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Abstract

We have constructed a novel neural network architecture called CWE-LSTM
(concatenated word-emoji bidirectional long short-term memory) for classify-
ing emotions in Twitter conversations. The architecture is based on a combina-
tion of word and emoji embeddings with domain specificity in Twitter data. Its
performance is compared to a current state of the art natural language process-
ing model from Google, BERT. We show that CWE-LSTM is more successful at
classifying emotions in Twitter conversations than BERT (F1 73 versus 69). Fur-
thermore, we hypothesize why this type of problem’s domain specificity makes
it a poor candidate for transfer learning with BERT. This is to further detail the
discussion between large, general models and slimmer, domain specific models
in the field of natural language processing.



2



Acknowledgements

Wewould like to thank our supervisor, Pierre. Without our regularmeetings this thesis would
have been more di�cult and less fun to write.

We would also like to thank our sources of inspiration and support, Maja Morsing and
Amanda Schultz.

3



4



Contents

1 Introducing the Problem 7
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Emotion Classification . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.2 State of the Art and Neural Networks . . . . . . . . . . . . . . . . 8

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Theoretical Background and Related Work 11
2.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Gradient Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . 16
2.1.4 Long Short-Term Memory . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.5 Bidirectionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Vector Representation of Language . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 Statistical Language Models and Word Embeddings . . . . . . . . . 20
2.2.2 Word2Vec and GloVe . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 Text Corpora and Pre-Training . . . . . . . . . . . . . . . . . . . . 23

2.3 Bi-Directional Encoder Representations From Transformers (BERT) . . . . 25
2.3.1 Beyond Word Embeddings . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.2 Structure of BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.3 Training and Fine-Tuning Bert . . . . . . . . . . . . . . . . . . . . 30

2.4 Combating overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Evaluating the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.1 F1, Precision, Recall and Accuracy . . . . . . . . . . . . . . . . . . 32

3 Our Approach 35
3.1 SemEval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 EmoContext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5



CONTENTS

3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Baseline Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.3 CWE-LSTM Model . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.4 BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.1 Hyper-Parameter Optimization . . . . . . . . . . . . . . . . . . . . 43

4 Evaluating Our Results 45
4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Model Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.2 Generalization Capability . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.3 Model Comparison and Reflection . . . . . . . . . . . . . . . . . . 54
4.2.4 Reflection and Model Improvements . . . . . . . . . . . . . . . . . 56

5 Our Conclusions 59

Bibliography 61

Appendix A Important Links 67

6



Chapter 1

Introduction

Much of the combined knowledge of the human species is stored through written documents.
Words, sentences, paragraphs and even books are endowed with meaning as authors put their
thoughts in writing. The process of encoding meaning in text through writing is so revered
that some of the most famous and lasting figures in history are writers.

Nearly equally complex is the decoding process that happens as readers interact with
written text. There, readers recreate scenes they have never seen, see people they have never
met, and are exposed to emotions which are not their own. The written word forms the basis
for complex exchange of ideas, the preservation of knowledge and lived experience and the
creation of new connections between readers and writers around the globe.

Furthermore, in the past 20 years since the advent of the internet and especially Web 2.0
technologies, the amount of text data in existence has grown immensely. On websites like
Facebook or Twitter, there are gigabytes of text published all the time. It doesn’t take long to
see that digesting this text corpus in its entirety, say for the purpose of content moderation
on the platform, would require many thousands of hours of work.

However, despite the fact that language is messy, contextual and cultural, we have come
a long way in the past 10 years on the road to teaching computer models to understand
and derive meaning from written and spoken language. This field of research is called natu-
ral language processing (NLP) and will form the basis for this masters thesis where we will
specifically focus on applying artificial neural networks (ANN) methods to classify Twitter
text data based on the emotion contained.

1.1 Background
At its core, NLP is concerned with constructing mathematical models to approximate dif-
ferent aspects of language structure and use. According to Allen (1995) the core aspects of
language understanding include

• Semantics: What does a word, phrase, sentence or document mean in abstract terms?
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1. Introducing the Problem

• Morphology: What are the building blocks that words or phrases are constructed from?

• Syntax: Where do words occur in sentences or documents andwhat does that say about
which parts of speech they form?

Early NLP attempted to solve problems in these domains through the use of grammar rules
and other rigidly defined linguistic structures (Hutchins, 2001). While such rules had some
small success, these solutions were limited by the fact that human use of language changes
all the time and isn’t always strictly correct. It quickly became clear that rule based forms
of language modelling were too brittle for real world usage, especially in the domain of se-
mantic evaluation. Furthermore, with the advent of cheaper computing power and faster in-
formation storage and retrieval it became norm to think about NLP in terms of data-driven
techniques (Manning and Schütze, 1999).

1.1.1 Emotion Classification
One specific area of semantic evaluation research is sentiment analysis. This research has be-
come relevant in large part due to the explosion of text on Web 2.0 platforms based on user
generated content. As was mentioned before, no human can feasibly consume and synthesize
such quantities of text. Thus, for tasks such as content moderation of social media or sort-
ing through reviews to find dissatisfied customers, the improvement of sentiment analysis
techniques is important research.

Emotion classification is a recent addition to this field of research. To a human, the
emotion behind written language is often clear, but how do we teach a machine to recognize
di�erent feelings and intents? One way, which is reminiscent of the old rule-based methods
mentioned above, would be to look for emotionally loaded words. For example, if someone
writes “happy” multiple times in a sentence, it often means just that. However, one can use
negative-loaded sentiment words like swear words in a positive way, for example to intensify
one’s meaning. For this reason, most emotion classificationmodels now employ a data-driven
approach through machine learning and especially ANNs.

The idea is that if one sees a word or group of words appearing many times in happy
sentences, then it likely bears some correlation with the happy emotion. This type of context
based language learning was first proposed by (Firth, 1957) who is quoted as saying, “You shall
know a word by the company it keeps.” By this he meant that understanding patterns of how
words are used is more important than knowing their dictionary definitions. With a machine
learning model, we do not have to worry about pointing out which words or patterns to look
for, but rather that our data contains su�ciently many examples for our models to learn
from.

1.1.2 State of the Art and Neural Networks
Machine learning and deep learning techniques such asANNs have revolutionized the field of
NLP and specifically emotion classification. This is because neural techniques like ANNs are
incredibly powerful at finding patterns in large quantities of data. This has been instrumental
to NLP research over the past 20 years on two fronts.

Firstly, deep learning models have been revolutionary in modelling core aspects of lan-
guage such as semantics, syntax and morphology without the need for supervision or rules.
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1.2 Motivation

These e�orts were helped by the parallel work of collecting, structuring and annotating
shareable, standardized bodies of text called text corpora. These digitized and annotated
text bodies, of which the Penn TreeBank (Marcus et al., 1993) is one of the best known in En-
glish, helped feed stochastic language processing methods with high quality language data.
This enabled comparison of such methods to previous rule based models on standardized
language modelling tasks with well-defined scopes.

However, the same deep learning techniques have also been instrumental in solving ap-
plied NLP problems such as machine translation, image captioning, question answering, sen-
timent analysis and text classification (Otter et al., 2018). Emotion classification is a clear
example of where the advances in the state of the art due to ANNs are most pronounced.

Context is incredibly important in correctly classifying emotions since the larger task
also contains contextual sub-tasks like decoding metaphors or understanding sarcasm. This
means that large amounts of language information need to be processed and remembered by
the model to provide enough context for solving these problems (Seyeditabari et al., 2018).
Without advances in deep learning, especially in recurrent neural networks (RNNs) and long
short-termmemory networks (LSTMs) this classification problemwould be computationally
infeasible for previous techniques such as Markov chain based language model.

1.2 Motivation
Our motivation for writing about NLP and especially emotion classification is many faceted.
Firstly, NLP is an interesting and rapidly developing field. Research is being carried out both
by private actors and in the academy which makes the innovation climate exciting. Research
is also often community driven and many technological advancements are released as open
source.

Another central feature of modern NLP research is the competition culture. Competi-
tions where teams from all over the world compete on the same well-defined problem is a
both a way of getting one’s research recognized, but also helps lower barriers to entry into the
research field. By enlisting in one of these many competitions, teams are not only provided
with a baseline to measure their results after, but also with valuable, high quality data and
often even with useful functions for things like pre-processing and model evaluation. Thus,
another motivation for writing this thesis was to gain exposure to the competition culture.

Furthermore, the improvement in this field can be well measured due to the develop-
ment of many standardized NLP tasks such as the Stanford Question Answering Dataset
(Rajpurkar et al., 2018) among many others. These standard tasks allow new technologies to
be directly compared against previous innovations. This both provides a backdrop of where
the state of the art is in terms of research techniques, but also can highlight where research
is lacking. Through writing this thesis we hoped to gain a better understanding of where the
state of the art was in NLP and emotion classification.

Finally, a recent trend in machine learning overall is the application of so-called trans-
fer learning. A large model is trained by a company or person who has the computational
capabilities. It is then released to the community, who can tune its application to di�erent
problems. This technique has had great success in other areas of machine learning however
it is important to assess what kind of tasks this concept is applicable to. These models are
often complex with long intensive training times. Thus, an ongoing discussion is whether it
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is possible to produce similar results with less computation. A final motivation to our re-
search therefore is to better understand whether transfer learning is applicable and superior
to other modelling techniques in an NLP and emotion classification context.

1.3 Objective
This thesis will tackle a real life semantic evaluation problem classifying emotions using Twit-
ter data based on the SemEval 2019 Task 3 competition called EmoContext. We have used a
Deep Learning approach based on the Python frameworks Keras and TensorFlow to achieve
nearly state of the art results with an original model architecture. We have also implemented
BERT, a current state of the art model in natural language understanding to compare with.

We will first detail the background of semantic evaluation and emotion classification.
Then we will discuss the theoretical underpinnings of emotion classification models, from
principles of deep learning and neural networks. Next, we will discuss the practical details
of training our model and BERT and compare their results on unseen test data. We will
also attempt to interrogate our findings and discuss di�erences between these models from
a theoretical and practical standpoint. Finally, we will discuss how we could improve our
results and the future of semantic evaluation and NLP.

1.4 Limitations
We limit the scope of the project by implementing our models in Keras with TensorFlow to
take advantage of the large number of ready to use functions in these packages related to rapid
optimization, loss function implementation, training tuning and model prediction. Also, we
have limited the scope of the project by only applying our learned models to one specific
problem from the EmoContext competition. This is instead of attempting to make a highly
generalizable model architecture which can solve multiple semantic analysis problems. This
is, however, normal practice for competition-based research. Finally, it is also important to
mention that while we train our models on four CPU cores, most NLP researches have access
to several GPU cores. This limits the amount of engineering optimization we can apply to
our model architectures.
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Chapter 2

Theoretical Background and Related Work

From a theoretical standpoint, there are two important processes in an emotion classification
model. Firstly, the language representation process whereby text data is transformed into real
valued vectors which contain language information. From there, a classification model can
take these vector representations and find features to distinguish between emotion classes.

We have implemented twomodels, one of our own creationwhich is a CWE-LSTMmodel
(Concatenated Word and Emoji’s LSTM model) and one state of the art model called BERT
fromGoogle. In our CWE-LSTMmodel, the language representation task and themulti-class
classification task are separate so we will discuss the theory behind them separately. In the
BERT model however, the representation and classification tasks are intermingled into one
architecture which is distinct and novel from our model, thus meriting its own theoretical
section.

However, all three tasks (the language representation, the classification and the BERT
models) are based on machine learning. For that reason, we will begin by describing a core
building block of this field, namely artificial neural networks, and their application in clas-
sification models.

From there we will turn to language representation models and describe the theoretical
background of representing language as real valued vectors, specifically through word em-
bedding models. We discuss the intuition behind the embeddings used in our model, the
GloVe twitter embeddings.

Lastly, we present BERT. This is a language representation model that can be used for
multiple tasks through transfer learning. In contrast to previous models, which implements
recurrence in di�erent forms, this is a language model which relies solely on a concept called
attention.
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2. Theoretical Background and Related Work

2.1 Machine Learning
Machine learning is a modelling approach where utilize algorithms to implicitly find un-
derlying patterns in a data set instead of specifying what features are important to solve a
problem. This is accomplished by providing the algorithm with a learning function to opti-
mize and a rich data set to find features in. From there, the algorithm tunes the parameters
of the model to optimize the model’s predictive performance on unseen data which is used
to evaluate the model.

