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Abstract

At Tetra Pak R©, general knowledge of food and beverage processing is of great importance. This
in turn, depends on the equipment used for the particular process. One of these equipment con-
sists of deformed tubes made of stainless steel 316L. The aim of the present work is to get an
understanding of the material 316L. To achieve this, physical tensile tests are performed to study
the material behaviour under quasistatic and dynamic loading conditions. Virtual tensile tests
are created where the material behaviour is described with existing material models in Abaqus/-
Explicit. The proposed material models are Bilinear, Multilinear and Johnson-Cook isotropic
hardening models. A material model is today used to describe the material behaviour and is
compared with the proposed material models.

For quasistatic cases, the findings in virtual tensile tests compared to experimental data are: the
multilinear and the Johnson-Cook models give a good prediction of plastic behaviour, whereas
the bilinear model gives a rough estimation of plastic deformation. In addition, use of the pro-
posed material models result in a stiffer response of the material in comparison with the currently
used material model. For dynamic cases, effects of strain-rates on material properties are investi-
gated using isotropic hardening combined with rate-dependent models such as Cowper-Symonds
and Johnson-Cook in Abaqus/Explicit. It is found that there are different approaches to deter-
mine the parameters in these material models, making it hard to verify the accuracy. In spite
of the fact, the results from the study indicate that the material is rate-dependent. Therefore, a
rate-dependent material model is necessary to capture the material behaviour.
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Sammanfattning

På Tetra Pak utgör processutrustningar en viktig del av den slutliga livsmedelsprodukten, därför
är ökad kunskap av utrustningarna av stor betydelse. En av dessa utrustningar består av de-
formerade rör av materialtypen rostfritt stål 316L. Målet med arbetet är att få ökad förståelse
av materialet vid belastning. För att uppnå målet, har både fysiska och virtuella dragprov utfor-
mats i syfte att studera materialbeteendet under kvasistatiska och dynamiska belastningsfall. De
simulerade dragproven är skapade med materialmodeller som är tillgängliga i Abaqus/Explicit.
Tre materialmodeller med isotropiskt hårdnande har föreslagits, nämligen: bilinjär, multilinjär
och Johnson-Cook. För nuvarande beskrivs materialbeteendet med en annan materialmodell,
vilken jämförs med de ovannämnda materialmodeller.

Resultaten av kvasistatisk belastningsfall, vid jämförelse av fysiska och virtuella experiment, visar
att: den multilinjära och Johnson-Cook modellen fångar upp materialbeteendet både i elastisk
och plastisk område. Till skillnad från den bilinjär modellen som ger en grov anpassning till plas-
tisk deformation. Tillsammans, visar de föreslagna materialmodeller att materialet svarar styvare
än den materialmodell som används idag. Vid dynamisk belastningsfall, har töjningshastighets-
beroendet studerats och beskrivits med Cowper-Symonds och Johnson-Cook i Abaqus/Explicit.
Studier avslöjar att parametrar i dessa modeller tas fram på olika sätt och med olika experi-
ment, därför är det svårt att avgöra noggranheten i resultaten. Trots det, visar resultaten att
materialet har en klar beroende av töjningshastigheten. Därmed kan slutsatser dras att en mate-
rialmodell som fångar upp beroendet är nödvändig för att beskriva materialbeteendet med större
noggranhet.

3





Contents

1 Introduction 11

1.1 Presentation of Tetra Pak and FS Dynamics . . . . . . . . . . . . . . . . . 11

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Theory 14

2.1 Linear elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Metal plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Yield surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Hardening rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Flow rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Viscoplasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Rate independent constitutive relation . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Bilinear isotropic hardening model . . . . . . . . . . . . . . . . . . 22

2.4.2 Multilinear isotropic hardening model . . . . . . . . . . . . . . . . . 23

2.4.3 Johnson-Cook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Rate-dependent constitutive relation . . . . . . . . . . . . . . . . . . . . . 25

