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Populärvetenskaplig sammanfattning

HRV är en förkortning av det engelska begreppet ”Heart rate variability” och
beräknas med hjälp av data fr̊an ett elektrokardiogram, EKG. Detta mäter elek-
triska signaler som skickas ut fr̊an hjärtat. En tydlig sammandragning av hjärtat
kallas för puls och det syns tydlig p̊a ett EKG som en ökning i den elektriska
signalen. I motsats till pulsen, är det inte själva hjärtslagen som är viktiga
när man beräknar HRV utan det som händer emellan dem. HRV kan därför
definieras som variansen av den elektriska signalen fr̊an hjärtat mellan tv̊a ty-
dliga sammandragningar som vi kallar puls. Dessa intervaller mellan hjärtslagen
är inte identiska vilket leder till en naturlig varians. Men stora avvikelser inom
den naturliga variansen kan tyda p̊a att n̊agonting s̊a som stress eller sjukdom
p̊averkar kroppen. Till exempel leder stress till att variansen minskar.

Datan som har använts i denna uppsats är tagen fr̊an en studie i Kristanstad
där 53 personer placerade sin hand i iskallt vatten. Detta skulle simulera stress
och visa hur stress p̊averkar HRV. För att f̊a ett kontrollset utfördes en liknande
test med varmt vatten vilket visade HRV i viloläget.

Denna uppsats behandlar binära klassificeringar vilket innebär att data blir
antingen klassificerad som positiv eller negativ. I v̊art fall betyder en positiv
klassificiering att signalen har blivit klassificierad som kall. Den negativa klas-
sificieringen betyder s̊aledes att signalen har klassificierats som varm. Målet
med denna uppsats är att f̊a fram en metod för lyckad klassificiering som är
baserad p̊a en frekvensanalys. Detta betyder att man analyserar HRV signalen
med fokus p̊a vilka frekvenser som finns och hur mycket energi som har acku-
mulerats vid dessa frekvenser.

Medan olika metoder leder till olika bra resultat är det änd̊a väldigt tydligt
att det verkar finnas parametrar utifr̊an vilka man kan korrekt klassificiera tv̊a
okända HRV signaler. Denna slutsatsen kan dras eftersom alla metoder klassi-
ficierar minst 50% av datan rätt.
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Abstract

Heart rate variability, commonly abbreviated as HRV, displays the variance
between consecutive heartbeats. This variance occurs naturally but can change
due to stress and problems with the cardiac system. HRV is therefore widely
used for medical research. The goal of this thesis is to correctly classify two
HRV signals where one is obtained at a resting state, the warm signal, while
the cold signal is obtained during a simulation of stress. The use of spectral
estimation methods leads to the analysis of the high frequency range (0.12 -
0.4 Hz) as well as the analysis of a more narrow frequency band around the
respiratory maximum. The analysis of those frequency ranges is done by using
linear models as well as studying how the energy of the cold and the warm signal
is distributed. All approaches lead to binary classification with more than 50%
accuracy. However, the best results are obtained when analyzing the frequency
band around the respiratory maximum located at 0.2 Hz or higher. When using
a linear model for changes in energy over time, dividing the data into four sets
leads to 93.4% correct classification. When analyzing the energy that is present
in the first 90 s of each signal, 96.23% correct classification is obtained.
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1 Introduction

Figure 1: An example of a RR-interval obtained by an ECG-simulation.

Heart rate variability, or short HRV, has been a well researched topic for many
years now. It deals with the interval between two consecutive heart beats, also
known as the RR-interval. This means that we do not actually look at each
heartbeat but what happens in between. A typical RR-interval is shown in
Figure 1. The two peaks that are shown are also known as R-peaks and they
indicate two consecutive heartbeats. The data to display a RR-interval is easily
obtained from an electrocardiogram (ECG) signal, which measures the electric
signals produced by the heart. We can then use the ECG signal to calculate the
HRV. This is done by computing the variance between two consecutive heart-
beats. Since the variance between two consecutive heartbeats is constant the
plot is typically staircase shaped. An example is shown in Figure 2.

HRV first became of interest in 1965 when it was noted that the monitoring
of HRV could foreshadow fetal distress, since changes within HRV could be ob-
served long before changes in the actual heartbeat [1]. This lead to HRV being
studied intensively.

The naturally occurring variation within HRV takes into account both the health
of the autonomic nervous system as well as cardiac health [2]. It is therefore
seen as a good measure of overall health, which has lead to it being the focal
point of research about several illnesses. The idea behind this research is to pay
attention to any arising abnormalities within the variation and analyze these,
since some sicknesses lead to specific changes of the HRV. Smoking and drugs
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Figure 2: An example of an HRV signal obtained at resting state.

can also affect the normally occurring variation and HRV can therefore be used
to assess even those damages [2].

