
Numerical solution for derivative models
using finite difference methods and how this
can be used with Monte Carlo simulation

Author: Marcus Hallabro
Supervisor: Magnus Wiktorsson
Examiner: Andreas Jakobsson

Abstract

Derivative models often come in the form of stochastic differential equations.
From these equations a partial differential equation (PDE) can be derived.
By discretizing the PDE the numerical solution is obtained on a form where
the value of the derivative can be seen as a probabilistic weighting of future
values. These probabilities can be used to simulate trajectories of the under-
lying assets. This connection between the finite difference scheme and the
simulation is rather unique for this pricing method and can be very useful.
The probability weights can be forced to have a perfect probability interpre-
tation in some cases, meaning they are positive and less than one, but in
other cases we will end up with negative weights meaning we somehow have
to simulate using negative probabilities. This paper presents how to price
and simulate options with these methods in a few different situations and
how to solve some of the problems that may come up.

Keywords: Finite Difference Method, Option Pricing, Feynman-Kac Rep-
resentation, Monte Carlo Simulation, Negative Probabilities.

Acknowledgements

I want to thank everyone that have helped me during this thesis. A special
thanks to my supervisor, Professor Magnus Wiktorsson, for introducing me
to the subject and for guiding me through the project with phenomenal
expertise.

ii

Contents

1 Introduction 1

2 Theory and Method 3
2.1 Financial framework . 3
2.2 Derivatives . 3

2.2.1 Options . 3
2.3 Wiener Processes . 4
2.4 Itô Formula . 5
2.5 Stochastic Differential Equation Models 5

2.5.1 Geometric Brownian motion 5
2.5.2 Heston Model . 6

2.6 The Partial Differential Equation (PDE) 6
2.7 Feynman-Kac Representation 7
2.8 Grid . 8
2.9 Finite Difference Method . 8

2.9.1 GBM Finite Difference Method 8
2.9.2 Heston Finite Difference Method 11

2.10 Simulation . 13
2.10.1 GBM Simulation . 14
2.10.2 Simulation with negative probabilities 15
2.10.3 Heston Simulation . 16
2.10.4 Simulation with correlation 17

3 Results 19
3.1 Finite Difference Scheme Results 19

3.1.1 GBM Finite Difference Method Results 19
3.1.2 Heston Finite Difference Method Results 19

3.2 Simulation Results . 23
3.2.1 Simulation 1 . 23
3.2.2 Simulation 2 . 24
3.2.3 Simulation 3 . 24
3.2.4 Simulation 4 . 25
3.2.5 Simulation 5 . 26

iii

4 Discussion and Conclusions 29
4.1 Discussion of Finite Difference Method Results 29
4.2 Discussion of Simulation Results 30

iv

Chapter 1

Introduction

A financial contract with a value based on an underlying asset is called a
derivative. Being able to determine a fair price for a derivative is really useful
in finance but it is not very simple. In many situations it is also of interest to
simulate the underlying assets. Finding a connection between these subjects
is therefore of great interest.

The most common derivative models are in the form of stochastic differential
equations. From these equations we can derive a partial differential equa-
tion that describes the value of the derivative as a function of the underlying
asset. By discretizing this equation the numerical solution is obtained on a
form where the value of the derivative can be interpreted as a probabilistic
weighting of future values. These probabilities can be used to simulate tra-
jectories of the underlying assets. In some specific situations these weights
will have a perfect probability interpretation but in some other cases the
weights can be negative meaning we have to somehow simulate with nega-
tive probabilities. We will explain exactly how this can be done in section
2.10.2.

The goal of this paper is to go through all the relevant theory and then
show some examples of how the theory can be used in different situations.

1

2

Chapter 2

Theory and Method

2.1 Financial framework

In this paper we assume a standard financial market where people can trade
derivatives. We also assume there is no arbitrage opportunities, meaning
there is no way of making an immediate profit without any risk of loosing
money. Basically this means that all prices are consistent with the other
contracts in the market.

2.2 Derivatives

A derivative is a financial contract that specifies an event on the financial
market ([Åberg, 2018, p. 1]). This event is specified in terms of another
financial assets price, S. In this paper the only relevant derivative contract
is the option. Therefore this section starts with some basic option theory,
with a description of the relevant options for this paper.

2.2.1 Options

The notation of the following options are based on [Åberg, 2018, p. 59-72]:

Vanilla Options

The most basic and common options are the European call and put options.
An option being European means it can only be exercised at a predefined
date (and not earlier). We will later introduce American options that do not
have this restriction. The holder of a European call option has the option to
buy the underlying asset, S, to a predefined price K at predefined maturity
time T . The payoff function, P, for this option is:

P(ST) = max(ST −K, 0).

3

The holder of a European put option instead has the option to sell the
underlying asset to a predefined price, so the payoff at maturity is:

P(ST) = max(K − ST , 0).

Binary Double No-Touch Option

The double no-touch option is an exotic contract. It gives the holder the
payout one if the underlying asset price remains within a specified range
until the expiration. This price range is defined by two barrier levels. One
lower barrier, LB, and one upper barrier, HB. If the underlying asset at any
point is outside of this range the payoff will be zero. This payoff function
can be written as:

P(ST) = 1{LB < inf
0≤t≤T

(St), sup
0≤t≤T

(St) < HB}.

American Options

The American option is a generalisation of the European option. A European
option can only be exercised at the time of maturity, T , but the holder of an
American option must, for every time point t ≤ T , choose to either keep or
exercise the option. If the option is exercised the holder will get the payoff
immediately. For example, the payoff function of an American call option is:

P(S) = max(St −K, 0).

2.3 Wiener Processes

The Wiener process, W , is a stochastic process in continuous time that
satisfies the following conditions (see [Åberg, 2018, p. 92]):

• W0 = 0.

• W has independent increments, meaning that for 0 ≤ h ≤ s ≤ t
(Ws+u −Ws) is independent of (Wt+h −Wt).

• W has Gaussian increments, meaning that (Wt+h −Wt) ∈ N (0, h)

• Wt is continuous in t.

The Wiener process is often used as a random noise-term in modeling because
of the suitable properties. Mainly the fact that it is unbiased, i.e. E[Wt] = 0,
and that its increments are independent. However there is one problem with
the Wiener Process - it is non-differentiable. A lot of things could be said
about how go on about this, but it is not very important for this paper. All
we need to know is that there is a very useful formula to solve this problem.