2.5.1 Cowper-Symonds rate dependency . . . . . . . . . . . . . . . . . . 26

2.5.2 Johnson-Cook rate dependency . . . . . . . . . . . . . . . . . . . . 28

4



3 Experiment 30

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Tensile test procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Finite Element Analysis 38

4.1 Preprocessing - set up of a virtual tensile test . . . . . . . . . . . . . . . . 38

4.2 Material models and calibration . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Rate independent material model . . . . . . . . . . . . . . . . . . . 42

4.2.2 Rate-dependent material model . . . . . . . . . . . . . . . . . . . . 45

4.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Single element test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Goodness-of-fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Empirical Analysis 49

5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Conclusions 65

6.1 Source of errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 Future work 68

5



List of Figures

2.1 Stress-strain curve of elasto-plastic material. [1] . . . . . . . . . . . . . . . 16

2.2 von Mises surface in the principal stress space [1]. . . . . . . . . . . . . . 18

2.3 (Left) Isotropic hardening; an expansion of the initial yield surface. (Right)

Kinematic hardening; a translation of the initial yield surface [1]. . . . . . 20

2.4 An example of a bilinear material model curve. . . . . . . . . . . . . . . . 22

2.5 An example of a multilinear material model curve [1]. . . . . . . . . . . . . 24

2.6 Flow stress for a) Cowper-Symonds material model and b) the Johnson-Cook

material model [15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 A typical force-displacement diagram for a tensile test of sheet steel [4]. . . 31

3.2 A typical stress- strain curve for metals. . . . . . . . . . . . . . . . . . . . 32

3.3 Specimen geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 The testing set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 The specimen loaded into the clamps . . . . . . . . . . . . . . . . . . . . . 35

3.6 Mechanical extensometer connected to the specimen . . . . . . . . . . . . . 37

4.1 Simulation model using symmetry constraints . . . . . . . . . . . . . . . . 39

4.2 Zoomed view of model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Pairs of plastic stress-strain values for the multilinear model demonstrated

as red circles on the experimental curve. . . . . . . . . . . . . . . . . . . . 43

4.4 Single element test set-up in Abaqus. . . . . . . . . . . . . . . . . . . . . . 47

5.1 Experimental results at a strain rate of 10−3s−1. . . . . . . . . . . . . . . . 49

5.2 Experimental results at different strain-rates. . . . . . . . . . . . . . . . . . 50

6



5.3 The stress variation with respect to the logarithmic strain-rate. . . . . . . 51

5.4 Virtual vs experimental tensile test using bilinear model under quasi-static

loading condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.5 Virtual vs experimental tensile test using multilinear model under quasi-

static loading condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.6 Virtual vs experimental tensile test using Johnson-Cook model under quasi-

static loading condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.7 A comparison between the experimental values and the different material

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.8 Equivalent plastic strain at 0.1 mm displacement, (a) Current bilinear, (b)

Bilinear, (c) Multilinear and (d) Johnson-Cook. . . . . . . . . . . . . . . . 54

5.9 von Mises effective stress at 0.1 mm displacement, (a) Current bilinear, (b)

Bilinear, (c) Multilinear and (d) Johnson-Cook. . . . . . . . . . . . . . . . 54

5.10 Equivalent plastic strain at 10 mm displacement, (a) Current bilinear, (b)

Bilinear, (c) Multilinear and (d) Johnson-Cook. . . . . . . . . . . . . . . . 55

5.11 von Mises effective stress at 10 mm displacement, (a) Current bilinear, (b)

Bilinear, (c) Multilinear and (d) Johnson-Cook. . . . . . . . . . . . . . . . 55

5.12 Deformation of the outside and the inside of tube at full step, analyzed

region is magnified. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.13 Effective plastic strain-rate for Johnson-Cook material model. . . . . . . . 56