When analyzing an HRV signal, you usually focus on either the low frequency
(LF) range, the high frequency (HF) range or the ratio of those two, LF/HF [1].
For adults, everything between 0.04 - 0.12 Hz is defined to be in the LF range
and is associated with sympathetic activity, for example exercise, which leads to
an increased heart rate. Parasympathetic activity, on the other hand, is mostly
reflected in the HF range, which is defined as 0.12 - 0.4 Hz. Parasympathetic
activity can be described as the bodies’ resting activities and thus leads to a
decreased heart rate. Examples include the function of internal organs such as
the digestion system [2]. However, it should be noted that HRV cannot be used
to exactly measure either of those activities and at most it should be used as an
indicator. Furthermore, research is still conducted on how much each frequency
range really is affected by sympathetic and parasympathetic activity. However,
in previous studies it has been observed that exposing your skin to a cold stim-
uli affects the HRV signal in the HF range [1]. In order to conduct successful
research based upon the analysis of HRV data, breathing is often controlled
during experiments due to its significant impact on the lengths of the intervals
between each heart beat. During inhalation heart rate increases which leads to
a shorter interval while the interval becomes longer during expiration due to
decreased heart rate [3].

The data that is being used for this thesis comes from a study in Kristanstad,

5



Sweden. 90 participants between the ages of 19 to 31, carried out a so called
Cold Pressure Test where your hand is placed into ice-cold water for three min-
utes. During this time, measurements were taken continuously and they were
then down sampled to a sampling frequency of 4 Hz. However, due to not ev-
eryone finishing the Cold Pressure Test, only the data of 53 subjects is actually
being used. The mean age of those 53 participants is 23.23 and the variance
is 7.4. For each of those participants, there also exists a control set where the
same procedure was repeated with lukewarm water. During both tests, an ECG
was taken and respiration measured. However, it is important to note that
no guidelines on respiration were given. Thus, a control set containing a warm
HRV signal and corresponding respiratory data was obtained as well as the HRV
signal and respiratory data from the Cold Pressure Test. Given these two HRV
signals, the goal of this thesis is to find a method that successfully classifies
those as either warm or cold.

2 Theory

In this section, the theory that is needed for all further analysis of the data is dis-
cussed. This includes the definition of the spectral density and how to estimate
it, the definition of a measure to judge the goodness of a binary classification
as well as the definition of linear regression and its limitations.

2.1 Spectral density

The Fourier of the covariance function of a stationary process is known as the
spectral density. The variance of the process is the total power of it. Thus, the
spectral density tells us how the total power is distributed at specific frequen-
cies. Hence, we have obtained a characterization of a given stationary process
in the frequency domain.

Given r(τ), the covariance function of a discrete stationary process x(t) for
t = 0,±1,±2, . . ., we can calculate its spectral density

R(f) =

∞∑
i=−∞

e−i2πfτr(τ),

where f is the frequency [4]. Here, we assume that R(f) is symmetric, integrable
as well as positive. However, since in reality we can not obtain infinitely many
samples to compute the spectral density, we need to estimate it in some way.

2.1.1 Periodogram

The periodogram is used to estimate the spectral density of a zero mean process,
x(t) for t = 0, 1, . . . , n− 1 [4]. It is defined as

R̂X(f) =
1

n
|χ(f)|2,
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Figure 3: The rectangular window function and its corresponding window spec-
trum centered around 0 Hz. Here W (f)2 denotes the Fourier transform of the
window function w(t).

where n is the length of the given data vector. The Fourier transform of x(t) is
χ(f) and is defined as

χ(f) =

n−1∑
t=0

x(t)e−i2πft.

While the periodogram is a good starting point for spectral estimation, there
are some disadvantages such as high variance and leakage of the side lobes.
This leakage is very apparent when comparing the height of the side lobes of
the window spectrum of the periodogram, seen in Figure 3, to the height of the
side lobes obtained when using the Hanning window, shown in Figure 4. Here,
both window spectra have been normalized to make comparison easier. Due
to those problems, other methods, such as the modified periodogram and the
Welch method, are more commonly used for spectral estimation.

2.1.2 Modified periodogram

The Hanning window, sometimes also called the Hann window, can be used to
modify the periodogram [4]. The spectral estimate can then be rewritten as

R̂w(f) =
1

n
|
n−1∑
t=0

x(t)w(t)e−i2πft|2,
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Figure 4: The Hanning window function and its corresponding window spectrum
centered around 0 Hz, whereW (f)2 denotes the Fourier transform of the window
function w(t).

where w(t) is the window function. When using the Hanning window

w(t) =
1

2
− 1

2
cos(

2πt

n− 1
),

where t = 0, 1, . . . , n−1. Its main advantage over the periodogram are the lower
side lobes in frequency, even if they come at the cost of the main lobe being
twice as wide. Meaning that its width increases from 2

n to 4
n . However, this is

still very advantageous since the lower side lobes lead to a reduction of bias [4].
Both the increased width of the main lobe and the lower side lobes can be seen
when comparing Figure 3 and Figure 4.

2.1.3 Welch method

Another often used method to estimate the spectral density is the Welch method
[4]. The idea is to reduce the variance, since this leads to a more consistent
estimate of the spectral density. This is done by dividing n data points into K
sequences, each containing only L data points and where the sequences overlap
p percent. The estimate of the averages therefore becomes

R̂av(f) =
1

K

K∑
k=1

R̂x,k(f),

for k = 1, . . . ,K. Here, R̂x,k(f) is the spectral estimate of the kth data sequence.
However, variance will only be reduced if the individual spectral estimates do
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Figure 5: Window function and corresponding spectrum of three Hanning win-
dows that overlap with 50%.

not have a high correlation. Compared to the periodogram, when having no
overlap the Welch method gives a higher bias as well as a K times wider main
lobe [4]. Using the Hanning window with a 50% overlap is shown to give the
best results for the Welch method, meaning that we reduce the variance as much
as possible while at the same time increasing the bias as little as possible [4].
An example of the window function and its spectrum when using three Hanning
windows that are overlapping 50% is shown in Figure 5. It can also be noted
that comparing the Welch method with no overlap to the Welch method with
overlapping windows, the width of the main lobe decreases as the percentage of
overlap increases.

