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Abstract

Self-driving vehicles is a highly anticipated technology for increasing the safety and
efficiency of automotive transportation systems by removing the risk of human er-
rors. Volvo Car Corporation is determined to produce vehicles of full autonomy and
highest safety within the near future. To achieve this goal, Volvo Cars is in parallel
with the development of autonomous vehicles setting up a sophisticated pipeline for
verifying and testing the autonomous driving functions. This thesis revolves around
the last step of this pipeline, by implementing and further developing an algorithm
for collision avoidance in a robotized framework for verification of autonomous
driving where the functions are tested on real vehicles on a test track.

The proposed algorithm used to achieve collision avoidance in the robotized test
framework is the Bicycle Optimal Reciprocal Collision Avoidance (B-ORCA) algo-
rithm. This algorithm uses a construct called Velocity Obstacle to predict imminent
collisions between vehicles in a scenario and then calculates the optimal velocities
to avoid the collisions in a collaborative manner.

To evaluate the performance of the algorithm, a set of experiments were per-
formed on the driving robots that will be used in the testing framework, both in
simulations and on a real vehicle. The results from these experiments show that the
current implementation of the B-ORCA algorithm guarantees accurate safe trajec-
tories up to speeds of 50km/h. To support speeds above 50km /h, the simple Kine-
matic bicycle model currently used to calculate the trajectories has to be replaced
with a more sophisticated motion model. This new model has to better model the
lateral acceleration that, with too high values, was shown to be the main parameter
that made the vehicle not follow the safe trajectories as desired.
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1

Introduction

1.1 Motivation

The field of autonomous vehicles has gained great attention the latest years by both
the automotive industry and academia. Great advancements within computer and
sensor development allows powerful computers and sensors to be installed directly
in the vehicles, which opens up doors for advanced perception and control algo-
rithms to be run in real time. Driving vehicles is statistically a dangerous way of
transportation. Every year, 20-50 million people are injured and 1.25 million die
globally from road accidents, making road accidents the 9th leading cause of death
and account for 2.2% of all deaths [Association for safe international road travel,
2018]]. Safe road transportation is therefore very important and automotive compa-
nies are focusing a lot of research on making their vehicles safer.

Throughout the history of automotive transportation, there have been some rev-
olutionary innovations which made it much safer to travel by road. In 1959, the
three-point seatbelt was developed by Volvo Cars which greatly reduced the risk of
severe injuries in traffic collisions. With its simple design, the three-point seatbelt
is very easy to put on, and still effectively protects both the upper and lower body
of the passenger. Due to its significance, Volvo Cars soon released the patent for
other car manufacturers to use and it is today standard in all vehicles [Volvo Car
Corporation, 2009]. The airbag is another invention that has helped saving many
lives in road accidents. Rudimentary patents on the airbags goes back to the 1950s
[Bellis, 2018, but it was not until the 1980s that it was available to customers when
Ford and Chrysler introduced them in their vehicles and included them as standard
equipment in 1990 [McCormick, 2019].

Using control systems to reduce road accidents was first introduced with the
Anti-Lock Braking System (ABS) in 1978. The ABS prevents the wheels to lock
in hard brakes, which allows the driver to still maintain control of the vehicle and
at the same time reduce the braking distance, reducing the risk of severe crashes
[Burton et al.,[2004]. Other control systems for active safety has since been devel-
oped and included in modern vehicles. One of the most notable of these systems
is ESC (Electronic Stability Control) that prevents instability that leads to spinning
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Chapter 1. Introduction

by detecting loss of traction and applies brakes on individual wheels to "steer" the
vehicle in the right direction [Euro NCAP, 2019].

Still, with all the safety functions installed in modern vehicles, there are a lot of
driver induced crashes leading to severe or fatal outcomes. One of the leading rea-
sons for deaths in traffic is driving intoxication, which in Sweden was responsible
for 32 percent of all fatal accidents in 2017 [Trafikverket, [2018b]. In fact, most ac-
cidents in the traffic are caused by the driver and human error. In 1997 the Swedish
government together with the Swedish Transport Administration introduced the Vi-
sion Zero [Trafikverket, 2018a]], with the goal that no one should die or be severely
injured in a traffic accident. There have been many achievements along the way and
the number fatal accidents has been reduced, but they have not disappeared com-
pletely as the human error still has an impact on the safety of the transportation
system. Autonomous driving could therefore be the technology that achieves the
goals of the Vision Zero as it removes the human error from the traffic system.

Autonomous driving is today a common topic in mainstream media and often
focused on the achievements done by the large tech-companies. For example, Tesla
announced recently that all their newly produced vehicles will have the hardware
needed for autonomous driving and released promising footage of their currently
available auto-pilot system [Tesla, [2016]. Google, Uber and other more conven-
tional car manufacturers are also working on their own projects for autonomous
driving [CBS Insight, 2018]|. Not all reports about the development of autonomous
vehicles are positive. In 2018, a Tesla car driving on autopilot on a Californian
highway crashed and killed the passive driver [The Guardian, 2018]], and an au-
tonomous testing vehicle from Uber struck and killed a pedestrian in Arizona [New
York Times,[2019]]. The human error was still the main cause in both accidents, but it
remains clear that the safety aspects are regarding the autonomous vehicles of utter-
most importance for the society and the companies involved. It is indisputable that
a lot of research and verification still remains to be done before fully autonomous
vehicles drive the streets.

The research on autonomous driving has come a long way and the first proto-
types of the autonomous vehicles are currently being tested, but there is still a long
way of research and verification ahead to solve problems related to the safety and
the reliability of the autonomous vehicles. This thesis is focusing on the verification
of the autonomous driving function. Volvo Car Corporation is building an automatic
robotized verification system on the test track for the autonomous vehicles. In this
system, several vehicles are controlled with robots to replay a scenario that the au-
tonomous vehicle should handle. With this background, the focus for this thesis is to
investigate, further develop and evaluate an algorithm for collision avoidance with
multiple agents proposed in [Van Den Berg et al., 2011]]. This algorithm will be
used if a test on the test track goes wrong and has to end safely without the vehicles
crashing into each other. The algorithm uses a construct called Velocity obstacles to
predict if a collision will occur in the near future and then calculates safe velocities
that the vehicles have to adopt to avoid the collision. The algorithm makes use of the
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1.2 Background

physical constraints of the vehicles and calculates safe trajectories for every vehicle
in the test, where every vehicle takes responsibility to avoid the collision.

1.2 Background

In 2014, the Society of Automotive Engineers (SAE) introduced a 6 level standard
(0 to 5) for classifying vehicles with autonomous driving capabilities [SAE Interna-
tional, 2018]]. The first and most basic is level 0, No Driving Automation, where the
driver controls all aspects of the car even when enhanced with active safety func-
tions. Level 1, Driver Assistance, make the system and user share control of certain
aspects of the vehicles. For example, Adaptive cruise control and ESC systems are
classified as level 1. More advanced lateral and longitudinal control systems, as for
example emergency braking, are part of level 2 Partial Driving Automation. When
a vehicle is classified as level 3 of autonomy, Conditional Driving Automation, it
is capable of full autonomous driving in certain conditions and full fallback on the
driver if anything outside of the system’s capabilities occurs. Vehicles of level 4,
High Driving Automation, is capable of full autonomous driving in certain condi-
tions with with no fallback help from the driver. Level 5 vehicles of autonomous
drive, Full Driving Automation, is capable of handling all conditions and environ-
ments with no help of the driver at all.

Volvo Car Corporation has during previous years developed several functions
classified at level 1 and 2 to increase the safety related to their cars. These func-
tions are still very important, but Volvo Cars is now also focusing much resources
on producing cars that apply autonomous driving capabilities classified at level 4
and 5. i.e. the highest levels for autonomous vehicles. This is no trivial task, and in
parallel with the development of the full autonomous cars a sophisticated system for
testing and verification has to be in place to guarantee the safety of the autonomous
cars. Volvo Cars is therefore building a whole verification system for testing the au-
tonomous vehicles before they are released to the public. This verification is done in
four steps; Model-in-the-loop (MIL), software-in-the-loop (SIL), hardware-in-the-
loop (HIL) and vehicle-in-the-loop (VIL). This thesis revolves around developing
functions for the system for VIL, which is done on the test track with all sensors
and software installed in the vehicle under test (VUT). The environment surround-
ing the VUT is replaying a scenario with real physical vehicles as well as injected
virtual vehicles of high risk targets. The real vehicles on the test track will be driven
by specialized driving robots, which take full control of the steering and accelera-
tion of the car to navigate it according what is decided on a centralized server. This
system also allows soft targets that represent for example pedestrians and animals to
be included in the scenario. All objects in the system are controlled by a centralized
server and the control signals, measurements and relevant information are sent over
a 4G network. See Figure [I.T|for a simplified overview of the system.

The development of this system for vehicle in the loop verification is done in col-
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Figure 1.1 Simplified overview of the Vehicle in the loop verification system. This
system includes real vehicles controlled by driving robots, and soft targets and is
connected to a centralized server. This server runs the verification tests and has also
the possibility to inject virtual vehicles into the system.

laboration with other partners in the CHRONOS?2 project. The goal of this project
is to produce a functioning prototype of a VIL verification system. The partners in
this project also exchange valuable ideas related to the project which is helpful for
the work done internally by the partners themselves.

1.3 Scope

Aim and Delimitations

The focus for this thesis is to produce an algorithm that calculates safe and collision-
free trajectories for multiple vehicles in a cooperative manner given their current
initial states. For this task, Bicycle Optimal Reciprocal Collision Avoidance (B-
ORCA) [Alonso-Mora et al.,[2012] is the proposed algorithm. The purpose for this
algorithm is to always guarantee safe exit ways for testing vehicles used for au-
tonomous driving verification where all vehicles are controlled from one singular
entity. The safe exit trajectories will therefore be used as backup trajectories the ve-
hicles can fall back to if anything in the test goes wrong. The algorithm is therefore
not meant to be used to achieve full autonomous driving, as autonomous vehicles
operate as independent agents in a large traffic system.

The question of when the safe trajectories should be activated is very relevant in
order to guarantee collision free tests, as due to the motion constraints of the vehi-
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cles, it may exist scenarios where a collision is physically impossible to avoid. This
problem formulation is not covered in this thesis, but is researched in another thesis
work [Abdelwahab, |2019] run in parallel to this thesis at Volvo Car Corporation, as
it is very relevant to trigger the safe trajectories before the viable safe trajectories
cease to exist.

Research Questions

This thesis revolves around answering the following research questions:

* How well does the proposed optimal dynamic trajectory planning algorithm
for collision avoidance perform when used on driving robots?

* Is asimple model describing the vehicle’s motion enough to generate accurate
and drivable trajectories?

By answering the above stated questions, this thesis will contribute to the re-
search done at Volvo Car Corporation and in the CHRONOS?2 project.

1.4 Outline

Chapter [2] covers the full theoretical background the proposed algorithm is based
upon, describing how eventual future collisions can be detected and avoided. Chap-
ter[3|covers the implementation of the proposed algorithm, ranging from the frame-
work the algorithm used for implementation, and a full description of the algorithm.
In Chapter[d] the experimental procedure of how the verification of the performance
will be done is thoroughly described. The verification is done by defining a set of
benchmarked dangerous scenarios where the proposed algorithm will make the in-
volved vehicles avoid the imminent collisions. In Chapter [5] the results from the
simulations and tests run in the experiments are presented, together with an aver-
age statistical performance measure of the algorithm. These results are discussed in
Chapter [6] and the most important findings are concluded in Chapter [7] where also
future work and possible improvements of the algorithm are brought up.

1.5 Related work

The main subject of this thesis revolves around trajectory planning and collision
avoidance for autonomous vehicles. An in-depth study of the current state-of-the-art
algorithms for trajectory planning is covered in [Gonzélez et al.,|2016]. One of the
most prominent of these algorithms is the A * algorithm [Hart et al.,|1968]], which is
a heuristic graph search algorithm closely related to Dijkstra’s algorithm [Dijkstra,
1959]. The A* algorithm can also be extended with a non-holonimc motion model
to be applied on vehicle-like agents in continuous space [Petereit et al., 2012]. The
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A* algorithm is though limited in its use in environments with moving obstacles as
it assumes static maps. Therefore, the alternative algorithm D* (Dynamic A*) was
introduced to use similar principles in dynamic maps [Stentz,|1994]]. This algorithm
has also been further developed for calculation efficiency and generality [Likhachev
et al.,[2001]).

Another popular family of trajectory planners are the Sampling based planners,
where the algorithms performs random sampling of a state space to get to a desired
location. The most notable algorithms of this family are the Probabilistic Roadmap
Method (PRM) [Kavralu et al.,|1996] and the Rapidly-exploring Random Tree (RRT)
[LaValle, [1998]]. PRM is commonly used in robotics, and RRT has on later years
been extensively tested for autonomous vehicles, by amongst other the MIT team
at DARPA Urban Challenge [Kuwata et al.,[2009]]. The main drawbacks with these
planners are that they only produce suboptimal solutions.