5.14 Comparison of the outer and inner profile for the different material model. 59

7



List of Tables

3.1 Chemical composition of Stainless Steel 316L . . . . . . . . . . . . . . . . 33

3.2 Dimensions of specimen according to ASTM E8/E8M standards . . . . . . 34

3.3 Displacement rates corresponding to the different strain rates . . . . . . . . 36

3.4 Dimensions of specimen according to ASTM E8/E8M standards . . . . . . 37

4.1 Calibrated plastic stress-strain values for the current bilinear model. . . . . 42

4.2 Calibrated plastic stress-strain values for the bilinear model. . . . . . . . . 42

4.3 Pairs of plastic stress-strain values for the multilinear model. . . . . . . . . 44

4.4 Calibrated quasi-static parameters for Johnson-Cook model. . . . . . . . . 44

4.5 Calibrated Cowper-Symonds parameters . . . . . . . . . . . . . . . . . . . 45

4.6 Calibrated parameters for Johnson-Cook model from dynamic data . . . . 46

5.1 Obtained material properties at different strain rates. . . . . . . . . . . . . 50

5.2 Calculated R2-value for the proposed models. . . . . . . . . . . . . . . . . 52

5.3 Equivalent plastic strain for different material models. . . . . . . . . . . . . 57

5.4 von Mises effective stress for different material models. . . . . . . . . . . . 58

8



Nomenclature

δij Kronecker delta

β̇ Time-independent quantity

λ̇ Plastic strain multiplier

ε̇eij Elastic strain rate tensor

ε̇pij Plastic strain rate tensor

ε̇vpij Viscoplastic strain rate tensor

η Viscosity parameter

λ, µ Lame’s parameters

ν Poisson’s ratio

σy Yield stress

σeff Effective stress

σij Second order stress tensor

σkk Dilatation

εpij Plastic strain tensor

εeij Elastic strain tensor

εpeff Effective plastic strain
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εij Second order strain tensor

εkk Dilatation

A,B, n, C, ε̇0 and m Johnson-Cook parameters

D, p Cowper-Symonds parameters

dσ Stress increment

dε Strain increment

Dijkl Elastic stiffness tensor

E Young’s modulus

ET Tangent modulus

H Plastic or work hardening modulus

I1 First deviatoric stress invariant (Hydrostatic stress )

J2 Second deviatoric stress invariant

K Hardening parameter

sij Deviatoric stress tensor

Tmelt Melting temperature

Troom Room temperature

αij von Mises surface center in the deviatoric plane

κ Internal invariable
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1 Introduction

1.1 Presentation of Tetra Pak and FS Dynamics

Tetra Pak is a world leading food processing and packaging solutions company. FS Dynam-

ics is a consultant company and is the leading CAE supplier in Scandinavia who optimizes

technology in industrial companies. This thesis is a collaboration between the two compa-

nies.

1.2 Background

At Tetra Pak R© processing equipment, filling machines and distribution equipment is an in-

tegrated unit at the customer sites when producing package liquid foods. When developing

new concept and designs, performing simulations is a natural part of the design work. It

is also used to simulate the manufacturing process. To be able to do this a more accurate

material model is of interest.

1.3 Purpose

The creation of more realistic and predictive simulation models is essential for the future

to complement the current development and manufacturing process. A computer model

is today present to create this deformation of steel tubes virtually to be used to increased

understanding of the different load cases and factors involved during the manufacturing

process. This virtual manufacturing replica is used to iterate, optimize and improve design

loops and functionality of the deformation process.
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1.4 Objective

Through experimental testing, especially tensile testing, and then establishing a virtual

model of the test, the material 316L stainless steel can be characterized and thereafter

analyzed to establish a representative material model.

1.5 Limitations

Different studies on 316L stainless steel have been made by many researchers, which could

be found in the various articles and books. However, the results vary widely due to differ-

ent factors such as heat treatment and other processes that are not always mentioned in

these studies, making it difficult to compare with the material issued for this study.

Abaqus was used for analyzing the virtual test with different material models. This limits

the types of models that can be applied, more advanced material models would require a

so-called user-defined material model (VUMAT).

