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Sammanfattning
Syftet med examensarbetet är att undersöka möjligheten att presentera en kompositvy
där den ena delen av vyn visar bilens omgiving, sett ur ett fågelperspektiv, och den an-
dra visar bilens backkamera. För att undersöka denna möjlighet byggdes två prototyper
baserade på två separata implementationer av parkeringskameran. Den första proto-
typen baseras på Volvo Car Corporations egen version av Android OS, och är begränsad
av en enhet som kontrollerar samt processar den kameraström som visas på bilens skärm.
Den andra prototypen är baserad på en dator med operativsystemet Linux och utnyttjar
OpenCV för att hantera de fyra kameraströmmarna på grund av avsaknad av tidigare
nämnd kontrollenhet.

För att bedöma kvaliteten på respektive prototyp samlades mätdata in av upplevd
latens samt hur många bilder prototypen kan strömma per sekund. De båda proto-
typerna uppvisade snarlika resultat med avseende på upplevd latens, dock var antalet
bilder per sekund lägre än väntat i den andra prototypen. På grund av tidsbegränsingar
gjordes aldrig någon grundlig undersökning av vad som orsakade problemet.



Nyckelord
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Abstract
In this thesis two prototypes, based on separate implementations of a Park Assist Cam-
era, was developed. The purpose was to investigate the possibility of presenting a com-
posite view, where the first view shows the surroundings of the car from a bird’s-eye view
and the other view shows the rear camera. The first prototype was based on Volvo Car
Corporations flavour of Android OS, where the performance of the prototype was limited
by a component responsible for processing frames from the four cameras into a single,
continuous, stream. The second prototype, based on a computer running Linux, used
OpenCV to process the camera streams due to the absence of aforementioned component
in the first prototype.

To evaluate the performance of each prototype, the amount of frames being rendered
each second was measured as well as the perceived latency. Both prototypes presented
almost identical results regarding perceived latency, while the first prototype performed
better in regard to frames per second. However, the second prototype was unexpectedly
suffering from a low frame rate which was not thoroughly investigated due to time
constraints.
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1 Introduction
The following section is dedicated to give a brief overview of the projects preconditions.

1.1 Background

Volvo Car Corporation (VCC) is a Swedish car manufacturer who, in recent times,
has decided to handle a larger part of their software development internally. This in
contrast to outsourcing the development to a third party supplier, which is the traditional
approach in the automotive industry. This thesis was requested by a team at VCC’s
office in Lund. The team focuses on the Park Assist Camera (PAC) in the car and
were interested in the possibility of presenting a rear camera view simultaneously with
a Bird’s-Eye View (BEV). The goal is to present a combined view to the user/driver
to eliminate the need to manually switch between the two separate views. The idea
behind presenting both views simultaneously is their contrasting usefulness in different
situations. The bird’s-eye view provides an overview of close proximity surroundings in
every direction, whereas the rear view provides more depth in the image though only in
the backwards direction. Thus, showing both views together may be desirable for the
driver.

VCC’s PAC-model consists of four wide angle cameras connected to a camera mod-
ule, in this thesis denoted the Camera Control Module (CCM) for proprietary reasons.
The cameras are placed one on each side of the car and each one produces a camera
stream which is received by the CCM.

The camera streams are presented to the user/driver through the car’s infotainment
display. This display is controlled by a computer, called the Infotainment Head Unit
(IHU), running the Android operating system and is hence a so called “Android-based
In-Vehicle Infotainment”.

This system includes a Hardware Abstraction Layer (HAL) which includes an Ex-
terior View System (EVS) stack. This stack provides the system with an interface for
controlling the camera streams and what is shown on the infotainment display.

In addition, VCC have begun development on the next generation hardware plat-
form. This platform benefits from being able to replace hardware components, like the
CCM, with software-based solutions achieving the same result. Thus, expensive hard-
ware can be omitted with the implication of an overall simpler hardware structure. Fur-
thermore, the long lead times associated with outsourcing development to third parties
can be avoided.

1.2 Purpose

The purpose of this thesis is to investigate the possibility of presenting a composite
view for the driver, meaning both the bird’s-eye view and rear view being rendered on
the car’s infotainment display simultaneously. This will be achieved by developing two
prototypes, based on current hardware and next generation hardware respectively.
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1.3 Goal

The goal for this thesis is to create two prototypes showing a composite view of the
PAC and comparing their performance in regards to frames per second and perceived
latency. Also their respective shortfalls will be identified. The first prototype will be
designed for VCC’s current hardware and extend already existing software. The second
prototype will be developed on VCC’s next generation hardware with fewer constraints
in respect to hardware components like the CCM. As a result of omitting these hardware
components, more processing must be done by the IHU, for example stitching and post
processing of the images generated by the four cameras, resulting in a bird’s-eye view.

1.4 Problem

To achieve the goal of this thesis, the following questions are meant to be answered:

1. How is the first prototype limited by the CCM?

2. What deficiencies are present in the prototype based on current generation hard-
ware?

3. How does the performance compare between current generation hardware and next
generation hardware?

1.5 Justification

The justification of this thesis is our interest in acquiring a deeper knowledge in the
following areas:

• How complex systems in the automotive industry are built.

• How to develop graphic applications with OpenGL/OpenCV.

• Development in multiple abstraction layers in Android.

• Cross language implementation (Java, JNI, C++).

• Development on/for embedded systems.

VCC’s justification for requesting the thesis is their interest in researching the pos-
sibility to render multiple camera streams simultaneously. This is a feature requested
by customers and is available in cars from multiple rivalling car manufacturers. Further-
more, to comply with the requirements of US legislation, car manufacturers are bound to
display the rear view camera when a backing event have been initiated by the driver[1,
p. 69]. Thus the initial view presented to the driver can not solely be the BEV. One solu-
tion to this problem is to present a composite view where one of the fragments consist
of the rear view.
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1.6 Delimitations

As a result of conducting this thesis at VCC, proprietary information must either be
omitted or modified.

Regarding the first prototype, the camera stream is treated by different systems
depending on if the OS has booted or not. The prototype will be limited to the system
running after the OS has booted. Furthermore, the prototype must be based on VCC’s
existing code base and support already existing features provided by VCC. It shall also
use the already existing hardware structure, including the CCM, for acquiring camera
streams. Thus the prototype will also be limited by the nature of the CCM.

