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Maximilian Binzler

Abstract

Denaturation mapping is a powerful and fast method for optically analyzing DNA molecules.

It can be used to characterize DNA molecules on a scale of a few hundred base pairs which is

sufficient for applications. Denaturation mapping requires a sufficiently high optical resolution

of the imaging system used, which typically translates to an expensive, bulky microscope. For

point-of-care testing or usage in poor, remote regions of the world, it would be desirable to

perform denaturation mapping without the need of a high-end microscope. In this thesis, an

algorithm is presented and analyzed which reconstructs a high-resolution barcode signal from

a series of low-resolution images. The implementation of this algorithm in imaging systems

with optical resolutions that are too low to be useful otherwise could unlock the possibility of

performing denaturation mapping. A necessary precondition for the algorithm to work is that

the series of low resolution images have a known, unidirectional shift between them. With this

knowledge, the signals of the different images can be merged into a single signal which can

then be deconvolved with a square function of the same size as a single pixel. This would, in

theory, lead to a resolution that is only dependant on the step size between the images, which

is very suitable for imaging systems with large pixel sizes. Those imaging systems generally

have the advantage of having a better signal to noise ratio than imaging systems with smaller

pixel sizes. The aim was to provide a proof-of-principle of the idea behind the algorithm and to

verify it with experiments. During this master thesis the algorithm was tested on artificial data

and afterwards, its performance was analyzed with over 60 DNA molecules.
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List of Abbreviations

DNA Deoxyribonucleic acid

A-T Adenine-Thymine (bond)

C-G Cytosine-Guanine (bond)

fps Frames per Second

OFM Optofluidic Microscopy

SROFM Sub-pixel resolving Optofluidic Microscopy

YOYO-1 Tetracationic homodimer of Oxazole Yellow

QPM Quantitative Phase Microscopy

LED Light Emitting Diode

CMOS Complementary Metal-Oxide-Semiconductor

CCD Charge-Coupled Device

EMCCD Electron Multiplying Charge-Coupled Device

ITU International Telecommunication Union

BME Beta Mercapto Ethanol

TBE Tris Borate EDTA buffer

EDTA Ethylenediaminetetraacetic acid

MES 2-(N-morpholino)ethanesulfonic acid

NA Numerical Aperture
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bp base pair

PSF Point-Spread-Function

FOV Field Of View

cmr cooperatively melting regions

lcm lowest common multiple

mod modulo operator

RMSE Root Mean Square Error

std standard deviation

SNR Signal-to-Noise

PCR Polymerase Chain Reaction

MAF Moving Average Filter
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List of Variables

lDNA Length of the DNA Molecule [m]

fsample Sampling Frequency [1/s]

lpixel Length of a Pixel [m]

vDNA Speed of the DNA [m/s]

ltotal Total Distance covered by the DNA during the measurement [m]

nstep Number of Frames of the Video Sequence [-]

npixel Number of pixels to track the DNA movement [-]

lstep Distance covered by the DNA between two adjacent Frames [m]

lsample Sampling Distance in the evenly sampled region of the Signal [m]

tshutter Off-time of the shutter between two adjacent frames [s]

fcmr Inverse of the length of the cooperatively melting regions of the DNA molecule [1/m]

llb
step Lower bound on the step size [m]

nstep,max Number of steps before the DNA is imagined in the same way as before [-]

npixel,min Number of pixels the DNA covers during nstep,max frames [-]

lstart Start of the evenly sampled region [m]

lend End of the evenly sampled region [m]

ylinear,n Linear Signal of the nth frame [-]

posn Position Vector of the nth frame [m]
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y1D One-dimensional Signal obtained after the pre-processing [-]

pos1D One-dimensional Position vector obtained after the pre-processing [m]

f (x) Analog DNA barcode [m]

H Low resolution Image

W High resolution Image

S Point Spread Function

g(r) Gaussian Approximation to the Airy function

fblur(x) Reconstructed Signal before the deblurring step

frecon(x) Reconstructed Signal after the deblurring step

fbox Size of the low-pass fourier filter [1/m]
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Chapter 1

Introduction

Since its invention, the basic setup of a conventional microscope has not changed significantly.

Although the capabilities of microscopes and the resolutions achieved have increased tremen-

dously, the basic setup has stayed more or less the same. This setup with its bulky, fragile and

expensive parts, like the objective or the eyepiece, can pose big problems. This is especially so

for point-of-care testing and use in remote, poor regions of the world. It is therefore desirable to

have a microscope setup that eliminates all (or most) of the bulky, expensive parts while main-

taining the high resolution necessary for biological or medical imaging [1].

There are several approaches to slimming the bulky, expensive microscope design while main-

taining high resolution. One of them is called optofluidic microscopy (OFM) or sometimes

sub-pixel resolving optofluidic microscopy (SROFM). OFM uses a tilted array of apertures that

is put directly onto a sensor grid. Figure 1.1 shows the mechanism of the OFM method by

showing the different steps, from a simple, direct-projection image, to a filled-in, raster-scan

image that is achieved by translation of the sample. By moving the sample over this tilted ar-

ray of apertures, a filled-in, high-resolution image is created from a series of low resolution,

direct-projection images. This method has, for example, been used by Cui et al. [2] and Heng

et al. [3] to image Caenorhabditis elegans, for which they achieved a resolution of 490± 40

nm. The apertures used by this method are smaller than the wavelength of the light used, which

makes the physics of light transmission not straightforward. That is why Heng et al. analyzed

the transmission in [4].

Bishara et al. [5] used partially coherent, in-line holography (HOM) as an imaging approach

for optofluidic microscopy. With this they achieved a resolution of ∼1 µm. Zheng et al. [6]

and Lee et al. [7] presented a method where they created a high resolution image with a res-
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Figure 1.1: Mechanism of the OFM method, figure adapted with permission from [2]. A: Direct

Projection Image B: Sparsely sampled images created by putting apertures on the sensor-grid

C: Raster-scanning creates a filled-in image D: Translation of the sample can replace the raster-

scan E: The aperture grid can be replaced by a long, linear array.

olution of ∼660 nm from a series of undersampled, low resolution images. Done with a setup

that abandons the tilted aperture array used in the aforementioned OFM works, they achieved

an increase in resolution beyond the pixel size limit by using an algorithm which goes back to

works of Farsiu et al. [8].

Another approach that abandons the bulky setup of a conventional microscope is quantitative

phase microscopy (QPI). For QPI, the optical path-length shifts of the light that is transmitted

through the sample are measured which contain information about the thickness and the refrac-

tive index of the sample. The path-length shifts are detected with interferometry. Guo et al.

[9] gives a good overview of the method and its various applications such as holography [10],
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dispersion-relation phase spectroscopy [11], Fourier-transform light scattering [12] and time-

stretch QPI [13][14]. Time-stretch QPI is an especially interesting method for point-of-care

testing and use in poor, remote regions since it is easy to combine with microfluidics. Lau et al.

[14] reported a resolution of ∼1.2 µm for their method and Guo et al. [13] reported a resolution

of 980 nm.

Another approach towards abandoning the bulky setup of a conventional microscope is to

Figure 1.2: Mechanism of the QPI method. Figure adapted with permission from [14]

use a smartphone as a microscope. Koydemir and Ozcan said that in 2017 the International

Telecommunication Union (ITU) reported ∼7.7 billion smartphone subscriptions, with 10% of

these subscriptions being located in the least-developed countries [15]. Considering such an

abundance, using a smartphone as a medical imaging device could improve global health-care

tremendously. There are several different approaches to using a smartphone as a microscope.