Machine learning problems are called supervised learning problems if the dataset also
contains the true labels to compare predictions against. For example, in our case, based on
a text sentence xi, a learning model H should classify the emotional undertone yi in the
sentence. We then compare the predicted emotion labels ŷi to the actual emotion labels to
evaluate our model.

There are two main types of supervised learning problems: classification or regression
problems. Classification problems aim to classify data into a finite number of categories,
whereas regression problems predict a continuous number as their output. Since we can
quantify how well our model does at predicting the correct output values, we can see how
changing the parameters of themodel changes our predictions. We therefore optimize a func-
tion that punishes worsened predictions and rewards improvements. In a machine learning
setting, such ameasure is called a cost function. Thewayweminimize this function is through
an iterative algorithm called gradient descent.

2.1.1 Artificial Neural Networks
One of the fundamental building blocks of machine learning is ANNs first proposed by Mc-
Culloch and Pitts (1943) based on the structure of neurons in the brain. These structures have
proved applicable to a wide range of problems when combined through di�erent architec-
tures but the underlying idea is the same. We will now present some common architectures
in ANNs as well as describing the intuition and mechanics behind how the work to model
data.

We first begin with the representation of data. LetX be a p-dimensional dataset of which
we have n samples.

X =


x11 x12 . . . x1p
... . . . . . .

...
xn1 xn2 . . . xnp

 (2.1)

Here, each row is a vector xi where i = 1, . . . , n has a corresponding label denoted yi .
Our problem is to model this output vector as well as possible based on the data. This can
most simply be modelled as a linear combination of the input data, which gives rise to the
well-known linear regression model below.

ŷ = VXᵀ (2.2)

In Equation (2.2), each element of V ∈ R1×p is a real number called a weight.
However, in many applications, the relation between the data and its corresponding la-

bel is not linear. This means that no matter how one varies the weights in equation (2.2), the
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model would still yield bad predictions. One example of this is the problem of category pre-
diction. Instead of predicting an unbounded real number like one does in linear regression,
we want to predict a class. More accurately we want to predict a vector of probabilities that
the output yi belongs to a specific class k = 1, . . . ,K . Ideally, a perfect model would output
a vector where the probability of the target class is 1 and the rest are 0. However, in practice,
we are satisfied if the probabilities of the target class is higher than the rest.

Instead of only outputting one single value, we can create a model which outputs a vector
of K values by increasing the dimension of the original weight vector. From there, we can use
the softmax function to scale these outputs to probabilities between 0 and 1, representing
the probability that the output belongs to that specific class. Softmax φ is given by

φ(z) j =
exp (z j)∑K

k=1 exp (zk)
(2.3)

For j = 1, . . . ,K , where K is the number of classes. We can construct predictions by letting
V be a matrix of dimensions (K × p). Then we have the model:

ŷi = φ(Vxᵀ
i ) (2.4)

Then the ŷi : (1×K) is the predicted probabilities that the output label belongs to each class.
In the next section, we will explain how to tune the weights V to make these predictions
reliable.

In equation (2.2), we saw how to formulate the task in a completely linear setting. Then
by adding a non-linear function φ (like softmax), we saw that we can model more complex
behaviour. However, the real strength of ANNs come when we create compositions of non-
linear functions that all contain weight parameters. This type of combination of functions
and weight parameters is where we enter the domain of deep learning. Each function com-
position is called a hidden layer and is given by equation 2.5.

h = σ (UXᵀ) (2.5)

The elements of the matrix U are also called weights and the function σ is referred to as the
hidden layer’s activation function. We refer to all our weights in the ANN as ω. The predic-
tions of a neural network model, parameterized by ω = (U,V ) with activation functions φ
and σ, is given by 2.6.

ŷ = φ (Vσ (UXᵀ)) (2.6)

As mentioned above, for classification purposes, softmax is a good choice for the output
layer. In general, however, any di�erentiable function may be chosen for activation. Often,
non-linear behaviour is desirable for activation functions so popular activation functions in-
clude the rectified linear unit (RELU) (Hahnloser et al., 2000) and hyperbolic tangent (tanh)
amongst others.

Figure 2.1 shows a neural network parameterized by Û and V̂ . This type of neural network
is called a feed-forward neural network (FNN) since the input data flows forward through
the network to the output nodes. If we pass the output layer through the softmax function, we
theoretically can train the network to predict the probability of some input xi corresponding
to a category yk , k = (1, . . . , 4). This relation can be described by the following equation

ŷ = f (X;ω) = φ
(
V̂h

(
X; Û

))
(2.7)
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h1

y1

x1 xp

y2 y3 y4

hmHidden layer

...

...

...

...

v11ˆ vm4ˆ

u11 upmˆ ˆ

Figure 2.1: Standard feed forward network with one hidden layer.

It is clear that ŷ can be seen as either a function of the weights and the input data. Thus, we
may change the weights to a�ect the predictions for some input xi . In a classification setting,
we can ensure that these predictions are good by comparing them to our target vectors. If
the weights in Û and V̂ are initialized randomly, chances are that the predictions are faulty.
We would then like to update the weights, so that they produce more accurate results. This
process called training or learning through gradient descent is generalizable tomany di�erent
types of networks.

2.1.2 Gradient Learning
The underlying idea of training a network is to use an iterative gradient-based optimizer.
Such an algorithm requires an objective function to optimize. We call that function a cost
function (sometimes error function or loss function), denoted J . Di�erent cost functions are
applicable to di�erent types of problems. For example, with regression models, the summed
square error function is generally a good choice. In our case, we use the the categorical cross-
entropy function.

J(ω) = −
n∑

i=1

yi log(ŷi) (2.8)

Here, yi is the target class and ŷi) is the models predicted probability of it belonging to
the target class, given some parametrization ω and training examples i = 1, . . . , n.

Utilizing J , we can compute an update rule for our weights. As long as the activation
function in each layer is di�erentiable, we are able to calculate the necessary derivatives to
see how the cost would change if we changed theweights. Intuitively, if we know the gradients
of our optimization problem, we can descend towards the minimum of the cost function.

The size of step we descend in the opposite direction of the gradient is also of importance.
In a machine learning context the parameter regulating the step size is called learning rate
and it is initialized beforehand. If it is too large, we risk overstepping the minimum. On
the other hand, if it is too small, the algorithm will converge too slowly. Parameters of this
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2.1 Machine Learning

kind which are chosen before training as opposed to as a result of training are referred to as
hyper-parameters.

The update rule for our weights is given by equation 2.9 where η is the learning rate and
ω(t) is the weights after time step t in the optimization process.

ω(t+1) = ω(t) − η
∂J
∂ω(t) (2.9)

When each training example has acted on the model weights, an epoch is completed.
Preforming the weight update over multiple epochs is referred to as backpropagation. The
iterative process of weight updates is called gradient descent.

Variations of Gradient Descent
When training sets are large, calculating the gradient for all weight updates is a computa-
tionally infeasible. For this reason, the most common approach to model training is to use a
random subset of the training data when updating weights. This technique is called stochas-
tic gradient descent (SGD).

When training a neural network with a non-convex cost function using SGD, there is no
convergence guarantee. Convergence is sensitive to values of initial parameters such as batch
size, learning rate and number of hidden layers. Choosing the correct values is a di�cult
problem. Luckily, with the expansion of the field of deep learning, variations of SGD have
emerged. One such innovation utilizes a dynamic learning rate to increase or decrease our de-
scension speed depending on previous momentum. This makes convergence of the algorithm
more likely.

One of the most prominent algorithms is called Adam (Adaptive moment estimation)
and it learns based on the update rule below.

ωt+1 = ωt −
η

√
v̂i + ε

m̂i (2.10)

In equation (2.10), m̂t and v̂t are bias corrected estimators of mt and vt given by

m̂t =
mt

(1 − β1)t

v̂t =
vt

(1 − β2)t

(2.11)

Where

mt = β1mt−1 + (1 − β1)
∂J
∂ωt

vt = β2mt−1 + (1 − β2)(
∂J
∂ωt )

2
(2.12)

β1 and β2 are hyper-parameters by default set to of 0.9 and 0.999 respectively.
By storing an exponentially decaying average of past squared gradients, as well as past gra-

dients, Adam compares favorably towards other adaptive learning algorithms and is standard
for SGD optimization (Ruder, 2016).
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2.1.3 Recurrent Neural Networks
Language, since we read words in order, can natively be thought of as a sequence. Thus, mod-
elling language through a FNN like above loses some important language information about
which words come in which order in the sequence. Recurrent neural networks (RNNs), how-
ever, proposed by Elman (1990) amongst others, take into account the sequential nature of
the input when making output predictions.

RNNs accomplish this by computing a set of feedback weights in a hidden state vector
at each time step in the sequence that pass information from earlier time points. If we wish
to predict whether a sequence belongs to a certain class, we can reformulate our model to
incorporate this new time dependency by using the final recurrent hidden state vector to
make softmax probability predictions.

ŷ = φ(Vhp) (2.13)

Where
hp = σ(Uxp +Whp−1) (2.14)

Thus, the parametrizationω of the model is now comprised of the weight-matrices U, V and
W. Furthermore, our hidden layer is now dependent on earlier states.

For clarification of this recurrence mechanism, consider the following figure 2.2. We see

U

x

h W W W W

U

x1

Unfolding
through
time

h1

U

x2

h2 hp

U

V

xp

yy

. . .

^^

Figure 2.2: Recurrent neural network to illustrate the concept of
unfolding through time.

that at each time step, a new hidden state vector is computed. This vector can be trained
to pass forward the most important information for solving the problem through gradient
descent with an appropriate loss function. However, to compute gradients of the weight
matrices with respect to our loss function we need to unfold the network through time. If
our problem is classification, we can use categorical cross-entropy defined in equation (2.8),
and unroll our time dependency through the gradients. Given that J is still di�erentiable,
we also update the network weights according to equation (2.9) for all the weight matrices
in ω.

Since we know that J is parametrized by U,V and W , to compute the gradient updates,
we need to compute the respective partial derivatives. Consider the loss function gradient
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2.1 Machine Learning

with respect to the internal state matrixW , for example. We can compute this gradient based
on the chain rule over the di�erent components of the weight update.

∂J
∂W
=
∂J
∂ŷ

∂ŷ
∂hp

∂hp

∂h1

∂h1

∂W (2.15)

The recurrence in this equation comes from the term ∂hp
∂h1

. However, this recurrence term
is also responsible for a main drawback of using RNNs in modelling, that of vanishing gra-
dients.

Vanishing gradients happen when the model is unable to e�ect change to the loss func-
tion based on changes to the weights. The term ∂hp

∂h1
can be further expanded to reveal the

recurrence relationship at work.

∂hp

∂h1
=

∂hp

∂hp−1

∂hp−1

∂hp−2
. . .

∂h2

∂h1

=

p−1∏
i=1

∂hp−i+1

∂hp−i

(2.16)

For long sequences, the di�erence p−1 is large. Thus, there is a risk these gradients could all
be low and we would be multiplying very small numbers. If that happens, then the gradient
updates of Wmight vanish so ∂J

∂W → 0. This means that training will not converge optimally.
This limits the usefulness of pure RNNs in long dependency datasets in practice.

2.1.4 Long Short-Term Memory
To address the issue of vanishing gradients, (Hochreiter and Schmidhuber, 1997) and (Gers
et al., 2000) demonstrated how adding gating to RNNs can enable them to learn long-term
dependencies. Since gradients vanish due to the continuous multiplication of partial deriva-
tives, we alter the cell structure. This is done by adding elements to each recurrent layer, thus
providing a memory of long sequences. The short-term memory capabilities are unchanged
in comparison to the simple RNN, giving rise to the long short-term memory unit (LSTM).

LSTM networks contain two main innovations from the simple RNN. Firstly, at each
time step a hidden state vector and a local context vector are passed to the next recurrent
node. Secondly, the LSTM network contains a set of gating mechanisms which allow the
model to decide which information to pass forward in recurrence. This allows the LSTM
model to more stably learn long-term dependencies in the sequences.