4

2.4 Itô Formula

Here is the one dimensional Itô Formula (see [Åberg, 2018, p. 114]). For
f(t, x) ∈ C1,2:

df(t,Wt) =
(
∂tf(t,Wt) +

1

2
∂2
xxf(t,Wt)

)
dt+ ∂xf(t,Wt)dWt. (2.1)

Note that this is a standard notation and should be interpreted as:

f(T,WT)−f(0, 0) =

∫ T

0

(
∂tf(t,Wt)+

1

2
∂2
xxf(t,Wt)

)
dt+

∫ T

0
∂xf(t,Wt)dWt.

Itôs Formula is the rule in stochastic calculus that corresponds to the Fun-
damental Theorem (f(T)− f(0) =

∫ T
0 f ′(x)dx) in standard calculus.

For f(t, x, y) ∈ C1,2,2 we can state the two dimensional Itô Formula, writing
f short for f(t,W 1

t ,W
2
t), as:

df =
(
∂tf +

1

2
∂2
xxf +

1

2
∂2
yyf + ρ∂2

xyf
)
dt+ ∂xfdW

1
t + ∂yfdW

2
t , (2.2)

where W 1
t and W 2

t are Wiener processes with correlation ρ.

2.5 Stochastic Differential Equation Models

A very common way to model the asset price, St, in finance is through this
type of stochastic differential equation (SDE):

dSt = µ(t, St)dt+ σ(t, St)dWt. (2.3)

Here µ(t, St) is called the drift and is used to model deterministic trends of
the asset price while σ(St, t) is called the diffusion and models the unpre-
dictability of the asset price. Note that both these functions are deterministic
functions. In the most simple case they are just constants but they often
depend on St.

2.5.1 Geometric Brownian motion

For the geometric Brownian motion (GBM) both the drift term and the
diffusion term are linearly dependent on the underlying asset price:

dSt = µStdt+ σStdWt.

This is probably the most common SDE in finance. For instance this is the
model used to derive the famous Black-Scholes Formula, together with some
other assumptions. For this model to not have any arbitrage opportunities

5

the drift constant, µ, must be equal to the risk free rate, r, i.e. the rate of
return of an investment with no risk.

dSt = rStdt+ σStdWt. (2.4)

In this model we only have one equation. One way to extend it is to also
model the volatility of the asset with a similar SDE and make these equations
depend on each other accordingly.

2.5.2 Heston Model

In the Heston Model we still only have one asset but we have two stochastic
differential equations. One for the price of the underlying asset, St, and one
for the volatility of the underlying asset, Zt. The Heston Model can appear
in some slightly different forms but for this paper we assume the following
model: {

dSt = rStdt+ St
√
ZtdW

1
t

dZt = κ(θ − Zt)dt+ σ
√
ZtdW

2
t

, (2.5)

where W 1
t and W 2

t are Wiener processes with correlation ρ. The other con-
stants in the equation are:

• r - the rate of return of St.

• θ - the long variance of St (E[Zt]→ θ as t→∞).

• κ - the rate which Zt reverts to θ.

• σ - the volatility of Zt.

2.6 The Partial Differential Equation (PDE)

The SDE models are now defined but to be able to discretize the model it
first has to be written as an partial differential equation (PDE). In other
words we have to derive a PDE from the SDE models. To make this as sim-
ple as possible to understand we start with the one-dimensional model, the
GBM (2.4), but later we will also derive the PDE for the Heston Model (2.5).

We introduce V (t, St) as the value of an option, i.e. the price of the op-
tion at time t with the current underlying asset price St. The payoff for the
option at the time of maturity, V (T, ST), is known but we also want to know
the value for all possible values of t and St. The first step in calculating how
the value of the option evolves in t and St is to use the Itô Formula (2.1),
which gives us:

dV =
(∂V
∂t

+ rSt
∂V

∂S
+

1

2
σ2S2

t

∂2V

∂S2

)
dt+ σSt

∂V

∂S
dWt.

6

The next step is to understand that for there to be no arbitrage opportunities
the drift term in this equation must be equal to rV , meaning we arrive at
the well known Black-Scholes equation:

∂V

∂t
+ rSt

∂V

∂St
+

1

2
σ2S2

t

∂2V

∂S2
= rV,

or in a more simple notation:

∂V

∂t
+D∗sV = rV, (2.6)

where D∗s = rSt
∂
∂St

+ 1
2S

2
t σ

2 ∂2

∂S2
t
.

For the Heston Model the option value, V (t, St, Zt), is a function of t, St
and Zt. The whole derivation can be done in a very similar way. With the
two dimensional Itô Formula (2.2) and some arbitrage arguments we get:

∂V

∂t
+rSt

∂V

∂St
+

1

2
S2
t Zt

∂2V

∂S2
t

+ρσStZt
∂V 2

∂St∂Zt
+κ(θ−Zt)

∂V

∂Zt
+

1

2
σ2Zt

∂2V

∂Z2
t

= rV.

Using the notation introduced above this can be written as:

∂V

∂t
+D∗sV +D∗zV + ρσStZt

∂V 2

∂St∂Zt
= rV, (2.7)

where D∗s = rSt
∂
∂St

+ 1
2S

2
t Zt

∂2

∂S2
t
and D∗z = κ(θ − Zt) ∂

∂Zt
+ 1

2σ
2Zt

∂2

∂Z2
t
.

Note that the same D∗s is used for both the GBM (2.6) and the Heston Model
(2.7). The only difference is that the variance, σ2, is constant in the GBM
case but for the Heston Model this same variance is written as Zt and is not
constant.

The next step is to discretize this equation but first some useful theory
is introduced.

2.7 Feynman-Kac Representation

The Feynman-Kac formula makes the connection between a lot of different
sections in this paper a lot clearer and is thus very useful ([Åberg, 2018, p.
125]). Suppose we have a PDE on the following form. For any f(t, x) ∈ C1,2:{

∂f(t,x)
∂t + µ(t, x)∂f(t,x)

∂x + σ(t,x)2

2
∂2f(t,x)
∂x2

= rf(t, x)

f(T, x) = P(x)
. (2.8)

The Feynman-Kac Formula states that the solution to this PDE is equal to:

f(t, x) = er(T−t)E[P(ST)|St = x],

7

where P(ST) is a known payoff function and Su (for t ≤ u ≤ T) satisfies:{
dSu = µ(u, Su)du+ σ(u, Su)dWu

St = x
.

Note that this has the form of the SDE defined above (2.3). This representa-
tion basically says that the solution to the PDE can be seen as an expected
value of the contract, which makes the connection with the upcoming Monte
Carlo simulation very clear. This connection will be discussed more later.

