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Abstract

This thesis proposes a new effective Hamiltonian to represent the interactions taking
place in the atomic nucleus. This estimated Hamiltonian is analogous to the Pairing-
Plus-Quadrupole model and this work is focused exclusively on the quadrupole part, with
the aim of describing nuclear structure in a computationally efficient way. We have com-
pared the accuracy of our proposed expression with the one proposed by K. Kumar and
B. Sørensen [Nucl. Phys. A146 (1970) 1][1] studying the root-mean-squared error be-
tween those estimates and the exact formula. We also compare the spectra yielded by
the different expressions. After this study, we conclude that the derived approximations
appear to be more precise than the one proposed by Kumar and Sørensen.

Detta examensarbete föresl̊ar en ny effektiv Hamiltonian för att representera fenomen i
atomkärnor. Denna approximativa Hamiltonian är baserad p̊a Parning-Plus-Kvadrupol-
modellen och detta arbete fokuserar endast p̊a kvadrupoldelen, med målet att ge en
beskrivning av kärnstruktur p̊a ett beräkningseffektivt sätt. Vi har jämfört precisionen
av v̊ar approximation med den av K. Kumar och B. Sørensen [Nucl. Phys. A146 (1970)
1][1] genom att studera root-mean-squared-felet. Vi jämför ocks̊a spektrerna svarande
mot de olika uttrycken. Efter detta arbete är slutsatsen att approximationerna vi härlett
är mer precisa än Kumar-Sørensen-ekvationerna.
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Introduction

The many-body problem is a broad ensemble of problems that can be summed up the
following way : it is difficult (and sometimes impossible) to completely describe a sys-
tem of several physical objects interacting with each other. As a consequence, there are
several versions of the many-body problem, applied to different fields of physics. This
work focuses on the nuclear many-body problem. Indeed, atomic nuclei are made of
neutrons and protons interacting with each other mainly through the strong force and
the Coulomb force. So in order to understand and represent this system, it is necessary
to approach the quantum many-body problem. Density Functional Theory (DFT) and
effective Hamiltonians are methods to tackle this, and are of central importance for the
following work.

The aim of this thesis is to provide an accurate effective Hamiltonian. To do so, we will use
an existing model and modify some of its features. We will then see to what extent those
changes improve the existing model. With this improved version of the Hamiltonian, we
expect to provide an efficient tool to compute the spectrum of atomic nuclei and provide
precise information about the interaction in this system using affordable computer power.

In chapter 1, the effective Hamiltonian used in the thesis is introduced, as well as the
proposed by Kumar and Sørensen in [1]. Chapter 2 will introduce the reasoning behind
the different derivations of each expression, and the process that has been followed to
compare them. The obtained results are presented and discussed in chapter 3, and a
conclusion with outlooks is proposed in chapter 4.
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Chapter 1

Theoretical background

1.1 Density Functional Theory (DFT)

DFT is a powerful tool used to describe numerous physical systems [2]. It relies, as
its name indicates, on the particle density rather than on the potential to compute the
wave function that represents the considered system. This approach is supported by the
Hohenberg-Kohn theorem. This theorem, first derived by Pierre Hohenberg and Walter
Kohn in 1964 [3], states that there exists a unique functional of the particle density of
the system that provides the total energy of the system. So whereas the usual process
is to use the interaction between particles and the Schrödinger equation to find the wave
function of the system, the first step in DFT is to find the density of particles and then
compute the ground state energy as a functional of the density, using the Hohenberg-Kohn
theorem [2]. The Hohenberg-Kohn theorem being a very general result, DFT is a versatile
method. One of the application of those results is the Kohn-Sham algorithm which is a
self-consistent method used first in the case of inhomogeneous electron gases [4], and later
applied to a wider range of problems. The very first ideas of such methods for nuclear
physics, without naming them DFT, were initiated by the work of Tony Skyrme in 1959
[5]. More details about the Kohn-Sham equations and the Kohn-Sham algorithm can be
found in appendix A.

1.2 Effective Hamiltonians

The idea underlying this thesis is to use DFT to calculate the stiffness of a nucleus with
respect to perturbing fields and map to an effective Hamiltonian. On the one hand, the
interaction between the nucleons represents the considered nucleus very accurately, but
on the other hand, it is usually not simple and yields a complicated Hamiltonian. As
a consequence, using it would lead to heavy computations. One alternative approach is
to start with a simpler separable Hamiltonian that represents the effective interactions
of the system and map this one to the corresponding DFT calculations. Behind those
Hamiltonians are approximations that lower the number of parameters of the problem.
In the following subsection, examples of effective Hamiltonians are given. We then focus
on the Pairing-Plus-Quadrupole model, which provides the effective Hamiltonian we use
in this thesis.
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6 CHAPTER 1. THEORETICAL BACKGROUND

1.2.1 Particle-Vibration Coupling (PVC)

As stated previously, it is not possible to consider all nucleons and their different interac-
tions to obtain the behavior of the system analytically. The PVC model, initially called
the Bohr-Mottelson model from the name of the physicists who first proposed it, avoids
considering every nucleon one by one and is rather based on their collective motion. This
idea of collective motion has been first deduced studying the β-decay of a series of nuclei
[6]. The main feature of the model is that it primarily considers the collective vibration of
the whole atomic nucleus [7]. Indeed, the nucleus is considered as a whole and the vibra-
tion is described by parameterizing the radius [8]. This collective motion is then coupled
with the single-particle moving in a mean field [8], resulting in mixing the collective and
single-particle degrees of freedom. The corresponding Hamiltonian can then be divided
in three terms : one for the surface collective motion, one for the particle levels and one
for the coupling between both.

1.2.2 Interacting Bosons Approximation (IBA)

Another way to reduce the number of parameters of the problem is to represent the
different particles in groups. This is the main principle of the IBA model. It indeed relies
on the representation of a pair of fermions by a boson. The excitation of a large number of
fermions and the excitation of a smaller number of bosons are very similar [9]. It has been
proved that they define the same mathematical structure by Akito Arima and Francesco
Iachello in 1975 [10]. This way, the number of particles to treat decreases drastically,
simplifying the representation of the problem.

Both PVC and IBA have been widely used during the past decades and have been proven
to give satisfactory results [11]. However, those methods still struggle to represent certain
specific nuclei, with an odd number of particles or with a single particle on the last level
after a closed shell for instance [11]. The starting point of this work is another effective
Hamiltonian that comes from the Pairing-Plus-Quadrupole model.

1.3 The Pairing-Plus-Quadrupole interaction

The Pairing-Plus-Quadrupole interaction is a model used to describe nucleonic inter-
actions in an atomic nucleus. This tool has been extensively studied by L. Kisslinger
and R. Sorensen [12] and has been built by adding corrections to an average spherical
single-particle potential for quadrupole deformations of the mean field and for the pairing
interaction (hence its name). This work is focused on the quadrupole deformation term.

1.3.1 The Pairing-Plus-Quadrupole Hamiltonian

It appears that two interactions are of particular importance in the atomic nucleus, in
addition to the single-particle potential. One of them is a correlation phenomenon due to
the deformation of the mean field, the other is due to pairing. Consequently, the form of
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the Hamiltonian is the following one (from [13] eq. (7.61)),

H =
∑
k

εkc
+
k ck −

1

2
χ

2∑
µ=−2

: Q+
µQµ : −GP+P, (1.1)

with,

Qµ =
∑
kk′

〈k|P (r)Y2µ |k′〉 c+
k ck′ . (1.2)

The notation using the colons : · : refers to the normal ordering operator. The operators
ck and c+

k are respectively the creation and annihilation operators corresponding to the
single-particle energy εk in the second quantization formalism. The parameter χ is the
strength coefficient of the interaction. The Y2µ functions correspond to the set of the
spherical harmonics for which l = 2 and 〈k| and |k′〉 are both arbitrary states. The radial
function P (r) is called the form factor.