The second prototype is of secondary priority and is therefore limited by the time
invested into the first prototype.
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2 Technical background
This section is devoted to clarifying the different hardware and software structures used
in this thesis. Furthermore, the interaction between the different hardware modules
related to the PAC will be described as well as their individual behavior. Also, since the
first prototype in this thesis is developed in both native C++ and Java, the connection
between the two is explained.

2.1 Hardware components of the PAC

The hardware components involved in the PAC can be simplified into the components in
fig. 1. The IHU is an embedded system, running Android, responsible for coordinating
other components in the car as well as managing presentation on the infotainment screen.
Regarding the PAC, the role of the IHU is to acquire a raw video stream from the
CCM and present it on the infotainment screen while performing required modifications
and additions to the stream. Hence, the prototype developed for this thesis will solely
be developed on this component in the stack. The CCM will be further described in
section 2.4.

Fig. 1 – Concept of PAC hardware structure

2.2 Software components of the PAC stack

VCC’s specific components of the PAC stack that are developed and maintained by VCC
is proprietary. However, parts of the PAC structure follow the EVS structure in fig. 2.
At the top layer a PAC service corresponding to the car service in fig. 2 is running after
the Android OS start-up has finished. The service is responsible for inflating the PAC
layout on the infotainment screen whenever it detects that the reverse gear signal has
been actuated by the gearbox. The inflated layout contains the output camera stream
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from the CCM, further explained in section 2.4. Rendering of the camera stream is
handled in the native layer (EVS Application in fig. 2) of the PAC stack communicating
with the hardware through the hardware abstraction layer (HAL).

Fig. 2 – Overview of the EVS software system components in the Android Vehicle Camera
HAL. Source: [2]

2.3 Communication between native code and Java

Android is an open source operating system available for third parties to develop and
customize to their own variant [3]. The source and it’s documentation is available in the
Android Open Source Project (AOSP) repository. The infrastructure of the AOSP stack
provides abstractions for communicating with the manufacturer’s hardware e.g. the EVS
(see fig. 2). Third parties are responsible for supporting hardware and all functionality
involved. Native implementation is done in the C++ language and Android’s top layer
is developed in Java. To be able to communicate between the layers, AOSP uses the
Java Native Interface (JNI) which is a framework with the main purpose of allowing Java
code running in a Java VM to interoperate with code developed natively in C++ [4].
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2.4 Camera Control Module (CCM)

The CCM is a component with the purpose of receiving input data from all four park
assist cameras as well as specifying a certain camera stream, from the other PAC com-
ponents in the car. This image data is processed within the CCM and output on a single
video stream. The output video stream can only show one of the cameras at a time or
all four cameras simultaneously through a BEV, further explained in section 2.5. That
is, it is not possible to show both the BEV and the rear view at the same time. The
resolution of the output stream is a constant 768 ·1024 pixels even though the resolution
of the camera frame is smaller. This means that parts of the video stream consists solely
of black pixels. The top left corner of the video stream is always the top left corner of
the camera frame regardless of the size of the frame as illustrated by figs. 3 and 4. The
image can later be centered by offsetting the video stream along the x- and y-axis.

Communication with the CCM is done through a signal framework which is managed
by the native PAC components. To send a signal from the Java layer to the CCM, a
function must be constructed in the JNI. This function can then use the signal framework
to send a request for a specific view to the CCM. The CCM will process the request and
send the specified camera stream back to the IHU. The amount of time required by the
CCM to process the request is not specified. After the correct video stream has been
sent to the IHU, an acknowledgement signal is sent which will indicate the current state
of the video stream.

Fig. 3 – Original BEV stream Fig. 4 – Original rear view stream
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2.5 Bird’s-eye view (BEV)

BEV is a term describing viewing something from above. The term is commonly used
in the car industry, describing a view showing the cars surroundings from above. An
example of a BEV is presented in fig. 3. This view is achieved using a technique where
one camera on each side of the car is combined into a single view using algorithms
modifying each camera stream. The cameras on the car are wide angle cameras with a
field of view (FoV) of almost 180◦. Since these cameras are pointing horizontally on the
car, some modifications of the camera stream are required to achieve the desired vertical
view required for the BEV. This is only possible with a camera with a large FoV since
is is not possible to change the physical angle of the camera.

Cameras with a large FoV causes inaccuracies in the picture called curvilinear per-
spective [5], or fish-eye effect, where straight lines at the edges of the frame appear bent.
The countermeasure to this problem is called de-warping and is one of the modifications
that has to be made to the PAC to achieve an accurate vertical view of the camera and,
thereby, an accurate BEV.

2.6 OpenCV

OpenCV is an open source library intended for computer vision and machine learning
[6]. OpenCV also provide algorithms for stitching and undistorting images, as well as
other functions for manipulating images, useful in development of the second prototype
in this thesis.

2.7 OpenGL

OpenGL is a graphics API, maintained by Khronos Group, for developing 2D and 3D
applications. It provides functionality for rendering and texture mapping, among many
other functions and is often used to communicate with a GPU [7]. OpenGL is primarily
used in the first prototype in this thesis.
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3 Methodology
This section describes how the thesis work was conducted. Since the thesis is based
on the development of prototypes, the development process along with how data was
gathered for performance analysis is described in fig. 5.

Fig. 5 – Illustration of how the thesis work was conducted.

3.1 Study of current documents

To identify a suitable breakdown structure of the problem, the first step was to ac-
quire knowledge from similar code structures in VCC’s code base and study internal
documentation of the CCM and the IHU embedded system. One vital part is the un-
derstanding of how signals are passed, via the internal data signaling framework (DSF),
and understanding how the camera streams are propagating through the system.