The gating mechanisms are broadly defined as an input gate, a context gate, a so-called
forgetting gate and an output gate. Essentially, these are just activated matrix manipulations
based on gating weights which are optimally learned through training. These gates, and their
associated weights, are defined by the following relationships.

fp = σ(xpU f + hp−1W f ) (2.17)

ip = σ(xpU i + hp−1W i) (2.18)
op = σ(xpUo + hp−1W o) (2.19)

These functions are all recurrent on the previous time step’s hidden state hp−1 and the current
input data at this time period xp.
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Figure 2.3: Long short-term memory network. To the right, the in-
ner workings of a node is shown.

A candidate c̃p for the context state cp is computed by.

c̃p = tanh(xpUc + hp−1W c) (2.20)

The context state is combination of previous context information filtered by the forgetting
gate (2.17) and present information from input gate in equation (2.18) filtered through a
context gate.

cp = fpcp−1 + ipc̃p (2.21)

All of this gating machinery allows for the network to optimally determine which long-
term and short-term information to filter and pass to the final output representation.

In the final step of the sequence, the hidden state representation of the sequence hp is
computed as the combination of the current context information combined with the filtered
output from the output gate.

hp = op tanh(cp) (2.22)

This output state from (2.22) may then be used for prediction in the same way that hidden
states were used in the original RNN architecture in equation (2.13). By keeping an internal
memory of past information throughout the chain, LSTMs can represent complex sequences
and make stable predictions.

This is also because they can avoid the vanishing gradients seen in standard RNNs. This
can be seen by looking at the gradient calculation for model loss with respect to one of the
LSTM network’s weight matrices.

∂J
∂W f =

∂J
∂ŷp

∂ŷp

∂hp

∂hp

∂cp

∂cp

∂fp

∂fp

∂hp−1

∂hp−1

∂W f (2.23)

Clearly, the problematic gradient ∂hp
∂hp−1

is no longer recurrently multiplied due to the
intervening forgetting gates and context gates. Thus, if gradients start to vanish, there are
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other methods of a�ecting the loss function with respect to the weights and thus the risk
of vanishing gradient decreases. However, it has been noted that for long, context heavy
sequences, this is still an issue.

2.1.5 Bidirectionality
When modelling language, we must recognize that not all words are predictable by the word
before. Consider the sequences “river bank” and “bank account”, “bank” has a contextual
dependency in the two sequences, not only on the previous word, but on the word after. This
is a problem that regular recurrent networks can struggle with. This problem can be solved
however through bidirectionality proposed by Graves and Schmidhuber (2005). This simply
means reversing direction of the sequence and feeding this to an independent network and
concatenating the resulting hidden states.

For many language models, this is standard practice. In figure 2.4, we have extended
the simple RNN from figure 2.2 to work bidirectionally. The states (hp) in figure 2.4 may

x1

h1

x1

h2 hp

xp

hp

. . .

h1 h2 hp. . .

Concatenate

Figure 2.4: Bi-directional recurrent neural network

be from regular recurrent nodes or LSTMs. The network with the reversed states is simply
an independent copy of the original network. Commonly, the resulting hidden states are
concatenated to form

hp = (h→p ,h←1 ) (2.24)

This final hidden state vector can then be used in modelling in the same way as for sim-
ple RNNs through equation (2.13). By doubling the number of weights, we can now model
bidirectional dependencies. In terms of computational capability, constant scalar increases
of complexity is usually not a problem. Given that it adds contextual information to language
models, this is often a method employed to improve model representation and predictions.
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2.2 Vector Representation of Language
In all of the above models, the inputs are real valued vectors xi . This means that an essential
step in using neural networks as emotion classifiers is representing the language as vectors.
We will now discuss several methods for creating such a vector representation of language
and the theory behind them.

We can gather all of the words wi in our vocabulary to form a bag of words.

V = {wi : i ∈ 1, . . . ,N} (2.25)

For example, if the text sequence we were working with was “I love modelling text! ” then
the vocabulary would need to include an index for each of the words and symbols.

V={I, love, modelling, text, !, , . . . } (2.26)

From there, the simplest vector representation xi to distinguish between words is one-hot
vectors which indicate which word of the vocabulary the vector corresponds to.

I =
[
1 0 0 0 0 . . .

]
love =

[
0 1 0 0 0 . . .

]
...

However, simple one hot vectors are not a very useful input to most natural language process-
ing tasks, because they are embedded in a vector space that doesn’t contain any extra meaning
information about the words being represented. In fact, the only thing the di�erent vector
dimensions mean are: Is this word “Love”? Yes or no. Also, as vocabulary size grows, one hot
vectors become computationally unusable since each word needs its own separate dimension,
so xi ∈ RN .

2.2.1 Statistical Language Models and Word Embed-
dings

Amore e�cient method is to pass a lower dimensional vector xi ∈ Rd (d < N) which also
embeds language information about the word wi . This requires less computational power to
feed to a classificationmodel as input, and contains more relevant language information than
a one-hot vector. This type of lower dimensional representation is called a word embedding
since they embed words in a multi-dimensional meaning space where groups of semantically
and syntactically similar words near to each other in terms of vector distance.

One important language feature which is also good for creating word embeddings is how
words are used in conjunction with each other, i.e. their co-occurrence. Through looking at
the context that words appear in and the probability of observing a word given the observed
context one can gain a lot of insight into their syntactical and semantic use. This is called
statistical language modelling.

In the example “I love modelling text! ” above, there are clearly some words that are
less likely to occur in place of “modelling.” For syntax reasons, it would be very strange to see
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an adverb like “quickly” in that spot, and for semantic reasons it would be strange to see an
unrelated word like “gastroenteritis.” Important aspects of word meaning, correct syntax and
logical relationships between words and phrases can be captured through the probability of
these words co-occurring (Jurafsky and Martin, 2000).

Thus, a meaningful language feature is the probability of observing a particular word wi
given the context sequence {w j}

i−1
i−n of n words that came before. This probability is called an

n-gram since it is based on an n-word context.

P(wi |wi−1, . . . ,wi−n) (2.27)

From a text corpus andwith a specific contextwindow, one can calculate the co-occurrence
probability of twowordswi andw j . This co-occurrence probability,Pi j = P(wi |w j in context)
is based on counts of occurrences of wi with and without w j in its context window. These
probabilities create a co-occurrence probability matrix P ∈ R(N×N) for each word pair in the
vocabulary.

The row vectors of P are the co-occurrence probabilities of a word with every other word
in the vocabulary and, theoretically, could also be used as word-vector representations like
the one-hot vectors above. This would encode more language information than the one-
hot vectors. However, it would run into the same computational problems with growing
vocabulary size. Also, this matrix is relatively sparse, especially for words that don’t occur
very often in the text corpus, so not all N dimensions are necessary to e�ciently represent
this data.

Most traditional word embeddings are based on approximating P in lower dimensional
space. A classic dimension reduction technique is principal component analysis (PCA) based
on the singular value decomposition of the co-occurrence matrix. This approach is appealing
because it is unsupervised, meaning that no linguistic rules need to be fed to the system. Also,
PCA looks globally at the text corpus for all of the occurrences of a word in all the di�erent
context, representing rich language features. However, with large N this technique becomes
too computationally expensive.

This problem can still be solved in an unsupervised way however, using neural techniques
as shown by Bengio et al. (2003). His breakthrough was to use a feed forward neural network
to predict the n-gram probabilities of the words in the vocabulary given the context that
came before.

For each word in order in the text corpus, the n previous words were used as context and
each word was represented by a trainable, d-dimensional random initialized vector. These
vectors were then concatenated and fed through many hidden layers. From there the output
layer was a softmax probability over the vocabulary of all the probabilities of seeing each
word, given the context words. This objective function ensured that while training to pre-
dict n-grams, the network was learning linguistically valuable information in the matrix of
d-dimensional vectors. Furthermore, it was shown by Collobert et al. (2011) that this type of
word embedding wasn’t just a placeholder for words, but coded important language infor-
mation. In fact, he showed that word embeddings could be used as the sole input to other
machine learning models for applied NLP tasks with state of the art results. Amongst other
things, word embeddings have shown to be useful in finding named entities in phrases (Turian
et al., 2010), can be aligned over languages to help machine translation (Zou et al., 2013), and
also in semantic sentence parsing (Richard Socher, Alex Perelygin, Jean Y.Wu, Jason Chuang,
Christopher D. Manning and Potts, 2013).
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Figure 2.5: Feed Forward neural network

Bengio’s model had several drawbacks, however. Firstly, it was based on a feed forward
neural network so the only way of increasing the context window for the network to learn was
by increasing the number of input nodes. This meant that these embeddings were expensive
to train for recognizing context heavy features in the data, such as emotional information.

2.2.2 Word2Vec and GloVe
To train more e�ciently on smaller datasets and with better context information Mikolov
et al. (2013a,b) proposed a RNN approach to embedding creation called the skip-grammodel.
RNNs, as wementioned, canmore e�ciently model rich context information since they have
a memory of the sequence of words they have seen. The skip-gram model starts with the
opposite probability to what is predicted in an n-gram since it’s output is then probability of
di�erent context words, based on a target word.

This technique proved to embed these word-vectors in a universe of language meaning
which was very context rich and semantically interpretable, especially in terms of relations
between words. A famous example of these vectors interpretability is that using vector arith-
metic the vector for King minus the vector for Man was extremely close in vector space to
the vector forQueen showing that the model has learned to represent words with respect to
a dimension which we can understand as gender, and another which we can understand as
royalty.

The word embedding we chose for our vector representations, however, is the GloVe
(Global Vectors) embedding from Pennington et al. (2014). GloVe di�ers from the skip-gram
and feed forward word embedding models due to the fact that it is trained on a loss function
which takes into account both local co-occurrences from the n-length context windows, but
also global count-based co-occurrence probabilities from the text corpus. This is to attempt
to encode more of the language features that would be captured in a global method like
PCA. This is based on the intuition that including only local context information doesn’t
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Figure 2.6: Feed Forward neural network

give enough information to features about how often words occur in rare contexts. The loss
function ends up looking similar to the skip-gram model, but with slightly richer context
specific information embedded in the vectors.

Some other popular embeddings models include Latent Semantic Analysis, the FastText
embeddings (Joulin et al., 2016) and the ConceptNet embeddings from Speer et al. (2016).

2.2.3 Text Corpora and Pre-Training
Nearly more important than the actual word representation model architecture, however is
the choice of text corpus that the model will learn from. This has huge importance since
di�erent types of language settings have totally di�erent language features and vocabular-
ies. Some common text corpora used for training word embeddings are all the articles on
Wikipedia, a corpus of newspaper stories, all text data stored on the web, or all posts on
Twitter. The di�erences in language between Wikipedia, the web at large and Twitter are
extremely clear and will create totally di�erent language universes that the vocabulary is
embedded in.

Clearly, training a word-embeddings model is a computationally di�cult task. Corpora
should be as large and varied as possible to give the richest language features. This also means,
however, that the loss functions will have lots of local minima which can make training dif-
ficult. For that reason, these types of training problems are notorious for requiring lots of
engineering tricks and computing power.
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Because it is di�cult and computationally expensive for all users to need to re-train these
embeddings, GloVe has released pre-trained word embeddings for each of these three text
corpora mentioned above, Wikipedia, the Common Crawl dataset of websites and all data
on Twitter. These can be downloaded and used as inputs to other machine learning models
for NLP tasks. We can look at a sample of these word vectors plotted into lower dimensional
space to see the clustering structure.

Figure 2.7: t-SNE Glove

Every NLP task contains di�erent text data however, and so the language universes are
slightly di�erent. For this reason, it is commonpractice to tune theword-embeddingsweights
at the same time as training the model. This allows us to better refine the meaning space of
vectors to suit the problem context. Also, there will always be some words that are not in
our vocabulary of word embeddings. It is most common to initialize these out of vocabulary
words’ vectors to random values. From there, based on the context that they appear in the
problem corpus, we can still train the word embeddings to sort these words into the right
part of meaning space.

It should also be mentioned that words are not the only language features that can be
embedded in vectors for use as NLP modelling inputs. Especially for social media sites like
Twitter, emojis and punctuation play a big roll in communication on the platform. For that
reason, researchers have also trained meaning space for emojis such as those used in our sen-
tences and on Twitter in general. Emoji2Vec is a skip-gram style model that learns emoji
embeddings the same way that it learns word-embeddings in any other text corpus, with
some other tweaks for creating a emoji meaning space (Eisner et al., 2016).

