

All other rules are set to Prettier’s default options.

4DRY (Don’t-Repeat-Yourself) and SOLID (mnemonic acronym) are programming principles
used by the programmer to improve the quality of the software being written.

12

3 Theory
In this section, several fundamental design principles, theories, and processes are
described. The theories are used to structure the the work process, and to justify
and support the results.

3.1 User-Centered Design (UCD)

User-centered design is a process which puts focus on the user using the system,
based on the ISO-standard 9241-210:2010 [17]. The standard describes six principles
to ensure that a design is user-centered:

1. The design is based upon an explicit understanding of users, tasks and envi-
ronments.

2. Users are involved throughout design and development.

3. The design is driven and refined by user-centred evaluation.

4. The process is iterative.

5. The design addresses the whole user experience.

6. The design team includes multidisciplinary skills and perspectives.

Looking at these principles, the main underlying principle of user-centered design is
that the user is involved at each iteration of the design process. This doesn’t mean
that the user should be consulted at all times – it means that user’s needs, behavior,
etc. is the central focus in all stages.

According to Gould and Lewis, there are three principles that leads to a good system,
described by Preece et al. [18]:

1. Early focus on users and tasks.
This means first understanding who the users will be by directly
studying their cognitive, behavioral, anthropomorphic, and attitudi-
nal characteristics. This required observing users doing their normal
tasks, studying the nature of those tasks, and then involving users
in the design process.

2. Empirical measurement.
Early in development, the reactions and performance of intended
users to printed scenarios, manuals, etc. is observed and measured.
Later on, users interact with simulations and prototypes and their
performance and reactions are observed, recorded, and analyzed.

3. Iterative design.
When problems are found in user testing, they are fixed and then
more tests and observations are carried out to see the effects of the

13

fixes. This means that design and development is iterative, with
cycles of "design, test, measure, and redesign" being repeated as
often as necessary.

3.2 User Testing

User testing is a fundamental technique used in the design process to evaluate us-
ability, as well as allowing insights into where friction emerges when using a system.
These insights can then serve as basis for improving the system [18].

User testing is usually modelled as a controlled experiment where a set of users
use the evaluated system, all while data is recorded through some medium, such
as note taking, audio and video recording, etc. How data is collected is called a
moderating technique, and there are multiple different types, each with their own
pros and cons. A common moderating technique is called Concurrent Think Aloud
(CTA), a technique where the user is encouraged to think aloud during the test
session, while their thoughts are recorded by e.g. note taking [19].

CTA has several advantages, such as allowing the moderator to see and understand
the test participant’s thoughts and emotions throughout the test session, as well
as to get real time feedback during the test session. It does, however, come with
some drawbacks, such as increasing the actual time taken to complete a task, since
the participant has to dedicate some time and attention to talk during the session
[19].

3.3 System Usability Scale (SUS)

System Usability Scale (SUS) is a standardized questionnaire created by John Brooke
in 1986 [20], and is a good method for quickly evaluating a system’s usability. It
consists of 10 questions with five options ranging from "strongly agree" to "strongly
disagree" [20]. It consists of five positive questions and five negative ones, alternating
between one of each throughout the questionnaire. This is done to negate acquies-
cence bias, which is a type of response bias where the users filling out a questionnaire
tend to agree with all questions indicate a positive connotation [21].

The ten questions are a variation of the following:

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to use
this system.

5. I found the various functions in this system were well integrated.

14

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

The scoring range for SUS is between 0 and 100. This shouldn’t be considered as
percentage score, since the scoring isn’t linear. Based on previous research, a score of
68 and above is considered above average (and by extension under 68 is considered
below) [20], and a score of 80.3 and over is considered great. A score of 51 and under
is considered very poor [22].

To calculate a user’s score, each question’s options are mapped from 1 - 5. For
each positive question (i.e. each odd), 1 is subtracted from the selected option. For
each negative question (even), 5 is subtracted from the selected option. By adding
the resulting values and then multiplying by 2.5 you get the final score for the user
[22].

3.4 Heuristic Evaluation

Heuristic evaluation is a type of usability inspection method, created by Jakob Nielsen
and his colleagues to be able to identify usability problems in UIs [18]. It is seen
as quite informal, as opposed to for example user testing, and therefore shouldn’t
replace it either [23].

Using this technique is done by the evaluator (i.e. an expert) by applying a set
of known principles and guidelines to evaluate if UI elements, accessibility features,
navigation structure, etc. are acceptable [18]. Using this technique has several advan-
tages, such as being very quick and inexpensive, easily combined with other usability
testing methods, as well as giving a clear answer to what can be improved in a de-
sign. As with all techniques, it also has its disadvantages – evaluators can be biased,
and they are required to have extensive domain knowledge to be able to apply the
heuristics effectively [23].

Listed below is one of the most popular guidelines for evaluating usability, developed
by Nielsen and his colleagues in 2001 [18].

1. Visibility of system status –
Always keep users informed about what is going on, through providing appro-
priate feedback within reasonable time

2. Match between system and the real world –
Speak the users’ language, using words, phrases and concepts familiar to the
user, rather than system oriented terms

15

3. User control and freedom –
Provide ways of allowing users to easily escape from places they unexpectedly
find themselves, by using clearly marked ’emergency exits’

4. Consistency and standards –
Avoid making users wonder whether different words, situations, or actions mean
the same thing

5. Help users recognize, diagnose, and recover from errors –
Use plain language to describe the nature of the problem and suggest a way of
solving it

6. Error Prevention –
Where possible prevent errors occurring in the first place

7. Recognition rather than recall –
Make objects, actions, and options visible

8. Flexibility and efficiency of use –
Provide accelerators that are invisible to novice users, but allow more experi-
enced users to carry out tasks more quickly

9. Aesthetic and minimalist design –
Avoid using information that is irrelevant or rarely needed

10. Help and documentation – Provide information that can be easily searched
and provides help in a set of concrete steps that can easily be followed

While Nielsen’s guidelines isn’t used in this thesis, it serves as an example of how a
usability inspection list can look like, and a similar list will be used with the help of
Google Lighthouse.

16

4 Method
The work process is split into three main phases – the investigation phase, design
phase, and implementation phase, with the implementation phase being the most
extensive. The process will be iterative and user-centered throughout all phases. An
overview of the iterative work process is shown in fig. 1.

Figure 1: Figure demonstrating the iterative work process

Investigation Phase

This phase is where I will be looking at existing products and tools, understand the
needs of the user, as well as create a Lo-Fi mock-up of the UI Builder to get a general
idea of the direction the UI Builder should take.

Design Phase

This phase will be a cyclic phase, where I will decide on the general functionality,
design, and structure of the UI Builder. This is done with the help of a reference
group, consisting of two developers.

Implementation Phase

The implementation phase will be the most extensive phase, and will be a cyclic
phase consisting of multiple iterations driven by heuristic evaluations with Google
Lighthouse and expert reviews, as well as a user testing.

17

5 Investigation Phase
This phase outlines the foundation of the UI Builder with the scope and goal in mind
– what can we say about the user? What should the UI Builder look like to be user
friendly?

