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Abstract
In this thesis, we consider a 2-Higgs-doublet model with a gauged Froggatt-Nielsen mech-
anism as an extension of the Standard Model. We assume that (i) the theory at the
electroweak scale is the low energy limit of a theory defined at a scale ΛFN (ii) the Yukawa
couplings at ΛFN are generated by the Froggatt-Nielsen mechanism. The first assump-
tion is enforced by requiring that models be well behaved under Renormalization Group
evolution up to ΛFN in two scenarios: ΛFN = 105 GeV and ΛFN = 1016 GeV. We then pro-
ceed to find flavon charge assignments that reproduce the correct order of magnitude for
fermion masses and quark mixing. The flavon charges are further constrained by anomaly
cancellation conditions. Lastly, having identified the parameter space of models consistent
with our assumptions and experimental constraints, we evolve these regions up to ΛFN

using the RG equations and discuss possible physics at that scale.



Description Scientifique Populaire
Quelles sont les entités élémentaires, indivisibles qui composent notre Univers? Com-
ment interagissent elles pour former tout ce que nous observons dans la nature? Voilà les
questions majeures auxquelles la physique des particules tente de répondre. La meilleure
réponse à ce jour, ”le modèle standard”, est une des plus grandes réussites de la physique
moderne. Il s’agit d’une théorie qui décrit avec grande précision le comportement de toutes
les particules élémentaires connues. Celles-ci interagissent en échangeant d’autres partic-
ules, des bosons de jauge, tels que des photons et des gluons. Si on adopte cette vision
moderne d’une interaction on pourrait dire, par analogie, que deux personnes qui se passent
un ballon ont une interaction répulsive puisque l’émetteur et le receveur reculent. Parmi la
quinzaine de particules élémentaires, seules 4 composent la grande majorité de la matière
de l’Univers: l’électron, le quark ”up”, le quark ”down” et le neutrino électron. Le modèle
standard permet de prédire le résultat des interactions de ces particules et donc d’expliquer
la majorité des phenomènes physiques.

Le modèle standard a ses limites, cependant, et notre compréhension reste incomplète.
Un des problèmes du modèle standard est la hiérarchie des masses. L’électron, le quark
up, le quark down et le neutrino électron existent en 3 générations. Ces 3 générations
de particules sont identiques en tout points à l’exception de leur masses. On observe
cependant que la 1ère génération est plus légère que la 2ème génération elle même plus
légère que la 3ème génération. À ce jour, on ne connait pas la raison pour cette hiérarchie.
Il est difficile d’accepter cela comme une simple cöıncidence. Dans le modèle standard,
la hiérarchie des masses est incluse ”à la main”, en ajustant 13 de ses 19 paramètres
libres de facon à reproduire les observations. Étant donné qu’en physique on cherche à
obtenir une compréhension toujours plus fondamentale de la nature, cette situation n’est
pas satisfaisante. On considère donc des modèles au-delà du modèle standard pour tenter
de progresser.

Dans cette thèse, j’ai étudié une extension du modèle standard qui vise à expliquer la
hiérarchie des masses. Pour cela on inclut le mécanisme de Froggatt-Nielsen, une nouvelle
interaction qui distingue les particules des 3 générations et permet d’inclure de manière
naturelle la hiérarchie des masses dans le modèle standard. J’ai également essayé de prober
le comportement de ce modèle aux hautes énergies, c’est à dire quand les particules ont
beaucoup d’énergie. Aujourd’hui, les particules les plus énergétiques que l’on observe
sont créées au LHC au CERN. Nous n’avons pas la technologie nécessaire pour créer des
particules encore plus énergétiques. C’est pourquoi la recherche théorique est importante.
Dans ce projet j’ai cherché à découvrir ce que le modèle prédit quand l’énergie des particules
est très haute. Pour cela j’ai utilisé un programme pour résoudre un ensemble d’équations.
En résolvant ces équations dans différentes situations, on peut connecter les phénoménes
observés à différentes énergies. Grâce à ce travail, on pourrait par exemple utiliser les
observations réalisées au LHC pour obtenir des indices sur la physique aux très hautes
énergies.
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1 Introduction
The Standard Model (SM) of particle physics is arguably one of mankind’s greatest intel-
lectual achievements. It describes three of the four known interactions: electromagnetism,
the weak interaction and the strong interaction, within a single gauge theory. The SM as
we know it is specified by its gauge group SU(3)c⊗SU(2)L⊗U(1)Y , its particle content and
their representation under the gauge group, the symmetry breaking patterns and the value
of all the physical parameters in the Lagrangian [1]. The discovery of the Higgs boson in
2012 [2] concluded the search for the SM particles. However when one considers all known
elementary particles, there seems to be a pattern: the fermions consist of three genera-
tions of a basic set: an up quark, a down quark, a charged lepton and the corresponding
neutrino. A fundamental understanding of the existence of three fermion generations is
still lacking. This is a major shortcoming of the SM since 13 of the 19 parameters in the
SM Lagrangian describe the flavour structure: 6 quark masses, 3 charged lepton masses, 3
quark mixing angles and 1 phase. All of these are free parameters, in the sense that their
values are only determined by what we observe. Even worse, the values exhibit a clear
hierarchy as shown in Table 1. This hierarchy suggests that there is a flavour structure.

mu mc mt

mu 1 ≈ 480 ≈ 13000
mc 1 ≈ 280
mt 1

md ms mb

md 1 ≈ 20 ≈ 1000
ms 1 ≈ 50
mb 1

me mµ mτ

me 1 ≈ 200 ≈ 3500
mµ 1 ≈ 20
mτ 1

Table 1: Mass ratios for up quarks (left), down quarks (center) and charged leptons (right)
arranged in a matrix rij = mj

mi
.

There have been attempts to relate the flavour parameters using e.g. grand unifica-
tion [3] and discrete flavour symmetries [4]. In the Georgi-Glashow Grand Unified Theory
(GUT), the SU(5) gauge symmetry forces the down quarks and charged leptons to have
the same mass. Of course this relation holds for the running masses at the GUT scale
∼ 1016 GeV. As the energy scale is lowered the masses split because of the strong interac-
tion which affects the quarks but not the leptons.

In models where a discrete flavour symmetry is imposed, some Yukawa interactions
become forbidden. This constrains the form of the Yukawa coupling matrices and thus
eliminates some parameters.

A somewhat more modest approach has been proposed by Froggatt and Nielsen [5].
Namely, it may be that the number of flavour parameters cannot be reduced, nevertheless
a fundamental theory should explain the hierarchy, i.e. their relative order of magnitude. In
the Froggatt-Nielsen mechanism (described in Sect. 3) a broken U(1)′ flavour symmetry is
used to factor out the order of magnitude of the fermion masses and quark mixing angles,
leaving O(1) free parameters and U(1)′ charges. Thus one can eliminate the hierarchy
between the flavour parameters by trading masses and mixing angles for O(1) coefficients
and U(1)′ charges.
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If the U(1)′ symmetry is gauged then the charges are severely constrained by anomaly
cancellation conditions. As it happens it is difficult to build an anomaly free, realistic
model out of the SM and the FN mechanism. The reason is that even when all the SM
particles are charged under U(1)′, there are not enough U(1)′ charges to both reproduce the
masses and mixings and at the same time cancel anomalies. However an additional Higgs
doublet charged under U(1)′ provides sufficient freedom to build realistic, anomaly-free
models.

In this thesis, we consider a 2-Higgs-Doublet Model (2HDM) equipped with a gauged
Froggatt-Nielsen mechanism as an extension of the SM. These models are relevant as they
incorporate the observed flavour physics and inherit the rich phenomenology of 2HDMs. We
assume that these models are the low-energy limit of a more fundamental theory defined at
the Froggatt-Nielsen scale ΛFN . We investigate the consequences of this assumption using
the Renormalization Group (RG) equations. Requiring the models to satisfy stability,
tree-level unitarity and perturbativity up to ΛFN we are able to constrain the 2HDM
parameter space at the electroweak scale. A priori, we do not know ΛFN so we consider
the two representative cases ΛFN = 105 GeV and ΛFN = 1016 GeV. Naturally, we require
that the models reproduce the observed fermion masses and quark mixings. In addition we
apply experimental constraints from Higgs searches and study their compatibility with the
RG evolution requirement. Indeed if these constraints are compatible it would be a hint
that nature favours theories that are the low energy limit of a more fundamental theory.
Using the RG equations we also investigate the parameters of viable models at ΛFN , thus
connecting electroweak physics with the physics at ΛFN .

The structure of this thesis is as follows. In Sect. 2, 3 and 4 the necessary theoreti-
cal background is introduced. In Sect. 5 the results of the RGE analysis are presented,
Froggatt-Nielsen charge assignments are made and the viable models are explored. Finally,
we conclude in Sect. 6.
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2 2 Higgs-Doublet Models
In the SM, the scalar sector is minimal in that, after Electroweak Symmetry Breaking
(EWSB), the fermions and gauge bosons acquire mass from interactions with a single
SU(2)L Higgs doublet. A larger scalar sector with more than one Higgs doublet is not
ruled out however. In a 2HDM one only extends the scalar sector of the SM with an
additional Higgs doublet. The gauge group and particle representations are otherwise the
same as in the SM. Because of their rich phenomenology and possibility of CP violation,
2HDMs are interesting extensions of the SM and have been studied extensively (see [6] for
a review). In this section we describe the theoretical aspects of 2HDMs relevant to this
work.

Consider a scalar sector with two Higgs doublets Φ1 and Φ2 having hypercharge Y = 1
2 .

The most general renormalizable potential is

V
(
Φ1,Φ2

)
= m2

11Φ†1Φ1 +m2
22Φ†2Φ2 −

[
m2

12Φ†1Φ2 + h.c
]

+ 1
2λ1

(
Φ†1Φ1

)2

+1
2λ2

(
Φ†2Φ2

)2
+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+
1

2λ5
(
Φ†1Φ2

)2
+ λ6

(
Φ†1Φ1

)(
Φ†1Φ2

)
+ λ7

(
Φ†2Φ2

)(
Φ†1Φ2

)
+ h.c

.
(2.1)

Since V must be Hermitian, m2
11, m2

22, λ1, λ2, λ3 and λ4 are real numbers while m2
12, λ5, λ6

and λ7 can be complex. This potential has therefore 14 independent real parameters. In
this thesis, we will take all parameters to be real. This reduces the number of parameters
to 10 and implies that there is no explicit CP violation coming from the potential.

In a 2HDM there is a possibility for Higgs mediated Flavour Changing Neutral Currents
(FCNC). FCNC can be suppressed if each fermion species couples to exactly one Higgs
doublet [7]. This is usually done by imposing a Z2 symmetry on the theory. This is
discussed in more detail in Section 2.2. For now let us assume that under Z2 inversion we
have Φ1 → −Φ1 and Φ2 → Φ2. The set {Φ1,Φ2}, where the Higgs doublets have definite
transformation properties under Z2, is referred to as the generic basis. Notice that the m2

12,
λ6 and λ7 terms break the Z2 symmetry. If such a Z2 symmetry is enforced, the number
of parameters needed to specify the potential goes down to 7. Otherwise, we distinguish
two types of Z2 breaking

• Hard breaking: λ6 6= 0 and/or λ7 6= 0

• Soft breaking: m2
12 6= 0 and λ6 = λ7 = 0

This distinction is useful in the context of Renormalization Group (RG) evolution. A
hard Z2 breaking, being caused by dimensionless parameters, will start spreading to the
Yukawa sector during RG evolution at 2-loop level. On the other hand, a soft Z2 breaking
will not spread since m2

12 has mass dimensions 2 which means it will be suppressed by the
renormalization scale in the Yukawa RG equations.

6



2.1 The Scalar Sector
The vacuum state of a 2HDM should be a minimum of the above potential. As in the
SM, there will be symmetry breaking vacua i.e. different from 〈Φ1〉 = 〈Φ2〉 = 0. However,
because of the additional doublet, the vacuum structure of 2HDMs is richer than that
of the SM. In addition to electroweak symmetry-breaking minima, there are CP-breaking
and electric charge-breaking minima [8]. In this thesis, we will assume a CP-conserving,

electroweak symmetry-breaking vacuum: 〈Φ1〉 = 1√
2

(
0
v1

)
, 〈Φ2〉 = 1√

2

(
0
v2

)
, where v2

1+v2
2 ≈

(246 GeV)2 is the Higgs Vacuum Expectation Value (VEV). Before discussing the scalar
spectrum of the 2HDM let us introduce the concept of doublet bases.

2.1.1 Doublet Bases

Since only the scalar mass eigenstates of Φ1 and Φ2 are observed, one has the freedom to
perform a U(2) transformation on the Higgs doublets without affecting the scalar physical
states [6].

Hi =
∑
j=1,2

UijΦj (2.2)

The Higgs Basis It is convenient to work in a basis where only one of the doublets has
a VEV. This basis is called the Higgs basis. In a CP-conserving 2HDM such as the one
considered here, the transformation matrix is

U =
(

v1
v

v2
v

−v2
v

v1
v

)
≡
(

cos β sin β
− sin β cos β

)
. (2.3)

Thus the rotation angle between the generic basis and the Higgs basis is determined by
the ratio of the VEVs v2

v1
= tan β and we have

〈H1〉 = cos β〈Φ1〉+ sin β〈Φ2〉 = 1√
2

(
0
v

)

〈H2〉 = − sin β〈Φ1〉+ cos β〈Φ2〉 =
(

0
0

) (2.4)

as desired. In this basis we write the potential as

V
(
H1, H2

)
= Y1H

†
1H1 + Y2H

†
2H2 +

[
Y3H

†
1H2 + h.c

]
+ 1

2Z1
(
H†1H1

)2

+1
2Z2

(
H†2H2

)2
+ Z3

(
H†1H1

)(
H†2H2

)
+ Z4

(
H†1H2

)(
H†2H1

)
+
1

2Z5
(
H†1H2

)2
+ Z6

(
H†1H1

)(
H†1H2

)
+ Z7

(
H†2H2

)(
H†1H2

)
+ h.c

.
(2.5)
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The transformation of the potential parameters from the generic basis to the Higgs basis
can be found in [9].

