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Abstract

Over the past two decades, Quantum Cascade Lasers (QCLs) have become an increasingly
popular source for mid-infrared and terahertz radiation. Nowadays, their experimental
development progresses fast with the aid of computer simulations. These reproduce carrier
dynamics in the gain medium of the laser based on different transport models. A fast and
reliable simulation package for QCLs is key for the future realization of optimized struc-
tures. In this thesis, we have tested the validity of a recently presented QCL simulation
package called Lindblad-QCL. The package is based on a heuristic and phenomenological
density matrix approach: the Position and Energy Resolving Lindblad approach. We have
run several QCL simulations using the Lindblad-QCL simulation package and compared
the results to experimental data. These simulations provide a good qualitative descrip-
tion of the QCL active medium. We have extended the simulation package implementing
interface roughness scattering and analysed the impact of temperature in the simulations.
The results we present in this thesis show that Lindblad-QCL is a candidate to become a
strong QCL simulation package.
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Chapter 1 | Introduction

The celebration of the International Year of Light in 2015 commemorated the great impact
of photonics and light-based technologies on human progress [1]. From radiowaves and
sunlight to X-rays and γ-rays, we are surrounded by photonic sources of different energies
spread all over the electromagnetic spectrum. These can be found in fields like medicine,
telecommunications and industry [2]. Among the many achievements in photonics, the
LASER (Light Amplification through Stimulated Emission of Radiation) is perhaps the
best example of the power of light. Lasers are characterized by a narrow linewidth and
the emission of coherent radiation. Such unique properties make them suitable for high
precision medical procedures (e.g. LASIK1 procedure for eye surgery), sensitive optical
sensors and fiber optical communication [2]. The laser spectrum spans from the Ultra-
violet (UV) (10 -400 nm) to the Infrared (IR) (40-100 THz and 1-8 µm [3, 4]) and even
more importantly, Terahertz (THz) frequencies (0.3-10 THz and 30 µm to 1 mm [3]) [5].

The experimental realization of the first operating Quantum Cascade Laser (QCL)
by Faist et al. in 1994 [6], inspired by the work of Esaki and Tsu on superlattices [7],
opened a new research path in the field of laser technology. The QCL spectrum ranges
from the mid-IR region to the challenging THz frequency band and it currently extends
from 2.6 µm to 400 µm (with the aid of a magnetic field) [8, 9, 10]. Nowadays, QCLs
have become the main source of IR radiation, vastly employed in chemical spectroscopy
and applications such as gas monitoring [10, 11, 12]. Moreover, QCLs are good candi-
dates to bridge the so-called THz-gap of uncovered frequencies between electronics and
optics [13] after the development of the first operating THz-QCL in 2002 [14]. Frequencies
in the THz band are useful for biological spectroscopy, imaging of molecules and astro-
nomy; atmospheric spectroscopy for environmental monitoring or protein dynamics, for
instance, exhibit absorption peaks at THz frequencies [5]. Furthermore, QCLs comprise
all the benefits of a semiconductor laser in terms of compactness, efficiency and reduced
manufacture costs, which makes them attractive THz and IR radiation sources [3, 10].

Although much progress has been achieved in the past two decades for output power
and high operating temperature for mid-IR QCLs [15], QCL technology is still in deve-
lopment. The quest for room temperature THz-QCLs continues [16]. Operation tempe-
ratures of 230 K, at which it would be possible to cool the device electronically (Peltier
cooling), have not been published yet for THz-QCLs [10]. Current lines of research focus
on reaching higher temperatures for THz-QCLs and increasing wall-plug efficiency for all
devices (currently at 20-27% for mid-IR QCLs at room temperature [3, 10]). All this work
converges towards a common goal: the industrial manufacturing and generalized use of
QCLs in electronics in the future.

1Laser assisted in Situ Keratomileusis (LASIK) is a medical procedure used to correct the cornea in
patients with myiopia, astigmatism or hyperopia.
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Figure 1.1: Diagram showing the basic principle of a QCL. The tilted conduction band edge and
quantized well states (injector (i), extractor (e) and upper (ULS) and lower (LLS) laser states)
are shown with solid lines. Inset: Example of a basic period design from [17]: (1) Carriers tunnel
from i to ULS. (2) A photon is emitted in the ULS to LLS transition. (3) Phonon extraction
mechanism from ULS to e, where h̄ωLO is the energy of a Longitudinal-Optical (LO) phonon.
The idea for the diagram was inspired by Fig. 1.8 in [18].

1.1 Introduction to Quantum Cascade Lasers
QCLs constitute a unique type of semiconductor laser. Their optical medium consists of
a semiconductor heterostructure that produces gain when biased along the growth direc-
tion (z-direction), as first postulated by Kazarinov and Suris in 1971 [19]. In conventional
lasers, stimulated emission takes place between the natural electronic levels of the atoms
in the gain material. This occurs when the number of electrons in the Upper Laser State
(ULS) is larger than the number of electrons in the Lower Laser State (LLS), so-called
population inversion. Unlike regular atomic lasers, QCLs rely on population inversion
between artificially engineered energy levels. These arise in the Conduction Band (CB)
as a result of the underlying layered structure of the device [10]: the alternating stacking
of semiconductor materials (that is, a heterostructure) with different band gaps yields a
CB edge of sequenced quantum wells along the growth direction (see Fig. 1.1). The CB
offset between the materials delimits a well and acts as a barrier, trapping electrons in
quantized energy levels. In the transverse direction (xy-plane), assumed to be infinite,
electrons have no constraints and move as free particles [3, 12]. An electronic state is then
the combination of the quantized well levels and the transverse free particle wavefunction.

In a QCL, photons are emitted at intersubband transitions, i.e. between the quantized
levels in the one-dimensional (1D) multiple quantum well structure. In regular semicon-
ductor lasers, photons are emitted after the radiative recombination of an electron-hole
pair across the band gap [10]. In contrast, QCL emission solely depends on electronic
jumps within the CB. This is why QCLs are also known as monopolar semiconductor
lasers [10]. Thus, the lasing frequency in a QCL is not constrained by the band gap of
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the material, but by the energy difference between the energy levels in the CB [10, 12].
Emission in the THz and mid-IR range becomes possible with heterostructures based on
III-V type semiconductors such as GaAs, InP and alloys like AlxGa1−xAs and InyGa1−yAs,
where x and y indicate the alloy fraction [12]. The period or module of a QCL contains
a finite series of barriers and wells, and it is designed to host a radiative transition (see
Fig. 1.1, inset). This module is the basic unit necessary for the emission of a photon in
a QCL. Its periodic repetition along the growth direction results in optical gain, that is,
multiple photoemissions. Laser operation is achieved when optical gain overcomes mirror,
cavity and waveguide losses.

Population inversion in a QCL is driven by an external electric field, which pumps the
electrons into the CB ladder. The electric field forces carriers to cascade down the struc-
ture. Electrons are then recycled in each period for a new radiative transition. A single
cascading electron can potentially yield as many photons as periods in the gain medium
[12]. The applied bias, assumed to drop homogeneously along the heterostructure in this
thesis, tilts the CB edge and modifies the spacing between the energy levels in the wells
(see Fig. 1.1). As the bias increases, the levels displace in energy and align with other le-
vels in neighbouring periods. The alignment of the well levels leads to resonant tunnelling
through the barriers [19] or favours scattering mechanisms like Longitudinal Optical (LO)
phonon scattering. The design of the QCL module exploits these phenomena to efficiently
inject electrons into the ULS and quickly depopulate the LLS. Transport of carriers in the
structure is also assisted or degraded by other scattering mechanisms such a impurities,
Interface Roughness (IFR) or electron-electron interactions [12].

The heterostructure growth process enables full control of gain medium design. Con-
sequently, it allows the engineering of the quantized well levels [10, 12]. Design strategies
differ for THz and IR-QCLs due to the energy ranges involved. For instance, in GaAs,
the energy of a LO phonon (∼36 meV) is larger than the level spacing in THz-QCLs and
smaller than that of IR-QCLs, motivating different extraction and injection mechanism
designs for the basic module [4, 20, 21]. See the inset in Fig. 1.1 for an example of a
design with tunneling injection and phonon extraction. These mechanisms are tailored
to provide the desired energy transition and corresponding emission frequency. For a
comprehensive review on THz-QCL gain medium designs, the reader is referred to [4]; a
review of the current state of IR-QCL designs can be found in [20].

1.2 Motivation of the thesis
QCLs are exemplary devices to study the microscopic phenomena of the solid state world.
A full comprehension of the device requires the use of Quantum Mechanics, Solid State
Theory and Material Science, as well as state-of-art experimental techniques like Molecu-
lar Beam Epitaxy (MBE) or Metal-Organic Chemical Vapor Deposition (MOCVD). Aside
from improving our models and understanding of the nanoscale, QCL simulations serve as
probes for optimized active region designs. The information extracted from simulations
can be used to improve the experimental performance of the devices [10]. Examples of
optimized structures derived from theoretical simulations can be found in [16, 22, 23].

A laser is a system out of equilibrium, where a detailed modeling of carrier dyna-
mics is key for an accurate simulation of the device. There exists a widely varied range
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of approaches to simulate carrier transport in QCLs: from semiclassical rate equations
and phenomenological approaches, to quantum-mechanical methods that are entirely self-
consistent [10, 24, 25]. Far from trivial, the underlying physics of non-equilibrium quantum
transport in QCLs poses a challenge: describing an open quantum system - the electrons
in the CB - in contact with its environment - the lattice, which acts as a reservoir. The
main complexity of this problem lays in accounting for the environment’s infinite degrees
of freedom, which makes it impossible to exactly describe the evolution of the system.

The Position and Energy Resolving Lindblad (PERLind) approach is a recently pre-
sented phenomenological and heuristic density matrix method. It models quantum trans-
port in non-equilibrium quantum systems coupled to their environment [26]. Hence,
it can be used to simulate carrier dynamics in QCLs. PERLind’s foundations lay on
the system-environment coupling agents, responsible for the electron transitions. These
agents are modelled as jump operators that contain information about the location and
energy of the transitions driving transport in the system. The PERLind approach for
the simulation of quantum transport in QCLs is implemented through the Lindblad-QCL
(LQCL) Python package [26]. The simulation package models the QCL heterostructure
and provides relevant laser observables such as current density, occupation probability
of the laser states and gain spectrum. PERLind’s major asset is its light computation
load in comparison to other existing QCL simulation approaches like the computation-
ally heavier Non-Equilibrium Green’s Functions (NEGF) [25]. PERLind allows for fast
time-resolved calculations to compute laser gain. Therefore, it is important to establish
a relation between the scope of the PERLind approach and the reliability of LQCL as a
fast and efficient QCL simulation package.

LQCL has not been thoroughly tested before for many different QCLs [26]. Thus, the
purpose of this thesis is to check the validity and functionality of the LQCL computational
package. This is done by simulating an ensemble of QCLs and comparing the theoretical
predictions with experimental results. Here, the focus is set in simulating THz-QCLs be-
cause of the unsolved questions that revolve around their operation. A few IR-QCLs are
also simulated to test the extension of LQCL’s validity. Our preliminary simulations high-
light LQCL’s general underestimation of the current density, possibly signalling neglected
scattering mechanisms in the code. An accurate description of the subband electronic
temperature also proves to be relevant to improve the performance of the package. Mo-
tivated by these findings, the thesis aims to further complete the LQCL computational
package by studying the impact of assuming thermal subband distributions in the CB.
In addition, IFR scattering is implemented in the package to quantitatively improve the
simulations. LQCL is also compared to the well-established NEGFs code used by our
group [25].

This work is organised as follows: Chapter 2 introduces the reader to the scattering
mechanisms that drive transport in the heterostructure, as well as the techniques to model
the QCL active region and transport approaches. Chapter 3 presents a density matrix the-
ory for non-equilibrium quantum transport together with the PERLind approach. Here,
the LQCL package is introduced. In Chapter 4 we present the results obtained with the
LQCL package and compare them to experimental data. These results are discussed and
improvements are attempted. In Chapter 5, the numerics of the LQCL code are given.
Finally, Chapter 6 gathers the conclusions and proposes an outlook from this project.
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Chapter 2 | QCL Fundamentals:
Modelling the device

The foundations of accurate QCL simulations rely on understanding the microscopic phe-
nomena that govern carrier transport at the nanoscale. For that purpose, this chapter is
divided in two main sections. Section 2.1 serves as an introduction to the main scattering
mechanisms that drive carrier dynamics in a QCL. Section 2.2 is devoted to QCL mo-
deling. Here, the tools necessary to simulate the device are provided and the approaches
to describe carrier transport in QCLs briefly reviewed. This chapter aims to prepare
the reader for Chapter 3, where we will focus on one method for QCL simulation: the
PERLind approach.

2.1 Scattering mechanisms in QCLs

Scattering can be elastic or inelastic (see Fig. 2.1, a). In elastic scattering, energy is
conserved Ef = Ei, while inelastic scattering mechanisms involve the exchange of energy
through e.g. the emission or absorption of photons or phonons. Examples of inelastic
scattering mechanisms are LO-phonon scattering, and spontaneous and stimulated emis-
sion. In contrast, IFR and ionic impurities are connected to elastic processes. In QCLs,
scattering mechanisms yield intrasubband and intersubband transitions within the CB of
the heterostructure (see Fig. 2.1, b). In an intrasubband transition, electrons remain in
the same quantized energy level but their momentum changes. During an intersubband
transition, electrons jump to a different energy level. However, an intersubband transition
can also yield a change in momentum if it is not purely vertical in momentum.

In QCLs, transport is not predominantly driven by radiative transitions, i.e. sponta-
neous and stimulated emission, as it is in regular lasers. Instead, scattering mechanisms
such as LO-phonon scattering, impurity and IFR scattering or carrier-carrier interactions
dominate the carrier dynamics. Stimulated emission can also become a dominating con-
tributor to transport in the device as it is enhanced by the lasing optical field [27]. These
mechanisms perturb electrons out of their heterostructure eigenstates and are vital to
understand non-equilibrium carrier dynamics [28]. The thickness of the heterostructure
barriers, doping density or intersubband spacing of the QCL, among others, enhance or
suppress the above scattering phenomena. The relevance of a scattering mechanism is
given by the scattering time associated to it. The shorter this time, the more frequent the
process is. Transport is dominated by the mechanism that exhibits the shortest scattering
time (or alternatively, the largest scattering rate) over the rest of the phenomena. Times
can vary from a few picoseconds to nanoseconds and depend on the design of the QCL
[10, 12]. In Ref. [29], Ferreira and Bastard discuss scattering times for single quantum
well structures, which can be taken as a first estimation for scattering times in QCLs.
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Figure 2.1: Diagram of electronic subbands. (a) The elastic and inelastic scattering mecha-
nisms. The subbands are labelled as α and β. (1, 3) Vertical absorption and emission mech-
anisms. (2) Diagonal scattering transition. (4) Elastic scattering. (b) Intrasubband (5) and
intersubband (6) transitions.