Initial Mock-up

Before any actual development took place, several different types of design tools
were studied, such as Adobe XD, Android Studio, and Figma. Each design tool had
different use cases – for example, Android Studio’s design tool is tightly coupled with
the code editor as well, since its supposed to be used in conjunction with the code
editor. In other words, the design tool in Android Studio isn’t supposed to be a
complete solution, only a complement to other tools. In contrast, Adobe XD is a
complete solution – but strictly for designing and prototyping. Despite this, each
design tool had a similar look and work flow. Fig. 2 breaks down the structure of
both Adobe XD and Android Studio, highlighting their similarities.

18

Figure 2: Figure showing the basic layout structure of Android Studio’s design view
and Adobe XD

19

It quickly became clear that all studied design tools had a common base layout –
two columns on each side used for tools and components, and a centered workspace.
Based on these findings a Lo-Fi mock-up was made to outline how the UI Builder
was going to be structured (fig. 3).

Figure 3: Initial mock-up of the UI Builder application

This was basically the "if it isn’t broken, don’t fix it" approach. The layout was
good enough for the purpose of the UI Builder, was known to work (based on its
prevalence in so many interface design tools), and users with any experience with
these tools (and many others) were used to it.

Understanding the User

During this stage, some thought was put into who the user of the UI Builder was
going to be. Basically, a range of users were the target for the application, ranging
from developers with little to no design experience, to designers with at least some
programming experience. This meant that some assumptions could be made – for
example, assuming that they’re familiar with some form of Integrated Development
Environment (IDE) or design tool.

20

6 Design Phase
In this phase the UI Builder’s general structure, functionality, and UI design were
outlined.

6.1 User Interface (UI)

6.1.1 UI Builder

With the feedback of a reference group consisting of two developers (one web de-
veloper), a Mid-Fi prototype based on the Lo-Fi prototype was designed (fig. 4),
outlining the interface of the UI Builder.

Figure 4: Mid-Fi drawing outlining the functionality of the UI Builder

Picking the right application framework – Ideally, the UI Builder would work
on any OS – a common shortcoming of several design tools, such as Sketch (which is
macOS only). Tools like Figma and UXPin works around this by being web based,
which comes with some drawbacks, such as limited access to the local filesystem.
After looking at different frameworks it looked like Electron, developed by GitHub,
was a good solution: cross-platform, web based, and with access to the local system.
This meant that UI Builder could be developed as a desktop application that works

21

on Windows, macOS, and Linux, using web technologies for the UI (in this case,
React), and full local system access using Node.js.

Picking the right design – The UI Builder had to have a solid design foundation
to build from, since the UI to a large extent affects the UX as well. Google’s Material
Design seemed to fit the bill – it’s a very popular collection of design guidelines and
principles created by Google [24], meaning that it’s battle tested and has a lot of
community support. Since the UI Builder’s frontend was going to be written in
React, the popular React UI component library material-ui was the perfect library
for implementing the Material Design guidelines.

6.1.2 Cross-Platform Components

Using Material Design had another benefit – it works great with mobile UIs as well
(it is the standard on Android after all). Because of this, Material Design was a good
fit for the generated code’s cross-platform components as well. There were some
limitations on which library could be used (or if the implementation had to be done
from scratch), since the components had to work both on mobile and web. After
looking at a few libraries, react-native-paper was selected. It was a reasonably
good implementation of the Material Design guidelines, and it worked well with web,
Android, and iOS.

6.2 User Experience (UX)

6.2.1 Building UIs with the UI Builder

The UI Builder needed an intuitive way of building app UIs. A good way to intuitively
interact with "building blocks" is through drag-and-drop functionality. A mock-up
of the intended drag-and-drop functionality is shown in fig. 5. The figure shows how
it’s intended to manipulate the UI layout in the UI Builder’s workspace.

22

Figure 5: Mock-up showing the intended drag-and-drop functionality of the UI
builder

6.2.2 Live Reload

Live reload is a tool that can tighten the feedback loop of designing a UI and seeing
it on a device. The live reload works by monitoring the file system for changes, and
triggers a rebuild of the React Native and/or web app based on that change. The
intended live reload flow of the UI Builder can be seen in the sequence diagram in
fig. 6.

Figure 6: Sequence diagram describing the intended the live reload functionality in
the UI Builder

23

7 Implementation Phase
The implementation phase was the most extensive phase, consisting of multiple it-
erations. It covers code generation, user testing, testing accessibility & code quality,
and finalizing the interface of the UI Builder.

7.1 Interface Design

The UI was created with the help of material-ui, a collection of React UI compo-
nents implemented with Google’s Material Design guidelines in mind, meaning that
the UI Builder had a solid foundation for creating a good User Experience.

Based on the initial Lo-Fi (fig. 3), Mid-Fi prototype (fig. 4), and the other decisions
made during the design phase, the resulting application UI shown in fig. 7 was
developed.

Figure 7: Implemented design view tab of the UI Builder.

24

7.1.1 Layout Manipulation

A key feature implemented in the UI Builder was the ability to move components
around, as well as adding child components to some. This was implemented us-
ing the library react-beautiful-dnd, a drag-and-drop library with a lot of focus
on UX. Using this library meant that several aspects of the interaction with the
UI Builder became more intuitive, mainly by leveraging the built in animations of
react-beautiful-dnd. An example is shown in fig. 8, which shows the dragging
state of a card component.

Figure 8: What the UI Builder looks like when dragging the card component with
the title Mountains.

Adding Child Views

Since the Card component was basically a container, it needed a way of intuitively
adding child components to it. The action was implemented as a drag-and-drop
feature as well, shown in fig. 9.

25

Figure 9: Figure showing the action of adding a Button into a Card. Note the
decreased opacity of the Button component in the second image, indicating the drop
functionality.

7.1.2 React Integration

React (web) integration was done with the use of a modified version of create-react-app,
which relies on an internal library named react-scripts. This library is a "batteries
included" CLI which starts a preconfigured Webpack bundler as well as a web server,
serving the generated web app on the local machine’s port 3001, with support for live
reloading. Running a predefined command5 (done from the UI Builder’s backend) in
the generated code’s project root started both the web server and Webpack.

The web server and bundler was started by clicking the Launch Project button in
the design view tab. This in turn launched the OS’s default browser and loaded the
web app on http://localhost:3001.

7.1.3 React Native Integration

Integrating React Native with the UI Builder was done by leveraging Expo’s CLI.
Running expo start (done from the UI Builder’s backend) in the generated code’s
project root starts React Native’s Metro Bundler (with live reloading support in-
cluded) as well as a web server running a user interface for the Metro Bundler. This

5The following command: cross-env PORT=3001 react-app-rewired start. Normally, react-
app-rewired is replaced with react-scripts, however, a modified Webpack configuration required
react-app-rewired.

26

interface was integrated into the UI Builder and accessible through a separate tab
view, seen in fig. 10.

Integrating this interface had several benefits:

• The user never has to touch a terminal to run the app on a device or simulator

• The QR code allows live testing on any Android or iOS device within seconds
by scanning it with the device

• Logs from all test devices are shown in one place

• No network limitations (unlike when using the React Native CLI only), made
possible by Expo’s utilization of ngrok6

Figure 10: The Metro Bundler tab in the UI Builder.