To study the scalar spectrum one writes H1, H2 in terms of excitations about the
vacuum state. Two complex doublets contain 8 real degrees of freedom and we write

H1 =
(

G+

1√
2(v + ϕ1 + iG0)

)
H2 =

(
H+

1√
2(ϕ2 + iA0)

)
(2.6)

During EWSB, when SU(2)L ⊗ U(1)Y → U(1)EM, the three would-be Goldstone bosons
are eaten, as in the SM, by the W± and the Z0 which become massive. The remaining
5 degrees of freedom consist of one charged scalar, two neutral scalars and one neutral
pseudo-scalar. The Goldstone modes are easily identified as G± and G0 since the second
doublet, H2, having no VEV, does not contribute to the EWSB. One can then find the
mass squared matrices for the scalars by inserting Eq. (2.6) in Eq. (2.5). For reference, we
quote the results from [9]. This means that H± is the physical charged scalar and its mass
is given by

m2
H± = 1

2Y2 + Z3v
2 (2.7)

For the neutral scalars, the mass squared matrix is

M2 =

Z1v
2 Z6v

2 0
Z6v

2 Y2 + 1
2(Z3 + Z4 + Z5)v2 0

0 0 Y2 + 1
2(Z3 + Z4 − Z5)v2

 (2.8)

The bottom right element yields the mass of the pseudoscalar A0

m2
A = Y2 + 1

2(Z3 + Z4 − Z5)v2 (2.9)

The masses of the scalars1 can be obtained by diagonalizing the 2× 2 block in Eq. (2.8)

m2
h = 1

2

(
m2
A + (Z1 + Z5)v2 −

√[
m2
A + (Z5 − Z1)v2

]2
+ 4Z2

6v
4
)

m2
H = 1

2

(
m2
A + (Z1 + Z5)v2 +

√[
m2
A + (Z5 − Z1)v2

]2
+ 4Z2

6v
4
) (2.10)

If one defines α as the angle between the generic basis and the mass basis for the scalars
then the rotation angle that diagonalizes Eq. (2.8) is β − α. That is, the physical scalars
H, h are given in terms of the scalars in the Higgs basis ϕ1, ϕ2 by(

H
h

)
=
(

cos(β − α) sin(β − α)
− sin(β − α) cos(β − α)

)(
ϕ1
ϕ2

)
(2.11)

1The labels h and H for the neutral scalars are defined by mh ≤ mH .
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The Hybrid Basis It appears that 8 parameters are needed to specify a real 2HDM
potential that softly breaks the Z2 symmetry. However one can use the minimization
conditions of the potential, the tadpoles equations, to trade two parameters for the VEVs
v1 and v2. The two VEVs are related by v2

1 + v2
2 ' (246 GeV)2 hence one needs only 7

parameters to specify a real 2HDM with a softly broken Z2 symmetry. The choice of these
parameters is arbitrary as long as they are independent.

In the hybrid basis, one trades some potential parameters for physical quantities. The
hybrid basis is the set {

tan β, cos(β − α),mh,mH , Z4, Z5, Z7
}

(2.12)

This construction was introduced in [9] to make the physical content of a given real 2HDM
more apparent. Strictly speaking it is the same doublet basis as the Higgs basis where some
parameters have been traded for others. In the hybrid basis the remaining parameters of
the Higgs basis are given by [9]

Z1 =
s2
β−αm

2
h + c2

β−αm
2
H

v2

Z6 = (m2
h −m2

H)sβ−αcβ−α
v2

Z2 = Z1 + 2 cot 2β(Z6 + Z7)
Z3 = Z1 + (2 cot 2β − tan 2β)

Y1 = −1
2Z1v

2

Y2 = Z1v
2 − 1

2(Z3 + Z4 + Z5)v2

Y3 = −1
2Z6v

2

(2.13)

where sβ−α ≡ sin(β − α) and cβ−α ≡ cos(β − α).
The hybrid basis provides a good balance between physical clarity and computational

efficiency. Indeed having more masses would be inefficient for scans since many configu-
rations would correspond to unrealistic models with very large quartic couplings. We will
make use of the hybrid basis when performing scans over the 2HDM parameter space.

2.2 The Yukawa Sector
In a 2HDM, fermions acquire mass via a Higgs Mechanism analogous to the one in the SM.
Fermion mass terms arise from Yukawa interaction with the Higgs fields. In the generic
basis, the most general Yukawa sector is given by

−LY =QΦ̃1Y
U

1 uR +QΦ1Y
D

1 dR + LΦ1Y
L

1 eR

+QΦ̃2Y
U

2 uR +QΦ2Y
D

2 dR + LΦ2Y
L

2 eR + h.c. ,
(2.14)
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where Φ̃ = iσ2Φ∗. Q and L are the left-handed quark and lepton SU(2)L doublets. uR, dR
and eR are the right-handed up quark, down quark and charged lepton SU(2)L singlets.
Lastly, Y F=U,D,L

i are the Yukawa coupling 3 × 3 matrices of up quarks, down quarks and
leptons to Φi. We omit the generation index a = 1, 2, 3 on all fields and Yukawa cou-
plings. In this study we do not attempt to explain neutrino masses and proceed under the
assumption that they are massless.

Since the fermion masses must be preserved under a change of doublet basis, the Yukawa
couplings must transform in a way that leaves the Yukawa sector invariant. Requiring
invariance of Φ1Y

F=D,L
1 + Φ2Y

F=D,L
2 and Φ∗1Y U

1 + Φ∗2Y U
2 under a change of basis implies

the following transformation on the Yukawa couplings

Y ′D,Li =
∑
j=1,2

U∗ijY
D,L
j

Y ′Ui =
∑
j=1,2

UijY
U
j .

(2.15)

Fermion Masses

In the Higgs basis, the Yukawa Lagrangian is

−LY =QH̃1κ
U
0 uR +QH1κ

D
0 dR + LH1κ

L
0 eR

+QH̃2ρ
U
0 uR +QH2ρ

D
0 dR + LH2ρ

L
0 eR + h.c.

(2.16)

where κF0 and ρF0 are the Yukawa couplings in this basis. They can be expressed in terms
of Y F

1 and Y F
2 using Eq. (2.15)

κF0 = cos β Y F
1 + sin β Y F

2

ρF0 = − sin β Y F
1 + cos β Y F

2 .
(2.17)

By construction, in the Higgs basis only H1 acquires a VEV. Therefore the fermion masses
can be obtained by diagonalizing the Yukawa couplings to H1. Being complex matrices,
they can always be made diagonal with positive entries via two independent changes of
bases for the right-handed and left-handed fields.

V U
L κ

U
0 V

U†
R =

√
2
v

diag(mu,mc,mt) ≡ κU

V D
L κ

D
0 V

D†
R =

√
2
v

diag(md,ms,mb) ≡ κD

V L
L κ

L
0V

L†
R =

√
2
v

diag(me,mµ,mτ ) ≡ κL.

(2.18)

This is an instance of Singular Value Decomposition (SVD) often referred to as a bi-unitary
transformation. The interested reader can read more about SVD in Section 6.3 of [10].

As in the SM, one arrives at the CKM matrix

VCKM = V U
L V

D†
L (2.19)
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by writing the weak charged current in terms of the quark mass eigenstates.
These unitary transformations of the left-handed and right-handed fields bring the

Yukawa couplings to H2 to
V U
L ρ

U
0 V

U†
R ≡ ρU

V D
L ρ

D
0 V

D†
R ≡ ρD

V L
L ρ

L
0V

L†
R ≡ ρL

(2.20)

which need not be diagonal. In general, κF0 and ρF0 will not be simultaneously diagonalizable
in this way. However if ρF has non-zero off-diagonal elements in the mass eigenbasis then
there will be Flavour Changing Neutral Currents (FCNC) mediated by H2. Experimentally,
FCNCs are known to be very suppressed [11] so a reasonable model must reproduce this
feature.

2.3 Natural Flavour Conservation with a Z2 Symmetry
To guarantee that κF0 and ρF0 are simultaneously diagonalizable it is sufficient that either
Y F

1 = 0 or Y F
2 = 0 [7]. This ensures that κF0 ∝ ρF0 . Indeed when going to the Higgs basis

we have

κF0 = cos β Y F
1

ρF0 = − sin β Y F
1

or
κF0 = sin β Y F

2

ρF0 = cos β Y F
2 .

(2.21)

In other words, if fermion species F couples to exactly one Higgs doublet then there are
no FCNCs. This is known as natural flavour conservation since it holds regardless of the
parameter values in the Lagrangian. As previously mentioned, natural flavour conservation
in a 2HDM can be achieved by imposing a Z2 symmetry on the theory and having the Higgs
doublets transform as

Φ1 → −Φ1 and Φ2 → Φ2. (2.22)
Then letting the right-handed singlets also transform under Z2 produces the desired effect
i.e. that each fermion species couples to exactly one doublet. One possibility, called type
II, is to have uR → uR, dR → −dR and eR → −eR. Then the Z2 symmetry requires that

Y U
1 = 0 Y D

2 = 0 Y L
2 = 0

⇐⇒
ρU0 = cot βκU0 ρD0 = − tan βκD0 ρL0 = − tan βκL0

(2.23)

and there are no FCNC mediated by H2. A 2HDM type is defined by the transformation
of the right-handed singlets under Z2 inversion. Alternatively this can be thought of as
assigning a Z2 charge ±1 to the right-handed singlets. The 4 distinct types are listed in
Table 2. Type I is SM-like in that all fermions couple to the same Higgs doublet. The
Yukawa sector of type II is the same as in the Minimal Supersymmetric Standard Model
(MSSM). Type X and Y are also referred to as lepton-specific and flipped models. From
now on we only consider Z2-symmetric 2HDMs.
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Type I Type II Type X Type Y
(SM-like) (MSSM-like) (Lepton-specific) (Flipped)

Φ1 − − − −
Φ2 + + + +
uR + + + +
dR + − + −
eR + − − +
ρU cot βκU cot βκU cot βκU cot βκU
ρD cot βκD − tan βκD cot βκD − tan βκD
ρL cot βκL − tan βκL − tan βκL cot βκL

Table 2: Z2 charges for the different 2HDM types.

3 The Froggatt-Nielsen Mechanism
The fermion mass hierarchy implies that the Yukawa couplings span many orders of mag-
nitude. From a theoretical perspective, having free parameters spanning many orders of
magnitude is not satisfactory. One would like to have an explanation for at least their
order of magnitude. The Froggatt-Nielsen (FN) mechanism is one such attempt [5]. It
aims to factor out the order of magnitude of the Yukawas. The remaining couplings are
all taken to be of order 1. It may be that these O(1) couplings are random or cannot be
calculated and have to be taken as free parameters. In any case, these free parameters
have been stripped from the hierarchy structure.

It remains to explain the hierarchy of the Yukawa couplings. To this end, Froggatt
and Nielsen assume a U(1)′ global symmetry and a new complex scalar field S with U(1)′
or ”flavon” charge +1. Following the definitions in [12] we let the left-handed fermions
doublets have U(1)′ charges Qi, Li, the charge-conjugated right-handed fermions singlets
have charges ui, di and ei and the Higgs doublets Φ1 and Φ2 have charges χ1 and χ2. With
these definitions the right-handed fermions have charges −ui, −di and −ei.

The FN mechanism is the process that generates the Yukawa couplings. In this frame-
work, the order of magnitude of the Yukawa couplings is controlled by interactions with
the flavon field S. As an example, Fig. 1 shows the process generating Y D

ij .
FL/R denote the so-called Froggatt-Nielsen fermions. They are additional vector-like

fermions with appropriate quantum numbers to ensure flavon charge conservation. We
do not investigate these fermions here, we simply assume their existence and that they
acquire mass by coupling to a SM singlet scalar field Φ′. Note that, in the FN framework,
the FRΦ′FL Yukawa couplings are of order O(1) which implies that 〈Φ′〉 ' ΛFN . Let
the mass scale of the FN fermions be ΛFN i.e. mF ∼ ΛFN for all FN fermions. At
low momentum scales compared to ΛFN , when the FN fermion propagators 1

/p−mF
can be

approximated by 1
ΛF N

, the relevant operator for this process is

S|n
D
ij |
( 1

ΛFN

)|nD
ij |
Qig

D
ijΦ2dRj , (3.1)
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Q(Qi)

Φd(χd)
Φ′

S(±1)

Φ′

S(±1)

dR(−dj)
FR FL FR FL

Figure 1: The Froggatt Nielsen mechanism generating Y D
ij = gDij ε

2.

where nDij is the number of flavon insertions, 2 in the example shown in Fig. 1. The Yukawa
couplings to Φ, S and Φ′ are taken to be O(1) so that gFij , the product of the former, is also
O(1). Note in passing that this implies that 〈Φ′〉 ∼ ΛFN . Now in order for the operator in
Eq. 3.1 to be a U(1)′ invariant we should have

nDij = Qi + dj − χd (3.2)

i.e. conservation of U(1)′ charge. One can derive analogously that in general the number
of flavon insertions is given in terms of the flavon charges by

nUij = Qi + uj + χu,

nDij = Qi + dj − χd,
nLij = Li + ej − χl,

(3.3)

where the subscripts u, d, l = 1 or 2 depending on the type of Z2 symmetry. It may happen
that nFij < 0. In this case we must insert S∗ which has flavon charge −1 instead of S.