Tseng et al. [16], for example, used an attachment with a simple LED to create a lensfree holo-

gram of the sample being imaged. They reported a resolution of 2.2 µm which was limited by

the pixel size of the CMOS sensor used in the camera. Lee et al. [17] reported a method which

abandons all additional devices and built-in light sources. They removed the lens module of the

camera and put the sample directly onto the sensor grid. For the method to work, any external

light source such as the sun or a conventional lamp could be used. They reported that they were

able to resolve 500 nm spheres, although they observed some aliasing. Kheireddine et al. [18]

used a second smartphone as an illumination light source with different illumination modes.

They reached an optical resolution of less than 2 µm. Other smartphone tools enable fluorescent

imaging. For example, Wei et al. [19] presented a tool with which they were able to detect

100 nm sized beads, while Koydemir et al. [20] presented a smartphone tool that was used for
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Giardia lamblia detection in water. A desirable goal for these microscopy methods is to enable

DNA imaging, which has, for example, been done by Wei et al. [21] with a smartphone fluo-

rescence tool on DNA origami structures.

A powerful method for the optical mapping of DNA molecules is called denaturation map-

ping. This method can be used, for example, for the detection of structural variations in DNA

molecules or for the identification of pathogens like viruses and bacteria. The details of how this

method works are described in Section 2.1. It provides kilobasepair resolution and was used by

Nyberg et al. [22] to analyze DNA of the phage T4 and λ -DNA. Reisner et al. [23] also used

denaturation mapping to analyze λ -DNA, T7, T4GT7 and a BAC construct from chromosome

12.

The work presented in this master’s thesis should be seen in the context of the different projects

described above. In this work, several series of images of fluorescently labeled, barcoded DNA

molecules (see Section 2.1) were taken with a controlled, sub-pixel shift between every two

adjacent frames of the image stack. By readjusting the images and deconvolving them with a

square function of a size corresponding to the pixel size a high resolution barcode signal was

obtained. This was done for different pixel sizes to evaluate the capability of the method. The

goal of this work was to develop the algorithm and show its general functionality. This was a

first step towards implementing the algorithm in imaging systems, such as smartphone micro-

scopes, with pixel sizes too large to resolve the features displayed by the DNA barcode pattern.

This work is structured as follows: In chapter 2 the sample-DNA used in this work is presented

as well as the method of creating a barcoded DNA molecule by denaturation mapping and the

equipment used for the imaging process. In the following chapter the theoretical background of

the algorithm used to obtain a high resolution image from a series of low resolution images and

its mathematical foundation are explained. In chapter 4 the results of both the theoretical sim-

ulation and the experimental work are presented. Chapter 5 concludes this work and discusses

difficulties and possibilities for future work.
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Chapter 2

Experimental

2.1 Denaturation mapping

In this section, the two steps necessary to create a barcoded DNA molecule are explained. The

first step is to prepare the DNA molecules with a technique called denaturation mapping. The

second step is to elongate the prepared DNA molecules which can, for example, be achieved by

stretching it out on a surface or by flowing it through a sufficiently small nanochannel. Denat-

uration mapping makes use of the different temperatures at which the different kinds of bonds

in a DNA molecule, A-T and C-G, break. This process of bonds breaking is called melting of

the molecule. As described by Yakovchuk et al., [24] the stability of a DNA molecule is mostly

determined by base-stacking interactions. They show that at least half of the stability difference

between A-T and C-G is due to heterogeneity of stacking interactions, whereas the other half is

due to a difference in the energetics of A-T and C-G base pairing. These factors cause regions

with a high concentration of A-T to melt before regions with a high concentration of C-G. The

melting temperature of a DNA molecule can be lowered by adding formamide to the solution of

DNA molecules. The formamide drops the melting temperature by lowering the ionic strength

in proximity to the DNA molecule and by binding to broken bonds. This prevents them from

closing again. The melting temperature for E.Coli genome without formamide is 83.5 ◦C and

the melting temperature (in Celsius) drops in dependence of the formamide content according

to ∆Tm =−0.6 ·F , where F stands for the formamide concentration in percent [25]. The main

DNA labeling techniques that can be used in combination with optical DNA mapping can be

divided into two categories: Enzyme Based Labeling and Affinity Based Labeling. Denaturation

mapping falls into the category of affinity based labeling. Müller and Westerlund give a good
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overview of optical DNA mapping techniques in [26].

The DNA molecules were analyzed with a fluorescence microscope (see Section 2.3). There-

fore, in order to get a fluorescent signal from the DNA molecules, it was necessary to add a

fluorescent dye to them. The dye used in this master thesis was YOYO-1, which absorbs light

at a peak-wavelength of 489 nm and emits light at a peak-wavelength of 509 nm when attached

to the DNA molecule, and at 458 nm and 564 nm respectively when detached from the DNA

molecule [27]. Figure 2.1 shows the excitation and emission spectrum of YOYO-1 when the dye

molecule is attached to the DNA molecule. The data for the spectra have been obtained from

Thermo Fisher Fluorescence SpectraViewer [28]. The dye YOYO-1 is basically non-fluorescent

Figure 2.1: Excitation and Emission spectra of YOYO-1 when attached to the DNA molecule

[28].

when it is not attached to the DNA molecule [27]. When the DNA molecule is partially dena-

tured in the way described above, the dye molecules will detach from the broken bonds, thereby

letting regions with a high concentration of A-T bonds appear dark in a fluorescent image and

areas with a high concentration of C-G bonds appear bright.

To make this so-created barcode pattern visible, it is necessary to linearly elongate the DNA

molecules. This can be done by flowing them through a nanochannel or by stretching them

out on a surface. The surface needs to be either positively charged, to attract the negatively

charged backbone of the DNA molecule, or hydrophobic [29]. In this work, the DNA molecule

was stretched out by dragging a droplet over a surface covered with a polymer called Zeonex R©.

This method has been described by Deen et al. [29]. The base pair resolution of this method is

limited by the number of cooperatively melting regions (cmr) along the DNA sequence, which is

several 100 bp [23]. This resolution is further degraded by the imaging system (optical diffrac-

tion, finite pixel size).
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In this work, the DNA barcodes were created by first mixing 10 µL of the DNA stock (10 µm

λ -DNA in 5x TBE stained with YOYO-1 at a ratio of 10:1 stained bp:YOYO-1) with 10 µL of

formamide. The mixture was heated at 45 ◦C in a PCR (Polymerase Chain Reaction) machine

for 10 minutes and afterwards transferred into 80 µL of an ice-cooled buffer solution (50 µL of

100 mM MES-buffer mixed with 30 µL Milli-Q water). To stretch the DNA molecules out on

a surface, a droplet of the DNA solution was put onto a Zeonex R© cover slide and brought into

contact with a pipette-tip, (that was wrapped with Parafilm in order to avoid the droplet being

sucked into the pipette-tip). Next, it was dragged over the surface by the pipette-tip, causing the

DNA molecules to get stretched out on the surface.

For the analysis of the DNA molecules, a fluorescent microscope (Nikon TE2000-U) was used.

It had a 512× 512 EMCCD camera (iXon 897 from Andor Technology) with a pixel size of

16 µm. The objective used for the imaging was a 100x magnification Plan Apo objective with

a NA of 1.4. This was an oil-immersion objective which required an immersion oil with a re-

fractive index of nD = 1.515. The light source used by the microscope was a lumencor SOLA

6-LOR-SB white light source.

2.2 Analyzed Sample

The DNA molecules analyzed in this master thesis were from the bacteriophage Enterobacteria

phage λ , which infects Escheria coli (E.coli) bacteria. In its circular form, the DNA molecule

is 48502 base pairs long which is roughly equal to a contour length of 16.5 µm, assuming a base

pair length of 0.34 nm. Upon loading with the YOYO-1 dye used in this work, the length of the

molecule increases up to 22 µm, 1 dye molecule per 4 bp [30], thereby increasing the contour

length of the molecule by 0.68 nm per dye molecule [31]. In this master thesis, a ratio of 1 dye

molecule per 10 base pairs was used. It was empirically found that this ratio leads to the best

results. Furthermore, the dye molecules unwind the helical structure of the DNA molecule [31].