2.1.1 Phonon scattering
Atoms in a lattice oscillate collectively around their equilibrium positions (i.e. lattice
points) with frequency ω(q) and amplitude ε. From a classical viewpoint, a collective os-
cillation of the lattice atoms at a single, well-defined frequency constitutes a normal mode,
i.e. a solution of the displacement field of the lattice. From the quantum viewpoint, a
phonon is an elementary unit of vibration of the this field. These quanta are classified
into optical and acoustic phonons, depending on the motion of two adjacent atoms. An
acoustic phonon is formed by atoms displa-cing in the same direction as the propagation
of the wave, while for an optical phonon adjacent atoms vibrate in opposite directions.
When the propagation of the vibration wave ε and its wavevector q are parallel, ε ‖ q,
the phonon is called longitudinal, while a propagation perpendicular to the wavevector,
ε ⊥ q, defines transverse phonons [10, 30].

In our semiconductor heterostructure, the energy exchange between charged carri-
ers and the lattice results in inter- and intrasubband electronic transitions where optical
phonons are absorbed and/or emitted. In fact, many QCL active region designs exploit
them as a depopulation and injection mechanism of the laser levels (see Fig. 1.1, inset);
such is the case for resonant-injection and extraction designs in [16, 17]. Furthermore,
optical phonons thermalize carriers into the QCL subbands by helping them lose kinetic
energy [31]. However, optical phonons are also responsible for phenomena that degrade
laser operation. An example of that is thermal backfilling, where the emptied LLS is filled
again through the absorption of phonons. This thermally activated phenomenon reduces
population inversion and consequently, optical gain [4].

The electron-phonon interaction is described by the Fröhlich Hamiltonian [30],

Ĥel-ph =
∑

k,q,qz

∑
α,β

M qz
βα gq,qz ĉ

†
β,k+q ĉα,k b̂q,qz +H.c.. (2.1)
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Here, H.c. stands for Hermitian conjugate, k is the crystal momentum of the electrons and
q = (qx, qy) and qz are the lateral and longitudinal components of the phonon momentum,
respectively; gq,qz is a function accounting for the coupling strength, ĉq,qz(b̂q,qz) is the
fermionic (bosonic) annihilation operator, ĉ†q,qz(b̂†q,qz) is the fermionic (bosonic) creation
operator and M qz

βα is the overlap integral of the electronic states α and β [26],

M qz
βα =

∫
dz ψ?β(z)eiqzzψα(z). (2.2)

Each phonon couples to charge carriers differently. Therefore, the coupling strength func-
tion, gq,qz , depends on the phonon type. In the case of quantum transport in QCLs, the
most relevant phonons are polar LO-phonons. Their relevance stems from the growth
materials used for QCLs, polar III-V semiconductors, which have two different atoms
with effective charges in the unit cell, e.g. GaAs [10]. The vibration of these two atoms
in opposite directions (that is, an optical phonon) yields a net charge displacement. As a
result, a local dipole moment forms within the unit cell. The collective oscillation of this
optical mode constitutes an oscillating macroscopic polarization, which strongly couples
to the electrons in the structure. Only longitudinal phonons contribute to the interac-
tion, as Ĥel-ph ∝ ε ·q (see [30], Chapter 4, for a detailed construction of the hamiltonian).
LO-phonons can be assumed to have a constant energy h̄ωLO, disregarding dispersion
(ω(q) ≈ ω). The LO-phonon polar coupling function is given by [26, 30]

gq,qz = i√
AL

√√√√e2h̄ωLO
2ε0εp

1√
q2 + q2

z

, (2.3)

where L is a normalization length and A is the lateral area of the QCL. In the expression
above, ε0 is vacuum permittivity and ε−1

p = ε−1
∞ − (ε(0))−1 where ε∞ and ε(0) are the di-

electric constants above and below the LO-phonon energy, respectively [26]. εp quantifies
the polarization of the material without the contribution from the ions in the lattice. A
detailed derivation of equation (2.3) can be found in [30].

When the intersubband spacing matches h̄ωLO, the emission or absorption of an LO-
phonon is highly favoured, a phenomenon known as resonance. In that case, the intersub-
band transition is essentially vertical in momentum space (see Fig. 2.1) with a very short
scattering time (0.5-1 ps) [11, 32]. Under such subband alignment conditions, LO-phonon
scattering becomes the dominant mechanism in the device. For acoustic phonons, the
scattering rates are significantly larger, from 80 ps to 240 ps [12]. Their impact on carrier
transport is very small in comparison to that of LO-phonons. Therefore, acoustic phonons
can be safely neglected in transport simulations of QCLs.

2.1.2 Impurity scattering
The semiconductor heterostructure of a QCL is fed with carriers through donor atoms.
When a lattice atom is substituted by a donor, the latter can supply the outermost va-
lence electrons for laser operation. Typically, QCLs are doped with Silicon, which occupies
Gallium sites and acts as a n-type donor. However, the placement of such donor breaks
the periodicity of the lattice with its associated extra positive charge (see Fig. 2.2) and
perturbs the eigenstates of the QCL system. These donor ions constitute the impurities
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Figure 2.2: Schematic representation of an ionic impurity in the semiconductor heterostructure
of a QCL. The donor atom (red spot) is surrounded by a screening cloud (grey region) created
by the carriers in the lattice (small yellow spots). The potential that perturbs electron (1) at
a distance r from the donor atom is screened by the cloud, with a screening length λ. The
blue and pink atoms in the lattice represent two different semiconductor layers in the QCL
heterostructure.

of layered heterostructure. Moreover, the mechanism is relevant for quantum transport
in QCL devices with high carrier concentration, where the number of impurity scatter-
ers is larger. The number of impurities equals the electronic doping density (typically
∼ 1016 impurities/cm3 [16]). The associated scattering times are longer than those for
LO-phonon scattering. Ferreira and Bastard [29] show that the scattering times range
from 20 to 50 ps for single-quantum wells and 0.1 and 10 ps for multiple quantum wells.

Ionic impurities are an elastic scattering mechanism that is modelled through Coulom-
bic forces. The potential that describes the interaction of an electron with a single ion,
with charge Zi at position zi is [10, 33]

Vi(r) = − 1
4πε0εr

Zie
2
(

1
|r − ri|2 + |z − zi|2

)1/2

, (2.4)

where e is the electron charge, and ε0 and εr are the vacuum and relative permittivity,
respectively. Nevertheless, the potential created by the i-th impurity will be screened by
other charged carriers in the lattice (see Fig. 2.2). The screening "damps" the potential
in equation (2.4) as [33]

1
r

screening−−−−−→ 1
r
e−rλ, (2.5)

which has now the shape of a Yukawa potential, with λ as the inverse screening length.
Screening is a very complex phenomenon. Its accurate modelling constitutes a field of
research by itself, and going into details is out of the scope of this thesis. The interested
reader is referred to Refs. [10] and [12] (Chapter 5) for reviews on different screening
models used in QCL simulations and their impact on the lifetime of the heterostructure
eigenstates.
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Figure 2.3: (a) Ideally smooth QCL heterostructure. The interfaces are sharp and perfect. (b)
Schematic representation of a real QCL heterostructure. Random fluctuations of height ∆(~r)
can be seen at the interfaces in zi, where i labels the interface. The correlation length between
the height fluctuations is measured by Λ.

2.1.3 Interface roughness scattering
The late realization of QCLs, two decades after they were theoretically predicted [6, 19],
stems from a lack of experimental tools for their development. Growth techniques like
MBE and MOCVD have been fundamental for QCLs. These methods enable the layered
growth of III-V semiconductors at the resolution of an atomic layer, producing almost
perfectly sharp interfaces for the wells and barriers of the active region of a QCL [12].
However, deviations from the ideally smooth well or barrier width exist (see Fig. 2.3).
These deviations perturb the lattice potential, just as ionic impurities or phonons, break-
ing the translational invariance of the in-plane direction.

IFR scattering is an elastic scattering mechanism that arises from the random barrier
width fluctuations at the interfaces of the QCL heterostructure. It is particularly relevant
in lasers with short wavelengths (λ ≤ 5 µm) and QCL modules with thin barriers [12]. In
general, this mechanism will have a more prominent role in IR-QCLs due to their shorter
wavelength. Two main parameters model the fluctuations at the interface: the correlation
length between the fluctuations, Λ, and the standard deviation of the barrier width, ∆.
Typically, Λ ∼ 10 nm while ∆ ∼ 0.1-0.4 nm [10, 34]. The correlation function accounting
for the barrier width fluctuations at the interface is usually modelled either as a Gaussian
function [3, 34],

〈∆(r)∆(r + d)〉 = ∆2 exp
(
− |d|2

Λ2

)
(2.6)

or as an exponential function [3, 34],

〈∆(r)∆(r + d)〉 = ∆̃ exp
(
− |d|

Λ̃

)
. (2.7)

The parameters ∆, Λ, ∆̃ and Λ̃ define the correlation length and fluctuation height in the
Gaussian and exponential models, respectively [3]. The choice of correlation function de-
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pends on the type of interface we are interested in modeling [34]. Gaussian functions model
smooth height deviations at the interface, while sharp fluctuations are more accurately
described with exponential functions. Nevertheless, the exact profile of the interfaces is
unknown, which means that the above ∆ and Λ must be regarded as fit parameters. A
thorough discussion of the impact of IFR scattering in QCL simulations can be found in
[10, 35], where the choice of (2.6) and (2.7) is compared.

2.2 Modeling Techniques for QCLs
Now that we have identified the main physical mechanisms that drive carrier transport in
QCLs, we can focus on modeling the device. In fact, detailed modeling of the QCL active
region is crucial for a realistic simulation. For that purpose, the theoretical description
of a QCL is divided in two parts: the computation of eigenstates of the heterostructure
and the description of carrier transport. Fundamentally, these two parts are reduced to
answering two questions: What states do carriers occupy? (sections 2.2.1 and 2.2.2) and
how do carriers move in the heterostructure? (section 2.2.3).

2.2.1 Heterostructure eigenstates
A common approach to the computation of electronic states in a heterostructure is the
use of envelope functions, Ψ(r) [36]. In the effective mass approximation, envelope func-
tions are described within the BenDaniel-Duke model, i.e. only the conduction band is
considered [37]. Envelope functions satisfy the time-independent Schrödinger equation,

[
−
h̄2(∂2

x + ∂2
y)

2m‖(z) + ∂z
1

mc(z)∂z + V (z) + Ec(z)− E
]

Ψ(r) = 0, (2.8)

where V (z) is the lattice potential, Ec(z) is the CB energy, and mc and m‖ are the
effective masses in the growth and transverse direction, respectively [10]. The in-plane
coordinates (x, y) can be decoupled from the longitudinal direction z by assuming that
electrons behave as free particles, i.e. plane waves, in the transverse direction (see Fig.
2.4). This motivates the ansatz

Ψn,k(r) = 1√
A
ψn(z)ei(kxx+kyy) (2.9)

for the envelop function Ψ(r), where A is the transverse section of the device [10]. The
total energy E of the state is given by the sum of the eigenvalue corresponding to the
quantized well level and the kinetic energy of the transverse modes,

E = En + h̄2|k|2

2m‖
. (2.10)

Band non-parabolicity effects are incorporated through an energy dependent effective
mass, which also includes contributions from the Valence Band (VB) [10, 12]. See Chapter
3 in [3] for a complete description of the Two-Band model. Finally, with the ansatz (2.9),
the computation of the heterostructure eigenfunctions is reduced from three to a 1D
problem: the calculation of ψn(z).
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Figure 2.4: (a) First six Wannier-Stark (WS) states of the device in [38]. The active region is
a four-well phonon extraction design. The eigenstates of the central period are shown with solid
lines. Neighbouring left (right) states are shown in dashed (dotted) lines. (b) Schematic diagram
of eigenstates of a GaAs/AlxGa1−xAs heterostructure. Electrons move as free particles in the
transverse (x, y) direction, where we see the parabolic dispersion functions. The quantized well
states arise in the longitudinal or growth direction, z, as a result of the conduction band offset.

2.2.2 Quantum Wells and the Wannier-Stark Ladder
Most graduate Physics students are familiar with the infinite Quantum Well problem,
where bound states arise as a result of the confining potential. An analogous set-up cha-
racterizes the quantized ψn(z) states at the multi-quantum well structure in QCLs [3].
These states are solution to equation (2.8). They are extended all over the heterostruc-
ture, exceeding the semiconductor barriers for large z (see Fig. 2.4, a). As a result,
they are characterized by a finite state lifetime. They are referred to as quasi-bound or
quasi-stationary states [10]; that is, they decay over time. However, the relevant laser
states are typically deep within the quantum well and can, nonetheless, be considered
strongly bound. Moreover, their lifetime is determined by the scattering mechanisms in
the structure rather than their intrinsic finite lifetime [10].

There exist several techniques to compute the eigenstates ψn(z) of a periodic multiple
well structure, see [10, 28] for detailed reviews. In this thesis, the eigenfunctions of the
unbiased heterostructure are computed through the application of Bloch’s theorem. The
theorem exploits the periodicity of the multi-well active region of a QCL [30]. Bloch’s
functions, ψνq(z), are labelled by the crystal momentum q and subband index ν. They
are extended all over the structure and thus, delocalized. A linear superposition of Bloch’s
functions yields a set of localized states known as Wannier states, Ψν(z),

Ψν(z) = d

2π

∫
dq eiα(q)ψνq(z) (2.11)

where d is the length of a period and the phase α(q) is chosen to maximize the loca-
lization of the states [28]. Modeling QCLs requires a localized basis, as it is important
to understand the distribution of carriers in the wells of a period. This information is
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relevant for transport properties - specially for the approach to transport we will be using,
PERLind. Wannier states constitute a finite orthonormal set of functions of the unbiased
Hamiltonian when they are shifted to n neighbouring periods [28],

Ψν,l(z) = Ψν(z − ld), (2.12)

where d is the period length and l labels the period. Diagonalizing the biased Hamiltonian
in the set of Wannier functions above yields the Wannier-Stark (WS) states (see Fig. 2.4).
With the corresponding shifts in energy, the eigenvalue spectrum associated to the set
of functions is completed. By constructing our eigenfunction basis as detailed above,
orthogonality of the states within the neighbouring periods is preserved. The WS states
are a basis of the biased QCL heterostructure, limited to the n neighbouring periods [28].

2.2.3 Carrier transport in QCLs
There exist several techniques to model transport in QCLs. These can be classified in in-
creasing complexity and computational demand (see Fig. 2.5). In this subsection, a brief
summary of these techniques is presented. A more detailed review of different modeling
methods can be found in Refs. [10, 28, 39].