Word embeddings can also be combined with metadata features to aid in problem solv-
ing. Examples of this could be combining embeddings with character level data to improve
the richness of language understanding (Józefowicz et al., 2016). Similarly, sub-word infor-
mation contained in longer words has also been used as extra information for embeddings
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Figure 2.8: t-SNE Emoji2Vec

with success especially in multi-lingual contexts (Bojanowski et al., 2016). Document and
paragraph embeddings in the meaning space have also been implemented as metadata fea-
tures with some success in helping semantic classification (Le and Mikolov, 2014). Word
Embeddings can even be enriched with problem specific metadata as demonstrated by Tang
et al. (2014b,a) with sentiment specific word embeddings for Twitter data.

2.3 Bi-Directional Encoder Representations
From Transformers (BERT)

We will now discuss the theoretical groundings of BERT, a state of the art language repre-
sentation and classification from Google. First, we will highlight the background of BERT’s
creation and the problems with language representation it is supposed to solve. From there
we will discuss its neural structure and walk through how the model constructs represen-
tations of text data. Finally, we will discuss how BERT’s specific input pre-processing and
pre-training procedure have made it a widely praised NLP for a range of tasks.

2.3.1 Beyond Word Embeddings
Despite the ease and flexibility of using pre-trained word embeddings in language modelling
they have one main drawback: each word is represented by just one vector. This means that
a word like “set” which has multiple meanings in di�erent contexts is only embedded in one
part of meaning space, thus losing language information. This problem is theoretically taken
care of by using RNNs or LSTMs which can carry information continuously over sequences
to create a context for the current word. However, practically these models can be insu�-
cient to provide rich context data to predict context-heavy language features such as humor
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or sarcasm (Zhang et al., 2018). This is partially since long term dependencies are formed
recurrently so it can be di�cult for a model to know which features to pass forward during
training.

This problem of insu�cient language context from RNNs has been tackled with bidirec-
tional LSTMs (Graves and Schmidhuber, 2005) and attention mechanisms (Bahdanau et al.,
2014) for LSTMs with some success. However, one new method for providing context rich
information to the network has been the BERT architecture fromGoogle (Devlin et al., 2018)
based on the transformer from Vaswani et al. (2017).

BERT (Bi-directional Encoder Representations from Transformers) and its underlying
machinery, transformers, are based on totally di�erent principles from recurrent neural lan-
guage models. In contrast to recurrent models, the transformer relies on attention for its
representations instead of recurrence.

Attention is a technique which was first proposed for RNNs to improve their contextual
awareness. Essentially, it works by training a weighted representation of all hidden state vec-
tors at the same time as the recurrence relationships are trained. This allows the network to
look backward through the previous hidden states to highlight context information instead
of needing to rely solely on the final hidden state representation from the RNN when mak-
ing predictions. This can allow the model to pick up more subtle and complicated context
information.

The transformer architecture builds on this idea of training weighted representations of
the previous hidden states. However, instead of applying attention in conjunction with re-
currence, the authors show that one can extract relevant language features simply through
applying attention to the underlying word vectors from the original sequence. This process
is called encoding the text, and while the original transformer paper used this encoded rep-
resentation for machine translation, it turns out that training contextually encoded language
features is useful in many NLP tasks. Furthermore, since the transformer does not use any
form of recurrence relations this allows for significantly more parallelization in training.

Transformer based models such as BERT have been able to achieve state of the art re-
sults on a range of NLP tasks. Also, the pre-trained weights of the BERT model are freely
distributed online to be downloaded used for transfer learning. For that reason, BERT is a
perfect model to compare to our CWE-LSTM model in the task of emotion classification.
We will now explain the mathematical theory behind our comparison model, BERT. Starting
with its structural components, the encoder. Proceeding with attention and its representa-
tion of data.

2.3.2 Structure of BERT
BERT, as we have said is a state of the art language representation model that can be fine-
tuned to many di�erent Natural Language Processing tasks, among them classification. At
its most basic, BERT is a sequence to sequence language representation model. It takes as
an input a sequence of language information X = (I0, . . . , In) and outputs a contextualized
vector representation H = (h0, . . . ,hn) of the elements of the input sequence.

Note that there are some slight changes in notation from previous sections. Firstly, we
don’t pass word vectors directly to the BERT model. Instead we pass enhanced word-parts
based on the pre-processing defined in the next section. For that reason, we talk about input
vectors I rather than word vectors x.
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Also, in the RNN setting, we talked about a sequence of words (x1, . . . , xp) however now
we talk about a sequence of input vectors which run over the index {0, . . . , n : n > p}. This is
because the BERT pre-processing both splits words into word-parts and inserts placeholder
tags before the sequence and after sentences. This will be discussed in more detail in the pre-
processing section below, however it means that the input vectors do not directly correspond
to the underlying words in the sequence.

Due to the pre-sequence placeholder input I0 and the design of the BERT model, the
output representation h0 becomes a distributed representation of the underlying sequence
in the same way that the final hidden state of a RNN does. This representation can also be
used directly for classification in the same way that the hidden states in an RNN can be. By
adding an extra hidden layer to the original BERT model and activating it with a softmax
function, we obtain a classification model.

ŷ = φ(Vh0) (2.28)

Encoders

BERT accomplishes the task of being a highly generalizable language representation frame-
work through stacking nodes called encoders. Encoders, as one could infer from the name,
are a neural network architecture taken from the transformer and used to create encoded
representations of text.

I1 ...

...

...

In

Encoder 1

I0

Encoder 2

Encoder L

h10 h11 h1n

hL0

...hL1 hLn

Figure 2.9: Bert layers

Each encoder layer is designed to abstract language patterns from an input sequence,
forming more nuanced patterns as the information flows up the layers. The input to the
first encoder layer is the language inputs and the last outputs are the final encoded language
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information after being passed through L encoder layers.

H1 = Encoder (X)
...

HL = Encoder (HL−1)

The classification task is then based on the first vector hL0 of the final HL representation.
Each encoder layer is a further combination of two sub-processes. The inputs to the

encoder are first passed through amulti-head self attention layer, which uses a series ofmatrix
manipulations to extract language features from the inputs. These manipulations are referred
to asmulti-head self attention. From there, there is a residual connection and normalization
process on the outputs before they are passed to the second sub-layer, a feed forward neural
network. This second sub-layer extracts the most important features from the attention
layer and after normalization and residual connections sends the outputs onward to the next
encoder layer.

I1 ...

...

In

Self attention

I0

Feed forward NN

z0 z1 zn

...h10 h11 h1n

Figure 2.10: Encoder 1 (in gray) dissected.

This process can seem convoluted, but it is just the same process repeated over and over.
First a series of matrix multiplications extract language features from input sequences which
are then weighted together by a FNN to highlight the most important features and combine
them.

Wewill now go through themathematical flow of the language information through these
layers.

Multi-Head Self Attention
The first sub-layer is a multi-head self attention layer. For the first encoder layer, this input
is X but for all the other l = 2, . . . , L encoder layers this is the output from the previous
encoder Hl−1. We start by extracting a m di�erent representations of this input based on
the scaled dot product attention. Each of these i = 1, . . . ,m representations is created in
the same way but with di�erently initialized extraction matrices. This is to extract di�erent
language features and the technique is called m-head attention.

The language features that the attention heads find are defined based on three matrices,
a so-called Query, Key and Value matrix (Q(i)

l ,K
(i)
l ,V

(i)
l ). These are calculated separately for
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each of the heads and for each of the encoder layers. They are defined as below as simple
matrix multiplications of the inputs and trainable weight matrices W (i)

Ql
,W (i)

Kl
,W (i)

Vl
.

Q(i)
l = Hl−1 ×W (i)

Ql
(2.29)

K (i)
l = Hl−1 ×W (i)

Kl
(2.30)

V (i)
l = Hl−1 ×W (i)

Vl
(2.31)

These queries, keys and value matrices are combined for each head in a matrix manipula-
tion called scaled dot product attention. This is themanipulation that highlights which input
sequences the head pays attention to, and to what extent. This is shown below in equation
2.32 where φ is the softmax function and dk is the dimension of the key matrix K (i)

l , which in
the case of BERT is always 64.

Z (i)
l = φ

Q(i)
l × K (i)

l
√

dK

 × V (i)
l (2.32)

To gain information from all of the m attention heads, they need to be combined e�-
ciently. These m attention head representations are therefore concatenated and compressed
with a matrix multiplication with a layer specific trainable weighting matrix as below.

Zl = Concat
(
Z (1)

l , . . . ,Z (m)
l

)
×Wl (2.33)

These internal encoder representations Zl now have the same size as the input sequences so
they can be residually connected to the input and layer normalized to improve training and
prevent vanishing gradients. This is shown below for the first vector of the Zl matrix.

z′l,0 = LayerNorm
(
zl,0 + h(l−1),0

)
(2.34)

Layer normalization is a technique from Ba et al. (2016) which normalizes the input values
to the later layers to solve the problem of covariate shift where the data changes distribution
over the layers of the network. Residual connections are added to prevent vanishing gradients
and because it makes training more stable by reducing the number of weight matrix multi-
plications in deep neural networks. Both methods are commonly used to stabilize training of
large networks like BERT however the theory behind them is out of the scope of this project.

This internal representation is then passed through a feed forward neural network param-
eterized by the weight matrices Ul, Ũl . This is to e�ciently summarize the most important
components of the self attention for passage to the next encoder layer.

H ′l = σ
(
Z ′l × Ul

)
× Ũl (2.35)

Finally, this final representation is normalized and residually connected again, row by row.

hl,0 = LayerNorm
(
z′l,0 + h′l,0

)
(2.36)

This matrix of row vectors is then the final output of the encoder layer l. This is a summary
of relevant language and context information, ready to be passed to the next encoder level or
to be used for classification.
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2.3.3 Training and Fine-Tuning Bert
Much of the above matrix manipulation is taken directly from the original transformer im-
plementation. However, BERT proposes some novel ideas for sequence pre-processing and
pre-training which also have helped it set state of the art results.

Input Sequences
As was mentioned before, BERT proposes two novel ideas for coding input data. Firstly, it
uses word-piece tokenization and embeddings from Wu et al. (2016) which splits parts of
words to get richer word information and to decrease vocabulary size. They also introduced
several BERT specific tokens including the classification token [CLS] and the sentence end
token [SEP].

The classification token is especially important for us since it always comes at position
zero and thus is encoded to the representation vector hL,0 which we can use for classification.
This works because this vector has access to all language information in each self attention
layer but doesn’t encode any information itself, thus it becomes a distributed summary of the
language information in the rest of the sentence. The sentence end tokens are also important
since they allow the model treat di�erent sentences di�erently.

Secondly, the BERT combines word-piece embeddings with segment embeddings and
positional embeddings.

Figure 2.11: Embeddings for BERT

This gives the model extra information about which sentence the words belong to and
where in the sequence the words come. These positional embeddings are especially important
since without them, it is not possible for the scaled dot product attention to di�erentiate
between sentences with the same words in a di�erent order, for example “The cat sat on the
dog” compared to “The dog sat on the cat.”

The positional embeddings are based on sinusoidal curves. These embeddings are of the
same dimension as the word vectors and thus are defined for position i in the text sequence
and embedding dimensions 2 j and 2 j + 1 in the embedding vector. We define the values of
the position embeddings as below where dembeddings is the dimension of the word embeddings
used in word representation, for BERT this is 512.

PEi,2 j = sin(i/10002 j/dembeddings) (2.37)

PEi,2 j+1 = cos(i/10002 j/dembeddings) (2.38)
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These values of positional embeddings described in Equation 2.38 are desirable because they
have the property that for any positional di�erence k in the word sequence, we can repre-
sent PEi+k as a linear function of PEi (Gehring et al., 2017). This allows the model to gain
information about the position of words in relation to each other.

Finally, the segment embeddings are a learned embedding vector based on the sentence
end tokens to allow themodel to represent di�erent sentences in di�erent embedding spaces.
This can be helpful to allow the sentences to be divergent in meaning or emotion, which is
very relevant to our dataset.

Pre-Training BERT
The other key to BERT’s general success in representing language is in its training procedure.
The pre-trained BERT weights that we use have been trained on two di�erent language rep-
resentation tasks to make the attention weighting more generalizable. These tasks are next
sentence prediction which is a binary classification problem, and word prediction from con-
text which is a multi-class classification problem. These tasks work well together due to a
novel masking approach that the authors use.