Now if S acquires a VEV 〈S〉, then the FN operators yield the following Yukawa
interactions for the fermions ( 〈S〉

ΛFN

)|nU
ij |
Qig

U
ijΦ̃uuRj,( 〈S〉

ΛFN

)|nD
ij |
Qig

D
ijΦddRj,( 〈S〉

ΛFN

)|nL
ij |
Lig

L
ijΦleRj.

(3.4)

Letting 〈S〉
ΛF N
≡ ε, the Froggatt-Nielsen mechanism thus generates Yukawa couplings

Y F
ij = gFijε

|nF
ij |, gFij ∼ O(1), (3.5)

where the order of magnitude has been factored out. Now the order of magnitude of
the Yukawa couplings can be adjusted by choosing an appropriate set of flavon charges.
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Before proceeding we want to make the statement that gFij ∼ O(1) more precise. In order
to interpolate Y F

ij between integer powers of ε, we assume that gFij ∈ [ε 1
2 , ε−

1
2 ]. This is what

we will mean by O(1) in the remainder of this thesis. Large deviations from O(1) lead to
inconsistencies since the gFi are assumed to be stripped of any order of magnitude.

Froggatt and Nielsen have shown that if the Yukawa couplings are ordered, in the sense
that nFi+1,j ≤ nFi,j and nFi,j+1 ≤ nFi,j, then to leading order in ε the fermion masses are simply
proportional to the diagonal Yukawa couplings

mF
i =


v1√

2g
F
i ε
|nF

i |, F couples to Φ1
v2√

2g
F
i ε
|nF

i |, F couples to Φ2
, (3.6)

where it is understood that gFi ≡ gFii and nFi ≡ nFii . Therefore the number of flavon
insertions for the diagonal Yukawa interactions is determined by the corresponding mass.
This translates into the following constraints for the U(1)′ charges

Qi − ui − χu = nUi = logε
(√2
vu
mU
i

)
− logε(gUi ),

Qi − di + χd = nDi = logε
(√2
vd
mD
i

)
− logε(gDi ),

Li − ei + χl = nLi = logε
(√2
vl
mL
i

)
− logε(gLi ),

(3.7)

where logε() ≡
log()
log(ε) is the logarithm in base ε. Of course nFi , being a number of flavon

(anti-flavon) interactions, must be a positive (negative) integer. This can always be done
by a proper choice of gFij ∈ [ε 1

2 , ε−
1
2 ] which corresponds to rounding logε

(√
2

vF
mF
i

)
to the

nearest integer.
From the ordering of the Yukawa couplings it also follows that the CKM matrix has

the following leading order ε-structure (see sect. 4 and 5 in [5])

V CKM
ij ∼ ε|Qi−Qj |. (3.8)

The CKM matrix can be expanded in powers of the Cabibbo angle sin θC ≈ 0.22 ≡ λ in
the Wolfenstein parametrization [13]. At O(λ3) it has the leading order structure

V CKM =

 1 λ λ3

−λ 1 λ2

λ3 −λ2 1

 . (3.9)

This motivates the choice of setting ε = sin θC ≈ 0.2 and imposing the following constraints
on the flavon charges

Q1 −Q2 = 1,
Q2 −Q3 = 2.

(3.10)

Note that if neutrino masses are included in the model then one has to consider lep-
ton mixing. Reproducing the correct PMNS matrix would then introduce constraints on
L1, L2, L3 similar to those of Eq. (3.10).
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U(1)′

SU(3)

SU(3)

uR

Figure 2: Contribution of the right-handed up quark to the SU(3)×SU(3)×U(1)′ anomaly.
Anomaly cancellation requires that the sum of anomalous contributions from this triangle
diagram over all chiral fermions charged under SU(3) and U(1)′ vanish.

3.1 The Gauged Froggatt-Nielsen Mechanism
In the original FN mechanism, when the global U(1)′ symmetry is broken, one has to live
with a pseudo Goldstone boson in the scalar spectrum. These very light bosons are tightly
constrained by experiments and in many cases ruled out [11]. Therefore, if our model is to
be realistic, the U(1)′ symmetry must be gauged. From now on, we only consider such a
gauged version of the FN mechanism.

Let us denote the U(1)′ gauge boson with Z ′. After U(1)′ is spontaneously broken
by the VEV of the flavon field, the would-be Goldstone boson is eaten by the Z ′ which
acquires a mass MZ′ ≈ g′〈S〉 = g′εΛFN , where g′ is the U(1)′ coupling .

3.1.1 Gauge Anomalies

In extending the gauge group of the theory to SU(3)c⊗SU(2)L⊗U(1)Y ⊗U(1)′, one has to
beware of gauge anomalies. These correspond to the failure of a gauge symmetry. Indeed
gauge symmetries of the classical theory can be spoiled by quantum effects. In the language
of path integrals in quantum field theory, anomalies arise when the integration measure
is not invariant under a gauge symmetry of the Lagrangian [14]. Anomaly cancellation
can be ensured by requiring that gauge symmetry breaking contributions from the triangle
diagrams such as the one in Fig. 2 vanish. A thorough discussion of gauge anomalies is
beyond the scope of this work. The interested reader can see e.g. [14] and [15].

In the SM, the gauge anomalies are canceled. When enlarging the SM gauge group
with an extra U(1) symmetry one should make sure that possible anomalies involving
U(1)′ are canceled. Only chiral fermions i.e. fermions for which a mass term is prohibited
by the symmetries of the theory, contribute to anomalies [15]. Thus all the SM fermions
contribute to the anomalies but not the FN fermions. Indeed we assumed that the FN
fermions FL/R are vector-like i.e. their right-handed and left-handed components are in
the same representation of the gauge group and therefore mass terms like FLFR are gauge
invariant.

In this work, we do not attempt to include neutrino masses, therefore we will take
neutrinos to be uncharged under U(1)′. This implies that neutrinos do not contribute to
the anomalies.
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The anomaly cancellation conditions for a U(1)′ extension of the SM are [15]

A11′1′ = 2
3∑
i

(
Q2
i − 2u2

i + d2
i − L2

i + e2
i

)
= 0,

A111′ = 2
3

3∑
i

(
Qi + 8ui + 2di + 3Li + 6ei

)
= 0,

A331′ = 1
2

3∑
i

(
2Qi + ui + di

)
= 0,

A221′ = 1
2

3∑
i

(
3Qi + Li

)
= 0,

A1′1′1′ =
3∑
i

(
6Q3

i + 3u3
i + 3d3

i + 2L3
i + e3

i

)
= 0,

Agg1′ = 2
3∑
i

(
6Qi + 3ui + 3di + 2Li + ei

)
= 0,

(3.11)

where the indices refer to the gauge symmetries involved in the anomaly and g stands for
gravity. For example Agg1′ is the gravity× gravity× U(1)′ anomaly.

The mass constraints Eq. (3.7), CKM constraints Eq. (3.10) and anomaly cancellations
Eq. (3.11) define a system of polynomial equations for the U(1)′ charges. We will not
require that A1′1′1′ and Agg1′ vanish. These anomalies only involve gauge bosons that have
not been observed, hence they could be canceled by unknown, non-SM particles. The
remaining equations are all linear except for A11′1′ = 0 which is quadratic. Thus one
cannot in general solve this system of equations using linear algebra. We will instead use
methods from algebraic geometry implemented in Sage[16] to find solutions.

Gröbner bases The first step in finding the solutions of a system of equations is often
to transform it to a simpler form i.e. to a set of simpler equations with the same solu-
tions. For linear equations this is done by putting the system in triangular form using e.g.
Gaussian elimination. There exists a generalization to systems of polynomial equations
and the simpler set of equations is called a Gröbner basis. The precise definitions of the
mathematical objects involved in defining Gröbner bases are irrelevant to this work but
the mathematically inclined reader can see e.g. [17]. It suffices to know that the Hilbert
basis theorem guarantees that every set of polynomials has a finite Gröbner basis. The
precise statement and proof of this theorem can be found in [17].

We will simply give an intuitive understanding of the concept of Gröbner bases. Let
E =

{
pi ∈ Q[x1, x2, ..., xn]

}
i=1...k

be a set of k polynomials in n variables with coefficients
in Q2. Suppose we have another set of polynomials G =

{
gl ∈ Q[x1, x2, ..., xn]

}
l=1...d

such

2In this work we will only encounter polynomials with rational coefficients. However this argument is
not specific to Q and holds for any field F.
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that
pi =

d∑
l=1

q
(i)
l gl , i = 1...n, (3.12)

with q
(i)
l ∈ Q[x1, x2, ..., xn]. Then solving the system pi = 0 is equivalent to solving the

system gl = 0. A Gröbner basis is such a set. In addition, Gröbner bases have the desirable
property that they eliminate variables. To illustrate this, consider the following example
from [17]. Suppose we wish to solve the system

p1(x, y, z) = x2 + y + z − 1 = 0
p2(x, y, z) = x+ y2 + z − 1 = 0
p3(x, y, z) = x+ y + z2 − 1 = 0

. (3.13)

A Gröbner basis for these polynomials is the set

g1 = x+ y + z2 − 1,
g2 = y2 − y − z2 + z,

g3 = 2yz2 + z4 − z2,

g4 = z6 − 4z4 + 4z3 − z2.

(3.14)

One can check that p1, p2, p3 can be written in terms of g1, g2, g3, g4 as in Eq. (3.13).
This generalizes the triangular form of a linear system of equations. While there are
more equations, they are simpler in that g4 only involves z and g2, g3 only involve y and
z. One can thus solve g4 = 0 using conventional one variable methods and proceed by
backward substitution to find the possible values of y and then x. That Gröbner bases
eliminate variables one by one, yielding at least one single variable equation, is general and
is guaranteed by the elimination theorem (See Sect. 3.1 in [17]).

When applying these methods to finding anomaly free sets of charges, rational solutions
are of particular interest. However such solutions need not exist. For an arbitrary system
of equations, showing the existence of rational solutions is highly non-trivial. In this
work however, it turns out that the systems of equations considered have a Gröbner basis
comprising only of linear equations with rational coefficients. Hence we will only encounter
rational charges.
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4 Renormalization Group Equations
In quantum field theory, observables such as cross sections and decay widths are typically
calculated using perturbation theory. When considering all the processes that contribute
to an observable, one encounters processes involving loops. These truly quantum effects
often correspond to divergent terms in the perturbation series. This is because fluctuations
of arbitrarily high energy are allowed. Yet physical observables are finite. Renormalization
reconciles these two apparently irreconcilable facts. The idea of renormalization is that
the bare parameters in the Lagrangian are not physical since we only measure the result of
the perturbation series. Thus one can redefine the parameters of the theory so as to cancel
divergences in the physical observables.

4.1 Renormalization of λ in φ4-theory
To illustrate the renormalization procedure we consider φ4-theory. We will show how the
quartic coupling λ is renormalized at 1-loop order and how this leads to the differential
equation governing the dependence of λ on the energy scale, the Renormalization Group
(RG) equation.

We start by writing the Lagrangian of φ4-theory in terms of the bare parameters m0
and λ0 and the bare field φ0.

L = 1
2∂

µφ0∂µφ0 −
1
2m

2
0φ

2
0 −

λ0

4! φ
4
0. (4.1)

Now, in so-called renormalized perturbation theory one writes the bare parameters in terms
of the physical coupling, mass, field and their counter-terms as

λ0 = (1 + δλ)λ ≡ λZλ,

m0 = (1 + δm)m ≡ mZm,

φ0 = Z
1
2φ,

(4.2)

where the counter-terms δλ = O(λ2) and δm = O(m2) and the physical parameters are
defined by a physical measurement. For example one can define a physical quartic coupling
by the scattering amplitude measured at some energy scale.

With these definitions the Lagrangian now reads

L = 1
2Z∂

µφ∂µφ−
1
2m

2ZmZφ
2 − λ

4!Z
2φ4 − δλ

4!Z
2φ4. (4.3)

The point is that one can now compute observables to a given order in λ and adjust the
counter-terms to cancel the divergences at that order [18]. This is perfectly allowed since
it corresponds to a redefinition of the bare parameters.

To illustrate, let us calculate the scattering amplitude for φφ → φφ in renormalized
perturbation theory. At order O(λ2), the following diagrams contribute to the scattering
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amplitude

iM = +


1

2

4

3

+

1 4

32

+ (3↔ 4)


+

= −iλ+ iM(1-loop) − iδλ.

(4.4)

Using the Feynman rules it can be seen that the contribution from the 1-loop diagrams
M(1-loop) ∼

∫ d4k
k4 has a logarithmic divergence. We calculate M(1-loop) in dimensional

regularization in Appendix A and find

iM(1-loop) = i
3λ2

16π2

(1
ε

+ ln µ

m

)
, (4.5)

where µ is an energy scale which has been inserted to keep M(1-loop) dimensionless during
dimensional regularization. Now the divergent term in this expression can be canceled by
choosing the counter-term

δλ = 3λ2

16π2
1
ε

(4.6)

and one arrives at a finite result for the scattering amplitude

iM = −iλ+ i
3λ2

16π2 ln µ

m
. (4.7)

Notice that M now appears to depend on µ, an arbitrary energy scale introduced during
regularization. However physical observables cannot depend on the details of the calcula-
tion hence we must require that

µ
d

dµ
M = 0

⇐⇒

µ
∂

∂µ
λ ≡ βλ = 3λ2

16π2 +O(λ3),

(4.8)

which implies that the physical coupling must depend on µ. This dependence is contained
in the function βλ which can be solved for recursively with Eq. (4.8). Therefore, to order
O(λ2) one has

βλ = µ
∂

∂µ
λ = 3λ2

16π2 . (4.9)

This is the 1-loop RG equation for the quartic coupling in φ4-theory, it encodes the depen-
dence of the physical coupling on the energy scale.