3.2 Developing the first prototype

The process of developing the first prototype was based on an iterative work model,
where the main goal was divided into several smaller and more comprehensible tasks
extending the functionality of the prototype step by step. Another benefit of this model
was that the prototype could be kept in a working state during the entire development
process. Working this way proved useful since it allowed for continuous testing of the
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prototype at any point in time of the development phase. Furthermore, continuous
testing of the prototype allowed for easier detection of bugs and introduction of erroneous
code. However, this made it more difficult to work on different parts of the prototype
simultaneously. To circumvent this obstacle, the process was influenced by one main
feature from Extreme Programming [8]; Pair programming. By using pair programming
in the development process it was easier to detect mistakes in the code early which
turned out to have a bigger impact on the development process than expected. Since
the the prototype is a full stack implementation, every new version of the source code
had to be compiled and built followed by flashing/writing the new binaries to the IHU
unit. Otherwise it would be sufficient to only replace the Java application. The whole
process took an average time of five minutes presuming no errors were detected in the
code and ccache was used. Ccache is a tool for the GCC compiler [9] making caching of
the compilation possible, thus decreasing the amount of code that needs to be rebuilt.
In the end of the development phase of prototype one it was realized that the Android
environment setup script provides a tool chain including different build tools. One such
tool provided is mm and mma [10] which allows for building sub modules of the source
tree. These tools would greatly improve development speed because building the whole
source tree could have been avoided for all builds except the first.

3.2.1 Creating two render surfaces

The first milestone of the prototype was to be able to render two instances of the same
video stream in two separate OpenGL-surfaces on the screen. The development started
with creating a custom view with the maximum allowed width and height, which is
decided by the parent layout. The layout was a LinearLayout [11] which separates child
elements vertically, resulting in the child views being stacked on top of each other. To
decide how much vertical space to assign to each view, a weight sum was declared in
the parent view. This allows the child views to allocate a certain percentage of the
screen dynamically by declaring their individual weight in the parent view. This may be
found useful later since the two different camera streams have different aspect ratios and
therefore may require different amounts of screen real estate. Inside the parent view, two
child views were placed both with an equal weight leaving them with half the vertical
space each. Both child views were then connected to the same render manager resulting
in this render manager giving both views the same data to render. This solution worked
as expected apart from the bottom part of the video stream not being visible when
rendering the BEV, as a result of the real estate being divided equally. This, however,
was decided to be solved later when the two render surfaces was showing different video
streams.

3.2.2 Switching between camera streams

After being able to show the same stream in both views simultaneously, the next step
was to periodically request the different views. However, still showing the same view
in both rendering surfaces. The initial idea was to create a callback-based structure in
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a designated thread. This thread was supposed to request a view from the CCM, wait
for the CCM to process the request, and send its acknowledgement signal as a callback.
When receiving the callback signal the thread was supposed to request the other camera
stream and, in this manner, keep requesting alternate views when receiving the callback
from the previous request. This solution was later abandoned due to, what was believed
to be, infrastructure problems in the DSF causing acknowledgement signals to never
reach the calling thread. This problem was later found to only affect the IHU when
connected to the test equipment, used to simulate signals of a real car in a synthetic
manner. When connected to a real car the signals were received in accordance with
the documentation of DSF. However, even when the signals were propagating correctly,
the time required by the CCM to process the request was believed, by colleagues, to
be around 200 ms. As a result, the next request would not be sent any less than 200
ms after the previous request, meaning only a maximum of five requests could be sent
every second. Not being able to switch views more frequently than five times per second
would create a bottleneck in the system, thus limiting the performance of the prototype.
Instead a solution based on a controller thread in the PAC service was implemented.
The solution built on the same philosophy as the previous solution but using a periodic
request instead of waiting for a callback from the CCM. This design was realized with
a separate thread controlled by the PAC Service. The sole purpose of this thread was
to request the two camera streams alternately, while sleeping a specified amount of time
between each request, indefinitely until it is interrupted by the PAC Service. By running
this functionality in a separate thread, halting the main thread could be avoided while
assuring time consistency in the CCM requests. This consistency was preserved by the
thread only being responsible for a single task and providing no direct communication
with other threads.

3.2.3 Selective rendering depending on camera stream

After achieving periodic switching between camera streams, the logical step to proceed
was to implement functionality that allows each rendering surface to only render one of
the incoming camera streams. The first obstacle encountered was how to perform the
selective rendering accurate enough to only render correct frames. The initial solution
to this problem was to listen for the signal confirming a change of camera stream from
the CCM. As mentioned in section 3.2.2, there was an issue with the data signaling
preventing this solution. This required rethinking the structure of the prototype and to
come up with another solution for the selective rendering.

The first idea that came to mind was to construct a solution that avoids switching
which surface is allowed to render for a given time span. As previously mentioned this
time span was estimated to be ≈ 200 ms. Therefore a first version of the prototype was
constructed, waiting 200 ms after the request was sent before switching the rendering
surface that was allowed to render. This however was performing poorly, with no con-
sistency with respect to which frame it was rendering. This was the first indication of
fluctuations in the CCM delay.

The prototype was updated by introducing a span of 50 ms in which neither of the
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rendering surfaces were allowed to render. This improved the result but the rendering
surfaces still occasionally rendered the wrong frame. At this point it was clear that the
delay in the CCM had to be measured. These measurements are presented in fig. 10,
page 43.

The results vary 149 ms regarding the time it takes for the CCM to provide the new
video stream. Since the CCM can change the video stream at any point in the given time
span, the only solution was to allow neither surface to render during this period. This
proved problematic since increasing the time span, allowing neither surface to render,
would lead to several dropped frames, thereby decreasing the quality of the prototype.
This led to the realization that the solution would perform too poorly, if it was even
possible to make it perform correctly. Thus, the solution was discarded.

Instead, the problem was approached from a different angle, where each image ar-
riving in the graphic buffer for image processing is analyzed. By analyzing the incoming
frame it is possible to identify it based on the fact that the different camera views sent
by the CCM have different aspect ratios, where black pixels fill the remaining gap on
the screen. By analyzing an area known to be either black or colour depending on the
view, it’s possible to identify what view the CCM is currently streaming. The algorithm
for identifying frames is presented in appendix B and the analyzed pixels are illustrated
by a red line in figs. 6 and 7. Based on this information the correct rendering surface is
allowed to render. As a result, the other rendering surface is blocked and the surface is
frozen at the last frame rendered before the video stream changed.