Lambda-phage DNA has an equal amount of C-G and A-T bonds [32]. Figure 2.2 shows the

barcode pattern of lambda-phage DNA.
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Figure 2.2: Barcoded Lambda-phage DNA

2.3 Fluorescent Imaging

As mentioned in Section 2.1, the microscope used in this master thesis was a Nikon TE2000-U.

The microscope was used as an epi-fluorescence microscope meaning that the excitation and

the detection happened both on the same side of the sample as opposed to dia-illumination

where the excitation and detection happen on opposite sides of the sample. Figure 2.3 shows

schematically the functionality of an epi-fluorescence microscope with its most important parts.

The excitation light travels from the light source through the excitation filter to the dichroic

mirror where it is reflected and afterwards focused onto the sample with the objective. The

sample then absorbs the excitation light and re-emits light of a longer wavelength. The emitted

light then travels back through the objective to the dichroic mirror where it is, in contrast to

the excitation light, not reflected but transmitted. After passing through the dichroic mirror

the emitted light passes through the emission filter and into the detector. The excitation and

emission filters are necessary to make sure that only the excitation light reaches the sample and

that only the emitted light reaches the detector. This is necessary because the dichroic mirror is

not very efficient, it transmits around 20 % of the excitation light.

As mentioned in Section 2.1, YOYO-1 absorbs light at a peak-wavelength of 489 nm and emits

light with a peak-wavelength of 509 nm when attached to the DNA molecule; therefore a filter-

cube was adjusted to these wavelengths. In this thesis, a FITC filter cube was used. Its excitation

filter had a mean pass-wavelength of 482 nm with a bandwidth of 35 nm and its emission filter

had a mean pass-wavelength of 536 nm with a bandwidth of 40 nm. The dichroic mirror used in

this filter cube reflected light of wavelengths below 505 nm and transmitted wavelengths above

this value.
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Figure 2.3: Schematic of an epi-fluorescence microscope.

2.4 Imaging sensor

The images captured in this work were all obtained by using a camera with an EMCCD sensor

grid where EM stands for electron multiplying and CCD stands for Charge Coupled Device.

This section will first explain the functionality of a CCD sensor, then briefly address the electron

multiplying effect.

2.4.1 Functionality of a CCD sensor

The architecture of a CCD sensor is shown in figure 2.4. The CCD sensor in figure 2.4 is a

back-illuminated CCD sensor like the one used in this master thesis. Back-illumination means

that, in contrast to a front-illuminated sensor, the light does not have to pass through the wiring

or the gate electrodes. Back-illumination provides a higher sensitivity, especially for shorter

wavelengths [33]. A CCD sensor converts the energy of an incoming photon into an electron-

hole pair in the silicon underneath the gate. The CCD then collects the produced electrons in so

called ”potential wells” which correspond to the pixels, whereas the holes are displaced in the

silicon substrate. The number of electrons in a potential well is proportional to the amount of

photons that have reached a particular pixel. To convert these photogenerated electrons into a

digital pixel value, the CCD gate voltages are modified to transfer the electrons to a ”read-out”

circuit where they are converted to a digital signal [33]. The CCD camera used in this master

thesis was ANDOR iXon DV887 with a field of view of 8.2× 8.2 mm with 512× 512 pixels

Lund University 19
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Figure 2.4: Cross-section of a back-illuminated photogate-based area-array CCD (modified

from Fig. 3.7. page 36 in [33])

leading to a pixel-size of 16 × 16 µm. To reduce thermal noise the camera was cooled down to

a temperature below −80 ◦C.

2.4.2 Functionality of the electron multiplying effect

The difference between a conventional CCD sensor and an EMCCD sensor is that a series

of multiplying registers are added in front of the read-out circuit of the conventional CCD

setup which amplifies the electron signal. The effect these multiplying registers use is known

as impact ionization [34]. During impact ionization, a charge-carrier with sufficient kinetic

energy can cause the generation of other electron-hole pairs. If every charge-carrier produced

in this manner creates more than one electron-hole pair, the current at the end of the multiplying

registers is amplified. The necessary kinetic energy is provided by a strong electric field in the

multiplying registers. Another name for this process is avalanche multiplication [35]. The

advantage of this amplification is that it essentially eliminates read-out noise, allowing much

higher read-out rates and detection of very small signals [36].
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Chapter 3

Theory

In this section, the theory behind the algorithm used to create a high resolution DNA barcode

signal from a series of low resolution images is explained. In the first section of this chapter,

the variables necessary to describe the algorithm are introduced. The second section will ex-

plain the mathematical basis for the algorithm, neglecting detrimental effects such as noise and

blur. Section three will address these problems and their influence on the performance of the

algorithm.

3.1 Definitions of the Variables used in the Algorithm

In order to get a one-dimensional signal from the stack of frames, it was necessary to apply a

few pre-processing steps. The first one was to choose an appropriate FOV. Figure 3.1 shows an

appropriate FOV for a few different frames. The FOV should cover the whole movement of the

DNA molecule which means that the FOV needs to be large enough to show the whole DNA

molecule all the way from the first frame to the last frame. On the other hand the FOV should

be chosen to be as small as possible to avoid the contribution of noisy pixels to the signal. The

more the DNA molecule is aligned with the direction of movement the smaller the FOV can be

chosen and the better the algorithm works.

Figure 3.1 shows schematically the pre-processing steps. On the left side of figure 3.1, the first,

second and last frame of the image stack are shown, On the right side, the summation process

and the resulting barcode after the algorithm has been applied is shown. On the basis of this,

the variables necessary to describe the imaging process are defined: The length of the DNA

molecule is denoted as lDNA while the length of one pixel is denoted as lpixel . The number of
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pixels necessary to cover the entire movement of the DNA molecule is denoted as npixel and

the total number of frames in the imaging process is denoted as nstep. The distance the DNA

molecule covers between two adjacent frames is denoted as lstep. If the stack of low-resolution

images necessary to reconstruct the high-resolution image is taken by recording every image in

the stack separately and moving the DNA molecule between adjacent frames with a platform,

then this quantity is given directly. If the DNA molecule is flowing in a nanochannel with a

certain velocity vDNA however, then the length covered between two adjacent frames can be cal-

culated by multiplying this velocity with the off-time of the shutter of the camera tshutter. The

total distance the DNA molecule covers during the imaging process is denoted by ltotal , which

can be calculated according to ltotal = (nstep−1) · lstep.

After selecting the FOV, the pixel values in the FOV are summed along the direction perpen-

Figure 3.1: Variables necessary to describe the image processing: Top Left: First Frame, Middle

Left: Second Frame, Bottom Left: nstep-frame; Top Right: Summing process that was applied

for every frame, Bottom Right: Resulting barcode Signal

dicular to the direction of the movement of the DNA molecule. This is done for every frame

and is schematically shown in the top right of figure 3.1. This creates a vector for every frame

with a length equal to the number of pixels npixel in the direction of movement of the DNA

molecule. The vector for the nth frame is denoted by ylinear,n. To correctly process the signal, it

was necessary to assign this intensity value to a corresponding spatial value. This was chosen

such that the first value in the vector of the first frame, ylinear,1, had the length coordinate zero;

the second value of ylinear,1 had the length coordinate lpixel; the third value of ylinear,1 had the

length coordinate 2 · lpixel etc., for the first frame. After that, the first value in the vector for

the second frame, ylinear,2, was assigned the coordinate lstep; the second value in ylinear,2 was
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assigned the coordinate lpixel + lstep etc. In general, the mth value in the vector of the nth frame

was assigned the length coordinate (m− 1) · lpixel +(n− 1) · lstep. Similarly, a position vector

for every frame was created where the vector for the nth frame was denoted as posn.