19



4.2 2HDM Renormalization Group Equations
In principle one can proceed as described in the preceding section, renormalize all the
parameters of a 2HDM at a given loop order and find the RG equation for each parameter.
For a general 2HDM the RG equations is a set of 129 coupled ordinary differential equations
[19]. At 2-loop, these equations are quite long and it would not be particularly enlightening
to display them here. We instead refer to the 2HDME code [20] where the 2-loop RG
equations can be found.

Now, each point in the 2HDM parameter space corresponds to a model with given
values for all its parameters. As the energy scale changes, each model has a trajectory in
parameter space governed by the RG equations. As is well known, the trajectory is only
determined once a set of boundary conditions has been specified. A natural choice is for
example to fix the values of the parameters at some energy scale.

4.2.1 Constraints

At any given energy scale the 2HDM must be a well behaved quantum field theory. By well
behaved we mean that the following constraints should be satisfied in the scalar sector:
stability of the vacuum, tree-level unitarity of the S-matrix and perturbativity.

Stability The vacuum of the theory should be a stable minimum of the potential. This
means that the potential cannot tend to −∞ in any field direction [21]. Because of
gauge invariance the potential can only depend on Φ†1Φ1, Φ†2Φ2, Φ†1Φ2 and Φ†2Φ1. One
can parametrize these terms as

Φ†1Φ1 = r cos γ, Φ†2Φ2 = r sin γ, Φ†1Φ2 = (Φ†2Φ1)∗ = ρeiθ, (4.10)

with r ∈ [0,+∞), γ ∈ [0, 2π], ρ ∈ [0, 1] and θ ∈ [0, 2π]. Rewriting the quartic part of the
potential in Eq. (2.1) with λ6 = λ7 = 0 and requiring that it be positive for all γ, ρ, θ, one
finds constraints on the quartic couplings. For a 2HDM potential with all real parameters
and no hard Z2 breaking (i.e. λ6 = λ7 = 0) the following conditions are necessary and
sufficient for stability [21]

λ1, λ2 > 0, λ3 + min(0, λ4 − |λ5|) > −
√
λ1λ2. (4.11)

Tree-level Unitarity For a weakly coupled theory, the tree level S-matrix should be
close to unitarity because the higher order corrections are small. This requirement can be
implemented by considering either the eigen values [22] or the partial wave expansion [23]
of the tree level S-matrix. This leads to additional constraints on the quartic couplings.

Perturbativity One would like to keep the theory weakly coupled and allow observables
to be calculated using perturbative expansions in the couplings. In a 2HDM this means
that all the quartic couplings should be small. Note that even if one is not interested in
performing perturbative calculations with some of the quartic couplings these couplings
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would still need to be small. Indeed, the RG equations form a set of coupled differential
equations, so if one coupling becomes large, it will accelerate the growth of the others. It
is customary to use the following perturbativity limit

|λi| < 4π. (4.12)

The purpose of imposing this weak condition on the quartic couplings is to signal a Landau
pole. Indeed when this limit is violated, it usually means that one or more couplings are
diverging.

We define the breakdown scale of a model as the largest scale where tree-level unitarity,
stability and perturbativity are satisfied.
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5 Results

5.1 2HDM Parameter Space Scans
In order to investigate the influence of the 2HDM parameters on the RG evolution of the
models we solve the 2-loop RG equations using the C++ program 2HDME [20]. As a boundary
condition we specify the models at the top (pole) mass scale mt = 173 GeV with the SM
gauge couplings and fermion masses in the MS scheme taken from [24] and [25]

g1(mt) = 0.35830 g2(mt) = 0.64779 g3(mt) = 1.1666
mu(mt) = 0.00122 GeV mc(mt) = 0.590 GeV mt(mt) = 162.9 GeV
md(mt) = 0.00276 GeV ms(mt) = 0.052 GeV mb(mt) = 2.75 GeV
me(mt) = 0.000485 GeV mµ(mt) = 0.102 GeV mτ (mt) = 1.74215 GeV

where g1, g2 and g3 are the couplings for U(1)Y , SU(2)L and SU(3)c, respectively.
In the scalar sector we scan over boundary conditions for the 2HDM potential at mt

in a large region of parameter space. As already argued above the scans are done in the
Hybrid basis

{cos(β − α), tan β, mh, mH , Z4, Z5, Z7}

as it provides a handle on physically relevant parameters (e.g. mH). We restrict our
attention to models where the observed 125 GeV Higgs boson is h, the lighter one. Therefore
we always set mh = 125 GeV and let mH ∈

[
125, 900

]
GeV. The quartic couplings Z4, Z5

and Z7 are allowed to vary in
[
− π

2 ,+
π
2

]
. This is a natural choice since the perturbativity

limit is set to |4π| and a high perturbativity breakdown requires small quartic couplings.
We study the influence of tan β = v2

v1
on the running by considering three representative

values {1.1, 5, 25}. This region of parameter space was scanned uniformly and O(105)
points were found for each type of 2HDM. For a given parameter point, 2HDME solves the
2-loop RG equations for the corresponding 2HDM and the breakdown scale is calculated.
Since the highest energy scale considered in this work is the GUT scale ∼ 1016 GeV, the
RG evolution is stopped when either the scale 1016 GeV is attained or the breakdown scale
is reached.

Using these scans, we would like to identify parameter space regions that are well
behaved under RG evolution.

5.1.1 Softly Broken Z2 Symmetry

We first look at the RG evolution of a 2HDM with a softly broken Z2 symmetry. Fig. 3,
4 and 5 show how the 2HDM parameters affect the breakdown scale for models with
tan β = 1.1, 5 and 25. On these figures, only the combinations of parameters exhibiting
significant correlations are shown.

First of all we find that the type of Z2 symmetry doesn’t affect the correlations. This
is expected since the coupling between the Yukawa sector and the scalar sector is a 2-loop
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effect. Note that the data shown here is for a type II model but other types exhibit very
similar correlations.
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Figure 3: The breakdown scale as a function of 2HDM parameters for the case of a softly
broken Z2 symmetry and tan β = 1.1. In each bin the maximum breakdown scale obtained
is plotted.
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Figure 4: The breakdown scale as a function of 2HDM parameters for the case of a softly
broken Z2 symmetry and tan β = 5. In each bin the maximum breakdown scale obtained
is plotted.
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Figure 5: The breakdown scale as a function of 2HDM parameters for the case of a softly
broken Z2 symmetry and tan β = 25. In each bin the maximum breakdown scale obtained
is plotted.
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It can be seen that a heavy H boson requires cβ−α to be small. On the other hand, for
a light H boson, cβ−α can be as large as 0.5. However, since the coupling of H to vector
bosons is proportional to c2

β−α [26], if this parameter becomes too large and mH is low,
then H would have been observed in experiments. We find that such models are excluded
by experimental constraints in Sect. 5.4.2 .

We note the critical role of Z7 in determining the breakdown scale compared to the
other quartic couplings Z4 and Z5. For tan β = 1.1, it was found that while a breakdown
scale of at least 1016 GeV requires |Z7| . 0.25 one can have |Z4,5| . 0.5. It was shown in
[19] that the quartic couplings in the generic basis must be small to attain high breakdown
scales. We can relate |Z7| to the sum of the quartic couplings in the generic basis ∑i |λi|
using the relation from [9]

Z7 = −1
2 sin2 β sin 2βλ1 + 1

2 cos2 β sin 2βλ2 + 1
2 cos 2β sin 2βλ3

+1
2 cos 2β sin 2βλ4 + 1

2 cos 2β sin 2βλ5,
(5.1)

where we have used that λ6 = λ7 = 0 for a softly broken Z2 symmetry. From the above
equation we have an inequality valid for all 2HDM with an exact Z2 symmetry∑

i=1
|λi| > 2|Z7|. (5.2)

Hence a large Z7 causes an early perturbativity breakdown.
We also observe that a high breakdown scale forces the mass of the pseudo scalar A0 to

be close to that of H. This can be understood from the correlations discussed above and
the theoretical relation between mH and mA

m2
A = m2

Hs
2
β−α +m2

hc
2
β−α − Z5v

2. (5.3)

If mH ' mh, then m2
A ' m2

H − Z5v
2. On the other hand if mH is large then cos(β − α)

must be small hence also m2
A ' m2

H − Z5v
2. Therefore for models that can be evolved up

to high scales there is the relation

m2
A ' m2

H − Z5v
2. (5.4)

The mass of the charged Higgs H± can be written m2
H± = m2

A − 1
2(Z4 −Z5)v2. So we also

have
m2
H± ' m2

H −
1
2(Z4 + Z5)v2. (5.5)

Now, since |Z4,5| . 1
2 is required to attain the highest breakdown scales, sufficiently large

mH will lead to mass degenerate BSM Higgs bosons. Indeed, straightforward Taylor ex-
pansion in Eqs. (5.4) and (5.5) yields∣∣∣∣mH± −mH

mH

∣∣∣∣ ' ∣∣∣∣mA −mH

mH

∣∣∣∣ . (
v

2mH

)2
, (5.6)
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which is valid for mH < v
2 ≈ 120 GeV. Therefore, if we require a high breakdown scale for

a 2HDM with a softly broken Z2 symmetry and mH & v then all the BSM Higgs particles
are nearly degenerate in mass.

Finally, let us look at the influence of tan β. Comparing Fig. 3, 4 and 5 one can see
that the correlations are similar for tan β = 1.1, 5 and 25. For tan β = 1.1 and tan β = 5,
the correlations are almost identical. For tan β = 25, however, the regions of well-behaved
models are much smaller. To evolve up to 1016 GeV, a model must have |Z7| . 0.1. We
conclude that models with large tan β are most constrained by RG evolution.

5.1.2 Exact Z2 Symmetry

Let us now study the RG evolution of a 2HDM with an exact Z2 symmetry. When the Z2
symmetry is exact Z7 is no longer free and can be expressed in the hybrid basis as [9]

Z7 = m2
h −m2

H

v2 cβ−αsβ−α + 2
v2 cot2β

(
m2
hcβ−α +m2

Hs
2
β−α

)
. (5.7)

Therefore we only need to scan over {mH , cos(β−α), Z4, Z5}. Having an exact Z2 symmetry
also means that we have no control over the magnitude of Z7. However, we have seen in
Sect. 5.1.1 that a small |Z7| is critical to achieve a high breakdown scale. Hence an exact
Z2 might severely constrain the parameter space regions of well behaved models. To
investigate this possibility we have plotted the Eq. (5.7) for tan β = 1.1 and 5 in Fig. 6.
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Figure 6: Magnitude of |Z7| in models with an exact Z2 symmetry. (left) tan β = 1.1
(right) tan β = 5.

It is clear that an exact Z2 symmetry makes it harder to evolve models. This is especially
true for large values of tan β. When tan β = 5, the region of small |Z7| is extremely limited.
In fact, over the range (mH ,cβ−α) ∈ [125, 900] × [−1, 1] we have have |Z7| & 0.7. From
Fig. 4 we can conclude that models with an exact Z2 symmetry and tan β = 5 can hardly
be evolved beyond the top mass. The situation is even worse for tan β = 25, in that case
we find |Z7| & 6. We noted in Fig. 5 that models with tan β = 25 require |Z7| . 0.1 to be
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evolved above the top mass scale. Therefore, an exact Z2 symmetry makes it impossible
to evolve such models beyond the top mass scale.

If an exact symmetry is enforced, then tan β must be close to 1. Indeed Fig. 6 shows
that for tan β = 1.1 one retains significant regions where |Z7| is small. By virtue of this
fact we were only able to perform scans and find models that can be evolved beyond the
top mass scale when tan β = 1.1.

We display the correlations between parameters in Fig. 7. First we observe that there
are no points with a breakdown scale higher than ∼ 1013 GeV. Moreover the correlations
between parameters are qualitatively different from the case of softly broken Z2 symmetry.
In this scenario, the masses of the scalars are much more constrained. For example, mH

must be small in order to reach high breakdown scales. We also see that RG evolution
seems to favour negative values of cos(β − α).
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Figure 7: The breakdown scale as a function of 2HDM parameters for the case of an exact
Z2 symmetry and tan β = 1.1. We plot the maximum breakdown scale attained in each
bin.
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5.2 Experimental Constraints
To further constrain the models we apply experimental constraints from Higgs searches
at LEP, Tevatron and the LHC using HiggsBounds[27] (HB) and HiggsSignal[28] (HS).
HB subjects the observables predicted by a given model to the experimental limits from
searches and determines if the parameter point is excluded with 95% confidence level.
HS calculates the goodness of fit of a model, that is how well it reproduces the observed
signal. Both programs take as inputs the masses of Higgs bosons, their branching ratios
and production cross sections. We use the C++ program 2HDMC [29] to generate the input
for a 2HDM specified in the hybrid basis and feed it to HB and HS to check experimental
constraints.

5.3 Scenario A: ΛFN = 105 GeV, Exact Z2 Symmetry
In this section, we explore the possibility that the FN scale ΛFN is close to 100 TeV. In
fact, ΛFN can hardly be lower than 100 TeV since mass scales up to 10 TeV have been
explored in experiments and no signs of Froggatt-Nielsen physics have been seen. For
example, the constraint from Z ′ searches is MZ′ & 1 TeV [11]. If the U(1)′ coupling is not
tiny (say g′ & 0.01), this means that MZ′ ≈ εg′ΛFN & 1 TeV and thus ΛFN & 500 TeV.
In this scenario one can have an exact Z2 symmetry while retaining significant portions
of parameter space with viable models, however tan β has to be close to 1 as shown in
Sect. 5.1.2.