The training works through the following training procedure. Two sentences are sampled
from the corpus either following each other or from di�erent parts of the corpus. At the
same time, several of the words in sentences A and B are masked with a [MSK] token so
the model can’t see the words, or changed to a random word in the vocabulary to confuse the
algorithm. The model then learns based both on the task of predicting whether the sentences
are consecutive or unrelated and the word prediction task based on context. The two loss
functions are added together and minimized for a large sample set.

The theory behind this is that learning contextual information is helped by the next
sentence prediction task, while the masking task forces the model to keep a higher amount of
word-level information in its representations. This also helps the multi-head attention from
converging to finding too similar representation features in the encoding since the model
is trained also on word prediction, thus the encoding needs to still be grounded in word
meaning features.

BERThas advanced the state of the art on several natural language processing benchmarks
including beating human performance for the first time on the highly contextual Stanford
Question Answering Dataset (Rajpurkar et al., 2018). This should help make BERT perform
well on emotion classification tasks and thus makes it a good candidate to train our problem
on.

2.4 Combating overfitting
One of the important theoretical concepts in training neural models is overfitting. Since
model training often involves millions of parameters, neural models can often become over-
fitted to the training data. This means that during training, the model learned the distri-
bution of the training data too specifically to be able to generalize its knowledge to unseen
examples. Many methods to prevent overfitting exist, however we primarily utilize dropout
and early stopping.

Early stopping is based on constantly testing the model performance on unseen data after
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training epochs to see if it is finding ungeneralizable patterns. By splitting the data into
train, test and validation sets, we may condition training on performance on the validation
set. Specifically, we use the training set for weight updates in our model, but after every
epoch we evaluate the model’s performance on the validation set. In doing so, we receive an
indication of the predictive capabilities of our model and can stop training if the updates our
training is making are not translating to increased performance on the validation set.

Early stoppingworks to prevent overfitting by stopping trainingwhen the network shows
signs of overfitting, however it doesn’t change the actual weight training procedure. Another
way of preventing overfitting is to a�ect the underlying weights of the model. A common
cause for overfitting is that the weights grow too large or too small during training. There
are a lot of ways to impose regularization constraints on the values of the weights to avoid
this. However, dropout, as described by Srivastava et al. (2014), worksmore simply. Instead of
applying limits directly to weight values, it zeros themwith a pre-specified probability. Thus,
at every epoch, a certain probability of the total number of weights are not used. With less
weights in the model during training there is less possibility to learn super specific patterns
in the data, and thus we reduce the risk of overfitting.

2.5 Evaluating the Model
To know how well our model predicts we must have a measure of model performance. There
are several ways of measuring howwell a classificationmodel performs in predicting the data.
These metrics will be discussed below.

2.5.1 F1, Precision, Recall and Accuracy
Accuracy, defined as the percentage of correctly classified samples is possibly the most in-
tuitive measure however not the most useful. In a scenario where the class sizes are uneven,
then the largest class dominates accuracy and the model could get a pretty good accuracy
score just by guessing the largest class every time. Furthermore, we want to know specifically
how well our model is at distinguishing between each emotion class in order to see where it is
going wrong. For that reason, in a multi-class setting, most model performance is measured
against other metrics such as Precision, Recall and the Fβ score.

Each time that a model predicts that a data example is a member of of a certain class, it
is by default predicting that this data is not a member of the other k − 1 classes. This means
that for each class we can talk about the number of true and false positive (and negative)
predictions the model made on the test data set. This is called the confusion matrix for the
model for this particular class.

We can then directly define our three metrics: Precision, Recall and Fβ score.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Fβ =
(
1 + β2

)
×

Precision × Recall(
β2 × Precision

)
+ Recall

(2.39)
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The Precision of a specific class therefore is how well the model discriminates between
true and false positives, i.e. the percentage of times when the model guessed Happy that that
prediction was correct. The Recall is then how well the model finds all the occurrences of
a specific class, i.e. the percentage of conversations with a specific emotion label that the
model could find. Fβ is then a harmonic mean of the precision and recall where if β < 1
then Precision is weighted more highly then Recall in evaluation and if β > 1 then Recall
is weighted more highly than Precision (Rijsbergen, 1979). This trade-o� is context specific
and should be based on the expected cost of misclassification. However for our context these
Precision and Recall metrics are balanced to create the F1 = 2 × Precision×Recall

Precision+Recall score.
Each class now has a balanced measure of the model’s ability to correctly classify that

class. For a multi-class data set we can now define the micro- Precision and Recall over all k
classes.

micro-Precision =
∑k

i=1 TPi∑k
i=1 TPi + FPi

micro-Recall =
∑k

i=1 TPi∑k
i=1 TPi + FNi

micro-Fβ =
(
1 + β2

)
×

micro-Precision ×micro-Recall(
β2 ×micro-Precision

)
+micro-Recall

(2.40)

This score therefore is a way of balancing the performance of the model on the di�erent
classes during evaluation.
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Chapter 3

Approach

In this section, we present the competition from which the data is retrieved. We proceed to
discuss pre-processing of this data. Lastly, we motivate our methodology and explain how to
implement our model.

It is common practice to test new techniques and algorithms on well-established datasets
where benchmark and state of the art results are documented and corroborated. This pro-
vides a clear evaluation method for new techniques and architectures and allows for consis-
tency of results despite di�erences in technique. Similarly, common is to release well struc-
tured, labeled datasets in conjunction with starting a competition about which team can
create the best predictive model for this dataset on an unseen test set.

In these competitions, it is common to see both academic teams and industrial teams
competing for the leader-board which naturally drives results upwards. A final feature of us-
ing these types of competition datasets and more established bench-marked datasets is that
breakthrough results are encouraged to generate academic papers detailing their techniques
and providing access to their code. This open-source style community sharing results around
machine learning breakthroughs further facilitates faster improvement and reproducible re-
search.

3.1 SemEval
The International Workshop on Semantic Evaluation (SemEval) conference which is orga-
nized each year to promote NLP research and innovation is one such competition. Each year
teams compete in several tasks having to do with di�erent aspects of natural language under-
standing with the best teams and models being asked to present their work at the conference.
This year the tasks included translation and parsing, fake news detection, hate speech detec-
tion, math question answering and emotion detection.

The participants had around six months to create models to solve the problems in any of
these tasks with evaluation and submission taking place through the Codalab.
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3.1.1 EmoContext
We chose to participate in the EmoContext task where the goal was to create a model for
classifying the last phrase of three-turn conversations on Twitter into one of four emotions:
Happy, Sad,Angry orOthers. These datasets were labelled with emotions based on the votes
of ten linguists and NLP researchers to create high quality data. This is important because
classification models are a supervised area of machine learning so without trustworthy labels,
there is no point in training such models.

Examples of the dataset and structure are provided below:

Figure 3.1: Sample data

The goal of the competition was to create an NLP model to best classify the emotion
present in the last turn of the conversation based on the context of the previous two turns.
Participants were provided with a labelled training data set, a validation set and a baseline
classification model.

This competition and evaluation was based on the competition kick-o� paper by Gupta
et al. (2017) which proposed a novel LSTM based model called the Sentiment and Semantics
LSTM model (SS-LSTM). They combined sentiment specific word embeddings for Twitter
from Tang et al. (2014b), mentioned earlier, with GloVe embeddings for semantic informa-
tion to create their model. These researchers created the dataset that the competition was
based on and decided on the evaluation metric to be used in this competition. Thus, this
model and research served as a starting point for the competition and forms another base-
line model to evaluate our results against.

Model performance in the competition was evaluated based on micro-averaged F1 scores
from the emotion classes Happy, Sad and Angry. This means that the task of correctly rec-
ognizing others was not rewarded in the evaluation, except in that a�ects the F1 scores of
the other emotion categories. The task was further complicated however, through having
an unbalanced training set where the Others category was 15,000 samples and each emotion
category was only 5,000. This means that 50% of the training examples were Others. On the
other hand, however, the test set was 85% Others, so was even more unbalanced, meaning
that the model needed to be able to distinguish well between emotions, but also be able to
discriminate between Others and emotion categories.

3.2 Method
As has been stated, the objective of the EmoContext competition is to classify which emotion,
if any is present in the final turn of a set of conversations. To achieve this, we created a neural
network architecture which we call CWE-LSTM which is able to classify conversations into
the four emotion categories. Furthermore, we have tuned a state of the art language repre-
sentation model, BERT, to the same classification task. This provides a way of comparing
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the two models’ performance on the problem. The dataset was provided by the EmoContext
competition, as well as a baseline model, some pre-processing functions and an evaluation
script.

We will first discuss the text pre-processing we performed on the text sequences to in-
crease coverage and raise the data quality. Then will explain the baseline model provided by
EmoContext, before describing our iterative improvements to this model which resulted in
our final CWE-LSTMmodel. Finally, we will discuss BERT and our implementation of these
comparison models.

3.2.1 Pre-processing
Classifying text is a context heavy task where high quality data is extremely important. Help-
ing the model to gain meaning from the input text sequence relies heavily on data pre-
processing. Our text pre-processing can be divided into two steps: data cleaning and tok-
enization. Data cleaning is the process of fixing data irregularities, and tokenization is math-
ematical mapping of this text data into a form that can be fed to our classification models.

Data Cleaning

Data cleaning is the most involved of these steps and is important for two main reasons,
boosting coverage and clarifying meaning in the text. We measure the coverage of our text by
our pre-trained embeddings as the number of words for which pre-trained embeddings exist
divided by the total number of unique words in our problem. Clearly, since the embedding
matrix from GloVe is meant to be generalizable but our dictionary is problem dependent, it
is not certain that the embedding matrix has a vector representation of a given word. Thus,
we perform several data cleaning steps to boost coverage.

The original data contains many irregularities easily identifiable by humans, but which
would confuse the embedding model during tokenization. Examples include not putting
spaces between entities like emojis or the inclusion of repeating letters or symbols in long
sequences. Our data cleaning therefore includes rules to add spaces between entities like
emojis and removing repeated letters or symbols.

At the same time, data cleaning can also be a way of clarifying meaning in the text. We
understand that symbol combinations like “:)” refer to a happy emoji, however our embed-
ding matrices don’t know that. For that reason, we correct well known symbol emojis to
Unicode emojis. Also, to improve meaning recognition we decided to separate abbreviations
like “you’ll” to “you will.” This was found to improve model performance by improving sen-
tence representation in meaning space.

An example sentence that would be unrecognizable for many embeddings would be:
“bye:):)”. After pre-processing we obtain “bye ,” which our embeddings entirely recog-
nize. It is important to note that we did manage to create a general rule to fix misspellings
like “byeeeee” to “bye”. Regrettably, this is quite a common feature of Twitter communica-
tion. With these steps, we raised our coverage to 83% of our words recognized, from 72% with
only baseline pre-processing.
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Tokenization and Other Pre-Processing

After the data cleaning words need to be vectorized and prepared for passing into classifica-
tion models. This process is called tokenization. This involves separating all words found in
the text corpus and mapping them to a unique number so they can be recognized later. Many
Python libraries (including Keras) have built in functionality to deal with this step.

These tokenized texts are then ready to bemapped towith our embeddingmatrices which
represents our sequences in vector space. Notably, the vector represented sequences passed
to the LSTMmodels as input must all be of equal length. This is to make sure we are training
the weights of the model to recognize features at the same places in the di�erent sequences.
This is solved with zero-padding the vectors to the same length. To not induce too much
computational di�culties, the vector lengths are constrained to 100. Thus, a maximum of
100 words per sentence is considered. The figure below shows the distribution of word length
in our training data.
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Figure 3.2: Histogram of word lengths per sentence. The maximum
sentence length is 167.

After the pre-processing, each turn in a conversation is a matrix with elements of padded
vectors representing the sentences. Their corresponding labels are one-hot vectors, where
the index of the element 1 represent what emotion the training example is connected to. The
indices are translated as follows: 0 - Others, 1 - Happy, 2 - Sad, 3 - Angry (pythonic indexing
starts from 0). We now have a dataset ready to be processed by our models.
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3.2.2 Baseline Model
The starter set from the EmoContext included the framework of a model which we modi-
fied to our baseline classification model. A baseline model is important because it gives us
something to compare to in evaluating our final model.