2.2 Matthews correlation coefficient

When classifying data with a binary classification algorithm there are four pos-
sible outcomes. If the data belongs to the class ”positive” and is predicted as
”positive”, we say that the result is true positive or TP . Similarly we say that
an outcome is true negative or TN , if the data belongs to ”negative” and is
predicted as such. However, if something is falsely classified as ”negative” even
though it actually is ”positive”, the result is called false negative or FN . Vice
versa the result is called false positive or FP , if data from ”negative” gets clas-
sified as ”positive”. Those possible outcomes can be displayed in a confusion
matrix, seen in Table 1.
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Table 1: Confusion matrix.

Positive Negative
Predicted positive TP FP
Predicted negative FN TN

The Matthews correlation coefficient,

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
,

is based on the values of such a confusion matrix and is widely used in machine
learning to measure the goodness of a binary classification algorithm [5]. The
MCC takes on values between -1 and 1, where -1 is the worst, 0 can be inter-
preted as the classification being random and 1 means perfect classification. In
order to achieve a high score for a binary classification algorithm, the algorithm
needs to do well on both positive and negative predictions, which becomes in-
creasingly important if the sets ”positive” and ”negative” differ greatly in size.
This is also the main advantage of the MCC in comparison to other summarizing
statistics [5].

2.3 Linear regression

Given data x and y, where y is real valued and called response variable and x
are the explanatory variables, we want to find a linear model of the form

yi = β0 + β1x1i + . . .+ βpxpi + εi,

for i = 1, . . . , n. In matrix form we thus gety1...
yn

 =

1 x11 . . . xp1
...

...
...

1 x1n . . . xpn


β0...
βp

+

ε1...
εp

 ,

where εi are Normal distributed independent identical random variables with
mean 0 and constant variance σ2. Using the least squares estimator we can
solve for β such that

β̂ = argmin
β

(Y−Xβ)T(X−Yβ),

which has solution
β̂ = (XTX)−1XTY.

Sometimes the residuals εi do not follow a Normal distribution. This can be
due to a small data set or if there is a lot of variance within the given data.
When this is the case, we can not use a linear regression model. However, we
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can use a linear model that is based on linear regression. Such a linear model
then gives us a line of best fit,

y = β0 + β1x.

3 Method

In order to be able to correctly classify two given signals, different approaches
were tested. All of them used spectral estimates of the HRV signals and they
were based on there being a common pattern within the data of the cold signal
that was different to some pattern within the data of the warm signal. Those
patterns on the other hand, were easier to identify once variance was reduced.
It was therefore decided to estimate the spectral density by the Welch method
using a Hanning window with 50% overlap. This resulted in smooth curves only
showing the most important frequencies as shown in Figure 6.

Before implementing any methods, the mean was subtracted from the signals
to get a zero-mean process. Additionally, the data was normalized so that the
results later could be compared. This resulted in

Xnorm =
X − X̄√

(X − X̄)T(X − X̄)
,

where X is a matrix containing the data that was used and X̄ the vector of
the column averages of X. This normalization was done for both the HRV data
and the respiratory data. All further calculations of the spectral estimate were
carried out with the normalized data Xnorm. However, the optimal number
of windows, meaning how smooth the estimate eventually would be, changed
for different methods. The possible range out of which the optimal number of
windows was chosen, was determined by looking at the number of data points
that each set contained as well as the lowest frequency that would be analyzed.
In order to be able to draw reasonable conclusions, we wanted to see more than
one period. While one period could seem sufficient, this could lead to loss of
information which should be avoided. This loss of information could occur due
to window functions, such as the Hanning window, not prioritizing the data on
the edges of the set in the same way as the data in the middle due to the Hanning
window being shaped like a bell curve. When calculating the maximum number
of windows, it was thus chosen to try to show at least one and half periods,
optimally two periods. The maximum number of windows, W , was calculated
as

W =
2n

L
− 1.

Here, n denoted the length of the set that was used and L the number of
data points in two periods. All results that were obtained for W were however
rounded up resulting in not always showing two periods.
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Figure 6: Comparison of periodogram and the Welch method of the same data
set.

Using a linear regression model to analyze the data was initially considered.
Here, the energy of each set was seen as the response variable, y, and the
number of sets as the explanatory variable, x. When dividing the data into ten
sets we thus got 

y1
y2
...
y10

 =


1 1
1 2
...

...
1 10


(
β0
β1

)
+

(
ε1
ε2

)
,

where yi denotes the energy in the ith set. Solving for β̂ then led to ŷi, the es-
timate of yi. But in order to be able to implement this linear regression model,
it needed to be checked that the residuals εi = ŷi − yi were Normal distributed
with mean 0 and constant variance σ2. To check this, the residuals were plotted
with the help of a QQ-plot, as shown in Figure 7. Plotting the residuals did not
imply that the residuals of the whole data set were N(0, σ2) for some σ2. They
deviated greatly from the line showing the Normal distribution for this specific
mean and variance. It became evident that there was a big variance within the
data. This variance could possibly be the result of the data coming from differ-
ent people where every person might have a different resting state HRV. Since
the assumption of the residuals being N(0, σ2) was not true, a linear regression
model could not be implemented. Hence, a linear model based on a line of best
fit for each person was implemented instead.