This Hamiltonian is the sum between the interaction of particles in a spherical single-
particle potential (first sum), a deformation interaction (second sum) and a pairing term
(last term). One can simplify the previous equation in the Hartree-Fock-Bogoliubov
(HFB) approximation ([13] eq. (7.64)). Dropping the pairing term (that is not going to
be treated in this thesis), we have the following Hamiltonian,

HHFB =
∑
k

εkc
+
k ck −

1

2
χ

2∑
µ=−2

〈Qµ〉(Q+
µ +Qµ). (1.3)

The HFB approach linearize the Hamiltonian. With this linear quadrupole operator, one
usually uses a form factor that originates from the modified harmonic oscillator potential,
or Nilsson potential [14]. This form for the potential has the advantage to be exactly
solvable. Furthermore, it yields a Nilsson potential as a mean field [15]. However, the
Nilsson potential does not entirely represent the physics of the system. This potential has
a parabolic shape and diverges as one goes away from the center of the nucleus, giving
the interaction an infinite range. To have a model that is closer to reality, one can use
a potential with a finite range. The one considered here is the Woods-Saxon potential.
We then assume that the single-particle term of the Hamiltonian has the shape of a
spherical Woods-Saxon potential. As a consequence, the form factor should represent the
quadrupole deformation of this potential.

1.3.2 Using a Woods-Saxon mean field

We use here an analogous reasoning as the one presented in the previous section. We
consider a new Hamiltonian for the Pairing-Plus-Quadrupole model,

H̃ =
∑
k

ε̃kc̃k
+c̃k −

1

2
χ

2∑
µ=−2

〈Q̃µ〉(Q̃µ

+
+ Q̃µ). (1.4)

We have here already dropped the pairing term that is not in the scope of this thesis.
Here, the operators have the same physical meaning as the one before but do not have
the same form. As stated in subsection 1.3.1, the first sum has the shape of a deformed



8 CHAPTER 1. THEORETICAL BACKGROUND

Woods-Saxon potential. For the form factor P (r), we consider first a potential proposed
by K. Kumar and B. Sørensen in [1]. The idea of Kumar and Sørensen is to propose
a first-order Taylor expansion over the radius parameter r of a deformed Woods-Saxon
potential to which a Coulomb and a spin-orbit term have been added.

V (r) = Wτ

(
f(r)− rβ2Y20(θ)

∂f(r)

∂r

)
+

1

2
(1− τ)

(
HC(r)− rβ2Y20(θ)

∂HC(r)

∂r

)
− 1

2
Wτvs−oλ

2

(
−(p× s) · ∇f(r) + β2Y20(θ)

∂2f(r)

∂r2
l · s
)
,

(1.5)

with

f(r) =
1

1 + exp( r−R0

a
)
,

HC(r) = Ze2

(
1

r
Θ(r −Rc) +

1

Rc

(
3

2
− 1

2

(
r

Rc

)2
)

Θ(Rc − r)
)
,

Wτ = V0 + V1
t ·T
A

,

λ =
~
Mc

(
1 +

1

A

)
.

In this expression, r and θ are respectively the radial and polar parameter in spherical
coordinates. The spherical Woods-Saxon potential is given by f(r). Wτ is the strength of
this interaction. The term V1

t·T
A

makes this factor different for protons and neutrons. We
consider in the following work thatWτ = V0. A and Z are respectively the mass and charge
number of the considered nucleus. HC is an approximation of the Coulomb potential
proposed by Kumar and Sørensen, where e is the elementary charge, Rc the characteristic
radius of the charge distribution, and Θ the Heaviside function. The prefactor 1

2
(1− τ),

with τ the isospin of the nucleons, ensures that the Coulomb potential is only considered
for protons. τ = −1 for protons and τ = 1 for neutrons, in which case the prefactor
cancels. M is the nucleonic mass, and c the speed of light.

The procedure described in [1] to extract the form factor from this potential consists in
keeping the radial function that is multiplied by Y20. This yields the following form factor,

PKS(r) = Wτr
∂f(r)

∂r
+

1

2
(1− τ)r

∂HC(r)

∂r
− 1

2
Wτvs−oλ

2∂
2f(r)

∂r2
(1.6)

Using this form factor is not as mathematically satisfactory as using the Nilsson potential,
for the Hamiltonian is not analytically solvable anymore. However, this potential takes
into account more physics than the modified harmonic oscillator and the interaction has
now a finite range. The objective in the next chapter is to try to improve and refine the
form factor proposed in [1] to have a more accurate quadrupole interaction.



Chapter 2

Methodology

The goal of this thesis is to refine equation (1.6) provided by Kumar and Sørensen by
proposing a different deformed Woods-Saxon potential. This chapter’s main purpose is
then to set and present the different approximations that we propose to improve each
term of the potential, given by equation (1.5). Their precision will then be compared and
evaluated in chapter 3.

2.1 The Woods-Saxon term

The spherical Woods-Saxon nuclear potential is the following one,

VN(r) =
Wτ

1 + exp( r−R0

a
)

= Wτf(r), (2.1)

with a the diffuseness of the potential and R0 the characteristic radius of the nuclear
mass distribution. First, we need to insert deformations in this spherical Woods-Saxon
potential. To do so, we first consider the following parameterization for the radius of the
deformed nucleus (from [16] eq. (6.52)),

R(θ) = R0

(
1 +

N∑
n=2

βnYn0(θ)− β2
n

4π

)
. (2.2)

Now dropping the second order term in β2 and keeping the quadrupole deformations only,
the deformed radius becomes,

R(θ) ' R0(1 + β2Y20(θ)) (2.3)

We insert this formula for the radius into the previous spherical potential, and assume,
that the angular part of this potential can be expanded over the basis of the spherical
harmonics, using the completeness relation,

Vexact(r) =
Wτ

1 + exp( r−R0(1+β2Y20(θ))
a

)
= Wτf(r) +

∑
l>0

βlYl0(θ)fl,ex(r). (2.4)

To compare our approximations efficiently with the exact potential, we need to have
similar shapes for all the expressions. The desired shape consists in a spherical term

9



10 CHAPTER 2. METHODOLOGY

(given by VN) summed to a second term accounting for the deformations. Therefore, we
project the expression on the Y20 spherical harmonics and compare the coefficient in front
of this quadrupole deformation term,

Vproj(r) = Wτf(r) + β2Y20(θ)f2,ex(r, β2). (2.5)

We can then compute the coefficient f2,ex(r, β2) by the following formula,

f2,ex(r, β2) =
1

β2

∫∫
Y20(θ)∗Vexact(r)dΩ

=
1

β2

∫∫
Y20(θ)∗

Wτ

1 + exp( r−R0

a
) exp(−R0Y20(θ)β2

a
)
dΩ

=
2π

β2

∫ π

0

Y20(θ) sin(θ)
Wτ

1 + exp( r−R0

a
) exp(−R0Y20(θ)β2

a
)
dθ.

(2.6)

The approximation in [1] is given by,

VN,KS(r) = VN(r)− β2Y20(θ)r
∂VN(r)

∂r

=
Wτ

1 + exp( r−R0

a
)
− β2Y20(θ)r

Wτ

a(2 + exp( r−R0

a
) + exp(R0−r

a
))

= VN(r)− β2Y20(θ)fN,KS,2(r).

(2.7)

This approximation is a Taylor expansion over r of Vexact. We propose to compare it with
a Taylor expansion over the deformation parameter β2,

VN,T (r) = VN(r)− β2
∂Vexact(r)

∂β2

∣∣∣∣
β2=0

=
Wτ

1 + exp( r−R0

a
)
− β2

R0Y20(θ)Wτ

a(2 + exp( r−R0

a
) + exp(R0−r

a
))

= VN(r)− β2Y20(θ)fN,T,2(r).

(2.8)

After settling these expressions, one can wonder why we consider VN,T and VN,KS while
Vproj is closer to the exact potential and has the desired shape (a spherical term summed
with a deformed term). We will see in section 2.4 later in this chapter that further
computations require the deformation term to be separable, i.e. have a function of r
multiplied with a functoin of θ. Unfortunately, f2,ex mixes both parameters and is not
suitable for further computations.