5.3.1 Froggatt-Nielsen Charge Assignment

We now attempt to make charge assignments for these models. To do so we have gathered
a sample of O(105) models that breakdown above 105 GeV for each 2HDM type. From
Sect. 5.1.2 we know that models with an exact Z2 symmetry and a breakdown scale above
105 GeV require tan β ≈ 1. Therefore we only consider the case tan β = 1.1 here. We
calculate the fermion masses at µ = 105 GeV for each point in each sample using 2HDME
and then compute the number of flavon insertions nFi needed to account for the value of
the masses using Eq. (3.7) and construct the mass constraints. In each sample of points the
variation of nFi is very small. We can quantify this observation with the maximum relative
standard deviation over all samples ∆nU

3
〈nU

3 〉
∼ 1%. The variations related to the 2HDM type

are larger hence we must consider four distinct charge assignments. The numerical values
of nFi for each 2HDM type are shown in Table 3. We keep three digits to show the small
variation due the 2HDM type. The variation is small here since tan β = v2

v1
= 1.1 and

thus v2 ≈ v1. The number of flavon insertions must of course be integer so the entries of
Table 3 will have to be rounded. Recall that rounding to the closest integer corresponds
to choosing the O(1) coupling gFi in Eq. (3.7) in the range [ε 1

2 , ε−
1
2 ].

From Table 3, the mass constraints can be read off by rounding each nFi and plugging
it in Eq. (3.7). For example, we can write the mass constraints for a type I model with
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tan β = 1.1 as

Q1 − u1 − χ1 = nU1 = 7 Q2 − u2 − χ1 = nU2 = 3 Q3 − u3 − χ1 = nU3 = 0,
Q1 − d1 + χ1 = nD1 = 7 Q2 − d2 + χ1 = nD2 = 5 Q3 − d3 + χ1 = nD3 = 3,
L1 − e1 + χ1 = nL1 = 8 L2 − e2 + χ1 = nL2 = 4 L3 − e3 + χ1 = nL3 = 3.

(5.8)

For each 2HDM type we look for anomaly free sets of flavon charges satisfying the appro-
priate mass constraints and the CKM constraints using Sage.

The generic system of polynomial equations to be solved is

A11′1′ ∝
3∑
i

(
Q2
i − 2u2

i + d2
i − L2

i + e2
i

)
= 0,

A111′ ∝
3∑
i

(
Qi + 8ui + 2di + 3Li + 6ei

)
= 0,

A331′ ∝
3∑
i

(
2Qi + ui + di

)
= 0,

A221′ ∝
3∑
i

(
3Qi + Li

)
= 0,

Q1 − u1 − χu = nU1 , Q2 − u2 − χu = nU2 , Q3 − u3 − χu = nU3 ,

Q1 − d1 + χd = nD1 , Q2 − d2 + χd = nD2 , Q3 − d3 + χd = nD3 ,

L1 − e1 + χl = nL1 , L2 − e2 + χl = nL2 , L3 − e3 + χl = nL3 ,

Q1 −Q2 = 1,
Q2 −Q3 = 2.

(5.9)

We will call a set of U(1)′ charges satisfying Eqs. 5.9 a valid charge assignment. It was
shown in [12] that the anomaly cancellation conditions can be combined to yield the fol-
lowing sum rules for each type of Z2 symmetry

3∑
i=1

(nDi − nLi ) = 0 type II, (5.10)

3∑
i=1

(nUi + nDi ) = 0 type X, (5.11)

3∑
i=1

(nUi + nLi ) = 0 type Y. (5.12)

Notice that if two fermion species couple to the same Higgs doublet then there is a sum
rule relating their flavon insertions. Hence for type I, all three sum rules must be satisfied.
These are necessary conditions for a set of charges to be anomaly free.
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Type
tan β 1.1

I
7.33 3.49 -0.06
6.82 4.99 2.58
7.69 4.36 2.60

II
7.33 3.49 -0.06
6.86 5.04 2.55
7.73 4.41 2.65

X
7.33 3.49 -0.06
6.82 4.99 2.58
7.73 4.41 2.65

Y
7.33 3.49 -0.06
6.86 5.04 2.55
7.69 4.36 2.60

Table 3: Average ε order of magnitude of the diagonal Yukawa couplings at µ = 105 GeV
for each 2HDM type and tan β sample. The values are arranged as a matrix |nFi | where
F = U,D,L is the row index and i = 1, 2, 3 is the column index labeling the generations.

It can readily be seen from the sum rules (5.11) and (5.12) that type I, X and Y will
require some nFi to be negative. Recall that these then correspond to the number of S∗
insertions in the FN mechanism. As we will see this usually compromises the ordering in
the Yukawa coupling matrices.

Type I models From the above considerations we expect the charge assignment to be
most difficult for type I models. Not only are there three sum rules to satisfy but two of
them require S∗ insertions which could compromise the ordering of the Yukawa coupling
matrices and make the FN mechanism inconsistent. In fact, we have not been able to find
a set of nFi that satisfies the sum rules and produces realistic orders of magnitude for the
masses. This means that type I models, and hence the SM, cannot accommodate a FN
mechanism. One could of course find a set of flavon insertions satisfying all three sum rules
but this would require fine tuning of the couplings gFi well outside O(1).

Type X models For type X models, the sum rule Eq. (5.11) is not satisfied when
rounding the entries of Table. 3 to the nearest integer. However if we take nD3 = 2 then
the sum rule can be satisfied. This corresponds to choosing gD3 = ε0.58 ≈ 0.4 since Y D

3 =
gD3 ε

nD
3 = ε2.58. Although we set out to take the O(1) couplings gFi ∈ [ε 1

2 , ε−
1
2 ], this small

concession preserves gD3 ∼ O(1) and hence does not introduce inconsistencies in the FN
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framework. Thus we find that the flavon insertions
nU1 = 7, nU2 = 3, nU3 = 0,
nD1 = −7, nD2 = −5, nD3 = 2,
nL1 = 8, nL2 = 4, nL3 = 3

(5.13)

satisfy the sum rule Eq. (5.11) and produce the correct orders of magnitude for the masses.
The Gröbner basis found in Sage and the corresponding charges are displayed in Ap-
pendix B. These solutions define a hyperplane parametrized by 3 charges, say χ2, d3, e3
and any given choice of these three charges will yield a valid charge assignment. In Table 4
we show the charge assignment obtained for χ2 = d3 = e3 = 0 .

χ2 e3 d3 Q1 Q2 Q3 u1 u2 u3 d1 d2 L1 L2 L3 e1 e2 χ1
0 0 0 5 4 2 2 −1 −2 −12 −9 1

3 −28 −16
3 −2

3
71
3 −25

3

Table 4: A valid charge assignment for type X models with tan β = 1.1.

We note that, as discussed in [12], when χ2−χ1 6∈ Z as is the case for the charge assign-
ment in Table 4, the Z2 symmetry arises naturally as a remnant of the U(1)′ symmetry.

Using these flavon charges and Eq. (3.3) one can calculate the Yukawa couplings gen-
erated by the FN mechanism

Y U ∼

ε
7 ε4 ε3

ε6 ε3 ε2

ε4 ε3 ε0

 , Y D ∼

 ε
7 ε4 ε5

ε8 ε5 ε3

ε10 ε7 ε2

 , Y L ∼

ε
8 0 0

0 ε4 0
0 0 ε3

 . (5.14)

We use ∼ as a reminder that we do not write the O(1) coefficients gFij but only the orders
of magnitude.

Looking at Eq. (5.14) it is clear that the ordering nFi+1,j ≤ nFi,j and nFi,j+1 ≤ nFi,j has
been compromised in Y D. The ordering assumption is critical in the FN framework and
it would be inconsistent to dismiss it now. The reason is that we have assumed that the
masses are given by the diagonal Yukawa couplings (Eq. 3.6) which only follows from the
ordering assumption. One might think that the ordering can be fixed by a clever choice
of parametrization i.e. a different choice of χ2, e3 and d3, but this is not the case since
Y U and Y D are completely determined by the mass constraints and the CKM constraints.
This can be seen by considering nU/Di±1,j − n

U/D
i,j . For instance

n
U/D
2,1 − n

U/D
1,1 = Q2 −Q1 = −1 ⇐⇒ |nU/D2,1 | = |n

U/D
1,1 − 1|, (5.15)

where we have used the formula for nFij in Eq. (3.3) and the CKM constraint in Eq. (3.10).
Proceeding in a similar manner for all off-diagonal elements, one finds that

Y U/D ∼


ε|n

U/D
1 | ε|n

U/D
2 +1| ε|n

U/D
3 +3|

ε|n
U/D
1 −1| ε|n

U/D
2 | ε|n

U/D
3 +2|

ε|n
U/D
1 −3| ε|n

U/D
2 −2| ε|n

U/D
3 |

 . (5.16)
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Therefore type X models are incompatible with the FN mechanism. They cannot both
reproduce the fermion masses and mixings and be anomaly free.

Type Y models For type Y models the situation is similar to type X. The sum rule
Eq. (5.12) cannot be satisfied unless one allows some small deviations from gFi ∈ [ε 1

2 , ε−
1
2 ].

Proceeding analogously as for type X we find that the following flavon insertions

nU1 = 7, nU2 = 3, nU3 = 0,
nD1 = 7, nD2 = 5, nD3 = 3,
nL1 = −8, nL2 = −4, nL3 = 2

(5.17)

satisfy the sum rule Eq. (5.12) and produce the correct orders of magnitude for the masses.
Again the Gröbner basis and the parametrization of the solutions in terms of the charges
χ2, d3 and e3 are displayed in Appendix B. We show one valid charge assignment for this
model in Table 5

χ2 e3 d3 Q1 Q2 Q3 u1 u2 u3 d1 d2 L1 L2 L3 e1 e2 χ1
0 0 0 −7

3 −10
3 −16

3
28
3

19
3

16
3 1 0 −22

3
115
3 2 −2

3 −127
3 −25

3

Table 5: A valid charge assignment for type Y models with tan β = 1.1.

With these flavon charges, the FN mechanism generates the Yukawa couplings

Y U ∼

ε
7 ε4 ε3

ε6 ε3 ε2

ε4 ε3 ε0

 , Y D ∼

ε
7 ε6 ε6

ε6 ε5 ε4

ε4 ε3 ε3

 , Y L ∼

ε
8 0 0

0 ε4 0
0 0 ε2

 . (5.18)

As opposed to type X models the ordering is preserved in the quark Yukawa couplings.
This happens because we are able to have all the S∗ insertions in the lepton sector where
we haven’t imposed any mixing constraint.

Type II models For type II models it is remarkable that the sum rule (5.10) is satisfied
by rounding the entries of Table 3 to the nearest integer. Moreover because we can take
all positive nFi the ordering of the Yukawa coupling matrices will be preserved. We find
the Gröbner basis in Sage. It can be found along with the solutions parametrized by χ2,
d3 and e3 in Appendix B. A valid charge assignment is shown in Table 6

χ2 e3 d3 Q1 Q2 Q3 u1 u2 u3 d1 d2 L1 L2 L3 e1 e2 χ1
0 0 0 −7

3 −10
3 −16

3
28
3

19
3

16
3 1 0 43

6
187
6 −16

3 −15
2 −71

2 −25
3

Table 6: A valid charge assignment for type II models with tan β = 1.1.
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With these charges the FN mechanism generates the Yukawa couplings

Y U ∼

ε
7 ε4 ε3

ε6 ε3 ε2

ε4 ε3 ε0

 , Y D ∼

ε
7 ε6 ε6

ε6 ε5 ε4

ε4 ε3 ε3

 , Y L ∼

ε
8 0 0

0 ε4 0
0 0 ε3

 . (5.19)

These Yukawa coupling matrices are ordered and therefore the FN framework is consistent
in type II models.

To summarize, valid charge assignment leading to ordered Yukawa couplings can be
made for both type II and type Y. However it seems that type II is preferred as it doesn’t
require S∗ insertions and one can have gFi ∈ [ε 1

2 , ε−
1
2 ].

5.3.2 Renormalization Group Flow

In this section we study possible physics at the FN scale given that models are well behaved
under RG evolution up to ΛFN = 105 GeV and consistent with experimental constraints
at the electroweak scale. To do so we consider the flow of these viable models under RG
evolution. Specifically, given a viable model at the top mass scale, we are interested in the
value of the parameters of the potential at the FN scale ΛFN = 105 GeV.

In Sect. 5.1.2 we have found that models with an exact Z2 symmetry require tan β ≈ 1
to be well behaved under RG evolution. Moreover in Sect. 5.3.1, we have seen that type
II models are best suited to accommodate the FN mechanism. Hence we will focus our
analysis on type II models with tan β = 1.1. We have gathered a sample of such models
of size O(103) by performing scans with 2HDME. Each parameter space point was subjected
to experimental constraints using HiggsBounds and HiggsSignal. In this section we only
consider models consistent with experiments.

In Fig. 8 we have plotted the masses of the BSM Higgs bosons in viable models. Com-
paring Fig. 7 and Fig. 8 one can see that the experimental constraints further restrict
the possible BSM Higgs masses at the top mass scale. Indeed the requirement of good
behaviour under RG evolution and the experimental bounds constrain the models to three
approximately disjoint regions in the mH−mA−mH± hyperplane. Hence we identify three
different types of BSM scalar spectrum at the electroweak scale.