The simplest approach to carrier transport in QCLs is to use rate equations, which
describe the time evolution of the electron population, ṅα, in a subband α [10],

∂nα
∂t

=
∑
β

Rβ→αnβ −Rα→βnα. (2.13)

The transition rate at which an electron jumps from one subband α to another subband
β, Rα→β, can be implemented phenomenologically by using empirical transition rates or
through Fermi’s Golden Rule [10]. Rate equations account for single-electron transitions
between the electronic eigenstates of the heterostructure, yielding a state-level accuracy
for the description of carrier transport in the device. It is important to remark that rate
equations (2.13) disregard the electronic subband distributions in the transverse direction
[39]. Then, a more advanced approach is to turn to the Boltzmann transport equation,
where the in-plane motion of electrons is considered. The in-plane k-resolution enables the
computation of both the α eigenstate occupation, nα and in-plane electronic distribution,
fα(k), [10]

∂fα(k)
∂t

=
∑
β

∑
k′
Rβ,k′→α,k fβ(k′)−Rα,k→β,k′ fα(k), (2.14)

where the energy level populations nα,

nα = 2
A

∑
k

fα(k) (2.15)

are easily recovered. The system of equations for fα(k) in eq. (2.14) is usually solved
using Ensemble Monte-Carlo (EMC) methods [10]. This numerical method involves sam-
pling scattering events for a large ensemble of electrons where observables are obtained
by averaging over the ensemble [10].
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Figure 2.5: Diagram of approaches for transport in QCLs at different levels of accuracy.

Both rate equations and Boltzmann-like approaches are built upon a "hopping trans-
port" scheme [10]: the scattering rates are constructed considering single-electron tran-
sitions between the eigenstates of the system. They are referred to as semiclassical ap-
proaches (see Fig. 2.5), since purely quantum effects such as coherence, state correlations
and dephasing are not considered [39, 40]. States with coherences are superpositions of
eigenfunctions of the system. If these states are neglected, the jumps between well-defined
energy eigenstates occur instantaneously, without any coupling parameter or dephase. In
the case of charged carriers localized at both sides of the injector barrier of the QCL
active region, their tunnelling rate will only depend on the injection and extraction rates,
independent of the barrier width. As no carrier bottleneck effects arise at the injector, the
current density flowing through the QCL is overestimated [28, 39]. Therefore, a complete
description of carrier transport in QCLs requires a coherent quantum theory to account
for state broadening, tunneling and dephasing effects [40].

Quantum transport methods for QCLs include one (1D) and three (3D) dimensional
density matrix approaches. These can be respectively regarded as an extension of the rate
and Boltzmann-like transport equations above, where coherent states are incorporated in
the non-diagonal elements of the density matrix [10]. In 1D density matrix methods,
electrons jump from states |α〉 to |β〉 and the state of the system is described by the
density matrix ραβ(t). 3D density matrix methods go a step beyond and consider the
transverse motion of electrons via ρα,β(k, t). At this level, quantum kinetics are resolved.
Quantum approaches based on NEGFs constitute a step further into complexity as they
are k-resolved but they additionally contain energy resolution. NEGFs provide the most
complete approach to non-equilibrium quantum transport as they allow for first princi-
ple calculations [27]. They have been successfully implemented for QCL simulation [25].
However, the method has a very large computational cost, which hinders its implementa-
tion in optimization algorithms to systematically search for improved QCL structures.

The approach to non-equilibrium carrier transport used in this thesis, PERLind, is
a purely quantum, 1D density matrix approach (see Fig. 2.5). The formalism and its
implementation for QCL simulation are introduced in full detail in Chapter 3.
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Chapter 3 | Non-Equilibrium
Quantum Transport

So far, we have reviewed the techniques available to model and simulate transport in
QCLs. In this chapter, we focus on a density matrix method which can be used to describe
non-equilibrium dynamics of an open system: the PERLind approach. The approach is
implemented in the Lindblad-QCL (LQCL) Python package, discussed at the end of the
chapter, to simulate QCLs.

3.1 Non-equilibrium quantum dynamics
in open systems

A QCL is a composite of two systems in contact with each other: the electrons cascading
down the structure, an open quantum system, and the semiconductor heterostructure,
which acts as a reservoir and exchanges energy with the open system. The description
of an open quantum system coupled to a bath or a reservoir is a long-standing problem
in Physics. Its complexity resides in the interaction between the bath and the system.
Transport phenomena in quantum dots or carrier dynamics in heterostructures are a few
examples where this problem arises [26].

3.1.1 A density matrix approach
The first step to characterize the evolution of any quantum system is to account for its
quantum states. For that purpose, we turn to the density operator, ρ̂, which provides a
statistical description of the state of a system. In a system where coherences and bath-
induced dephasing are relevant [41], the density matrix ρij enables a complete description
of the full picture: the diagonal elements ρii account for pure eigenstates of the Hamilto-
nian and provide the eigenstate populations, while the off-diagonal elements ρij with i 6= j
constitute the coherences [26] that arise from the bath and a time-dependent Hamiltonian.
The time-evolution of the density operator is given by the von-Neumann equation,

∂ρ̂(t)
∂t

= i

h̄

[
ρ̂(t), Ĥ

]
, (3.1)

where Ĥ and ρ̂(t) are the Hamiltonian and density matrix operators, respectively, of
the complete system (open quantum system and bath). Equation (3.1) can be further
simplified by working with the reduced density matrix, i.e. by only considering the degrees
of freedom in the open quantum system [26]. From now on, ρ̂ will only refer to the open
system. The total Hamiltonian Ĥ is the sum of two contributions: the reduced system
Hamiltonian, ĤS, and the perturbation that constitutes the bath, ĤBath,

Ĥ = ĤS + ĤBath. (3.2)
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3.1.2 Resolution of the von-Neumann equation

From equation (3.1), the time-evolution of the density operator in the ĤS eigenstate basis
{|a〉} is often approximated by [26]

∂ρab(t)
∂t

= i

h̄
(Eb − Ea)ρab(t) + i

h̄
〈a| Ĥext(t) |b〉 −

∑
cd

Kabcdρcd(t). (3.3)

Here, Ea is the eigenvalue corresponding to the ket |a〉, Ĥext(t) is any externally applied
time varying field (e.g. the laser optical field) and Kabcd is the tensor that accounts for
the system-bath coupling. It is important to emphasize once again that eq. (3.3) is an
approximation: it is local in time; bath-induced memory terms ρ(t − t′) with t′ < t are
ignored.

As it is common for most problems in Quantum Mechanics, the initial approach to eq.
(3.3) is to apply perturbation theory under the assumption that the system-bath coupling
is weak. Perturbation methods for quantum systems in contact with their environment
were first introduced in references [42, 43] and lead to the Wangsness-Redfield-Bloch
(WRB) equations. Although vastly employed, these equations entail a major physical
problem: they yield negative occupation probabilities [26]. Positively defined occupation
numbers are only guaranteed by the Lindblad-Gorini-Kossakowski-Sudarshan (LGKS)
formalism [44, 45].

The LGKS mathematical formalism establishes that if the coupling between the open
quantum system and the bath is described by a tensor KLGKS such that the dynamical
evolution of the reduced density operator is given by [26]

∂ρ̂

∂t
= i

h̄
[ρ̂(t), Ĥ0] +

∑
j

Γj
(
L̂j ρ̂L̂

†
j −

1
2{ρ̂, L̂

†
jL̂j}

)
, (3.4)

then, the diagonal elements in the density matrix will be definite positive. In eq. (3.4),
Ĥ0 includes the open system Hamiltonian and any external applied field, L̂j is a jump
operator associated to a microscopic system-bath coupling process j and Γj is a coupling
constant. To guarantee positive occupation numbers and populations, the coupling tensor
must have the structure of a Lindblad dissipator

KLGKS →
∑
j

Γj
(
L̂j ρ̂L̂

†
j −

1
2{ρ̂, L̂

†
jL̂j}

)
. (3.5)

Eq. (3.4) can then be solved to obtain the density matrix of the open quantum system.

3.2 The PERLind approach
The PERLind approach is a heuristic and phenomenological density matrix method that
proposes a scheme for the construction of a Lindbladian dissipator as in (3.5) [26]. There-
fore, it can be used to model quantum transport in out-of-equilibrium systems. The ap-
proach goes beyond other 1D density matrix approaches like the secular approximation,
where bath induced coherences are neglected, as it is detailed in Ref. [46]. PERLind’s ver-
satility has been proved in applications on double-dot systems, the description of chemical
transport in chromophores and quantum transport in QCLs [26].
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3.2.1 Space and energy resolution
The PERlind approach relies on two factors: the resolution of the spatial and energy pro-
perties of the microscopic system-bath coupling. Transitions in the open quantum system
depend on the location of the bath with respect to the reduced system. For instance,
in a coupled double-dot in contact with two (left and right) reservoirs, it is relevant to
specify from which reservoir carriers tunnel from. In QCLs, injection and extraction of
electrons into the laser states depends on their localization. The energy distribution of
the reservoirs is also decisive to model quantum transport as it determines the strength
of the system-bath coupling and constrains the available transitions, effectively limiting
quantum transport [26]. The PERLind approach proposes a scheme to construct a po-
sition and energy resolved Lindblad coupling tensor (3.5). The steps to implement the
approach are described in detail in [26], section II. Here we present a short summary, but
the interested reader is directed to the reference for further details.

The first step in PERLind is to identify the mechanisms that drive quantum transport
in the device and associate an operator to them. The main coupling processes in the bath
are modelled by a jump operator L̂j, where j denotes the scattering mechanism. The
operator will be accompanied by a function fj(E) that contains information about the
energy of the transition. These jump operators L̂j are represented in the eigenfunction
basis {|ψi〉} of the open system hamiltonian ĤS,

Ljαβ = 〈ψα| L̂j |ψβ〉 . (3.6)

To build the Lindblad tensor, we define the L̃αβ matrix element, where the energy depen-
dence of the approach is added through an energy-dependent function fj(E)

L̃jαβ = Ljαβ

√
fj(Eβ − Eα). (3.7)

The square root in equation (3.7) is phenomenologically justified for it allows Fermi’s
Golden Rule for the scattering rate to be recovered through

Rj
α→β = |L̃jβα|2 = |Ljβα|2fj(Eβ − Eα). (3.8)

Eq. (3.8) provides the rate of the j-th scattering process and it is coincident with the
experimentally measured rates. The Lindbladian dissipator that arises from the PERLind
approach is

KPERLind
abcd = −

∑
j

(
L̃jacL̃

j?
bd −

1
2
∑
e

L̃j?edL̃
j
ebδac −

1
2
∑
e

L̃j?eaL̃
j
ecδbd

)
, (3.9)

which conserves the same structure as the dissipator in (3.5). By inserting the above
tensor in (3.3), the expression turns into an LGKS master equation, guaranteeing the
positivity of the occupation numbers. The solution of equation (3.3) in the stationary
limit (i.e. ∂ρ̂/∂t = 0) with the Lindblad coupling tensor (3.9) provides the steady-state
density matrix operator of the open system.
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3.2.2 The PERLind approach for QCLs
As we have just seen, the PERLind approach proposes a scheme to model quantum trans-
port in open systems in contact with the environment. Therefore, it can be used as the
theoretical basis for transport simulations in QCLs [26]. To do so, we must identify the
relevant scattering mechanisms that drive transport in the device. As it has already been
discussed in section 2.1, the major scattering processes associated to the QCL heterostruc-
ture are LO-phonon scattering, impurity scattering and IFR scattering. Carrier-carrier
interactions are also of relevance but have not been considered in this work. The detailed
construction of the Lindblad dissipators within the PERLind scheme for LO-phonon, im-
purity and IFR scattering can be found in appendices A, B and C.

3.3 QCL observables
The density matrix of the system is the key quantity to extract the measurable observables
of a QCL: optical gain and current density at applied bias. The operation of a QCL is
characterized by the (DC) current-voltage curve (I-V) and the gain spectrum with its
corresponding peak. The current density is given by [26]

J(z) = −2e
A

∑
k,αβ

Re
(
ρβα(k)ψ?α(z) h̄

mc(z)i
∂ψβ(z)
∂z

)
, (3.10)

where Re denotes the real part of the expression, e is the fundamental unit of charge, A
is the trasversal section of the device and mc(z) is the effective mass. It is important to
note here that the current density depends on the averaged density matrix,

ραβ = 2
A

∑
k

ραβ(k). (3.11)

Hence, the current density flowing in the device can be computed within a 1D density
matrix approach.

The computation of the laser gain requires a dynamical solution. Therefore, time is
now introduced in the calculations. The application of a time-varying AC field to the
gain medium allows us to obtain the gain spectrum. The AC field can be modelled by a
time-dependent oscillating function such as

F (t) = FAC cos(ωt), (3.12)

where ω is the frequency at which the AC field oscillates. The F (t) field moves charges
in one QCL period, forcing them to oscillate with frequency ω. As a result, an oscillating
current arises, which, together with the DC current in eq. (3.10) gives [26]

J(t) ≈ JDC + Jcos cos(ωt) + Jsin sin(ωt). (3.13)

For sufficiently large AC fields, the transparency condition is reached: the oscillating field
yields an equal distribution of carriers in the ULS and the LLS, which ends population
inversion and consequently, stimulated and spontaneous emission. In this thesis, the
optical gain spectrum is given by the real part of the current in (3.13) [26],

g(ω) = − Jcos

Fac
√
εrε0c

. (3.14)
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For more details about this calculation, see [3] (section 2.9). When gain is above the loss
threshold gTH, laser operation in the QCL begins. This means there are more photons
emitted than absorbed in the cavity, mirror and waveguide. These constitute the device
losses and establish gTH. Fully characterizing the QCL requires determining the current
density at threshold, JTH, which is the current density value at which g = gTH. In this
thesis, gain threshold is assumed constant, although in reality it depends on factors like
temperature and the shape and materials of the laser cavity [27].

The AC field has two main effects on the perfomance of a QCL. First, it provokes an
increase in the current density after laser ignition. This happens because the oscillating
field pushes carriers down the structure. Consequently, population inversion is rapidly
lost. Thus, the AC field is linked to a decrease in gain. Gain decreases before saturating
at the threshold value. At this point, the electric fields in the device self-consistently
recover gain from further losses. Such phenomenon is known as gain clamping or gain
saturation [3]. The value of F (t) for which g = gTH marks the laser operation point.