The common goal for trajectory planning algorithms is to find the best way from
a starting position to a desired goal in a known, or semi-known environment. These
algorithms do therefore not try to predict collisions of different moving objects be-
forehand, which makes them not optimal for scenarios where collision avoidance
is of first priority. Alternative algorithms that will implement collision avoidance
more efficiently is to use a MPC planner [Ghazaei Ardakani et al.,2015] or a plan-
ner based on Artificial Potential fields (APF) [Khatib,|1985]. The MPC is very good
in calculating optimal trajectories, but the calculations are very heavy and might
take much time, and every configuration of a MPC is specialized for a specific sce-
nario, making it non-flexible for more generalized use. The APF planner is not as
computational heavy as the MPC, but has problems with local minimum that can
cause problem calculating collision free trajectories. There are extensions to the
APF planner that address the local minimum problem, but there is yet no final solu-
tion to it [Zhou and Li, 2014].

The Optimal Reciprocal Collision Avoidance (ORCA) algorithm [Van Den Berg
et al.,|2011]] used for collision avoidance in this thesis revolves around the concept
of velocity obstacles [Van den Berg et al., [n.d.] to predict and avoid collisions re-
ciprocally. The algorithm has proven to be effective in avoiding collision of both
a small number of agents and of larger swarms of agents, and it can be applied on
any configuration in the state-space. When the ORCA algorithm is extended with a
non-holonomic vehicle model it is also possible to apply its principles to vehicle-
like agents to avoid collisions in effective manners [Alonso-Mora et al.,|[2012]]. To
use the ORCA algorithm to make non-holonomic vehicles come to a quick and safe
stop, which this thesis focuses on, has not been found to have been investigated in
any other work before.
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2
Theory

This chapter presents the background theory of the proposed B-ORCA algorithm.
First, the original Optimal Reciprocal Collision Avoidance (ORCA) algorithm is
thoroughly described to show its fundamental functions in Section After that,
the ORCA algorithm is extended with a non-holonomic motion model and forms
the Bicycle Optimal Reciprocal Collision Avoidance (B-ORCA) algorithm, with its
components described in Section [2.2]

2.1 Optimal Reciprocal Collision Avoidance

Optimal Reciprocal Collision Avoidance (ORCA) is an algorithm for collision
avoidance with n number of agents which was first proposed in [Van Den Berg
et al., 2011]. It is a centralized algorithm that calculates collision-free trajectories
for every agent that can be controlled. To do this, the algorithm makes use of so
called Velocity Obstacles (VOs) [Fiorini and Shiller, [1998]] to calculate collision-
free trajectories within a given time horizon. For the agent to not collide with the
other object it therefore has to choose a velocity that stays outside of this VO. How
the VO is constructed is covered the next subsection.

The collision avoidance becomes even more efficient if all controllable agents
cooperate to avoid the collision. This is done by letting both actors reciprocally
contribute to escaping the VO.

When a potential future collision is detected based on a VO, a safe set of veloc-
ities is given that an agent can take to avoid the collision. As the agent then has an
optimization velocity v°P' that it wants to follow, an optimization problem is solved
to find the velocity closest to v°”*. By doing this optimization, it is possible to take
into account constraints from all surrounding agents and obstacles to avoid all of
them and also follow a desired path enforced by v°.

In the following sub-chapters a more detailed description of the ORCA algo-
rithm will be given to present the functionality of the algorithm. The original ver-
sion of the ORCA assumes that the agent is holonomic, which means that the agent
can move freely in any direction. In the case of this thesis, the agents are vehicles
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Chapter 2. Theory

which are non-holonomic and do not have the possibility to move freely as they
have to follow the corresponding vehicle model. An extension of the ORCA algo-
rithm, the Bicycle Optimal Reciprocal Collision Avoidance (B-ORCA) presented in
[Alonso-Mora et al.,2012], is therefore used to generate trajectories that are viable
for vehicles to follow.

Vy

Figure 2.1 (Left) The agents position in a x,y-plane specified with p; and their safe
boundaries specified by r;. (Right) The constructed Velocity Obstacle for object A
in relation to object B. If a velocity is selected for object A that is outside of VO;‘;‘ B
(dark grey area), a collision-free trajectory is guaranteed for at least time 7. Figure
adapted from [Van Den Berg et al., 2011].

Velocity Obstacle

As defined by [Van Den Berg et al., 2011]], a Velocity Obstacle for an agent A
induced by B is the set of relative velocities that will make the objects collide within
a specified time 7. It is formally written as VO:&\ - A visual representation of the

Velocity Obstacle is shown in Figure To construct the VO/TH 5 the following
information needs to be know about the objects:

* pa and ppg: The positions of object A and B.
* r4 and rp: The radii of the safe boundaries of the object A and B.

* v4 and vp: The current velocities for object A and B.
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2.1 Optimal Reciprocal Collision Avoidance

¢ 7: The look-ahead time for which a collision should be avoided.

With this data, the Velocity Obstacle VO;‘  1s constructed according to Figure

If the relative velocity of agent A and B lies inside VO, a collision will occur

|B

within the time 7. This can formally be written as v4 —vp € VO};| B and conversely
Vp—V4 € VO© BlA*

The definition of the Velocity Obstacle induced by the other agent B, VO?

AlB?
can formally be written as:

VOip={v|3 €[0,7],tv € D(ps —pa,7a +78)}- (2.1
This expression should be read as: The union of the set of velocities inside the disks

D with radius r4 + rg and center in pg — pa, with an added scaling factor 7 € [0, 7].

Collision Avoidance

If a future potential collision has been detected with a Velocity Obstacle, the ORCA
algorithm will calculate the appropriate actions to avoid the collision. This is done
by calculating the shortest way out of the Velocity Obstacle, e.g. the vector from

vi?" —v3" to the closest point of the boundary of the Velocity Obstaclel | This vector
will be denoted u and is visualized in Figure[2.2]
u= (argmin [[v— (vi" —v3")[)) = (v" —v§"). 2.2)
VEBVO:;‘B

The vector u is therefore describing the smallest change of the relative velocity
that is needed to avoid the collision between agent A and B. To share the respon-
sibility of avoiding the collision, each agent will adapt éu and then assume that
the other agent will take care of the other half. Lets now denote ORCA® AlB° which
is the set of velocities for agent A that will make it avoid the collision with agent
B. This set is geometrically constructed by a straight line with its normal vector
pointing in the direction of n (the outward normal of the boundary of VO | p at the

point (vi” —vi") + ), starting at the point v{”' + Ju, see Flguren This is more
formally Wntten as:

Lw)n>o 23)

ORCAG = {¥](v— (V" + 5

If agent A then adopts a velocity within ORCA/§| p and agent B adopts a velocity
within ORCAB| A

agents communicating, as long as they observe each others position, radius, and
optimization velocity.

the potential collision will be avoided. This is done without the

! Introducing the optimization velocities v°P' to make the definition of ORCA more general. These are
most often selected as the agents’ current velocities, but can also be selected in alternative ways to
change the behavior of the ORCA algorithm.
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Figure 2.2 Visualization of how the set ORCA};l p is determined. The vector u is
first calculated as the minimum change in the relative velocity that is needed to es-
cape VOZ| B ORCAZ‘ B is then determined as the half plane perpendicular to u that
goes through the point v{”" + lu. Figure adapted from [Van Den Berg et al., 2011,

p- 71

Collision Avoidance with multiple agents

The above mentioned collision avoidance method can be extended to make the
agents avoid n-number of other agents. The agent observes the other objects’ posi-
tions, radii, and optimization velocities and then constructs the Velocity Obstacles
to calculate the set of safe velocities ORCA} that will avoid the collisions with the
other objects. This safe set can formally be denoted as

ORCA} = (") ORCAY, (2.4)
Ai

where ORCA};‘I. is the set of velocities for A that will avoid the collision with every
other object i, see Figure 2.3]

The agent has a velocity it wants to follow, v} !, so the next step will be to select
the new velocity V¢ from ORCA] so it is as close to v, " as possible. This task fits
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2.1 Optimal Reciprocal Collision Avoidance

perfectly in a convex optimization problem, as the set ORCA7, is bounded by straight
lines, which makes it a convex set, and the distance ||V — v¢”'|| to be minimized
is a convex function.

The definition of a convex problem in standard form is

minimize Jo(x)

subjectto  fi(x) <b;, i=1,. (2.5)
aTx=c,',t:17...,n.

where f;(x) are convex functions and a, b, and ¢ are vectors [Bertsekas, 2009,
p- 127]. In the case of solving the convex optimization problem of finding v}*",
the only convex function is fo( ) which describes the distance ||vi¢” — v4"||. The

functions f;(x) < b;, i =1,...,m are induced by the half-planes ORC Ali which can
be written on affine form a” x < b.
The convex problem can therefore be reduced to

minimize ||V} — v ||

. (2.6)
subject to a,-)cgb,-7 i=1,....m

where the parameters of a; and b; are set depending on the where the half-planes
ORCAT‘ are located. Solvmg this problem will give the new velocity v € ORCA}

which is closest to v A " This is visualized in Figure
When the new velocity of agent A has been determined the agent will take a
step to its new location according to:

P =pa + VA (2.7)

where At is defined as the time between every iteration of calculating a safe velocity.

Densely Packed Conditions

In the case of scenarios that are very densely packed with agents and obstacles,
a velocity might not exist that satisfies all constraints induced by the half planes
ORCAT‘ The set of safe velocities is therefore ORCA}; = 0. To handle these occa-
sions, the ORCA algorithm proposed in [Van Den Berg et al.,|2011]] instead looks
for the safest velocity that minimally violates the constraints imposed. Let dA‘,( V)
be the Euclidean distance from a velocity v to the edge of the half-plane ORCA} Al
To select this new velocity v;°", the maximum distance to any of the half-planes
should be minimized:

ne

v, = argmin(maxdy;(v)). (2.8)
A#i

This minimization can geometrically be interpreted as moving the half-planes
ORCAT‘ perpendicular outwards with the same speed, until one velocity becomes
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Figure 2.3 The half-planes of safe velocities for agent A induced by each agent
in a simulation. To avoid collision with the other agents, agent A has to choose a
velocity in the intersection of these half planes. This intersection is the convex set
ORCAY,. The new velocity vi?" inside ORCAY, is desired to be as close to vy’ " as
possible. v is therefore calculated by solving a convex optimization problem.

valid. If the convex optimization of the set ORCA}, is seen as hard constraints that
guarantee collision avoidance, the method for finding a velocity ORCA} = @ can
be seen as imposing soft constraints. This means that all hard constraints should be
violated as little as possible.

Static Obstacles

The ORCA algorithm can also make the agents avoid collisions with static obsta-
cles, and not just other agents which has been covered up until this point. The static
obstacles are avoided by the moving agents in a very similar way as they avoid each
other, as explained next.

As for agent-agent collision avoidance, agent-obstacle collision avoidance also
relies on Velocity Obstacles to calculate sets of safe velocities the agent has to adopt
to avoid collision with the static obstacle. In this framework, a static obstacle is
generally modelled as a collection of straight line segments, and as the agent is
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2.1 Optimal Reciprocal Collision Avoidance

modeled as a disk with radius r4 with position py4 it is possible to model the Velocity
Object for the static object segment O as:

VOi0={v[7t €[0,7],tv € O& —D(pa,ra)} (2.9)

This expression should be read as: the union of the set of velocities inside the
Minkowski sums O @ —D(pa,r4), with an added scaling factor 7 € [0, 7], see Figure
for a visualization of VOJ .

Vy

Figure 2.4 (Left) The configuration of the agent A and the static obstacle O.
(Right) The constructed Velocity Obstacle VOX‘ 0 from the configuration in (left)

with T = 2. Figure adapted from [Van Den Berg et al., 2011} p. 12].

In the same way as of the agent-agent Velocity Obstacles, agent A will collide
onto the static object segment if v§” = VOf” o- To avoid the collision, the change

in velocity u that is needed to escape VOfx| o is calculated which will give the safe
velocity set ORCAZ‘O as:

ORCAJ o = {¥|(v— (v{" +u)) -n > 0} (2.10)

Note that the agent A takes full responsibility in avoiding collision as the coefficient
in front of u is 1. This is quite intuitive due to the fact that only the agent should
take action in avoiding the collision as the static object can not move. When the
ORCA;‘ o has been calculated, the half-plane is passed to the convex optimization

algorithm together with the other half-planes in order to calculate ORCAY, in (2.4).
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Chapter 2. Theory

2.2 Bicycle Optimal Reciprocal Collision Avoidance

The original definition of the ORCA algorithm is considering the moving agents as
holonomic point masses that do not have any constraints on the affecting acceler-
ations, and thus can move in any direction at any time. This makes the algorithm
very effective in guaranteeing collision-free paths. For this thesis the agents will
not be considered as point masses, but instead as vehicles with a specified vehicle
model having non-holonomic constraints. This will enforce several more constraints
that the ORCA algorithm has to include in its calculations. The ORCA algorithm is
therefore extended with a vehicle model, in this case the Kinematic Bicycle model,
and the appropriate control structure to be able to include the behavior of vehicles
in the collision avoidance calculations. This extension to the ORCA algorithm is
proposed by [Alonso-Mora et al., 2012] and will from now on be called Bicycle
Optimal Reciprocal Collision Avoidance, or in short B-ORCA.