Tensile tests were performed using Instron ElectroPulsTM. Performing high strain-rate

tests with this machine (from 10−1s−1) resulted in very noisey load curves that could not

be used for analysis. After contacting several people that have experience using the ma-

chine, including Instron Service group, the misses in technical set-up that may have caused

it were not found until at the end of the project.

12



1.6 Methods

The next chapters that are presented follow the work flow for this master thesis. Starting

of is a literature study on general material behaviour of steels and metals as well as research

that has been done on stainless steel 316L. Following are the proposed material models that

are commonly used for this material and how they relate to theory on material behaviour.

A study on how standard tensile tests are performed is also done, which is used to find

standard geometry and standard testing methods for steel. The next step is a description

of the methodology on the tensile testing and the results obtained from it. The results

are then calibrated and interpretations of them are presented. From that, a virtual model

is created in HyperMesh, and results from virtual tensile tests in Abaqus/Explicit are

compared with the physical tensile tests. In reality, the comparison between physical and

virtual experiments is made iteratively. Finally, the deformation process is evaluated and

the findings from the study are presented.
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2 Theory

In the following chapter, general theories of material behaviour are discussed and how

they are applied for steels and metals. These behaviours are obtained by deforming the

material. A description of the behaviour is then provided by the applied loading and is then

converted to the so-called stress and strain tensor. The relationship between stresses and

strains is called the constitutive relation. Some examples of such relations are elasticity,

plasticity and viscoplasticity and they will be summarized in this chapter.

2.1 Linear elasticity

An elastic material returns completely to its original configuration after removal of the

applied force. The small strain behaviour of the metals can be defined by a linear stress-

strain relationship, called Hooke’s law suggested by Hooke in 1676,

σij = Dijklεkl (2.1)

where σij is the stress tensor, D the elastic stiffness tensor and εij is the strain tensor.

For an isotropic material, the response to the loading is independent on loading direction.

For this type of material, the elastic stiffness tensor has only two independent material

parameters, called Lamé’ s parameters, µ and λ. Since these parameters are constants, the

stress-strain relationship in (2.1) is linear, defined as,

σij = λεkkδij + 2µεij (2.2)

14



These material parameters can be expressed as follows,

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + v)
(2.3)

where E is the Young’s modulus and ν is the Poisson’s ratio. A definition of the stress

deviatoric tensor is given by,

sij = σij −
1

3
σkkδij (2.4)

where σkk/3 = I1 is called the hydrostatic stress and δij is the Kronecker delta [1]. Use of

this definition together with Eq. (2.3), the constitutive relation (2.2) becomes as formulated

in Eq. (2.1), where Dijkl becomes the elastic isotropic stiffness tensor defined as,

Dijkl = 2µ

[
1

2
(δikδjl + δilδjk) +

ν

1− 2ν
δijδkl

]
(2.5)

A material is anisotropic if it has different responses in different loading directions. It means

that the constitutive relation takes different forms depending on the choice of Cartesian

coordinate system.

2.2 Metal plasticity

On the contrary to elasticity, the plasticity describes the permanent deformation of a

material due to applied load. A metal subjected to a load, deforms elastically until the

stress reaches point A as illustrated in Fig. 2.1. If the load exceeds a certain value, σy,

the material starts to deform plastically. When the applied load is removed, the material

retains its new configuration, with remaining plastic strain illustrated as point B,

15



Figure 2.1: Stress-strain curve of elasto-plastic material. [1]

The total strain rate can be expressed in terms of the elastic and plastic strain rate as,

ε̇ij = ε̇eij + ε̇pij (2.6)

The integrated form of (2.6) with respect to time is,

εij = εeij + εpij (2.7)

In order to understand the differences between the elastic and plastic response, the following

relations are to be represented and formulated,

• Yield surface

• Hardening rule

• Flow rule

16



2.2.1 Yield surface

The yield surface defines when yielding occurs and separates the elastic and plastic region.