These so-created nstep intensity- and length-vectors were then each put into a single 1D-vector

with a length of npixel · nstep, which were denoted as y1D and pos1D respectively. Afterwards,

pos1D was sorted so that the spatial values were monotonically increasing. After that, the vec-

tor y1D was sorted accordingly. This created signal was the basis for the algorithm presented in

Section 3.2.

3.1.1 Artificial Signal

To evaluate the algorithm, it was helpful to have a noise-free, artificial, sample data set to test it

on. This artificial barcode was created by an algorithm from Tobias Ambjörnssons group from

Lund University and is based on the known DNA sequence of λ -phage. The barcode and the

one-sided power spectrum of its Fourier transform are shown in figure 3.2 (without the DC-

component). Throughout the next section this barcode is used to evaluate the algorithm. The

intensity profile shown in figure 3.2 will is denoted by f (x), and its Fourier transform, F (k),

where k denotes spatial frequencies which have the SI unit of [ 1
m ].

3.2 Derivation of the Algorithm

Two assumptions that are made throughout this section are, firstly, that there is no noise corrupt-

ing the signal. and secondly, that there is no blur from the imaging system corrupting the signal

(→ δ -function as PSF). As mentioned in Section 2.1, the method of denaturation mapping has

an inherent resolution limit which is due to the cmr’s in the DNA molecule. This resolution

limit is on the order of several 100 base pairs, about 50 nm. Frequencies much higher than the

inverse of this length can therefore be regarded as noise. This is congruent with the power spec-

trum shown in figure 3.2 which drops rapidly for higher frequencies. Any algorithm that aims

at increasing the resolution of a barcoded DNA signal should not try to restore features that are

below this limit. If the frequency corresponding to this inherent resolution limit is denoted by

fcmr =
1

lbasepair · cmr
(3.1)
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Figure 3.2: Artificial barcode used to derive the algorithm and its Fourier transform.

then, according to the Nyquist-Shannon sampling theorem [37][38], the sampling frequency

does not need to be higher than

fsample = 2 · fcmr (3.2)

One must be careful here. The Nyquist-Shannon theorem does not directly apply because a

pixel does not take the value of a single point of the analog DNA barcode f (x) but rather the

sum over a whole pixel length. This summing process is equivalent to convolving the signal

with a square function. This means that the measured signal is a convolution of f (x) sampled at

a certain sampling frequency, and a square function with a size equal to one pixel. It is therefore

necessary to first deconvolve the signal. If a perfect deconvolution is assumed, then the result

of the deconvolution is exactly the analog DNA barcode f (x) sampled with the aforementioned

sampling frequency. This will be addressed in more detail below.

The reciprocal of this sampling frequency gives a good estimate of a lower bound on the step

size between two adjacent frames:

llb
step =

1
fsample

=
lbasepair · cmr

2
(3.3)
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The maximum number of steps for a given step-size and a given pixel size can be calculated

according to:

nstep,max =
lcm(lpixel, lstep)

lstep
(3.4)

where lcm stands for the lowest common multiple. The lowest common multiple is the smallest

number that is divisible by both of the input numbers. For example, the lcm of 4 and 6 is 12.

After nstep,max number of steps the barcoded DNA molecule has moved

npixel,min =
lcm(lpixel, lstep)

lpixel
(3.5)

pixels and the process repeats itself, measuring the barcoded DNA molecule in the same way as

nstep,max steps before. It is therefore, theoretically, unnecessary to take more frames nstep than

nstep,max. In the region starting from the point

lstart = (npixel,min−1) · lpixel− lstep +gcd(lpixel, lstep) (3.6)

= (npixel,min−1) · lpixel− lstep + lsample (3.7)

to the point

lend = (npixel−1) · lpixel +nstep,max · lstep− lstart (3.8)

the barcoded DNA signal is sampled with a step-size of lsample = gcd(lpixel, lstep), where gcd

stands for the greatest common divisor, which is the greatest number that divides both lpixel and

lstep in this case. For example, the gcd of 12 and 9 is 3.

It is now worth thinking about how long the distance from lstart to lend should be. Every point

along this distance is the sum over a window of the size of lpixel of the DNA molecule which

corresponds to a convolution of the DNA signal with a square function equal to the pixel size.

To correctly reconstruct the actual DNA signal, the distance from lstart to lend should cover the

full convolution of the actual DNA signal and the square function. That means:

lend− lstart > lDNA + lpixel (3.9)

Since lsample is by definition smaller than lstep the following equation holds:

lstart < (npixel,min−1) · lpixel (3.10)

From equations 3.8, 3.9 and 3.10, the number of pixels (→ FOV) necessary to track the move-

ment of the DNA molecule can be estimated via:

npixel > 2 · lstart + lDNA + lpixel ≈ lDNA +2 ·npixel,min · lpixel (3.11)
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which is a more complicated way of saying that the FOV should extend sufficiently to both

sides of the DNA molecule. This it does, trivially, since it needs to cover the movement of the

DNA molecule over the whole movement.

A good thought experiment to see the equivalence of the imaging process described above

and the barcode signal f (x) shown in figure 3.2 getting convolved with a square function is

to imagine instead of the DNA molecule moving over several pixel the DNA molecule to be

stationary and a single pixel with a length of lpixel moving with a step size of lsample over the

whole barcoded DNA molecule which is exactly a convolution of the barcoded DNA signal

with a square function the size of the pixel.

If noise and blur are neglected, the best estimate of the barcoded DNA signal f (x) sampled with

a distance of lsample is the deconvolution of the 1D-signal y1D described in Section 3.1. The limit

of how well this reconstructed signal will match the analog barcoded DNA signal depends only

on the performance of the deconvolution algorithm evaluated in Section 4.1.

3.2.1 Deconvolution Algorithm

Since deconvolution is an ill-posed inverse problem, its solution is not trivial and there exists

an extensive literature around solving deconvolution problems. MATLAB has a few built-in

deconvolution algorithms, for example Wiener, Blind and Lucy-Richardson. In this master’s

thesis, the Lucy-Richardson deconvolution algorithm deconvlucy was used to reconstruct the

barcode signal. The algorithm goes back to work done by William H. Richardson [39] and

Leon B. Lucy [40]. The algorithm uses Bayes theorem iteratively to estimate the original signal

from a degraded signal and a known PSF (in this case a square function). The algorithm was

developed for two dimensional images but can be applied to one-dimensional signals without

any problems. The implementation of the algorithm in MATLAB uses an accelerating, vector-

extrapolation technique that was developed by David S.C. Biggs and Mark Andrews in [41].

A problem that has been encountered throughout this thesis was that the Lucy-Richardson algo-

rithm lead to aliasing effects such as ringing at the beginning of the signal. The Lucy-Richardson

algorithm assumes periodicity of the data [42], therefore the data was extrapolated with a spline

function before the deconvolution step to ensure continuity and differentiability. Figure 3.3

shows two deconvolutions of the same signals: on the left without spline interpolation before

the deconvolution, and on the right with spline interpolation before the deconvolution.
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Figure 3.3: Left: Signal deconlved without interpolating with a spline function first. Right:

Signal deconlved with interpolating with a spline function first.

The comparison of the two signals shows that the spline interpolation suppresses the ringing

artifact which can be seen for the signal on the left but not for the signal on the right.

3.3 The effect of Noise and Blur

In contrast to the mathematical derivation, an experimental result will always contain both noise

from different sources (e.g. Gaussian noise or thermal noise) and blur from the PSF of the

imaging system. In this section, possible solutions for dealing with these detrimental effects are

presented. First, blur due to the PSF of the imaging system is addressed, afterwards, noise.