3.4 The LQCL package
The LQCL package is a Python computational module that implements the PERLind a-
pproach to simulate transport in QCLs [26]. It builds a Lindblad coupling tensor (3.9) for
LO-phonon and impurity scattering by identifying energy and space resolving elements,
Lqab and fq(Eb − Ea) of the mechanisms (see Appendices A and B). Once the dissipator
is constructed, the package solves the corresponding LGKS master equation (3.3) and
obtains the reduced density matrix ρ̂ in the stationary regime, i.e. ∂ρ̂/∂t = 0. LQCL
provides two relevant observables to characterize the performance of a QCL: the current
density for the applied bias, as given by (3.10), and optical gain (3.14). State populations
can be inferred from diagonal elements of ρ̂.

LQCL is a self-consistent simulation package: it only inputs well-known material pa-
rameters like the effective mass or the band gap energies at the Γ point, as well as the
active region dimensions, i.e. barrier and well widths and alloy fractions of the materials.
There is no fit of other kind [26]. The package inputs the eigenstates of the heterostructure
from a Fortran module that computes WS states as described in section 2.2. The initial
version of the LQCL package (which will be used throughout the preliminary simulations)
considers a single input temperature, which is used both as an electronic TE and lattice
TL temperatures. We will refer to it as TSimulation in Chapter 4.

The package provides a current density value for every bias point (I-V curve), as well
as the gain spectrum for non-zero AC field. The simulations are run in a swipe up from
lower to higher bias, where the bias step size can be determined by the user. The choice
of the step size can be crucial to resolve resonances, as will be discussed in Chapter 4. To
identify the operation point, the simulations are first run at a low AC field (∼ 10−3 meV)
and at a range of frequencies centred around the experimental emission frequency. The
current density at threshold, JTH , is determined when g = gTH . The frequency at which
the laser operates is located at the peak of the simulated gain spectrum with g > gTH . As
the AC field is increased, gain decreases until g = gTH is recovered. This point, defined by
an applied DC voltage and an external AC optical field, constitutes the operation point
of the laser.
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Chapter 4 | Results and Discussion

In this chapter, we present and discuss the tests performed on the LQCL Python package.
We start the chapter with a brief overview of the simulation results. Next, we discuss
the general features of the I-V curves and gain spectra obtained with LQCL. The chapter
continues with a discussion on the role of temperature in the simulations. We close the
chapter with the implementation of IFR scattering in LQCL.

A general remark on the comparison to experimental values

Our LQCL validity test consists of a quantitative comparison of the simulation results
with published experimental data. The comparative approach we have taken is similar
to the recently published work in [27]. The QCLs simulated in this thesis were found in
the literature and hence, developed in different laboratories worldwide. Therefore, the
experimental values are biased with respect to their growth source [47]. Besides, LQCL
solely simulates the active region of the laser. In our simulations, the waveguide and
cavity, which do have an impact on the experimental data, are not considered; they are
only introduced as an estimated loss coefficient in the gain spectra.

Experimental values are measured at heatsink temperature, THeatsink, the experimental
temperature at which data is gathered in the laboratory. This temperature is different
from the lattice and electronic temperatures we input in the LQCL code. Such difference
is difficult to quantify; we can only provide a justified estimation of it for continuous wave
(cw) and pulsed mode operation of the laser. Thus, although LQCL is aimed to simulate
transport in QCLs as accurately as possible, some intrinsic factors will hinder an exact
comparison of our results with the experimental data. However, the ultimate goal of our
simulation method is to study different active regions at a reduced computational cost
within a "simplified yet physically meaningful" framework [48].

4.1 Testing the LQCL package:
Simulations of QCLs in the THz and IR

In order to test the LQCL package, we have focused on simulating exemplary QCL de-
vices. These devices can be found in [14, 16, 17, 22, 38, 49, 50, 51] and [15, 52, 53] for THz
and IR-QCLs, respectively. This QCL selection was motivated by the purpose of testing
LQCL for the main active region designs [4, 20]. These devices stand out because of their
innovative injection and extraction mechanisms or as a result of the records established by
their performance. Such is the case for Fathololoumi et al.’s device [16], which currently
holds the published record Tmax

Heatsink = 199.5 K for THz-QCLs, or that developed by Li et
al. [50] exhibiting very high output powers. The above set of devices ensures a sufficiently
large test space to gather conclusions about LQCL’s scope.
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We have found that the LQCL package provides results that are predictive at a qua-
litative level. The shape of the I-V curves can generally be reproduced from experiment.
We are able to observe parasitic currents and tunneling resonances. Laser gain is obtained
close to the design bias of the devices. Furthermore, the peaks of the emission spectra
agree well with experimental frequencies. Nevertheless, the package does not provide
good quantitative results. We have observed a generalized underestimation of the cur-
rent density at high applied bias. The simulated threshold, JTH, and maximum current
densities, Jmax, are below experimental values. Besides, the package provides unphysical
negative currents and the I-V curve shows unexpected jumps and peaks that might be of
computational nature. All these results will be discussed in detail below and examples
illustrating them will be provided.

4.2 The I-V curve

The current-bias (I-V) curve constitutes the first validity check for LQCL. As Callebaut
et al. point out in [54]: "(...) only when the simulation produces current densities consis-
tent with experiments can we have confidence in other calculated results, such as subband
populations and gain". Therefore, we start our test of the LQCL package by checking
whether the main features of the experimental I-V curves (i.e. resonances, current den-
sity at threshold or maximum current density) are also obtained in the simulations.

As we have mentioned before, it is possible to observe tunneling resonances in the I-V
curve with LQCL. These resonances, which stem from the alignment of different energy
levels in the QCL, appear as peaks in the I-V curve [19]. In Fig. 4.1, we present the
results of the simulations for a THz-QCL where extraction and injection are assisted by
phonons, designed by Dupont et al. [22]. In plots (a) and (b) of the figure, we show the
I-V curve for this device, together with experimental data. The "shoulders" in plot (a) at
16 mV/period and 31 mV/period, marked with two arrows, signal the alignment of the
extractor with other two laser levels at the indicated biases (see Fig. 1 in [22]). These
alignments are marked with dashed lines in the experimental curve in plot (b) at 6 V and
9 V. The simulations also predict a Negative Differential Resistivity (NDR) region. In
such regions, an increase in the bias produces lower currents. In Fig. 4.1 (a), we observe
an NDR region extending from 32 mV/period to 49 mV/period; the current then increases
and recovers the value it had before the NDR region at 60 mV/period. This agrees well
with the experimental curve, where we see a plateau extending from 8.4 V (30 mV/period)
to 18.2 V (65 mV/period), after subtracting a Schottky drop of 0.8 V from the voltage
[22]. The simulated current density peak at 76 mV/period coincides with the design bias
of the device (21 V). In Fig. 4.1 (d), we compare the experimental and simulated JTH
of the device. The simulated data is shifted right to higher temperatures and down to
lower current densities. This shift signals an underestimation of JTH of ∼ 400 A/cm2 with
respect to Dupont et al.’s experimental data [22] (relative error of ∼ 40%). A summary
of the main features discussed above can be found in Table 4.1.

In Fig. 4.2 we present the results of the simulations for a different THz-QCL designed
by Fathololoumi et al., that operates at high temperatures (∼ 200 K) [16]. In plot (a) of
the figure, we are able to see a tunneling resonance at 39 mV/period. This sharp peak is
coincident with the theoretically expected alignment of the injector and extractor levels

20



0

400

800

1200

1600

0 10 20 30 40 50 60 70

NDR region

C
ur
re
nt

de
ns
ity

(A
/c
m

2 )

Bias (mV/period)

60 K
77 K
100 K
120 K
140 K
160 K

(a) Simulated I-V curve.
(b) Experimental data.

0
15
30
45
60
75
90

105
120
135
150

8 10 12 14 16 18

h̄ωExp

G
ai
n
(1
/c
m
)

h̄ω (meV)

77 K
100 K
140 K
160 K
200 K

Th.

(c) Simulated gain spectra.

600

800

1000

1200

1400

1600

1800

0 50 100 150 200

J T
H
(A

/c
m

2 )

THeatsink/Simulation (K)

Exp. data
LQCL

(d) JTH as a function of temperature.

Figure 4.1: Data for Dupont et al’s THz QCL [22]. (a) Simulated I-V plot for TSimulation ∈
[60, 140] K. The downward pointing arrows indicate two tunneling resonances due to the align-
ment of the extractor state with two different laser levels. There is a Negative Differential
Resistivity (NDR) region and subsequent recovery of J between biases ∼ 31 − 60 mV/period.
(b) Experimental data. The design bias of the structure is 76 mV/period (21 V) and the device
exhibited a maximum operating temperature of Tmax

Heatsink = 138 K. The figure was taken from
[22]. (c) Simulated gain spectra of the device for several simulation temperatures. The experi-
mental frequency, νExp = 3.2 THz, is marked with an arrow. (d) Current density at threshold
JTH as function of temperature for experimental (triangles) and simulated (dots) data. The
experimental data is gathered at THeatsink, while the simulation data is obtained at TSimulation.
Data is fitted to an exponential function JTH = J0eT/T0 , where T0 = 30 K for the experimental
data (blue dashed line) and T0 = 110 K for LQCL (red dashed line).
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Figure 4.2: Data for Fathololoumi et al’s THz-QCL [16]. (a) Simulated I-V curve for
TSimulation = 150, 200 and 250 K. At 39 mV/period, the i-e alignment resonance peak can be
seen. (b) Experimental data. The design bias of the structure is 50 mV/period and it experi-
mentally operates until Tmax

Heatsink = 199.5 K. Figure taken from [16]. (c) Normalized populations
of the WS levels as a function of the applied bias. The ULLS, LLS, i and e are shown. A
downward pointing arrow marks the alignment of the injector and the extractor. Population
inversion occurs above 45 mV/period. (d) Experimental and simulated data for JTH as a func-
tion of temperature for gTH = 20 cm−1 (red dot) and 25 cm−1 (gold box). Experimental values
are gathered at heatsink temperature THeatsink and the simulated data at TSimulation. The fits
correspond to an exponential function JTH = J0eT/T0 , where T0 = 39 K for the experimental
fit (blue dashed line), as given in [16], T0 = 100 K for gTH = 20 cm−1 (red dotted line) and
T0 = 110 K for gTH = 25 cm−1 (gold dashed line).
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Table 4.1: Summary of the main I-V curve features identified during the simulation of Dupont
et al.’s THz-QCL [22], compared to experimental data.

Feature LQCL Experiment
Resonant alignment n. 1 (mV/period) 16.0 18.0
Resonant alignment n. 2 (mV/period) 31.0 29.0
NDR and recovery region (mV/period) [32 : 60] [30 : 65]

at 8.9 kV/cm (∼ 39.2 mV/period). Such alignment is discussed by Fathololoumi et al.
in [16] and it can be observed at ∼ 10 V in the experimental plot for the Au-Au device
(Fig. 4.2, b). The evolution of the laser level populations with applied bias confirms the
injector-extractor alignment at 39 mV/period and shows that population inversion starts
slightly above the resonance, with the crossing of the ULS and the LLS at ∼ 47 mV/period
(Fig. 4.2, c). The comparison of the simulated JTH as a function of temperature with
experimental values in Fig. 4.2 (d) points out the aforementioned current underestima-
tion in the simulations; we see that LQCL’s predictions are on average 250 A/cm2 below
experimental data for this THz-QCL design (relative error of ∼ 25%). We must also note
that Fathololoumi et al. indicate a maximum current density of Jmax =1450 A/cm2 [16].
The simulated current density in plot (a) does not reach this value for any of the TSimulation
temperatures.

So far, we have shown that LQCL correctly identifies resonant peaks in the I-V
curves. Examples of that were the "shoulders" in Dupont et al.’s device (Fig. 4.1)
and the tunneling peak in Fathololoumi et al’s device (Fig. 4.2). However, the un-
derestimation of Jmax and JTH appears as a recurrent feature in the simulations, with
∆JTH = JTH

Experiment − JTH
Simulation ≈ 400 A/cm2 for Dupont et al’s device (Fig. 4.1, d) and

∆JTH ≈ 250 A/cm2 for Fathololoumi et al’s device (Fig. 4.2, d). Another example is
presented in Fig. 4.3, where we show the data for Han et al’s D2 THz-QCL design [17].
In [17], authors report three "step increases" of the current density to 0.2 kA/cm2, 0.32
kA/cm2 and 1.2 kA/cm2 (see Fig. 4.3, b). These steps signal parasitic currents, which
are alternative paths for the transport of carriers in the active region of a QCL. Parasitic
currents appear when energy levels that do not constitute the main transport path1 align.
The three experimental data points in Fig. 4.3 (a) locate those parasitic currents in our
simulations (after extracting at the contacts a drop of 2.5 V for this device [17]). In plot
(a) of the figure, the double-head arrow at 50 mV/period signals the disagreement between
the simulated curves and the parasitic current at high bias (relative error of 50%). In
this case, the simulated current is ∼ 600 A/cm2 below the experimental data point. Our
results also indicate an NDR region at high bias (>45 mV/period), which cannot be seen
in the experimental curve (Fig. 4.3, b). In the low bias region (<30 mV/period), the two
experimental points at 7.5 mV/period and 21 mV/period agree well with our simulations.
These results show that we are able to resolve the two parasitic currents at low bias, but
we fail to see the third parasitic current at high applied bias due to the underestimation
of the current flow.

1 i → ULS → LLS → e
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Figure 4.3: Data for Han et al.’s D2 THz-QCL [17]. (a) Simulated I-V curve for TSimulation =
60, 80 and 100 K. Three experimental parasitic currents are marked with black boxes, where an
error bar has been added to account for a calibration of 2.5 V discussed by authors [17]. Only
three WS states were used in the simulation. (b) Experimental L-I-V curve for the same device
at different heatsink temperatures. The design bias of the structure is 60 mV/period and it
experimentally operates until Tmax

Heatsink = 123 K. Figure taken from [17].

4.2.1 Spikes in the I-V curve
At very low applied bias (<15 mV/period), we see that the shape of the I-V curve in Fig.
4.3 (a) is quite complex: it is full of spikes and it contrasts with the smooth curve measured
in experiment (Fig. 4.3, b). The clean peak at 21 mV/period in the simulations can be
identified as a parasitic current, according to the discussion above. However, it is difficult
to distinguish whether other peaks that arise between 8 mV/period and 15 mV/period
signal actual physical phenomena or stem from computational problems. These seem-
ingly spurious peaks are not an isolated case: we can also observe a sharp peak at 25
mV/period in the I-V curve for Dupont et al.’s QCL (Fig. 4.1, a), and at 25 mV/period
and 52 mV/period for Fathololoumi et al.’s QCL (Fig. 4.2, a). Furthermore, in a recently
published article [27], Burnett et al. present THz-QCL simulations using a k-resolved
density matrix approach, where they also observe spikes in their I-V curves similar to
ours. It must be noted that this feature appears more prominently in our simulations.
In the precedent section, we have argued that LQCL correctly predicts parasitic currents
and tunneling resonances: the I-V curve exactly peaks where these alignment phenomena
are experimentally reported and theoretically expected. However, we find no justifica-
tion for the rest of the spikes in the curves. Therefore, in this section we will analyze
the origin of these spikes to be able to discriminate them from actual physical phenomena.