Expo’s Metro Bundler was started by clicking the Launch Project button in the design
view tab. Accessing the generated app was done by either launching a simulator, or
by having the Expo app installed on a device and scanning the QR code.

6ngrok is a CLI tool that creates a tunnel from the public internet (by exposing a public URL)
to a specified port on the local computer.

27

7.2 Boilerplate for the Generated Code

Since the generated code was going to be used for both React and React Native (by us-
ing react-native-web), traditional boilerplate projects (using create-react-app7

for example) weren’t sufficient. Developing a boilerplate suitable for usage with web
and mobile proved to be challenging, since the boilerplate had to support multiple
things both related to mobile and web, such as Expo, JSX, and component libraries.
Much of this was achieved by starting with the create-react-app boilerplate and
tailoring it to the specific requirements.

The biggest problem was that when publishing packages for web use (e.g. component
libraries such as material-ui), the standard practice is to transpile the code with a
transpiler8, most likely Babel. This is done since the source code might be written in
JSX, TypeScript, or it might be using language features not supported in browsers
yet. However, this is not standard practice with packages meant to be used with React
Native. Since browsers can’t understand anything other than vanilla JavaScript,
packages that weren’t transpiled made the boilerplate unable to run on the web.
The most obvious solution would be to transpile all code dependencies to make sure
the code can run on all platforms. This does however cause two issues – the first
being that there are thousands of dependencies, meaning that the build time would
dramatically increase. The second issue is that the external dependencies does not
only contain JavaScript code – it contains platform specific code that the transpiler
can’t and shouldn’t touch. These issues were mitigated by essentially cherry-picking
which packages and files were needed to be transpiled.

To build the native components (in this case, react-native-paper) for the web, an
alias for react-native was created, to react-native-web. This essentially replaced
all occurrences of react-native in the source code with react-native-web.

The boilerplate structure is shown in fig. 11.
7create-react-app is a popular npm package for generating boilerplate code, created by Face-

book.
8A JavaScript transpiler is a program that takes JavaScript (or supersets of JavaScript such as

JSX and TypeScript) code as input and outputs equivalent code in a specified version of JavaScript.

28

Figure 11: Boilerplate structure for the generated code.

7.3 Implementing Cross-Platform Components

The purpose of creating the components were to create building blocks for the gen-
erated application, as well as having draggable components in the UI Builder.

Each component was split into two – one for the visual editor, and one used for the
actual generated code. Both parts are nearly identical visually, with some differences
in code, such as error boundaries9 and wrappers to make them draggable in the
editor. This also meant that there were some double maintenance which made code
changes problematic, since changes had to be kept consistent with each other. It
was, however, a necessary evil since the components weren’t identical for each use
case and the code wasn’t easily shareable between the two codebases.

A minimal implementation was made with six different components, making it pos-
sible to create a variety of different views. The component library could be vastly
expanded with more components, however, the six components were deemed to be
enough to demonstrate the basic functionality of the application.

9Error boundaries are a part of the react-dom library, used to catch JavaScript errors thrown
by any child view wrapped by the boundary.

29

Header

Used as a header at the top of the screen. It can contain a title, subtitle, and icons
on the left and right.

(a) Android (b) iOS

Figure 12: Example header on Android and iOS

Card

Used as a content and action container about a single subject. A card can contain
children such as buttons and text, as well as have a heading and an image.

(a) Android (b) iOS

Figure 13: Example card on Android and iOS

Text Input

A component used for text input. A text input can be either outlined (fig. 14) or
flat (fig. 15) and has support for passwords, labels, and placeholders.

30

(a) Android (b) iOS

Figure 14: Example outlined input on Android and iOS

(a) Android (b) iOS

Figure 15: Example flat input on Android and iOS

Checkbox

A component used for selecting one or more options in a set.

(a) Android (b) iOS

Figure 16: Example checkbox on Android and iOS

Text View

A Text View is used for displaying text such as paragraphs and titles. It supports
different colors, font sizes, alignments, and weights.

(a) Android (b) iOS

Figure 17: Example text view with on Android and iOS. Font size 24, font weight
600, center aligned, and #222 set as color.

31

7.4 Mapping React Components to Code

The components used in the UI Builder are basically a visual representation for a data
structure used for generating the actual code. For example, the Button component’s
data structure is seen in listing 1. The structure borrows a lot of concepts from
component data representation in React – for example, propTypes [25] and children
[26].

1 {
2 displayName: 'Button ',
3 name: 'button ',
4 component: Button ,
5 children: [],
6 canHaveChildren: false ,
7 props: {
8 title: 'Button ',
9 color: '#6200 ee',

10 icon: null ,
11 type: 'contained ',
12 },
13 propTypes: {
14 title: 'string ',
15 icon: 'string ',
16 color: 'string ',
17 type: {
18 type: 'string ',
19 oneOf: ['text', 'outlined ', 'contained '],
20 },
21 },
22 },

Listing 1: Button default JSON representation.

This data structure (listing 1) is used in the UI Builder’s backend for generating code.
Fig. 18 shows an example layout in the UI Builder (and the corresponding result for
iOS in fig. 19), and listing 2 shows the generated code based on that layout.

32

Figure 18: Example layout in UI
Builder.

Figure 19: Corresponding result on
iOS, based on the layout shown in
fig. 18.

33

1 import React from 'react '
2 import { View , ScrollView , StyleSheet } from 'react -native '
3
4 import Header from './ components/Header/'
5 import Input from './ components/Input/'
6 import Button from './ components/Button/'
7
8 const styles = StyleSheet.create ({
9 container: {

10 flex: 1,
11 },
12
13 scrollContentContainer: {
14 padding: 8,
15 },
16 })
17
18 const App = () => (
19 <View style ={ styles.container}>
20 <Header
21 title="Title"
22 subtitle="Subtitle"
23 leftIcon="menu"
24 rightIcon="more -vert"
25 placement="center"
26 backgroundColor="#6200 ee"
27 foregroundColor="white"
28 />
29 <ScrollView contentContainerStyle ={ styles.scrollContentContainer}>
30 <Input placeholder="email@example.com" mode="outlined" label="

Email" password ={false} />
31 <Input placeholder="Password" mode="outlined" label="Password"

password ={true} />
32 <Button title="Log In" color="#6200ee" type="contained" />
33 </ScrollView >
34 </View >
35)
36
37 export default App

Listing 2: Generated code for the views seen in fig. 18 and 19.

7.5 User Testing

7.5.1 Method

At this point user testing was started, since the UI Builder was deemed functional
enough to give meaningful feedback from a test. A moderating technique called
Concurrent Think Aloud (CTA) was used, meaning that the user is encouraged to
think aloud, and in turn gives real-time feedback and without having to mentally
take notes on what they thought at a given moment [19]. The screen and the user’s

34

voice was recorded as well. This was done to be able to go back and check for possible
problems and pain points, as well as seeing what the user was thinking at a given
time. The test was performed on a group of users (n = 5) with varying programming
and design experience, since that was the target group. A summary of each test can
be seen in appendix A.