We also note that there are no models with mH ,mA & 300 GeV at the electroweak
scale. This a consequence of the exact Z2 symmetry since the mass of the pseudoscalar
can be written [6]

m2
A = m2

12v
2

v1v2
− λ5v

2. (5.20)

Hence when the Z2 symmetry is exact m2
12 = 0 and m2

A = −λ5v
2. Now, since λ5 cannot

be too large to reach breakdown scales above 105 GeV, mA cannot be too large either.
Moreover, since m2

A is the main contribution to m2
H (see Eq. (2.10)), the exact Z2 symmetry

also restricts how heavy H can be.
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At 105 GeV, the masses have increased due to the growth of the quartic couplings. The
shape of the mH−mA−mH± regions of viable models changes and some correlations arise.
For example, at 105 GeV many models lie in the region mH ≈ 2mA ≈ mH± .
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Figure 8: Top-left: mH − mA plane of the region of well behaved models consis-
tent with experiments at the top mass scale mt. Top-right: same region evolved to
µ = 105 GeV. Bottom-left: mH − mH± plane of the region of well behaved models con-
sistent with experiments at the top mass scale mt. Bottom-right: same region evolved
to µ = 105 GeV. Color scheme: red: mA(mt) < 200 GeV and mH(mt) < 150 GeV; blue:
mA(mt) < 200 GeV and mH(mt) ≥ 150 GeV; green: mA(mt) ≤ 200 GeV

Fig. 9 shows the region of viable models in the cβ−α −mH plane at the top mass scale
and at the FN scale. Since the coupling of h (H) to the W± and Z0 is proportional
to s2

β−α (c2
β−α) [26], the central region with −0.25 < cβ−α < 0.25 correspond to models

35



−1.0 −0.5 0.0 0.5 1.0

cos(β − α)

100

150

200

250

300

m
H

[G
eV

]

µ = mt

−1 0 1

cos(β − α)

100

200

300

400

500

m
H

[G
eV

]

µ = 105GeV

Figure 9: Left: cβ−α − mH plane of the region of well behaved models consistent with
experiments at the top mass scale mt. Right: same region evolved to µ = 105 GeV. Color
scheme: blue: cβ−α(mt) < −0.3; green: −0.3 ≥ cβ−α(mt) ≤ 0.3; red: cβ−α(mt) > 0.3
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Figure 10: RG evolution of a point with cβ−α(µ = mt) = 0.09 and cβ−α(µ = 105 GeV) =
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these relations have swapped due to the growth of Z1v
2 and the definition mH ≥ mh.
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where the observed Higgs is h. The other allowed regions have larger values of cβ−α and
mH ≈ mh ≈ 125 GeV and thus correspond to models where H is the main contribution to
the observed Higgs.

It is interesting to consider how these regions flow under RG evolution. First it can be
seen that generally cβ−α, and hence the coupling of H with vector bosons, increases with
the energy scale. That means it is possible to have models where at the top mass scale
the vector bosons mostly couple with the light Higgs h but at 105 GeV the vector bosons
mostly couple to the heavier Higgs H.

We can trace the origin of the growth of cβ−α by considering the mass matrix in
Eq. (2.8). Since β − α is the rotation angle that diagonalizes this mass matrix, cβ−α = 0
means that the Higgs basis and the mass basis coincide, i.e. the mass matrix is diagonal
in the Higgs basis. In that case m2

h = Z1v
2 and m2

H = Y2 + 1
2(Z3 + Z4 + Z5)v2. However

during RG evolution it can happen that Z1v
2 becomes larger than Y2 + 1

2(Z3 +Z4 +Z5)v2.
Then, since by definition mH ≥ mh, one has m2

H = Z1v
2. This corresponds to swapping

the mass eigenstates and hence to cβ−α = 1. This is illustrated in Fig. 10.
We have made the assumptions that the electroweak scale physics is described by a

2HDM with an exact Z2 symmetry which is the low energy limit of a theory defined at
ΛFN = 105 GeV. This allowed us to constrain the models at ΛFN . We found that the exact
Z2 constrains the BSM Higgs masses to be less than ∼ 500 GeV. We also found that for
many models the weak bosons couple to the light Higgs scalar at the electroweak scale but
they couple to the heavy Higgs scalar at the FN scale.

5.4 Scenario B: ΛFN = 1016 GeV, Softly Broken Z2 Symmetry
In this section we explore models with a FN scale close to the GUT scale. This is about as
high as the FN scale can be. Indeed higher scales approach the Planck scale ΛP ∼ 1019 GeV
where quantum gravity is expected to become relevant so it might not make sense to look
for a quantum field theory there.

It was shown in [19] that while an exact Z2 symmetry severely constrains the regions of
parameter space that can be evolved up to 1016 GeV, a softly broken Z2 symmetry allows
larger regions of viable models. Therefore we use a softly broken Z2 symmetry for the
models with ΛFN = 1016 GeV.

5.4.1 Froggatt-Nielsen Charge Assignment

We now search for Froggatt-Nielsen charge assignments for the models at hand. The
number of flavon insertions needed to account for the masses at ΛFN = 1016 GeV can
be computed as in Eq. (3.7). From the scans with 2HDME, we have gathered samples of
points that can evolve up to 1016 GeV for types I, II, X and Y and tan β = 1.1, 5, 25.
While for tan β = 5 and 25 the size of the samples are O(104), we only find a handful
of points with tan β = 1.1. We suppose that models with tan β = 1.1 require a larger
degree of fine tuning between their parameters to reach a breakdown scale of 1016 GeV.
Nevertheless, we compute the average number of flavon insertions for each point in each
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(type, tan β) sample. The results are shown in Table 7. We again observe that the variation
of the number of flavon insertions over a given sample of points is very small. Over the
12 samples, the maximum relative standard deviation ∆n

〈n〉 occurs for the top quark and is
of order ∆nU

3
〈nU

3 〉
∼ 1%. This very small influence of the scalar sector on the running of the

fermion masses is expected since the scalar parameters enter the Yukawa RG equations at
2-loop. Therefore there are only 12 distinct flavon charge assignments to consider.

In this scenario we actually have to consider different values of tan β. Let us therefore
make explicit the baseline dependence of the mass constraints on 2HDM type and tan β.
We rewrite the number of flavon insertions as

nFi =


logε

(
Y F

1,ii

)
= logε

(√
2mF

i

v cosβ

)
, F couples to Φ1

logε
(
Y F

2,ii

)
= logε

(√
2mF

i

v sinβ

)
, F couples to Φ2

. (5.21)

Note that the appearance of v1 = v cos β and v2 = v sin β in these expressions implies
that the mass constraints are different for each 2HDM type and tan β. It also introduces
an additional scale dependence through the running of v1 and v2 (or equivalently through
the running of tan β and v). The values 5 and 25 where chosen because they can be
expressed as ε−k with k = 1 and k = 2 respectively. For these large values of tan β we have
tan β ≈ 1

cosβ = ε−k and sin β ≈ 1. Therefore Eq. (5.21) simplifies to

nFi =


logε

(√
2mF

i

v

)
− k, F couples to Φ1

logε
(√

2mF
i

v

)
, F couples to Φ2

. (5.22)

That explains the variation |nFi | → |nFi | − 1 in Table 7 for fermions coupling to Φ1 when
going from tan β = 5 to tan β = 25. Physically, when tan β = v2

v1
grows this means that

v1 decreases and hence the Yukawa couplings of fermions coupling to Φ1 must increase to
keep the mass constant.

Once Table 7 has been stripped from the preceding baseline dependence on tan β and
the 2HDM type it can be seen that the residual effect on the running of the masses due
tan β and the 2HDM type first affects nFi in the second and third digit, respectively. That
is, tan β and the 2HDM type have little influence on the running of the masses.

We proceed to investigate whether valid charge assignments can be made for each of
the 12 distinct models considered.

Type I models In fact if the nFi in Table 7 are rounded to the nearest integer, there
is no way to satisfy the sum rules for type I, even when allowing S∗ insertions. For this
type, a valid FN charge assignment would require the gFij to be taken well outside the
range [ε 1

2 , ε−
1
2 ]. Again, this introduces inconsistencies with the original assumptions of the

FN mechanism i.e. all the gFij are assumed to be of the same order of magnitude O(1).
Therefore if a type I 2HDM is to be equipped with a gauged FN mechanism then the
original assumption of Froggatt and Nielsen must be relaxed. This makes such models less
attractive.
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Type
tan β 1.1 5 25

I
7.44 3.60 -0.11
6.91 5.09 2.85
7.48 4.15 2.39

7.92 4.08 0.52
7.39 5.57 3.18
7.96 4.63 2.87

7.94 4.10 0.54
7.41 5.59 3.19
7.98 4.65 2.89

II
7.44 3.60 -0.11
7.31 5.48 2.94
7.87 4.55 2.78

7.92 4.08 0.51
6.48 4.66 2.17
7.05 3.72 1.96

7.94 4.10 0.53
5.53 3.70 1.20
6.09 2.76 0.99

X
7.44 3.60 -0.11
6.91 5.09 2.85
7.87 4.54 2.78

7.92 4.08 0.52
7.39 5.57 3.18
7.10 3.78 2.02

7.94 4.10 0.54
7.41 5.59 3.19
6.11 2.78 1.01

Y
7.44 3.60 -0.11
7.31 5.48 2.95
7.48 4.15 2.39

7.92 4.08 0.52
6.54 4.72 2.23
7.96 4.63 2.87

7.94 4.10 0.53
5.53 3.71 1.21
7.97 4.65 2.89

Table 7: Average ε order of magnitude of the diagonal Yukawa couplings at µ = 1016 GeV
for each 2HDM type and tan β sample. The values are arranged as a matrix |nFi | where
F = U,D,L is the row index and i = 1, 2, 3 is the column index labeling the generations.

Type X models Let us now consider type X. For tan β = 5 and tan β = 25 we can
choose the nFi so as to satisfy the sum rule in Eq. (5.11). For tan β = 5, one possibility is
to have

nU1 = −8, nU2 = 4, nU3 = 0,
nD1 = 7, nD2 = −6, nD3 = 3,
nL1 = 7, nL2 = 4, nL3 = 2.

(5.23)

Therefore there is a chance to make a valid charge assignment with the corresponding
mass constraints. Indeed, for this particular choice we find the Gröbner basis using Sage.
It is given, along with the parametrization of the solutions in terms of χ2, e3 and d3 in
Appendix C. For definiteness, we show one set of solutions in Table 8.

χ2 e3 d3 Q1 Q2 Q3 u1 u2 u3 d1 d2 L1 L2 L3 e1 e2 χ1
0 0 0 6 5 3 −14 −1 −3 1 11 −61

3 −62
3 −1 73

3
65
3 −3

Table 8: A valid charge assignment for type X with tan β = 5.

The charge assignment for models with tan β = 25 is completely analogous so we do not
present it here (the Gröbner basis and parametrized solutions can be found in Appendix C).

The charge assignment in Table 8 has the interesting feature that χ2 − χ1 = 3 is an
integer. As a consequence the Z2-breaking term

S3Φ†2Φ1 (5.24)
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is gauge invariant. Therefore, in this model, the Z2 symmetry cannot be regarded as a
remnant of the U(1)′ symmetry as before. In that case, one has to impose the Z2 symmetry
by hand which makes such models less attractive.

The FN mechanism with the above charges generates the following Yukawa couplings.

Y U ∼

 ε
8 ε5 ε3

ε9 ε4 ε2

ε11 ε2 ε0

 , Y D ∼

ε
7 ε5 ε6

ε6 ε6 ε5

ε4 ε8 ε3

 , Y L ∼

ε
8 0 0

0 ε5 0
0 0 ε3

 . (5.25)

These Yukawa coupling matrices are not ordered. Therefore the Froggatt-Nielsen mech-
anism is inconsistent in type X models.

Type Y models One can arrange similarly a valid charge assignment in type Y models.
In models with tan β = 1.1, the following flavon insertions satisfy the sum rule in Eq. (5.12)

nU1 = −8, nU2 = 3, nU3 = 0,
nD1 = 7, nD2 = 5, nD3 = 3,
nL1 = 7, nL2 = −4, nL3 = 2.

(5.26)

This requires relaxing our assumption that gFi ∈ [ε 1
2 , ε−

1
2 ]. In this model one would

have gU1 = ε−0.56 ≈ 2.5 and gU2 = ε0.60 ≈ 0.4 as can be verified in Table 7. Again, these are
small concessions and it is not unreasonable to claim that these numbers are still O(1).
Hence we proceed and find the Gröbner basis for the corresponding system of equations.
It is given in Appendix C with the parametrization of the solutions. We show one valid
charge assignment in Table 9.

χ2 e3 d3 Q1 Q2 Q3 u1 u2 u3 d1 d2 L1 L2 L3 e1 e2 χ1
0 0 0 20

3
17
3

11
3

44
3 −8

3 −11
3 1 1 −989

33
667
33 2 1214

33
535
33

20
3

Table 9: A valid charge assignment for type Y with tan β = 1.1.

With these charges, the Yukawa couplings are

Y U ∼

 ε
8 ε4 ε3

ε9 ε3 ε2

ε11 ε1 ε0

 , Y D ∼

ε
7 ε6 ε6

ε6 ε5 ε5

ε4 ε3 ε3

 , Y L ∼

ε
7 0 0

0 ε4 0
0 0 ε2

 . (5.27)

Notice that the ordering of the Y U has been compromised. However the terms that break
the ordering are very small, hence they are negligible in diagonalization procedure. Note
also that due to nL2 being negative, if one were to include any lepton mixing then the
ordering of Y L would likely be lost. Hence these models are viable in this limited framework
but would not work in a more realistic setting with neutrino masses and lepton mixing.
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Type II models The sum rule for type II in Eq. (5.10) can be satisfied with positive
nFi . We note in passing that this sum rule is the form of the Georgi-Jarlskog mass relations
[30] in this model i.e.

nD1 − nL1 + nD2 − nL2 + nD3 − nL3 = 0 ⇐⇒ 1 = εn
D
1 εn

D
2 εn

D
3

εn
L
1 εn

L
2 εn

L
3
≈ mdmsmb

memµmτ

. (5.28)

For tan β = 5 the sum rule is satisfied when the nFi in Table 7 are rounded to the
nearest integer. For tan β = 1.1 and tan β = 25 one again has to make small concessions
and choose the gFi outside [ε 1

2 , ε−
1
2 ]. For these three cases we find Gröbner bases in Sage.