All approaches described in the section ”Binary classification” were based on the
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Figure 7: QQ-plot of the residuals for the linear regression model over the HF
range of the cold HRV signal when splitting the data into two sets.

assumption that the warm and the cold signal have different energy distributions
and that the energy changes over time. This is shown in Figure 8. Here the
energy of the cold signal is higher in the second set, while the energy of the
warm signal is lower in the second set. Energy was calculated as the area under
the graph of the spectral estimate,

ei =

n∑
j=1

R̂iav(fj),

where fj is the frequency vector containing n entries and R̂iav is the spectral
estimate of set i using the Welch method with a 50% overlap. Since the data was
sampled discretely over time, the energy was obtained by summation instead of
the calculation of an integral.
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Figure 8: Difference in energy distribution of subject 1 over the HF-range. Here,
set 1 is made up of the first 90 s of the signals while set 2 is made up of the last
90 s.

3.1 HF-band analysis

In this section, the different frequency bands, that were used, are explained. The
general HF-band, which for adults is defined as 0.12 - 0.4 Hz, was the widest
band that was analyzed with a width of 0.28 Hz. The individual frequency
bands were more narrow and had at most width 0.2 Hz.

3.1.1 General HF-band

After an initial assessment of the data, the conclusion was reached that the
biggest differences between the warm and the cold signals could be seen in the
HF-range. This has also been observed in previous studies where it has been
noted that the exposure to cold stimuli can effect the HRV signal in HF range
[1]. For further analysis of this frequency band, the HRV data was then split
up in time in up to ten sets.

When analyzing this frequency band, it was at first tried to split the data
into a training set and a validation set. The training set consisted of the data
of 36 to 46 randomly selected subjects. The data of the remaining individuals
made up the validation set. The algorithm was then trained on the training set.
Here, training the algorithm meant that it would find the number of windows
that led to the highest percentage of correct classification. This number of win-
dows was then assumed to be optimal. Using this optimal number of windows
then for the validation set as well resulted in a MCC-value and percentage of
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correct classification for the validation set. This was tested a total of 25 times.
However, different sizes of training sets resulted in a different number of optimal
windows. Furthermore, different training and validation sets of the same size
with the same number of optimal windows did not achieve the same classifi-
cation results and therefore did not lead to the same MCC-value. Due to the
results on average being better than random but having a quite big variation,
it was decided to instead treat the data of all 53 persons as the training set.

3.1.2 Obtaining an individual frequency band by finding the respi-
ratory maximum

As opposed to the general HF-band, not only HRV data was used for this
approach but also respiratory data. All data was normalized and then divided
into two, four or ten sets. But for this approach we did not look at the whole
HF-range since this can show more than just the most important information.
Instead we obtained an individual frequency band for each person. Even for the
same person, this frequency band did not need to be identical for different sets.
The frequency band,

fmax ± δf ,

was centered at fmax, the frequency where the maximum of the respiratory
spectral estimate was located. This approach was tested for both δf = 0.05 Hz
and δf = 0.1 Hz where the only restriction was that the frequency band should
not start below 0.05 Hz. This translates to the maximum lying above 0.1 Hz
respectively 0.15 Hz. This was done since we ideally only wanted to analyze the
HF-range and everything below 0.12 Hz is part of the LF-range. However, since
the wider frequency band did not consistently lead to better results, this was
not tested for different fmax. The more narrow frequency band, however, was
also tested for fmax ≥ 0.15 as well as fmax ≥ 0.2. Setting a higher threshold for
fmax was done to see how much of an impact the noise at the lower frequencies
actually might have. Once this frequency band was found for each subject,
the energy of the HRV spectrum could be computed. This was advantageous
since this frequency band could be seen as each subjects personal high frequency
range meaning that only the relevant parts of the HRV signal would be taken
into account.

3.2 Binary classification

Different approaches were tried to find out the most successful method of classi-
fication. When deciding which method to implement, not only the percentage of
correct classification was relevant but also what kind of data is available. Some
methods used only the HRV data, while others also made use of the respiratory
data.
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3.2.1 Energy distribution

For this method, the HRV signal was split into two sets each 90 s long. The
goal of this method was to correctly classify whether the data came from a
cold or a warm HRV-signal. This classification was based on the assumption
of there being a difference in energy over time between the warm and the cold
signal. More specifically, we compared the energy of the first 90 s to the energy
of the last 90 s. However, only the data of the cold signal was used to obtain
the optimal number of windows, since we only classified based on the energy
distribution of the cold signal. Hence, the energy of each set was calculated. It
was assumed that the energy of the cold signal was not evenly distributed but
increased over time. Given that the cold signal had less energy in the beginning
than in the end, the algorithm then chose the optimal amount of windows from
a range which depended on what the lowest frequency in each frequency band
was. Here, the optimal amount of windows was defined as the one that leads to
the maximum number of energy increases over time for the cold signal, meaning
that it was counted how many times the energy in the second set was higher
than in the first. The window that led to this number being the highest was then
said to be optimal. If certain number of windows led to the same maximum, the
one that on average had the highest difference between the beginning and the
end of the signals, was said to be optimal. Thus, based on the optimal number
of windows, the energy of both sets was calculated for the warm and the cold
signal. If the energy in the second set was larger than the energy in the first
set, the HRV signal would then be classified as ”cold”. If, on the other hand,
the energy in the second set was not higher, the signal would then be classified
as ”warm”.