The tests were structured as two goal based scenarios, one basic (login screen) and
a more advanced one (card based feed). This was done to evaluate the complete
implementation of the application. Each user was given a short description of both
scenarios and an outline of what the application does without giving any information
about how they should complete the given tasks. The users were also given a short
list of available icon names that they could use for some components10.

After completing the two tasks, the user was asked to fill in a SUS questionnaire
(described in 3.3). The 10 questions asked were the following:

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to use
this system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

After the SUS was filled in, the user was asked three additional questions:

• Did the live reloading functionality (instant feedback on the phone/browser)
aid your design process in any way?

• Were there any parts of the application that you feel could be improved?

• Other feedback, if any.

After filling in the form, a short discussion was had with the user, taking notes on
additional things the user might have had to say.

Scenario 1: Implementing a Login screen

This was the first scenario the user was given. A crude sketch (see fig. 20) was given
to the user to simulate something a client or any other person would draw as an
idea.

10Three different icon names were given: menu, face, and image.

35

No information was given other than the short list of icon names.

Figure 20: Sketch of a login screen used for the first scenario

Scenario 2: Implementing a card based feed

After getting a bit familiar with the UI builder in the first part of the user test, a
more complex sketch was given (fig. 21). The point of the more complex layout was
to test a broader spectrum of the application, such as adding images to cards, adding
child components, and using icons.

36

Figure 21: Sketch of a card based feed used for the second scenario

7.5.2 Results

Averaging the SUS score from each user gave a score of 82.5, a surprisingly good
number. The feedback overall was positive, though there were some pain points,
meaning that there is room for improvement. Summarizing the feedback from each
user gave some concrete areas that could be improved, as well as what worked well.
This summary can be seen in table 4.

Figures 22 to 31 shows the results for each question in the SUS questionnaire.

37

Table 4: Summary of positive and negative feedback based on user tests.

Positive Negative

Users were very quick to get up
and running with minimal information
about the application. The time taken
to complete Scenario 1 varied between
3 - 9 minutes, and Scenario 2 varied
between 5 - 11 minutes11.

Most users (80%) used the in-
stant feedback on the phone/browser
at least once during development11,
and felt that it improved their
experience12.

The components were flexible enough
to cover common use cases11.

The resulting web & iOS app’s "look
n’ feel" was satisfactory for the
users12, and mostly followed Google’s
Material Design guidelines11.

There was a "wow" factor when the
user used the live reload feature12.

Some prior knowledge about e.g. com-
ponents would be handy12. For ex-
ample, knowing that the Image prop
on the Card component is a URL
would be good, as well as know-
ing which components can have child
components11.

Some UI "traps", such as the delete
button being mistaken for a confirm
button11 12.

Not selecting the newly created com-
ponent (when adding a component)
potentially confuses users, since most
expect the added component to be se-
lected by default11.

Not being able to drag & drop from
the component library can confuse
users, since there is drag & drop func-
tionality in the workspace view11.

General features that users expect are
missing, such as copy-paste function-
ality for components12.

More advanced layouts such as split
views are missing11.

Some confusing component names.
For example, several users mis-
took the Header component for
a heading, when the component
that should’ve been used was the
Text View component11.

11 Objective data, either observed or noted during user testing.
12 Subjective data, either from the test participant or the test leader.
13 Score range is 1 - 5, where 1 = Strongly disagree, 5 = Strongly agree.

38

1 2 3 4 5
0%

40%

80%

Score13

P
er
ce
nt
ag
e
of

us
er
s

Figure 22: Question #1: I think
that I would like to use this system
frequently.

1 2 3 4 5
0%

40%

80%

Score13

P
er
ce
nt
ag
e
of

us
er
s

Figure 23: Question #2: I found the
system unnecessarily complex.

1 2 3 4 5
0%

40%

80%

Score13

P
er
ce
nt
ag
e
of

us
er
s

Figure 24: Question #3: I thought
the system was easy to use.

1 2 3 4 5
0%

40%

80%

Score13

P
er
ce
nt
ag
e
of

us
er
s

Figure 25: Question #4: I think
that I would need the support of a
technical person to be able to use
this system.

1 2 3 4 5
0%

40%

80%

Score13

P
er
ce
nt
ag
e
of

us
er
s

Figure 26: Question #5: I found the
various functions in this system were
well integrated.

1 2 3 4 5
0%

40%

80%

Score13

P
er
ce
nt
ag
e
of

us
er
s

Figure 27: Question #6: I thought
there was too much inconsistency in
this system.

39

1 2 3 4 5
0%

40%

80%

Score13

P
er
ce
nt
ag
e
of

us
er
s

Figure 28: Question #7: I would
imagine that most people would
learn to use this system very quickly.

1 2 3 4 5
0%

40%

80%

Score13

P
er
ce
nt
ag
e
of

us
er
s

Figure 29: Question #8: I found the
system very cumbersome to use.

1 2 3 4 5
0%

40%

80%

Score13

P
er
ce
nt
ag
e
of

us
er
s

Figure 30: Question #9: I felt very
confident using the system.

1 2 3 4 5
0%

40%

80%

Score13

P
er
ce
nt
ag
e
of

us
er
s

Figure 31: Question #10: I needed
to learn a lot of things before I could
get going with this system.

40

7.6 Accessibility Audit with Lighthouse

Using Lighthouse enabled testing multiple aspects of the generated web app, mainly:
Accessibility, Performance, Best Practices, and Progressive Web App (PWA) aspects.
In this case, the performance aspect of the audit was completely ignored, since the au-
dit was run on non-minified14 code in development mode, meaning that performance
was impacted. The PWA aspect was also ignored.

A simple view was designed in the UI Builder, shown in fig. 32. This view tested 4
out of 6 components, meaning that the accessibility score could vary depending on
which other ones were used.

Figure 32: View used for the heuristic evaluation with Lighthouse, rendered on the
web.

Running the Lighthouse audit on this view gave an overall score shown in fig. 33.
Since both the PWA and performance aspects were ignored, the only score that was
in need of improvement was the accessibility score.

14JavaScript code that is going to be run in a browser is usually minified and optimized by a
bundler, such as Webpack.

41

Figure 33: Overall Lighthouse score for the view shown in fig. 32.