Fig. 6 – Original BEV with a red line il-
lustrating the pixels being analyzed

Fig. 7 – Original rear view with a red line
illustrating the pixels being analyzed

A collection of measurements was acquired and showed significant deficiencies with
respect to delivered frame rate. The BEV and rear view individually measured 5 and 13
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fps respectively, together reaching a total of 18 fps. This result equals a loss of approx-
imately 40% of the frames delivered by the CCM, which delivers a continuous stream
at 30 fps. The initial thought was that the CPU was choked, and therefore throttling
the process. However, this idea was rejected after measurements of the CPU load was
gathered. The gathered measurements did not explain why the problem occurred and
only showed a minor increase of the the CPU load when switching camera stream every
10 ms compared to when utilizing a fixed camera stream.

After analyzing the manager responsible for rendering both surfaces, located in the
Java layer of the application, it became clear that both managers call the method glBind-
VideoTextureCompositeView() shown in appendix A. Every call to the method resulted
in retrieval of the latest frame in a series of buffered frames. Thereafter the frame is
analyzed and discarded (deallocated), independently of the result of the pixel analysis.
This turned out to be the source of the issue with dropped frames, since it prevents other
callers from analyzing the same frame, thus leading to the frame never being rendered.

With this theory in mind a new possible solution was created. It was built on the
notion that it might be acceptable to occasionally loose a frame from the spectators point
of view. The code was again modified to keep track of a state, updated by the outcome
of the pixel analysis in the glBindVideotextureCompositeView method appendix A. If
the outcome differed from the expected outcome, the frame was discarded and the state
indicating a hand over to render the next view was set.

The result showed a minor increase from 18 to 20 fps but with the unexpected
outcome of 5 and 15 fps respectively for the BEV and the rear view. It is clear that
the rear view shows the desired result of 15 fps but for some reason the result for the
BEV deviates. As a result, the prototype was further investigated and the cause of the
problem was linked to the previous issue causing dropped frames.

The solution was to avoid discarding a frame unless the caller had rendered it. This
allowed for other callers to analyze that same frame. I.e. a caller is only allowed to
discard a frame it has successfully rendered, since no other caller should render the same
frame again. Note that a vital part for this solution to work is that every frame must be
rendered by exactly one view. Otherwise the frame will never be discarded, and thereby
block all future frames from being rendered.

After the issue was resolved, the result (see section 4.1) improved to 13 and 17 fps
respectively for the BEV and rear view, thus fully utilizing the CCM’s output capacity
of 30 fps.

3.3 Testing and Measurements

In this section the different measurements performed on the prototypes are explained,
covering both how fps and perceived latency were calculated.

3.3.1 Frames per second

The number of frames per second was measured by creating a class in the native layer
of the application, containing a counter intended to be increased every time a frame was
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drawn. By using two instances of this debug class, one for each rendering surface, it was
possible to count the individual number of rendered frames. The debug tool also kept
track of the time stamp of the first and last rendered frame respectively. By using the
following equation it was possible to calculate the average number of rendered frames
per second for a single rendering surface:

Average fps = n

tn − t0

n = number of rendered frames
tn = time of last frame
t0 = time of first frame

3.3.2 Latency of camera pipeline

Every camera pipeline suffers from latency due to the steps involved in producing the
final image, transformed from data captured by the CMOS sensor. To measure the
latency introduced by the prototype, the following equipment was used:

• External camera capable of recording in 120 fps.

• LED light.

• Stopwatch with millisecond accuracy run on a computer screen with 120 Hz refresh
rate.

The equipment was set up in the following way:

1. External camera recorded:

• Infotainment display.
• LED light.
• Stopwatch.

2. PAC camera recorded:

• LED light.

To measure the perceived latency of the prototype a test setup was constructed
according to fig. 8. The purpose of the test was to record the elapsed time between
the real world event taking place, and the event being rendered on the infotainment
screen. For the purpose of the test a LED light was used as a distinct way of indicating
the occurrence of a real world event which is also easy to distinguish in the rendered
frame. To be able to extract a time stamp of the actual event and the rendered event
respectively, a stopwatch had to be visible in the recording at all times. The perceived
latency was calculated as the difference between the time stamps acquired by analyzing
the recorded video frame by frame.
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The accuracy of the perceived latency was found to be approximately 8 ms (1000
ms/120 ≈ 8 ms) due to the time resolution of the stopwatch and the recording device.
It is also worth noticing that recording in a higher frame rate than 120 fps would not
improve the result as the computer screen presenting the stopwatch had a maximum
refresh rate of 120 Hz.

Fig. 8 – Illustration of the test setup used to measure perceived latency in the PAC

3.4 Developing the second prototype

In this section, development of the second prototype will be explained.

3.4.1 Examining the prerequisites

For development of the second prototype a computer running Linux, with hardware
connections for the four cameras, was provided. This computer was equipped with an
existing program capable of rendering the camera streams. The image processing and
rendering was executed solely with OpenCV, a framework explained in section 2.6. The
entire program was written in C++ and was created in a fashion where an initial setup
was executed when running the program. Thereafter an event loop would run until
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interrupted by the user. This loop primarily fetched, altered, and rendered frames from
all four cameras while also handling input from the keyboard to toggle certain options
on or off. Aforementioned alterations include the process of creating a BEV from the
four camera streams, a process handled by the CCM in the first prototype. The view
rendered to the screen contained a BEV, as well as the raw, distorted, stream from each
camera. The goal was to modify this view in line with the layout on the first prototype to
only show the BEV and the rear view, however undistorted. A problem encountered with
this prototype was the limited frame rate of only 8 fps. This frame rate is surprisingly
low considering the absence of a CCM, since the CCM was the bottleneck in the first
prototype. Without this limiting component it should be possible to render much higher
frame rates.

3.4.2 Testing and measurements

To measure the average fps on the second prototype, the same measurement class men-
tioned in section 3.3.1 could be used since both programs were written in C++. In
line with the measurement of fps in the first prototype, a frame was added to the the
measurement whenever a frame was rendered onto the screen.

Regarding measurements of the perceived latency, the corresponding setup used for
measurements of the first prototype (see fig. 8), could also be applied to the second
prototype. By measuring performance factors in the same manner on both prototypes,
the trustworthiness of the measurements increases since it decreases the margin of error.