Vehicle model

For this thesis the agents will be considered as non-holonomic vehicles that should
behave as cars. The vehicle model used for this is the Kinematic Bicycle model
[Kong et al.,2015]] due to its simplicity and accurate behavior. The nonlinear equa-
tions for the models are as follows:

i =vcos(P+B) (2.11a)

y =vsin(¥+ ) (2.11b)

P = ;Sin(ﬁ) (2.11c)

v=a (2.11d)
R

B =tan™! (lf+lr tan(6f)). (2.11e)

In the system of Equations (2.11)), x and y are the coordinates for the vehicles
center of mass in a global coordinate system (X,Y). The scalar v is the forward
longitudinal speed of the vehicle and should not be confused with the velocity vector
v from the center of mass of the vehicle. The angle W represents the rotational
position of the vehicle in the coordinate system (X,Y), and 3 the angle between the
direction of the current velocity v and the longitudinal axis of the vehicle. The angle
B is directly dependent on the steering angle 0y and the distances [y and /. from the
center of mass to the front and rear axes, respectively. The input parameters (control
signals) to the system are the longitudinal acceleration a and the steering angle Jy,
see Figure [2.5]for a visualization of the model.

As changing the direction of the front wheel can not be done instantly, it is
reasonable to also include a model for the steering. In this case, the steering angle
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2.2 Bicycle Optimal Reciprocal Collision Avoidance

Figure 2.5 The Kinematic Bicycle model.

07 will be modeled as an integrator:
o =w (2.12)

where o is the angular velocity of the steering wheel.

Discretized vehicle model To be able to use the Kinematic vehicle model in the
ORCA algorithm it has to be discretized. This is done by applying the Euler method
[Kong et al., 2015]] which yield the formulation of the discretized system in [2.13]
where x(k + 1) with a slight abuse of notation represents the discretization of the
continuous time signal x(¢ + Ar).

x(t+1) =x(r) +vcos(¥P(r) + B(1)) - At (2.13a)

y(E+1)=y@)+vsin(P(r)+ B (1)) - Az (2.13b)

P(r+1) =P(r) +lein(ﬁ(t)) At (2.13¢)
v(it+1)=v(t)+a(t) At (2.13d)

Or(t+1)=67(t) + (1) - At (2.13e)
B(t) = tan™! ( zfi 3 tan(ﬁf(t))> 2.130)

The input signals to the system in are a(t) and @ (z).
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Control
new

The ORCA algorithm calculates a velocity v at every time step that should result
in a collision-free trajectory within the time span 7. The vehicle should therefore
ideally adopt v}*", but as the vehicle model has non-holonomic constraints this will
most often not be possible. The vehicle will instead do its best to follow the tra-
jectory extrapolated from the velocity vector v/{. The trajectory generated will be
followed using a variation of a pure pursuit controller [Campbell,2007]], which uses
a look-ahead point L to efficiently follow a desired straight trajectory. Figures
and present how the pure pursuit control uses the look-ahead point to follow a
straight trajectory. The distance error d,, defined by the shortest distance between
the look-ahead point and the desired trajectory, will be fed to a PD-controller to
calculate the correct control signals to make the vehicle follow the trajectory.

Trajectory

X

Figure 2.6 The look-ahead point L and the error d, for a vehicle trying to follow
a trajectory with pure pursuit control. When L is below the trajectory, as it is in
this case, the controller will turn the front wheels to the left to move closer to the
trajectory.

Steer angle control As mentioned above, the steering angle of the vehicle will be
controlled with a PD-controller to implement pure pursuit of a trajectory. The input
to the steering system is though the angular velocity of the steering angle, and not
the steering angle itself which the PD-controller uses. To realize a controller for this
problem, a cascaded controller is implemented, see Figure

The subsystems P (s) and P, of the control scheme in Figure 2.8|are created to
be able to use a cascaded control scheme for the steering control. Pj(s) is based on
Equation with the added tuning parameter kq, and P, is based on 2.11)). As
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2.2 Bicycle Optimal Reciprocal Collision Avoidance

Trajectory

X

Figure 2.7 The look-ahead point L and the error d, for a vehicle trying to follow a
trajectory with pure pursuit control. When L is above the trajectory and the vehicle
is below, as they are in this case, the controller will turn the front wheels to the right
to compensate for overshoot.

el us () up

Figure 2.8 Cascaded control scheme for pure pursuit tracking of a straight line.
The variable to control is the distance error d, of the look-ahead point of a kinematic
bicycle model. The kinematic bicycle model is divided into two subsystems, P (s)
and P, to be able to extract the steering angle 8y of the vehicle which will be fed
back to the controller. The input signal to the system is the angular velocity @y of
the steer angle.

Py () is an integrator, a P-controller is used as the inner controller Ci (s):

ks
Pi(s) = . (2.14)
Ci(s) = K). (2.15)
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The closed loop system for the inner loop is therefore:

Pi(s)Ci(s)
P, = 2.16
cl,inner 1 —|—P1 (S)C] (S) ( )
kyK,
PclJnner = s _"_Yk 1;( . (2.17)
sBp

P, is a non-linear system and more complex than Pj(s), so it can not be described
with a transfer function. But as the pure pursuit of a trajectory can be done with a
PD-controller [Campbell, [2007]], which is the choice for C;(s):

Ca(s) = K+ Kys. (2.18)

The control scheme presented above is in continuous time, but as the ORCA
algorithm runs in discrete time the control scheme has to be discretized. A PID-
controller can be discretized by first dividing the control in three parts than can be
discretized separately [;\strém et al.,[2002]:

u(k) = up (k) +uy (k) + up (k) (2.19)
up(k) in (2.21) follows directly from the continuous equivalent (2.20).

up(s) = Kpe (2.20)
up(k) = Kpe(k) 2.21)

up(k) in (2.26) is derived by performing a backwards difference of the continuous
equivalent (2.22)) of the D-part with a low pass filter and the sampling time /.

s TD

up(s) = m(—y(s)) (2.22)
k) = ok = 1)~ 260 k1) 22)
V(k) = de (k) (2.24)

As the controller does not have an integral part, u;(k) is omitted. The full controller
for the steering angle is therefore:

ui (k) = Kp,innere(k) (225)

Tp TpN
1+TDh”D(k_1)_ TD+Nh(y(k)_y(k_1)) (2.26)

uz (k) = Kp,outere(k) +

Speed control Controlling the longitudinal speed v of the vehicle is more straight
forward than the steering angle. The speed is modeled as the integral of the acceler-
ation (2.11d), which is efficiently controlled by a P-controller. The reference speed
for the vehicle to follow is ||V}
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2.2 Bicycle Optimal Reciprocal Collision Avoidance

Uspeed y

O——{ cts) P(s)

Figure 2.9 Control scheme for longitudinal speed control for a vehicle.

Figure [2.9] visualizes the control scheme for the speed control with the transfer
functions

P(s) =~ (2.27)
s
C(s) = K. (2.28)
The closed-loop system then becomes
P(s)C(s)
Peispeed = ~ 5~ 2.29
Lapeed = 1L P(s)C(s) (2.29
K
Pcl.,speed = S+I;(p . (2.30)
Similar to (2.21), the discrete controller for speed control then becomes
Uspeed (k) = Kpe(k). (2.31)

Trajectory tracking Using the above proposed controllers to follow the desired
velocity v/{®¥ can then be done by extrapolating this velocity vector to a straight
trajectory, which the pure pursuit controllers can follow. The extrapolation of v}
will make the trajectory always go through the center of mass of the kinematic
bicycle model, see Figure[2.10|for the geometry of the tracking problem. This makes
the trajectory change for every time step, but this has no practical significance as the
ORCA algorithm uses the safe velocities generated at every time step to create the
collision-free trajectories.

Error bound

As the vehicle is subject to the non-holonomic constraints inherent to the Kinematic
bicycle model, the safe new velocity V4" can not always be followed. This could
become a problem when the vehicle does not follow the safe velocities calculated
by the ORCA algorithm and therefore might crash onto another agent or a static
obstacle. One solution to this problem is to specify an error bound to the total safety
radius of the agents. This error bound € can be selected based on the maximum
tracking error the vehicle has by following different desired velocities v,. By pre-

calculating the maximum tracking error for the kinematic vehicle model and the
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Figure 2.10  Tracking of the extrapolated trajectory of v;** by pure pursuit control.
The distance error d_ is fed to the steering controller, and the speed ||v{**|| is fed to
the speed controller.

controllers defined by (2.26] [2.31), it is possible to determine the set of desired
velocities v, that gives a tracking error smaller than €4 for vehicle A, see Figure
.11

The possible velocities for agent A with a tracking error smaller than €4 can
formally be written as

Yo w.e = {Val by w(va) < €}. (2.32)

The value &4 is selected arbitrarily, but should not be too small as the set of
viable velocities %4, w ¢ then will be very small. &4 is therefore a tuning parameter
and has to be tested for a good value.

The set 7y, w ¢ is furthermore restricting which velocities that can be adopted
by the vehicle in order to stay inside the error bound €4. The constraints used in
the convex optimization calculation for finding the safe velocity v4*" closest to Vf‘p !

will therefore be the intersection of ORCAZ and %4, w ¢ as:
Vi € ORCAL N Yy w e (2.33)

The error bound €4 can be seen as the extension of the safety zone defined by
r4. To take into account the error bound for the collision avoidance, the sum r4 + &4
is used for the calculations of the Velocity Obstacles in (2.1). See Figure for
visualization of the geometry of the error bound.

Selection of possible velocities As the set ¥y, g ¢ defined in is a compli-
cated set, it is easier to approximate it by linear constraints. The best way to do this
is to approximate it with a polyhedron with linear edges, as it makes solving the
convex optimization problem easier. If the set is approximated correctly, it is
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Maximum tracking error for vo = 3m/s and W =0°
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Figure 2.11 Maximum tracking errors &y, y for different desired velocities vy,
saturated at 5 m, with the initial states vy = 3m/s and ¥ = 0°.

possible to include the constraints in the convex optimization for efficient calcula-

tion of vj*".

Collision Avoidance for non-holonomic agents

The total procedure for collision avoidance for the non-holonomic agent i can be
summarized in the steps below. This is then done for every other agent to be con-
trolled.

1. The preferred velocity v’ " is obtained. It is possible to select this in several

ways, but to make the vehicles stop, pr " is selected as the current velocity
of the vehicle with a decreased absolute value of a,,,, * At from the previous
iteration.

2. The extended radius is selected as r; + ;. If the agents are inside each others
extended safety radii, it is instead selected as r; +min(g;, (d(i, j) —ri—1;)/2).
Here d(i, j) is the distance between the middle points of agent i and agent j.
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Y

X

Figure 2.12 The vehicle with the safety zone defined by the circle of radius 74, and
the error bound defined by &4. The extended radius of the agent is therefore r4 + €4

3. The agents are considered as holonomic agents with the radius calculated in
the previous step. From the original definition of the ORCA algorithm, the
set of safe velocities ORCA] is calculated.

new

4. The new desired velocity v/

optimization problem:

v = argmin (i —v{"'|) (2.34)
V,'EORCA};Q“//VO‘\F_E

is calculated by solving the following convex

Vv

new

5. The trajectory extrapolated from v}*" is tracked by the controllers defined by
(2:26] 2.31) and the agent is moved to the new location which the discrete
kinematic vehicle model (2.13) gets by updating its states according to the
control signals.

Densely Packed Conditions

Rather than only using soft constraints as done in the original formulation of the
ORCA algorithm presented in Section [2.1] when there is no viable set of safe ve-
locities because ORCAf‘ = (), this formulation of the B-ORCA decreases the time
horizon 7 in an iterative way. The time horizon 7y, for dynamic obstacles and Taric
is set to a nominal value, as they are tuning parameters of the algorithm. If there are
no viable safe velocities because ORCA} N ¥4, w . = 0, the time horizon for colli-
sion is decreased by half, Ty, = Tayn/2 and Tyaic = Tstaric /2, and the set ORCAY, is
calculated again. This is done until a set of viable velocities is found, or T < Ty,
where 7, is a minimum value for the time horizon and a tuning parameter. If this
threshold is reached, soft constraints will be applied to avoid collision. Following
this procedure makes the vehicle prioritize the closest obstacles to ensure collision-
free trajectories.
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Implementation

In this chapter a detailed explanation of the implementation of the ORCA algorithm
is presented.

3.1 Programming framework

The implementation of the Bicycle reciprocal collision avoidance algorithm for this
thesis is done in the programming language Python 3.6. Python is a very powerful
programming language often used in scientific programming and software develop-
ment. Due to Python’s easy syntax and structure it goes relatively fast to develop
advanced algorithms. As Python is widely used and open source, it is possible to
use libraries from the community for almost any task.

Python can be summarized as an Interpreted, Object-Oriented, High-Level pro-
gramming language. An interpreted programming language means that it is not re-
quired to compile the code in order be able to run the program, which greatly speeds
up the development cycle. The high abstraction level also reduces the development
time, as the programmer does not have to think about the details of the computer
when developing. This also makes the code more much readable and easier to main-
tain than low-level programming languages. Furthermore, due to Python’s Object-
Oriented structure it is easy to write modular code that is easy to reuse. This speeds
up the development process and allows easy use of external libraries.

Python is thus a very effective language when prototyping and developing al-
gorithms. These positive aspects though comes with a downside; the run time on
the computer is much slower than more low-level programming languages. For this
project it was decided to prove the concept of the B-ORCA algorithm with Python
as the development time of implementing the algorithm in C would be overwhelm-
ing. Python also comes with libraries that allow to port Python code into C code for
faster run times on the computer [Behnel et al.,2019].
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Libraries

For the implementation of the B-ORCA algorithm, the majority of the external li-
braries used were installed with the Anaconda Package Manager. This package
manager is widely used for scientific use of Python and when installing Anaconda
it already comes with the most popular scientific libraries already installed.