2.2 The Coulomb term

This part deals with the Coulomb term of equation (1.5). This term is defined the
following way,

VC,KS(r) = HC(r) =
Ze2

4πε0

(
1

r
Θ(r −Rc) +

1

Rc

(
3

2
− 1

2

(
r

Rc

)2
)

Θ(Rc − r)
)
. (2.9)
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We remove the pre-factor depending on τ , assuming that we consider protons and that
it is relevant to consider the Coulomb interaction. The method used to find a suitable
approximation for this term is very similar to the one used in the previous section for the
nuclear potential. However, we will use other expressions and other types of approximation
here. Indeed, we have noted that the Taylor expansion on β2 that has been performed in
the previous paragraph is not efficient for the Coulomb term, for :

• The Coulomb interaction written this way (using the HC function) is valid only
under certain symmetries that the foreseen Taylor expansion does not preserve.

• Expanding over the deformations of the nucleus is not relevant for part of the
Coulomb interaction is defined inside the surface of the nucleus, where the de-
formations only have a small impact.

2.2.1 The exact potential

We will first detail the derivation of the expression that we will consider as the one
representing the exact Coulomb potential. The first step is to consider a density of
protons with a Woods-Saxon shape,

ρ(r) =
N(β2)

1 + exp( r−R0(1+β2Y20(θ))
a

)
. (2.10)

We have used the same parameterization for the radius as a function of θ as before
(equation (2.2)). N is a normalization constant defined by the following constraint,∫∫∫

ρ(r)d3r = Z, (2.11)

with Z the charge number of the considered nucleus. We then have,

N(β2) =
Z

2π

(∫ θ

0

∫ ∞
0

r2 sin(θ)

1 + exp( r−R0(1+β2Y20(θ))
a

)
drdθ

)−1

. (2.12)

We define the Coulomb potential the following way,

VC(r′) =
e2

4πε0

∫∫∫
ρ(r)

| r− r′ |d
3r. (2.13)

In that case, the expansion over the spherical harmonics is slightly more natural than
in the other cases. To do so, we replace the difference between the two vectors in the
denominator by its expansion over the spherical harmonics ([17], equation 5.17.4.21),

1

| r− r′ | =
4π

r′

∞∑
l=0

1

2l + 1

( r
r′

)l( l∑
m=−l

Y ∗lm(Ω)Ylm(Ω′)

)
, for r < r′. (2.14)

We note here that the formula change depending on the sign of the difference. As stated
in [17], the same expansion for r′ < r is obtained by interchanging r and r′ in equation
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(2.14). When inserting equation (2.14) into equation (2.13), one has to be careful about
splitting the integral accordingly. This yields,

VC(r′) =
e2

4πε0

∑
l,m

[
4π

2l + 1

1

r′l+1
Ylm(Ω′)Iinf,l,m +

4π

2l + 1
r′lY ∗lm(Ω′)Isup,l,m

]
, (2.15)

with :

Iinf,l,m =

∫ 2π

0

∫ π

0

∫ r′

0

rl+2 sin(θ)ρ(r)Y ∗lm(Ω)drdθdϕ, (2.16)

Isup,l,m =

∫ 2π

0

∫ π

0

∫ ∞
r′

r1−l sin(θ)ρ(r)Ylm(Ω)drdθdϕ. (2.17)

It is interesting to remark that the coefficients Iinf,l,m and Isup,l,m still depend on r′ and are
valid for any density. In the same fashion as previously, we approximate the whole sum
to the sum between the monopole and the quadrupole term. We obtain the coefficient of
the quadrupole term (dependent on r here as well) with the same process as in section
2.1. The spherical harmonics are orthonormal,∫∫

Ylm(Ω)Y ∗l′m′(Ω)dΩ = δll′δmm′ . (2.18)

This property drastically simplifies the expressions. To be able to compare equation (2.15)
with the other approximations and to remain in the frame of the Pairing-Plus-Quadrupole
interaction, we will project on the monopole and quadrupole terms of the expansion. With
notations that are analogous with the previous part, this yields,

VC,proj(r
′) = Y00(θ′)g0(r′, β2) + β2Y20(θ′)g2(r′, β2). (2.19)

This equation is slightly different from the one for the nuclear potential term for we cannot
have radial functions multiplied by β2. However, g0 and g2 are determined the same way
as before,

g0(r′, β2) =

∫∫
Y ∗00(θ′)VC(r′)dΩ′ =

e2

4πε0
4π(

1

r′
Iinf,0,0 + Isup,0,0), (2.20)

g2(r′, β2) =
1

β2

∫∫
Y ∗20(θ′)VC(r′)dΩ′ =

e2

4πε0

4π

5
(

1

r′3
Iinf,2,0 + r′2Isup,2,0), (2.21)

with

Iinf,0,0 = 2π

∫ π

0

∫ r′

0

r2 sin(θ)ρ(r)Y00drdθ, (2.22)

Isup,0,0 = 2π

∫ π

0

∫ ∞
r′

r sin(θ)ρ(r)Y00drdθ, (2.23)

Iinf,2,0 = 2π

∫ π

0

∫ r′

0

r4 sin(θ)ρ(r)Y20(θ)drdθ, (2.24)

Isup,2,0 = 2π

∫ π

0

∫ ∞
r′

sin(θ)

r
ρ(r)Y20(θ)drdθ. (2.25)

Now that those equations have been set, it is important to make sure that the potentials
that are being compared are exactly equal in the spherical case, i.e. when β2 = 0. To
guarantee that, we set the monopole term to g0(r′, 0). We now build the quadrupole term
for the two approximations that we will compare :

• The expansion made by Kumar and Sørensen

• An approximation made on the density of charge.
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2.2.2 The Kumar-Sørensen expansion

The expansion used in [1] is a Taylor expansion on r of equation (2.9). The quadrupole
term reads,

g2,KS(r) = −r∂HC(r)

∂r

=
Ze2r2

4πε0R3
0

θ(R0 − r) +
Ze2

4πε0r
θ(r −R0).

(2.26)

The complete approximation is then,

VC,KS(r) = Y00(θ)g0(r, 0) + β2Y20(θ)g2,KS(r). (2.27)

2.2.3 The approximation on the density

This approximation relies on an expansion on the density rather than an expansion on the
potential. With this approximated density, the derivation of the potential is very similar
to the one conducted for the exact potential. The proposed expansion for the density is,

ρ(r) = ρ(0)(r) + β2ρ
(2)(r)Y20(θ). (2.28)

The function used for ρ(0) has a Woods-Saxon shape,

ρ(0)(r) =
N(β2)

1 + exp( r−R0(1+β2Y20(θ))
a

)

∣∣∣∣∣
β2=0

=
N(0)

1 + exp( r−R0

a
)
. (2.29)

The normalization factor is the same as the one for the exact potential applied for β2 = 0.
This expansion is a Taylor expansion over the deformation parameter β2. As a conse-
quence, the shape of the deformed density is the derivative of the Woods-Saxon potential,

ρ(2)(r) =
N(0)R0

a(exp( r−R0

a
) + exp(R0−r

a
) + 2)

. (2.30)

This gives rise to a potential composed of two parts,

VC,D(r′) =
e2

4πε0

∫∫∫
ρ(r)

| r− r′ |d
3r

=
e2

4πε0

(∫∫∫
ρ(0)(r)

| r− r′ |d
3r + β2

∫∫∫
ρ(2)(r)Y20(θ)

| r− r′ | d3r

)
.