3.5 Criticism of sources

In this thesis the following two forums have been used during the development to sup-
port choices: [12, 13]. However, it is important to keep in mind that discussions and
statements in forums can not be considered a reliable source of information since the
credibility of the author cannot be determined. Thus, statements in this thesis based on
information from forums has either been confirmed by testing, or has only been part of
a speculation.

[2–4, 6, 7, 9–11, 14, 15] are documentation of libraries, API’s, development environ-
ments and tools used for the purpose of developing the prototypes and can be considered
reliable since they are either written by the maintainers/developers or by a well known
organization that is considered trustworthy and have nothing to gain from providing
incorrect information regarding technical documentation. This also applies to sources
[5, 8] which are mainly used for explanatory purpose of terms.

[1] a document provided by U.S. National Highway Traffic Safety Administration
(NHTSA). Therefore it can be considered a reliable source of information concerning
Park Assist Camera regulations.
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4 Result
In this section the results of all measurements are presented as well as an image of the
final prototype. The results are categorized in line with the two prototypes to favour
comparison between the two. All graphs are collected in appendix D.

4.1 First prototype

A view of the prototype is shown in fig. 9.
Performance measurements of the prototype are as follows:

• Average fps only rendering one view: 30 fps.

• Average fps in BEV: 13 fps.

• Average fps in rear view: 17 fps.

• Perceived latency in BEV when rendering both views (switching every 10 ms):

– Average: 314 ms.
– Min: 267 ms.
– Max: 366 ms.
– Graph: fig. 11.

• Perceived latency in BEV when rendering both views (switching every 150 ms):

– Average: 323 ms.
– Min: 267 ms.
– Max: 434 ms.
– Graph: fig. 12.

• Perceived latency when only rendering BEV:

– Average: 203 ms.
– Min: 184 ms.
– Max: 216 ms.
– Graph: fig. 13.

• Perceived latency in rear view when rendering both views (switching every 10 ms):

– Average: 280 ms.
– Min: 234 ms.
– Max: 324 ms.
– Graph: fig. 14.
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• Perceived latency in rear view when rendering both views (switching every 150
ms):

– Average: 309 ms.
– Min: 234 ms.
– Max: 416 ms.
– Graph: fig. 15.

• Perceived latency when only rendering rear view:

– Average: 173 ms.
– Min: 150 ms.
– Max: 185 ms.
– Graph: fig. 16.

• Latency in the CCM when switching to BEV:

– Average: 186 ms.
– Min: 130 - 139 ms.
– Max: 260 - 269 ms.
– Graph: fig. 10.

• Average latency in the CCM when switching to rear view:

– Average: 153 ms.
– Min: 60 - 69 ms.
– Max: 200 - 209 ms.
– Graph: fig. 10.
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Fig. 9 – Final version of the first prototype
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4.2 Second prototype

Performance measurements of the prototype are as follows:

• Average fps in BEV: 8 fps.

• Average fps in rear view: 8 fps.

• Perceived latency in BEV:

– Average: 267 ms.
– Min: 231 ms.
– Max: 308 ms.
– Graph: fig. 17.

• Perceived latency in rear view:

– Average: 267 ms.
– Min: 231 ms.
– Max: 308 ms.
– Graph: fig. 18.
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5 Analysis
This chapter is dedicated to analysis and discussion with respect to the extracted meas-
urements in section 4, page 24. This with the purpose of answering the problems in
section 1.4.

5.1 Prototype one

In this section the result of the first prototype will be analyzed and evaluated in order
to justify the conclusions, regarding the first prototype, stated in this thesis.

5.1.1 Frames per second

As the results show, the final version of the first prototype managed to output an average
of 17 and 13 fps for the rear view and BEV respectively. Both views sum up to 30 fps
which is the maximal frame rate the CCM can output. Thus, the prototype manages
to handle all frames delivered by the CCM and causes no loss of efficiency. The reason
for the difference in frame rate between the rear view and BEV can be explained by the
measurements performed on the CCM, as shown in fig. 10. The result of this measure-
ment shows that the switch from rear view to BEV takes approximately 33 ms longer
than the switch from BEV to rear view. When rendering a video in 30 fps, as the CCM
does, one frame is outputted every 1000 ms/30 ≈ 33 ms which shows the CCM requiring
one additional frame to switch to the BEV. Since it takes one additional frame to switch
to the BEV, the rear view is going to be allowed to render one additional frame for each
switch. Thus the rear view is going to provide a higher frame rate than the BEV. A
potential solution to this would be to alter the thread requesting views from the CCM,
to make it wait an additional 33 ms before requesting the rear view.

5.1.2 Perceived latency

After comparing the results regarding perceived latency with the reference values, it
is clear that the first prototype does increase the latency in the system. The average
latency in of the rear view is 280 ms compared to 173 ms in the reference measurement.
As a result, the average increase in latency is 107 ms. The increase is approximately
equal in the BEV, where the latency went from 203 ms in the reference measurement
to 314 ms in the prototype, an increase of 111 ms. Additionally, the fluctuation in the
latency increase in line with the time between each request from the thread requesting
views from the CCM. This is illustrated in figs. 11 and 12 where the time between
each request is 10 ms and 150 ms respectively. The same behavior can be observed in
figs. 14 and 15. Aforementioned behavior is a result of the increasing time the rendering
surfaces are being allowed to render since the presently rendering surface will have a
shorter delay closer to the reference. However, at the expense of increasing the latency
in the currently frozen surface. In the case of a system such as a PAC, predictability
is important since the contrary can give the driver a false sense of security. Moreover,
a false sense of security can lead to accidents in the form of the driver assuming their
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path is clear. Thus, consistency of the perceived latency can be considered an important
factor when evaluating the quality of a PAC. With this in mind, it can be concluded
that using a shorter interval between each request to the CCM will increase the quality
of the prototype.

The importance of keeping the latency in the system to a minimum is illustrated in
the following example, using values from the first prototype: A car reversing in a parking
lot at ten kilometers per hour moves approximately 2,78 meters per second. Considering
a latency of 203 ms, the car will move 2, 78 · 0, 208 ≈ 0.578 m before the driver has a
chance to react. By increasing the latency by 111 ms, in line with the first prototype,
the car will under the same conditions move 2, 78 · 0, 319 ≈ 0.886 m. This would be an
increase of 0, 308 m, or 53%. Thus the question arose: does the benefit from a better
overview of the car’s surroundings exceed the cost of additional latency introduced into
the system?