2.8 Grid

To discretize the PDE we need to first create a grid. This is done by dis-
cretizing t, St and Zt into N , M and L points. We introduce the notation
V n
m,l = V (n∆t, S0 + m∆S,Z0 + l∆Z) where (n∆t, S0 + m∆S,Z0 + l∆Z) ∈

[0, (N−1)∆t]× [S0, S0 +(M−1)∆S]× [Z0, Z0 +(L−1)∆Z]. Here S0 and Z0

represents the lower end values in the grid for St and Zt, whereas the time
is assumed to start at t = 0. For the GBM case the l index is not needed so
for that case we use V n

m as notation.

2.9 Finite Difference Method

Since the payoff at the time of maturity, T , is known the goal is to solve the
equation backwards in time by starting with the known payoff and taking
small steps backwards, one at a time, to get the value at any desired time-
point. To make it as simple as possible to follow we first create the scheme
for the GBM and later extend it to the Heston model.

2.9.1 GBM Finite Difference Method

The PDE for the GBM (2.6) has the exact form of the Feynman-Kac repre-
sentation (2.8). However there are some merits to instead look at the homo-
geneous partial differential equation where the right term is zero, but this
can be done without any problem. According to the Feynman-Kac formula
the rV term in the PDE only corresponds to the solution being multiplied
with the constant er(T−t). To make this scheme as simple as possible we
can set the right term to zero and instead take care of this constant by
just multiplying it with the final solution. Another reason to work with the
homogeneous equation is to make the upcoming simulation part a bit more
clear to understand. When we later create matrices to simulate from we want
the rows in them to sum to one. If we keep the rV term in this equation it
would make the rows sum to 1+r instead which would make the probability

8

interpretation a bit unclear. So the discretized equation we work with is:

∂V n
m

∂t
+ rSnm

∂V n
m

∂S
+

1

2
σ2(Smn)2∂

2V n
m

∂S2
= 0. (2.9)

The discretized time derivative is approximated with the standard forward
difference:

∂V n
m

∂t
≈ V n+1

m − V n
m

∆t
.

For the corresponding space derivatives we instead use a central difference
approximation. These can be approximated in either time point n or n+ 1.
To begin with we approximate them in time point n:

∂V n
m

∂S
≈
V n
m+1 − V n

m−1

2∆S
,

∂2V n
m

∂S2
≈
V n
m+1 − 2V n

m + V n
m−1

(∆S)2
. (2.10)

From this we can derive the implicit solution. After inserting these approx-
imations in equation (2.9) we get:

V n+1
m − V n

m

∆t
+ rSnm

V n
m+1 − V n

m−1

2∆S
+

1

2
σ2(Snm)2V

n
m+1 − 2V n

m + V n
m−1

(∆S)2
= 0

m

V n+1
m = V n

m −∆trSnm
V n
m+1 − V n

m−1

2∆S
−∆t

1

2
σ2(Snm)2V

n
m+1 − 2V n

m + V n
m−1

(∆S)2
.

This holds for every m (except for the edges where some adjustments have
to be made) so we can write these equations in vector form. We introduce
V n as a column vector containing all V n

m (for 0 ≤ m ≤M − 1).

V n+1 = V n−∆tDs1V
n−∆tDs2V

n = (I−∆tDs1−∆tDs2)V n = (I−∆tDs)V
n

m

V n = (I −∆tDs)
−1V n+1 = Aimps V n+1, (2.11)

where Ds = Ds1 +Ds2 is an M ×M matrix:

Ds1 =

0 0 0
−α1 0 α1

−α2 0 α2

.
−αM−2 0 αM−2

0 0 0

, αm =

rSm
2∆S

,

Ds2 =

0 0 0
β1 −2β1 β1

β2 −2β2 β2

.
βM−2 −2βM−2 βM−2

0 0 0

, βm =

σ2(Sm)2

2(∆S)2
.

9

Here the edges of the matrices are set to match the conditions for a specific
contract. In this case it corresponds to the double no touch option (if the
edges of the grid are set to match the barrier levels of the option). The
double no touch option is very convenient to work with but the edges can
also be changed to match some other type of contract one want to evaluate.
Just to show an example this is how the first and the last row of Ds1 are
defined for a European call option:

α0

[
−3 4 −1 0 . . . 0

]
, αM−1

[
0 . . . 0 1 −4 3

]
. (2.12)

The edges are the most problematic part when evaluating contracts with this
kind of schemes and the greatest evaluation errors will often appear on the
edges.

If we instead evaluate the space derivatives (2.10) in time point n+1 instead
of n one can very similarly derive the explicit scheme as:

V n = (I + ∆tDs)V
n+1,

where Ds is the same matrix as for the implicit scheme.

Both these methods can be used. However, to get the best result we can have
a mix of these two solutions giving us the Crank-Nicolson method [Crank,
Nicolson , 1947]:

V n =
(

(I − ∆t

2
Ds)

−1(I +
∆t

2
Ds)

)
V n+1 = AsV

n+1.

For the rest of this section we will only consider this scheme, but the implicit
and explicit schemes basically work just the same.

We can simply take one step backwards in time by just multiplying the
value vector V n with As. But because of the clean form this equation has
we can take more than one step at a time. Taking n steps is simply done by
taking the n:th power of As and then using this new matrix as our transition
matrix. This means the value at time t = 0 can be written as:

V 0 = (As)
N−1V N−1,

where V N−1 is the discretized payoff at the time of maturity (t = T).

This is true for all the European options. However if we want to price an
American option we have to take every step one at a time. That is because
an American option can be exercised at any time before and at the time of
maturity. So at any time we want to check if the direct payoff is greater
than the value of keeping the contract and if that is the case we change the

10

value of the option to this payoff value. But since the time is discretized
we can only check this condition it at every step (and not all possible times
in between). This will make the evaluation of American options a bit bi-
ased, but the error will get smaller when we increase the fineness of the time
discretization, N .

2.9.2 Heston Finite Difference Method

To create the scheme for the Heston Model a lot of steps will be similar to
the scheme we just derived for the GBM but there is one problem, the cross
derivative term in the Heston PDE (2.7). In the case where ρ 6= 0 the cross
term will make the scheme impossible to write in a form this simple. There
is however some ways to include this correlation in the simulation and it will
be discussed later but to begin with we only look at the case where ρ = 0.
The discretized Heston equation we will work with can thus be written as:

∂V n
m,l

∂t
+ rSnm,l

∂V n
m,l

∂S
+

(Snm,l)
2Znm,l

2

∂2V n
m,l

∂S2

+ κ(θ − Znm,l)
∂V n

m,l

∂Z
+
σ2Znm,l

2

∂2V n
m,l

∂Z2
= 0.