(2.31)

As we set the monopole term to g0(r′, 0), we can drop the monopole term in the previous
expression (that is equal to g0(r′, 0) up to a constant anyway) and focus on the quadrupole
term. Equation (2.14) and equation (2.18) can be used again to provide simpler expres-
sions. We have,

g2,D(r′) =
e2

4πε0

4π

5

(
1

r′3

∫ r′

0

r4ρ(2)(r)dr + r′2
∫ ∞
r′

1

r
ρ(2)(r)dr

)
. (2.32)

Eventually, the potential using the expansion over the density reads,

VC,D(r′) = g0(r′, 0) + β2Y20(θ′)g2,D(r′). (2.33)
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2.3 The spin-orbit term

Treating the spin-orbit interaction is more difficult than treating the other terms of the
effective Hamiltonian. In the previous sections, we could compare directly the different
proposed expressions for they depended only on spatial coordinates. Their shape was the
only important aspect to take care of. The spin-orbit interaction depends, as its name
indicates it, on the considered orbital and on the spin of the nucleons, making it state-
dependent. It is then necessary to consider a precise existing nucleus for the way the
states are occupied is now an important information. As this interaction has a smaller
impact than the other ones, and as we will compare the proposed expressions for the
Woods-Saxon and Coulomb terms to the deformation factor in [1], we will here keep the
same formula for the spin-orbit interaction as in [1], but we drop the term that depends
on the Y10 spherical harmonics. The expression finally reads,

VSOKS(r) =
1

2
Wτvsoλ

2

(
−(p× s) · ∇f(r) + β2Y20(θ)

∂2f(r)

∂r2
l · s
)
. (2.34)

For further explanations about the treatment of the spin-orbit interaction in [1], a detailed
derivation of this expression is presented in appendix B.

2.4 The contribution of each term

In the previous sections and subsections, the different physical phenomena that are taken
into account in equation (1.5) have been treated separately. Different expressions have
been derived for each interaction. The next step is then to analyze the contribution of
each term within the total formula, but also to compare the Hamiltonian this yields with
other Hamiltonians from other models.
In that case, Hamiltonians will be objects that are very convenient to use. Indeed, choos-
ing a correct basis, one can directly access to their matrix elements, and then diagonalize
the Hamiltonian matrix to have the spectrum of the considered nucleus. We then com-
pare those spectra and plot the energy levels as functions of the deformation using the β
parameter.
We first use the wsbeta code [19] (in Fortran 77 ) to provide the spectrum for a nucleus
under an axially deformed Woods-Saxon potential. In this program, deformation are di-
rectly implemented in the potential in a similar way as the one shown before in equation
(2.4),

V (r, β̂) =
V0

1 + exp(distΣ(r,β̂)
a

)
, (2.35)

with Σ being the surface of the nucleus, and,

β̂ = (β2, β3, β4, β5, β6), (2.36a)

distΣ(r, β̂) = r − c(β̂)R0[1 +
∑
λ

βλYλ0(cos θ)]. (2.36b)

This then provides the energy levels of the system in ascending order as an output, but
also considers higher orders than quadrupole for the deformations. To remain in the scope
of the quadrupole deformations, only β2 is kept non-zero.
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The corrections previously derived are added to a code named hosphe [20] (in Fortran
90 ). This program provides the matrices of the desired operators. Provided a basis of
states φnLM = RnL(r)YLM(θ, ϕ) and an operator with the shape A = f(r)YL′′M ′′(θ, ϕ), it
computes,

〈φn′L′M ′ |A |φnLM〉 =

∫
R∗n′L′f(r)RnLr

2dr ×
∫∫

Y ∗L′M ′YL′′M ′′YLM sin θdθdϕ. (2.37)

The angular integral can be computed rather simply using the addition theorem, merging
two spherical harmonics into a sum of spherical harmonics weighted by the Clebsch-
Gordan coefficients. The radial part is computed in the code using the Gauss-Hermite
quadrature, the RnL functions having Gaussian shapes. We then compute the matrix
elements using the terms derived in section 2.1 and 2.2.
The Hamiltonian computed by wsbeta is,

HWSB = T + VdefWS +
1

2
(1− τ)VdefC + Vso, (2.38)

with T the kinetic energy operator,

T =
p2

2M
. (2.39)

The Hamiltonian computed by hosphe is the one that we build with the most efficient
approximations derived in section 2.1 and 2.2. It has the following form,

HHOSPHE = T + VsphWS +
1

2
(1− τ)VsphC + β2(VdefWS(r) + VdefC(r) + Vso). (2.40)

The index def refers to the deformed version of the formula for the potential (either
Coulomb with C or Woods-Saxon with WS ) while the index sph refers to the formula in
the spherical case. The index so stands for spin-orbit. For HWSB, the deformations are
directly included in the different potentials, while the potentials used in HHOSPHE only
depend on the radius (in an analogous way as the form factor defined in [1]) and are then
multiplied by the deformation factor.
Provided that the diffuseness, the radius parameters and the depth of the potential are
the same for both programs, it is possible to first compare the results yielded by both
codes for a spherical and axially deformed Woods-Saxon potential (even though the used
formulas are the same, the results can slightly differ, due to the fact that the integrals are
numerically calculated). We can then use the output of each program to visualize on the
spectrum :

• The contribution of each term with respect to the deformed Woods-Saxon term only.

• The contribution of each term with respect to all the interactions, i.e. Woods-Saxon,
Coulomb and spin-orbit.



Chapter 3

Results and discussion

3.1 Comparing the different estimates

After setting up all the expressions for the different term of equation (1.5), we can even-
tually properly compare the different approximations proposed earlier. All this has then
been implemented in Python. To apply the previous results, it is necessary to choose a
precise nucleus on which the calculations will be performed. For the following computa-
tions, the chosen nucleus is 56

28Ni28. As far as numerical values are concerned, we compute
R0 using [14],

R0 = r0A
1
3 , (3.1)

with r0= 1.2 fm and A the mass number. This gives R0 '4.59 fm. We set a =0.57 fm for
the diffuseness [14], and the depth of the potential Wτ = −49.6 MeV [19].

To compare the Kumar-Sørensen formula for the Woods-Saxon term (Eq. (2.7)) and
the proposed expansion (Eq. (2.8)) with the projected potential (Eq. (2.6)), we use the
root-mean-squared (RMS) error between both expressions. For the following expression
of the RMS error (denoted γ here), we consider an array ~r of length η to represent the
continuous parameter r. This yields the following equations,

γKS =

√√√√1

η

η∑
i=1

(Vproj(ri, θ0, β2)− VN,KS(ri, θ0, β2))2, (3.2)

γT =

√√√√1

η

η∑
i=1

(Vproj(ri, θ0, β2)− VN,T (ri, θ0, β2))2. (3.3)

We have set θ to a constant value θ0 to compare the radial part of each expression. Because
of the way we constructed the term in equation (2.6), the RMS error depends in both
cases on β2. We then plot the error as a function of β2. The approximation providing the
smallest error is considered more accurate than the other.
In the particular case of the Woods-Saxon term, all compared expressions are the same
for β2 = 0. It is then possible to also consider the RMS error of those first order terms.
Equations (3.2) and (3.3) then transforms in the following way, to see how the terms of

16
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the expansion evolve with respect to the exact decomposition,

γ
(2)
KS =

√√√√1

η

η∑
i=1

(f2,ex(ri, β2)− fN,KS,2(ri))2, (3.4)

γ
(2)
T =

√√√√1

η

η∑
i=1

(f2,ex(ri, β2)− fN,T,2(ri))2. (3.5)

The points in ~r are equally spaced in every computations. For the RMS error on the
Woods-Saxon potential, we set η = 800 and the range of values for r goes from 0 fm to
2R0 fm. For the RMS error on the Coulomb potential, we have η = 300 and the range of
values r goes from 0 to 12 fm.

3.1.1 The Woods-Saxon term

Comparison using the RMS error

We compare the exact Woods-Saxon expansion (Eq. (2.4)) and the projected one (Eq.
(2.5)), with the one obtained using the proposed Taylor expansion (Eq. (2.8)) and the
formula proposed by Kumar and Sørensen [1] using the RMS errors for the first order
terms using equations (3.4) and (3.5), and for the whole potential using equations (3.2)
and (3.3).

In figure 3.1, we can first see the difference between both estimates and the projection
as functions of the radius on the following plot for β2 = 0.2 and θ = 0. To have a
more global view of the look of those potentials, 3D plots for the whole range of θ values
are provided in appendix C. To observe more clearly how those expansions act on the
deformed Woods-Saxon potential, figure 3.2 shows the first order terms f2,ex, fN,KS,2 and
fN,T,2 as functions of the radius.
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Figure 3.1: Deformed Woods-Saxon potential as a function of the radius computed in the case of
56Ni. The blue line corresponds to the potential as computed in [1], the orange line corresponds
to equation (2.8), the green one to the projected potential, and the red one to the exact potential,
for the particular value β2 = 0.2 and θ = 0.
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Figure 3.2: First order terms as a function of radius computed in the case of 56Ni. The blue
line corresponds to the first order term from [1], the orange line corresponds to the first order
term of the Taylor expansion over β2, the green one to the first order term of the projection for
β2 = 0.2, and the red one to the first order term of the projection for β2 = 0.6.