Below follows the three most prominent external libraries used for the develop-
ment of the B-ORCA algorithm.

NumPy NumPy is a library in Python for numerical operations with very power-
ful and fast matrix operations. It is the base library of which many other scientific
libraries build upon and besides the fast matrix operations it has powerful capabili-
ties of random number generation, Fourier transform and linear algebra. The NumPy
library comes with the installation of the Anaconda package manager.

Matplotlib Matplotlib is the most popular library for visualization of data in
Python. With this library it is possible to plot and visualise very complex data as
easily as possible, and it has functions for all relevant plot types and simple anima-
tions. The Matplotlib library comes with the installation of the Anaconda package
manager.

Quadprog Quadprog is a library for solving convex optimazation problems as
stated in (2.5)). The routine for solving the convex problem is the Goldfarb/Idnani
dual algorithm [Goldfarb and Idnani,|1982]. This library is not included in the Ana-
conda package manager and has to be installed seperately. The installation of the
Quadprog library can be done with the pip package manager.

3.2 Algorithm description

The B-ORCA algorithm was implemented in Python according to the theory pre-
sented in Chapter 2] and the resulting algorithm can be summarized in Algorithm I]
described below. A detailed description for every code section is given below.

e Preliminaries: The input to the algorithm are the current states of the test
scenario. These states are the (X, Y )-location, velocity and heading angle for
every vehicle in the scenario, and also the locations of the static obstacles. The
output from the B-ORCA algorithm are the safe trajectories for every vehicle
in the scenario. The trajectories consist of trajectory nodes that contain the
time, (X,Y )-location, velocity and heading angle of the vehicle.

e Lines 2-4: The algorithm begins with creating an empty collection of future
trajectories 7. There will be one trajectory for every vehicle and for every
iteration of the algorithm, one new trajectory node will be appended to every
trajectory. The dynamic A and static O elements are then extracted from the
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scenario S to be able to perform operations on them. The data of the dynamic
elements A is now corresponding to the initial states of the vehicles.

Line 5: The algorithm will continue until all the vehicles have stopped.

Line 6: Create a set of empty velocities that will be applied to the vehicle
agents. This list will consist of one new velocity vector for every vehicle.

Line 8: Loop through and calculate the safe velocity for every vehicle agent
ainA.

Line 9: Create the empty set of the safe velocities the vehicle agent a can
choose among to not collide with any object or obstacle.

Line 10: Calculate safe velocities as long as the set ORCA, is empty.

Line 11: Create the set ORCA? that consists of the continuous space R? with
the prediction time horizon 7. By the following lines (12-21) this set will be
shrunk to only consist of the safe velocities for a.

Lines 12-17: Calculate the safe velocities ORCAZ‘ ,, for agent a to not collide
into vehicle agent b. This calculation is described by (2.4). This constraint is
then added to ORCA?, for every agent b to limit the set of safe velocities.

Lines 18-21: Calculate the safe velocities ORCAZ‘O for agent a to not collide
into the static obstacle o. This calculation is described by (2.9). This con-
straint is then added to ORCA?, for every obstacle o to limit the set of safe
velocities.

Lines 21-22: Assign the calculated set with the safe velocities for agent a
ORCA_ to the empty set ORCA,. There is though still a possibility that the
set ORCA, is still empty. In that case the procedure of the while loop stated
at line 10 is repeated but with the prediction horizon divided by half; 7 =
7/2. Decreasing the prediction horizon will therefore prioritize the closest
obstacles to vehicle agent a.

Lines 25-26: Calculate the new velocity v € ORCA, for agent a which is
closest to the desired velocity v’ and store it in V"¢".

Lines 29-30: When the new velocities of all vehicle agents in A are calculated
they are applied to update the states of the agents in A. The states of the agents
are updated based on the discrete-time equations for the kinematic bicycle
model (2.13)) and the path following controller defined by (2.23), (2.26) and
(2.31)). The updated states of every agent are then saved as a trajectory node
in their corresponding trajectories in 7.
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Algorithm 1: B-ORCA

Input: S, The current states of the scenario
Output: 7, The safe trajectories

1 begin
2 T=0
3 A = ExtractDynamicElements(S)
4 O = ExtractStaticElements(S)
5 while Agents still moving do
6 VHCW — m
7 /I Calculate safe velocities
8 forac Ado
9 ORCA, =0
10 while ORCA, = 0 and © > 1,,;, do
1 ORCA? = R?
12 for b c Ado
13 if a # b then
14 ORCAZIb = CalculateSafeVelocities(a,b)
15 ORCA} = ORCATN ORCAZ‘ b
16 end
17 end
18 for o € O do
19 0RCAZ|0 = CalculateSafeVelocities(a,o0)
20 ORCA} = ORCALN ORCAZ‘O
21 end
22 ORCA, = ORCA}
23 T=1/2
24 end
25 VW = ConvexOptimization(vy" ,ORCA,)
26 V™ append(vie")
27 end
28 /I Apply new velocities and update agents’ positions
29 A = UpdateAgentsStates(A,V"")
30 T.append(A)
31 end

32 end
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Experimental Procedure

4.1 Experimental overview

Due to the complexity of the B-ORCA algorithm, it is hard to perform an analytical
evaluation of its performance. To be able to analyze the algorithm’s efficiency an
empirical study is done instead. The study of the algorithm is made by performing
experiments over a certain set of scenarios that are typical when evaluating au-
tonomous driving. The scenarios are designed to be simple in their format, but still
capture the performance of the algorithm tested. The scenarios selected for the ex-
periments are Wall collision, Head on collision, Collision from angle, and Overtake,
which are presented in the next section.

The goal of the empirical study was to push the B-ORCA algorithm to its limits
to see when it succeeds and when it fails to find safe trajectories. In the first step,
a large set of trajectories was generated, one for every configuration of every sce-
nario. After that, a selection of the generated trajectories was further evaluated to
guarantee their quality, in the sense of how easy it is for a vehicle to follow the tra-
jectories. This was done by feeding the trajectories to the simulation module SPAS,
the Driving robot simulator and the real Driving robot, which are described in this
chapter. The data is extracted and analyzed to see if the simulated and real vehicles
stay inside the safety zones, visualized in Figure 2.12} of the B-ORCA algorithm,
which are collision-free if the algorithm succeeds. A flowchart of the experimental
procedure is presented in Figure [d.1]

Simulation Platform for Active Safety (SPAS)

Simulation Platform for Active Safety (SPAS) is a MATLAB/Simulink based sim-
ulation platform developed at Volvo Car Corporation. SPAS enables virtual testing
and verification of vehicles, active safety systems and autonomous drive systems in
different specified traffic environments. To do this, SPAS models the driver, power
plant, transmission, drive-line, chassis, brakes, steering etc. which together build the
full vehicle model. SPAS also takes into consideration sensors and environmental
objects like roads, road signs, pedestrians and other vehicles.
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Scenario

Object states

[ B-ORCA ]_)[Tl‘a]ectoq./ result]
overview

Selected trajectories

Driving robot Driving robot
SPAS .
(simulator) (real car)

Simulation output

Data analysis

Figure 4.1 Flowchart of the experimental procedure of a scenario. The B-ORCA
algorithm gets the states of the objects of the scenarios and calculates the safe trajec-
tories for each configuration. When all the configurations of the scenario has been
run, the result is presented in the Trajectory result overview. A smaller set of trajecto-
ries are selected for further analysis. This is done by passing the trajectories through
SPAS, the Driving robot simulator, and the Driving robot. The result of these sim-
ulations are then saved for further analysis to evaluate the trajectories generated by
B-ORCA.

Not all functionality of SPAS was used to evaluate the trajectories generated
from the B-ORCA algorithm. The simulations were set up so that the selected tra-
jectories were fed to SPAS one by one. SPAS then created a custom road and ini-
tialized the car in the beginning of this road with the correct initial speed. As the
simulation starts, the car follows the road as accurately as possible with the desired
speed profile set as speed reference. When the simulation ends, the output data can
be acquired for further analysis. The data of interest for evaluating the performance
of the B-ORCA algorithm are mainly:

¢ time series of (X,Y) location,
e cross-track error,
« distance to desired trajectory node,

* velocity profile,
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¢ longitudinal and lateral acceleration.

Driving robots

The Driving robots are created by a company that develops and delivers various test-
ing equipment for the automotive market. Their product range are mostly focused
on vehicle testing on the test track with robots for vehicle control and moving ob-
stacles for testing ADAS systems. The company also provides a common software
interface which makes it easy to use and connect many objects for collaboration. For
this thesis, two different Driving robots will work together to control each vehicle
that was tested. These robots are the Steering robot and Pedal robot. The company
also delivers a robot simulator which makes it possible to run simulations of the
behavior of the robots before testing them on the test track.

Steering robot To be able to steer the car in a desired direction the steering robot
applies the appropriate torque to the steering wheel. The robot is mounted on the
steering wheel and is also attached to the frame of the car. The actuator is a motor
that is located in the robot and which turns the steering wheel with the desired
torque. How the steering robot is mounted in the car is shown in Figure[4.2]

Pedal robot The pedal robot takes control of the braking and the acceleration of
the car to control the speed. The robot is mounted in the leg space in front of the
driver seat and is actuated by two motors, one for each pedal in a car with automatic
transmission. How the pedal robot is mounted in the car is shown in Figure .2

Imd‘.%x
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™

Figure 4.2 (Left) The steering robot used in the experiments. (Right) The pedal
robot used in the experiments.

Path following Combining the Steering and Pedal robot makes it is possible to
take full control of the car. By also including a Motion pack that tracks the car’s
exact position with GPS-signals and an Inertial Measurement Unit. With knowledge
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of the current position, velocity and heading of the car, it will then be possible for
the robots to control the car so that it follows a desired path. Figure [4.3] shows the
block diagram of the Driving robot controller for path following.

Vehicle states

( Steering 16 | IMU )
Robot GPS
Control signals Vehicle
O
F
Pedal Robot

Figure 4.3 Block diagram of the driving robot controller for path following. The
controller sends control signals to the steering and pedal robot so that they can ac-
tuate the correct steering wheel angle 6 and pedal force F to control the car. The
states of the car are then measured by the /MU and the GPS and are fed back to the
controller.

Robot simulator To prepare and plan tests before running them on the real Driving
robots it is possible to use a robot simulator. This simulator has the exact same
software interface as the real Driving robots but all the robots and the car itself
are simulated. Paths that the car should follow can therefore be evaluated for their
viability in real-time before actually running them on the real system. Figure {.4]
shows which parts of the original path following structure that are simulated. The
setup used for the simulations is shown in Figure 4.5]

4.2 Scenarios

To evaluate the performance of the B-ORCA algorithm, four scenarios are set up.
These scenarios are Wall collision, Head on collision, Collision from angle, and
Overtake, and are presented further below. Every scenario will have a set of param-
eters associated to the initial position and velocity of the vehicles which are possible
to adjust to be able to test the algorithm for different configurations of the scenario.
For every scenario two parameters were changed to adjust the configuration. In the
cases when the scenario has more parameters, the two most relevant were selected.
With two variables that are adjusted to change the configuration of the scenario it
is possible to draw a 2-D map of when the algorithm succeeds or fails, which will
give a describing overview of the results.
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Figure 4.4 Block diagram of the driving robot controller for simulation of path fol-
lowing. This is done in the same way as the regular path following, but the Steering
robot, the Pedal robot and the Vehicle are simulated.

Figure 4.5 Setup of driving robot simulator.

For all the scenarios and their configurations, the parameters of the B-ORCA
algorithm were the same to give a fair comparison of its performance. It is possible
to optimize the parameters of the algorithm for every scenario to get the optimal
performance, but that is not done in this thesis as the focus is more to give an
overview of its performance for different scenarios. The parameter configuration
of the B-ORCA algorithm used in the experiments for the different scenarios are
presented in Table 4.1}
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Table4.1 Parameter configuration of the B-ORCA algorithm for the scenarios used
in the evaluation of the algorithms performance.

Parameter description Parameter | Value | Unit
Safety boundary radius r 3 m
Error boundary radius € 0.5 m
Max longitudinal acceleration long,max 4 | m/s?
Max front wheel turn angle Or 02 | rad
Static obstacle collision time horizon Tstatic 20 S
Dynamic obstacle collision time horizon | T4y, 20 S
Center of mass to front axle distance Iy 1.5 m
Center of mass to rear axle distance I, 1.5 m
Vehicle length Lyen 4.9 m
Vehicle width Wyeh 1.9 m

Wall collision

The Wall collision scenario is a basic scenario with one car driving perpendicular
towards a wall. See Figure [4.6] for a bird’s view of the scenario. The scenario has
two configurable parameters, v and d;, which change the layout of the scenario.
The input parameters when performing the experiments are the speed v of the ve-

Figure 4.6 Bird’s view of the Wall collision scenario. The car is driving straight
towards a wall with velocity v; with the distance d; from the wall.

hicle directed towards the wall, and the distance to the wall 4. Many configurations
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Table 4.2 Parameter configuration of the Wall collision scenario. Every input pa-
rameter has a range of values that are used to modify the scenario in order to stress
the B-ORCA algorithm. The input parameters are then mapped to the scenario pa-
rameters, which are also visualized in Figure .6

Input parameters

Parameter description | Parameter | Values | Unit
Vehicle speed v [0,30] | m/s
Distance to wall d [0,30] m

Scenario parameters
Parameter description | Parameter | Value | Unit
Vehicle speed \41 v | m/s
Distance to wall dp d m

of the scenario were tested to stress the B-ORCA algorithm. How these input pa-
rameters are mapped to the scenario parameters shown in Figure {.6]is presented in
Table[4.2} In this scenario, the input parameters are mapped directly to the scenario
parameters, which will not be the case for the other scenarios.