Note that we work with the homogeneous equation (the right term is zero)
just like we did for the GBM. Again we start with the derivation of the
implicit scheme with some very similar approximations:

V n+1
m,l − V

n
m,l

∆t
+rSnm,l

V n
m+1,l − V n

m−1,l

2∆S
+

1

2
(Snm,l)

2Znm,l
V n
m+1,l − 2V n

m,l + V n
m−1,l

(∆S)2

+κ(θ − Znm,l)
V n
m,l+1 − V n

m,l−1

2∆Z
+

1

2
σ2Znm,l

V n
m,l+1 − 2V n

m,l + V n
m,l−1

(∆Z)2
= 0

m

V n+1
m,l =

V n
m,l −∆trSnm,l

V n
m+1,l − V n

m−1,l

2∆S
−∆t

1

2
(Snm,l)

2Znm,l
V n
m+1,l − 2V n

m,l + V n
m−1,l

(∆S)2

−∆tκ(θ − Znm,l)
V n
m,l+1 − V n

m,l−1

2∆Z
−∆t

1

2
σ2Znm,l

V n
m,l+1 − 2V n

m,l + V n
m,l−1

(∆Z)2
.

When deriving the scheme for the GBM model we could write V as an vector
at this point but now we need V to be an M × N matrix. And instead of
having just one matrix operating on V we need two matrices, one from the
left and one from the right. On matrix form the equation is:

V n+1 = (I −∆tDs)V
n(I −∆tDz)

11

m

V n = (I −∆tDs)
−1V n+1(I −∆tDz)

−1,

where Ds = Ds1 +Ds2 is an M ×M matrix:

Ds1 =

0 0 0
−a1 0 a1

−a2 0 a2

.
−aM−2 0 aM−2

0 0 0

, am =

rSm
2∆S

,

Ds2 =

0 0 0
b1 −2b1 b1

b2 −2b2 b2
.

bM−2 −2bM−2 bM−2

0 0 0

, bm =

(Sm)2Zl
2(∆S)2

,

and Dz = Dz1 +Dz2 is an L× L matrix:

Dz1 =

−3c0 4c0 −c0

−c1 0 c1

−c2 0 c2

.
−cL−2 0 cL−2

cL−1 −4cL−1 3cL−1

, cl =

(θ − Zl)κ
2∆Z

,

Dz2 =

d0 −2d0 d0

d1 −2d1 d1

d2 −2d2 d2

.
dL−2 −2dL−2 dL−2

dL−1 −2dL−1 dL−1

, dl =

σ2Zl
2(∆Z)2

.

The definition of the edges on Ds works exactly like they did for the GBM.
The edges on Dz however is defined like this and will not be changed if we
look at another contract. It would not really make sense to change them since
the volatility is no tradable asset so no contract payoff is directly dependent
on the volatility. Instead the edges on Dz1 and Dz2 are defined to always
approximate the corresponding space derivative, just like for all the other
rows but in a non symmetrical way. The Crank-Nicolson method can be
created, just like for the GBM, giving us:

V n =
(

(I − ∆t

2
Ds)

−1(I +
∆t

2
Ds)

)
V n+1

(
(I − ∆t

2
Dz)

−1(I +
∆t

2
Dz)

)
,

12

or with a more simple notation:

V n = AsV
n+1Az. (2.13)

Note that As is the same as in the GBM case apart from the dependency on
Zl, therefore the same notation for this matrix is used in both these schemes.
This dependency will however affect the way we price the options because
the dependency makes it crucial to take all the steps one at a time. Remem-
ber that the time, from t = 0 to t = T , is discretized into N time points.
So we need to take N − 1 steps to go from the known value (payoff) at time
t = T to the value at time t = 0. If the matrices were totally independent
we could have calculated just one big step by taking the (N − 1):th powers
of the transition matrices, just like we did for the GBM scheme. But be-
cause As is depending on Zl in this Heston scheme we must take (N − 1)
smaller steps to get the value at t = 0, making the calculations a bit slower.
But to evaluate an American option all these small steps are necessary to
take anyway, making this a suitable method to use to price American options.

The independence of W 1
t and W 2

t (ρ = 0) makes it possible to write this
scheme (2.13) in this locally one dimensional (LOD) way, meaning that we
can work with one dimension at a time when taking a step. Basically it means
that we have two separate matrices for the two dimensions. The whole point
of this paper is to have this equation on this form so that we can see As and
Az as transition matrices that can be used to simulate trajectories forward
in time for Sm and Zl. If we have ρ 6= 0 and still want to write the equation
in matrix form we would have to take all the cross terms into account and
the matrix would therefore have to be huge compared to the LOD case. So
being able to write the scheme in this simple LOD form means we gain a lot
when it comes to computational complexity. The obvious problem with this
scheme is that we can’t use it to directly price options ifW 1

t andW 2
t are cor-

related. However there is a way to include the correlation when simulating
with the LOD scheme, which will be explained in section 2.10.4.

2.10 Simulation

This simulation section can be seen as the main part of this paper because
this is what makes our option pricing method interesting. The possibility to
very easily simulate from the model is what sets this model apart from other
pricing methods. Having a large number of simulation samples would be very
useful to analyse different attributes of the option. The most simple way to
use the the samples would be to calculate the expected value with the stan-
dard Monte Carlo method, i.e. by taking the average of all the simulations.
But the simulation also makes it possible to analyse the option in other ways.

13

The discretized solution in the finite difference scheme (2.13) can be in-
terpreted as a Markov chain when simulating forward in time, meaning As
and Az can be seen as transition matrices. Recall the Feynman-Kac repre-
sentation of the PDE that stated that the solution to the PDE is an expected
value of the option. For the discretized scheme this should also hold, at least
when N , M and L goes to infinity. But for finite values it should be a good
approximation. That means the calculated values at time point n can be
seen as an expected value of the option value in time point n + 1 which
implies that the weights in the transition matrix can be seen as probabilities
for the different outcomes, at least if they fulfill these probability conditions:∑

j

Aij = 1∀i, 0 ≤ Aij ≤ 1, (2.14)

where A is a transition matrix.