For the baseline model, we have a standard LSTM that outputs straight to a prediction
layer, filtered through a softmax function to get a probability vector. The embeddings we use
for our baseline model are also GloVe embeddings, however the text corpus they are trained
on is fromWikipedia data. This model uses word embeddings of dimension 100 and a LSTM

X

LSTM

y1 y2 y3 y4

GloVe 100D embeddings

Pre-process

^ ^ ^ ^

Figure 3.3: Baseline model architecture.

layer of dimension 128 with built in dropout. In contrast to the CWE-LSTM, the input turns
are not separated. Instead, an end-of-sentence tag (<eos>), is used to mark the sentences in
the conversation. That means that each conversation is fed to the model as one single input
sequence: “That was a joke btw... <eos> it was <eos> Yes :D”.

3.2.3 CWE-LSTM Model
The baseline model provides a framework on which we could build to make the predictions
more accurate. By iteratively making small changes to our pre-processing and our model
architecture, we could isolate features with high impact on model performance, as measured
by F1 score. In doing so, we were able to create simple networks consisting only of the most
important improvements. A complete description of our architecture, Concatenated Word-
Emojis bidirectional-LSTM (CWE-LSTM), is shown in Figure 3.4 below.

In Figure 3.4, the architecture for our original architecture, the CWE-LSTM is displayed.
Clearly, it is more complex than the baseline model.

We will now detail all of the significant improvements we made over our baseline model
when creating the CWE-LSTM model.
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Figure 3.4: CWE-LSTM model architecture. To the left, the layers
of the model are shown. To the right, an example conversation.

The first improvement over our baseline which made a significant di�erence in F1 score
was separating the turns of the conversation and passing each one to the LSTM node sepa-
rately. This allows the model to more clearly see the di�erences in sentences in the conver-
sation compared to the end of sentence tags in the baseline model. This was further helped
by our improved pre-processing described in the previous section.

Also significant was the decision to use 200-dimensional GloVe embeddings trained on
the Twitter data corpus instead of 300 dimensional embeddings trained onWikipedia. These
embeddings are closer to the domain of our conversations since they were also created on
Twitter. Furthermore, we found that the increased complexity from higher embedding di-
mensions didn’t demonstrate better performance.

Another highly e�ective improvement was extracting smileys from text and processing
them separately. This allows us to represent emojis with other embeddings, thus providing
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new language information to the model. As has been stated, the smileys are embedded with
Emoji2Vec embeddings, a 300-dimensional representation of di�erent Unicode smileys. Fur-
thermore, we then concatenate the information from smileys with the information from the
rest of the model and pass it through a final dense layer. This helps the model train its atten-
tion to weight the relative importance of the emojis and the three turns of the conversation
in classifying the emotion present in the text. The activation function in this dense layer is
the rectified linear unit.

Next, we found that a bidirectional LSTM node instead of a simple LSTM node for clas-
sifying our conversations performed better on our data. Since each conversation contains
fewer smileys than words, we concluded that the network processing smileys need not be as
large. For that reason, and since the smileys were already taken out of context, we found that
bidirectionality was redundant for the smiley layers.

Another di�erence to the baseline is that our model utilizes trainable embeddings. This
means that inside the embedding layer, some tweaking of the pre-trained embeddings is per-
formed during training. This aims to catch more problem specific behavior and align the
embeddings better with our problem domain.

Finally, and also extremely importantly, the LSTM layers employ dropout in the connec-
tions between input X and weights. Another dropout layer is added after the dense layer.
Lastly, the output layer transforms weights to probabilities through softmax.
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Figure 3.5: How data is reshaped throughout our model.

The figure 3.5 above shows how data is reshaped and transformed through di�erent stages
of CWE-LSTM. The bidirectional LSTM layer outputs the return sequences, one for every
conversation turn. Since these are 100 dimensional, so are their hidden representations.

In total the model consists of 27,557,896 trainable weights. In many applications, this
would be quite a large number, however it only took us 1 hour and 24 minutes to train.
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This is a stark contrast to BERT’s fine-tuning, which took 26 hours and 45 minutes. We will
now discuss our implementation of BERT and its application to our emotion classification
problem.

3.2.4 BERT
The core strength of BERT is that it is applicable to a wide range of problems. The model
is hosted on TensorFlow Hub, a pre-trained machine learning model repository hosted by
Google. There one can choose to download a small or a large implementation which has to
do with the number of encoder layers, the number of heads in the multi-head attention, the
number of dense layers in the feed forward network, and the number of training samples
used.

It should be noted that since BERT uses word-piece embeddings rather than GloVe em-
beddings, it follows di�erent pre-processing and tokenizing steps than those described above.
These can also be downloaded with the pre-trained model and used out of the box. This
means, that we did not perform any pre-processing on the sentences we passed as input to
BERT.

Like most transfer learning models, BERT is a large model, and we add a final classifica-
tion layer, but allow the whole model to be trainable. This is to allow the training procedure
to tune the relevant attention weights, as well as training the final output layer.

We have used the hyper-parameters recommended in the BERT-small implementation.
This means that we have 6 encoder layers with 8 attention heads and 512 length word em-
beddings. Our input sequences are padded to a maximum length of 100 words, in the same
way as for the CWE-LSTMmodel. This results in a model which contains approximately 110
million trainable parameters.

We have also used the warm-up training procedure also recommended, where the learning
rate starts small and then gradually increases as the model trains.

Finally, since the BERTmodel only allows two sentence inputs, we have concatenated the
first and second turn of the conversation as sentence A, and then present the final turn as
sentence B. This forces the model to treat the sentences di�erently since it adds a di�erent
segment embedding to the sentences. This was found to improve performance slightly, since
the task is to predict the emotion in the final sentence.

3.3 Implementation
As mentioned in the theory section above, using neural architectures to solve problems often
results in di�cult optimization problems. For that reason, lots of ready to use tools are avail-
able to implement and train this type of neural network. Python has become themost popular
programming language for deep learning and many important machine learning frameworks
are native to Python, thus the decision to implement our model in Python was most logical.

One of themost important frameworks formachine learning in python is the TensorFlow
library. This is a highly customizable group of tools both for linear algebra manipulations
and for stochastic optimization. TensorFlow is an open source tool, so much of the code has
been optimized and tweaked by many dedicated engineers to produce a product that would
be extremely hard to replicate from scratch today. At the same time, TensorFlow has put
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a lot of e�ort into creating an open source model repository which they call TensorFlow
Hub where pre-trained models can be downloaded and used directly for transfer learning
applications. That said, TensorFlow is very technical to use and not necessarily optimal for
all Python coders.

For that reason, the Keras framework has emerged as the most popular environment for
coding deep learning models. Keras is built on TensorFlow but is much easier to use straight
out of the box, taking care of implementation of loss functions, passing matrices of dynamic
size through the various weight layers correctly, and providing a myriad of other tools to
combat overfitting, help model explanation and speed up development.

We have implemented our own CWE-LSTM model in Keras based on their functional
API style. The code for this model is presented in the appendix. Our implementation of
BERT is a transfer learning retraining based on the pre-trained BERT-small model on Ten-
sorFlow Hub. Both models were trained with the ADAM optimizer locally on our four core
CPU computers.

3.3.1 Hyper-Parameter Optimization
One of the more di�cult engineering challenges in implementing and training Deep Learn-
ing models of this kind is choosing the hyper parameters to use in training and in the model
architecture. As was discussed in the theory section the most important training parameter
is the Learning Rate. The learning rate is a number less than 1.0 which shrinks the size of
the steps that the gradient descent algorithm takes during each weight update. After exper-
imentation, we decided on a learning rate of 0.001.

The batch size is also extremely important since it determines how many samples the
model sees before it updates its weights each time. A larger batch size gives slower, more
stable learning, however we found best performance at a batch size of 200 samples.

Also, to combat overfitting we have implemented an early-stopping rule that looks after
every epoch at the validation dataset (unseen during training) and calculates the loss function
value on this validation set. We stop when the validation loss reaches a minimum however to
allow for local minima, we implement a patience parameter of 3 in our early stopping such
that if the loss function doesn’t improve for 3 epochs then the model stops training. This
means that we never reach the maximum number of epochs of 100.

Finally, also to combat overfitting we have chosen a dropout parameter of 0.2. This means
that at the points in our model where we have implemented dropout, 20% of the networks
nodes and their respective weights are zeroed out during training. As we have said, dropout
is implemented in the LSTM layers as well as after the dense layer before prediction.

Our model architecture is also strongly influenced by the hyper parameters that steer the
shape of the loss function. These include the dimensions of our LSTM layers which was de-
cided to be 128 hidden layers. Also, the dimensions of the word embeddings we used play a
role in the type of features that can be found by the LSTMmodels. We have used pre-trained
GloVeword embeddings of dimension 200 and pre-trained Emoji2Vec embeddings of dimen-
sion 300 to capture all of the contextual information in our sentences. These embeddings are
also trainable during the gradient descent optimization to allow the word embeddings to be
better suited to distinguishing patterns in our sentences.

Other important parameters that steer which input values the model has are the maxi-
mum sequence length of words per sentence. This is set at 100 words so we don’t lose much
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training information. Similarly, our vocabulary is set at a maximum of 20,000 words, which
in this training set is more than enough. These hyper-parameter values are found in a con-
figuration file which is saved alongside our model and is also lined to in the appendix.
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Evaluation

4.1 Results
The comparative micro-averaged F1 results for the models on the emotion categories of
Happy, Sad and Angry are presented below in table 4.1. As has been noted, this evaluation
metric ignores the model performance explicitly on the emotion class Others.

We begin presenting the results by presenting our baselinemodel. As described above this
was a single LSTM model with minimal pre-processing and word embeddings from GloVe
trained on Wikipedia data. This baseline model achieved overall micro-averaged F1 on the
emotions of .6089. It achieved best results on theAngry emotions andworst results onHappy
conversations. The majority of the confusion in the model comes from an inability to discern
whether an emotion is present or whether the conversation should be classified as Other.

Emotion F1

Model Happy Sad Angry Micro F1

Baseline-LSTM 0.558 0.599 0.670 0.6089
BERT 0.628 0.715 0.727 0.6915

SS-LSTM 0.597 0.808 0.736 0.7134
CWE-LSTM 0.705 0.746 0.740 0.7302

Table 4.1: F1 scores

BERT achieves better results right out of the box when using transfer learning to adapt
to our problem. The extra context information helps increase the macro F1 by over 8 points
from the baseline model. These gains are especially in the sad category where BERT increased
by more than 11 F1 points over the baseline. The Angry category is still the best predicted
by the model with a category F1 of .727.
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However, comparing to the competition kick-o� model from Gupta et al. (2017) we see
that their SS-LSTM model performs better than BERT on the categories of Sad and Angry
emotions, but is confused by Happy emotions. This translates to a marginally better micro-
averaged F1 score for the SS-LSTM model overall compared to BERT.

Our CWE-LSTM model however, performs the best in the Happy and Angry emotion
categories, with especially large gains over BERT, SS-LSTM and the baseline in the Happy
category. This results in a micro F1 score for the CWE-LSTM model of .7302 which is the
best overall score for the compared models. Notably it doesn’t perform nearly as well as the
SS-LSTM model in the Sad emotion category.

The other important factor in evaluating model performance is training time as shown
in table 4.2. Of the three models we implemented and trained locally, the quickest was our
Baseline-LSTM model. This makes sense since it was the least complex both in terms of pre-
processing and model architecture. This resulted in a training time of just over 37 minutes,
locally on a four-CPU computer.

The next fastest training time was by our CWE-LSTM model at under 90 minutes. Our
CWE-LSTM model was the next most complex in terms of the number of training parame-
ters, as well, so this number is in line with that added complexity. Finally, the training times
for BERT were by far the highest at over a day. This was the most complex model in terms
of number of parameters, but the model wasn’t twenty times more complex than the CWE-
LSTM model. This is also a surprisingly high number given that this is a transfer learning
application, so that the weights of the BERT model have been pre-trained to be relevant for
representing language. However, it should be noted that BERT’s training is parallelizable on
GPUs not on CPU’s, so it is likely that if we were training on GPUs this di�erence would
decrease.