We can see that, as the deformation increases, the bell goes lower and broader at its base.
The approximations do not depend on β2 and as a consequence, the curve remains the
same. This explains part of the behavior of the RMS errors shown in figure 3.3 and 3.4.
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Figure 3.3: RMS error of the first order terms computed in the case of 56Ni as a function of β2.
The blue line corresponds to the precision of the term derived in [1]. The orange line corresponds
to the precision of fN,T,2. Both are compared to f2,ex.

One can see on figure 3.3 that the error for the Taylor expansion over β2 is lower than the
one for the expression from [1] for β2 < 0.2. This trend is inverted for prolate deformations
greater than 0.2. One can see in figure 3.4 that the RMS error for both approach goes
to zero for β2 = 0. All expressions are then exactly equal in the spherical case. Apart
from the spherical case, the error increases with the deformation. A very similar behavior
can be seen in figure 3.4 : for oblate deformations, the error for the proposed expansion
is smaller than the error for the expression provided by [1]. For the range of prolate
deformations greater than 0.2, the Kumar-Sørensen formula is more precise than the
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proposed expansion. We can see this behavior in figure 3.3. Therefore this trend that
appears in the comparison of the first order terms propagates in the comparison of the
whole potential.
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Figure 3.4: RMS error of the total Woods-Saxon potential computed in the case of 56Ni as a
function of β2. The blue line corresponds to the precision of the expression used in [1]. The
orange line corresponds to the precision of VN,T . Both are compared to Vproj .

Figure 3.3 and figure 3.4 show different aspects of both the Kumar-Sørensen correction
and the proposed Taylor expansion. Figure 3.3 exposes the error for the first order terms
only. We can remark that the curves cross in one point. This shows that the expressions
behave differently for prolate and oblate shapes. The error on the Taylor expansion on
deformation is smaller than the error on the Kumar-Sørensen formula on a wider range
of value (for −0.6 ≤ β2 ≤ 0.2). This is a strong argument to conclude that the proposed
expansion is a more precise estimate than the one proposed by Kumar and Sørensen. This
trend is confirmed by figure 3.5.
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(b) Close-up around β2 = 0.

Figure 3.5: RMS error of the total Woods-Saxon potential computed in the case of 56Ni as a
function of β2. The blue line corresponds to the precision of the expression used in [1]. The
orange line corresponds to the precision of VN,T . Both are compared to Vexact.
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The behavior of both errors with respect to Vexact is very similar to the ones with respect
to Vproj. The difference here is that the crossing occurs for a smaller prolate deformation,
β2 = 0.067. The proposed expansion has still a smaller error on a larger range of values
than the Kumar-Sørensen formula, supporting the proposed expansion as a better esti-
mate. One can also note from figure 3.5b that the error on VN,T is smoother than the one
on VN,KS, and can then be handled more easily in later computations.

To obtain the previous figures, it was necessary to set some parameters, namely the angle
θ and the charge and mass number Z and A. The angle θ is in the spherical harmonics
which is multiplied to the radial part of the expression. This choice of numerical value
can be justified by the fact that the potentials is at its most deformed for θ = 0. This can
be seen in figure C.7 in appendix C. As far as charge and mass number are concerned,
they only have a minor influence on the proposed results as only A is used in the different
formulas to compute the radius R0.

Visualization of the expansion

To visualize even more directly how the Taylor expansion over the deformation works
compared to the exact deformed potential, one can look at a contour representation of
the potentials for several values of β2. This is represented in figure 3.6 (see next page).

The left column shows the contour plots for the exact deformed potential, namely using
the equation,

Vexact(r) =
Wτ

1 + exp ( r−R0(1+β2Y20(θ))
a

)
.

The right column shows the contour plots for the potential VN,T from equation (2.8). We
can first remark that the exact potential deforms faster than the approximated one. As a
consequence, both potentials are very similar close to the spherical shape (β2 < 0.2) and
look very different as the deformations increase. This is consistent with the fact that the
RMS error in figure 3.4 increases with β2.
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Figure 3.6: Contour plots of the Woods-Saxon potential for 56Ni. Left column : exact deformed
Woods-Saxon potential. Right column : Taylor expansion over the deformation.
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We can also see the difference between prolate and oblate values for the deformation
parameter. The same contour plots are provided for an oblate deformation in figure 3.7 :
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Figure 3.7: Contour plots of the Woods-Saxon potential for oblate deformations for 56Ni. Left
column : exact deformed Woods-Saxon potential. Right column : Taylor expansion over the
deformation.

Eventually, to have a complete and direct illustration of the potentials, the 3D equivalents
of the contour plots in figure 3.6 are shown in appendix C.

3.1.2 The Coulomb term

To compare the Coulomb term, the same method as for the Woods-Saxon term has been
used. The formulas for the RMS error presented in the beginning of chapter 3 have been
adapted to the Coulomb potential. The same logic is followed to analyze the performace
of the considered approximations.

In figure 3.8, we can first see the total Coulomb potential as a function of the radius for
θ = 0 and β2 = 0.2.
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Figure 3.8: Coulomb potential as a function of the radius computed in the case of 56Ni. The blue
line corresponds to the potential as computed in [1], the orange line corresponds to equation
(2.33), and the green one to the projected potential, for the particular value β2 = 0.2 and θ = 0.
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One can see in figure 3.9 the quadrupole terms of each expression, providing a clearer
view of each estimate’s differences :
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Figure 3.9: First order terms for the Coulomb potential as a function of radius computed in
the case of 56Ni. The blue line corresponds to the first order term from [1], the orange line
corresponds to the quadrupole term of the proposed decomposition over the density, the green
one to the quadrupole term of the projection over the exact density for β2 = 0.2, and the red
one to the quadrupole term of the projection over the exact density for β2 = 0.6.

The green and the orange curves overlap, which makes it almost impossible to distinguish
one from the other. In a similar fashion as figure 3.2, the curve for both approximations
remains the same as they do not depend on the deformation parameter, and as it grows,
the bell for g2 broadens and becomes more and more different from g2,D, and closer to
g2,KS. This is confirmed by the shape of the RMS errors exposed in figure 3.10 and 3.11.
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Figure 3.10: RMS error of the quadrupole terms computed in the case of 56Ni as a function
of β2. The blue line corresponds to the precision of the term derived in [1]. The orange line
corresponds to the precision of g2,D.
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Figure 3.11: RMS error of the total Coulomb potential computed in the case of 56Ni as a function
of β2. The blue line corresponds to the precision of the expression used in [1]. The orange line
corresponds to the precision of VC,D.

The interpretation of those results is very similar to the one proposed for the Woods-Saxon
term, as the method used in both cases is the same. In the same way as for the Woods-
Saxon potential, one can first remark that, in figure 3.11, both RMS error for the total
potential go to zero for β2 = 0. As stated previously, this assures that all proposed models
represent exactly the spherical case. The evolution of the error for the Kumar-Sørensen
formula and the expansion over the density are very similar as they both increase with
the deformations.

As noted previously, figure 3.10 and figure 3.11 shows different features of the proposed
expansion over the density and of the estimate of the Coulomb potential proposed in [1].
The error on the quadrupole terms shown in figure 3.10 increases as β2 increases for the
expansion over the density and decreases for the Kumar-Sørensen formula. This is due
to the fact that g2,KS and g2,D are β2-independent, as shown previously. The quadrupole
term of the exact potential g2 then changes with β2 as the other quadrupole terms remain
the same. As β2 goes from oblate to prolate, the curve for g2 goes from the negative values
to the positive ones, getting closer and closer to g2,KS. This explains why the error on
g2,KS is strictly decreasing. For the expansion on the density, g2 gets closer and closer to
g2,D as it goes closer to a spherical shape, explaining the minimum for the error for small
deformations.