Looking Closer at the Accessibility Results

The Lighthouse accessibility audit looks at a total of 46 different aspects. Of those
aspects, 17 weren’t applicable, since they were related to elements what weren’t used
(e.g. <audio>, <video>, <iframe>, etc.). Additionally, 12 of the remaining aspects
had to be manually checked, meaning that the accessibility score was based on 17
aspects. The accessibility results showed that 14 aspects passed, and 3 had failed.
The aspects passed were the following:

1. [aria-*] attributes match their roles

2. [role]s have all required [aria-*] attributes

3. Elements with [role] that require specific children [role]s, are present

4. [role]s are contained by their required parent element

5. [role] values are valid

6. [aria-*] attributes have valid values

7. [aria-*] attributes are valid and not misspelled

8. Background and foreground colors have a sufficient contrast ratio

9. Document has a <title> element

10. [id] attributes on the page are unique

11. <html> element has a [lang] attribute

12. <html> element has a valid value for its [lang] attribute

13. [user-scalable="no"] is not used in the <meta name="viewport"> element
and the [maximum-scale] attribute is not less than 5

14. No element has a [tabindex] value greater than 0

The failed aspects were the three following:

1. Buttons do not have an accessible name

2. Image elements do not have [alt] attributes

3. Form elements do not have associated labels

Looking closer at the failed aspects showed that the Checkbox and Input compo-
nents weren’t accessible enough. Looking at the HTML revealed that the checkbox

42

consisted of a styled <div> element with the attribute role set to "button", which
is incorrect (role="checkbox" would be correct in this case). It also had a <div>
(representing the checkmark) with the role attribute set to "img", but with the
required alt attribute missing. This meant that aspect 1 and 2 were related to the
checkbox.

The HTML also revealed that the Input component didn’t have an actual label,
meaning that aspect 3 was related to this component.

7.7 Improving Web Accessibility

Since both the Input and Checkbox component were implemented using the
react-native-paper library, there were two options to improve the accessibility:
Either modify the library’s source code, or swap the components for a better imple-
mentation when running on the web. The latter was chosen in this case.

Using react-native-web’s Platform.OS API, the checkbox component was swapped
for material-ui’s Checkbox component when rendered on the web. This was done
since the material-ui library adheres to the Material Design guidelines and the
checkbox was implemented with accessibility in mind.

Accessibility Results

Swapping out the Checkbox component when rendering on the web improved the
accessibility, as can be seen in 34.

Figure 34: Overall Lighthouse score for the view shown in fig. 32 after improving
the checkbox component.

The accessibility score could have been further improved by modifying the Input
component as well. This would result in a perfect accessibility score, since only failed
aspects 2 and 3 were now passing by fixing the Checkbox component.

7.8 Improving Native App Accessibility

Testing the view shown in fig. 32 with iOS’s VoiceOver revealed that the Input com-
ponent could be improved. When selecting an input, the VoiceOver assistant didn’t

43

read the label, meaning that the user wouldn’t get the information required to cor-
rectly fill in the input. Fortunately, React Native input components have support for
the accessibilityLabel prop. Two approaches could be taken, each with its draw-
backs. Either a accessibilityLabel input could be exposed to the designer in the
UI Builder, or the already existing label could be used for the accessibilityLabel
as well. The latter was chosen, since this is the desired behavior in the majority of
cases and didn’t add any complexity to the UI Builder interface.

Accessibility Results

Adding the accessibilityLabel to the Input component resulted in the VoiceOver
assistant being able to read the input correctly.

The accessibility could be further improved by using other accessibility props, such
as the accessibilityHint. However, using accessibilityLabel was deemed good
enough for this usecase, and had the added benefit of not adding more complexity
to the UI Builder interface.

7.9 Improving the UI Based on User Testing

After analyzing the user tests it became clear that there were some improvements
(noted in table 4) to the UI that could be made – mostly in the form of adding
signifiers. The updated UI can be seen in fig. 35.

44

Figure 35: UI Builder’s updated UI based on user testing

The following changes were made:

The Launch Project Button This button, positioned in the left drawer before,
was moved to the top right corner in the menu bar. This was done because the button
isn’t used often. The color was changed to a primary color, since it still is one of
the primary actions when starting the UI Builder. When clicked however, it changes
to a secondary color, since it isn’t as important after the initial click. A tooltip and
icons were added as well, further signifying its action. The changes can be seen in
fig. 36.

(a) Launch Project button on hover (b) Launch Project button on hover
(when live reload is started)

Figure 36: The Launch Project button’s two states on hover.

45

Generate Code Button This button received some minor changes as well. It was
moved to the bottom left corner, an icon was added, and its size was increased. The
changes can be seen in fig. 37.

Figure 37: The updated Generate Code Button

Delete Component Button Only a delete icon was added to this button. Seen
in fig. 38.

Figure 38: The updated Delete Component Button

Add Component Buttons Only a tooltip was added to these buttons to signify
that they were supposed to be clicked, not dragged – something that initially confused
users during the tests. The change can be seen in fig. 39.

Figure 39: The updated Add Component Button

7.10 Evaluating the Generated Code Quality

Since the UI Builder isn’t supposed to be a complete tool for building apps, the
generated code must be of good quality to enable developers to build upon the
foundation that the UI Builder provides. Using the code quality metrics defined
in 2.6, another heuristic evaluation was done on generated code produced by the UI
Builder. The code used for the evaluation, as well as the expert’s answers, can be
found in appendix B. The following questions were asked:

1. Is the code readable and easy to understand?

2. Does the code follow general best practices?

46

3. How many changes would you need to do in order to be able to use the code?

4. Is the code of high enough quality to be usable as a foundation?

The evaluation in this case was done by a developer with 4 years of experience with
React, as well as 7+ years of experience with JavaScript. The result was a net
positive, with some minor room for improvement. For example, creating identical
components leads to repeating the same code over and over – a side effect of not
being able to implement any logic. Overall, the code was deemed to be of high
enough quality to be used as a base for further development.

47

8 Discussion
This section discusses limitation, future work, as well as what went well in the process
– and what could’ve been done better.

First off, looking at the user tests, the results from the tests were great – a SUS score
of 82.5 is far above average. While I do believe that the "actual" score isn’t very
far from that, given the small sample size (n = 5), it needs to be considered as a
source of error. Another aspect to consider is the fact that the test participants were
"sampled by convenience", meaning that they were people available and close by
during the time the tests were conducted. The reasoning for these two error sources
is of course sound – finding a large, random, sample size within the target group
wouldn’t be feasible given the time frame and scope of the thesis. The users were,
however, representative of the target users, and a lot of objective and qualitative
(along with the quantitative) data could still be gathered from the users. This also
meant that a lot of the interpretations made from the data could be used as, for
example, a foundation for upcoming iterations.

Taking these error sources into consideration, the user testing still gave reliable and
usable results. The final iteration of the UI Builder proved to be intuitive and simple
to use – something that points towards an effective user testing methodology.

8.1 Limitations

As with most projects, there were several limitations – mostly due to manpower
and time constraints. As the sole developer of the UI Builder, a lot of things that
would be great to have implemented, simply had to be skipped due to being too
big of a feature, or due to not having enough time to implement them. The most
notable limitations were related to the library react-beautiful-dnd – while fitting
the use case of the UI Builder to about 90%, the remaining 10% required were
simply not worth implementing, since it would require modifying a large part of the
library’s source code. For example, react-beautiful-dnd does not support nested
components. Some clever workarounds in the implementation enabled the UI Builder
to have support for it, but more advanced features such as multiple layers of nesting
were off limits. This in turn meant that the UI Builder couldn’t support creating more
complex layouts, at least not without a large rewrite of react-beautiful-dnd.

8.2 Future Work and Improvements

As mentioned in section 8.1, the library react-beautiful-dnd was at times like
trying to fit a square peg into a round hole. While it provided a lot of things for free,
either developing a custom drag-and-drop implementation or modifying the library’s

48

source code (it’s open source after all) would be required, in order to have a better
starting point for future work.