Head on collision

The Head on collision scenario is defined by two cars driving straight towards each
other with a collision imminent in the near future. The cars have the velocities vy
and v, and are separated with the distance d;. See Figure for a bird’s view of
the scenario. Many configurations of the scenario were tested to stress the B-ORCA
algorithm. Two input parameters — v and d — were changed to modify the config-
uration of the scenario. How these input parameters are mapped to the scenario
parameters shown in Figure [4.7)is presented in Table [4.3]

Figure 4.7 Bird’s view of the Head on collision scenario. Two cars are driving
straight towards each other with velocity v| and v,. The cars are separated with the
distance d.

Collision from angle

The Collision from angle scenario is defined by two cars that are driving straight
but heading for a collision in the near future as their paths will intersect. The cars
are driving with the velocities v respectively v, towards the intersection point from
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Table 4.3 Parameter configuration of the Head on collision scenario. Every input
parameter has a range of values that are used to modify the scenario in order to
stress the B-ORCA algorithm. The input parameters are then mapped to the scenario
parameters, which are also visualized in Figure[d.7]

Input parameters

Parameter description Parameter | Values | Unit
Vehicle speed v [0,30] | m/s
Distance between vehicles | d [0,30] m
Scenario parameters
Parameter description Parameter | Value | Unit
Vehicle 1 speed \41 v | m/s
Vehicle 2 speed A} v | m/s
Distance between vehicles | d; d m

which they are separated with the distance d. when the safe trajectories are calcu-
lated. The collision angle of the cars is @.. A bird’s view of the scenario is presented
in Figure[4.8] Many configurations of the scenario were tested to stress the B-ORCA
algorithm. Two input parameters — v and d — were changed to modify the config-
uration of the scenario. How these input parameters are mapped to the scenario
parameters shown in Figure [4.8]is presented in Table [4.4]
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Figure 4.8 Bird’s view of the Collision from angle scenario. Two cars are driving
straight with the velocities v; respectively v, and will reach an intersection point
where they will collide. They are separated from this intersection point with the
distance d,. The collision angle between the cars is 0.
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Table 4.4 Parameter configuration of the Collision from angle scenario. Every in-
put parameter has a range of values that are used to modify the scenario in order to
stress the B-ORCA algorithm. The input parameters are then mapped to the scenario
parameters, which are also visualized in Figure[4.8]

Input parameters
Parameter description | Parameter | Values | Unit
Vehicle speed v [0,30] | m/s
Distance to intersection | d [0,30] m

Scenario parameters
Parameter description | Parameter | Value | Unit

Vehicle 1 speed \41 v | m/s

Vehicle 2 speed \) v | m/s

Distance to intersection | d, d m

Collision angle o 90 | deg
Overtake

The Overtake scenario is more complex than the previous scenarios. It involves
three cars driving on a straight road limited by two static obstacles on both sides,
which represents the road boundaries. Vehicle 1 attempts to overtake vehicle 2,
but during the overtake vehicle 3 is heading onto vehicle 1, see Figure f.9] The
velocities of the three cars are vy, v, and v3 respectively. v is larger than the other
two velocities as the overtaking car is driving faster than the others. The overtaking
car is separated longitudinally from the second car with the distance d;. The second
car is then separated longitudinally from the third car with the distance d. The
lateral separation of the two lanes is wy, and the separation from the lanes to the
walls on the sides is w;. Many configurations of the scenario were tested to stress
the B-ORCA algorithm. Two input parameters — v and d — were changed to modify
the configuration of the scenario. How these input parameters are mapped to the
scenario parameters shown in Figure [d.9]is presented in Table [d.5]

4.3 Trajectory evaluation

A selection of the trajectories generated by the B-ORCA algorithm is run through
SPAS, the Driving robot simulator and the real Driving robots to evaluate the quality
of the trajectories. The trajectory quality is measured in the sense of how easy it is
for a vehicle to follow the desired trajectory, which amongst others will tell how
accurate the vehicle model used to develop the B-ORCA algorithm is. The B-ORCA
algorithm uses circular safety zones around the vehicle to guarantee collision free
trajectories. It is therefore important that all vehicles stay inside their safety zones at
all times when following a trajectory as the B-ORCA algorithm does not guarantee
that no collision will occur if any vehicle drifts outside its dedicated safety zone. The
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Figure 4.9 Bird’s view of the Overtake scenario. This scenario consists of three
cars driving on a straight road. The first cars tries to overtake the second car but sud-
denly sees an oncoming third car in the opposite lane. The velocities of the vehicles
are vy, vy, and v3. The vehicles are longitudinally separated by the distances d; and
dy and the lateral separation between the lanes is w;. The distances of the center of
the lanes to the closest wall is then wy.

accelerations acting on the vehicle are also of interest as they couples to the vehicle
model and also give an indication of the risk of the tests, as high acceleration and
fast turning at high speed can be dangerous.

For the evaluation of the trajectories, seven measurements were inspected to
get an image of how easy it is to follow the trajectories. These measurements are
Trajectory tracking, Velocity tracking, Velocity tracking error, Lateral acceleration,
Longitudinal acceleration, Path following error and Positional displacement. These
measurements describes different aspects of trajectory following and together they
provide sufficient information for evaluating the trajectory quality.

Trajectory tracking The trajectory tracking measurement is an overview of the
tested scenario in a (x,y)-plane. The driven trajectories of all the vehicles in the
scenario is presented and compared to their desired trajectories. This measurement
is used to give an intuitive view of the test and see the vehicles relative positions to
each other.

Lateral trajectory following error The Lateral trajectory following error is the
vehicle’s error perpendicular to the desired trajectory measured from its front axle.
This measurement is an effective way of observing the lateral displacement of the
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4.3 Trajectory evaluation

Table 4.5 Parameter configuration of the Overtake scenario. Every input parameter
has a range of values that are used to modify the scenario in order to stress the B-
ORCA algorithm. The input parameters are then mapped to the scenario parameters,
which are also visualized in Figure[4.9]

Input parameters
Parameter description Parameter Values | Unit
Vehicle speeds v [0,30] | m/s
Overtake distance d [—20,20] m
Scenario parameters
Parameter description Parameter Value | Unit
Vehicle 1 speed \41 v+5 | m/s
Vehicle 2 speed A} v | m/s
Vehicle 3 speed V3 v | mfs
Distance, vehicle 1 to vehicle 2 | d; d m
Distance, vehicle 2 to vehicle 3 | d» 35 m
Lane separation wy 7 m
Wall separation Wy 7 m

vehicle from its desired path without taking the timestamps of the trajectory nodes
into consideration. See Figure for a visual explanation.

Positional displacement The Positional displacement measurement is similar to
the Lateral trajectory following error, but instead of taking the error perpendicular
to the desired path, the error is measured from the current position of the front
axle to the trajectory node with the timestamp that matches the current time. This
measurement is effective as it quantifies how much the vehicle is deviating outside
of its safety zone, see Figure d.10]for a visual explanation.

Speed tracking The Speed tracking measurement shows how the desired velocity
profiles are followed over time. This is useful because too large errors in the tracking
will result in displacements of the vehicles relative to their desired locations at a
given time.

Speed tracking error The speed tracking error measurement is based on the same
information as the speed tracking measurement but presented in an alternative way.
The definition of the measurement iS €peed = Vyeal — Vdesired» and a perfect speed
tracking will give the error measurement zero. The maximum error measurement
will also be extracted for benchmarking.

Lateral acceleration The lateral acceleration measurement shows the acceleration
of the vehicle sideways over time, as for example when the vehicle turns. This is
an indication on how strong the forces acting on the vehicle are and how risky the
trajectory is, since only certain levels of lateral acceleration can be achieved with a
real car before it starts drifting or looses control of where it is going.
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2

Figure 4.10 Visualisation of the Lateral trajectory following error and the Po-
sitional displacement measurements. The vector d = (dy,d>,d3,dy,...) is the time
series of the desired path and the vector r = (ry,rp, 73,74, ...) is the time series of the
resulting front axle path of the vehicle. The Positional displacement e, is depending
on the time stamp of the measurements and is calculated e, ; = r; — d;. The Lateral
trajectory following error e, is instead calculated as the closest point to the desired
path.

Longitudinal acceleration The longitudinal acceleration measurement shows the
acceleration of the vehicle in the direction of travel over time. It gives a good indi-
cation on how hard the vehicle brakes and accelerates.

Safety constraints

The B-ORCA algorithm provides an output if the generated trajectories are safe,
which in other words means that the vehicles safety zones are not intersecting with
each other or the static obstacles. If the vehicles follows these trajectories perfectly
it is known that the vehicles will not collide into each other. A problem arises when
the vehicles do not follow the safe trajectory perfectly, due to factors as for example
non-viable trajectories or poorly tuned controllers. If the vehicles deviate outside
the zones that the B-ORCA algorithm guarantees to be safe, it is no longer possible
to guarantee that collisions will not happen.

It is therefore important to analyse how well the vehicles follow the trajecto-
ries given to see when they deviate too much and start leaving the safety zone. The
best measurement for this is to analyse the Positional displacement and the Lateral
trajectory following error. To say that the vehicle is guaranteed to be inside the
safety zone the most conservative constraint is to take the absolute shortest distance
from the vehicle to the safety zone, see measure /o/oges in Figure[d. 11} This measure
is therefore used as the safety constraint of the Positional displacement measured.
As mentioned, this is a very conservative constraint and several examples were en-
countered in which this constraint is violated but the vehicle is still inside the safety
zone, but to be able to guarantee that the vehicles does not exit its safety zones, the
upper limit on positional displacement has to be this conservative. An example of
when [ ;5.5 18 violated but the vehicle is still inside the safety zone is when the
vehicle is just displaced perpendicular to the trajectory to travel and the Positional
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4.3 Trajectory evaluation

displacement (eg;sp) is inside the bound lejpsesr < €aisp < Lperp, see Figure [f.TT] for
reference.

Considering the constraint for the Lateral trajectory following error, this has
not to be as conservative as the measurement is not depending on the current time.
Here the constraint is only the lateral displacement relative to the path to travel. See

measure [, in Figure [d.TT}

lcl osest ¢
’
7’

1
v Desired trajectory

Figure 4.11 Safety distances from the vehicle to the edge of the safety zone. The
distance [ j 55 1S the most conservative constraint on the path deviation. The dis-
tance lperp is a more relaxed constraint as it only limits the perpendicular displace-
ment of the vehicle.

From geometry the conservative constraint /., 1S given by

laen =/ (2) 4 (5)° @

and the perpendicular constraint /., by

Lperp = rcos (arcsin (%)) 4.2)

With the set of parameters used for the experiments (specified in Table {.T)) the
constraints are given by the values presented in Table 4.6]
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Table 4.6 Values for displacement constraint to guarantee no vehicle collisions.

Parameter description Parameter | Value | Unit
Absolute displacement constraint Letosest 0.33 m
Perpendicular displacement constraint | /e, 0.71 m
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Results

This chapter presents the resulting performance of the B-ORCA algorithm. First,
a map of the success will be given for every scenario defined in Section #.2] to
show when the B-ORCA algorithm succeeded in finding safe trajectories. After
that, selected simulation results will be presented to showcase how well the vehicles
follow the given trajectories. Only the Overtake scenario will be presented in this
section to improve readability. The interested reader can find the results of the other
scenarios in Appendix[A]

An overview of the performance of the algorithm will then be given by com-
bining all simulation results from the four different scenarios to broaden the per-
spective of the results. What is evident when running the simulations when it comes
to the success of vehicles following the given trajectories is that the success rate is
highly correlated to the maximum lateral acceleration of the vehicles, which in turn
is highly correlated to the speed of the vehicles. The result will therefore be focused
on the correlation between the vehicle’ speeds, maximum lateral accelerations and
the success of following the desired trajectories.

The results are mainly based on measurements from the driving robot simula-
tor. From the simulator, around 100MB of data was extracted which was based on
around 230 experiments of simulated vehicles attempting to follow trajectories gen-
erated by the B-ORCA algorithm. A selection of the tests performed on the driving
robot simulator were also performed on a real car to get data from real test cases.
From the real driving robot, 300MB of data was extracted which was based on 82
tests. The majority of the data were collected from the driving robot simulator so
the real data is be used to evaluate how accurate the simulator is. Also, some SPAS
simulations were conducted, but the speed following controller implemented in the
simulated vehicles was not designed for this purpose and performed poorly, which
disturbed the measurements. The result from the SPAS simulations were therefore
excluded from this analysis to not mislead the reader.