2.10.1 GBM Simulation

To keep it as simple as possible to begin with we start with the GBM. We
have introduced a few different options and schemes already but to begin
with we assume a double no touch option and a fully implicit scheme (2.11).
The reason is that this combination has some very nice characteristics when
it comes to the transition matrix, Aimps . More precisely it will guarantee that
the probability conditions (2.14) are met, according to [Andreasen, Huge ,
2010, p. 5-6], meaning Aimps will have a perfect probability interpretation.
This matrix can therefore be used to simulate trajectories with the transi-
tional probabilities given by:

Pr[Sn+1 = Sj | Sn = Si] = (Aimps)ij . (2.15)

While this seems like a crucial characteristic to have it is not essential for
the simulation to work, to some extent. This may seem strange to begin
with but it is in fact possible to use the transition matrix for simulation even
though some weights are negative and/or greater than one. Exactly how to
handle this will be explained later in this section but for now we just assume
that the transition matrix no longer have to fulfill the probability conditions
(2.14). That means the definitions of the edges of the matrices can be de-
fined in any manner, meaning we can price other contracts than the double
no touch option. It also means that the implicit scheme is not the only pos-
sible scheme to use. However, when taking a lot of time steps, the solution
can become very sensitive and almost seemingly unstable if the probability
conditions are greatly violated. But in the case where the weighs are "close"
to fulfilling the conditions it can be handled. If we use the Crank-Nicolson

14

scheme the conditions are not guaranteed to be fulfilled for all rows but it
will often be fulfilled "close enough" to make this method work, making this
a suitable scheme in many cases.

With a given start point for the underlying asset at time t = 0 we sim-
ply take one step forward in time by looking at the conditional probabilities
(2.15) in the row corresponding to the start point. Note that one time step
has the length T

N . After taking a step we will end up in another row (or
possibly the same) and we can do this again and again. This can be done
for any number of steps. For the double no touch option there is no prob-
lems with taking many steps but for many other options the definition of
the edges will be problematic for the simulation. This is because it can be
hard, or even impossible, to make the option have the desired behavior on
the edges. For the double no touch option it is easy to implement the edges
correctly because if we set the edges in Ds to just zeroes it means the edge
will absorb the trajectory, meaning if it ever reaches the edge it will stay
there, which corresponds to exactly how the double no touch option works.
This is one of the reasons the double no touch option is so well-used in this
paper. However, if we start somewhere in the middle of the matrix and only
simulate for a short time interval the trajectories will almost never reach
the edge (depending on all the parameters). In that case the problem with
the edges will not make a big impact. But for longer simulations the trajec-
tories will reach the edge more often and then the double no touch option
should theoretically get the most accurate results compared to other options.

Another concern with other edges on Ds, for example (2.12), is that the
weights in Aimps don’t necessarily fulfill 0 ≤ Aimps (but each row will still sum
to one), as we explained earlier in this section. The same concern comes
up for all options (even the double no touch option) if we use the explicit
or the Crank-Nicolson scheme. This problem is solved by "simulating with
negative probabilities".

2.10.2 Simulation with negative probabilities

Assume a general transition matrix, As, where the entries can’t be directly
seen as probabilities because they might be negative or greater than one.
The Feynman-Kac representation and the connections discussed earlier still
obviously holds so V n can still be seen as an expected value of V n+1, however
As can’t be directly used to simulate from because the conditional simulation
(2.15) only works when the probability condition (2.14) is met. So we want
to somehow make the weights fulfill this condition. This can be done by first
taking the absolute value of all weights and then normalizing each row so
they sum to one. This can be seen as a change of numeraire, R. This means

15

the conditional transition probabilities can be written as:

Pr[Sn+1 = Sj | Sn = Si] =
| (As)ij |∑
j | (As)ij |

.

To make up for this change we have to multiply the final payoff with the
numeraire which is updated in every step according to:

Rn+1 = Rnsign((As)ij)
M∑
j

|(As)ij |, (2.16)

where i corresponds to Sn and j corresponds to Sn+1.

This update has to be done for every step we take because it depends on
every i and j and will therefore change over time. The rest of the simulation
works exactly like it did before.

Now maybe it seems like there is no problem at all with probability weights
being negative but there is in fact one big concern. If some weights are neg-
ative the Monte Carlo simulation will only converge in expected value. That
means we can only calculate the expected value of the options with Monte
Carlo simulation. If we want to do some other statistical analysis the tran-
sition matrices must fulfill the probability conditions (2.14). For instance
we can calculate different percentiles for the value of an option given a start
point if, and only if, the probability conditions are met.

2.10.3 Heston Simulation

The simulation for the Heston scheme is very similar to the GBM simulation
but for the Heston model we also have to simulate the volatility. This is done
in the same way except that we simulate from the columns of Az because
this matrix is multiplied from the right of V n (2.13). The general conditional
transition probabilities for the volatility can be written as:

Pr[Zn+1 = Zi | Zn = Zj] =
| (Az)ij |∑
i | (Az)ij |

.

One time step in the Heston model is simulated by taking two intermediate
steps. First one step to simulate Sm and then one step for Zl. The numeraire
product (2.16) is now updated after every intermediate step. For an inter-
mediate step in Sm the numeraire is updated just like before and for a Zl
step it is updated very similarly, only the obvious changes are made. The
final payoff is then multiplied with the numeraire to get the correct output.

We have already mentioned some problems when simulating with negative

16

probabilities but some problems can be made more clear now when the nu-
meraires are introduced. One thing to note is that the numeraire product
(2.16) grows exponentially fast. If we take a lot of steps and most num-
bers are greater than one the product will get too big for this method to
work. But if most numbers are close to one there is no problem. However
it turns out that this problem appears for the Dz1 operator in the Heston
scheme. This has to do with the term (θ−Zl) being sometimes positive and
sometimes negative depending l. But this is not an unsolvable problem. We
can modify this operator into a so called upwind operator that changes the
derivative approximation depending on the sign of (θ − Zl). The upwind
version of Dz1 is defined as:

Du
z1 =

−γ0 γ0

−γ−1 (γ−1 − γ
+
1) γ+

1

−γ−2 (γ−2 − γ
+
2) γ+

2
.

−γ−L−2 (γ−L−2 − γ
+
L−2) γ+

L−2

−γL−1 γL−1

,

γ+
l = max(0, γl), γ−l = min(0, γl), γl =

κ(θ − Zl)
∆Z

.

Using this operator and a implicit scheme will in fact guarantee that the
probability conditions (2.14) are met for Az, according to [Andreasen, Huge
, 2010, p. 5-6]. This operator will generally give a slightly worse approx-
imation but it solves the problem with the numeraire product growing to
big and is thus very useful. Therefore this upwind version will be used for
all simulations with the Heston Model in this paper. However if one want
to only calculate the option values with the Heston finite difference scheme,
and not use the calculated matrices to simulate anything, Dz1 can be used
instead of Du

z1 to get a slightly better result.