We can see in both figure 3.10 and 3.11 that the curve corresponding to the Kumar-
Sørensen formula is always above the one corresponding to the expansion over density.
Therefore, one can conclude that the Taylor expansion over the deformation on the density
is a better estimate for the Coulomb interaction than the one proposed in [1].

One can finally remark that, as it was the case in the section 3.1.1, choosing a numerical
value for the angle θ and picking a particular nucleus (so numerical values for A and Z)
was necessary. One can apply the same arguments as in section 3.1.1 for the choice of θ.
56
28Ni28 is a special nucleus in the sense that 28 is a magic number, making 56Ni doubly
magic. This nucleus appears to be stable for a spherical shape [21]. One can try to see
whether a heavier nucleus which would be stable for a deformed shape would still behave
in the same way as 56Ni. We then perform the same computations on 166

66 Dy100, which is
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a heavier nucleus stable for a prolate shape (β = 0.35) [21]. We keep the same diffuseness
as for 56Ni and change R0 according to equation (3.1), which yields R0 ' 6.59 fm. We
also keep η = 300 bur the radius now goes from 0 fm to 15 fm.

Figure 3.12 shows the RMS error for the potentials computed with 166Dy.
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Figure 3.12: RMS error of the total Coulomb potential computed in the case of 166Dy as a
function of β2. The blue line corresponds to the precision of the expression used in [1]. The
orange line corresponds to the precision of VC,D.

Figure 3.12 and figure 3.11 present a very similar shape for both errors, the only difference
being the magnitude. This is an encouraging sign that the proposed approximations
would behave in the same way over the whole nuclear landscape. Further investigations
are necessary to prove this statement, performing those computations with more nuclei
for instance.

3.2 Comparing spectra

The different formulas introduced in sections 2.1 and 2.2 have been compared using the
RMS error. We now compare them using the spectra they yield. As explained in section
2.4, we compute the matrix element of the Hamiltonian built with these expression and
diagonalize the resulting matrix,

HHOSPHE = T + VN + VC,KS + VSOKS

= T + V sph
τ (r) + β2Y20(0)(−fN,2(r) + g2,KS(r) + f2,SOKS(r)).

(3.6)

We eventually plot the eigenvalues as a function of the deformation parameter β2. For
the numerical values of the different parameters, we use the so called universal parame-
terization from [19].

This process shows the impact of each term on the total Hamiltonian. We implement the
derived approximations and generate the corresponding spectra in hosphe, and compare
them with the complete one provided by wsbeta. On the one hand, wsbeta, as described
in section 2.4, gives the spectrum of considered nucleus under a deformed Woods-Saxon
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using the formulas that we consider exact. On the other hand, hosphe’s structure enables
to implement the desired operators, under the condition that they have the required form,
as mentioned in section 2.4. Therefore, using these two programs, we can compare the
approximations to their corresponding exact versions.

We have implemented in hosphe the Kumar-Sørensen formula and the proposed ex-
pansion for the Woods-Saxon term (equations (2.7) and (2.8)).However, the proposed
expansion over the density for the Coulomb potential (equation (2.33)) contains several
integrals. Fortran does not provide a ready-made routine for integration, and the better
options and algorithms to do so have not been investigated. Python does (subpackage
scipy.integrate) which gives us the possibility to compare the approximations that con-
tains integrals. We therefore kept the Kumar-Sørensen formula for the Coulomb term for
the implementation in Fortran.
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Figure 3.13: Spectra for 56Ni under a deformed Woods-Saxon potential calculated with wsbeta.
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Figure 3.14: Spectra for 56Ni calculated with hosphe using VN,T .

Both programs provide the 92 first states of the system. The levels are degenerated for
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β2 = 0 and split when the system is deformed. We can see right away, thanks to this
feature if the computed spectra have the appropriate aspect.

We notice here that the levels in the spectra provided by hosphe are bent in the other
direction, comparatively to the spectra computed with wsbeta. This feature seems to
be consistent for the whole spectrum. This difference can be due to a different treatment
of volume conservation in both cases and to the differences in implementation of the
deformations in both codes. To cancel this effect and have more direct comparisons,
we can substract the first level to all the other levels. This way, all the levels will be
straightened, and the first level will be completely flat, and all the energies will be shifted
so that the first level is at exactly 0 MeV. This is shown in figures 3.15 and 3.16.
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Figure 3.15: Spectra for 56Ni under a deformed Woods-Saxon potential calculated with wsbeta,
correcting with the first level.
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Figure 3.16: Spectra for 56Ni calculated with hosphe using the proposed expressions, substract-
ing the first level, computed using VN,T .

Figure 3.15 and 3.16 present the same features. The crossing of every level for β2 = 0
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is visible and the bound states (those under 40.6 MeV, which is the absolute energy of
the most bound particle) have the same energies. The levels split when the nucleus is
deformed. As a consequence, levels cross each other again for certain values of β2 6= 0.
We can then compare the different expressions analyzing the intersections of the levels
for deformed shapes. The spectra for neutrons for 56Ni computed using VN,T and VN,KS
are shown in figure 3.17.
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Figure 3.17: Spectra for 56Ni for neutrons calculated with hosphe using VN,T or VN,KS .
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Figure 3.18: Spectra for 56Ni for protons calculated with hosphe using VN,T or VN,KS .The
Coulomb term is VC,KS .

We can see in figure 3.17a that for oblate deformations, the levels cross each other for
a lower β2. We can take the example of the crossing at β2 = −0.5, E = 12 MeV. In
figure 3.17b, this intersection can be seen at another point in the spectra, for β2 = −0.6,
E = 12 MeV. Figure 3.17a shows then more agreement with figure 3.15a, where the
same crossing happens for β2 = −0.5 as well, than figure 3.17b. This similarity can be
observed for more crossings for high oblate deformations (β2 < −0.4). This is another
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evidence that the proposed expansion VN,T for the Woods-Saxon term is closer to the
exact potential than the one proposed by Kumar and Sørensen in [1], VN,KS. We perform
the same comparison for protons, where the Coulomb interaction acts on the system. This
is shown in figure 3.18. For both spectra, the Coulomb term is given by VC,KS.

We can here give the same interpretation as the one proposed for figure 3.17. A crossing
also appears at the same location as for neutrons for β2 = −0.5, E = 10 MeV in figure
3.18b. This intersection occurs for β2 = −0.6, E = 10 MeV, in figure 3.18a. Figure 3.15b
displays it for β2 = −0.5, which constitues an additional argument in favor of the Taylor
expansion over β2.

This particular intersection of the levels, both for neutrons and protons, is just an example
to show the type of observations that can be done on the spectra to compare the different
expressions. There exist several other crossings of the same type at other locations on the
spectra where the same analysis is possible. For example, the intersection for β2 = −0.4,
E = 18 MeV, in figure 3.15b is visible at the same location in figure 3.17a, but is shifted
towards higher β2 in figure 3.17b, supporting VN,T as a more precise approximation.

We have now considered the spectra in the particular case of a double magic nucleus,
56Ni. We can also consider a heavier nucleus, stable for a deformed shape. A nucleus with
these features is 166Dy. Figure 3.19 shows the spectra computed with wsbeta and figure
3.20 shows the spectra computed with hosphe (see next page).
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Figure 3.19: Spectra for 166Dy under a deformed Woods-Saxon potential computed with ws-
beta.
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Figure 3.20: Spectra for 166Dy calculated with hosphe using VN,T for the Woods-Saxon term.