The initial yield strength, σy0, is defined as the point on the stress-strain curve at which

0.2% plastic deformation occurs. For development of plasticity, the yield surface can be

defined as a criterion, i.e. a function of the stress state and the hardening parameter K

such as,

f(σij, K) = 0 (2.8)

The hardening parameter depends only on an internal variable κ, i.e. K = K(κ). This

variable describes the state of the material and can be a scalar or a higher-order tensor.

An example of an internal variable is the effective plastic strain, εpeff . The sign of the yield

function defines in which region the material is located,f(σij, K) < 0 elastic behaviour

f(σij, K) = 0 development of plasticity

There are different forms of yield criteria, such as, von Mises, Hill, Tresca and Drucker-

Prager. The von Mises yield criterion is often used for ductile materials, such as steels and

metals, and will therefore be used in this study. This criterion for the initial yield suggests

that yielding occurs when the second deviatoric stress invariant, J2 reaches a certain value

according to,

f =
√

3J2 − σy0 = 0; J2 =
1

2
sijsji (2.9)

When analyzing plastic deformation of metals and steels, yielding turns out to be inde-

pendent of the hydrostatic stress I1 = σkk/3. For this reason J2 takes a constant value at

yielding. Defining the effective stress as σeff =
√

3J2, relation (2.9) can be rewritten as,

f = σeff − σy0 = 0 (2.10)

17



The effective stress can also be expressed in terms of the principal stresses as,

σeff =

√
1

2

[
(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2

]
(2.11)

where σ1, σ2 and σ3 are the principal stresses. It appears that the von Mises yield surface

represents a cylindrical surface in the Haigh-Westergard principal stress space shown in

Fig. 2.2.

Figure 2.2: von Mises surface in the principal stress space [1].

2.2.2 Hardening rule

During inelastic straining process, hardening in the material occurs due to rearrangement

of the microstructure of the material. This can be modified by complex loading paths or by

aging of the material and is expressed through hardening models. In mathematical terms,

hardening rule translates to how the yield surface changes with the plastic loading. The

common hardening types are the isotropic and kinematic hardening. [3]

18



Kinematic and isotropic hardening

The simplest hardening model is called isotropic hardening. It occurs due to the expansion

of the yield surface when the initial yield condition is exceeded. Isotropic hardening for an

arbitrary yield function can be formulated as,

f(σij, K) = F (σij)−K = 0 (2.12)

With the von Mises yield condition given in (2.9), this is represented as an expanding

radius with κ as a scalar variable,

f(σij, K) = σeff − σy(κ) = 0, σy(κ) = σy0 +K(κ) (2.13)

where σy is the current stress state. In the case of kinematic hardening, the translation

of the yield surface is described with a tonsorial variable that defines the center. An

illustrative explanation of the aforementioned hardening rules is seen in Fig. 2.3. For an

arbitrary yield function, the kinematic hardening can be defined as,

f(σij, K) = F (σij − αij) = 0 (2.14)

This function for the von Mises criterion can be derived as,

f(σij, K) =

[
3

2
(sij − αij)(sij − αij)

]1/2

− σy0 = 0 (2.15)

where the tensor αij defines the center of the von Mises surface in the deviatoric plane.

19



Figure 2.3: (Left) Isotropic hardening; an expansion of the initial yield surface. (Right) Kinematic
hardening; a translation of the initial yield surface [1].

2.2.3 Flow rule

As mentioned, the elastic strain can be calculated using the Hooke’s law. In order to

calculate the plastic strain, a constitutive law should be derived, called flow rule. In other

words, the flow rule is a constitutive law for ε̇pij. Lévy and von Mises separately suggested

that the plastic strain increment and the deviatoric stresses have the same direction. This

relation is called the Lévy-von Mises equations,

ε̇ij = β̇sij, β̇ ≥ 0 (2.16)

where β̇ is a time-independent quantity. β̇ = 0 indicates that no strains develop. Relation

(2.16) assumes that the elastic strain is zero, which means the total strain is equal to the

plastic strain. A new format of (2.16) was suggested by Prandtl and Reuss as,

ε̇pij = β̇sij; β̇ ≥ 0 (2.17)
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Differentiation of (2.13) with respect to the stress tensor gives,