A discussion of the result presented in this chapter will be covered in Chapter 6]
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Chapter 5. Results

5.1 Overtake scenario simulations

This section focuses on presenting the results of when the B-ORCA algorithm gen-
erates trajectories to avoid collision between vehicles in the Overtake scenario pre-
sented in Section .2} A map over the successful trajectory generation will be pre-
sented to show in which configurations the B-ORCA algorithm succeeds in avoiding
an imminent collision. After that, the simulation result of the Driving robot simula-
tor trying to follow the calculated trajectories are presented. The configuration of the
overtake scenario discussed here corresponds to the input parameters v = 14m/s and
d = 4m (see Table @ for definition), of which the B-ORCA algorithm succeeded
in calculating safe trajectories according to Figure[5.1}

Success of trajectory generation

30

Success map of the overtake scenario

27

N
N
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N
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Speed (v) [m/s]
=
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-20 -16 -12 -8 -4 0 4 8 12 16
Distance (d) [m]

Figure 5.1 Success map of the path generation of the overtake scenario. Red color
symbolizes an unsuccessful trajectory generation of the B-ORCA algorithm, and
white color symbolizes a successful trajectory generation. The values on the axes
are the input parameters of the scenario, defined in Table[&.3] An exemplification of
the success map can be found in Appendix [B]
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Manual analysis of trajectory viability Figure [5.1] shows the success map of the
overtake scenario trajectory generation, where a successful trajectory generation is
defined by no intersection of the vehicles’ safety zones. For every square of a (v,d)
value pair in Figure [5.1] it is also possible to manually analyze the generated tra-
jectories. This is done in Figure[5.2] Observe that the safety zones are intersecting,
hence making the scenario unsuccessful by the definition of the success map, but
the boxes representing the vehicles are still not intersecting with each other.

Visualization of trajectories generated by B-ORCA
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Figure 5.2 Zoomed in view of the trajectories generated by the B-ORCA algorithm
in the overtake scenario before they are tracked by the driving robot. The scenario
input parameter configuration is v = 27m/s and d = —2m. Observe that the safety
zones are intersecting but the boxes representing the vehicles are not.
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Simulation result

52

Trajectory tracking

50 | v=14m/s, d=4m
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Figure 5.3 Bird’s view of the overtake scenario simulation result with initial pa-
rameters v = 14m/s and d = 4m. The color code of the data in this figure is in unison
with the colors of the data in the other figures of this test, which makes it easy to fol-
low the data that corresponds to the different vehicles. Blue (Vehicle 1), red (Vehicle
2) and yellow (Vehicle 3).



5.1 Overtake scenario simulations

Positional displacement
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Figure 5.4 Positional displacement and perpendicular path following error of the
overtake scenario simulation result with initial parameters v = 14m/s and d = 4m.
The color code of the data in this figure is in unison with the colors of the data in the
other figures of this test, which makes it easy to follow the data that corresponds to
the different vehicles. Blue (Vehicle 1), red (Vehicle 2) and yellow (Vehicle 3).
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Speed [m/s]
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Figure 5.5 Speed following and speed following error of the overtake scenario
simulation result with initial parameters v = 14m/s and d = 4m. The color code of
the data in this figure is in unison with the colors of the data in the other figures
of this test, which makes it easy to follow the data that corresponds to the different
vehicles. Blue (Vehicle 1), red (Vehicle 2) and yellow (Vehicle 3).
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Latteral acceleration
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Figure 5.6 Lateral and longitudinal accelerations of the overtake scenario simu-
lation result with initial parameters v = 14m/s and d = 4m. The color code of the
data in this figure is in unison with the colors of the data in the other figures of this
test, which makes it easy to follow the data that corresponds to the different vehicles.
Blue (Vehicle 1), red (Vehicle 2) and yellow (Vehicle 3).
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5.2 Simulation overview

This section gives a total overview of the performance of the B-ORCA algorithm
and how easy it is for vehicles to follow the given trajectories. The results of the
experiments of all scenarios are combined to give a statistical measure of the av-
erage performance with trajectories of different initial speeds and curvatures. This
statistical measure serves as an estimation of a bound in which the trajectory fol-
lowing errors and the accelerations of the vehicles can be assumed to be part of,
given the current configuration of the B-ORCA algorithm. The values used to give
the statistical overview are the maximum of the values for every time series of the
different measures presented for example in Section [5.1]

A comparison of the different scenarios will also be presented to show in which
scenario the B-ORCA algorithm is more likely to generate dangerous trajectories.

Overall performance

Maximum positional displacement (saturated at 3*safety constraint)
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Figure 5.7 Statistical summary of the maximum positional displacement plotted
against the initial speed of the vehicles for all scenarios simulated with the Driving
robot simulator. The measurements are saturated at 3 times the safety constraint to
better capture the performance close to the safety constraint. The statistical average is
marked by the target dot on the blue box, which in turn tells the 25 and 75 percentiles.
The thin blue lines extending the box are the whiskers that tells how far away from
the average the measurements go, and special outliers are marked by the blue circles.
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Maximum lateral trajectory following error (saturated at 3*safety constraint)
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Figure 5.8 Statistical summary of the maximum trajectory following error plotted
against the initial speed of the vehicles for all scenarios simulated with the Driving
robot simulator. The measurements are saturated at 3 times the safety constraint to
better capture the performance close to the safety constraint. The statistical average is
marked by the target dot on the blue box, which in turn tells the 25 and 75 percentiles.
The thin blue lines extending the box are the whiskers that tells how far away from
the average the measurements go, and special outliers are marked by the blue circles.
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Lat. Acc. [m/s’]
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Figure 5.9 Statistical summary of the maximum lateral acceleration plotted against
the initial speed of the vehicles for all scenarios simulated with the Driving robot
simulator. The statistical average is marked by the target dot on the blue box, which
in turn tells the 25 and 75 percentiles. The thin blue lines extending the box are the
whiskers that tells how far away from the average the measurements go, and special
outliers are marked by the blue circles.
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5.2 Simulation overview
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Figure 5.10 Statistical summary of the maximum longitudinal acceleration plotted
against the initial speed of the vehicles for all scenarios simulated with the Driving
robot simulator. The statistical average is marked by the target dot on the blue box,
which in turn tells the 25 and 75 percentiles. The thin blue lines extending the box
are the whiskers that tells how far away from the average the measurements go, and
special outliers are marked by the blue circles.
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Maximum positional displacement (saturated at 3*safety constraint)
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Figure 5.11 Summary of the maximum positional displacement and the trajectory
following error plotted against the maximum lateral acceleration of the vehicles for
all scenarios simulated with the Driving robot simulator. The measurements are sat-
urated at 3 times the safety constraint to better capture the performance close to the
safety constraint.
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Scenario comparison

This section contains plots based on the same data as in the previous section, but
instead of statistical measures all data points are shown and are separated by colors
indicating different scenarios.
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Figure 5.12 Comparison of the maximum positional displacement of the different
scenarios when simulated on the Driving robot simulator.
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Maximum lateral trajectory following error
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Figure 5.13 Comparison of the maximum lateral path following error of the dif-
ferent scenarios when simulated on the Driving robot simulator.
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Figure 5.14 Comparison of the maximum lateral and longitudinal acceleration of
the different scenarios when simulated on the Driving robot simulator.
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5.3 Real vehicle tests

Different configurations of the most critical scenarios, wall collision and head-on
collision, were also run on the test track with the real car to compare the edge cases
against the simulated result. The result of the tests with the real car is compared to
the simulated tests in the figures in this section. The simulated data is the same as in
the previous sections of this chapter, and the real data is plotted in the same graph.
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Figure 5.15 Comparison of the maximum positional displacement of the real and
simulated tests of the driving robot.
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Maximum lateral trajectory following error (saturated at 3*safety constraint)
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Figure 5.16 Comparison of the maximum lateral path following error of the real
and simulated tests of the driving robot.
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Figure 5.17 Comparison of the maximum lateral acceleration of the real and sim-
ulated tests of the driving robot.
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Figure 5.19 Comparison of the summary of the maximum positional displacement
and the trajectory following error plotted against the maximum lateral acceleration
of the vehicles of all simulations and real tests with the driving robot. The measure-
ments are saturated at 3 times the safety constraint to better capture the performance
close to the safety constraint.
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6

Discussion

This section covers the discussion of the results presented in Chapter 5]

6.1 Overtake scenario simulations

Success of trajectory generation

The success map of the B-ORCA algorithm’s trajectory generation in Figure [5.1]
gives a clear overview of which configurations the algorithm succeeds in calculating
safe trajectories. For the overtake scenario this figure shows that the algorithm fails
in two areas; when the overtaking vehicle is very close to the oncoming vehicle,
and when the overtaking vehicle drives with a high speed and is almost side by side
with the slower vehicle. This result is reasonable as these should also be the hardest
configurations of the scenario to get out of, as it would for any human driver as
well. Due to the non-holonomic constraints, there exist configurations from which
a collision is physically impossible to avoid. A configuration of a scenario in which
it is physically impossible to avoid a collision is for example when two vehicles
are on collision course with high speed and are separated with only a short distance
when they should activate the maneuver to avoid the collision. As mentioned, this
is an impossible situation to avoid a collision in, and the task is therefore to trigger
the safety maneuver before getting into that situation. What could be more desirable
from the result in Figure [5.1]is a higher success rate when the vehicle 1 is side by
side with the slower vehicle 2. The reason for failures at high speeds is due to the
overtaking vehicle has nowhere to go, as it is driving too fast to slow down behind
the slower car and the oncoming vehicle drives too fast.

Figure shows that even if the success map of the scenario says that the B-
ORCA algorithm does not produce any safe trajectories for a specific configuration,
an absence of safe trajectories is still not guaranteed. That is because the safety
zones of the vehicles can be intersecting, but as the safety zones are circular and
contain smaller rectangles inside representing the vehicles, the rectangles inside do
not have to intersect. Therefore, if any intersection of the safety zones happen, a
further analysis can be done to see if the vehicles inside the safety zones will really
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collide. The measures of the trajectory generation success given by the success maps
are therefore conservative.

Simulation result

In this subsection, the simulation results of the overtake scenario with the configura-
tionv= 14 m/s and d =4 m presented in Figures[5.3][5.4] [5.5|and[5.6]are reviewed.
The bird’s view of the scenario presented in Figure shows that the vehicles fol-
low the desired safe trajectories very well after activation and they also stop at the
desired locations. Figure [5.4] shows the time series of the measures of positional
displacements and lateral trajectory following. Here it is observed that the errors
are larger during the turning sections of the maneuvers, which means that the risk
of leaving the safety zones is largest in curvatures of the trajectories. The speed
tracking profiles in Figure [5.5] show that the driving robot controller does a good
job in tracking the desired velocity, which is very important to stay inside the safety
zone defined by the B-ORCA algorithm. The lateral acceleration profiles in Figure
[5.6] show how the side forces affecting the vehicles in the curvatures are correlated
in time to when the largest errors in the trajectory following presented in Figure[5.4]
occur. It is therefore safe to say that the largest errors of the trajectory following
occur when the vehicles are turning. The longitudinal acceleration profile in Fig-
ure [5.6|shows that the driving robot follows the maximum deceleration of —4m /s’
specified in the kinematic vehicle model in the B-ORCA algorithm relatively well.
There is a small overshoot but the deceleration is then stabilized around —4m/ s%.

6.2 Simulation overview

The figures in Section[5.2]give a good picture of the resulting overall performance of
the trajectories generated by the B-ORCA algorithm. Figure[5.7|shows the statistical
measure of how the maximum positional displacement increases with speed when
following a trajectory. From this figure, it is possible to draw the conclusion that
in most cases the driving robot is likely to succeed in following safe trajectories
activated with an initial speed of 19m/s (68km/h), with the current configuration
of the B-ORCA algorithm. There are outliers violating the constraints already at
15m/s (54km/h), which correspond to the trajectories with high curvature from
the wall collision scenario (seen in Figure[5.12)). The trajectory for a wall collision
scenario can be seen in Figure When the speed reaches 23m/s it is possible
to see that it is very likely that the constraint on positional displacement will be
violated, which is due to loss of control as the car loses traction. Staying inside the
safety zone is therefore very likely with initial speeds up to 15m/s, after that the
vehicles can lose control if the trajectories involve sharp turns but still be able to
follow easier curvatures up to 19m/s.

By analyzing the maximum lateral trajectory following error in Figure[5.8] it is
possible to observe that the safety constraint is most likely to be violated at 24m/s
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(86km /h). It is therefore easier to follow the trajectories when the exact location at
given times is not a priority, but rather just the displacement perpendicular to the
trajectory. In this figure it is also possible to observe outliers violating the safety
constraint already at 15m/s. From Figure it is possible to observe that these
outliers are the result of the failures when following high curvatures in the wall
collision scenario.

Figure shows a clear dependency of the statistical measure of the maximum
lateral acceleration when plotted against the speed. The maximum lateral acceler-
ation starts by increasing, and then seems to flatten out after 15m/s to not reach a
value larger than 10m/s?. This is interesting when cross referenced to the result in
Figure[5.T1] as it tells that the main reason for violating the safety constraints is due
to high lateral acceleration. Figure shows that the the highest lateral accelera-
tions (10m/s?) start showing in the range 15m/s to 19m/s, which is the range where
the safety constraints start getting violated in Figure The conclusion from this
reasoning is therefore that the main reason for violation of safety constraints is high
lateral accelerations which can lead to the vehicle losing traction, which with the
current configuration of the B-ORCA algorithm is likely to happen after 15m/s to
19m/s.