3.3.1 Blur due to the PSF of the Imaging System

In every imaging system a single point in the object plane will be smeared out to a finite sized

area in the image plane. This is due to the finite size of the aperture in the focal plane. Mathe-

matically this process can be described by a convolution of the original image W with the PSF

S which leads to the degraded image H which is observed:

H =W ~S (3.12)

If the PSF is known, it is possible to increase the resolution of the blurred image H by decon-

volving it with S. As mentioned in Section 3.2.1, deconvolution is an ill-posed inverse problem

which is why a sophisticated algorithm is necessary to perform this operation. The PSF of an

optical imaging system in-focus is an Airy disk which is displayed in figure 3.4 on the right

side. On the left side of figure 3.4 the airy function is displayed. To simplify the deconvolution,

it is common to use a gaussian function

g(r) = I0 · e
− r2

2σ2 (3.13)
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Figure 3.4: Airy Function (left) and corresponding Airy Disc (right)

which approximates the airy function fairly well as can be seen in figure 3.5. The Airy disk has

its first zero, in normalized units, at

r = 3.8317 (3.14)

while the standard deviation, σ , of the Gaussian approximation (also in normalized units) is

given by:

σ = 1.4137 (3.15)

This approximation ensures that the integral over the Gaussian approximation is the same as the

integral over the Airy function.

Although the Airy disk theoretically extends to infinity, it can be seen from figure 3.4, that the

airy function drops quite rapidly with 83.8% of its total power being contained within its first

ring [43]. If the pixel size is large, relative to the Airy disk, the resolution is not diffraction

limited but limited by the pixel size of the array. It is therefore not possible to gain resolution

by deconvolving with the PSF.

It is worth noting, however, that the reconstructed signal from the algorithm described above

is sampled a lot finer than the original image. Thus it is theoretically possible to perform the

deconvolution with the PSF after the steps described in Section 3.2, even for a pixel size to PSF

ratio where it was not possible in the first place. The results of deconvolving with a PSF are

shown in Section 4.2.1.
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Figure 3.5: Gaussian Approximation to the Airy Function,

3.3.2 The effect of Noise on the Signal

During the imaging process, there are several different sources of noise: thermal noise, Gaus-

sian noise and shot noise [44]. In this master’s thesis, two different approaches to dealing with

the noisy signal were compared. After the pre-processing steps described in Section 3.2, but

before the deconvolution with the square function, the signal was either filtered with a moving

average filter equal to the number of frames added to create the 1D-signal (→ nstep,max in the

ideal case) which was done with the built in MATLAB function filtfilt which does not introduce

any phase shifts to the signal or the fourier transform of the signal was multiplied with a box

function thereby filtering out any frequency components higher than the size of the box func-

tion. The two methods are compared in Section 4.2.2.

Figure 3.6: Flow Chart of the algorithm derived in Chapter 3.

Figure 3.6 summarizes the different steps of the algorithm explained above. First, the pre-

processing steps described in Section 3.1 are applied to the stack of low resolution images by

which the 1D signal, y1D, is created, which is afterwards filtered with a moving average filter.

This filtered signal is then deconvolved with a square function to restore the original barcode
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and will be called fblur throughout the rest of this thesis. To fully reconstruct the original signal,

a deblurring step (→ deconvolving with the PSF) will be performed at the end and this created

signal will be denoted by frecon. The feasibility of these different steps is discussed in the

following sections.
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Chapter 4

Results

In this section, the results of the theoretical simulation, both with and without noise and blur

are presented, followed by the results of the experimental work. The chapter will start with the

results of the theoretical simulation without noise and blur. These results give a good estimate

of the inherent limits of the Lucy-Richardson deconvolution algorithm. After this, the influ-

ence of noise and blur are addressed which gives further insight into the practical constraints

of the algorithm. The third section shows the performance of the algorithm on experimentally-

obtained data. The algorithm was evaluated by taking a degraded signal, letting the algorithm

run over it, and afterwards evaluating if the algorithm improved the resolution of the recon-

structed signal compared to the degraded signal. To evaluate the quality of the reconstruction

the root-mean-square-error (RMSE) was chosen. It is defined as follows:

RMSE =

√
∑

N
n=1(DNAn−Signaln)2

N
(4.1)

where DNA denotes the reference signal and Signal denotes the reconstructed signal. For the

theoretical simulation, it was straight forward to calculate the RMSE because the reference was

given. For the experimental results, this was harder since the actual, analog barcode signal was

unknown. The way that this issue was circumvented is explained in Section 4.3. The RMSE

was chosen because it is a good measure of the accuracy of the reconstructed signal (Signal)

relative to the actual signal (DNA). To effectively compare different RMSE’s, it was necessary
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to normalize both Signal and DNA in the following manner:

Signal = Signal−min(Signal) (4.2)

Signal =
Signal

max(Signal)
(4.3)

DNA = DNA−min(DNA) (4.4)

DNA =
DNA

max(DNA)
(4.5)

Dividing the squared errors by the number of sample points in equation 4.1 ensures that two

equally good fits, differing only in the number of sampling points, will have the same RMSE

value. A perfect fit would lead to a RMSE value of 0 and an arbitrarily bad fit would lead

to an arbitrarily large RMSE. Figure 4.1 shows three reconstructed signals with three different

RMSE values. The green line is equal to the mean of the original data shown in red. The RMSE

between the original signal and this line is equal to 0.29, which can be regarded as a boundary

for when all information is lost.

Figure 4.1: Three signals with different Root Mean Square Errors to give a magnitude estimate

for the RMSE values in the following section.

4.1 Theoretical Simulation without Noise or Blur

This section shows how good the reconstruction of a signal is, when it is first convolved with

a square function and afterwards deconvolved with the same square function again. The re-

constructed signal will be degraded to some degree since deconvolution is an ill-posed inverse

problem (see Section 3.2.1). This is done to evaluate the general performance of the Lucy-

Richardson deconvolution algorithm presented in Section 3.2.1. It is worth noting that the

performance of the reconstruction depends on the step-size lstep chosen. Figure 4.2 shows the
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RMSE’s for step sizes with a low lcm with the pixel sizes analyzed in the top left, and the

RMSE’s for step-sizes with a high lcm with the pixel sizes analyzed in the bottom left. The

reconstruction with the highest RMSE for either is shown to the right of the RMSE plots.

Figure 4.2: Top Left: RMSE for step-sizes with a low lcm with the pixel size and their worst

reconstruction (Top Right). Bottom Left: RMSE for step-sizes with a high lcm with the pixel

size and their worst reconstruction (Bottom Right).

A high lcm will lead to a low nstep,max and a high lsample, which means that the barcoded

DNA signal is more coarsely sampled than for a lower lcm. It is important to keep this fact

in mind when conducting experiments where the DNA molecule is moved between adjacent

frames with a platform and the step-size can be controlled precisely. It is, however, worth not-

ing that even for the poor step-size choices the deconvlucy algorithm is performing well. Even

for a pixel size of 2.56 µm the RMSE stayed below 0.1 and the reconstruction is close to the

original (as can be seen in the bottom right of figure 4.2).

In the next section, the influence of noise and blur on the simulation will be investigated which

adds more parameters to the simulation. Since the performance of the algorithm is quite inde-

pendent of the step-size (for a reasonably chosen step-size) the step-size will be kept constant

at a value of 50 nm in the following section.
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4.2 Theoretical Simulation with Noise and Blur

In this section, the influence of blur due to the PSF of the imaging system and the influence of

noise on the performance of the algorithm are analyzed. The section starts by analyzing only

blur (subsection 4.2.1) and only noise (subsection 4.2.2), and then looking at the combined

effect of the two (subsection 4.2.3).