∂f

∂σij
=

3sij

2
√

3J2

=
3

2

sij
σy

(2.18)

Combination of Eq. (2.17) and Eq. (2.18) gives the flow rule,

ε̇pij = λ̇
∂f

∂σij
; λ̇ ≥ 0 (2.19)

where λ̇ = 2σyβ̇/3 is the incremental plastic strains. The effective plastic strain rate

becomes,

ε̇peff =

√
2

3
ε̇pij ε̇

p
ij (2.20)

which integrated with respect to time gives the effective plastic strain as,

εpeff =

∫ t

0

ε̇peffdt (2.21)

2.3 Viscoplasticity

Viscoplasticity has become of interest in the last decades after it was observed that some

materials could not be categorized as neither viscoelastic nor as viscous. It turns out,

that some viscous materials require a certain amount of stress in order to show viscous

effects. Viscoplasticity describes the rate-dependent plastic behaviour of materials. Rate-

dependence in this context means that the strains depend non-linearly on the rate at which

the stresses are applied. This type of plasticity is usually modeled by the Perzyna overstress

model. Perzyna proposed the following formulation,

ε̇vpij =

0 if f(σij, K) ≤ 0

Φ(f(σij,K))

η
∂f
∂σij

if f(σij, K) > 0

(2.22)
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The function Φ(f) is the overstress that depends on the yield surface and Φ(f = 0) = 0

is required. There are some differences between Perzyna model and time-independent

plasticity. The Perzyna viscoplasticity (2.22) allows one to choose the factor Φ(f)
η

, whereas

the plastic multiplier λ̇, (see Eq. 2.19) is obtained using the consistency relation. In

order for viscoplastic strains to develop, the stresses must be located outside the time-

independent yield surface. However, in case of the time-independent plasticity, the stresses

are not allowed to be located outside the yield surface.

2.4 Rate independent constitutive relation

The constitutive relation which describes the relation between stresses and strains, is called

material model. This mathematical model can predict the response of materials to various

loading conditions. Some of the fundamental equations that are needed to form a con-

stitutive relation have been introduced. With this in mind, the material models that are

frequently used for 316L, will now be presented and how they relate to the fundamental

equations. The focus in this section will be on how they are applied for quasistatic cases.

2.4.1 Bilinear isotropic hardening model

The bilinear model is a common non-linear material model used for metals. This model

can be defined with different yield criteria. For metals, von Mises is used to describe the

yield surface with the isotropic hardening shown in Eq. (2.13). The internal variable κ is

chosen as κ = εpeff .

Figure 2.4: An example of a bilinear material model curve.
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In this model, materials exhibit a characteristic called linear work-hardening. After initial

yielding, stress varies linearly with plastic strain. At any point, the increment of stress is

related to the increment of strain as,

dσ = ETdε (2.23)

The slope of the curve at the plastic region is called tangent modulus, denoted as ET .

From relation (2.7), the increment of strain consists of both elastic and plastic strain after

yielding becomes,

dε = dεe + dεp (2.24)

Plastic modulus H is the slope of stress vs. plastic strain as follows,

dσ = Hdεp (2.25)

Using (2.23), (2.24), (2.25) and Hooke’s law gives,

1

ET
=

1

E
+

1

H
(2.26)

2.4.2 Multilinear isotropic hardening model

Mróz proposed a material model which describes the plastic response of the material as a

multiple linear response. In this model, the plastic region is built up by a superposition of

several linear sections. A hardening modulus for each linear section can be defined in the

same manner as the bilinear elasto-plastic material model. The Mróz model can be used

to describe material behaviour under both static and cyclic loading. [1]
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Figure 2.5: An example of a multilinear material model curve [1].

Since it is an isotropic hardening model, the yield criterion is defined by von Mises.