In Figure there are some measurements of the maximum positional dis-
placement that violate the safety constraints even if they are not close to the max-
imum lateral acceleration of 10m/s>. The measurements correspond to the angle
collision and overtake scenarios. Cross referencing these measurements to Figure
[5.12] there are some measurements at high speeds for the angle collision and over-
take scenarios that violate the safety constraints even though they do not seem to
have lost control. This indicates that the safety constraints can be violated at very
high speeds as well, even though the the lateral acceleration is not that high. The
probable cause of these findings is that the driving robot controller starts turning
earlier to be able follow a curvature at high speeds, to the cost of more deviation
from the desired trajectory.

6.3 Real vehicle tests

In Figure [5.15]it is possible to see that the edge cases of the real tests follows the
trend of the simulated cases relatively well. The safety constraint is though violated
earlier at around 13m/s instead of 15m/s as is the case for the simulated tests.
Similar observations can be seen for the maximum lateral trajectory following error
in Figure where the safety constraints is violated from around 14m/s.

The probable explanation for this phenomenon can be found in the figures
and [5.19] As seen for the maximum lateral acceleration plotted against the speed
in Figure [5.17] the edge cases of the real test results follows the simulated result
accurately, which means that the maximum lateral acceleration of the real tests can
be expected to be in the same range as in the simulations at different speeds. As
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discussed in Section[6.2] the most probable cause of violating the safety constraints
is due to high lateral acceleration. Comparing the real and simulated results of the
trajectory following errors in Figure[5.19] it is possible to observe that the violation
of the safety constraint for the real tests happens already in the range of 7m/ s?
to 8m/s?, and the violation of the simulations are in the range 9m/s? to 10m/s.
Therefore, violation of the safety constraints at lower lateral accelerations means
that the violation is likely to happen at lower speeds, which is possible to observe
in the figures[5.15]and

When running the tests on the real vehicle, the ABS and ESC were triggered
when the car was doing the maneuvers at higher speeds and accelerations. The ac-
tivation of these safety systems is a likely source of the difference in behavior of
the real and simulated tests, which is seen in the figures mentioned above where the
violation of the safety constraints happen at lower maximum lateral accelerations

(Figure[5.19).
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7

Conclusions and Future
work

7.1 Conclusions

In this thesis, an algorithm for collision avoidance of multiple agents in a collab-
orative way was investigated, implemented and evaluated to be used in a testing
framework with driving robots for autonomous driving verification. To achieve the
desired objectives, the proposed algorithm was implemented and a set of exper-
iments were set up to evaluate the performance. The calculated safe trajectories
were then followed by simulated and real vehicles controlled by driving robots to
verify their quality and viability.

Collision avoidance

The proposed B-ORCA algorithm shows promising results in generating safe tra-
jectories for collision avoidance of multiple agents with non-holonomic constraints.
The success maps, e.g. Figure[5.1] presented for the benchmarked scenarios show a
high success rate for safe trajectory generation. The failures of generating safe tra-
jectories occur when the scenario is critical and because the physical models impose
constraints on the vehicles’” movements. It is therefore important to activate and fol-
low the safe trajectories before these critical scenarios occur. This can be done by
pre-calculating the safe trajectories and having a lookup table similar to the success
map in Figure [5.1] Other methods to activate the safe trajectories before a critical
scenario occurs include the work done in the master thesis run in parallel to this
thesis at Volvo Car Corporation [Abdelwahab, 2019]. That work revolves around
calculating the last point to steer or brake in reference to a future collision point of
two vehicles.

The proposed B-ORCA is therefore a good choice of algorithm to calculate safe
trajectories for safe exit of vehicles. One of the main strengths of the algorithm is
the generality of the algorithm as the input states can represent any scenario, from
which the algorithm is likely to succeed in producing safe trajectories.
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Quality of generated trajectories

The B-ORCA algorithm uses the kinematic bicycle model as a non-holonomic mo-
tion model for the controllable dynamic objects in the scenarios to generate viable
trajectories for vehicles to follow. This model is though just a simplification of all
the kinematic and dynamics of a real vehicle. A deviation from the desired per-
formance for a vehicle to follow the generated safe trajectories well can therefore
be expected. A large part of the experiments of this thesis have therefore revolved
around identifying when the model can no longer generate viable trajectories. The
simulation results presented in Section [5.2] show that the kinematic bicycle model
can be used safely in scenarios with speeds until 15m/s (54km/h). Scenarios with
speeds above that can still be viable, but speeds of 23m/s (82km/h) and above are
very likely to give trajectories that make the vehicle to lose control. The results
when tested on real vehicles on the test track are very similar to the simulations, but
due to standard safety systems of real cars, large deviations from the desired path
were observed already in scenarios with speeds of 13m/s (46km/h).

The constraints chosen to classify safe trajectories are conservative to absolutely
guarantee collision free trajectories, but there are still many occasions when the
safety constraints are violated but the calculated trajectories still avoid an imminent
collision. This can for example happen when the safety zones are intersecting but the
vehicles are still not colliding, or when two vehicles violates the safety constraints
by cutting corners but by doing so they increases the distance between each other. It
can therefore be useful to still use the proposed B-ORCA algorithm to calculate the
safe trajectories even if the safety constraints are violated, but perform a separate
risk analysis to guarantee their safety.

Reflection

Reflecting back on the research question stated in Section[I.3] this thesis has experi-
mentally verified that the proposed B-ORCA algorithm is able to generate collision-
free trajectories for multiple vehicles in a wide array of scenarios where collisions
are imminent. The trajectories are calculated with the help of the simple kinematic
bicycle model, which was shown to give viable trajectories up to speeds of 13m/s-
15m/s (around 50km/h) before the feasibility of the trajectories start to deteriorate.
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7.2 Future work

This Section proposes several possible areas of future development related to the
work done in this thesis.

Real-Time implementation

To make use of the proposed B-ORCA algorithm the next step is to include it in
a system for vehicle-in-the-loop verification described in the Section of this
thesis. Currently, the algorithm is implemented in Python, but to be able to use
it in a verification system it should optimally be ported to C. This can be done
in two ways, by either manually rewriting the algorithm in C according to what
was implemented in Python, or using the Cython library [Behnel et al., [2019] that
converts Python source code to C code.

B-ORCA improvements

Increasing the performance of the B-ORCA algorithm can be done by better dimen-
sioning the safety zone to fit the shape of the vehicle. In the current implementation,
the safety zone is a circle that is placed around a rectangle which symbolizes the
vehicle, see Figure d.T1] The circle around the vehicle will give too much unneces-
sary space on the side of the vehicle, where it actually would be safe to have another
vehicle in. The improvement that could be done to give a safety zone that better fits
the shape of the vehicle is to replace the circle with an ellipse. Doing that makes
it possible for the vehicles to get closer side by side. The B-ORCA algorithm has
to be modified for this in the way that the agents are described by ellipses and the
velocity obstacles (see Section [2.1)) are created with respect to ellipses instead of
circles .

Vehicle model

This thesis concluded that the kinematic bicycle model improves the B-ORCA algo-
rithm’s calculation of the guaranteed safe trajectories of speeds up to 13m/s-15m/s
(approx. 50km/h). This is still relatively fast, and many tests can be run with this
configuration. If the tests will be done in higher speeds than that, it is recommended
to implement a more sophisticated vehicle model that can set limits on the lateral
accelerations which was the main reason for violating the safety constraints. An ex-
ample of a model that could be used for this is the Dynamic bicycle model [Kong
et al.,[2015]] that also takes the forces acting on the tires into consideration.

74



Bibliography

Abdelwahab, S. (2019). Last Point to React for Collision Avoidance in a Robotized
Framework for Autonomous Driving Verification. MA thesis. Chalmers Univer-
sity of Technology, Dept. of Electrical Engineering, Gothenburg, Sweden.

Alonso-Mora, J., A. Breitenmoser, P. Beardsley, and R. Siegwart (2012). “Recipro-
cal collision avoidance for multiple car-like robots”. 2012 IEEE International
Conference on Robotics and Automation, pp. 1-16.

Association for safe international road travel (2018). Road safety facts. URL:
https://www.asirt.org/safe-travel/road-safety-facts/ (vis-
ited on 2019-05-29).

Astrdm, K.-J., K.-E. Arzén, and B. Wittenmark (2002). “Computer control: an

overview”. (IFAC PROFESSIONAL BRIEF). International Federation of Au-
tomatic Control.

Behnel, S., R. Bradshaw, L. Dalcin, M. Florisson, V. Makarov, and D. S. Seljebotn
(2019). Cyton: c-extension for python. URL: https://cython. org/|(visited
on 2019-05-29).

Bellis, M. (2018). The history of airbags. ThoughtCo. URL: https : / / www .
thoughtco.com/history-of-airbags-1991232 (visited on 2019-05-29).

Bertsekas, D. (2009). Convex optimization theory. 3, pp. 487-487. ISBN:
9780521833783. DOI:110.1109/TAC.2006.884922, arXiv:|1111.6189v1,

Burton, D., S. Newstead, and D. Logan (2004). “Evaluation of anti-lock brak-
ing systems effectiveness”. URL: https : / / www . researchgate . net /
publication / 224709393 _ Evaluation _ of _ Anti - lock _ Braking _
Systems_Effectiveness|(visited on 2019-05-29).

Campbell, S. F. (2007). Steering Control of an Autonomous Ground Vehicle with
Application to the DARPA Urban Challenge. MA thesis. Massachusetts Insti-
tute of Technology, Dept. of Mechanical Engineering, Boston, Massachusetts,
pp. 487-492.

75


https://www.asirt.org/safe-travel/road-safety-facts/
https://cython.org/
https://www.thoughtco.com/history-of-airbags-1991232
https://www.thoughtco.com/history-of-airbags-1991232
https://doi.org/10.1109/TAC.2006.884922
http://arxiv.org/abs/1111.6189v1
https://www.researchgate.net/publication/224709393_Evaluation_of_Anti-lock_Braking_Systems_Effectiveness
https://www.researchgate.net/publication/224709393_Evaluation_of_Anti-lock_Braking_Systems_Effectiveness
https://www.researchgate.net/publication/224709393_Evaluation_of_Anti-lock_Braking_Systems_Effectiveness

Bibliography

CBS Insight (2018). 46 corporations working on autonomous vehicles. CBS In-
sight. URL: https : //www . cbinsights . com/ research/autonomous -
driverless-vehicles-corporations-1ist/|(visited on 2019-05-29).

Dijkstra, E. W. (1959). “A Note on Two Problems in Connexion with Graphs”.
Springer-Verlag, pp. 269-271. DOI:|10.1007/BF01386390.

Euro NCAP (2019). Electronic stability control. Euro NCAP. URL: https://wuw.
euroncap.com/en/vehicle-safety/the-ratings-explained/safety-
assist/esc/|(visited on 2019-05-29).

Fiorini, P. and Z. Shiller (1998). “Motion planning in dynamic environments using
the relative velocity paradigm”. The International Journal of Robotics Research,
17(7), pp. 760-772. DOI:|10.1177/027836499801700706,

Ghazaei Ardakani, M., B. Olofsson, A. Robertsson, and R. Johansson (2015).
“Real-Time Trajectory Generation using Model Predictive Control”. 2015 IEEE
Conference on Automation Science and Engineering (CASE) 2015. DOT: 10 .
1109/CoASE.2015.7294220.

Goldfarb, D. and A. Idnani (1982). Dual and primal-dual methods for solving
strictly convex quadratic programs. Vol. 909. In: Hennart J.P. (eds) Numerical
Analysis. Lecture Notes in Mathematics. Springer, Berlin, Heidelberg.

Gonzilez, D., J. Pérez, V. Milanés, and F. Nashashibi (2016). “A Review of Motion
Planning Techniques for Automated Vehicles”. IEEE Transactions on Intelli-
gent Transportation Systems 17:4, pp. 1135-1145. DO1:/10.1109/TITS.2015.
2498841,

Hart, P. E., N. J. Nilsson, and R. Bertram (1968). “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths”. IEEE Transactions on Systems Science
and Cybernetics 4:2, pp. 100-107. DOI:110.1109/TSSC. 1968.300136.

Kavralu, L. E., P. Svestka, J.-c. Latombe, and M. H. Overmars (1996). “Probabilistic
Roadmaps for Path Planning in High-Dimensional Configuration Spaces”. IEEE
Transactions on Robotics and Automation 12:4. DOI1:/110.1109/70.508439.

Khatib, O. (1985). “Real-Time obstacle avoidance for manipulators and mobile
robots”. Proceedings. 1985 IEEE International Conference on Robotics and Au-
tomation, pp. 500-505. DOT:/110.1109/R0OB0OT. 1985. 1087247.

Kong, J., M. Pfeiffer, G. Schildbach, and F. Borrelli (2015). “Kinematic and dy-
namic vehicle models for autonomous driving control design”. 2015 IEEE In-
telligent Vehicles Symposium (IV), pp. 2-7.

Kuwata, Y., J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. P. How (2009). “Real-
time Motion Planning with Applications to Autonomous Urban Driving”. IEEE
Transactions on Control Systems Technology 17:5, pp. 1105-1118. DOTI: 10 .
1109/TCST.2008.2012116.