Qualitatively, we can see that the behavior of the states around the spherical shape in
figure 3.20 is rather similar to the one in figure 3.19 and to the one that can be observed on
the spectra for 56Ni. But for larger prolate deformations (β2 > 0.4), all the levels tend to be
shifted towards lower energies on the spectrum yielded by hosphe. This can be explained
by the fact that, for a larger A, the Woods-Saxon potential computed using the Kumar-
Sørensen approximation is less smooth than for 56Ni. This can be seen in figure C.5 in
appendix C. The potential shows two sharp wells for high prolate deformations. The first
levels would then be at the bottom of the potential wells, explaining this displacement.
This might be a sign that, for more exotic or heavier nuclei, the range of validity of the
model is smaller than the one of lighter nuclei. For larger nuclei, the wells become too
sharp for large deformations and the expansion does not estimate the exact potential in a
satisfactory way. On the one hand, one could imagine solving this issue considering higher
order terms, in β2

2 or even in β3
2 , in the Taylor expansion. On the other hand, one could
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consider more multipole deformations to make the projected potential smoother even for
heavy nuclei. This latter option looks more efficient according to figure C.4 in appendix C.
This figure displays the Woods-Saxon potential computed using the projected expression
Vproj. The first order term of Vproj includes the deformations directly in the exponential,
and therefore includes all the orders of β2. The potential in figure C.4 also shows those
two sharp wells, which would support the idea that adding more multipole deformations
will help smoothen the potential. Adding Y40 and Y60 terms is direct if one follows the
same process as in this thesis. Testing the resulting expressions on a greater number of
nuclei constitutes an interesting sequel to this thesis.



Chapter 4

Conclusion and outlook

The aim of this work was to investigate a new expression for an effective Hamiltonian
that could then be mapped to DFT. The starting point of this operator is the Pairing-
Plus-Quadrupole model and a formula for the quadrupole part proposed by Kumar and
Sørensen in [1]. The idea is then to propose an alternative to each term of the Kumar-
Sørensen formula, which are the Woods-Saxon term, the Coulomb term and the spin-orbit
term. Those new formulas would provide a more precise description of the physical phe-
nomena and would include the physics related to nuclear deformations. Those new expres-
sions and the one from [1] remain approximations. So to determine what approximation
is the most accurate, we compare the proposed expression and the Kumar-Sørensen ex-
pression for it to a projection of the exact formula for each interaction. This comparison
has been carried out first using the RMS error, depending on the deformation, between
each expression and the projection of the exact potentials. To compare the effect of dif-
ferent terms in the full expression, we plotted the spectra with and without the Coulomb
interaction and compared the behavior of the energy levels with deformation to exact
results.

After this process and the obtained results, we are inclined to think that the Taylor ex-
pansion over the deformation parameter is a good estimate of the deformed Woods-Saxon
term, and that the Taylor expansion over the deformation for the proton density yields
a good estimate for the Coulomb term. This leads to the following modified quadrupole
potential,

VQ(r, θ) =
1

2
(1− τ)HC(r) +Wτ (f(r)− 1

2
vsoλ

2(p× s) · ∇f(r))

+ Y20(θ)β2

(
−R0Wτ

∂VT (r)

∂β2

∣∣∣∣
β2=0

+
1

2
(1− τ)g2,D(r) +

1

2
Wτvsoλ

2∂
2f(r)

∂r2
l · s
)
,
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with,

f(r) =
1

1 + exp( r−R0

a
)
,

VT (r) =
Wτ

1 + exp( r−R0(1+β2Y20(θ))
a

)

HC(r) =
Ze2

4πε0

(
1

r
Θ(r −Rc) +

1

Rc

(
3

2
− 1

2

(
r

Rc

)2
)

Θ(Rc − r)
)
,

g2,D(r) =
e2

4πε0

4π

5

(
1

r3

∫ r

0

q4ρ(2)(q)dq + r2

∫ ∞
r

1

q
ρ(2)(q)dq

)
,

Y20(θ) =
1

4

√
5

π
(3 cos2(θ)− 1).

Kumar and Sørensen propose an expression that has a spherical part completed with a ra-
dial correction multiplied by the deformation parameter and the Y20 spherical harmonics.
This feature is preserved in VQ, which makes it suitable to be implemented in hosphe.
We can now extract the form factor from VQ in the same way as in [1]. It yields the
following result,

P (r) = R0Wτ
∂VT (r)

∂β2

∣∣∣∣
β2=0

+
1

2
(1− τ)g2,D(r) +

1

2
Wτvsoλ

2∂
2f(r)

∂r2
l · s

To have an even more complete study, one could try to implement the expansion over the
density for the Coulomb term. This can be done using a numerical method or quadrature,
or by tabulating the values of the integrals for several nuclei. To push the computations
further, one could try to perform the same computations varying the angle θ. This way, it
would be possible to investigate the behavior of the error on the different approximations
on a 2D space, giving a more complete view of the different expressions. As explained
in section 3.2, adding other multipole terms and testing the expressions on more nuclei
would help extending the range of validity of the proposed expressions. Finding a more
efficient formula for the spin-orbit interaction by finding a physical situation to test the
model would eventually complete the modified quadrupole force. The final step to have
a complete approach to the Pairing-Plus-Quadrupole Hamiltonian is to add the pairing
potential and, if possible, refine it as well.
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Appendix A

The Kohn-Sham algorithm

The Hohenberg-Kohn theorem sets the fundamental principle of DFT. The next step is
then to find a convenient and flexible way to apply this result to actual physical problems.
This was made possible by the Kohn-Sham equations and algorithm, developed by Walter
Kohn and Lu Jeu Sham in 1965 [4].

The Kohn-Sham equations can be derived from the equations written in the previous
paragraph. The following calculations are made in the case of an electron gas. We can
first write,

T [n] = Ts[n] + Tc[n], (A.1)

U [n] ' UH [n]. (A.2)

All quantities are functionals of the electronic density n. One can note that the kinetic
energy operator used previously in chapters 2 and 3 corresponds to Ts. The definition
of T in this appendix differs from the one used in the rest of the thesis. The kinetic
energy of the system T can be separated in two parts : one representing non-interacting
particles (with the index s for single-particles), and one representing the rest (with the
index c for correlation). UH is here the interaction energy computed under the Hartree
approximation (see [2] for more details about the exact shape of those functionals). We
then write the total energy of the system,

E[n] = T [n] + U [n] + V [n]

= Ts[n] + UH [n] + Exc[n] + V [n]

=

∫
v(r)n(r)dr +

1

2

∫∫
n(r)n(r′)

| r− r′ | drdr
′ + Exc[n] + Ts[n].

(A.3)

Exc is called the exchange-correlation energy. It comprises the correlation part of the
kinetic energy and the difference U [n] − UH [n]. The single-particle part of the kinetic
energy depends on the single-particle orbitals of the system. We can assume the following
shape for the exchange-correlation energy,

Exc[n] =

∫
n(r)εxc(n(r))dr, (A.4)

with εxc the exchange-correlation energy for one electron of a uniform electron gas. This
quantity is accessible from what is known of uniform electron gas. Then, from equation
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(A.3) and equation (A.4), we can write,

ϕ(r) = v(r) +

∫
n(r′)

| r− r′ |dr
′, (A.5)

µxc(n) =
dnεxc
dn

, (A.6)

(−1

2
∆ + [ϕ(r) + µxc(n(r))])ψi(r) = εiψi(r), (A.7)

n(r) =
n∑
i=1

| ψi(r) |2 . (A.8)

Those four equations are known as the Kohn-Sham equations. Equation (A.7) is the
single-particle Schrödinger equation. This derivation is taken from [4] and further math-
ematical details and notations can be found there as well.

The great interest of those equations is that they introduce at the same time a self-
consistent loop to solve them :

1. Assume a density n(r)

2. Construct ϕ from equation (A.5)

3. Construct µxc from equation (A.6)

4. Construct n(r) from equations (A.7) and equation (A.8)

5. Repeat steps 2, 3 and 4 until convergence

These steps and equations can be adapted for a big amount of different cases. This loop
can be directly programmed on a computer to then provide solutions (exact in some
precise cases) to a wide range of physical problems.



Appendix B

The Kumar-Sørensen formula for the
spin-orbit interaction

The spin-orbit interaction being state-dependent, it requires some additional efforts to
find a simple expression for it. This work has been made by Kumar and Sørensen in [1].
So to understand in a better way the form the expression for the spin-orbit interaction in
[1], a derivation is proposed in this appendix.