Model Training Time
Rounded to (hrs:mins)

Baseline-LSTM 00:37
BERT 26:45

CWE-LSTM 01:24

Table 4.2: Training Times on 4 core Computer

We can also look at the confusion matrix for our best model, the CWE-LSTM model to
see where it predicts incorrectly. This confusion matrix, shown in table 4.3, shows clearly the
uneven distribution between the emotion labels in the test set. Others is by far the largest
emotion category andmost of the confusion comes from predicting Others when it should be
an emotion, or the other way around. Perhaps not so surprisingly, there is very little overlap
between the emotion categories where the model predicts the wrong emotion. The model
never predicts the labels Sad or Angry for a sentence that is actually in the Happy category.
There is some small confusion between Sad and Angry but that is small in comparison to the
confusion between others and emotions. This suggests that one of the better ways to improve
the model would be to focus on trying to improve the features that distinguish between an
emotion and not. This will be discussed at more length in the following section.

We can also look at the loss function over the training epochs to get an idea of whether
our early stopping rule works to prevent overfitting. The training loss decreases sharply over
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Predicted
True Others Happy Sad Angry
Others 4403 91 85 98
Happy 77 204 1 2
Sad 37 0 204 9

Angry 52 0 7 239

Table 4.3: Confusion Matrix

the epochs however the validation loss is more unevenly decreasing. In fact, it reaches a
minimum after 3 epochs and then rises afterwards.

Figure 4.1: Training Loss for Training and Validation Sets

This can partially be explained by the extremely di�erent distributions of emotions in the
training and validation sets as shown below in table 4.4. The gradients are updated based on
loss from the Training set, but the same gradient updates change the validation loss in other
ways. There are also far fewer data points in the validation set compared to the training
set, so this also contributes to higher variance in the e�ects of updating the loss. This also
highlights the importance of early stopping since clearly after epoch 3 the improvements in
training loss are not being translated to improvements in validation loss and thus it isn’t
worth using computing power to keep training.
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Others Happy Sad Angry Size
Train .496 .141 .183 .181 30160

Validation .849 .052 .054 .045 2755
Test .857 .043 .056 .045 5509

Table 4.4: Emotion Class Distribution

4.2 Discussion
We will now discuss and attempt to explain the results we obtained above. We will do this
both through looking at some example sentences and the predicted output probabilities of
the di�erent emotion classes. With this we can begin to see which features the model is
finding important do distinguish between emotion categories. First, we will look at outputs
of the CWE-LSTM model and then at the BERT model. We will also introduce some new
conversations of our own creation to see if we can interrogate howwell these results generalize
outside the context of this dataset.

4.2.1 Model Interpretation
We will now look at example conversations and the models’ predictions for a variety of situ-
ations. In the first three columns of each example we can see the first, second and third turns
of the conversation, where the first and third turn are written by the same person. The next
column is the correct emotion category label of the conversation and the four columns after
are our predicted probabilities of the four Emotion categories.

CWE-LSTM Model Predictions
We can start by looking at some examples where our CWE-LSTM model predicts correctly,
shown below in figure 4.2. Overall, it seems that themodel finds a lot of true language features
in the text and is quite good at discriminating between the Others category and the Emotion
categories.

Figure 4.2: Correctly Classified Conversations by CWE-LSTM

However, just by looking at correctly classified conversations, we don’t know exactly
which features the model is using to predict emotion categories. Instead, to get a feeling for
how the model is making predictions, it is often helpful to look where it is going wrong. We
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will first look at a selection of sentences where the true label was Happy, Sad, and Angry, but
our CWE-LSTM model didn’t predict correctly.

The first conversations are examples of where the true emotion category label was Happy
but our model predicted another state. These are shown in figure 4.3. Firstly we can notice
that the model seems to get caught up on certain negative sentiment words like “hate” in
line 2457 and “hell” in line 2530, choosing to classify those conversations as Angry. Also, the
model misclassifies line 4046 and almost misclassifies line 2525 as Sad. This could be because
they both contain the word “mood” which the model may have learned often corresponds to
a negative mood, however this is hard to tell definitively. Otherwise, it is just failing to read
emotions into these conversations and classifying them as Others. Given the lack of context
for lines 2525 and 737, this doesn’t always seem like a bad choice even from the perspective
of a human observer.

Figure 4.3: Misclassified Happy Conversations by CWE-LSTM

It is also interesting, that the probability of the Happy class is the second most likely
choice for the model for line 737, but not for any of the other conversations. Looking back
at figure 4.2 we see that the two Happy labelled conversations both included a happy emoji,
which was a clear signal for our model since emojis encode a lot of emotion information.
However, for less clear happy conversations, our model seems to have di�culty predicting
the Happy emotion class. This is backed up by the results in figure 4.1 where the Happy
emotion class has the worst performance for all of the models. Our CWE-LSTM model
performed best out of all of the models in terms of classifying Happy conversations, but this
is still a challenge for the model.

For the misclassified Angry labelled conversations in figure 4.4, it is also di�cult as a
human observer to set an emotion to these texts. From the examples before there seem to
be some words that our model has associated with anger, like swear words and strong dislike
words. This seems to have served our model well in general, since Angry is our model’s best
performing emotion category in the evaluation set. However, it looks like the model hasn’t
learned disappointment and defensiveness, which is what as a human we read into most these
texts. These two soft emotions are similar to the emotion category Sad, which is the label
predicted in lines 2679 and 3499.

Sad conversations also are di�cult to classify correctly, as shown in figure 4.5. Lines
1755, 2133 and 3472 use words like “rude” and “annoying” which may have valence to anger
in the embeddings and are misclassified as Angry. This shows that the model may be getting
too hung up on individual words instead of stringing them together to sequences with more
complex meanings. That said, the conversations in lines 1755, 2171, 4066 and 4177 have Sad
as the second most likely label, so the model has clearly found some features to associate with
this emotion category, though they aren’t strong enough to change the model’s predictions.
These conversations seem to show that helplessness and loneliness are more di�cult language
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Figure 4.4: Misclassified Angry Conversations by CWE-LSTM

features to identify with sadness than more clear forms of sadness.

Figure 4.5: Misclassified Sad Conversations by CWE-LSTM

If we look in more detail at one emotion, we can start to narrow in on which language
features the model is finding. Since the Angry class is the class where our model performs
best, we can start in this emotion class. One of the recurring patterns in the Angry class is the
use of swear words. Perhaps then it isn’t strange that the model has picked up on this pattern
and classifies these conversations as Angry with such high probability. The conversation in
line 1262 for example, which doesn’t include any clear swear words or dislike words is much
closer to being classified as other. Here, however, the model has an angry emoji to use as a
clue to classify the conversation as Angry.

Figure 4.6: Correct Classified Angry Conversations by CWE-LSTM

BERT Model Predictions
We now turn to evaluating the BERT model performance in more detail. We can start by
looking at conversations which the BERT model correctly classified as Angry. This is the
emotion class where the performance of BERT and our CWE-LSTM model were most com-
parable, with only a 0.013 di�erence in F1 scores between the models. However, when we
evaluate BERT’s predictions on this same task, we can see some interesting di�erences be-
tween the two models. This is shown below in figure 4.7.
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Firstly, we can see that the probabilities of the di�erent emotion classes are much less
evenly distributed, even if these conversations are often ambiguous. The probabilities of the
Angry emotion class in lines 29, 109 and 130 are over 99%. These sentences are classified
correctly, but none of the predictions from the CWE-LSTMmodel are nearly this high. This
indicates that the BERT model is finding patterns that it thinks are much more predictive
than they actually are.

Figure 4.7: Correct angry Conversations by BERT

If we look to where the BERT model has misclassified emotions, this pattern becomes
even clearer. We can look at Happy labelled conversations which BERT has classified incor-
rectly. This is shown in figure 4.8.

One of the things that seems clear to a human reading these examples, is that the BERT
model is not good at reading emotions into the emojis in these conversations. Lines 366,
434, 1119, 2457 and 3321 all contain context emojis in the first turn that point to a Happy
label, but the BERT model hasn’t learned these connections. That said, it does seem like the
BERT model has learned that emojis carry emotional valence, since the three conversations
that contain the most emojis, lines 434, 1119 and 2457 are the only example conversations
that BERT has not classified as Others. Other than that, however, it is hard to see what the
di�erences are in the conversations where the BERTmodel is 99.9% sure of its prediction like
in line 3662, and the conversations where the prediction probabilities are under 50% like line
434.

Figure 4.8: Misclassified Happy Conversations by BERT

Misclassified Angry conversations by BERT are shown in figure 4.9. Lines 449, 1640 and
1903 contain emojis and have been classified as emotion categories instead of the Others
category, though it is hard to say exactly why. Also, compared to the CWE-LSTM model,
BERT doesn’t seem to attach as much negative Angry weight to swear words like “fuck” in
line 324. Other than that, it is still di�cult to pick out exact features of the conversations
that tip the BERT predictions towards one emotion class or another.

Misclassified Sad conversations are shown in figure 4.10. Here there are some conversa-
tions that are very close to being correctly classified as Sad, like line 121 and 1745. On the
other hand, lines 1159 and 1949 are misclassified as Happy from Sad. Both lines, however,
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Figure 4.9: Conversations Incorrectly Predicted as Angry by BERT

include some combinations of words, that could possibly occur in other contexts. Being busy,
like in line 1159 could also be a good thing, and doesn’t necessarily point to a Sad emotion,
and same with calling someone “Bro” like in line 1949. These word combinations are taken
totally out of context, however, if this is truly what is making the model predict the Happy
emotion class.

Figure 4.10: Misclassified Sad Conversations by BERT

4.2.2 Generalization Capability
Another way of interrogating the predictions of these two models is to see what we can give
them as input sentences that confuses them. We start by giving the CWE-LSTMmodel three
conversations which it predicts correctly, this is shown in figure 4.11.

Figure 4.11: Newly Created Conversation Classification

Then from there we can tweak these sentences until the model guesses wrong, to see
where the predictive features are. This has been accomplished in figure 4.12.

For the Happy conversation, we noted that the model seems to have a di�culty distin-
guishing between swearing as an intensity word and swearing in terms of negative sentiment.
Thismight stem all the way from the word embeddings where one can hypothesize that words
like “fuck” end up in a negative sentiment part of the vector space. With that said however,
we can easily get the model to predict this happy sentence incorrectly by adding a swear word
to the sentence.
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Figure 4.12: Tricking CWE-LSTM

Similarly, we noted that the model has some di�culty distinguishing between emotional
and not emotional conversations. We hypothesize that in the Sad conversation the model is
putting a lot of weight on the emoji in the final sentence. This is proven true, since if we
remove the emoji that looks like it has given up, then we get a missclassification to Others. It
is interesting to note that the second ranked prediction is actually Angry, which is perhaps
understandable given the slightly accusatory tone in the first turn of the conversation.

The Angry sentence is tricked by adding a crying face emoji to the final sentence. This
change the prediction from Angry to Sad, which makes sense, but means that the model has
only associated this crying emoji with sad tears, not with tears of anger or frustration. Angry
is still the second choice of the model however, indicating that it sees that there are angry
features there, but doesn’t think they are as important as the crying face. This is possibly
because the emoji strengthens the feelings of sadness and loneliness that are present in the
first turn of the conversation as well. Another hypothesis is that since the word “screw”
has di�erent meanings depending on the context, it is a di�cult word to encode in word
embeddings. This could mean that “Screw you!” doesn’t get the negative sentiment weight in
the CWE-LSTM model that we would assign to it as a human observer.

Finally, the Others class conversation can be tricked by adding in an emoji as well. This
is interesting since we have simply added a crying emoji to the first turn, but this is enough
to tip the classification over to an emotion category. This demonstrates that the model is
looking backwards in context to gain information about emotion, but again is adding too
much weight to emojis.

To conclude this section, we can also look at BERT’s predictions for the same sentences
in figure 4.13 and attempts to trick the model in figure 4.14. It is interesting to note that
the BERT predictions on this set actually are more accurate than the CWE-LSTM model,
though harder to interpret. As before, the BERT predictions are surer of themselves than the
CWE-LSTM predictions. Also, as before the BERT predictions don’t seem to put as much
weight on emojis compared to the CWE-LSTM model, so changing the emojis doesn’t trick
the BERT predictions as much. It also seems that the model is similarly sensitive to swear
words as the CWE-LSTM model, so that is still a way to trick BERT into guessing Angry
with high probability.

Figure 4.13: BERT Comparison Correct
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Figure 4.14: BERT Comparison after Tricking

4.2.3 Model Comparison and Reflection
From the figures above it is clear that there are problems with both models when it comes to
their predictions. This section will detail the failings of both models in turn. From there we
will turn to comparing the models in terms of their performance, structure, and ease of use.
Finally, we will propose improvements to the models along with providing other discussion
around the problem as a whole.