And speaking of future work – there’s a lot that can be done. The UI Builder has
served as a great proof of concept, but it needs a lot of work to become a viable tool
for everyday use. Some potential starting points for improvements (in no particular
order) could be:

• Expanding the component library
Why this is considered an improvement is quite clear – a greater selection of
components gives the user a lot more flexibility and opportunities when creating
apps. Beyond just expanding the selection, creating responsive components
could yield better designs on other viewports and resolutions as well, such as
desktop browsers.

• Importing custom components
The current state of the UI Builder can be considered as a bit of a "cookie
cutter" approach when it comes to design, even though it has a bit of customiz-
ability built in. Enabling users to import custom components would make the
UI Builder appeal to users who want components more tailored to their needs.

• Multiple design views
The UI Builder’s workspace is currently a single 16:9 aspect ratio window –
resembling the average smartphone viewport. Allowing other viewports and
resolutions would most likely improve the User Experience.

• Enabling logic implementations
A side effect of not being able to use any logic in the designs is that it leads
to a lot of repeated code. Consider the card based feed shown in fig. 21 –
having a list of identical components leads to a lot of repeated code, something
that could easily be mitigated by, for example, mapping an array of data and
dynamically generating the components.

• Better accessibility support
While the accessibility audits (sections 7.7 and 7.8) showed that the accessibil-
ity support was acceptable, there can always be better tooling for accessibility
support. A good starting point would be supporting a wider range of accessibil-
ity related props provided by react-native-web, such as accessibilityHint
for example.

49

9 Conclusion
Circling back to the original goals mentioned in section 1.1 – have they been reached?
Did the work succeed in providing a visual design tool for three different platforms?
In short, yes. However, the work done in this thesis has barely scraped the surface of
the possibilities and issues with this cross-platform approach. Taking a closer look
at each goal gives a bit more detail about each area:

Code Quality
"For the generated code to be usable, it needs to be of high quality — there’s no point
in using a visual design tool to generate code if the code is of poor quality."

For the scope defined in 1.1 as well as the definitions of code quality defined in 2.6,
this was definitely successful, both from an accessibility, readability, and maintenance
standpoint. With that said, the designs generated weren’t very complex, even though
they were based on common layout patterns found in many apps. More complex de-
signs would put more stress on having well thought out components to build with, and
a carefully designed code generation system. The code generation in the UI Builder
has made a solid foundation for future work by providing a method for both gen-
erating and formatting high quality React Native code, albeit in a very limited scope.

Handling accessibility in the different platforms
"Different platforms have different approaches on how to handle accessibility. The
visual design tool needs to be able to unify the differences in how accessibility is han-
dled on each platform."

Based on the heuristic evaluations, the accessibility support on each platform was
on an acceptable level for the test cases defined in 7.5. Accessibility support heavily
reliant on the developer properly implementing it – and the UI Builder has at least
laid the foundation for creating accessible user interfaces.

User Experience (UX) of the Interface Design Tool
"Using a visual design tool needs to be as painless as possible, something that can be
a go-to tool for creating, for example, prototypes."

Based on the user testing done during the development of the UI Builder, many
parts of the implementation could be considered a good User Experience – mainly
by combining existing concepts such as drag-and-drop and live reload into a unified
experience. Beyond these features, the UI Builder has proven to be a good tool for
creating prototypes quickly – something that a user can almost immediately test on
three different platforms. This is something of value as well.

50

Some final thoughts

As mentioned earlier, the UI Builder has barely scratched the surface. It has proven
to be a useful tool and a good proof of concept, but to become an everyday tool for
app and web development there’s a lot more work to be made.

The work has shown how different, already existing, technologies can be combined to
to rethink how to approach app and web development, as well as providing potential
solutions to several problems related to both cross-platform development and visual
design tools.

51

References
[1] Write once, run anywhere?, 2002. URL https://www.computerweekly.com/

feature/Write-once-run-anywhere. [Last Accessed: May 4, 2019].

[2] Facebook. React Native - A framework for building native apps using React.
React Native Blog, n.d. URL https://facebook.github.io/react-native/.
[Last Accessed: April 18, 2019].

[3] Expo, n.d. URL https://expo.io/features.

[4] Nicolas Gallagher. Nicolas Gallagher - Twitter Lite, React Native, and Pro-
gressive Web Apps, Aug 2017. URL https://www.youtube.com/watch?v=
tFFn39lLO-U. [Timestamp: 01:25 - 01:40] [Last Accessed: April 18, 2019].

[5] Shawn Lawton Henry, Shadi Abou-Zahra, and Judy Brewer. The Role of Acces-
sibility in a Universal Web. In Proceedings of the 11th Web for All Conference,
W4A ’14, pages 17:1–17:4, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-
2651-3. doi: 10.1145/2596695.2596719. URL http://doi.acm.org/10.1145/
2596695.2596719.

[6] Apple. Vision Accessibility - iPhone. n.d. URL https://www.apple.com/
accessibility/iphone/vision/. [Last Accessed: April 18, 2019].

[7] Test your app’s accessibility. Android Developers, n.d. URL https:
//developer.android.com/guide/topics/ui/accessibility/testing.
[Last Accessed: April 18, 2019].

[8] Introducing ChromeVox, n.d. URL https://www.chromevox.com/.
[Last Accessed: April 18, 2019].

[9] Apple. Vision Accessibility - Mac. n.d. URL https://www.apple.com/
accessibility/mac/vision/. [Last Accessed: April 18, 2019].

[10] Accessibility - React Native. React Native Blog, n.d. URL
https://facebook.github.io/react-native/docs/accessibility.
[Last Accessed: April 18, 2019].

[11] W3C WAI. Web Content Accessibility Guidelines (WCAG) Overview,
n.d. URL https://www.w3.org/WAI/standards-guidelines/wcag/.
[Last Accessed: April 18, 2019].

[12] W3C WAI. WAI-ARIA Overview, n.d. URL https://www.w3.org/WAI/
standards-guidelines/aria/. [Last Accessed: April 18, 2019].

[13] Nicolas Gallagher. necolas/react-native-web, n.d. URL https://github.com/
necolas/react-native-web/blob/master/docs/guides/accessibility.md.
[Last Accessed: May 24, 2019].

[14] CISQ. Code Quality and Related Standards. n.d. URL https://it-cisq.org/
standards/. [Last Accessed: April 18, 2019].