5.1.3 Analyzing the frequency of CCM requests

The frequency of how often requests were performed proved to affect the stability of the
perceived latency. Two different frequency intervals were chosen: 10 ms and 150 ms. As
a reference, the perceived latency when only rendering one of the views was measured.
The acquired test results are illustrated in figs. 11 to 16 in appendix D. As shown in
the diagrams a higher frequency is preferable to a lower frequency in regards to stability
of perceived latency. The reference diagrams figs. 13 and 16 fluctuate the least of all
comparisons due to the frame being updated at a constant 30 fps, whereas switching
causes the two views to share the data bus which is limited to 30 fps. However, after
observing fig. 10, page 43 it is apparent that the time it takes to actuate the requested
signal is considerably longer than the frequency requests are sent in since the request
are sent every 10 ms. Thus it seems that the CCM is capable of either queuing requests
or handling multiple request concurrently, otherwise there would be no such differences
between longer and shorter request intervals. One thing to keep in mind is that a higher
request frequency requires more CPU resources, to a point where it’s not viable. What
is viable or not is a question in which the whole system must be considered and which
is outside the scope of this thesis.

5.2 Prototype two

When analyzing the results from the second prototype, it is clear that the performance
is inferior to the first prototype with regards to fps. The final version of the second
prototype only renders each view with an average of 8 fps which is lower than the 17
and 13 fps respectively in the first prototype.

5.2.1 Lack of time

The second prototype was built on an already functioning example project implemented
by VCC. However, this existing program was misunderstood to be rendering at a frame
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rate of 30 fps, when it was in fact only rendering at 8 fps. As a result, the time it would
take to achieve a composite view prototype was underestimated. When realizing this
fact, it became clear that the time left in the project would not be sufficient to make
the prototype perform according to the expectations. Despite this, the development
proceeded to analyze the cause of the limited performance with the goal of being able
to resolve the issue.

5.2.2 Frame rate issues

The reason for the relatively poor frame rate remains unclear and further investigation
was not possible due to the lack of time left in the project. However, what was found is
that some users experience similar problems when utilizing OpenCV’s built in functions
for rendering. The functions in question are imshow() and waitKey() [14], which accord-
ing to discussion at following forums [12] [13] could be the reason for poor performance
in versions prior to OpenCV 4.0. The problems described coincide with the low frame
rate associated with the prototype.

A minimal test setup was made to compare the performance of OpenCV’s rendering
functionality with a dedicated graphics library. The graphics library chosen for com-
parison is OpenGL [7] and the number of samples the comparison is based on is 2000
rendered frames. What was learned was that OpenCV took approximately 2.59 ms, on
average, to render a frame while the solution with OpenGL took approximately 1.27
ms, on average, to render a frame under the same conditions. For the purpose of meas-
urements, chrono [15] part of the C++ standard library header for date and time, was
used to measure the duration of time it took for both solutions to render each frame.
To achieve the most accurate timing available to the platform, chrono’s high resolution
clock was used.

The test showed OpenGL performing better than OpenCV for rendering. However,
it could not be determined to be the sole issue of limited frame rate in the second
prototype. Other possible limiting factors could be the image processing required to
produce the BEV being inefficiently implemented or issues related to the retrieval of
individual camera frames from the buffers.

5.2.3 Perceived latency

The perceived latency in the second prototype is 267 ms, on average, in both the BEV
and the rear view. This latency is similar to the latency of the first prototype and is likely
a result of the limited frame rate of the prototype. Since the prototype only renders at 8
fps, the view of the surroundings are only being updated eight times each second. This
results in a span of 1000 ms/8 ≈ 125 ms during which the event may have occurred,
thus increasing the perceived latency. In contrast to the first prototype, the perceived
latency is equal in both views, since both views render the same camera frames. This
means that if the prototype was rendering in 30 fps as expected, both views would have
a decreased latency.
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5.2.4 Value of the prototype

As mentioned in section 3.4.1; Due to the lack of a CCM, all processing of camera streams
had to be handled manually. The four camera streams had separate frame buffers from
which it was possible to fetch the most recent frame. As a result, it was possible to
create a view containing both the BEV and the rear view using the same frame in both
views. Thus the second prototype was not limited to render a frame in either the BEV
or the rear view. This implied that both views would theoretically be able to achieve a
frame rate of 30 fps. However, there were still restrictions on how many operations that
could be performed without exceeding the time window of ≈ 33 ms when rendering in 30
fps. To clarify, since frames were arriving from the cameras every 33 ms, the frame had
to be rendered in this time window, otherwise frames would arrive at a higher rate than
they were rendered, leading to the frames either being dropped or the camera stream
having an increased perceived latency due to frames being queued.

Even though the prototype was not performing as expected, in regards to frame
rate, the results still provided valuable information. Since the existing program was
only rendering at 8 fps to begin with, the implementation of the composite view did
not affect the performance negatively. Considering the CCM being the bottleneck in
the camera pipeline of the first prototype, it was likely that the absence of a CCM
would allow the second prototype to render multiple camera streams without losing
performance, assuming this fact applied to any frame rate. However, this could not be
confirmed in this thesis.

5.3 Choice of measurements

This section is devoted to clarifying the choice of measurements.

5.3.1 Frames per second

To evaluate the performance of the two prototypes developed for this thesis, two different
measurements have been conducted on each prototype. The first measurement was the
average frames per second output to the display which was measured as explained in
section 3.3.1. Worth noticing is the adaptability of the methods used to measure fps and
perceived latency. The only requirement to be able to use the same fps measurement
class is that the rendering has to be done in C++. Furthermore, since the measurement
of perceived latency is performed independently from the system it is measuring, it can
be performed in the same manner with equally accurate result on any system, provided
the same equipment is used.