4.2.1 The Influence of Blur

As mentioned at the end of Section 4.1, the step-size was kept constant at 50 nm throughout this

section. In this section, the original barcoded DNA signal f (x) was first blurred with a gaus-

sian function (as described in Section 3.3.1) and afterwards convolved with a square-function

in the same manner as described in section 4.1. Afterwards, this signal was deconvolved with

a square function, thereby reconstructing the blurred barcode. This reconstruction was denoted

by fblur(x). Afterwards, fblur(x) was deblurred with the gaussian function (→ deconvolved with

the gaussian function) and the reconstructed barcode was denoted as frecon(x).

Figure 4.3 and Figure 4.4 show on the left side the RMSE between the original barcode f (x)

and fblur(x) on the one hand and frecon(x) on the other. The RMSE is shown for different sizes of

the PSF (different standard deviations→ std of the gaussian function). On the right side of both

figure 4.3 and figure 4.4 is the original signal and the worst reconstruction of fblur and frecon

shown. By comparing figure 4.3 with figure 4.4, it can be seen that deblurring the deconvolved

Figure 4.3: RMSE of the Deconvolved Signal before deblurring and the Original Barcode

(lstep = 50nm)

signal can indeed decrease the RMSE and increase the resolution between the reconstruction
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Figure 4.4: RMSE of the deblurred signal and the original barcode (lstep = 50nm).

and the original signal. The plots of the worst reconstruction and the original on the right sides

of figure 4.3 and figure 4.4 confirm this: the deblurred signal frecon in figure 4.4 is closer to

the original than the signal before the deblurring fblur in figure 4.3. It is important to note

that these results were obtained with the exact knowledge of the PSF. For the implementation

with experimental data, it is important to check the tolerances of the deblurring step (e.g. how

much can the std deviate from the actual PSF before the resolution gets worse than fblur(x)).

Furthermore, since the actual PSF is an Airy function (see Section 3.3.1), there will be some

error due to the gaussian approximation. Figure 4.5 shows the RMSE for a few deblurred signals

frecon(x) where the gaussian used for the deblurring was smaller or larger than the actual Airy-

function PSF. The reconstructed signal without the deblurring step fblur(x) is shown in red as

a reference. The std of the actual PSF was kept constant at 550 nm in figure 4.5 and the Airy

function for the PSF was calculated according to Section 3.3.1.

Figure 4.5: Deblur with a Gaussian that is larger/smaller than the actual PSF (σactual = 550nm

& lstep = 50nm)

Figure 4.5 shows that the resolution of the signal can still be increased if the PSF is estimated

exactly right or slightly too small. If the PSF is estimated too large, however, the RMSE is

higher than without performing the deblurring step. This can be seen by the yellow line, where
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the std was estimated 25 % to large.

4.2.2 The Influence of Noise

As mentioned in Section 3.3.2, there are many sources of noise during the imaging process.

In this section, two methods for filtering out noise are analyzed. On the one hand, a moving

average filter, and on the other, a low-pass Fourier filter. The size of the moving average filter

was equal to the number of frames used to create the 1D-signal (which was nstep,max for the

theoretical simulation here).

Figure 4.6: RMSE of the noisy signal and the signal filtered with a moving-average-filter and a

Fourier filter. As a reference, the RMSE of the signal without noise. On top: SNR = 1 and on

the bottom: SNR = 0.5 (lstep = 50nm)

The low-pass Fourier filter worked in the following manner: first the signal was Fourier

transformed, then the Fourier transform of the signal was multiplied with a box-function with a

size of

fbox =
1

cmr · lbasepair
(4.6)

thereby only keeping frequency components below this limit. As described in Section 3.2,

denaturation mapping has an inherent resolution limit due to the cooperatively melting regions

in the DNA molecule. As described in Section 3.2, this number is a few hundred base pairs. For

this simulation, it was chosen to be cmr = 300.

Figure 4.6 shows the RMSE for two different SNR (Signal-to-Noise) ratio, SNR = 1 on top and
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SNR = 0.5 on the bottom. It can be seen that, in general, filtering with a mean-average-filter

decreases the RMSE between the original and the reconstruction whereas filtering the signal

with the Fourier filter does not. Because of this, the moving-average-filter was chosen for the

data processing described in Section 4.3. The Fourier filtering with a higher cmr value of 2000

showed an improvement of the RMSE and is described in Section 4.3.2.

Figure 4.7: Top: Highest RMSE fit of the noisy signal (green) and the signal smoothed with

a moving average filter (black) for a SNR = 1. Bottom: Highest RMSE fit of the noisy signal

(green) and the signal smoothed with a moving average filter (black) for a SNR = 0.5

4.2.3 The Influence of Blur and Noise

In this section, the combined influence of blur and noise is analyzed. In order to do this the orig-

inal barcoded DNA signal f (x) was first blurred with a PSF of a size of 550 nm and afterwards,

noise with SNR = 0.5 was added to the signal. This blurred, noisy signal was then convolved

with a square-function to simulate the imaging process. After that, the signal was restored. This

was done by first filtering out the noise with a moving-average-filter (described in Section 4.2.2)

and then by deconvolving the filtered barcode with a square function to reverse the imaging pro-

cess. As in Section 4.2.1, this signal was denoted by fblur(x). After all of that, as a final step,

the signal was deblurred with a gaussian-function. This was done to see if it was still possible

to achieve a gain in resolution by deblurring after the filtering and square-deconvolution steps.

Again, as in Section 4.2.1, this signal was denoted by frecon(x). Figure 4.8 shows the RMSE

between fblur(x) and f (x) on the top and frecon and f (x) on the bottom.
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Figure 4.8: RMSE for the signal before and after deblurring (SNR = 0.5 and lstep = 50nm)

Figure 4.9: Top: Highest RMSE fit of the noisy signal (green) and the signal smoothed with a

moving average filter (black) before the deblurring step. Bottom: Highest RMSE fit of the noisy

signal (green) and the signal smoothed with a moving average filter (black) after the deblurring

step. (SNR = 0.5 and lstep = 50nm)

Figure 4.8 shows that the deblurring step is detrimental to the resolution of the restored bar-

code, even though it is theoretically possible to increase the quality of the reconstruction. The

reason for this degradation of the restoration must be because of the nature of the deconvolution

problem. Figure 4.9 shows the worst reconstruction of moving-averaged signals in black, and

the worst reconstructions of the noisy signal in green. The top half of figure 4.9 shows the

signals before the deblurring step and the bottom half shows the signals after the deblurring
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step.

4.3 Experimental Results

This section will present the experimental results obtained during this project. First, the per-

formance of the algorithm on images of fluorescent beads is shown in Section 4.3.1. Then, the

performance of the algorithm on DNA molecules prepared with denaturation mapping is shown

in Section 4.3.2. An important concept for the following sections is the concept of binning pix-

els together, which means combining several pixels into one. This will increase the pixel size

by the binning factor and decrease the resolution concomitantly. See Figure 4.10.