52

https://www.computerweekly.com/feature/Write-once-run-anywhere
https://www.computerweekly.com/feature/Write-once-run-anywhere
https://facebook.github.io/react-native/
https://expo.io/features
https://www.youtube.com/watch?v=tFFn39lLO-U
https://www.youtube.com/watch?v=tFFn39lLO-U
http://doi.acm.org/10.1145/2596695.2596719
http://doi.acm.org/10.1145/2596695.2596719
https://www.apple.com/accessibility/iphone/vision/
https://www.apple.com/accessibility/iphone/vision/
https://developer.android.com/guide/topics/ui/accessibility/testing
https://developer.android.com/guide/topics/ui/accessibility/testing
https://www.chromevox.com/
https://www.apple.com/accessibility/mac/vision/
https://www.apple.com/accessibility/mac/vision/
https://facebook.github.io/react-native/docs/accessibility
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/aria/
https://www.w3.org/WAI/standards-guidelines/aria/
https://github.com/necolas/react-native-web/blob/master/docs/guides/accessibility.md
https://github.com/necolas/react-native-web/blob/master/docs/guides/accessibility.md
https://it-cisq.org/standards/
https://it-cisq.org/standards/

[15] Google Lighthouse. Google Developers, n.d. URL
https://developers.google.com/web/tools/lighthouse/.
[Last Accessed: April 18, 2019].

[16] Prettier – Opinionated Code Formatter. Prettier, n.d. URL https://
prettier.io/. [Last Accessed: April 18, 2019].

[17] ISO. Ergonomics of human system interaction-Part 210: Human-centred de-
sign for interactive systems. International Organization for Standardization ISO
9241-210:2010, 2010.

[18] Jenny Preece, Yvonne Rogers, and Helen Sharp. Interaction Design: Beyond
Human-Computer Interaction. J. Wiley & Sons, 2002.

[19] Assistant Secretary for Public Affairs. Running a Usability Test. Usability.gov,
May 2014. URL https://www.usability.gov/how-to-and-tools/methods/
running-usability-tests.html.

[20] Assistant Secretary for Public Affairs. System Usability Scale (SUS). Us-
ability.gov, Sep 2013. URL https://www.usability.gov/how-to-and-tools/
methods/system-usability-scale.html. [Last Accessed: May 24, 2019].

[21] Dorothy Watson. Correcting for Acquiescent Response Bias in the Absence of a
Balanced Scale: An Application to Class Consciousness. Sociological Methods &
Research, 21(1):55–88, 1992. doi: 10.1177/0049124192021001003. URL https:
//doi.org/10.1177/0049124192021001003.

[22] Nathan Thomas. How To Use The System Usability Scale (SUS) To Evaluate
The Usability Of Your Website, Jan 2019. URL https://usabilitygeek.com/
how-to-use-the-system-usability-scale-sus-to-evaluate-the-
usability-of-your-website/. [Last Accessed: May 18, 2019].

[23] Assistant Secretary for Public Affairs. Heuristic Evaluations
and Expert Reviews. Usability.gov, Oct 2013. URL https:
//www.usability.gov/how-to-and-tools/methods/heuristic-
evaluation.html. [Last Accessed: May 24, 2019].

[24] Google. Material Design, n.d. URL https://material.io/design/.
[Last Accessed: May 24, 2019].

[25] Facebook. Typechecking With PropTypes, n.d. URL https://reactjs.org/
docs/typechecking-with-proptypes.html. [Last Accessed: May 20, 2019].

[26] Facebook. JSX In Depth, n.d. URL https://reactjs.org/docs/jsx-in-
depth.html#children-in-jsx. [Last Accessed: May 20, 2019].

53

https://developers.google.com/web/tools/lighthouse/
https://prettier.io/
https://prettier.io/
https://www.usability.gov/how-to-and-tools/methods/running-usability-tests.html
https://www.usability.gov/how-to-and-tools/methods/running-usability-tests.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://doi.org/10.1177/0049124192021001003
https://doi.org/10.1177/0049124192021001003
https://usabilitygeek.com/how-to-use-the-system-usability-scale-sus-to-evaluate-the-usability-of-your-website/
https://usabilitygeek.com/how-to-use-the-system-usability-scale-sus-to-evaluate-the-usability-of-your-website/
https://usabilitygeek.com/how-to-use-the-system-usability-scale-sus-to-evaluate-the-usability-of-your-website/
https://www.usability.gov/how-to-and-tools/methods/heuristic-evaluation.html
https://www.usability.gov/how-to-and-tools/methods/heuristic-evaluation.html
https://www.usability.gov/how-to-and-tools/methods/heuristic-evaluation.html
https://material.io/design/
https://reactjs.org/docs/typechecking-with-proptypes.html
https://reactjs.org/docs/typechecking-with-proptypes.html
https://reactjs.org/docs/jsx-in-depth.html#children-in-jsx
https://reactjs.org/docs/jsx-in-depth.html#children-in-jsx

Appendices

A User Tests

A.1 Participant 1

Participant 1 is a 3rd year Computer Science student with some programming expe-
rience and limited experience when it comes to UI design.

A.1.1 Survey Results

Table 5: Participant 1’s SUS results.

Question No. 1 2 3 4 5 6 7 8 9 10
Score 3 2 4 1 4 2 5 2 5 3

Did the live reloading functionality (instant feedback on the phone/browser)
aid your design process in any way?

Yes, it was nice to have visual feedback available easily to make sure that everything
works.

Were there any parts of the application that you feel could be improved?

Maybe there could be a short tutorial on how to use the various components and
what can be merged with what.

Other feedback, if any.

None.

A.1.2 Test Results

Time taken for completing the login screen was 7 minutes and 36 seconds.
Time taken for completing the card based feed was 10 minutes and 47 seconds.

54

Figure 40: Participant 1’s com-
pleted login screen, shown on an iOS
simulator.

Figure 41: Participant 1’s com-
pleted card based feed, shown on an
iOS simulator.

A.2 Participant 2

Participant 2 has several years of web development experience, leaning more towards
backend development. Participant 2 has domain specific knowledge (React) and has
experience in UI/UX design.

A.2.1 Survey Results

Table 6: Participant 2’s SUS results.

Question No. 1 2 3 4 5 6 7 8 9 10
Score 4 1 4 1 4 2 5 1 5 3

55

Did the live reloading functionality (instant feedback on the phone/browser)
aid your design process in any way?

Didn’t use it much until the end. So no, the view in the app was sufficient for the
design.

Were there any parts of the application that you feel could be improved?

There was some knowledge you needed before hand. This could probably be inte-
grated in the application.

Other feedback, if any.

The application felt smooth and worked great. Encountered a weird bug but other
than that it was fine. It was quite easy to use.

A.2.2 Test Results

Time taken for completing the login screen was 3 minutes and 5 seconds.
Time taken for completing the card based feed was 4 minutes and 40 seconds.

56

Figure 42: Participant 2’s com-
pleted login screen, shown on an iOS
simulator.

Figure 43: Participant 2’s com-
pleted card based feed, shown on an
iOS simulator.

A.3 Participant 3

Participant 3 is a 4th year Computer Science student with some programming expe-
rience and limited experience when it comes to UI design.

A.3.1 Survey Results

Table 7: Participant 3’s SUS results.

Question No. 1 2 3 4 5 6 7 8 9 10
Score 4 1 5 2 5 1 5 1 4 1

Did the live reloading functionality (instant feedback on the phone/browser)
aid your design process in any way?

57

Definitely.

Were there any parts of the application that you feel could be improved?

Some, but only in the addition of more features to expand what is possible to cre-
ate.

Other feedback, if any.