They can be found in Appendix C. For tan β = 5 and tan β = 25, the Gröbner bases are
the same except for the equations relating χ1 and χ2. The reason for this is that tan β
only modifies the mass constraints of the fermion species that couple to H1. The change
in the number of flavon insertions due to a change in the value of tan β can therefore be
absorbed in a redefinition of χ1. This relates the Gröbner bases for the different values
of tan β. The solutions are given in Appendix C. Here we simply show one solution for
tan β = 5 in Table 10.

χ2 e3 d3 Q1 Q2 Q3 u1 u2 u3 d1 d2 L1 L2 L3 e1 e2 χ1
0 0 0 −11

3 −14
3 −20

3
35
3

26
3

23
3 1 1 2

3 51 −20
3 −7

3 −167
3 −26

3

Table 10: A valid charge assignment for type II with tan β = 5. For tan β = 25 the same
charge assignment is valid with χ1 = −23

3 instead.

In type II models with tan β = 5, the FN mechanism generates the following Yukawa
couplings

Y U ∼

ε
8 ε5 ε4

ε7 ε4 ε3

ε5 ε2 ε1

 , Y D ∼

ε
6 ε6 ε5

ε5 ε5 ε4

ε3 ε3 ε2

 , Y L ∼

ε
7 0 0

0 ε4 0
0 0 ε2

 . (5.29)

Because it was possible to have all positive nFi for these models, the Yukawa coupling
matrices are ordered.

In summary, Type II 2HDMs seem to be most compatible with the FN mechanism and
anomaly cancellations. In type I, X and Y either the Yukawa matrices cannot be ordered
or some large deviations from gFij ∈ [ε 1

2 , ε−
1
2 ] are required.

5.4.2 Renormalization Group Flow

In Sect. 5.1.1 we found regions of models with a softly broken Z2 that can be evolved up
to ΛFN = 1016 GeV. In this section we also require that all the models pass experimental
constraints enforced by HiggsBounds and HiggsSignal. These regions correspond to re-
alistic models at the top mass scale. We now investigate how these models flow under RG
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evolution. For this purpose we gathered samples of size O(103) of such models and evolved
their parameters up to 1016 GeV.

Models with very high breakdown scales require some degree of fine tuning between
their parameters. Therefore looking for such models with uniform scans is quite inefficient.
To improve the search we take advantage of the correlations found in Sect. 5.1.1 and scan
the region

Z4 ∈
[
− 0.5,+0.5

]
Z5 ∈

[
− 0.5,+0.5

]
Z7 ∈

[
− 0.5,+0.5

]
cos(β − α) ∈

[
− 0.25,+0.25

]
mH ∈

[
125, 1200

]
GeV

where most of the models with high breakdown scales are. Note that we allow the mass
of H to be as high as 1200 GeV. This is motivated by Fig. 4 and 5 where there are well
behaved models up to 900 GeV and the observation that experimental constraints favour
large masses for the second Higgs scalar.

As mentioned in Sect. 5.4.1, it appears that models with tan β = 1.1 require a high
degree of fine tuning between their parameters to be evolved up to 1016 GeV. Even when
taking advantage of the correlations between breakdown scale and the 2HDM parameters,
we were not able to find enough points with tan β = 1.1 to study the RG flow. For these
models a more refined scanning of the parameter space might be necessary. In this section
we will therefore only discuss models with tan β = 5 and 25.

Investigating the allowed parameter space regions at ΛFN will allow us to probe some
of the physics at that scale and connect it to physics at the electroweak scale.

As discussed in Sect. 5.4.1, type II models are best suited to accommodate an anomaly
free, realistic FN mechanism. Hence in this section we will restrict our attention to these
more promising models.

Fig. 11 shows that the relation mA ≈ mH found in Sect. 5.1.1 for well behaved models
still holds at 1016 GeV. The similar relation mH± ≈ mH also holds at that scale but we do
not plot it here. These relations are consequences of the requirement of RG evolution up to
1016 GeV which is quite strong and constrains the quartic couplings to be small throughout
the evolution. As a result Eq. (5.6) still holds at 1016 GeV.

In this scenario, even though the RG evolution requirement is stronger than for scenario
A, the softly broken Z2 symmetry m2

12 6= 0 allows large masses for the pseudoscalar (see
Eq. (5.20)). Hence we find models with a BSM mass spectrum up to the upper bound
of our scan range 1200 GeV. It is likely that there are viable models with Higgs masses
beyond 1200 GeV.

The influence of tan β on the allowed masses for H at the electroweak scale is apparent
in Fig. 11 where it is seen that the larger tan β the heavier H must be. This exclusion of
light H bosons for large values of tan β is a consequence of the experimental constraints
and can be understood from the Higgs couplings to bottom quarks which in type II (and
type Y) 2HDMs is multiplied by a factor of [26]

Hbb : cosα
cos β . (5.30)
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Thus when tan β is large, the coupling of H to the bottom quark is enhanced and hence
the production cross section for H grows. In that case, H has to be heavy mH & 700 GeV
otherwise it would have been detected.

In Fig. 12 it can be seen that the experimental constraints favour very small values
of cβ−α. Moreover the larger tan β the smaller cβ−α must be. Again this corresponds to
models where the heavier scalar H doesn’t couple to the weak bosons. Notice that there
are no points that flow towards cβ−α ≈ 1 as in scenario A. One can also see that the value
of tan β determines how much cβ−α can grow during RG evolution. Whereas for tan β = 25
cβ−α remains very small, for tan β = 5 it can grow as large as ∼ 0.4. Even then c2

β−α is still
quite small. Therefore in this scenario it is still true at ΛFN that the weak bosons mostly
couple to the lighter scalar h.

Thus we find that the assumption that the physics at the electroweak scale is described
by a 2HDM with a softly broken Z2 symmetry which is the low energy limit of a theory
defined at ΛFN = 1016 GeV constrains the parameters of the theory at the electroweak
scale. In particular, because the quartic couplings must be small, the RG flow is limited
and correlations between the parameters of the models are approximately preserved during
evolution. Hence in this scenario, our assumptions lead to models at ΛFN = 1016 GeV with
mass degenerate BSM Higgs bosons. Moreover, in these models the heavier neutral scalar
H remains weakly coupled to vector bosons.
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Figure 11: Top-left: mH −mA plane of the region of well behaved models with tan β = 5
consistent with experiments at the top mass scale mt. Top-right: same region evolved to
µ = 1016 GeV. Bottom-left: mH − mA plane of the region of well behaved models with
tan β = 25 consistent with experiments at the top mass scale mt. Bottom-right: same
region evolved to µ = 1016 GeV.
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Figure 12: Top-left: cβ−α −mH plane of the region of well behaved models with tan β = 5
consistent with experiments at the top mass scale mt. Top-right: same region evolved to
µ = 1016 GeV. Bottom-left: cβ−α −mH plane of the region of well behaved models with
tan β = 25 consistent with experiments at the top mass scale mt. Bottom-right: same
region evolved to µ = 1016 GeV.
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6 Summary and Conclusions
In this thesis we have considered a 2HDM with a gauged Froggatt-Nielsen mechanism as
an extension of the SM. These models can remove the hierarchy in the flavour parameters
and inherit the rich phenomenology of 2HDMs. We assumed that such a model is the low-
energy limit of a theory defined at the Froggatt-Nielsen scale ΛFN . In order to constrain
the 2HDM parameter space we started by using RG evolution and requiring stability, tree-
level unitarity and perturbativity up to ΛFN . To further constrain the 2HDM parameters,
experimental constraints from Higgs searches were applied. We then attempted to build
models in two scenarios: (A) the FN scale is low ΛFN = 105 GeV and the Z2 symmetry
is exact; (B) the FN scale is very high ΛFN = 1016 GeV and the Z2 symmetry is softly
broken.

In scenario A we found that, because of the exact Z2 symmetry, the assumption that
models can be evolved up to 105 GeV requires tan β = v2

v1
≈ 1. In this scenario, it was found

that RG evolution favours light BSM scalars. We could only find anomaly free sets of flavon
charges reproducing realistic quark masses and mixing for type II models. Therefore viable
models in scenario A are type II 2HDMs with tan β ≈ 1. Using RG evolution we were able
to connect the electroweak scale to ΛFN . Doing so we found that, at ΛFN = 105 GeV, the
BSM Higgs bosons remain light and that in many models the lighter Higgs neutral scalar
h decouples from the weak bosons.

In scenario B, where the FN scale is pushed to 1016 GeV, we could find models which
can be evolved up to ΛFN for tan β = 1.1, 5, 25. We found that the larger tan β, the
more constraining the RG evolution requirement. However it appears that models with
tan β = 1.1 require fine tuning between their parameters to be evolved up to 1016 GeV
as we could only find a handful of points using uniform scans. As opposed to scenario
A, the RG evolution requirement allowed for large BSM Higgs masses (up to at least
1200 GeV). In general, we found that models are constrained to have either very small
cβ−α or mH ≈ mh. Moreover in this scenario the BSM Higgs bosons are degenerate in
mass i.e. mH ≈ mA ≈ mH± . We could find anomaly free sets of flavon charges for type
II 2HDMs with tan β = 5 and 25. Therefore viable models in scenario B are type II
2HDMs with tan β = 5, 25. Because the RG evolution requirement is much stronger in this
scenario, the quartic couplings are very small and the RG flow is limited. We found that
during RG evolution the BSM Higgs masses increase and correlations between parameters
observed at the electroweak scale are preserved. In particular, in this scenario no models
exhibited decoupling of the lighter Higgs neutral scalar from the vector bosons at ΛFN .

The models built in this work could be made more realistic. One could for instance
include a mechanism to generate neutrino masses. Then one would have to reproduce the
observed lepton mixing. The PMNS matrix can be included in the FN framework in the
same way as the CKM. Accounting for lepton mixing in this way would simply introduce
additional constraints on the flavon charges. Another idea to further constrain the flavon
charges is to enforce cancellation of the U(1)′×U(1)′×U(1)′ and gravity× gravity×U(1)′
anomalies. When these anomaly cancellation conditions are included, the Gröbner bases
can contain higher order polynomials and hence the charges do not define a plane but a
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more general algebraic curve.
Finally, one could make specific assumptions about the high energy theory and imple-

ment them in the RG evolution analysis by using different boundary conditions for the RG
equations, for instance matching the 2HDM with a high energy theory such as the MSSM.
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A 1-loop Correction to 2-2 Scattering in φ4-theory
We want to calculate

iM(1-loop) =
1

2

4

3

+

1 4

32

+ (3↔ 4)

Since we are looking to extract the UV divergence of this scattering amplitude we can work
in the regime where pi << k and take all external momenta to 0. In that case

iM(1-loop) = 3
2(−iλ)2

∫ d4k

(2π)4
i2

[k2 −m2 + iε]2 ≡
3λ2

2 V (0)

V (0) =
∫ d4k

(2π)4
1

[k2 −m2 + iε]2 = i
∫ d4kE

(2π)4
1

[k2
E +m2]2

where in the last step we have done a Wick rotation k0 → ik0 so that k2 → −k2
E =

−(k2
0 + k2

1 + k2
2 + k2

3). V (0) ∼
∫ d4kE

k4
E

diverges logarithmically. The divergence is extracted
using dimensional regularization.

Vd(0) = i

(2π)4

∫
dΩd

∫ ∞
0

dkEk
d−1
E µ4−d

[k2
E +m2]2 = i

(2π)4
2π d

2

Γ(d2)

∫ ∞
0

dkEk
d−1
E µ4−d

[k2
E +m2]2{

y = k2
E

}
= i

(2π)4
π

d
2

Γ(d2)
µ4−d

∫ ∞
0

dyy
d
2−1

[y +m2]2
{
z = m2

y +m2

}

= i

(2π)4
π

d
2

Γ(d2)
µ4−d

m4−d

∫ 1

0
dzz1− d

2 (1− z) d
2−1 = i

π
d
2

Γ(d2)
µ4−d

m4−d
Γ(d2)Γ(d2 − 2)

Γ(2)

= i

(2π)4π
d
2
µ4−d

m4−dΓ
(d

2 − 2
)

where µ is an energy scale introduced to keep V (0) dimensionless and we have used the
identity

∫ 1
0 dzz

α−1(1− z)β−1 = Γ(α)Γ(β)
Γ(α+β) . The original integral converges in d < 4, so we let

d = 4− ε and find

V4−ε(0) = i

16π2

(
µ

m

)ε
Γ
(ε

2
)

= i

8π2
1
ε

+ i

8π2 ln µ

m
+ finite terms

where we have used
(
µ
m

)ε
= 1 + ε ln µ

m
+ O(ε2) and the Laurent series of Γ around 0,

Γ(z) ≈ 1
z
. Thus our final result is

iM(1-loop) = 3λ2

2 V (0) = i
3λ2

16π2

(1
ε

+ ln µ

m

)
.
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B Anomaly-Free Sets of Charges in Scenario A
Type II, tanβ = 1.1

For this model we find the following Gröbner basis in Sage.