3.2.2 Linear model

Based on the assumption of different energy distributions over time, a linear
model was implemented. However, this time the algorithm trained both on
cold and warm HRV data to obtain the optimal number of windows. We not
only wanted the slopes of the signals to be different, but since energy over time
increased for the cold signal we wanted the slope of the linear model to be
positive. Since the warm signal behaved in the opposite way, i.e. decreased over
time, we wanted the slope to be negative. The training algorithm then chose the
optimal number of windows based on this linear model. However, this time the
optimal number of windows was the one that maximizes the number of correct
classifications for both the cold and the warm HRV data. Meaning that the
optimal window leads to both the highest number of non-negative slopes for the
cold HRV data, β̂cold ≥ 0, while still having negative slope for the warm HRV
data, β̂warm < 0. Thus, a signal’s classification was only dependent on the slope
of the line of best fit, β̂. A signal would be classified as cold if β̂ ≥ 0 and as
warm if β̂ < 0. Different to the previous method, the algorithm was not only
implemented with two sets but also with four and ten sets. The window range
was adjusted to the set size as well as to the lower bound of each frequency
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band. The more sets we divided the data into, the smaller the window range
became.

3.2.3 Comparison of absolute energy

In this method, classification was based on the total amount of energy, rather
than the distribution of the energy. This means that we did not analyze how the
amount of energy changed over time. Instead we just compared the total energy
of warm to the total energy of cold over the given length of the data set and
the given frequency range. It should be noted that due to this comparison, this
method does not treat the problem of binary classification but rather the prob-
lem of pairwise classification. The difference is that with binary classification
one signal is classified as either ”positive” or ”negative”, while with pairwise
classification two signals are compared to each other and then one is classified
as ”positive” and the other one as ”negative”. However, we could thus not
classify one signal on its own with this approach. The idea was that the total
energy of the warm signal was higher than the total energy of the cold signal.
This pattern however was more distinct when looking at the first 90 s. As shown
in Figure 9, the total energy of cold over the whole signal was higher than the
total energy of warm. But when only looking at the first 90 s, warm had the
most energy. This observation lead to an additional step for this method, since
the biggest difference seemed to be seen in the first 90s of the signal. Hence,
the absolute energy of cold and warm over the first 90 s was analyzed as well as
over all 180 s.

Figure 9: Energy distribution of subject 70.
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4 Results

In this section, the results of the above mentioned methods are presented. The
tables all contain the confusion matrix of the training set, the MCC-value, the
percentage of correct classification as well as the optimal number of windows
when using the Welch method with a 50% overlap. Here, P denotes positive
and cold is seen as the positive classification. N on the other hand stands
for negative and the negative classification is in this case warm. For further
visualization of the results, plots of the confidence interval for the linear models
are also presented.

4.1 Analysis of the general HF range

In this section, the results of analyzing the general HF-band are presented.
Due to the general HF-band being quite wide, the results are worse than when
analyzing each individual’s HF range. In Table 2, the maximum number of
windows for each method is shown.

Table 2: Maximum number of windows for the HF range.

# Sets Method # Windows
2 Energy distribution 10
2 Linear model 10
2 Energy comparison of the last 180 s 10
2 Energy comparison of the first 90 s 5
4 Linear model 5
10 Linear model 2

4.1.1 Energy distribution over HF-HRV

When training only on cold HF-HRV data, while using the Welch method with
a 50% overlap, this leads to the results presented in Table 3.

Table 3: Energy comparison over HF-HRV.

# Sets Predicted P N MCC Classification [%] # Windows

2
P 39 19

0.1019 54.72 6
N 14 34
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Figure 10: Mean energy over HF-range.

The confusion matrix in Table 3 shows that there are quite many false positive
classifications. However, when looking at the mean energy of all subjects for
both the cold and the warm signal, shown in Figure 10, it becomes clear why
this approach was chosen.

4.1.2 Linear model over HF-HRV

A linear model over the same frequency band leads to better classification re-
sults, shown in Table 4, than the ones obtained by analyzing the energy dis-
tribution presented in Table 3. The percentage of classification increases by at
least 9 percentage points compared to the previous results.

Table 4: Linear model over HF-HRV.

# Sets Predicted P N MCC Classification [%] # Windows

2
P 37 17

0.3774 68.87 2
N 16 36

4
P 40 19

0.3988 69.81 2
N 13 34

10
P 41 26

0.2934 64.15 2
N 12 27

When dividing the data into four sets the highest correct classification is ob-
tained by this approach. A subject which was classified correctly with this
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Figure 11: Linear model over HF-range of subject 65 and subject 82.

method is for example subject 65. The lines of best fit for both the cold and
the warm signal of subject 65 as well as the actual energy are shown on the
left side in Figure 11. While the splitting into 45 s intervals, as opposed to 90
s or 18 s, over the HF range still achieves the best results and also shows the
most improvement to the previous approach, false classification can still occur.
A good example is shown on the right side in Figure 11 which shows the lines
of best fit of subject 82. Here β̂cold < 0 and β̂warm > 0 which is the opposite of
what we want and therefore does not lead to correct classification.