Copy-pasting of components would be handy, as well as other features from more
advanced visualizers. Perhaps a closer connection to the logic implementation would
be useful, as the current application excels at UI components, but not in connecting
these components with logic.

A.3.2 Test Results

Time taken for completing the login screen was 9 minutes and 28 seconds.
Time taken for completing the card based feed was 8 minutes and 26 seconds.

58

Figure 44: Participant 3’s com-
pleted login screen, shown on an iOS
simulator.

Figure 45: Participant 3’s com-
pleted card based feed, shown on an
iOS simulator.

A.4 Participant 4

Participant 4 is a 5th year Computer Science student with both domain specific
knowledge (React) & experienced in UI/UX design.

A.4.1 Survey Results

Table 8: Participant 4’s SUS results.

Question No. 1 2 3 4 5 6 7 8 9 10
Score 5 1 5 1 5 2 3 1 5 2

Did the live reloading functionality (instant feedback on the phone/browser)
aid your design process in any way?

59

Det var trevligt att man kan se det man gjort direkt. Man ser ändå direkt i redi-
geringsprogrammet vad man har gjort så just för design processen var det inte helt
nödvändigt. Men jag hade inte velat ta bort bort det då det ändå är bra att kunna
se att något faktiskt händer sen.

Were there any parts of the application that you feel could be improved?

Jag hade velat att den komponenten man valt att skapa(alltså när jag tyckt på add
button) så borde den "markeras" direkt så att jag direkt kan editera den utan att
behöva klicka på den först.

Other feedback, if any.

Det är en kul idé och jag gillar att det är ett prototypprogram som är väldigt kopplat
till den sortens komponenter man kommer att använda sen när man ska utveckla
appen. Det är mycket bättre än att först göra den i t.ex. Sketch och sen ändå
behöva ändra massa saker för att allt man ritar inte alltid går att översätta till t.ex.
React eller vad man nu använder.

A.4.2 Test Results

Time taken for completing the login screen was 7 minutes and 9 seconds.
Time taken for completing the card based feed was 7 minutes and 25 seconds.

60

Figure 46: Participant 4’s com-
pleted login screen, shown on an iOS
simulator.

Figure 47: Participant 4’s com-
pleted card based feed, shown on an
iOS simulator.

A.5 Participant 5

Participant 4 is a 5th year Computer Science student with both domain specific
knowledge (React) & experienced in UI/UX design.

A.5.1 Survey Results

Table 9: Participant 5’s SUS results.

Question No. 1 2 3 4 5 6 7 8 9 10
Score 2 1 2 1 4 4 5 2 3 1

Did the live reloading functionality (instant feedback on the phone/browser)
aid your design process in any way?

61

Yes, it felt nice.

Were there any parts of the application that you feel could be improved?

Flexibility and "traps", like the pink delete button and some select/drag-and-drop
functions.

Other feedback, if any.

Nice job!

A.5.2 Test Results

Time taken for completing the login screen was 5 minutes and 57 seconds.
Time taken for completing the card based feed was 5 minutes and 52 seconds.

Figure 48: Participant 5’s com-
pleted login screen, shown on an iOS
simulator.

Figure 49: Participant 5’s com-
pleted card based feed, shown on an
iOS simulator.

62

B Generated Code Evaluation

B.1 Expert Answers

Is the code readable and easy to follow?

Yes. It looks like it’s been processed by Prettier (and probably has?). This looks
something like i would write myself, not something generated.

Does the code follow general best practices?

Yes. As I said, it looks like something I would write myself & processed via Pret-
tier.

How many changes would you need to do in order to be able to use the
code?

With the coming of [React] hooks, I would probably make the functions actual blocks
with a return statement, just to avoid having to do the rewrite later down the road.
That said, if I saw this in a review I would not comment on it, it is extremely
nitpicky. And obviously, if you are going to customize it by e.g. adding theming or
internationalization I would have to do some modifications, but only slight ones and
it is to be expected (meaning that you would have to do it with non-generated code
as well).

Minor changes, such as removing the password={false} in the username input and
just type password instead of password={true} could also be done.

Is the code of high enough quality to be usable as a foundation?

Definitely. I’d feel confident using this off the bat without any modifications.

63

B.2 Code Sample 1

1 import React from 'react '
2 import { View , ScrollView , StyleSheet } from 'react -native '
3
4 import Header from './ components/Header/'
5 import Input from './ components/Input/'
6 import Button from './ components/Button/'
7
8 const styles = StyleSheet.create ({
9 container: {

10 flex: 1,
11 },
12
13 scrollContentContainer: {
14 padding: 8,
15 },
16 })
17
18 const App = () => (
19 <View style ={ styles.container}>
20 <Header
21 title="Title"
22 subtitle="Subtitle"
23 leftIcon="menu"
24 rightIcon="more -vert"
25 placement="center"
26 backgroundColor="#6200 ee"
27 foregroundColor="white"
28 />
29 <ScrollView contentContainerStyle ={ styles.scrollContentContainer}>
30 <Input placeholder="email@example.com" mode="outlined" label="

Email" password ={false} />
31 <Input placeholder="Password" mode="outlined" label="Password"

password ={true} />
32 <Button title="Log In" color="#6200ee" type="contained" />
33 </ScrollView >
34 </View >
35)
36
37 export default App

Listing 3: Code sample used for the heuristic evaluation.

64

B.3 Code Sample 2

1 import React from 'react '
2 import { View , ScrollView , StyleSheet } from 'react -native '
3
4 import Header from './ components/Header/'
5 import Text from './ components/Text/'
6 import Card from './ components/Card/'
7 import Button from './ components/Button/'
8
9 const styles = StyleSheet.create ({

10 container: {
11 flex: 1,
12 },
13
14 scrollContentContainer: {
15 padding: 8,
16 },
17 })
18
19 const App = () => (
20 <View style ={ styles.container}>
21 <Header
22 title="Favourites"
23 leftIcon="menu"
24 rightIcon="image"
25 placement="center"
26 backgroundColor="darksalmon"
27 foregroundColor="white"
28 />
29 <ScrollView contentContainerStyle ={ styles.scrollContentContainer}>
30 <Text color="crimson" fontSize="24" textAlign="left" fontWeight="

bold">
31 Favourite Pictures
32 </Text >
33 <Card title="Trees" image="https :// picsum.photos /200/300" />
34 <Card title="Plants" image="https :// picsum.photos /200/300" />
35 <Card title="Flowers" image="https :// picsum.photos /200/300" />
36 <Button title="See More" color="crimson" type="outlined" />
37 </ScrollView >
38 </View >
39)
40
41 export default App

Listing 4: Code sample used for the heuristic evaluation.

65

C Source Code

C.1 UI Builder

The entirety of the UI Builder’s source code is hosted on GitHub, and is released un-
der an MIT license. It can be found at https://github.com/edvinh/ui-builder.

C.2 Generated Code Boilerplate

The custom boilerplate for the generated code is hosted on GitHub as well, and can
be found at https://github.com/edvinh/react-native-web-expo-boilerplate.

66

https://github.com/edvinh/ui-builder
https://github.com/edvinh/react-native-web-expo-boilerplate