The main tool to reach the expression proposed by Kumar and Sørensen is a Taylor
expansion over r of,

VSO(r) = −1

2
Wτvsoλ

2(p× s) · ∇f(r). (B.1)

This yields,

VSOKS(r) = VSO(r)− βr∂VSO(r)Y20(θ)

∂r

= VSO(r) +
1

2
rWτvsoλ

2β(p× s) · ∇
(
∂f

∂r
Y20(θ)

)
.

(B.2)

For an operator of the shape (A × B) · C, all circular permutation are equal. We apply
this property to (p× s) · ∇ and obtain,

VSOKS(r) = VSO(r) +
1

2
rWτvsoλ

2β(∇× p) · s
(
∂f

∂r
Y20(θ)

)
. (B.3)

We then develop the ∇ operator,

VSOKS(r) = VSO(r) +
1

2
rWτvsoλ

2β

(
Y20(θ)

∂2f

∂r2
(nr × p) · s +

1

r

∂Y20

∂θ
(nθ × p) · s∂f

∂r

)
.

(B.4)
We eventually use the following the fact that p = l× r = l× nr) to have,

(nr × p) · s =
1

r
l · s, (B.5)

yielding consequently,

VSOKS(r) = VSO(r) +Wτvsoλ
2β

(
1

2
Y20(θ)

∂2f

∂r2
l · s +

3

2

√
5

4π
cos θ sin θ(nθ × p) · s∂f

∂r

)
.

(B.6)
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Appendix C

3D plots of the Woods-Saxon
potential

This appendix exposes the 3D version of the contour plots in figure 3.6. The figures
showing the Woods-Saxon potentials for 166Dy have also been added.

We can clearly see the sharper shape of the potential when it is computed using the Taylor
expansion over the deformation, while the exact potential is a lot smoother. We can see
in figure C.6 and figure C.7 those potentials as projected over r and θ to see more clearly
their dependence on those parameters.

40



41

y (fm)

−10
−5

0
5

10

z
(fm

)

−10

−5

0

5

10

V
ex
a
ct

(M
eV

)

−40

−30

−20

−10

−40

−30

−20

−10

(a) β2 = 0

y (fm)

−10
−5

0
5

10

z
(fm

)

−10

−5

0

5

10

V
ex
a
ct

(M
eV

)

−40

−30

−20

−10

−40

−30

−20

−10

(b) β2 = 0.2

y (fm)

−10
−5

0
5

10

z
(fm

)

−10

−5

0

5

10

V
ex
a
ct

(M
eV

)

−40

−30

−20

−10

−40

−30

−20

−10

(c) β2 = 0.4

y (fm)

−10
−5

0
5

10

z
(fm

)

−10

−5

0

5

10

V
ex
a
ct

(M
eV

)

−40

−30

−20

−10

−40

−30

−20

−10

(d) β2 = 0.6

Figure C.1: The Woods-Saxon potential for 56Ni using the exact deformed potential formula.
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Figure C.2: The Woods-Saxon potential for 56Ni computed using the Taylor expansion over the
deformation.
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Figure C.3: The Woods-Saxon potential for 166Dy using the exact deformed potential formula.

y (fm)

−10 −5
0

5
10

z
(fm

)

−10
−5

0
5

10

V
p
ro
j

(M
eV

)

−40

−30

−20

−10

−40

−30

−20

−10

(a) β2 = 0

y (fm)

−10 −5
0

5
10

z
(fm

)

−10
−5

0
5

10

V
p
ro
j

(M
eV

)

−50

−40

−30

−20

−10

0

−50

−40

−30

−20

−10

0

(b) β2 = 0.2

y (fm)

−10 −5
0

5
10

z
(fm

)

−10
−5

0
5

10

V
p
ro
j

(M
eV

)

−50

−40

−30

−20

−10

0

−40

−20

0

(c) β2 = 0.4

y (fm)

−10 −5
0

5
10

z
(fm

)

−10
−5

0
5

10

V
p
ro
j

(M
eV

)

−60

−40

−20

0

−60

−40

−20

0

(d) β2 = 0.6

Figure C.4: The projected Vproj Woods-Saxon potential for 166Dy.
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Figure C.5: The Woods-Saxon potential for 166Dy computed using the Taylor expansion over
the deformation.
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Figure C.6: The Woods-Saxon potential for 56Ni using the exact deformed potential formula,
projected on the variables r and θ.
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Figure C.7: The Woods-Saxon potential for 56Ni computed using the Taylor expansion over the
deformation, projected on the variables r and θ.



Popular science summary

A strange bag full of strange marbles

Matter is made of atoms that are constituted by a massive core, called nucleus, with
charges, called electrons, orbiting around it. The nucleus itself is made up of two types
of particles : protons and neutrons. Neutrons are not electrically charged, unlike protons
which are positively charged. The atomic nucleus can be imagined like a bag full of
marbles, some neutrals, some are charged. The difficulty is then to describe the behavior
of such an object. On the one hand, all those positive charges repel each other (in the
same fashion as the ’+’ side of two magnets next to each other), but on the other hand,
the bag keeps them together with the rest of the marbles. Protons and neutrons even go
beyond this analogy, for they also have the strange habit of pairing with each other.

In addition to all these effects, the bag is not rigid and can be deformed into non-spherical
shapes : squeezed like a rugby ball, or flattened like a pancake. Describing the atomic
nucleus properly requires taking into account all of these features. This leads to a prob-
lem : solving exactly the equations that rule these interactions involves mathematical
techniques that take a lot of computing power. As a result we usually approximate these
equations, which raises a new question : how does one do that, and how can we judge the
validity of such an approximation ?

One answer (among many) is given in this thesis where we consider one estimate, called the
Pairing-Plus-Quadrupole model. We try to enhance it using new formulas in combination
with the work of two scientists, K. Kumar and B. Sørensen. The aim here is to propose
an approximation that will bring results with a satisfactory level of precision and which
will be easy and fast to run on a computer.

The atomic nucleus is the heart of matter and is widely used for many applications such
as energy production, medical imaging with MRI or cancer treatment. As a consequence,
an efficient description of nuclei is very useful and can help unveiling their full potential.
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Résumé populaire

Un étrange sac plein d’étranges billes

La matière est constituée d’atomes, eux-mêmes constitués de particules chargées, appelées
électrons, qui orbitent autour d’un noyau massif. Ce noyau est lui-même constitué de
deux types de particules : les protons et les neutrons. Les neutrons sont électriquement
neutres, à l’inverse des protons qui sont positivement chargés. On peut alors imaginer
le noyau comme un sac rempli de billes, certaines neutres, d’autres chargées. Décrire le
comportement d’un tel objet devient alors difficile. D’une part, toutes les billes chargées
se repoussent les unes des autres (comme le font les pôles Sud de deux aimants), et d’autre
part, le sac les confine avec les autres billes. Les protons et les neutrons dépassent en fait
cette analogie puisqu’ils ont en plus l’étrange habitude de s’apparier.

De plus, le sac n’est pas rigide. Il peut ainsi se déformer et ne plus être sphérique, en
s’allongeant comme un ballon de rugby, ou en s’aplatissant comme un frisbee. Pour décrire
le noyau correctement, il est alors nécessaire de tenir compte de tous ces phénomènes,
créant ainsi le problème suivant : résoudre exactement les équations qui régissent ces
interactions demande une grande puissance de calcul. On approxime donc ces équations
pour les rendre plus simple, ce qui soulève une nouvelle question : comment faire, et
comment s’assurer de la validité de ces approximations ?

Une réponse possible (parmi de nombreuses autres) est apportée par cette étude. On
considère ici un modèle appelé ”Pairing-Plus-Quadrupole” que l’on tente d’améliorer en
combinant de nouvelles formules et le travail de deux physiciens, K. Kumar et B. Sørensen.
Le but de ce mémoire est donc de proposer une approximation qui nous permette d’obtenir
des résultats satisfaisants, et qui soit facile à calculer avec un ordinateur.

Le noyau atomique est le cœur de la matière et la compréhension de sa structure est utile
dans bien des domaines : production d’énergie, imagerie médicale par IRM, ou encore
traitement contre le cancer. Une description efficace du noyau présente donc un grand
intérêt et permettra de révéler tout le potentiel de ce dernier.
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