Model Failings
Even though BERT is a state of the art language representation model, it performed worse
overall than the CWE-LSTMmodel. This was based on several failings that have been hinted
at in the discussion above. Firstly, the BERTmodel’s predictions seem overfitted to the train-
ing data. We suspect this due to the high certainty of the model’s predictions. This points to
the idea that the model is learning language patterns that aren’t predictive of emotion cat-
egory, but were present in the training data set. This can be compared to the BERT model
hallucinating that it has found strong patterns but in actuality these patterns are not impor-
tant. The BERT model has over 110 million weights to be tuned, however, so it makes sense
that it can find very specific patterns.

This leads into another downside of the BERT model and its predictions, that they are
hard to interrogate and understand. Due to the probable overfitting, the model seems to
have learned strong patterns, but both because of the automatic pre-processing and the large
number of weights, it is very hard to get an idea of where the model is going wrong. As was
mentioned above, there is very little to distinguish a conversation where the model predicts
an output probability of one of the classes as over 99%, compared to an example where the
model is less sure. Furthermore, since the BERT model takes so long to train on CPU’s, it
was very di�cult to attempt to iteratively improve the model’s predictions. This meant we
weren’t able to tune the model training in any meaningful way.

Also, the BERT model seems to not have any generalized knowledge of emojis or even a
robust method of learning emotion information from the training set examples containing
emojis. The extent of the model’s knowledge about emojis seems to be that the presence
of emojis probably raised the likelihood that the model would predict an emotion category
instead of Others. The model’s inability to learn more from these highly emotionally loaded
symbols poses an interesting question about which type of context information BERT can be
tuned to learn from.

Finally, it also seemed that BERT had trouble with shorter sequences and more broken
communication. Thus, another possible weakness of the BERTmodel is dealing with shorter,
less context rich language information. Attention and the machinery of BERT is designed to
solve problems of long term dependence, so perhaps this is not the context where BERT can
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shine.
The CWE-LSTM model also had some notable patterns of failure in this emotion classi-

fication task. Firstly, the CWE-LSTM model is clearly too focused on individual words and
symbols to which it attaches large emotional meaning. Examples of this are emojis, where we
showed that changing one emoji in the conversation changes a lot of the emotional informa-
tion that the CWE-LSTM model picks up. Another example is the use of swear words being
connected to the Angry emotion category. This may be true in general, but also points to
an easy way of tricking the predictions of the CWE-LSTM model. The CWE-LSTM model
places disproportionate weight on these types of individual, negative context words without
getting a better idea of the context of the sentence.

This leads to another clear failing of the model in dealing with subtlety in emotions.
The examples of misclassified emotions almost all fell into emotion categories adjacent to
the main emotion classes of Happy, Sad or Angry. It should be noted that some of these
sentences are hard for humans to accurately classify, as well, but the model was dispropor-
tionately missing edge cases of despair, loneliness, frustration, amusement and other less
clear emotions. This could be due to a lack of training examples for these types of emotional
expressions, or could be due to our model not understanding ambiguity in these contexts.

Finally, a large but unquantified failing of our CWE-LSTM model is that it is so domain
specific to this problem context. We have not tested this in any meaningful way, but due to
its structure, embeddings and pre-processing it can be hypothesized that the model would
need substantial work to bring it up to the same level of performance on another dataset
with similar classification goals.

Model Comparison
With that said, however, the CWE-LSTMmodel did performwell on this specific dataset and
problem, especially compared to the BERT model. This can be traced to three main sources
of di�erence between the models. These are: di�erences in domain knowledge and problem
specificity, di�erences in architecture and di�erences in ease of iterative improvement.

Firstly, the CWE-LSTM model is a domain specific model with embeddings trained
specifically on Twitter data and emoji representations. This is a completely contrast com-
pared to the BERTmodel with word-piece embeddings which is trained on perfectly written
English from Wikipedia and newspaper text. Twitter data is typified by broken grammar,
domain specific abbreviations and the use of symbols like emojis and punctuation in unique
ways. BERT’s suitability for this type of language data may be improved in the future but for
the moment, the tokenizer and vocabulary isn’t optimal for this data. For these reasons, it is
not surprising that the more domain specific model performs better for this data.

Next, the CWE-LSTM model architecture was developed directly for this application
as opposed to adapting the existing BERT model which was developed for totally di�ernt
applications. BERTwas developed for tasks like question answering, machine translation and
other very information intensive tasks. This means that its attention machinery is very large
and powerful for long context dependencies, but perhaps is too large and powerful for three
turn Twitter conversations. Tweets in general must be less than 280 characters, so there it is
a totally di�erent task to understand this language information compared to reading several
paragraphs for question answering. Thus, BERT can easily become overfitted on this type
of data with so few training samples and create unnecessarily specific representations of the
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training data. This in turn leads to the type of uninterpretable predictions we obtained in
our implementation.

Furthermore, there are structural di�erences in the inputs between the CWE-LSTM
model and BERT. The CWE-LSTM model has four separate inputs (3 conversation turns
and the emojis) to highlight for the model the di�erent sources of language information in
the conversations. BERT on the other hand takes a concatenation of the first and second turn
of the conversation as its first input, and the third turn as its second input. This artificial
splitting of the conversation is also probably a source of error for the BERT mode. This is
because there are many parts of the BERT implementation that cannot be changed without
writing a lot of new code.

This leads to the final significant di�erence between the models, the ease with which
the models can be adapted and improved. The CWE-LSTM model was created through a
process of iterative improvement over the baseline, however this was possible because of the
modularity and ease of training this model. Pieces of the CWE-LSTM code can be added
and taken away from the implementation with ease. This is a contrast to using a pre-trained
model like BERT where a lot functionality like its tokenizer, its pre-processing, and the en-
coder structure is essentially a black box. Even changing hyperparameters like the learning
rate, or making training decisions about whether all model weights should be trainable or
only a subset become di�cult decisions. Since the model takes so long to train, it was unrea-
sonable to test a large range of learning rate values or transfer learning training depths. For
that reason, it is nearly sure that our particular implementation of BERT is not the optimal
implementation for this problem setting, but it is the best we could do based on the training
resources at hand.

4.2.4 Reflection and Model Improvements
Twitter, as we have said, is not a communication platform that is natively designed for con-
versations. Nor is it designed to foster correct, rich language information. Even for human
observers, the emotional content of these conversations are not always clear. In the original
competition kick-o� paper, there was discussion about how di�cult it is to create high qual-
ity data from this domain. This is both because it is di�cult to find a representative sample
of conversations on the platform, but also because it was di�cult to get the human judges
to agree on which labels to apply to these conversations. For this reason, we can probably
question some of the dataset labels, as well as the overall data quality.

However, despite these di�culties, we were able to create a CWE-LSTM model that
performed well on this emotion classification task, and demonstrated its e�ectiveness over a
larger, state of the art language model in BERT. This is a valuable task in itself and has helped
us nuance the field of NLP and specifically emotion classification for ourselves.

Not surprisingly, there are many ways of improving our work to get a better F1 score
in evaluation, or to make the models more interpretable. We have not included any models
which utilize character sequence information instead of word sequence information, and this
is potentially a way of boosting our performance in the CWE-LSTM model. Since we only
had 83% coverage of our dataset, there is clearlymore language information present in our text
than what could be found in embeddings and this could be tapped into through character
sequence information. This problem could possibly be solved through more involved pre-
processing.
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Another idea is to attempt to first “translate” Twitter text to full conversations before
attempting emotion classification. This could perhaps be accomplished by converting the
conversations to sounds to get an understanding of what the writers were trying to say. Oth-
erwise, a spell check applied to the text could work well in pre-processing. However, as likely
as not, this could just inject more uncertainty into the task and raise the variance of the
predictions.

Also, it should be noted that we have not used any model averaging or ensembling tech-
niques which are often features of winning competition entries. Furthermore, since we saw
an example of amodel in the SS-LSTMmodel which performed very well on Sad labelled con-
versations in comparison to our CWE-LSTMmodel, there is clearly something to be learned
from the inclusion of sentiment specific Twitter information.

The BERTmodel meanwhile, has many areas of improvement over its current implemen-
tation in this thesis. The word-piece embeddings inability to deal with emojis is a clear point
where small improvements might make a large di�erence in model performance. As of writ-
ing, these discussions are underway on the BERT GitHub page, so we can expect this type of
functionality to be implemented sometime in the future.

However, most simple ways of improving this model would require more computing
power to be able to test. This could be in the form of access to GPU’s for training, or ac-
cess to a computer with more computing cores. This would allow us to test questions about
the transfer learning procedure including tests of di�erent learning rates, and the optimal
number of trainable weights in the parameter that are necessary to tune BERT to our clas-
sification problem. Since the model became so overfitted when tuning all the weights, it is
likely that only tuning a subset of weights in the last encoder layers would perform better on
our task.

In fact, the BERT model’s size is problematic for other reasons. As we have said, BERT
is a general model which performs well on a range of tasks outside of the context of emotion
classification in these Twitter conversations. Due to its generality, the BERT model needs to
be quite large, however in this case the model could possibly perform better through some
form of pruning to take away unimportant parts of the architecture for this problem. This
raises the question about whether large, general models are always better than smaller, more
specific models. A hypothesis which should be verified is whether in specific modelling sit-
uations where BERT does well, a smaller model could do just as well with less computing
power. In the age of climate awareness, it is also a point of contention about whether it
is worth spending the energy to train such large models, since such training processes are
extremely resource intensive.

A final piece of reflection on the use of deep learning models of this kind is that the
F1 score is maybe not the best evaluation metric for all situations. If content moderation
was the task, then maybe the loss function should penalize Angry conversations which the
model missed as more important than Happy conversations. Then it might not be such a
large problem that the CWE-LSTMmodel gets hung up on swear words and negative valence
words in its predictions.
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Chapter 5

Conclusions

We have studied two di�erent models for language interpretation. BERT, a recent transfer
learning model from Google and the CWE-LSTM model. We find that the latter outper-
forms BERT on the task of classifying emotions in Twitter data. The purpose of general
representation models such as BERT is to be applicable on a wide range of problems. How-
ever, when dealing with very domain specific data, a more direct approach may be advisable.
The CWE-LSTM is a good example of how a slimmer model, more specialized model can be
advantageous over tuning a generalized model with transfer learning.

Previously, the idea of finding large general networks was where many researchers put
emphasis. Now, we see a trend of more nimble and problem specific networks. Creation of
this type of massive generalized model is expensive, both with respect to time and resources.
Thus, understanding when to use what tool is an important skill in applications of machine
learning.

To summarize, there are many decisions relevant in constructing a neural model for a
specific natural language processing problem. From choosing word embeddings and training
methods to designing a model architecture, there are many options and factors to consider.
The advantage of using a transfer learning model is to skip these steps. However, there are
limits to where and when such approaches are relevant.

Despite rapid development, machine learning models are still not near human perfor-
mance for many tasks. We show that neural language models can gain an understanding of
the emotion categories in this report, however miss understanding more subtle meaning in
text, like sarcasm, despair or amusement. To correctly classify the complex emotions in such
sentences, we still have a way to go. Hopefully, in solving this problem, we have learned
important features and characteristics that are generalizable to other types of problems.

Language is constantly evolving and dynamic. Whether it be chatting with emojis or
purposely misspelling words to create new meanings in a written sentence, language nuances
abound. The task of capturing and modelling such nuances in di�erent language domains be
it on Twitter or elsewhere is interesting and important future work.

This field is rapidly evolving and new techniques are proposed every month. This is
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an exciting time to be a natural language processing researcher and hopefully it will only
get more exciting as more of these questions are answered. This paper forms a piece of the
chain of understanding that will hopefully link us towards better language understanding by
machine intelligence systems.
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Appendix A

Important Links

• Github link to our code repository: https://github.com/Njoselson/natemusMasters

• BERT download link from TensorFlow Hub: https://tfhub.dev/google/bert_
uncased_L-12_H-768_A-12/1

• GloVe embeddings download: https://nlp.stanford.edu/projects/glove/

• Emoji2Vec embeddings repository: https://github.com/uclmr/emoji2vec

• Codalab EmoContext competition link: https://competitions.codalab.org/
competitions/19790#learn_the_details

• SemEval conference webpage: http://alt.qcri.org/semeval2019/
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