Since we use a linear model here, we can not only compute the percentage of
correct classification and the MCC-value. We can even look at the measure that
we classify the data with, namely the slope of the cold HRV-signal, β̂cold, and
of the warm HRV-signal, β̂warm. In Figure 12, the 95% confidence intervals of
the linear model for the HF-HRV signals are shown. For each person we have a
line of best fit,

y = β0 + β1x,

for both the cold and the warm signal. Here, β0 denotes the y-intercept and β1
the slope of the line of best fit. Thus the 95% confidence interval for the slope
β1 is

Iβ̂1
= (β̂1 −

1√
53
λ0.025, β̂1 +

1√
53
λ0.025) = (β̂lower

1 , β̂upper
1 ),

where λ0.025 denotes the upper 0.025 quantile [6]. The thick lines show the
average slope,

yaverage = β̂0 + β̂1x.

The dotted lines show the lower bound of the confidence interval,

ylower = β̂0 + β̂lower
1 x

respectively the upper bound,

yupper = β̂0 + β̂upper
1 x.
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As previously described, x specifies how many sets we divide the data into.
Thus, the ticks on the x-axis indicate the number of sets that were used to
calculate the intervals. While the three different means of β̂cold as well as the
corresponding upper bounds are non-negative as wished, this is not the case for
the three corresponding lower bounds. For the slope of the warm HRV signal,
β̂warm, we have a similar situation. The lower bounds and the mean are negative
as needed. But only the upper bound when dividing into two sets is negative.
The other two upper bounds are positive and therefore have the wrong sign.

Figure 12: 95% confidence interval over HF-HRV for the division into two, four
and ten sets.
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4.1.3 Energy comparison over the HF-range

The best results over the HF range are obtained by classifying based on the
total energy of either the whole signal or the first 90 s. Those results are shown
in Table 5. Both the MCC-values as well as the classification percentage is by
far higher than for the other two methods. However, since we now deal with
pairwise binary classification, this is an easier problem.

Table 5: Energy comparison over the HF-range.

Length of data set Predicted P N MCC Classification [%] Windows

180 s
P 42 11

0.5849 79.25 10
N 11 42

90 s
P 44 9

0.6604 83.02 3
N 9 44

4.2 Analysis of the maximum respiratory frequency band

In this section, the results of all three methods over all individual frequency
bands are presented. Thus each subsection contains the results of four different
frequency bands. In Table 6, the maximum number of windows for each fre-
quency band is presented. Due to the different frequency bands having different
lower bounds, this table has one more column then Table 2.
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Table 6: Maximum number of windows for the HF range.

Lower bound [Hz] # Sets Method # Windows
0.05 2 Energy distribution 4
0.05 2 Linear model 4
0.05 2 Energy comparison of the last 180 s 4
0.05 2 Energy comparison of the first 90 s 1
0.05 4 Linear model 1
0.05 10 Linear model 1

0.1 2 Energy distribution 8
0.1 2 Linear model 8
0.1 2 Energy comparison of the last 180 s 8
0.1 2 Energy comparison of the first 90 s 4
0.1 4 Linear model 4
0.1 10 Linear model 1

0.15 2 Energy distribution 13
0.15 2 Linear model 13
0.15 2 Energy comparison of the last 180 s 13
0.15 2 Energy comparison of the first 90 s 6
0.15 4 Linear model 6
0.15 10 Linear model 2

4.2.1 Energy distribution

The results for the analysis of energy distribution over fmax±0.05 for fmax ≥ 0.1
are presented in Table 7. Compared to the results over the HF range shown in
Table 3, the percentage of correct classification shows an improvement of almost
20 percentage points.

Table 7: Energy distribution over fmax ± 0.05 for fmax ≥ 0.1.

# Sets Predicted P N MCC Classification [%] # Windows

2
P 34 7

0.523 75.47 4
N 19 46

Setting the restriction that fmax ≥ 0.15 leads to more true positive classifica-
tions, which is shown in Table 8. While the number of true negatives decreases,
this does not negatively affect the MCC-value or the classification percentage,
since this decrease is smaller than the increase in true positive predictions.
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Table 8: Energy distribution over fmax ± 0.05 for fmax ≥ 0.15.

# Sets Predicted P N MCC Classification [%] # Windows

2
P 36 8

0.5361 76.42 8
N 17 45

Table 9 shows the wider frequency band centered around fmax ≥ 0.15. While the
negative classifications remain unchanged, more correct positive classifications
lead even here to better overall results.

Table 9: Energy distribution over fmax ± 0.1 for fmax ≥ 0.15.

# Sets Predicted P N MCC Classification [%] # Windows

2
P 40 8

0.6065 80.19 4
N 13 45

For this method, the best results are obtained for a narrow frequency band
centered around fmax ≥ 0.2, as shown in Table 10. Less than 15% get falsely
classified, which is an increase of over 30 percentage points compared to the
energy distribution method over the HF range shown in Table 3.

Table 10: Energy distribution over fmax ± 0.05 for fmax ≥ 0.2.

# Sets Predicted P N MCC Classification [%] # Windows

2
P 42 4

0.7233 85.85 8
N 11 49

4.2.2 Linear model over the maximum respiratory frequency band

As with the previous linear model, the more sets we divided our data into, the
smaller the range of possible windows becomes. This smaller range of windows
does however not necessarily lead to worse results. Comparing the results of the
linear model over fmax ± 0.05 for fmax ≥ 0.1, each person’s own HF range, to
the results from the linear model over 0.12 - 0.4 Hz, we see an improvement no
matter how many sets we divide our data into. The results for this frequency
band are shown in Table 11.
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Table 11: Linear model over fmax ± 0.05, fmax ≥ 0.1.