2.10.4 Simulation with correlation

Recall the full version of the Heston Model PDE (2.7). Until now we only
considered the case where ρ = 0 because we want to have the final equation
for the scheme on this simple LOD form (2.13). If the Wiener processes
in the Heston Model (2.5) are correlated this kind of LOD finite difference
scheme can’t be obtained. But if we only want to simulate trajectories
forward in time we can in fact include the case where ρ 6= 0 by extending
our simulation method. For every step we take forward in time we can add a
step that simulates the correlation between Sm and Zl. We take a correlation
step in the following manner:

V̂ n
m,l = (1 + ∆tDsz)V

n
m,l,

17

where V̂ n
m,l can be seen as the correlated version of V n

m,l and the correlation
operator, Dsz, is defined as:

DszV
n
m,l =

σρSnmZ
n
l

4∆s∆z
(V n
m+1,l+1 − V n

m+1,l−1 − V n
m−1,l+1 + V n

m−1,l−1). (2.17)

Recall that every step in the Heston scheme is done by taking one step for
Sm and one step for Zl, one at a time. To get the best results for the cor-
related simulation we can split the correlation step into two steps. One half
correlation step right before the Sm step and another half correlation step
right before the Zl step. This means that (1 + 1

2∆tDsx) is the transition
matrix we will use when taking a correlation step and therefore we introduce
the notation Asz = (1 + 1

2∆tDsx). Note that some weights in Asz will be
negative but this is solved by simply simulating with "negative probabilities"
in a similar manner to how we solved this problem for As and Az and the
numeraire product is updated after every intermediate step.

This part shows how to implement the somewhat vague suggestion on how
to solve the correlated case is briefly described in [Andreasen, Huge , 2010,
13]. The aim is to simulate Sn+1 and Zn+1 given Sn and Zn. To do this we
need to proceed in four intermediate simulation steps, where the numeraire
is updated after every intermediate step:

• Generate Sn+1,1 and Zn+1,1 given Sn and Zn using Asz.

• Update Rn+1,1 = Rnsign((Asz)ij)/(1− 4
σρSn

mZ
n
l

8∆s∆z).

• Generate Sn+1,2 given Sn+1,1 using As.

• Update Rn+1,2 = Rn+1,1sign((As)ij)
∑M

j |(As)ij |.

• Generate Sn+1,3 and Zn+1,2 given Sn+1,2 and Zn+1,1 using (1+1
2∆tDsz).

• Update Rn+1,3 = Rn+1,2sign((Asz)ij)/(1− 4
σρSn

mZ
n
l

8∆s∆z).

• Generate Zn+1,3 given Zn+1,2 using Az.

• Update Rn+1,4 = Rn+1,3sign((Az)ij)
∑L

i |(Az)ij |.

Finally we set Sn+1 = Sn+1,3, Zn+1 = Zn+1,3 and Rn+1 = Rn+1,4. The
numeraire updates that correspond to the correlation step can be derived
from the definition of Dsz (see 2.17).

18

Chapter 3

Results

3.1 Finite Difference Scheme Results

This paper is mainly about the connection between the direct pricing with
the finite difference schemes and the Monte Carlo simulation. However it can
be interesting to see some results of the direct pricing with finite difference
schemes to get a better understanding of what we are doing. The finite
difference (and simulation) schemes are implemented in Matlab.

3.1.1 GBM Finite Difference Method Results

For this section we use the Crank Nicolsen method with a 1001 × 201 grid
(N ×M). One European call option and one binary double no touch option
are priced and the corresponding plots can be seen on page 20 and 21. For
the call option Sm goes from 20 to 420 and for the double no touch option Sm
goes from 75 to 125. The options are assumed to have 1 year to maturity
and the model parameters are specified as r = 0.1 and σ = 0.1. For the
European call option the true values are known so we can also show a figure
of the pricing error.

3.1.2 Heston Finite Difference Method Results

The Crank-Nicolson method is used for this section as well, with a 201 ×
101× 101 grid (N ×M × L). We price a European call option, a double no
touch option and an American put option and the corresponding plots can
be seen on page 21, 22 and 23. For the call option the Sm grid goes from
0 to 400, for the double no touch option Sm goes from 50 to 150 and for
the put option Sm goes from 0 to 300. For all three options Zl goes from
0 to 1. The options are assumed to have 1 year to maturity and the model
parameters set to r = 0.1, κ = 5, θ = 0.2 and σ = 0.1. The pricing error for
the European call option is also shown.

19

Figure 3.1: Calculated value at t = 0 (blue) and payoff at t = 1 (green) of
a European call option with strike K = 100, with the GBM finite differenc
scheme.

Figure 3.2: Error of the option evaluation in Figure 3.1.

20

Figure 3.3: Calculated value at t = 0 (blue) and payoff at t = 1 (green) of a
double no touch option with barrier levels LB = 75 and HB = 125, with the
GBM finite difference scheme.

Figure 3.4: Evaluation of a European call option with strike K = 100 and 1
year to maturity, with the Heston finite difference scheme.

21

Figure 3.5: Error of the evaluation in Figure 3.4.

Figure 3.6: Evaluation of a double no touch option with barrier levels LB =
50 and HB = 150 and 1 year to maturity, with the Heston finite difference
scheme.

22

Figure 3.7: Evaluation of an American put option with strike K = 100 and
1 year to maturity, with the Heston finite difference scheme.

3.2 Simulation Results

For this section we only consider the Heston model with the upwind operator
Du
z1. Every under section to this one is based on a specific option. However,

to keep it as simple as possible, we will reuse V n
m,l as notation for the value

in the grid point (n,m, l) in every section.

3.2.1 Simulation 1

To begin with we assume a fully implicit scheme for both Sm and Zl with the
upwind operator, Du

z1, and a binary double no touch option. This implies
that both As and Az will have a perfect probability interpretation. We use a
201× 101× 101 grid where Sm goes from LB = 50 to HB = 150 and Zl goes
from 0 to 1. Furthermore the double no touch option has 1 year to maturity
and the option parameters are r = 0.1, κ = 5, θ = 0.2 and σ = 0.1. We
start the simulation with m = 51 and l = 21 meaning Sm = S51 = 100 and
Zl = Z21 = 0.2 to begin with. To calculate the derivative prices we use that
fact that the value of an option at time t = 0 can be seen as expected values
of the later values:

V (0, S0, Z0) = E[V (T, ST , ZT)|S(0) = S51, Z(0) = Z11].