Also worth noticing is that when calculating the average fps in the manner explained
in section 3.3.1, the frames are not guaranteed to be divided evenly over time. Since
only one surface can render at any given point in time, the other surface is frozen in the
meantime. Thus when one surface is rendering, it is rendering at a higher frame rate
than the calculated average. For example; A surface rendering in 30 fps for 5 seconds,
and then stopping for 5 seconds, will have an average frame rate of 15 fps even if it is
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frozen for 5 seconds. This scenario, however, could not be considered a viable solution for
a PAC since it would not fulfill the goal of providing the driver with a real time view of
the surroundings. As a result, this measurement was primarily used to determine if the
prototype made use of all the delivered frames. Since the performance of the prototype
is already being limited by the nature of the CCM, it is important to make use of as
much resources as possible and not to introduce further restrictions to the performance.
By measuring the sum of the average fps for both rendering surfaces one can determine if
the sum equals the amount of frames per second being delivered by the CCM. However,
measuring the average fps cannot provide enough information to determine how the
other performance factors like latency, is affected by the prototypes in this thesis. Thus,
it is important to not only calculate the average fps, but also calculate the latency the
prototype introduce into the system.

5.3.2 Perceived latency

As explained in section 3.3.2, the measured latency of the prototype is the latency the
driver experience from an event occurring until it is rendered on the screen. This meas-
urement was chosen as a result of the prototypes application, as explained in section 1.2.
For the prototype to be viable as a Park Assist Camera, the delay has to be kept to
a minimum. A PAC is a time critical system, since latency in the system can cause
accidents in traffic as the driver may not be able to take action to an event they have
not yet been able to see. As a result, perceived latency could be considered a suitable
measurement to evaluate the performance of the prototype.
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6 Conclusion
To conclude this thesis, the results have been analyzed in order to evaluate the accom-
plishment of the goal defined in section 1.3.

1. How the first prototype is limited by the CCM
The limitation of the CCM is a lack of the ability to customize the frames being
outputted to contain both the BEV and the rear view. This limitation requires
partitioning of the output stream by alternately switching between either the BEV
or rear view. Therefore, the BEV and rear view cannot both achieve a frame rate
of 30 fps.

2. Deficiencies in the first prototype
The prototype introduces two deficiencies to the system. Firstly, the frame rate is
reduced to 13 and 17 fps for the BEV and rear view respectively, as mentioned in
section 4. This, in contrast to only rendering a single view, causes a performance
drop of 56% for the BEV and 43% for the rear view when comparing with the
single view with update frequency of 30 fps. Secondly the perceived latency is
increased, partly as a result of the reduced frame rate.

3. How the performance compares between the first and second prototype
The first prototype provides a higher frame rate than the second prototype. How-
ever the perceived latency is similar in both prototypes.

6.1 Future work

Considering the first prototype, an improved result is not achievable without modifica-
tions to the CCM to make it possible for frames on the output stream to contain both
views simultaneously. Therefore, there is no apparent further development to be made
on the first prototype until this issue has been resolved.

Since the cause of the limited frame rate in the second prototype could not be de-
termined, it would be prudent to further investigate the bottleneck of this prototype.
A suggestion for further development is to perform the rendering using OpenGL in-
stead of OpenCV since OpenCV might be the bottleneck considering the measurements
performed in section 5.2.2.

6.2 Reflection of ethical aspects

The first aspect concerning public utility for the prototypes developed during this thesis
is that they both aim to give the driver a more complete overview of the cars surround-
ings. One can argue that this will increase the safety, both for the driver and for those in
the vicinity. However, as the example in section 5.1.1 shows, the prototype can give the
driver a false sense of security due to the increased latency in the system. The increased
risk of inflicting damage is an indication that the system is not fit for use on it’s own.
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The second aspect is that it is an aid for individuals with limited mobility and injury,
who find it problematic to look over their shoulder in parking situations. Utilities like
this can be helpful even for those without injury or mobility issues. In some situations
it can be hard to observe everything ongoing in the cars surroundings and in those situ-
ations utilities of this kind can be of great help. The third aspect is that the driver does
not need to manually switch between the rear view and BEV which can cause a shift
in focus for the the driver, assuming the car is not stopped during the change of view.
The shift in focus means that the driver is not aware of the car’s surroundings in that
moment, thus the risk of an accident happening increases. As good as any feature might
be, security is the one thing manufacturers can’t overlook. Thus, meticulous testing and
evaluation is needed before features like these go into production.
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7 Terminology
1. IHU - Infotainment Head Unit; An embedded system responsible for coordination

and presentation of information.

2. EVS - Exterior View System; A part of the HAL which provides an interface for
access to the onboard cameras of the car.

3. CCM - Camera Connection Module; The module explained in section 2.4.

4. BEV - Bird’s-eye view; Explained in section 2.5

5. PAC - Park Assist Camera; Module consisting of the four cameras on the car as
well as the software interacting with the cameras.

6. DSF - Data Signaling Framework; A term describing several proprietary compon-
ents of the internal framework used for communicating signals in the car.

7. Performance - The combination of perceived latency & fps.

8. Fps - frames per second; The average amount of frames rendered over a finite
amount of time.

9. Composite view - The combination of BEV & rear camera view displayed simul-
taneously on the screen.
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Appendix
A First version of pixel analysis algorithm
The following code is an extract from the first working version of prototype one, suffer-
ing from dropped frames. To avoid infringing the non-disclosure agreement with VCC,
proprietary parts of the code have been omitted. However, the content is a valid repres-
entation of the functionality.

1 constexpr uint32_t BLACK = 0;
2

3 JNIEXPORT
4 jint JNICALL

Java_com_volvocars_pactestapp_Evs_glBindVideoTextureCompositeView (
JNIEnv * /* env */ ,jobject /* caller */ , jint image) {

5

6 /* Omitted code due to confidentiality */
7

8 sp < GraphicBuffer > client_buffer ;
9 int result = pac_client -> GetClientBuffer (& client_buffer );

10

11 uint32_t * pixels = nullptr ;
12 client_buffer ->lock( client_buffer -> getUsage (), (void **) & pixels );
13 // pixels now points to the first pixel of the frame.
14

15 // stride is the amount of pixels in a row.
16 uint32_t stride = client_buffer -> getStride ();
17

18 // The first index is the pixel at {640 ,100}
19 int index = 640 + 100* stride ;
20

21

22 // Assume that the column is black
23 bool isBlackColumn = true;
24

25

26 // Check if 100 pixels in a column are all black
27 for (int i = 0; i < 100; ++i){
28 index += stride ;
29 // Incrementing index by one stride will move it to the next

pixel in the same column
30

31 uint32_t pixelValue = pixels [index ];
32 if ( pixelValue != BLACK) {
33 //As soon as a pixel with color is detected . Break.
34 isBlackColumn = false;
35 break;
36 }
37 }
38

37



39 if( isBlackColumn ){
40 if(image == BEV){
41 // Refresh frame.
42 }
43 else{
44 // Keep previous frame.
45 }
46 }
47 else {
48 if(image == BEV){
49 // Keep previous frame.
50 }
51 else {
52 // Refresh frame.
53 }
54 }
55 return result ;
56 }
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B Second version of the pixel analysis algorithm
The following code is an extract from the second working version of code. To avoid
infringing the non-disclosure agreement with VCC, proprietary parts of the code have
been omitted. However, the content is a valid representation of the functionality.