To study the origin of the spikes and peaks in the I-V curve, we have repeated our
simulations with a few modifications. First, we have reduced the bias step size to isolate
spurious data points from the main I-V curve. Second, we have shifted in δ the centre of
the QCL module from z = d/2 to z = d/2+δ, where d is the length of a module. When we
compute the WS states of the structure in the simulations, we classify them into different
periods. This depends on the distribution of their probability density around the centre
of the module. By shifting the centre of the module, we can modify how the energy levels
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Figure 4.4: Detailed plots of two of the peaks in Fig. 4.2 for Fathololoumi et al.’s THz-QCL
[16]. The black dashed line shows the I-V curve with a bias step size of 0.1 mV/period and no
shift δ = 0 nm. The red solid line indicates a change in the bias step size to 0.01 mV/period.
For the blue solid line and green solid line the bias step size is the kept at 0.01 mV/period but
the centre of the period is shifted δ = 5 nm and 10 nm, respectively. (a) Peak centred around
∼ 25 mV/period. (b) Peak centred around ∼ 39 mV/period.

are classified into different periods. An example is shown in Fig. 4.5; here, we have only
coloured the set of WS levels that the package classifies as within the central period; levels
in neighbouring periods are shown in grey. Comparing plots (a) and (b) in the figure,
we observe that we colour different WS levels depending on the position of the centre of
the module: the blue level in plot (a) becomes the red level in plot (b), and the package
colours with blue in (b) a level that belonged to a neighbour period in (a). In Fig. 4.4
we show the effect of shifs δ = 5 nm and δ = 10 nm on two of the peaks at Fathololoumi
et al.’s I-V curve (see Fig. 4.2). Here, we observe that these peaks change shape de-
pending on δ, which shows that they are linked to how the WS levels are classified into
different periods (central period, first neighbours, etc...). This shows that a peak arises
whenever we have a change in the set of WS states of a period. Such change is likely to oc-
cur at a resonance between two levels, where the states extend over a large range in space.

A QCL is a periodic structure where the basic module is repeated 30-200 times along
the growth direction. Hence, the energy levels in neighbouring modules, which are ex-
tended, are equivalent and the laser observables should be independent of our WS basis
choice; that is, the shift δ should not alter the results. However, in our simulations we
consider a finite number of modules and impose boundary conditions to compute ρ̂. This
means that the number of neighbours included in the simulations plays an important
role, specially at those operation points where levels align in resonance, as this might
mean that we have a change in the coloured set of WS states as discussed above. Take
plots (a) and (b) in Fig. 4.5 as an example. Suppose we limit our calculations to first
neighbours. Then, the package only considers transitions between the levels in the cen-
tral period (coloured) and neighbouring periods (grey). When we increase the bias, the
levels cross and displace in energy. If, for a given bias, a change in the set of WS states
occurs and thus, we colour different levels, we will also be considering different electronic
transitions. For instance, in plot (a), the blue level is aligned with the red level; in plot
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(b), the blue level is identified differently, as as one of the levels that was grey in plot (a).
This has very important consequences: First neighbour boundary conditions in plot (b)
are actually second neighbour conditions for the set of WS states in (a). Looking at plot
(b), we now have transitions from levels in the left neighbouring period to the blue state,
which was a grey level in the right neighbouring period in plot (a); that is, we have a
transition between two formerly grey states, second neighbours. Thus, the peaks should
reduce if more neighbours are included in the simulations. This is confirmed in Fig. 4.6
(a), where the peak at 24.5 mV/period flattens when second neighbours are considered.

4.2.2 Underestimation of the current density
As we have already discussed, the main discrepancy between the results of our simula-
tions and the experimental curves is a generalized underestimation of the current density.
Such underestimation is manifested in the values for JSimulation

TH , which are between 200
A/cm2 and 600 A/cm2 below experimental data (Fig. 4.1 (d) and Fig. 4.2 (d)). In the
simulations, our input temperature TSimulation is expected to be higher than THeatsink. If
there were no underestimation, the simulated curves for JTH as a function of temperature
should appear shifted right towards higher temperatures, yielding the same JTH values for
different THeatsink and TSimulation. Such shift between the curves would allow us to estimate
the difference between both temperatures for pulsed mode and cw operation of the device.
Nevertheless, as it can be seen in Fig. 4.1 (d) and Fig. 4.2 (d), the simulated curves are
shifted diagonally, to the right and down, towards lower currents. They do not yield the
same JTH for different THeatsink and TSimulation. This signals the underestimation. The
current underestimation is also particularly significant at high applied bias, where the
values for Jmax reported in experiment are never reached. In Fig. 4.7, data for Bismuto
et al.’s mid-IR is shown [52]. In plot (a), we see that our simulation stops at Jmax = 3
kA/cm2 while experimentally, maximum currents of 4 kA/cm2 are reported (see plot b).
This means our simulated Jmax is 1 kA/cm2 below experiment.

It must be remarked in the low bias region, the simulated current densities are not
far from the experimentally reported values. Our (quantitatively) best simulated results
correspond to a device operating at low biases designed by Mahler et al. [49]. For this
device, authors report JExperiment

TH = 75 A/cm2 at THeatsink = 10 K and design bias of
21.76 mV/period (1.6 kV/cm) [49]. With LQCL, we obtained JSimulation

TH = 70.77 A/cm2

at TSimulation = 60 K and 20.0 mV/period, where it is reasonable to assume that THeatsink
is ∼30-60 K below lattice temperature during cw operation. These results support the
hypothesis that the discrepancy between experimental and simulated current density is
constrained to the region of high bias. Moreover, they suggest that the current underes-
timation must have its origin in a phenomenon linked to a large voltage drop or heating
effects.
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Figure 4.5: WS states for the THz-QCL in [16] at different applied biases without (left column)
and with (right column) a shift of the centre of the period. The states in the central period (d =
43.91 nm) are shown in colour; levels in neighbouring periods are shown in grey. Only four WS
states are considered per period.
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Figure 4.6: (a) Detailed plot of the I-V curve peak at 24.5 mV/period for Fathololoumi et
al.’s device in [16]. The black dashed line shows the I-V curve with a bias step size of 0.1
mV/period and no shift. The rest of the curves have been obtained with a step size of 0.01 and
δ = 5 nm; ndm indicates the number of periods considered as the central period, ngb controls the
neighbours included for LO-scattering and nimp the neighbours included for impurity scattering.
(b) I-V curve for Fathololoumi et al’s THz-QCL [16] at different levels of accuracy.

At high biases, the underestimation of the current density can be due to the following
factors: neglecting the continuum states in our simulations, missing a scattering mech-
anism in the construction of the Lindblad dissipator or ignoring heating effects in the
heterostructure. We have observed that ignoring the WS states that leak into the con-
tinuum is beneficial for the simulations, for it yields a smoother I-V plot and helps avoid
the aforementioned current peaks and spikes. However, these states might play a role in
dissipating the heat of the lattice with carriers jumping to the continuum. In fact, their
effect on quantum transport might not be negligible, as believed [17]. In Fig. 4.6 (b)
we observe that extending the simulation to more neighbours also increases the current
density ∼ 100 A/cm2. As we have argued above for the origin of the peaks, this is because
we are now considering more transitions that contribute to transport. A discussion on
the role of heating requires a thorough review on temperature; hence, it be postponed to
section 4.5.

Current can also be underestimated because LO-phonon and impurity scattering, the
only mechanisms implemented in LQCL, might not be enough to account for the relevant
carrier dynamics in a QCL. This could explain the low JTH values we simulate. The lack
of scattering phenomena degrading the performance of the device enables laser operation
at low currents. Carriers find few obstacles (i.e. elastic and inelastic scattering mecha-
nisms) along the heterostructure that could potentially hinder laser operation. Additional
scattering mechanisms such as carrier-carrier interactions and IFR scattering can drive
the current up and set a higher threshold for laser operation. With this in mind, we
decided to implement IFR scattering in the LQCL code via the PERLind approach (see
3.2.2 and Appendix C). The results obtained by including IFR in the simulations will be
shown and discussed in section 4.7.
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Figure 4.7: Data for Bismuto et al.’s mid-IR QCL [52]. (a) Simulated I-V curve for Tsimulation =
350 and 450 K. (b) Experimental I-V curve of the device at THeatsink = 300 K. The design was
reported to emit at ∼8.5 µm and exhibit large tunability of 100 cm−1. (c) Simulated gain spectra
for different applied biases (10.5 V to 12.5 V) at TSimulation = 350 K. The gain threshold for
the device is established at gTH = 10 cm−1. (d) Experimental gain spectra for the same device,
which aims to show the experimentally observed Stark shift of the gain peak at THeatsink = 300
K. The experimental plots where taken from [52].
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4.2.3 Negative current densities
The I-V curve in Fig. 4.1 (a) shows a remarkable feature: negative current densities.
This problem was already addressed in [26], the paper in which the PERLind approach
is presented. Moreover, Kiršanskas et al. in [26] point out that the PERLind approach
can provide non-zero currents for a zero applied bias, a feature we have also observed
in our simulations. Negative current density values in the I-V curve could be originated
from two factors: either they naturally arise within the PERLind approach, signalling a
limitation of the transport model, or they are related to the choice of boundary conditions
for the computation of ρ̂. As we have already discussed, we limit the simulations to a
finite number of periods known as the central region, given by ndm (see Fig. 4.8) and we
impose periodic boundary conditions to compute ρ̂.

We can test if the I-V curves remain invariant when incorporating more periods to the
central region. Figure 4.9 shows the results of several simulations with increasing number
of ndm and neighbours ngb and nimp for Mahler et al.’s device, where ngb controls the
distance up to which the phonon scattering matrix elements are evaluated (i.e. ngb = 1→
first neighbours) and nimp does the same for impurity scattering. As shown in the figure,
the I-V plot remains fairly invariant for the different ndm, ngb and nimp values chosen.
The I-V curve exhibits negative values below 10 mV/period for all the simulations. The
transition from negative to positive J occurs at the same bias point except when ndm =
ngb = nimp = 2 is taken. Here, the region of negative current is 1 mV/period smaller; the
transition to positive values takes place at 7 mV/period instead of 8 mV/period. These
results support the conclusion that negative currents are most likely linked to the model
and not to the LQCL computation package or boundary conditions. Unphysical negative
currents can naturally arise within the PERLind approach. Nevertheless, the results in
Fig. 4.9 also prove the robustness of the LQCL package in providing roughly the same
curve, regardless of the level of accuracy of the simulation (i.e. adding more neighbours
to the computation).

4.2.4 The optical AC field
The LQCL package enables the simulation of laser ignition by applying a non-zero AC
field to the structure, as given in eq. (3.12). In Fig. 4.10 (a) we observe that the oscillating
optical field yields an increase in current density at the bias point at which it is turned
on, as expected (see discussion on laser observables in 3.3). In Fig. 4.10 (b) we see the
effect of the AC field on gain. We have already discussed that an oscillating AC field
reduces population inversion and consequently, gain. As the intensity of the optical field
increases, gain decreases approaching zero, where the transparency condition is reached.
When g = 0, population inversion is completely lost and the field has redistributed carriers
equally between the ULS and LLS. Surprisingly, our results in plot (b) show that gain
takes negative values instead of saturating at zero. This might be indication of further
transitions to higher levels or absorption mechanisms in the structure.
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Figure 4.10: Data for Li et al.’s THz-QCL [50]. (a) Simulated I-V curve of the QCL. The
optical AC field is turned on at 50 mV/period (dashed line), which yields an increase in current.
(b) Laser gain versus optical AC field for two fixed DC biases: 50 mV/period (dark blue) and 54
mV/period (light blue). The gain threshold (horizontal dashed line) is established at gTH = 20
cm−1.
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Figure 4.11: Gain spectra for devices in [49] (a) and [50] (b). (a) Data was gathered at 21
mV/period. The design bias of the device is 1.6 kV/cm (∼ 21.76 mV/period). It lases at νExp =
2.5 THz and it experimentally exhibited a maximum operating temperature of Tmax

Heatsink = 58 K
[49]. The threshold is established at 10 cm−1. For the simulation of this device, 10 WS states
were required. (b) Data obtained at 50 mV/period, the desing bias of the QCL. It lases at
νExp = 3.4 THz until Tmax

Heatsink = 123 K [50]. The threshold is established at 20 cm−1.
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4.3 Gain spectrum and emission frequencies

As we have already shown in Figs. 4.1 (c) and 4.7 (c) the LQCL package predicts the
gain spectrum of a QCL at a chosen bias point, when the optical field (3.12) is non-zero.
Our results report gain above threshold gTH , which shows we can simulate laser oper-
ation. We have only considered gain at Positive Differential Resistivity (PDR) regions,
as there are stability and domain formation problems linked to NDR regions [55, 56].
Further examples of the simulated gain spectra are shown in Fig. 4.11. In Fig. 4.11 (a),
the curve peaks between 10 and 11 meV. This is coincident with the experimental lasing
frequency of 2.5 THz (∼10.34 meV). The simulations show gain for temperatures below
Tmax

Simulation = 60 K, while the device was reported to operate to Tmax
Heatsink = 58 K [49]. This

is consistent with our results, although we expected to see a large shift between TSimulation
and THeatsink as this device was operated in cw2. The results for Fig. 4.11 (b) are also
consistent with experimental data: a maximum of Tmax

Heatsink = 123 K was reported and no
gain is observed below TSimulation = 150 K, yielding an expected shift of 30-60 K between
TSimulation and THeatsink in pulsed mode operation.

QCLs are tunable devices: the peak of the gain spectrum can shift to higher frequencies
with increasing bias. This is known as the Stark shift of the gain peak, which LQCL is
able to reproduce, as it is shown for a mid-IR QCL in Fig. 4.7 (c). This effect is easier to
observe in IR-QCLs simulations as the voltage drop along IR-QCL structures is larger than
in THz-QCLs. IR-QCLs require larger applied biases to operate and to pump electrons
into the states, which explains why the Stark effect is more significant for these devices.