As already mentioned in the beginning of chapter 4, it is not trivial to define a reference

Figure 4.10: Binning scheme showing how the pixel size increases from an unbinned image

(1x1), up to a binning of 8x8.

when using the algorithm on experimental data. For the next sections, the following scheme

was used: First, the unbinned image-stack was processed by the algorithm. This created the

reference, DNA, in equation 4.1. Afterwards, the binning of the image stack was increased,

thereby simulating an imaging system with lower resolution. Next, the image-stack was again

processed by the algorithm. This created the reconstruction, Signal, in equation 4.1. Then, the

RMSE between the unbinned signal and the signal obtained from the binned stack of images

was calculated. It is worth noting that the number of frames required for the algorithm differed

depending on the binning factor. For example, for a step-size of 40 nm and an (unbinned) pixel

size of 160 nm, the number of frames required by the algorithm, nstep,max, is 4. This number

changes however when the binning is increased from 8 (2x2) to 12 (3x3), 16 (4x4), 20 (5x5), 24

(6x6), 28 (7x7) up to 32 (8x8). This is because the binning increases the pixel-size (see formula

3.4).
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To evaluate the performance of the algorithm, the following reference was used. A single frame

was taken and a linear signal was created by summing over the dimension perpendicular to the

movement of the FOV (this is equivalent to only performing the first step of the pre-processing

as described in Section 3.2). For the reference, the binning was also increased and then the

RMSE was calculated between the binned signals and the unbinned signal.

4.3.1 Analysis of Nanometer-sized Beads

The feasibility of the algorithm was first evaluated with an image stack of fluorescent beads with

a diameter of 60 nm. These beads have a few advantages over DNA molecules prepared with

Figure 4.11: Images of the beads for different binnings (top), their reference signal (middle),

processed signal (bottom).

denaturation mapping: their signal has a much higher signal to noise ratio than the one from

DNA molecules; their signal is more straightforward to interpret than the barcode signal dis-

played by a DNA molecule; and most importantly, they show basically no photobleaching. As a

proof of principle, four beads were imaged in the following manner: 32 Frames were taken with

a step-size of 40 nm between them, 64 frames with a step-size of 60 nm between them and 16

frames with a step-size of 80 nm between them. These frames were then processed as described
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Figure 4.12: RMSE of the processed signal and the reference signal for different binnings. Step

size 40 nm (top) 60 nm (middle) and 80 nm (top).

in Section 3.2. Afterwards, the pixels were binned together, starting from 2x2 all the way up

to 8x8, and the processing was repeated. Finally, the RMSE between these binned signals and

the unbinned signal was calculated and can be seen in figure 4.12. Figure 4.12 shows that the

RMSE was more or less the same for the processed signal and the reference. Figure 4.11 shows

the four beads, their reference signal and their processed signal.

4.3.2 Analysis of DNA molecules

During this master’s project 65 DNA barcode signals were analyzed: 31 barcodes with a step

size of 40 nm, 12 with a step size of 60 nm and 22 barcodes with a step size of 80 nm. The

barcodes signals were processed in the same manner as described above. Figure 4.13 shows the

average RMSE of all the barcodes for the 40 nm, 60 nm and 80 nm measurements on the left

side.

Figure 4.14 shows the images of three different barcoded DNA molecules, their processed sig-

nals, and their Fourier filtered processed signals. The processed signal is still noisy, containing
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Figure 4.13: RMSE over artificial binning for the 40 nm step-size data (top, 31 barcodes), 60 nm

step-size data (middle, 12 barcodes), and the 80 nm step size data (bottom, 22 barcodes). Left

side: processed without Fourier-filtering, right side: processed with Fourier-filtering.

high frequency components that contain no information about the DNA molecule analyzed and

which the Fourier filtering takes care of. For these images, all frequencies below 1.4706 µm−1

have been filtered out. If the Fourier filtering is applied for all the different binnings after the

processing, the RMSE of the processed signal can be lowered. This can be seen on the right

side of figure 4.13. The cut-off frequency of 1.4706 µm−1 corresponds to:

1
cmr · lbasepair

=
1

2000 · lbasepair
(4.7)

This number has been empirically estimated and showed a good improvement of the RMSE as

can be seen in figure 4.13. Figure 4.15 shows the signals of the three barcodes displayed in

figure 4.14. As expected the signal degraded with higher binning. The reconstructed resolution

was not as good as the theoretical simulations displayed in Section 4.1 suggested. Figure 4.16

shows the signals of figure 4.15 after Fourier filtering. It can be seen that only high frequency

components are filtered out that carry no information about the analyzed molecule. This leads

to a lower RMSE, as can be seen on the right side of figure 4.13.
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Figure 4.14: Images of three barcoded DNA molecules (top), their processed signal (middle)

and their Fourier filtered signal (bottom)

Figure 4.15: Barcode signals of the barcodes shown in figure 4.14 before the Fourier filtering

step.
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Figure 4.16: Barcode signals of the barcodes shown in figure 4.14 after the Fourier filtering

step.
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Chapter 5

Discussion and Outlook

In this master’s thesis an algorithm for the processing of images of DNA molecules prepared

with denaturation mapping was developed. The input for the algorithm was stacks of images

with a controlled unidirectional shift between them. The algorithm used those images to create

a one-dimensional signal with a higher resolution than the signal of a single frame. The theory

behind the algorithm was developed in chapter 3 and its practical limitations have been tested

on artificial data in Section 4.1. Afterwards, the algorithm was tested on experimental data

which was described in Section 4.3. The algorithm was first evaluated on fluorescent beads,

which, due to their simplicity, have been simpler to analyze than DNA molecules prepared with

denaturation mapping. The later have been analyzed afterwards in Section 4.3.2. The algorithm

has shown to increase the resolution of the barcoded DNA signal compared to the signal of a

single frame for a few of the molecules. A few of the problems encountered, however, will be

discussed below.

One of the major limitations of using the method presented in this thesis in a real experimen-

tal setup is photobleaching. Photobleaching is caused by damage to dyes, to the DNA itself

and to conformational changes in the DNA and it leads to the intensity of the barcoded DNA

signal getting dimmer with every frame taken. Not only that, since the signal decreases homo-

geneously there appear to be new features in the bleached molecule. This drastically limits the

number of frames that can be taken of a single DNA molecule. Figure 5.1 shows a barcoded

DNA molecule for the first frame imaged in the left half, and for the 39th frame on the right.

The intensity of the signal in the 39th frame has dropped to one third of the intensity in the

first frame. In theory, the resolution of the barcoded DNA signal produced by the algorithm

gets better with the number of frames taken. This is why, theoretically, lstep should be chosen
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Figure 5.1: Left: Barcoded DNA molecule. Right: Photobleached barcoded DNA molecule

(in relation to lpixel) so as to maximize nstep,max. However, because the intensity of the barcode

signal bleaches out over time, this puts an upper bound on nstep,max and therefore on the value

of lstep. If the number of frames taken is smaller than nstep,max, there is still a possibility to

use the algorithm. The signal can be interpolated before the deconvolution step, creating an

evenly spaced signal which can then be restored by deconvolving with a square function. It is

important to keep in mind though that this step can be a source of error.

In this thesis the groundwork of the algorithm has been laid out and a proof-of-principle has

been established. To implement the algorithm in a smartphone microscope or similar optical

device, there are still some issues that need to be addressed. The first and probably most urgent

one is to find a way to ensure controlled movement of the DNA molecule over the whole imag-

ing process and to analyze how deviations in step size will affect the reconstruction algorithm.

Furthermore, the influence, or rather the feasibility, of deblurring (i.e. deconvolving with the

PSF) and at what point of the algorithm it can be implemented should be further analyzed. Since

Figure 5.2: PSF estimation with images of 100 nm sized beads (→ small dots).

all experimental data during this master thesis was acquired with a state-of-the-art fluorescent

microscope, the influence of blur due to the imaging system was almost negligible. An analysis

with fluorescent 100 nm sized beads showed that the std of the PSF was around 300 nm. Figure

5.2 shows the result of the deblurring. There is an increase in resolution between the left and

the right image in figure 5.2. It needs to be noted, however, that this was an image without bin-
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ning, with a pixel size of 160 nm. If the pixel size was increased by binning two or more pixels

together the deblurring step would no longer be feasible since almost the entire PSF would be

contained in a single pixel. The 100 nm beads can be identified as the small dots in the image.