2.4.3 Johnson-Cook

When describing the material behaviour of a metal experiencing plastic strain, one of the

most frequently used models is the Johnson-Cook model ([9] to [13]). It accounts for both

kinematic strengthening and adiabatic heating of the material. Thus, it is recommended

when modeling cases with high strain, strain rates, strain hardening, and non-linear ma-

terial properties. The effective stress according to the Johnson-Cook material model is

generally formulated as,

σeff =
[
A+B · (εpeff )

n
]
·

[
1 + C · ln

( ε̇vpeff
ε̇0

)]
·

[
T − Troom

Tmelt − Troom

]m
(2.27)

where εpeff is the effective plastic strain, ε̇vpeff is the effective viscoplastic strain rate, Troom

is the room temperature, Tmelt is the melting temperature and the parameters A,B, n, C,

ε̇0 and m are determined through experiments.

A von Mises yield surface together with the isotropic hardening (2.13) is used for this

model. In the case of quasi-static loading, the stress associated with the model (2.27) is

reduced to,

σeff =
[
A+B · (εpeff )

n
]

(2.28)
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At room temperature, m = 0 and the parameter A is the yield strength value, designated

as R0.2. Isotropic strengthening during strains is described with B and n. These param-

eters called the strain hardening constant, B, and the strain hardening coefficient, n, are

determined based on quasi-static data. [8]

2.5 Rate-dependent constitutive relation

For many materials, an increase in yield stress is observed as strain rates increase. Em-

ploying the Perzyna formulation given by (2.22), these viscous effects can be included in

the aforementioned material models. Consequently, when using explicit dynamic analysis

in Abaqus, strain-rate effects need to be added in the material models. Two of the most

common material models applied for steels at high strain rates are: Cowper-Symonds and

Johnson-Cook [14].

Figure 2.6: Flow stress for a) Cowper-Symonds material model and b) the Johnson-Cook material
model [15].

In common, they both predict higher flow-stress curves for larger strain rates according to

Fig. 2.6. The main difference lies in how strain-rate effects are accounted for. Consequently,

the plastic stress-strain in relation to the strain-rate effects is described with different sets

of material parameters. One can observe that C-S material parameters predict parallel

curves, as opposed to J-C material parameters where the curves are non-linearly. The

reasons for this will be further explained in the following sections.
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Previously, the yield surface in the static case was formulated in Eq. (2.8). For a dynamic

case, a modification is made such that the dynamic yield surface is defined as,

fd = f − ϕ, where ϕ = ϕ
(
ηε̇vpeff

√
2

3

∂f

∂σij

∂f

∂σij

)
(2.29)

Use of the von Mises formulation (2.13) in (2.22) gives,

ε̇vpij =
Φ(f)

η

3sij
2σeff

(2.30)

The dynamic yield function for an isotropic hardening von Mises formulation can be ex-

pressed as,

σeff = σy0 +K(εvpeff ) + ϕ(ηε̇vpeff ) (2.31)

where the effective plastic strain rate ε̇vpeff and the inverse function ϕ are obtained as,

ε̇vpeff = (
2

3
ε̇vpij ε̇

vp
ij )1/2, ϕ(Φ(f)) = f (2.32)

In Eq. (2.31), the internal variable κ is chosen as κ = εvpeff .

2.5.1 Cowper-Symonds rate dependency

The Cowper-Symonds power law describes the rate-dependence of the material by the

following equation,
σdy0

σy0

= 1 +
( ε̇vpeff
D

)1/p

(2.33)

where σdy0 is the dynamic initial yield stress at a plastic strain rate ε̇vpeff , σy0 is the static

initial yield stress andD and p are the Cowper-Symonds parameters. D is usually chosen as

the reference strain rate in order to make the term ε̇vpeff/D dimensionless. In Eq. (2.33) the

strain-rate modifies the yield stress and does not effect the slope of the curve after yielding

(see Fig. 2.6). Comparison of Eq. (2.31) with Eq. (2.33) and by choosing K(0) = 0 at
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initiation of viscoplasticity lead to,

ϕ(ηε̇vpeff ) = σy0

( ε̇vpeff
D

)1/p

(2.34)