4.4 The simulation temperature

There is a single temperature parameter for both electronic, TE, and lattice, TL, tempera-
tures within LQCL: the same value is used for the temperature of electrons in the subbands
and the Bose-Einstein LO-phonon distribution. However, carriers are usually hotter than
the lattice and the TE ≈ TL approximation does not always hold [57]. Furthermore, it has
been long debated whether electrons are thermalized or not in the subbands [27, 58]. This
points out the inaccuracy of assuming a single electronic temperature for all subbands
and emphasizes the complexity of a rigorous treatment of temperature. Some authors as-
sume a temperature difference of 70 K to 100 K between electrons and LO-phonons [27].
Nevertheless, such difference depends on the power carried by the particles, the lattice
temperature and active region design. We can check how TE depends on these parameters
by using our group’s NEGFs code for QCL simulation [25], where the subband electronic
temperature is self-consistently computed for constant TL at fixed bias. NEGFs provide
the occupation function f ik of each subband i at a given operation point. The electronic
temperature of the i-th subband can then be inferred by fitting the occupation function
to an exponential Boltzmann-type of distribution [27], f ik ∝ e−Ek/kBT

i
E . The results of the

NEGFs simulations for six different devices are shown in Table 4.2. In the table, we show

2At cw operation, the lattice cannot relax and cool down while the electric field is applied to the struc-
ture. Hence, TL � THeatsink in this case. TL ≈ THeatsink is more likely to hold for pulsed mode operation,
where the lattice can relax between pulses. Nevertheless, it is also expected to have TSimulation > THeatsink
even for pulsed mode.
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the power per particle carried by electrons for a given V bias point,

Pp = V × J
n2D

, (4.1)

where n2D is sheet electron density. The value of V was taken close to the design bias of
the device. It is important to note that the electronic temperatures in Table 4.2, T avg

E ,
are the average of the individual subband temperatures at the operation point. These
individual subband temperatures are explicitly shown in Table 4.3 for the device in [50]
at two different biases.

The excess temperature,

∆T i = T iex(TL) = T iE − TL, (4.2)

introduced by Albo and Flores in [57] measures the deviation of the electronic temperature
T iE from TL. In our considerations, we drop the subband superscript and use, as above
mentioned, an averaged TE to compute ∆T . A non-zero excess temperature indicates
that TE 6= TL and points out the need to input TE and TL individually within the LQCL
simulation package. Therefore, we have separated the contribution of electronic TE from
the lattice TL in LQCL and tested the effect of a higher TE (TE > TL) in the simulations.
We have repeated the I-V curves using the averaged subband electronic temperature T avg

E

provided by the NEGFs (see data in Table 4.2). Both TE and TL have been kept constant
throughout the new simulations.

We have observed that using TE 6= TL can help increase the current density in the
high bias region. This is specially significant for those THz-QCLs for which the excess
temperature is large (∆T > 80 K), such as Han et al.’s device. As an example, we show
the simulations for this THz-QCL in Fig. 4.12, where three simulations are compared: an
LQCL simulation with a single temperature parameter (TE = TL), a NEGFs simulation,
and a second LQCL simulation with two temperature parameters (TE 6= TL, where the
value for TE was taken from Table 4.2 for the corresponding device). The results in Fig.
4.12 show that at low biases (< 30 mV/period) the current density is relatively indepen-
dent of the choice for electronic temperature. It is safe then to assume that TE ≈ TL in this
region, as we did for the preliminary simulations in section 4.1. However, at high biases
(> 30 mV/period), the curves show that current density increases for TE > TL; the LQCL
simulations come closer to both NEGFs and the experimental data. We must note here
that these simulations were run for first neighbours. The use of TE 6= TL has a less signif-
icant effect in high-temperature devices like the mid-IR in [52] or the high-temperature
THz-QCL in [16]. Therefore, these results show that although a more accurate modeling
of temperature is required, we cannot attribute LQCL’s current underestimation solely
to the way temperature is considered in the package.
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Table 4.2: The average electronic subband temperatures TE computed through NEGFs sim-
ulations for a fixed lattice temperature TL and an applied bias per period. The results shown
correspond to six QCL devices [16, 17, 22, 38, 50, 52].

Device Power (nW/particle) TL (K) T avg
E (K) TE − TL (K)

Li et al. [50] 0.8 150 186 36
Han et al. [17] 2.0 77 157 80

Fathololoumi et al. [16] 1.8 200 245 45
Williams et al. [16] 1.4 77 220 143
Dupont et al. [22] 3.8 140 240 100
Bismuto et al. [52] 5.9 300 475 175

Table 4.3: Individual electronic temperatures TE for each of the five WS subbands for the THz-
QCL in [50], computed through NEGFs simulations. The fixed lattice temperature is TL = 150
K. The results are shown for two different operation points, at 16 mV/period (Table 4.3) and
47 mV/period (Table 4.4).

Table 4.4: 16 mV/period

Subband TE (K)
1 170.5
2 152.8
3 152.2
4 168.7
5 164.5

Table 4.5: 47 mV/period

Subband TE (K)
1 183.4
2 160.1
3 201.1
4 209.8
5 173.7

4.5 Impact of heat dissipation

The LQCL simulation package does not consider lattice heating effects; that is, thermal
feedback is not included [27]. Nevertheless, the range of excess temperatures in Table 4.2
and the disagreement between simulation and experiment at high applied bias seem to
suggest that energy dissipation has a prominent role in transport phenomena and can
affect the current density flowing in the device. The excess temperature, and in partic-
ular, the evolution of TE with the applied bias serve as tools to model lattice heating in
our simulations. These parameters can be used to justify the discrepancy between our
simulations and the experimental data.

We will try to quantify the heating of the lattice through two parameters: the excess
temperature, ∆T , and the power per particle, Pp (4.1). As we have already detailed, ∆T
measures the heating of the charge carriers with respect to the lattice, which is assumed to
be kept at constant TL. The power per particle has its origin in the electric field applied to
the QCL structure. Electrons moving in an electric field carry a net power transferred by
the field. This is given by eq. (4.1) which constitutes the power that electrons can transfer
to the lattice through scattering mechanisms. Such power is dissipated by heating the
lattice, i.e. activating LO-phonons. Therefore, there must exist a correlation between ∆T
and Pp: the higher the power carriers need to dissipate, the larger the excess temperature
will be. This correlation is shown in Fig. 4.13, where NEGFs were used to obtain the data.
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We observe that the correlation between the dissipated power and the excess temperature
is almost linear for most devices. The exception is Dupont et al.’s QCL [22], which
shows little temperature dependence to the heating. Fig. 4.13 also shows that the excess
temperature ranges from 10 K to 100 K for the THz-QCL devices in the figure, while
it goes from 60 K to almost 220 K for the only mid-IR QCL in the figure. The results
confirm that TE, which can be inferred from ∆T , is a dynamic variable that changes with
the bias. A similar conclusion was presented by Harrison et al. in [31]. Here, authors
propose a linear relation between TE and TL dependent on the current density,

TE = TL + αe−lJ (4.3)

to model subband temperatures in QCLs. In [31], authors find the coupling constant αe−l
to be α = 7.6-6.1 K/(kA cm−2) for IR-QCLs and α ≈ 47 K/(kA cm−2) for THz-QCLs.
We have used this relation to model TE within LQCL with little impact on our curves.

4.6 The electronic temperature
The arguments in the sections above show that a careful choice of the electronic tempera-
ture can increase the current density. Moreover, the analysis of the heating effects in the
device points out the inaccuracy of considering TE constant throughout the simulations.
Therefore, in this section we aim to find a relation between the carrier heating and the
electronic temperature which would allow us to self-consistently input TE in the LQCL
package for each operation point.

4.6.1 A simple model to compute TE within LQCL
As previously discussed, the electronic temperature TE can be inferred from the state
occupation density, by fitting the individual subband occupations to a Boltzmann distri-
bution function (see [27] for a detailed example of this fit). This kind of approach requires
in-plane resolution, which we lack in PERLind and LQCL. Alternatively, our suggestion
is to compute TE focusing on the energy stored by the lattice. Approaches like this have
already been attempted in Harrison et al.’s aforementioned paper [31], where authors use
a kinetic energy balance method to compute an averaged subband TE. Our proposal is
that the power dissipated by electrons will be invested in varying the number of phonons
in the lattice.

The relaxation of electrons and consequent activation of phonons can be accounted
for through the following energy balance equation:

V × J = h̄ωLO
∑
α,β

nα

(
REM
α→β(TE, TL)−RABS

α→β(TE, TL)
)
. (4.4)

Here, V × J is the net power that the external field transfers to electrons per unit period
and surface area; nα is the electron sheet occupation density of state α; Rα→β corresponds
to the scattering rates for the emission (EM) or absorption (ABS) of a LO-phonon (see
in Appendix A for the explicit expressions). As argued in section 2.1.1, we assume that
LO-phonons are the dominant phonon type in the QCL structure. The sum in α and β
is extended to all quantized states in one period. Terms with α 6= β are intersubband
transitions, while α = β correspond to intrasubband thermalization. The Left Hand Side
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(LHS) of eq. (4.4) accounts for the power transferred from the field to the charged car-
riers. The Righ Hand Side (RHS) of (4.4) gives the total energy stored by the lattice in
LO-phonons. The numerical resolution of eq. (4.4) for a given operation point provides
the TE that balances the electron-phonon energy transfer.

The colourmap in Fig. 4.14 shows the function

f(V, TE) = LHS− RHS, (4.5)

where LHS and RHS are those in eq. (4.4). Positive values correspond to LHS > RHS,
indicating an excess of power carried by the electrons that the lattice cannot get rid of
in the form of phonons. Negative values are LHS < RHS, where the lattice has stored
more energy than that transferred by the electrons. A blue contour line marks the val-
ues for which LHS = RHS, signalling the TE values we are interested in inputting in LQCL.

The results in Fig. 4.14 for Fathololoumi et al.’s device show that at low applied
bias (<20 mV/period), it is correct to assume TE ≈ TL, as physically expected. As the
bias increases, the TE value that satisfies (4.4) deviates from the lattice temperature,
TE > TL. The results in the figure point out that the excess temperature can vary from
∆T = 20 K in the low bias region to ∆T = 120 K at higher biases, which is larger than
the ∆Tmax = 60 K we had predicted in Fig. 4.13 for this THz-QCL [16]. The peak
observed at 25 mV/period is most likely associated to a computational issue rather than
the activation of a scattering mechanism. In figure 4.15, we present the results for the
I-V curve of the same device by self-consistently inputting TE according to (4.4). We
compare these results with our group’s implementation of NEGFs and the LQCL package
assuming constant TE = TL. As it can be seen in the figure, the LQCL simulation with
the self-consistent TE does not significantly improve the LQCL simulation with TE = TL.
If we compare the LQCL results with the NEGFs data, we observe that the simulations
deviate from each other when TE > TL in the colourmap. By looking at Fig. 4.14, we
see that TE approximately grows from 200 K to 300 K from biases 25 mV/period to 39
mV/period. In the same bias region, the results in Fig. 4.15 show that the LQCL curve is
below the NEGFs current density values. The same situation repeats from 40 mV/period
to 52 mV/period, where assuming TE = TL translates again in LQCL underestimating
the current density with respect to the results from NEGFs.

4.6.2 Limitations of the LQCL package to model TE
In order to self-consistently compute the subband electronic temperature, more advanced
simulation methods turn, for instance, to Boltzmann transport theory or heat diffusion
equations [59, 60]. The increased complexity of such methods yields an accordingly larger
computation time. Since PERLind’s, and consequently LQCL’s, major asset is its compu-
tational speed, it is not worth sacrificing the lightness of the approach for a more rigorous
treatment of temperatures with microscopic theories. Lightness is PERLind’s main ad-
vantage with respect to more robust methods like NEGFs [25]. Thus, any attempts to
improve the LQCL package should keep the computation time low. This reasoning stands
behind the simple model to compute TE proposed in section 4.6.1.
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There are a few simplifications within the LQCL package that limit a rigorous modeling
of the electronic subband temperature. The main one is that the density matrix computed
with the PERLind approach is not k-resolved. Thus, the LQCL package must assume
that all electronic subbands have the same temperature. In reality, each subband i has
an individual T iE that depends on the bias and lattice temperature, as discussed in Table
4.3 [61, 62]. A single TE for all subbands implies that electrons instantly thermalize.
Using a 3D density matrix approach, Burnett et al. have shown that the electronic
subband distributions are highly non-thermal [27]. In the PERLind approach, we assume
a thermal distribution for the lateral electron degrees of freedom to construct the Lindblad
coupling tensor (3.5) (see Appendixes A, B and C). Therefore, immediate thermalization
is intrinsic to the formalism upon which the LQCL simulation package is developed. We
must also point out that the sum in (4.4) is extended to number of energy levels per
period of our choice, usually limited to the bound well levels relevant for transport and
the photoemissions. As we have argued before, the continuum is usually ignored in the
simulations. Ideally, the summation in (4.4) should cover all the WS energy levels in the
period, including the continuum. This also restricts the accuracy of our implementation
of eq. (4.4) in LQCL.

4.7 Implementation of IFR scattering in LQCL
In this section, we present the results obtained after including IFR scattering in the LQCL
package. The implementation of this scattering mechanism was done following the cal-
culations summarized in Appendix C, according to the PERLind approach. Here it is
important to remark that the definition of the jump operators Lα,β for the construction
of the Lindblad dissipator (3.9) within the PERLind approach is not unique. In fact,
different choices of operators might describe different physics [26]. This is particularly
important for IFR scattering because depending on our operator choice, we can establish
a correlation between the fluctuations at different interfaces. For our implementation of
IFR in LQCL we have assigned an individual jump operator to each interface; that is, we
don’t allow for correlations of the fluctuations at each interface since this is unlikely to
occur during the growth process of the sample [34]. The correlation functions to model
the shape of the interface profile and fit parameters ∆ and Λ that we have used for our
simulations have been taken from [34]. These are similar to the parameters usually found
in literature [27].