Another step toward implementing and automating the algorithm is to combine it with a de-

tection algorithm of the DNA molecule. In this way, it would only be necessary to move the

barcoded DNA molecule through the FOV while the software independently and automatically

reconstructs the high-resolution signal.
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R. Sun, et al., “Fluorescent imaging of single nanoparticles and viruses on a smart phone,”

ACS nano, vol. 7, no. 10, pp. 9147–9155, 2013.

[20] H. C. Koydemir, Z. Gorocs, D. Tseng, B. Cortazar, S. Feng, R. Y. L. Chan, J. Burbano,

E. McLeod, and A. Ozcan, “Rapid imaging, detection and quantification of giardia lamblia

cysts using mobile-phone based fluorescent microscopy and machine learning,” Lab on a

chip, vol. 15, no. 5, pp. 1284–1293, 2015.

[21] Q. Wei, G. Acuna, S. Kim, C. Vietz, D. Tseng, J. Chae, D. Shir, W. Luo, P. Tinnefeld, and

A. Ozcan, “Plasmonics enhanced smartphone fluorescence microscopy,” Scientific reports,

vol. 7, no. 1, p. 2124, 2017.

[22] L. K. Nyberg, F. Persson, J. Berg, J. Bergström, E. Fransson, L. Olsson, M. Persson,

A. Stålnacke, J. Wigenius, J. O. Tegenfeldt, et al., “A single-step competitive binding

assay for mapping of single dna molecules,” Biochemical and biophysical research com-

munications, vol. 417, no. 1, pp. 404–408, 2012.

[23] W. Reisner, N. B. Larsen, A. Silahtaroglu, A. Kristensen, N. Tommerup, J. O. Tegenfeldt,

and H. Flyvbjerg, “Single-molecule denaturation mapping of dna in nanofluidic channels,”

Proceedings of the National Academy of Sciences, vol. 107, no. 30, pp. 13294–13299,

2010.

[24] P. Yakovchuk, E. Protozanova, and M. D. Frank-Kamenetskii, “Base-stacking and base-

pairing contributions into thermal stability of the dna double helix,” Nucleic acids re-

search, vol. 34, no. 2, pp. 564–574, 2006.

[25] C. Sadhu, S. Dutta, and K. Gopinathan, “Influence of formamide on the thermal stability

of dna,” Journal of Biosciences, vol. 6, no. 6, pp. 817–821, 1984.

[26] V. Müller and F. Westerlund, “Optical dna mapping in nanofluidic devices: principles and

applications,” Lab on a Chip, vol. 17, no. 4, pp. 579–590, 2017.

Lund University 53



Chapter 6. References Maximilian Binzler

[27] H. S. Rye, S. Yue, D. E. Wemmer, M. A. Quesada, R. P. Haugland, R. A. Mathies, and

A. N. Glazer, “Stable fluorescent complexes of double-stranded dna with bis-intercalating

asymmetric cyanine dyes: properties and applications,” Nucleic Acids Research, vol. 20,

no. 11, pp. 2803–2812, 1992.

[28] T. Fisher, “Fluorescence spectraviewer.” https://www.thermofisher.

com/se/en/home/life-science/cell-analysis/labeling-chemistry/

fluorescence-spectraviewer.html, April 2019.

[29] J. Deen, W. Sempels, R. De Dier, J. Vermant, P. Dedecker, J. Hofkens, and R. K. Neely,

“Combing of genomic dna from droplets containing picograms of material,” ACS nano,

vol. 9, no. 1, pp. 809–816, 2015.

[30] W. Reisner, J. P. Beech, N. B. Larsen, H. Flyvbjerg, A. Kristensen, and J. O. Tegenfeldt,

“Nanoconfinement-enhanced conformational response of single dna molecules to changes

in ionic environment,” Physical review letters, vol. 99, no. 5, p. 058302, 2007.

[31] F. Persson and J. O. Tegenfeldt, “Dna in nanochannels—directly visualizing genomic in-

formation,” Chemical Society Reviews, vol. 39, no. 3, pp. 985–999, 2010.

[32] J. Marmur, “A procedure for the isolation of deoxyribonucleic acid from micro-

organisms,” Journal of molecular biology, vol. 3, no. 2, pp. 208–IN1, 1961.

[33] F. Li and A. Nathan, CCD image sensors in deep-ultraviolet: degradation behavior and

damage mechanisms. Springer Science & Business Media, 2006.

[34] L. Meng, “An intensified emccd camera for low energy gamma ray imaging applications,”

IEEE transactions on nuclear science, vol. 53, no. 4, pp. 2376–2384, 2006.

[35] S. K. Madan, B. Bhaumik, and J. Vasi, “Experimental observation of avalanche multipli-

cation in charge-coupled devices,” IEEE Transactions on Electron Devices, vol. 30, no. 6,

pp. 694–699, 1983.

[36] M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-

coupled devices,” IEEE transactions on Electron Devices, vol. 50, no. 5, pp. 1227–1232,

2003.

54 Lund University

https://www.thermofisher.com/se/en/home/life-science/cell-analysis/labeling-chemistry/fluorescence-spectraviewer.html
https://www.thermofisher.com/se/en/home/life-science/cell-analysis/labeling-chemistry/fluorescence-spectraviewer.html
https://www.thermofisher.com/se/en/home/life-science/cell-analysis/labeling-chemistry/fluorescence-spectraviewer.html


Maximilian Binzler Chapter 6. References

[37] C. E. Shannon, “Communication in the presence of noise,” Proceedings of the I.R.E,

vol. 37, no. 1, pp. 10–21, 1949.

[38] H. D. Luke, “The origins of the sampling theorem,” IEEE Communications magazine,

vol. 37, no. 4, pp. 106–108, 1999.

[39] W. H. Richardson, “Bayesian-based iterative method of image restoration,” JOSA, vol. 62,

no. 1, pp. 55–59, 1972.

[40] L. B. Lucy, “An iterative technique for the rectification of observed distributions,” The

astronomical journal, vol. 79, p. 745, 1974.

[41] D. S. Biggs and M. Andrews, “Acceleration of iterative image restoration algorithms,”

Applied optics, vol. 36, no. 8, pp. 1766–1775, 1997.

[42] R. Liu and J. Jia, “Reducing boundary artifacts in image deconvolution,” in 2008 15th

IEEE International Conference on Image Processing, pp. 505–508, IEEE, 2008.

[43] M. Born and E. Wolf, “Principles of optics pergamon press,” Chap, vol. 3, no. 1, p. 118,

1980.

[44] A. K. Boyat and B. K. Joshi, “A review paper: Noise models in digital image processing,”

arXiv preprint arXiv:1505.03489, 2015.

[45] C. Noble, A. N. Nilsson, C. Freitag, J. P. Beech, J. O. Tegenfeldt, and T. Ambjörnsson,

“A fast and scalable kymograph alignment algorithm for nanochannel-based optical dna

mappings,” PloS one, vol. 10, no. 4, p. e0121905, 2015.

Lund University 55


	Introduction
	Experimental
	Denaturation mapping
	Analyzed Sample
	Fluorescent Imaging
	Imaging sensor
	Functionality of a CCD sensor
	Functionality of the electron multiplying effect


	Theory
	Definitions of the Variables used in the Algorithm
	Artificial Signal

	Derivation of the Algorithm
	Deconvolution Algorithm

	The effect of Noise and Blur
	Blur due to the PSF of the Imaging System
	The effect of Noise on the Signal


	Results
	Theoretical Simulation without Noise or Blur
	Theoretical Simulation with Noise and Blur
	The Influence of Blur
	The Influence of Noise
	The Influence of Blur and Noise

	Experimental Results
	Analysis of Nanometer-sized Beads
	Analysis of DNA molecules


	Discussion and Outlook
	References