23

This has clear connections with the Feynman-Kac formula (2.8). The ex-
pected value is approximated by taking the average value of a large number
of simulations. We run 106 simulations and use this to price the option
according to:

e−rTV 0
51,11 ≈ e−rT

1

106

106∑
i=1

(V 200
•,•)i = 0.4692,

where e−rTV 0
51,11 is the estimated value of the option and e−rT (V 200

•,•)i is one
simulated value at time t = T which corresponds to n = 200 in this case.
The interest rate term, e−rT , is there to make up for the change we made in
the PDE in the beginning of the finite difference scheme section.

Since the transition matrices fulfil the probability condition (2.14) we can
not only use the simulation to estimate the EV of the option. By listing all
the final values for all trajectories, (V 200

•,•)i, we can get an estimated value of
any percentile we want. If we assume (V 200

•,•)i is sorted from the smallest to
the greatest value we can calculate the 5 and 95 percentiles as:

(V 200
•,•)50000 = 0.2660, (V 200

•,•)950000 = 0.5668.

This means that with 90% probability the payoff of the option at time t = 1
will be in the range from 0.2660 to 0.5668. We would not be able to do
this kind of analysis with only the finite difference scheme so this is a prime
example of why the simulation part is interesting.

3.2.2 Simulation 2

We now consider a European call option with the Crank Nicolson method,
meaning we have to simulate with negative probabilities. This implies that
we can’t calculate any percentiles but the expected value of the option can
still be calculated. We use a 201 × 101 × 101 grid where Sm goes from 20
to 420 and Zl goes from 0 to 1. The option is assumed to have 1 year to
maturity and strike K = 100. The option parameters are r = 0.1, κ = 5,
θ = 0.2 and σ = 0.1. We start the simulation with m = 21 and l = 21
meaning Sm = S21 = 100 and Zl = Z21 = 0.2. We run 106 simulations and
get:

e−rTV 0
51,11 ≈ e−rT

1

106

106∑
i=1

(V 200
•,•)i = 21.99.

This can be compared to the true value: 22.02.

3.2.3 Simulation 3

Now we consider the case were correlation is included in the simulation.
The correlation is assumed to be ρ = −0.3. We assume that the option

24

only has 0.1 years to maturity. This is to make sure that no trajectories
will reach the edge of the grid, because the implementation of the edges is
somewhat problematic. This shorter time period makes it impossible for the
trajectories to reach the edge of the grid. Apart from this change the setup is
very similar to the last section (Simulation 2), meaning we have a 201× 101
grid where Sm goes from 20 to 420 and Zl goes from 0 to 1. Furthermore
the option parameters are r = 0.1, κ = 5, θ = 0.2 and σ = 0.1 and the strike
price is K = 100. The simulation begins with m = 21 and l = 21 meaning
Sm = S21 = 100 and Zl = Z21 = 0.2. However we only run 105 simulations
because of the increase in time complexity this scheme will have:

e−rTV 0
51,11 ≈ e−rT

1

105

105∑
i=1

(V 200
•,•)i = 10.91.

This can be compared to the true value: 6.120.

3.2.4 Simulation 4

Again we consider a similar setup as for Simulation 2 meaning we have a
201 × 101 × 101 grid where Sm goes from 20 to 420 and Zl goes from 0 to
1. The option is assumed to have 1 year to maturity and strike K = 100.
The option parameters are r = 0.1, κ = 5, θ = 0.2 and σ = 0.1 and we start
the simulation with Sm = S21 = 100 and Zl = Z21 = 0.2. However one big
change is made. Because of the error that might come with the definition
of the grid edge we want to simulate for a shorter time period so that the
trajectories never reaches the edges. One thing we can do is to simulate
forward to time point t = t1 (where 0 < t1 < 1) and calculate the value of
the option at time t1 with the finite difference methods. If we chose t1 close
enough to 0 and start the simulation somewhere in the middle of the grid the
trajectories will not reach the edge. Note that this can’t be done in the case
were we have correlation because the correlation effect can only be included
in the simulation and not in the finite difference scheme. The setup we have
is identical to Simulation 2 apart from that we now don’t simulate to time
t = T but only to time t = t1. And instead of using the option payoff at
time t = T we use the option value at time t = t1 that we can calculate with
the finite difference methods. We use t1 = 0.1 and run 106 simulations:

e−rTV 0
51,11 ≈ e−rT

1

106

106∑
i=1

(V 200
•,•)i = 22.00.

Now V 200
•,• is the value at time t = 0.1 that we can consider known because

we can calculate it in advance with the finite difference methods. This can
again be compared to the true value: 22.02.

25

Because of this decrease in the time length for the simulation part we will
with very high probability never have to simulate with negative probabili-
ties. We can verify this by looking at the final numeraire product. If the
product is 1 it means that the weights have a perfect probability interpre-
tation, which is the case for this simulation. That means we can calculate
percentiles for this option. We sort (V 200

•,•)i from the smallest to the greatest
value and calculate the 5 and 95 percentiles as:

(V 200
•,•)50000 = 9.292, (V 200

•,•)950000 = 41.74.

This now corresponds to values at time t = t1 = 0.1.

3.2.5 Simulation 5

In these sections we have simulated an underlying asset and used this to
price an option. If we have more than one option that depend on the same
underlying asset we can price all these options simultaneously without any
extra cost because we still only have to simulate one underlying asset. This
means we can very effectively simulate an portfolio of options that all are
based on the same underlying asset. We now consider a portfolio of 10 dif-
ferent European call options with equal share (10% each) but with different
strike prices Ki = 95 + i, where i = 1, 2, ..., 10.

Apart from this change we assume an identical setup as for Simulation 4,
meaning the options have 1 year to maturity but we calculate the portfolio
values at time t = t1 = 0.1 with the finite difference scheme so that we only
have to simulate forward to this time point. Note that this portfolio can be
seen as a normal option with a slightly more complicated payoff function,
so in practise the only adjustment we have to make is to change the payoff
function so it correspond to the portfolios payoff.