The inclusion of IFR improves quantitatively the results of the LQCL simulations by
increasing the current density. This can be seen in Fig. 4.16 (a), where results for Dupont
et al.’s device with and without IFR scattering are compared. In the figure, we observe
that including IFR raises J and changes the curvature of the I-V plot above the shoulder
at 16 mV/period. It also yields a flatter NDR region, closer to what experimentally is
observed. In Fig. 4.16 (b), we show the increase of JTH when IFR is added. The results
that include IFR scattering in Fig. 4.16 (b) seem to follow an exponential trend before
plateauing at higher temperatures. The temperature shift between the experimental data
and the LQCL simulation with IFR scattering agrees well with the stable excess temper-
ature of ∆T = 60 K found in Fig. 4.14 for this THz-QCL [22].
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The effect of IFR scattering is expected to be larger in IR-QCLs as the scattering
matrix element is proportional to the CB offset, typically larger in IR-QCLs (see Appendix
C). In Fig. 4.17, we present the simulation results for Bismuto et al.’s IR-QCL. In the
plot, we see that IFR scattering extends the I-V curve to 4 kA/cm2, which perfectly agrees
with the Jmax = 4 kA/cm2 reported experimentally (see Fig. 4.7). This Jmax value could
not be reached before, without adding IFR. However, it must be pointed out that by
adding IFR, we also observe an unphysical negative current density at low applied bias,
a feature that had not appeared before for this device.
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Figure 4.16: Data for Dupont et al.’s THz-QCL [22] (a) I-V curve for TSimulation = 77 K,
with (w/, light blue) and without (w/o, dark blue) IFR scattering. IFR is modelled through
an exponential correlation function (2.7), with ∆ = 10 nm and Λ = 0.2 nm. Experimental
data is shown with red crosses. Results from our group’s NEGFs code are shown in green. (b)
Experimental and simulated data with (w/) and without (w/o) IFR scattering for JTH as a
function of temperature for the same device. gTH is g = 30 cm−1 (red dots and gold boxes) and
g = 35 cm−1 (green diamond). THeatsink corresponds to the experimental values and TSimulation
for the simulations. The fit functions are JTH = J0eT/T0 , where T0 = 30 K for the experimental
data and T0 = 110 K for LQCL.
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Chapter 5 | Numerics

The main asset of the PERLind approach is its computational lightness. As discussed
in section 2.2.3, its speed stems from the lack of in-plane resolution; that is, the density
matrix we compute is not k-resolved. Therefore, state populations are known, but we
do not have access to the subband electronic distributions. While this sacrifices the
accuracy of the simulations, LQCL manages to qualitatively (and to a certain extent,
quantitatively) reproduce transport in QCLs. In this chapter, we discuss the computation
times associated to the LQCL package. It must be noted that, unless otherwise stated,
the computation times we show here correspond to simulations to first neighbours.

5.1 Computation time for LQCL

The CPU models on which the simulations in this thesis have been run are Intel® CoreTM

i7-8700 3.2 GHz (Mass181 and Mass182) and Intel® CoreTM i7-7700 3.60 GHz (Gluon
and Myon). The user time as a function of the number of WS states is shown in Fig.
5.1. Here, user time is taken as the CPU time needed to execute the process1. It is
is different from wall clock time, which is the total time between the process is called
and finished. User time does not take into account that the CPU can be running other
processes simultaneously. Nevertheless, the times in Fig. 5.1 are approximately equal to
the corresponding wall clock times we would measure with our wrist watch because the
simulations were run individually in single cores.

The results show that the computation time for a single I-V point (Fig. 5.1, a) is below
10 minutes for simulations with 5 WS states or less. This is the case for most THz-QCL
designs [16, 17, 50]. Active region designs based on minibands (i.e. subbands that are
very closely spaced) or mid-IR devices require more WS states in their simulations (over
8 WS states) [49, 52, 53]. In such cases, user time increases to 20-35 minutes, depending
on the number of momentum points used to construct the scattering matrix elements. If
the gain spectrum is included in the simulation (see Fig. 5.1, b), the computation time
rises to 16 minutes for 5 WS states, and to 25-55 minutes for 10 WS states.

The number of momentum points chosen determines how many points will be used
to compute the scattering integrals. The bottleneck of the simulations is precisely these
numerical integrals. The implementation of IFR scattering in the LQCL package, which
requires less integrals than the rest of the mechanisms (see approximation in (C.3)), yields
an increase in user time below 30 seconds per data point (see Fig 5.4). On the contrary,
impurity scattering is the heaviest of the three scattering mechanisms, as there is one
overlap integral associated to each impurity. In Fig. 5.2, we show that the computation
time approximately increases as t ∝ N3, where N is the number of neighbours.

1The total CPU time to run the process is a sum of user and system time, where system time corre-
sponds to the time spent in a priviledged mode within the kernel of the CPU. In our simulations, system
time is negligible in comparison to user time.
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Figure 5.1: User time for LQCL simulations as a function of the number of WS states required
by the device simulated. No IFR scattering was considered. (a) Only a single I-V point is
computed. (b) One I-V point and 11 gain points are computed. The simulated devices are [17]
(3 states), [16] (4 states), [22] and [50] (5 states), [38] (6 states) and [49] (10 states). The effect
of choosing a different number of points (1000, 800, 500 or 200) for the discretization transverse
and longitudinal momenta is shown.
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Figure 5.2: User time as a function of the number of neighbours (first neighbours (1), second
neighbours (2) and so on) for Fathololoumi et al.’s THz-QCL (blue square) [16] and Han et al.’s
THz-QCL [17]. The fit function corresponds to f(x) = Ax3, where A = (32.8±1.5) (blue dashed
line) and A = 14.5± 0.5 (red dashed line).

44



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−3 −2 −1 0 1 2 3

Sq
ua

re
d
ov
er
la
p
fu
nc
tio

n
(a
.
u.
)

qz (nm−1)

1000 points
500 points
200 points

(a)

0

0.5

1

1.5

2

2.5

10 20 30 40 50 60

R
el
at
iv
e
er
ro
r
(%

)

Bias (mV/period)

500 points
200 points

(b)

Figure 5.3: (a) LO-phonon scattering integral of two states in the central period of the device
in [50], for different momenta discretizations. (b) Relative error of the current density for Li et
al.’s THz-QCL [50] as a function of the applied bias. We compare the results for 1000 momentum
points (the default discretization) with 500 and 200 points.

The LQCL package first builds the Lindblad dissipator for LO-phonons, impurities
and IFR. Then, it computes ρ̂. With ρ̂, we can obtain the current density for a given bias
point. To compute the gain spectrum, the time-varying AC field must be included. As it
can be seen in the bar plots in Fig. 5.4, the simulation of the gain spectrum is indepen-
dent of the number of points for longitudinal and transverse momenta: the corresponding
Lindblad dissipator, with all its numerical integrals, has already been constructed in a
previous step. This has a very important consequence: LQCL computes gain spectra
without any additional computational cost once the I-V curve has been obtained.

The default number of points used for the scattering integrals is 1000. It has been
found that such number can be reduced without compromising the accuracy of the results.
The computation time per data point is roughly halved with a reduction of 50% in the
number of momenta points for the scattering integrals. The relative error is below 1% for
the I-V curves when 500 points are used for the integrals (see Fig. 5.3).

5.2 Comparison with NEGFs
The use of NEGFs for QCL simulations is a well-established and robust method to si-
mulate quantum transport in QCLs [10, 12]. Its major drawback is its large computation
load. Our group’s implementation of NEGFs for QCL simulation is discussed in [25]. This
NEGFs code is paralellized [3] and it can simultaneously run in as many threads as avai-
lable in the CPU (12 for Mass181 and Mass182, and 8 for Myon and Gluon). In contrast,
LQCL is not paralellized and uses a single thread for the calculations. To establish a
comparison between both codes, the unparalellized version of the NEGFs code, running
on a single thread, was used.
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Figure 5.4: User time as a function of the number of points for longitudinal and transverse
momenta. Simulations were done with (w) and without (w/o) computing 11 gain points (con-
structing a spectrum) and with or without IFR scattering.
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Table 5.1: Comparison of the user time required to compute one I-V data point with the group’s
implementation of NEGFs [25] and the LQCL package for five THz-QCLs [16, 17, 22, 50, 38].
A single thread was used for both NEGFs and LQCL.

Device N. of WS states NEGFs (s) LQCL (s)
Han et al. [17] 3 491.1 83.5

Fathololoumi et al. [16] 4 726.4 285.9
Li et al. [50] 5 1271.0 459.9

Dupont et al. [22] 5 1548.4 448.5
Williams et al. [38] 6 3069.6 629.9

Table 5.2: Comparison between the NEGFs code and LQCL of the user time required to
compute gain. Using our group’s implementation of NEGFs we compute a single data point at
the design bias of the device; with LQCL, we compute a gain spectrum of 11 points. The devices
shown are [16, 17, 22]. A single thread was used for both NEGFs and LQCL.

Device N. of WS states NEGFs (s) LQCL (s)
Han et al. [17] 3 727.5 94.9

Fathololoumi et al. [16] 4 3261.0 470.5
Dupont et al. [22] 5 10447.1 688.7

The results of the comparison are shown in Table 5.1 and Table 5.2. In Table 5.1, we
show the computation time for a single I-V data point using the NEGFs code and the
LQCL package. The user time for NEGFs is reduced between 60% and 70% with the
LQCL package. Nevertheless, LQCL’s (and PERLind’s) main advantage is that it allows
us to obtain fast time-resolved results, i.e. gain. As we have discussed above, in LQCL
gain spectrum can almost straightforwardly be obtained once the I-V curve is computed.
In Table 5.2, we compare both methods for gain simulation. The time shown for NEGFs
corresponds to a single gain point, while the time shown for LQCL is for a complete gain
spectrum (11 data points). It is here where we see LQCL’s power: the computation time
is reduced between 85% and 90% when we compute gain with LQCL. Most importantly,
it is fundamental to realize that LQCL provides a full spectrum at the design bias of the
device while NEGFs require long times for a single data point.
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Chapter 6 | Conclusion and Outlook

In this thesis, we have tested and analysed the scope and performance of the LQCL
Python package. LQCL simulated quantum transport in QCLs based on a phenomeno-
logical and heuristic density matrix approach called PERLind [26]. Using LQCL, we have
simulated eleven devices (eight THz-QCLs and three IR-QCLs) and compared LQCL’s
results to experimental data as well as our group’s NEGFs code for QCL simulation [25].

We have found that the LQCL simulation package provides good qualitative results.
The package manages to correctly reproduce the general trend of the current density as a
function of the applied bias. In our simulations, we are able to observe parasitic currents,
tunneling resonances and NDR regions where they have been experimentally reported for
their respective devices. Moreover, the computed emission spectra peak at the experi-
mental frequencies. Since the energy of the photoemissions entirely depends on the space
between the levels, a correct gain spectrum asserts the validity of the theoretical approach
we have used to compute the WS eigenbasis. It also supports the reliability of the Fortran
package employed for the same purpose.

We have observed unexpected jumps and peaks in the I-V curves and discussed their
origin. The energy levels in the QCL heterostructure are extended, and these aforemen-
tioned peaks arise when two levels are in resonance. To avoid such jumps and obtain a
smoother I-V curve, we have found that the simulations need to be extended to more neigh-
bours (second or third neighbours). Since the computation time increases accordingly, we
have limited our simulations to first neighbours, keeping in mind that the accuracy can
always be increased at those bias points where the peaks arise in a subsequent step. We
have also discussed that the LQCL package does not provide satisfactory quantitative
results: the current density is generally underestimated at high applied bias, and expe-
rimental maximum and threshold current density values are not reached. We have seen
that extending the simulations to second and third neighbours yields a small increase in
the current density, but it is not sufficient to reach experimental data. We have observed
unphysical negative currents that arise from PERLind.

To understand the cause of the current density underestimation, we have studied the
impact of temperature in the simulations. While at low applied bias it is correct to esti-
mate TE ≈ TL, such approximation becomes too crude at high applied bias, where heating
effects become relevant. We have shown that there exists a correlation between the carrier
excess temperature and the power to be dissipated per particle. In order to model tem-
perature more accurately, we have proposed an energy balance equation to compute TE
at each bias point, similar to that in [31]. The results obtained show little improvement
when compared to the simulations with a single, constant TE. Nevertheless, the energy
balance equation helps us see that LQCL’s current underestimation greatly stems from
its simplified treatment of temperatures. We argue that the lack of in-plane resolution
limits LQCL’s approach to temperature modeling. We are forced to assume that all QCL
subbands are thermalized and share the same temperature. We have also included IFR
scattering in the LQCL package, which has improved the results quantitatively.
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We have compared LQCL’s computation time with our group’s implementation of
NEGFs for QCL simulation. Such comparison shows LQCL is a fast and light simulation
package; it is able to perform time-resolved computations, i.e. provide gain spectra, eight
times faster than NEGFs. Nevertheless, the LQCL package allows further improvements.
The computation time per data point can be reduced through parallelization. Currently,
the Lindblad dissipators for LO-phonon, impurity and IFR scattering are constructed in
series. As impurity scattering is associated to the largest number of numerical integrals,
it bottlenecks the simulations; IFR scattering, on the other hand, is faster to compute
as there is no overlap integral to be computed. The LQCL code could be parallelized by
sending the subroutines that construct the dissipators for each scattering mechanism to
different threads. Such parallelization could make room (and time) for the implementa-
tion of additional scattering mechanisms like alloy scattering, not discussed in this thesis
due to its less important role in QCL transport.

Currently, LQCL’s main limitation is its implementation of the subband electronic
temperature. It is clear that a more accurate treatment of temperature requires assigning
individual TE to each subband. As an outlook for the project, it would be interesting
to implement multi-subband energy balance equations as those in [63] in the package,
instead of a single averaged TE for all subbands. Then, it would possible to test whether
the subband electronic temperatures have the large impact in the current density flow we
have hypothesized in this thesis.

Overall, the LQCL package proves to be a useful and reliable tool for a first, fast
approach to the active region of a QCL. Such initial approach could be later followed by
more detailed and tailored simulations either including more periods and neighbours in
the calculations or using robust methods like NEGFs [25]. LQCL’s speed and lightness,
specially for time-resolved computations of gain spectra, make it an ideal candidate to
search for efficient QCLs via optimization algorithms. Indeed, the future of QCL simula-
tions lies in aiding the experimental development of these devices by guiding researchers
towards more efficient designs.

Fast simulation packages like LQCL enable a systematic search in the QCL parameter
space (e.g. number of wells, alloy fraction or doping density). Optimized structures can
yield higher operation temperatures and output powers. This is the idea behind the re-
cently developed AFTERSHOQ (A Flexible Tool for Electromagnetic Radiation-emitting
Semiconductor Heterostructure Optimization using Quantum models) [64]. Aftershoq is
an interface for QCL simulations. It contains QCL parameters and material information,
and creates a blueprint of the QCL structure. Then, it bridges it with the user’s simula-
tion code - in our case, LQCL - and can initiate a QCL optimization search using Hilbert
curves [64]. The main condition for the appropriate use of this computational tool is to
have a solid and reliable QCL simulation package which is, above all, fast. The results
presented in this thesis indicate that LQCL is on the right track to become a strong can-
didate for future QCL simulations and device optimization.
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Chapter A | LO scattering

In this appendix, we will compute the LO-phonon scattering rate and construct the co-
rresponding Lindblad dissipator following the scheme proposed by the PERLind approach
in Chapter 3 of the thesis.