# Sets Predicted P N MCC Classification [%] # Windows

2
P 34 7

0.523 75.47 4
N 19 46

4
P 31 9

0.4282 70.75 1
N 22 44

10
P 26 3

0.4867 71.7 1
N 27 50

Once again, we can analyze our measure of classification. Compared to the
confidence intervals obtained from the linear model over HF-HRV, shown in
Figure 12, the ones in Figure 13 are much better. As previously, the mean is
shown as one straight line while the lower and upper bounds are dotted lines.
We still have that the lower bound, when dividing into four and ten sets, has
a negative slope for the cold signal. However, both the lower and the upper
bounds for the warm signal have a negative slope, which is exactly the result
that we wished for.

Figure 13: 95% confidence interval over fmax ± 0.05 for fmax ≥ 0.1.
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For the division into two and four sets, changing the possible frequency band
to be centered around fmax ≥ 0.15 Hz does lead to better results, as shown in
Table 12, than when having a lower threshold such as fmax ≥ 0.1 Hz. This
improvement is however not visible for the division into ten sets.

Table 12: Linear model over fmax ± 0.05, fmax ≥ 0.15.

# Sets Predicted P N MCC Classification [%] # Windows

2
P 36 8

0.5361 76.42 8
N 17 45

4
P 40 5

0.668 83.02 2
N 13 48

10
P 49 28

0.4444 69.81 1
N 4 25

Increasing the threshold for fmax from 0.1 Hz to 0.15 Hz leads to improved
confidence intervals for the first two divisions, as shown in Figure 14. As for
fmax ≥ 0.1, the means as well as the 95% confidence interval bounds for the
warm signal have the slope that we want, meaning β̂warm < 0. For the cold
signal, the slopes of 95% confidence interval when dividing into two and four
sets are positive as needed. However, when dividing into ten sets, both the
mean and the lower bound of the cold signal are negative, meaning that they
have the wrong sign.
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Figure 14: 95% confidence interval over fmax ± 0.05 for fmax ≥ 0.15.

Compared to the more narrow frequency band centered around the same fmax,
this wider frequency band leads to better classification and MCC-results when
dividing into two or ten set, as shown in Table 11.

Table 13: Linear model over fmax ± 0.1, fmax ≥ 0.15.

# Sets Predicted P N MCC Classification [%] # Windows

2
P 40 8

0.6065 80.19 4
N 13 45

4
P 34 10

0.4595 72.64 1
N 19 43

10
P 28 2

0.5445 74.53 1
N 25 51

Figure 15 shows the 95% confidence intervals corresponding to the linear model
over fmax ± 0.1 for fmax ≥ 0.15. Here, only the lower bound of the cold signal
when dividing into ten sets has the wrong slope. Otherwise, the remaining lower
and upper bounds as well as all means are correct.
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Figure 15: 95% confidence interval over fmax ± 0.1 for fmax ≥ 0.15.

The best results, when classifying the data based on a linear model, are obtained
for fmax ± 0.05 for fmax ≥ 0.2. For the division into four sets, less than 7% get
falsely classified as seen in Table 14.

Table 14: Linear model over fmax ± 0.05 for fmax ≥ 0.2.

# Sets Predicted P N MCC Classification [%] # Windows

2
P 41 2

0.7493 86.79 13
N 12 51

4
P 46 0

0.8756 93.4 4
N 7 53

10
P 32 0

0.6576 80.19 2
N 21 53

Analyzing the confidence interval for this method, shows great results even here.
However, even for this threshold not all bounds are correct. Once again, the
lower bound of the cold signal is negative when dividing the data into ten sets.
Those results are shown in Figure 16.
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Figure 16: 95% confidence interval over fmax ± 0.05 for fmax ≥ 0.2.

4.2.3 Energy comparison of the maximum respiratory frequency band

The comparison of total energy over fmax ± 0.05 for fmax ≥ 0.1 leads to the
results presented in Table 15. For this frequency band, quite a big difference
can be seen between taking into account all 180 s of the data set or only the
first 90 s.

Table 15: Energy comparison over fmax ± 0.05, fmax ≥ 0.1.

Length of data set Predicted P N MCC Classification [%] Windows

180 s
P 39 14

0.4717 73.58 1
N 14 39

90 s
P 43 10

0.6226 81.13 1
N 10 43

The confusion matrix that is obtained for fmax ± 0.05 for fmax ≥ 0.15 when
taking into account the first 90 s of data, shown in Table 16, is the same as for
fmax±0.05 for fmax ≥ 0.1 which was shown in Table 15. However, this frequency
band leads to a different optimal number of windows for both the 180 s and the
90 s. When looking at the results of the first two frequency bands presented
in this section, fmax ± 0.05 for fmax ≥ 0.1 and fmax ± 0.05 for fmax ≥ 0.15, it
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already becomes apparent that the first 90 s of data lead to better classification
results.

Table 16: Energy comparison over fmax ± 0.05, fmax ≥ 0.15.