G =
〈
Q1 + d3 − χ2 + 7

3 , u1 − d3 + 2χ2 −
28
3 , d1 − d3 − 1, L1 −

9
4d3 + 1

4e3 + 2χ2 −
43
6 ,

e1 + 9
4d3 −

1
4e3 − 3χ2 + 15

2 , Q2 + d3 − χ2 + 10
3 , u2 − d3 + 2χ2 −

19
3 , d2 − d3,

L2 −
27
4 d3 −

5
4e3 + 8χ2 −

187
6 , e2 + 27

4 d3 + 5
4e3 − 9χ2 + 71

2 , Q3 + d3 − χ2 + 16
3 ,

u3 − d3 + 2χ2 −
16
3 , L3 + e3 − χ2 + 16

3 , χ1 − χ2 + 25
3

〉
The solutions can be parametrized by χ2, d3 and e3

Q1 = χ2 − d3 −
7
3 Q2 = χ2 − d3 −

10
3 Q3 = χ2 − d3 −

16
3

u1 = −2χ2 + d3 + 28
3 u2 = −2χ2 + d3 + 19

3 u3 = −2χ2 + d3 + 16
3

d1 = d3 + 1 d2 = d3

L1 = −2χ2 + 9
4d3 −

1
4e3 + 43

6 L2 = −8χ2 + 27
4 d3 + 5

4e3 + 187
6 L3 = χ2 − e3 −

16
3

e1 = 3χ2 −
9
4d3 + 1

4e3 −
15
2 e2 = 9χ2 −

27
4 d3 −

5
4e3 −

71
2

χ1 = χ2 −
25
3

Type X, tanβ = 1.1

For this model we find the following Gröbner basis in Sage.

G =
〈
Q1 + d3 − χ2 − 5, u1 − d3 + 2χ2 − 2, d1 − d3 + 12, L1 −

9
4d3 + 1

4e3 + 2χ2 −
1
3 ,

e1 + 9
4d3 −

1
4e3 − 3χ2 + 2

3 , Q2 + d3 − χ2 − 4, u2 − d3 + 2χ2 + 1, d2 − d3 + 9,

L2 −
27
4 d3 −

5
4e3 + 8χ2 + 28, e2 + 27

4 d3 + 5
4e3 − 9χ2 −

71
3 , Q3 + d3 − χ2 − 2,

u3 − d3 + 2χ2 + 2, L3 + e3 − χ2 + 16
3 , χ1 − χ2 + 25

3

〉
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The solutions can be parametrized by χ2, d3 and e3

Q1 = χ2 − d3 + 5 Q2 = χ2 − d3 + 4 Q3 = χ2 − d3 + 2
u1 = −2χ2 + d3 + 2 u2 = −2χ2 + d3 − 1 u3 = −2χ2 + d3 − 2
d1 = d3 − 12 d2 = d3 − 9

L1 = −2χ2 + 9
4d3 −

1
4e3 + 1

3 L2 = −8χ2 + 27
4 d3 + 5

4e3 − 28 L3 = χ2 − e3 −
16
3

e1 = 3χ2 −
9
4d3 + 1

4e3 −
2
3 e2 = 9χ2 −

27
4 d3 −

5
4e3 + 71

3
χ1 = χ2 −

25
3

Type Y, tanβ = 1.1

For this model we find the following Gröbner basis in Sage.

G =
〈
Q1 + d3 − χ2 + 7

3 , u1 − d3 + 2χ2 −
28
3 , d1 − d3 − 1, L1 + 3

2d3 + 3
2e3 − 3χ2 + 22

3 ,

e1 −
3
2d3 −

3
2e3 + 2χ2 + 2

3 , Q2 + d3 − χ2 + 10
3 , u2 − d3 + 2χ2 −

19
3 , d2 − d3,

L2 −
21
2 d3 −

5
2e3 + 13χ2 −

115
3 , e2 + 21

2 d3 + 5
2e3 − 14χ2 + 127

3 , Q3 + d3 − χ2 + 16
3 ,

u3 − d3 + 2χ2 −
16
3 , L3 + e3 − χ2 − 2, χ1 − χ2 + 25

3

〉
The solutions can be parametrized by χ2, d3 and e3

Q1 = χ2 − d3 −
7
3 Q2 = χ2 − d3 −

10
3 Q3 = χ2 − d3 −

16
3

u1 = −2χ2 + d3 + 28
3 u2 = −2χ2 + d3 + 19

3 u3 = −2χ2 + d3 + 16
3

d1 = d3 + 1 d2 = d3

L1 = 3χ2 −
3
2d3 −

3
2e3 −

22
3 L2 = −13χ2 + 21

2 d3 + 5
2e3 + 115

3 L3 = χ2 − e3 + 2

e1 = 2χ2 + 3
2d3 + 3

2e3 −
2
3 e2 = 14χ2 −

21
2 d3 −

5
2e3 −

127
3

χ1 = χ2 −
25
3
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C Anomaly-Free Sets of Charges in Scenario B
Type II, tanβ = 1.1

For this model we find the following Gröbner basis in Sage.

G =
〈
Q1 + d3 − χ2 + 3, u1 − d3 + 2χ2 − 10, d1 − d3 − 1, L1 − d3 + 2

3e3 + 1
3χ2 −

2
3 ,

e1 + d3 −
2
3e3 −

4
3χ2 + 5

3 , Q2 + d3 − χ2 + 4, u2 − d3 + 2χ2 − 8, d2 − d3 − 1,

L2 − 8d3 −
5
3e3 + 29

3 χ2 −
133
3 , e2 + 8d3 + 5

3e3 −
32
3 χ2 + 145

3 , Q3 + d3 − χ2 + 6,

u3 − d3 + 2χ2 − 6, L3 + e3 − χ2 + 6, χ1 − χ2 + 9
〉

The solutions can be parametrized by χ2, d3 and e3

Q1 = χ2 − d3 − 3 Q2 = χ2 − d3 − 4 Q3 = χ2 − d3 − 6
u1 = −2χ2 + d3 + 10 u2 = −2χ2 + d3 + 8 u3 = −2χ2 + d3 + 6
d1 = d3 + 1 d2 = d3 + 1

L1 = −1
3χ2 + d3 −

2
3e3 + 2

3 L2 = −29
3 χ2 + 8d3 + 5

3e3 + 133
3 L3 = χ2 − e3 − 6

e1 = 4
3χ2 − d3 + 2

3e3 −
5
3 e2 = 32

3 χ2 − 8d3 −
5
3e3 −

145
3

χ1 = χ2 − 9

Type II, tanβ = 5

For this model we find the following Gröbner basis in Sage.

G =
〈
Q1 + d3 − χ2 + 11

3 , u1 − d3 + 2χ2 −
35
3 , d1 − d3 − 1, L1 − d3 + 2

3e3 + 1
3χ2 −

2
3 ,

e1 + d3 −
2
3e3 −

4
3χ2 + 7

3 , Q2 + d3 − χ2 + 14
3 , u2 − d3 + 2χ2 −

26
3 , d2 − d3 − 1,

L2 − 8d3 −
5
3e3 + 29

3 χ2 − 51, e2 + 8d3 + 5
3e3 −

32
3 χ2 + 167

3 , Q3 + d3 − χ2 + 20
3 ,

u3 − d3 + 2χ2 −
23
3 , L3 + e3 − χ2 + 20

3 , χ1 − χ2 + 26
3

〉

51



The solutions can be parametrized by χ2, d3 and e3

Q1 = χ2 − d3 −
11
3 Q2 = χ2 − d3 −

14
3 Q3 = χ2 − d3 −

20
3

u1 = −2χ2 + d3 + 35
3 u2 = −2χ2 + d3 + 26

3 u3 = −2χ2 + d3 + 23
3

d1 = d3 + 1 d2 = d3 + 1

L1 = −1
3χ2 + d3 −

2
3e3 + 2

3 L2 = −29
3 χ2 + 8d3 + 5

3e3 + 51 L3 = χ2 − e3 −
20
3

e1 = 4
3χ2 − d3 + 2

3e3 −
7
3 e2 = 32

3 χ2 − 8d3 −
5
3e3 −

167
3

χ1 = χ2 −
26
3

Type II, tanβ = 25

For this model we find the following Gröbner basis in Sage.

G =
〈
Q1 + d3 − χ2 + 11

3 , u1 − d3 + 2χ2 −
35
3 , d1 − d3 − 1, L1 − d3 + 2

3e3 + 1
3χ2 −

2
3 ,

e1 + d3 −
2
3e3 −

4
3χ2 + 7

3 , Q2 + d3 − χ2 + 14
3 , u2 − d3 + 2χ2 −

26
3 , d2 − d3 − 1,

L2 − 8d3 −
5
3e3 + 29

3 χ2 − 51, e2 + 8d3 + 5
3e3 −

32
3 χ2 + 167

3 , Q3 + d3 − χ2 + 20
3 ,

u3 − d3 + 2χ2 −
23
3 , L3 + e3 − χ2 + 20

3 , χ1 − χ2 + 23
3

〉
The solutions can be parametrized by χ2, d3 and e3

Q1 = χ2 − d3 −
11
3 Q2 = χ2 − d3 −

14
3 Q3 = χ2 − d3 −

20
3

u1 = −2χ2 + d3 + 35
3 u2 = −2χ2 + d3 + 26

3 u3 = −2χ2 + d3 + 23
3

d1 = d3 + 1 d2 = d3 + 1

L1 = −1
3χ2 + d3 −

2
3e3 + 2

3 L2 = −29
3 χ2 + 8d3 + 5

3e3 + 51 L3 = χ2 − e3 −
20
3

e1 = 4
3χ2 − d3 + 2

3e3 −
7
3 e2 = 32

3 χ2 − 8d3 −
5
3e3 −

167
3

χ1 = χ2 −
23
3
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Type X, tanβ = 5

For this model we find the following Gröbner basis in Sage.

G =
〈
Q1 + d3 − χ2 − 6, u1 − d3 + 2χ2 + 14, d1 − d3 − 1, L1 − d3 + 2

3e3 + 1
3χ2 + 61

3 ,

e1 + d3 −
2
3e3 −

4
3χ2 −

73
3 , Q2 + d3 − χ2 − 5, u2 − d3 + 2χ2 + 1, d2 − d3 + 11,

L2 − 8d3 −
5
3e3 + 29

3 χ2 + 62
3 , e2 + 8d3 + 5

3e3 −
32
3 χ2 −

65
3 , Q3 + d3 − χ2 − 3,

u3 − d3 + 2χ2 + 3, L3 + e3 − χ2 + 1, χ1 − χ2 + 3
〉

The solutions can be parametrized by χ2, d3 and e3

Q1 = χ2 − d3 + 6 Q2 = χ2 − d3 + 5 Q3 = χ2 − d3 + 3
u1 = −2χ2 + d3 − 14 u2 = −2χ2 + d3 − 1 u3 = −2χ2 + d3 − 3
d1 = d3 + 1 d2 = d3 + 11

L1 = −1
3χ2 + d3 −

2
3e3 −

61
3 L2 = −29

3 χ2 + 8d3 + 5
3e3 −

62
3 L3 = χ2 − e3 − 1

e1 = 4
3χ2 − d3 + 2

3e3 + 73
3 e2 = 32

3 χ2 − 8d3 −
5
3e3 + 65

3
χ1 = χ2 − 3

Type X, tanβ = 25

For this model we find the following Gröbner basis in Sage.

G =
〈
Q1 + d3 − χ2 − 6, u1 − d3 + 2χ2 + 14, d1 − d3 − 1, L1 − d3 + 2

3e3 + 1
3χ2 + 61

3 ,

e1 + d3 −
2
3e3 −

4
3χ2 −

73
3 , Q2 + d3 − χ2 − 5, u2 − d3 + 2χ2 + 1, d2 − d3 + 11,

L2 − 8d3 −
5
3e3 + 29

3 χ2 + 62
3 , e2 + 8d3 + 5

3e3 −
32
3 χ2 −

65
3 , Q3 + d3 − χ2,

u3 − d3 + 2χ2 + 3, L3 + e3 − χ2 + 1, χ1 − χ2 + 2
〉

The solutions can be parametrized by χ2, d3 and e3

Q1 = χ2 − d3 + 6 Q2 = χ2 − d3 + 5 Q3 = χ2 − d3 + 3
u1 = −2χ2 + d3 − 14 u2 = −2χ2 + d3 − 1 u3 = −2χ2 + d3 − 3
d1 = d3 + 1 d2 = d3 + 11

L1 = −1
3χ2 + d3 −

2
3e3 −

61
3 L2 = −29

3 χ2 + 8d3 + 5
3e3 −

62
3 L3 = χ2 − e3 − 1

e1 = 4
3χ2 − d3 + 2

3e3 + 73
3 e2 = 32

3 χ2 − 8d3 −
5
3e3 + 65

3
χ1 = χ2 − 2
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Type Y, tanβ = 1.1

For this model we find the following Gröbner basis in Sage.

G =
〈
Q1 + d3 − χ2 −

20
3 , u1 − d3 + 2χ2 −

44
3 , d1 − d3 + 7, L1 −

51
11d3 −

6
11e3 + 57

11χ2 + 983
33 ,

e1 + 51
11d3 + 6

11e3 −
68
11χ2 −

1214
33 , Q2 + d3 − χ2 −

17
3 , u2 − d3 + 2χ2 + 8

3 , d2 − d3 + 4,

L2 −
48
11d3 −

5
11e3 + 53

11χ2 + 667
33 , e2 + 48

11d3 + 5
11e3 −

64
11χ2 −

535
33 , Q3 + d3 − χ2 −

11
3 ,

u3 − d3 + 2χ2 + 11
3 , L3 + e3 − χ2 − 2, χ1 − χ2 −

20
3

〉
The solutions can be parametrized by χ2, d3 and e3

Q1 = χ2 − d3 + 20
3 Q2 = χ2 − d3 + 17

3 Q3 = χ2 − d3 + 11
3

u1 = −2χ2 + d3 + 44
3 u2 = −2χ2 + d3 −

8
3 u3 = −2χ2 + d3 −

11
3

d1 = d3 + 1 d2 = d3 + 1

L1 = −57
11χ2 + 51

11d3 + 6
11e3 −

989
33 L2 = −53

11χ2 + 48
11d3 + 5

11e3 + 667
33 L3 = χ2 − e3 + 2

e1 = 68
11χ2 −

51
11d3 −

6
11e3 + 1214

33 e2 = 64
11χ2 −

48
11d3 −

5
11e3 + 535

33
χ1 = χ2 + 20

3
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