The LO-phonon scattering rate
The rate at which an electron transitions from an initial state |i〉 to a final state |f〉
emitting or absorbing a phonon is given by Fermi’s Golden rule [30],

Γi→f = 2π
h̄
| 〈f | Ĥel-ph |i〉 |2. (A.1)

The Fhrölich hamiltonian, Hel-ph, given in eq. (2.1), accounts for the electron-phonon
interaction. This interaction involves a momentum exchange: the electron jumps from an
initial state with momentum k to a final state with momentum k′ such that a phonon
with momentum q = k′−k is emitted or absorbed. In the second quantization formalism,
the initial and final states for the absorption of a phonon can be represented as [30]

|i〉 =
∣∣∣nek+q, n

e
k;nphq

〉
, (A.2)

|f〉 =
∣∣∣nek+q + 1, nek − 1;nphq − 1

〉
, (A.3)

where ne and nph indicate the number of electrons and phonons in a given state, re-
spectively. Substituting these states in equation (A.1), the scattering rate is given by
[26, 30]

Γα,k→β,k+q = 2π
h̄

∑
qz

|M qz
βα|2

[
|g−q,−qz |

2δ(Eβ,k+q − Eα,k + h̄ωLO)[fB(h̄ωLO) + 1]

+ |gq,qz |
2δ(Eβ,k+q − Eα,k + h̄ωLO)fB(h̄ωLO)

]
, (A.4)

where fB(E) is the Bose-Einstein boson distribution for phonons, M qz
βα is the overlap

integral in (2.2) and Eα,k = Eα + h̄|k|2
2m , where Eα is the energy of the α quantized level.

The total rate is obtained by averaging over the lateral electronic degrees of freedom [26],

Rα→β =
∑

k,k+q fα,k Γα,k→β,k+q∑
k fα,k

. (A.5)

Electrons are assumed to occupy thermal distributions in the in-plane direction, fα,k ∝
e−Ek/kBT . The denominator in (A.5) is then given by

∑
k

fα,k = A

(2π)2

∫ 2π

0
dφ
∫ ∞

0
k dk e−Ek/kBT = A

(2π)
m

h̄2kBT. (A.6)
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To sum over all lateral degrees of freedom in the numerator of (A.5), the delta function
in (A.4), which accounts for energy conservation, must be rewritten. We notice that

Eβ,k+q − Eα,k ± h̄ωLO = Eβ − Eα + h̄2|k + q|2

2m − h̄2k2

2m ± h̄ωLO =

∆αβ + h̄2q2

2m + h̄2

m
kq cosφ± h̄ωLO = ∆αβ,q + h̄2

m
kq cosφ± h̄ωLO. (A.7)

Using the identity
δ(f(k)) =

∑
i

δ(k − ki)
|f ′(ki)|

, (A.8)

where ki is the i-th root of the function f(k), the delta function is expressed as

δ(Eβ,k+q − Eα,k ± h̄ωLO) = m

h̄2
secφ
q

δ

(
k + m

h̄2
secφ
q

(∆αβ,q ± h̄ωLO)
)
. (A.9)

The integral [26] ∫ 2π

0
sec2 φe−a sec2 φ = 2e−a

√
π

a
(A.10)

allows us to compute the denominator in (A.5) (for the emission of a LO phonon):

∑
k,k+q

fα,kΓα,k→β,k+q = C−
∑
k+q

∫ dqz
(2π)

|M qz
βα|2

q2 + q2
z

A

(2π)2×

×
∫ 2π

0
dφ
∫ ∞

0
k dke−Ek/kBT

m

h̄2
secφ
q

δ

(
k + m

h̄2
secφ
q

(∆αβ,q ± h̄ωLO)
)
, (A.11)

where C− is a constant corresponding to the emission of a phonon. Finally, the total
scattering rate for emission is given by

Rem.
α→β = C̃−

∫ dqz
2π

∫ ∞
0

dq
2π

exp
[
− (∆αβ,q+h̄ωLO)2

4EqkBT

]
q2 + q2

z

|M qz
βα|2, (A.12)

where C̃− is

C̃− = −fB(h̄ωLO)2π
h̄

e2h̄ωLO
2ε0εp

√
mc

2πh̄2kBT
(A.13)

The scattering rate for absorption is computed in an identical way, with some sign changes.
The derivation above has followed those in [26] and [30]. The interested reader is referred
there for further details on the calculation of the rates.

Construction of the Lindblad dissipator
To build a matrix element for the LO-phonon Lindblad dissipator (3.7), it is sufficient to
identify the terms that give spatial and energy resolution from (A.12). The integral M qz

βα

in eq. (2.2) contains the overlap of eigenstates α and β as a result of the electron-phonon
perturbation potential. The remaining factors in eq. (A.12) modulate the intensity of
the interaction and contain energy information. Therefore, the building blocks for the
Lindblad coupling tensor in equation (3.4) associated to the emission of a LO-phonon,
are given by

L
j (LO)
αβ = M qz

αβ, (A.14)
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f (LO)
qz (Eβ − Eα) = C̃−

∫ ∞
0

dq
2π

exp
[
− (∆αβ,~q+h̄ωLO)2

4EqkBT

]
q2 + q2

z

. (A.15)

(A.14) and (A.15) are combined to form the matrix element (3.7), which eventually yields
(3.9) after summing over all qz.
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Chapter B | Impurity scattering

In this appendix, we are interested in computing the impurity scattering rate to build
the corresponding Lindblad dissipator within the PERLind approach. As introduced in
subsection 2.1.2, the screened Coulombian potential that accounts for the interaction of
an electron with an ionic impurity at position zi and charge Zi is

VCoulomb = e2Zi
4πε0εr

e−λ
√
|r−ri|2+(z−zi)2√

|r − ri|2 + (z − zi)2
. (B.1)

Here, r is a two-dimensional vector r = (x, y) and λ is the screening length.

Fourier transform of the screened Coulomb potential
In order to simplify the calculations, we compute the Fourier transform of potential (B.1).
For convenience and only for this subsection, q and r will now refer to 3-dimensional
vectors. The Fourier transform of the potential for an impurity i is given by an expansion
in a plane wave basis

VCoulomb = 1
V

∑
q

V λ
q e

iq·(r−ri). (B.2)

The coefficient V λ
q can be computed by multiplying both sides of equation (B.2) by∫

d3r e−iq
′·~r, applying the orthogonality properties of plane waves and taking the con-

tinuous limit 1
V

∑
q → 1

(2π)3

∫
d3q,

V λ
q =

∫
d3r

e2Zi
4πε0εr

e−λr

r
e−iq

′·r, (B.3)

with r =
√
|r − ri|2 + (z − zi)2. We write the integral in spherical coordinates,

V λ
q = e2Zi

4πε0εr

∫ 2π

0
dφ
∫ π

0
sin θdθ

∫ ∞
0

r e−λre−i|q| |r| cos θdr. (B.4)

The integral in φ can immediately be solved and the one in θ is easily performed by
changing cos θ = u, which finally yields

V λ
q = e2Zi

ε0εr

∫ ∞
0

e−λr

q
sin(qr)dr = e2Zi

ε0εr

1
q

Im
[∫ ∞

0
e(iq−λ)r

]
= e2Zi
ε0εr

1
λ2 + q2 (B.5)

The scattering matrix element
The electron-impurity scattering element is given by

Vα,k→β,k′ =
∫
d2r

∫
dz Ψ?

α,k(r, z)VCoulombΨβ,k′(r, z), (B.6)
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where the wavefunctions Ψα,k are those in eq. (2.9). For a single impurity at zi, we
introduce the Fourier expansion in (B.2) into (B.6)

V i
α,k→β,k′ = 1

A2L

∑
q

∑
qz

e2Zi
ε0εr

∫
d2r

∫
dz ψ?α,k e

i qz(z−zi) ψβ,k′
ei(q+k′−k)·r

q2 + qz + λ2 e
−iq·ri . (B.7)

The expression above can be simplified as follows. First, we use the integral∫
d2r ei(q+k′−k)·r = (2π)2δ(q + k′ − k), (B.8)

which allows us to eliminate the sum in q together with the (2π)2 and one 1/A factor
in (B.7). The Dirac delta establishes the momentum conservation during the scattering
process, where q = k−k′. The integral in qz can be solved in the complex plane, applying
the Residue theorem,

1
L

∑
qz

ei qz(z−zi)

q2 + qz + λ2 = 1
4π

∫ ∞
0

dqz
ei qz(z−zi)

q2 + qz + λ2 = 2πi
∑
m

Res
(

ei q
m
z (z−zi)

q2 + qmz + λ2

)
. (B.9)

The poles of the function are located in

q±z = ±i
√
q2 + λ2. (B.10)

We choose the q+
z pole, which is located north of the Re(qz) axis, as we need to ensure

that the corresponding line integral arising in the complex plane vanishes. We then get

1
4π

∫ ∞
0

dqz
ei qz(z−zi)

q2 + qz + λ2 = 1
2
e−
√
q2+λ2|z−zi|
√
q2 + λ2 . (B.11)

Finally, the resulting scattering matrix element can be written as

V i
α,k→β,k+q = e2Zi

2ε0εrA
e−iq·ri√
q2 + λ2M

i,q
α,β, (B.12)

where
M i,q

α,β =
∫
dz ψ?α(z)ψβ(z)e−

√
q2+λ2|z−zi|. (B.13)

The impurity scattering rate
The impurity scattering rate is given by Fermi’s Golden Rule [26]

Γα,k→β,k+q = 2π
h̄
|〈Uα,k→β,k+q〉|2δ(Eβ,k+q − Eα,k). (B.14)

Here, the squared matrix element must be summed over all impurities i. In order to do
so, we will assume an averaged distribution of the impurities in the period [26],

|〈Uα,k→β,k+q〉|2 = AN2D
∑
i

wi|V i
α,k→β,k+q|2, (B.15)

where wi weights the distribution of impurities and N2D is the period impurity density.
Just as we did to compute the total LO-scattering rate, we need to sum over all the
in-plane degrees of freedom according to eq. (A.5). Once again, we assume an in-plane
thermal distribution for the electrons. Performing the integral in k as we did in Appendix
A and using the normalization eq. (A.6), we are left with the following total rate

Rα→β =
∑
i

∑
q

2π
h̄
wiN2D

(
e2Zi
2ε0εr

)2√
mc

2πh̄2kBT

e−∆αβ,q/4EqKBT

q2 + λ2 |M i,q
βα|2 (B.16)
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Construction of the Lindblad dissipator
The information about the locality of the transition is contained within the overlap in-
tegral (B.13), which includes the quantized wells levels as well as information about the
scattering potential for a single impurity. Therefore, according to the PERLind approach,
we associate a jump operator to it,

L
i,q (imp)
αβ = M i,q

αβ. (B.17)

It is important here to notice that we will have as many jump operators as impurities.
The energy-dependent function that modulates the strength of the transition can be, as
we did for LO-scattering, inferred from the scattering rate (B.16),

f
(imp)
i,q (Eβ − Eα) = 2π

h̄
wiN2D

(
e2

2ε0εs

)2√
mc

2πh̄kBT
e
−

(∆αβ,q)2

4EqkBT

q2 + λ2 . (B.18)

Using (B.17) and (B.18), we construct the matrix element for the Lindblad dissipator
(3.7) that accounts for impurity scattering.
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Chapter C | IFR scattering

In this appendix, we construct the Lindblad dissipator for IFR scattering within the
PERLind approach. For that purpose, we will first compute the total IFR scattering
rate, and identify the energy and space-resolving elements required by the approach in a
subsequent step.

The IFR scattering rate
IFR scattering is an elastic scattering that originates from the random fluctuations of
barrier width at the interfaces of a semiconductor heterostructure (see Fig. 2.3). Such
fluctuations can be modelled by a potential [10]

V = ±V0 [θ(z − z0)− θ(z − z0 −∆(r))] , (C.1)

where V0 is the band offset, z0 is the average interface position and ∆(r) is the variation
in height. The function θ(z − z0) is known as the Heaviside function, defined as

θ(z − z0) =

0 z < z0

1 z ≥ z0

The potential matrix element, accounting for a single interface at z0, is given by [10]:

Vα,k→β,k+q = ±V0

A
|ψα(z0)ψ?β(z0)|

∫
d2r ∆(r)ei q·r (C.2)

where the eigenfunctions have been approximated to

ψα,β(zn + ∆(r)) ≈ ψα,β(zn). (C.3)

This approximation is reasonable because height fluctuations are assumed to be small
(0.1-0.4 nm) [34]. The squared matrix element is given by

|Vα,k→β,k+q|2 = V 2
0
A2 |ψα(z0)ψ?β(z0)|2

∫
d2d

[
eiq·d

∫
d2r∆(r)∆(r + d))

]
(C.4)

where
F (q) =

∫
d2d eiq·d

∫
d2r∆(r)∆(r + d) (C.5)

corresponds to the Fourier transform, F (q), of the fluctuation correlation function,

〈∆(r)∆(r + d)〉 =
∫

d2r∆(r)∆(r + d). (C.6)

As discussed in section 2.1, the correlation function can be modelled as a Gaussian (2.6)
or an Exponential function (2.7) [3, 10]. The corresponding Fourier transforms are

F (q) = π∆2Λ2 exp
(
−Λ2|q|2

4

)
(C.7)
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for a Gaussian correlation function and

F (q) = 2π∆̃2Λ̃2(
1 + ∆̃2|q|2

)3/2 (C.8)

for exponential modeling. To compute the scattering rate, we turn to Fermi’s Golden
Rule and include the contribution of all interfaces at positions zi,

Γα,k→β,k+q = 2π
h̄

V 2
0
A2

∑
i

|ψα(zi)ψ?β(zi)|2|F (q)|2δ(Eβ,k+q − Eα,k). (C.9)

As discussed in Appendix A, the total rate is obtained by averaging over the in-plane
degrees of freedom as given by eq. (A.5). The normalization constant can be found in
(A.6). We can perform the integral in k,

A

(2π)2

∫
dφ
∫
k dk δ(Eβ,k+q − Eα,k) = A

2πh̄

√
m

2πkBT
e

[
−

(∆αβ,q)2

4EqkBT

]
, (C.10)

where the identity (A.8) and integral (A.10) have been used. The averaged rate is

Rα→β =
∑
q

∑
i

V 2
0

Ah̄2

√
m

2πkBT
|ψα(zi)ψ?β(zi)|2 |F (q)|2 e

[
−

(∆αβ,q)2

4EqkBT

]
. (C.11)

Construction of the Lindblad dissipator
The jump operators to construct the Lindblad dissipator are derived from the averaged
rate (C.11). The identification of the operators can be done in two different ways: either
we consider the interfaces to be correlated and hence, work with a single operator or
assign an operator to each interface. Since the latter scenario is much more likely, we
assign an operator to each interface i,

Liαβ = |ψα(zi)ψ?β(zi)|. (C.12)

This function includes information about the spatial overlap of the eigenfunctions as a
result of the scattering potential. The function that accounts for the energy dependence
is given by

f(Eβ − Eβ) = V 2
0

Ah̄2

√
m

2πkBT
|F (q)|2 e

[
−

(∆αβ,q)2

4EqkBT

]
, (C.13)

from where we can get L̃iab =
√
f(Eb − Ea)Liab. The coupling tensor is constructed by

adding the contributions of every interface i and integrating over q.
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