LaValle, S. M. (1998). Rapidly-Exploring Random Trees: A New Tool for PathPlan-
ning. TR 98-11, Computer Science Dept., Iowa State University.

76


https://www.cbinsights.com/research/autonomous-driverless-vehicles-corporations-list/
https://www.cbinsights.com/research/autonomous-driverless-vehicles-corporations-list/
https://doi.org/10.1007/BF01386390
https://www.euroncap.com/en/vehicle-safety/the-ratings-explained/safety-assist/esc/
https://www.euroncap.com/en/vehicle-safety/the-ratings-explained/safety-assist/esc/
https://www.euroncap.com/en/vehicle-safety/the-ratings-explained/safety-assist/esc/
https://doi.org/10.1177/027836499801700706
https://doi.org/10.1109/CoASE.2015.7294220
https://doi.org/10.1109/CoASE.2015.7294220
https://doi.org/10.1109/TITS.2015.2498841
https://doi.org/10.1109/TITS.2015.2498841
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/70.508439
https://doi.org/10.1109/ROBOT.1985.1087247
https://doi.org/10.1109/TCST.2008.2012116
https://doi.org/10.1109/TCST.2008.2012116

Bibliography

Likhachev, M., D. Ferguson, G. Gordon, A. Stentz, and S. Thrun (2001). “Anytime
Dynamic A*: An Anytime , Replanning Algorithm”. American Association for
Artificial Intelligence.

McCormick, L. W. (2019). A short history of the airbag. Consumer Affairs. URL:
https://www.consumeraffairs.com/news04/2006/airbags/airbags_
invented.html (visited on 2019-05-29).

New York Times (2019). Prosecutors don’t plan to charge uber in self-driving car’s
fatal accident. New York Times. URL: https://www.nytimes.com/2019/
03/05/technology/uber-self-driving-car-arizona.html (visited on
2019-05-29).

Petereit, J., T. Emter, C. W. Frey, T. Kopfstedt, and A. Beutel (2012). “Applica-
tion of Hybrid A * to an Autonomous Mobile Robot for Path Planning in Un-
structured Outdoor Environments”. ROBOTIK 2012; 7th German Conference
on Robotics, pp. 227-232.

SAE International (2018). “Taxonomy and definitions for terms related to driving
automation systems for on-road motor vehicles (j3016_201806)". Society of Au-
tomotive Engineers.

Stentz, A. (1994). “Optimal and Efficient Path Planning for Partially-Known Envi-
ronments”. Proceedings of the 1994 IEEE International Conference on Robotics
and Automation, pp. 3310-3317. DOI:|10.1109/R0OBOT. 1994.351061.

Tesla (2016). All tesla cars being produced now have full self-driving hardware.
Tesla. URL: https://www.tesla.com/sv_SE/blog/all-tesla-cars-
being-produced-now-have-full-self-driving-hardware|(visited on
2019-05-29).

The Guardian (2018). Tesla car that crashed and killed driver was running on au-
topilot, firm says. The Guardian. URL: https ://www . cbinsights . com/
research/autonomous - driverless-vehicles - corporations-list/

(visited on 2019-05-29).

Trafikverket (2018a). Det hdr dr nollvisionen. Trafikverket. URL: https://www.
trafikverket.se/resa-och-trafik/Trafiksakerhet/det-har-ar-
nollvisionen/ (visited on 2019-05-29).

Trafikverket (2018b). Rattfylleri. Trafikverket. URL: https : / / www .
trafikverket.se/resa-och-trafik/Trafiksakerhet/Din-sakerhet-
pa-vagen/Rattfylleri/|(visited on 2019-05-29).

Van Den Berg, J., S. J. Guy, M. Lin, and D. Manocha (2011). “Reciprocal n-body
collision avoidance”. Springer Tracts in Advanced Robotics 70, pp. 3—19. ISSN:
16107438. DOI:/10.1007/978-3-642-19457-3_1|

Van den Berg, J., M. Lin, and D. Manocha (n.d.). “Reciprocal Velocity Obstacles
for Real-Time Multi-Agent Navigation”. 2008 IEEE International Conference
on Robotics and Automation. DOI:10.1109/R0OBOT . 2008 .4543489.

77


https://www.consumeraffairs.com/news04/2006/airbags/airbags_invented.html
https://www.consumeraffairs.com/news04/2006/airbags/airbags_invented.html
https://www.nytimes.com/2019/03/05/technology/uber-self-driving-car-arizona.html
https://www.nytimes.com/2019/03/05/technology/uber-self-driving-car-arizona.html
https://doi.org/10.1109/ROBOT.1994.351061
https://www.tesla.com/sv_SE/blog/all-tesla-cars-being-produced-now-have-full-self-driving-hardware
https://www.tesla.com/sv_SE/blog/all-tesla-cars-being-produced-now-have-full-self-driving-hardware
https://www.cbinsights.com/research/autonomous-driverless-vehicles-corporations-list/
https://www.cbinsights.com/research/autonomous-driverless-vehicles-corporations-list/
https://www.trafikverket.se/resa-och-trafik/Trafiksakerhet/det-har-ar-nollvisionen/
https://www.trafikverket.se/resa-och-trafik/Trafiksakerhet/det-har-ar-nollvisionen/
https://www.trafikverket.se/resa-och-trafik/Trafiksakerhet/det-har-ar-nollvisionen/
https://www.trafikverket.se/resa-och-trafik/Trafiksakerhet/Din-sakerhet-pa-vagen/Rattfylleri/
https://www.trafikverket.se/resa-och-trafik/Trafiksakerhet/Din-sakerhet-pa-vagen/Rattfylleri/
https://www.trafikverket.se/resa-och-trafik/Trafiksakerhet/Din-sakerhet-pa-vagen/Rattfylleri/
https://doi.org/10.1007/978-3-642-19457-3_1
https://doi.org/10.1109/ROBOT.2008.4543489

Bibliography

Volvo Car Corporation (2009). 3-point safety belt from volvo - the most effective
lifesaver in traffic for fifty years. URL: https ://www .media . volvocars .
com/global/en-gb/media/pressreleases/ 18405/ (visited on 2019-05-
29).

Zhou, L. and W. Li (2014). “Adaptive Artificial Potential Field Approach for Obsta-
cle Avoidance Path Planning”. 2014 Seventh International Symposium on Com-
putational Intelligence and Design 2:1, pp. 429-432. DOI: 110.1109/ISCID.
2014.144.

78


https://www.media.volvocars.com/global/en-gb/media/pressreleases/18405
https://www.media.volvocars.com/global/en-gb/media/pressreleases/18405
https://doi.org/10.1109/ISCID.2014.144
https://doi.org/10.1109/ISCID.2014.144

A

Results cont.

A.1 Wall collision scenario

Success of path generation
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Figure A.1 Success map of the path generation of the wall collision scenario. Red
color symbolizes an unsuccessful trajectory generation of the B-ORCA algorithm,
and white color symbolizes a successful trajectory generation. The values on the axes
are the input parameters of the scenario, defined in Table [32]
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Simulation result
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Figure A.2 Bird’s view of the wall collision scenario with initial parameters v =
13m/s and d = 24m. Simulated on the driving robot simulator.
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Figure A.3 Positional displacement and perpendicular path following error of the

wall

collision scenario with initial parameters v = 13m/s and d = 24m. Simulated on

the driving robot simulator.

81



Appendix A. Results cont.

Speed tracking
15 rv=13m/s, d=19m

— — — Speed reference
Actual speed

O -
_5 1 1 1 1 1 1 ]
0 2 4 6 8 10 12 14
Time [s]
Speed tracking error
1rv= =
v=13m/s, d=19m | %  Maximum absolute value
"0
~~
£
=
)
[}
2,
)
_2 1 1 1 1 1 1 ]
0 2 4 6 8 10 12 14

Time |[s]
Figure A.4 Speed following and speed following error of the wall collision sce-

nario with initial parameters v = 13m/s and d = 24m. Simulated on the driving robot
simulator.
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Figure A.5 Lateral and longitudinal accelerations of the wall collision scenario
with initial parameters v = 13m/s and d = 24m. Simulated on the driving robot sim-
ulator.
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Real vehicle test result
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Figure A.6 Bird’s view of the wall collision scenario with initial parameters v =
13m/s and d = 19m. Test run on the real driving robot controlling a car.
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Figure A.7 Positional displacement and perpendicular path following error of the
wall collision scenario with initial parameters v = 13m/s and d = 19m. Test run on

the real driving robot controlling a car.
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Figure A.8 Speed following and speed following error of the wall collision sce-
nario with initial parameters v = 13m/s and d = 19m. Test run on the real driving
robot controlling a car.

86



Lon. acc. [m/s?]

A.1  Wall collision scenario

Latteral acceleration

S rv=13m/s, d=19m

¥ Maximum absolute value

Time [s]
Longitudinal acceleration

2 rv=13m/s, d=19m

0

-2

-4
********* | %  Maximum absolute value

_6 1 1 1 1 T T T 1
0 1 2 3 4 5 6 7 8

Time [s]

Figure A.9 Lateral and longitudinal accelerations of the wall collision scenario
with initial parameters v = 13m/s and d = 19m. Test run on the real driving robot

controlling a car.

87



Appendix A. Results cont.

A.2 Head-on collision scenario
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Figure A.10 Success map of the path generation of the head-on collision scenario.
Red color symbolizes an unsuccessful trajectory generation of the B-ORCA algo-
rithm, and white color symbolizes a successful trajectory generation. The values on

the axes are the input parameters of the scenario, defined in Table@
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A.2 Head-on collision scenario

Simulation result

Trajectory tracking
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Figure A.11 Bird’s view of the head-on collision scenario with initial parameters
v = 14m/s and d = 23m. Simulated on the driving robot simulator. The color code
of the data in this figure is in unison with the colors of the data in the other figures
of this test, which makes it easy to follow the data that corresponds to the different
vehicles. Blue (Vehicle 1), red (Vehicle 2).
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Figure A.12 Positional displacement and perpendicular path following error of the
head-on collision scenario with initial parameters v = 14m/s and d = 23m. Simulated
on the driving robot simulator. The color code of the data in this figure is in unison
with the colors of the data in the other figures of this test, which makes it easy
to follow the data that corresponds to the different vehicles. Blue (Vehicle 1), red
(Vehicle 2). Note: The two time-series are plotted on top on each other as the scenario
is symmetrical.
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Figure A.13 Speed following and speed following error of the head-on collision
scenario with initial parameters v = 14m/s and d = 23m. Simulated on the driving
robot simulator. The color code of the data in this figure is in unison with the colors
of the data in the other figures of this test, which makes it easy to follow the data that
corresponds to the different vehicles. Blue (Vehicle 1), red (Vehicle 2). Note: The
two time-series are plotted on top on each other as the scenario is symmetrical.
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Figure A.14 Lateral and longitudinal accelerations of the head-on collision sce-
nario with initial parameters v = 14m/s and d = 23m. Simulated on the driving robot
simulator. The color code of the data in this figure is in unison with the colors of
the data in the other figures of this test, which makes it easy to follow the data that
corresponds to the different vehicles. Blue (Vehicle 1), red (Vehicle 2). Note: The
two time-series are plotted on top on each other as the scenario is symmetrical.



A.3  Angle collision scenario
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Figure A.15 Success map of the path generation of the angle collision scenario.
Red color symbolizes an unsuccessful trajectory generation of the B-ORCA algo-
rithm, and white color symbolizes a successful trajectory generation. The values on
the axes are the input parameters of the scenario, defined in Table@
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Simulation result
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Figure A.16 Bird’s view of the angle collision scenario with initial parameters
v = 14m/s and d = 18m. Simulated on the driving robot simulator. The color code
of the data in this figure is in unison with the colors of the data in the other figures
of this test, which makes it easy to follow the data that corresponds to the different
vehicles. Blue (Vehicle 1), red (Vehicle 2).
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Figure A.17 Positional displacement and perpendicular path following error of the
angle collision scenario with initial parameters v = 14m/s and d = 18m. Simulated on
the driving robot simulator. The color code of the data in this figure is in unison with
the colors of the data in the other figures of this test, which makes it easy to follow
the data that corresponds to the different vehicles. Blue (Vehicle 1), red (Vehicle 2).
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Figure A.18 Speed following and speed following error of the angle collision sce-
nario with initial parameters v = 14m/s and d = 18m. Simulated on the driving robot
simulator. The color code of the data in this figure is in unison with the colors of
the data in the other figures of this test, which makes it easy to follow the data that
corresponds to the different vehicles. Blue (Vehicle 1), red (Vehicle 2).
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Figure A.19 Lateral and longitudinal accelerations of the angle collision scenario
with initial parameters v = 14m/s and d = 18m. Simulated on the driving robot sim-
ulator. The color code of the data in this figure is in unison with the colors of the
data in the other figures of this test, which makes it easy to follow the data that
corresponds to the different vehicles. Blue (Vehicle 1), red (Vehicle 2).
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Figure B.1 Success map of the path generation of the overtake scenario. Red color
symbolizes an unsuccessful trajectory generation of the B-ORCA algorithm, and
white color symbolizes a successful trajectory generation. The values on the axes
are the input parameters of the scenario, defined in tablef.3] Exemplified with bird’s
eye views of the scenario configurations of unsuccessful trajectory generations.
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