Length of data set Predicted P N MCC Classification [%] Window

180 s
P 38 15

0.434 71.7 8
N 15 38

90 s
P 43 10

0.6226 81.13 4
N 10 43

The analysis of a wider frequency band, fmax±0.1 for fmax ≥ 0.15 compared to
the more narrow one centered around the same fmax, leads to the same results
when looking at all 180 s. However, when only looking at the first 90 s it leads
to worse results. Those results are shown in Table 17. This is also the reason
why fmax ± 0.1 is not carried out for an increased fmax threshold. The first 90
s generally lead to better classification results than when taking into account
all 180 s. However, for this wider frequency band, the percentage of correct
classification decreases now to below 80% when looking at the first 90 s.

Table 17: Energy comparison over fmax ± 0.1, fmax ≥ 0.15.

Length of data set Predicted P N MCC Classification [%] Window

180 s
P 38 15

0.434 71.7 2
N 15 38

90 s
P 40 13

0.5084 75.47 1
N 13 40

Not considering fmax below 0.2 Hz leads to the best classification results for this
model. The results for both the whole data set as well as those for the first half
are shown in Table 18.

Table 18: Energy comparison over fmax ± 0.05, fmax ≥ 0.2.

Length of data set Predicted P N MCC Classification [%] Window

180 s
P 43 10

0.6226 81.13 11
N 10 43

90 s
P 51 2

0.9245 96.23 1
N 2 51

30



5 Discussion

While some initial data analysis was done using both the periodogram and the
Hanning window, all the results that are presented here were obtained using
the Welch method using the Hanning window with 50% overlap. The Welch
method was chosen, since we wanted as little variance as possible due to there
being already great variance between the individual subjects. However, when
having quite few data points using the Welch method with many windows needs
to be done with caution since the spectral estimates will become very smooth.
If the spectral estimate is too smooth, important information can get lost which
in return can lead to false conclusions. After all, the spectral estimate is the
basis of all the binary classification methods in this thesis. In order to avoid
the loss of important information, the range of the possible number of windows
was adjusted according to the length of each set as well as the lowest frequency
that needed to be displayed. However, when dividing the data into ten sets that
usually meant that only one window was used. This could be the explanation
to why the division into ten sets does not always lead to the best results. Since
there were no windows to choose from one window became by default the opti-
mal number.

Because only the data sets of 53 subjects were available to implement differ-
ent methods on, it was decided to use all data as training data. Previous trials
with randomly assigning subjects to either the training or the validation set did
lead to better than random classification of the validation set. While this is
positive, there were some problems with the random assignment to these two
sets, since the classification results seemed to highly depend on what subjects
the validation set contained. For instance, if the training set contained many
subjects whose HRV signals follow the general trend while the validation set
contained mostly those outliers that do not follow the trend, this could lead to
problems. When testing several methods on the same training and validation
set, some discrepancies could be made between which method was the best.
However, when running each method on its own on several validation sets, the
results within one method varied greatly. But the results still varied between
slightly better than random classification and almost perfect classification. The
main reason for this great variance seems to be the great variation within the
data sets of different individuals.

When analyzing the mean of the data, a general trend could easily be found.
However, those trends did not always hold for all the subjects, since there of-
ten were quite many outliers. On the other hand, this means that it is not
necessarily surprising that many methods lead to false predictions. It is hard
to make a model that fits all the data, when there is relatively little data and
such a great variation between individuals. This also became a problem when
trying to implement a linear regression model for all subjects. The assumption
that the residuals follow a Normal distribution does not hold for this data set
which means that an individual linear model with a line of best fit needed to be
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implemented instead. That being said, even though a great variation between
the individuals’ data can be observed, all the tested methods lead to a binary
classification of the training set that is better than random with correct classifi-
cation up to 96.23%. It remains to be seen how well these classification methods
work when tested on unknown data, since not having a validation set means that
the methods actually could perform quite differently with a different set of data.

An important observation is the improvement of the maximum respiratory fre-
quency band analysis once the threshold was set to fmax ≥ 0.2. With this
threshold, the best results are obtained both comparing the total energy as well
as for the linear model. This improvement might be due to noise in the lower
frequencies of each signal which makes correct classification harder. With noise
we mean in this case elements from the LF range, since it was decided to only
analyze the HF range. This applies both for the general HF range or the specific
one for each individual. This noise could also be an explanation why the linear
model over the whole HF-HRV range does not perform as well.

6 Conclusion

In conclusion, it can be said that the binary classification of warm and cold
HRV signals is possible. Here, the warm signal is the HRV at resting state
while the cold signal is obtained during a stress simulation, a so-called Cold
Pressure Test. If no respiratory data is available, 83.02% correct classification
can be obtained by comparing the energy over the general HF range of the
first 90 s of the signal. When also having respiratory data available, more
than 80% correct classification is easily obtained, since then an analysis over
each subject’s personal HF range can be carried out. It is thus recommended to
monitor breathing during an ECG so that respiratory data is available for further
analysis. Correctly classifying more than 80% can be achieved by all three
methods described in the report. However, classifying more than 90% correct
occurs only when using a narrow frequency band of 0.05 Hz and setting the
threshold to fmax ≥ 0.2. Dividing the data into four time sets in that frequency
band leads to the linear model classifying 93.4% correctly. However, the most
successful method, that was obtained during this project, was comparing the
total energy over this frequency range. Here we get 96.23% correct classification
when taking the first 90 s of the signal into account.
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