The grid and the parameters are also identical to Simulation 4 meaning we
have a 201× 101× 101 grid where Sm goes from 20 to 420 and Zl goes from
0 to 1. Furthermore the option parameters are r = 0.1, κ = 5, θ = 0.2 and
σ = 0.1. The simulation starts with Sm = S21 = 100 and Zl = Z21 = 0.2.
We run 106 simulations and get:

e−rTV 0
51,11 ≈ e−rT

1

106

106∑
i=1

(V 200
•,•)i = 21.80,

where e−rTV 0
51,11 is the estimated value of the portfolio and (V 200

•,•)i is one
simulated value at time t = t1 = 0.1. Since this portfolio only is a linear
combination of call options we have access to the true value: 21.83.

Just as for Simulation 4 the probability weights will almost certainly have

26

a perfect probability interpretation, even though it is not guaranteed, which
means we can calculate the 5 and 95 percentiles as:

(V 200
•,•)50000 = 9.183, (V 200

•,•)950000 = 41.61.

This means that with 90% probability the value of the portfolio will be in
the range from 9.183 to 41.61 at time t = 0.1.

27

28

Chapter 4

Discussion and Conclusions

4.1 Discussion of Finite Difference Method Results

Two different options were priced with the GBM finite difference method
(see figure 3.1 and 3.3). We don’t have access to the true values for the
binary double no touch option so we can’t tell exactly how accurate it is but
for the European call option the true values are known. The pricing error
for the European call option (see figure 3.2) is less than 0.006 for the whole
pricing range which indicates that this method is fairly accurate. However
one should keep in mind that small pricing errors can be enough to make a
big impact in finance. Even for Sm < 60 where the absolute error is very
small there is still a problem. While it is true that the absolute error is small,
that is only because the price we want to evaluate is very small as well. If we
instead would look at the relative error it would become clear that the pric-
ing is far from perfect here as well. Luckily this paper is not about pricing
options as precise as possible but rather to be able to simulate the under-
lying asset and for that application this method is definitely accurate enough.

For the Heston finite difference method the pricing error of the European
call option (see figure 3.5) is larger than for the GBM, which is expected
because of the increase in dimension. But just as for the GBM we consider
this accuracy good enough for the main application, i.e. the simulation. Also
note that the greatest errors are in the top corner so if we start the simu-
lation somewhere around the bottom corner and simulate for a short time
period almost no trajectory will reach the top corner and thus it wont affect
the simulation results too much.

For good measure the pricing of an American option is included as well
(see figure 3.7). The American call option is not very interesting because it
is never optimal to exercise it before maturity so the price of an American
call option is identical to the European version, provided that r > 0. This is

29

not true for the put option however, making this a more interesting option
to evaluate.

To summarize we can conclude that the finite difference method is not used
to get a perfect option evaluation but rather as theory to make the simu-
lation possible. The simulation can then be used in more ways than just
evaluating the option price, at least in some situations.

4.2 Discussion of Simulation Results

For all simulations with the European call option the true values are known.
We see that the calculations of the expected values are about as accurate
as the direct finite difference pricing in most cases. This is expected since
the simulation is based on the same theory as the finite difference method.
The simulation error is not constant however because of the variance that
the Monte Carlo simulation will bring.

It is reasonable to assume that the accuracy for simulation with the binary
double no touch option (section 3.2.1) is just as good as the corresponding
simulations with the European call option. It might even be better because
the definition of the grid edges are more precise for the double no touch
option.

However we can note that there is one exception to all these good results.
When simulating with correlation in section 3.2.3 the error is really big.
This is partly a consequence of increased variance. Running the whole sim-
ulation again, with the same setup, gives a result that is not even close to
neither the last simulation value nor the true value. Note that we only run
105 simulations (compared to the other cases where we run 106 simulations)
which of course will make the variance higher, but not to this degree, so
that does not solely explain the error. More likely is that the huge vari-
ance is a consequence of the correlation steps. Since there is no possible
way to avoid negative probability weights when simulating with correlation
the numeraires will get very large compared to the similar cases where we
simulation without correlation and this will increase the variance. Normally
a change in correlation from ρ = 0 to ρ = −0.3 would only correspond to a
millesimal change for the option value. With this said we can conclude that
it is not worth to consider any correlation when simulating with this method
because the added variance is so much greater than the true change in value
the correlation will produce. The precision would be much better by just
ignoring the correlation and simulating as if ρ = 0, although this would give
a slightly biased value.

30

We can conclude that the simulation with negative probabilities seems to
work well if we can keep the numeraire small. The problem however is that
it only converges in expected value so in the cases where the numeraire is
greater than 1 we can not calculate percentiles. Luckily we found a way to
avoid negative probabilities by simulating for only a short time period and
use this in combination with the finite difference method, as we did in section
3.2.4 and 3.2.5. While this worked out nicely for the specific setup we used
it does not generally guarantee that no weights are negative. The setup in
section 3.2.1 is of course ideal if we want to avoid negative weights, since this
guarantees that the probability conditions (2.14) are met, but unfortunately
this setup is only possible for the double no touch option where the edges of
the transition matrices are defined to be zero.

31

32

Bibliography

Åberg, S. (2018). Derivative Pricing, KF Sigma, Lund.

Andreasen, J and Huge, B. (2010). Finite Difference Based Calibration and
Simulation. Preprint availble at:
https://www.researchgate.net/profile/Jesper_Andreasen2/publication/
235622407_Random_grids/links/54634c760cf2c0c6aec330dd.pdf

Crank, J and Nicolson, P. (1947). A practical method for numereical evalu-
ation of solutions of partial differential equations of the heat-conduction
type, Cambridge Philisophical Society, 43, 50–67.

33

https://www.researchgate.net/profile/Jesper_Andreasen2/publication/235622407_Random_grids/links/54634c760cf2c0c6aec330dd.pdf
https://www.researchgate.net/profile/Jesper_Andreasen2/publication/235622407_Random_grids/links/54634c760cf2c0c6aec330dd.pdf

	Introduction
	Theory and Method
	Financial framework
	Derivatives
	Options

	Wiener Processes
	Itô Formula
	Stochastic Differential Equation Models
	Geometric Brownian motion
	Heston Model

	The Partial Differential Equation (PDE)
	Feynman-Kac Representation
	Grid
	Finite Difference Method
	GBM Finite Difference Method
	Heston Finite Difference Method

	Simulation
	GBM Simulation
	Simulation with negative probabilities
	Heston Simulation
	Simulation with correlation

	Results
	Finite Difference Scheme Results
	GBM Finite Difference Method Results
	Heston Finite Difference Method Results

	Simulation Results
	Simulation 1
	Simulation 2
	Simulation 3
	Simulation 4
	Simulation 5

	Discussion and Conclusions
	Discussion of Finite Difference Method Results
	Discussion of Simulation Results