1 constexpr uint32_t BLACK = 0;
2

3 JNIEXPORT
4 jint JNICALL

Java_com_volvocars_pactestapp_Evs_glBindVideoTextureCompositeView (
JNIEnv * /* env */ , jobject /* caller */ , jint visnImg ) {

5

6 // Omitted code due to confidentiality
7

8 sp < GraphicBuffer > client_buffer ;
9 int result = pac_client -> GetClientBuffer (& client_buffer );

10

11 if ( result != ClientResult :: SUCCESS ) {
12 return result ;
13 }
14

15 uint32_t * pixels = nullptr ;
16 client_buffer ->lock( client_buffer -> getUsage (), (void **)& pixels );
17

18 // pixels now points to the first pixel of the frame.
19

20 // stride is the amount of pixels in a row
21 uint32_t stride = client_buffer -> getStride ();
22

23 // The first index is the pixel at {640 ,100}
24 int index = 640 + 100 * stride ;
25

26 // Assume that the column is black
27 bool isBlackColumn = true;
28

29 // Check if 100 pixels in a column are all black
30 for (int i = 0; i < 100; ++i) {
31 /* Incrementing the index by one stride will move it to the

next pixel in the column */
32 index += stride ;
33 uint32_t pixelValue = pixels [index ];
34

35 //As soon as a pixel with color is detected . Break.
36 if ( pixelValue != BLACK) {
37 isBlackColumn = false;
38 break;
39 }
40 }
41

42 if ( isBlackColumn ) {
43 if ( visnImg == BEV) {
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44 // Refresh and discard frame.
45 } else {
46 result = ClientResult :: NO_NEW_FRAMES ;
47 }
48 } else {
49 if ( visnImg == BEV) {
50 result = ClientResult :: NO_NEW_FRAMES ;
51 }else {
52 // Refresh and discard frame.
53 }
54 }
55

56 return result ;
57 }
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C Rendering the second prototype
The following code is an extract from the final version of the second prototype. To avoid
infringing the non-disclosure agreement with VCC, proprietary parts of the code have
been omitted. However, the content is a valid representation of the functionality.

1 int main
2 {
3 cv:: Mat generateCameraControlView ( gen_BEV & gb , cv:: Mat back , cv::

Mat bev)
4 {
5 int singleWidth = 600;
6 int singleHeight = 500;
7 int bevHeight = singleHeight * 2;
8 int bevWidth = singleWidth ;
9 int outputWidth = bevWidth ;

10 int outputHeight = bevHeight + singleHeight ;
11

12 // Undistort the rear view
13 cv:: cuda :: GpuMat cuda3 = gb. undistort_fisheye_img (back , "back"

);
14 cv:: cuda :: GpuMat cudaBev (bev);
15 cv:: cuda :: GpuMat cudaOutputImage = cv:: cuda :: GpuMat (

outputHeight , outputWidth , CV_8UC3 , Scalar :: all (0));
16

17 // Create a cv:: mat which will contain the BEV
18 cv:: cuda :: GpuMat roi = cudaOutputImage (Rect (0, 0, bevWidth ,

bevHeight ));
19 cv:: cuda :: resize (cudaBev , roi , cv:: Size(bevWidth , bevHeight ));
20

21 // Update cv:: mat to be able to also contain the rear view
22 roi = cudaOutputImage (Rect (0, bevHeight , singleWidth ,

singleHeight ));
23 cv:: cuda :: resize (cuda3 , roi , cv:: Size( singleWidth ,

singleHeight ));
24

25 return cv:: Mat( cudaOutputImage )
26 };
27

28 while (key != ’q’)
29 {
30 // Wait for at least 1 ms to allow time for rendering image
31 key = cv:: waitKey (1);
32

33 // Check if any new frames are available .
34 if ( areFramesAvailable ( frameProducer , NUM_OF_CAMERA ))
35 {
36 // Retrieve the most recent frame from each camera .
37 frameProducer -> getFrame (0, &leftImage , & timestampLeft );
38 frameProducer -> getFrame (1, &rightImage , & timestampRight );
39 frameProducer -> getFrame (2, &frontImage , & timestampFront );
40 frameProducer -> getFrame (3, &backImage , & timestampBack );
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41

42 // Create the BEV from the four individual images .
43 bev = GEN_BEV . input4_to_BEV (leftImage , rightImage ,

frontImage , backImage );
44

45 // Create a view to render to the display .
46 view = generateCameraControlView (GEN_BEV , backImage , bev);
47

48 // Output view for OpenCV to render .
49 cv:: imshow ( birdsEyeViewName , view);
50 }
51 }
52 }
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D Graphs

Fig. 10 – Statistics over the latency from request of video stream until first frame is delivered
by the CCM.

Fig. 11 – Perceived latency of BEV when switching camera stream every 10 ms
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Fig. 12 – Perceived latency of BEV when switching camera stream every 150 ms

Fig. 13 – Perceived latency of BEV when not switching camera stream
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Fig. 14 – Perceived latency of rear camera when when switching camera stream every 10
ms

Fig. 15 – Perceived latency of rear camera when when switching camera stream every 150
ms
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Fig. 16 – Perceived latency of rear camera when not switching camera stream

Fig. 17 – Perceived latency of rear camera in the second prototype
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Fig. 18 – Perceived latency of BEV in the second prototype
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