Using the inverse function ϕ in (2.34) and adopting Φ(f) = ηε̇vpeff lead to,

Φ(f)

η
= D

( f

σy0

)p
= ε̇vpeff (2.35)

which shows how the factor Φ
η
in (2.22) is chosen for the Cowper-Symonds model. After

initial yield stress is exceeded, i.e. K = K(εvpeff ), the above equation is rewritten to solve

a yield function according to Cowper-Symonds,

f =
[
σy0 +K(εvpeff )

]
·
( ε̇vpeff
D

)1/p

(2.36)

Use of Eq. (2.13) results in,

σeff =
[
σy0 +K(εvpeff )

][
1 +

( ε̇vpeff
D

)1/p
]

(2.37)

Comparison with (2.33) concludes that the static yield stress is,

σst(ε
vp
eff ) =

[
σy0 +K(εvpeff )

]
(2.38)

which can be used to fit experimental data.
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2.5.2 Johnson-Cook rate dependency

With the empirical Johnson-Cook model, strain-rate effects are taken into account with

the second parentheses in Eq. (2.27). The dynamic initial yield stress can be formulated

such that it depends on the static initial yield stress as,

σdy0 = σy0

[
1 + C · ln

( ε̇vpeff
ε̇0

)]
(2.39)

where the initial static yield stress is σy0 = A = R0.2. At initiation of viscoplasticity, the

hardening parameter is set to K(0) = 0 which reduces Eq. (2.31) to σeff = σy0 +ϕ(ηε̇vpeff ).

A comparison is made with (2.39) to give,

ϕ(ηε̇vpeff ) = σy0C · ln
( ε̇vpeff
ε̇0

)
(2.40)

Using the definition of the inverse function, ϕ given in Eq. (2.32) and adopting Φ(f) =

ηε̇vpeff lead to,

f = σy0C · ln(
Φ(f)

ηε̇0

) (2.41)

Rearrangement shows how the factor Φ(f)
η

in (2.22), is chosen for the Johnson-Cook model,

Φ(f)

η
= ε̇0 exp

(
f

σy0C

)
= ε̇vpeff (2.42)

Beyond the initial yield stress, the yield function is solved from the above equation to

f =
[
σy0 +K(εvpeff )

]
C · ln

( ε̇vpeff
ε̇0

)
(2.43)

Use of Eq. (2.13) where the internal variable is chosen as κ = εvpeff , results in

σeff =
[
σy0 +K(εvpeff )

][
1 + C · ln

( ε̇vpeff
ε̇0

)]
(2.44)
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Comparison with Eq. (2.27) at room temperature, and the definition of the Johnson-Cook

parameters B and n concludes that K(εvpeff ) = B · (εvpeff )n.

Now, the remaining parameters in the J-C model, that takes strain-rate effects into account

are treated as follows. To start, a reference strain rate is set as ε̇o, normally as a quasi-

static strain rate. Its role is to make the time units in the strain-rate term non-dimensional

[17]. Later, when other experiments are made with different strain rates, the strain rate

sensitivity coefficient, C can be assessed. This accounts for kinematic strengthening, i.e.

strain intensity effects. Manually fitting the parameter would then be according to the

following equation,

C = (σ2/σ1 − 1)/(ln(ε̇2/ε̇0)− σ2 · ln(ε̇1/ε̇0)/σ1). (2.45)
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3 Experiment

3.1 Introduction

The most common experiment used to understand mechanical behaviour of materials is

the tensile test. A tensile test can be done either uni-axial or bi-axial. For the case of uni-

axial tensile test, which is typically used for isotropic materials, the force is applied in one

direction to obtain mechanical properties. This is done by pulling one end of the specimen,

while the other end remains fixed. Whereas bi-axial applies force in two directions and is

used for anisotropic materials.

The result of a tensile test is a curve showing how the specimen reacts to the applied

loading conditions. Fig. 3.1 illustrates a typical force-displacement diagram for a tensile

test on a sheet steel specimen. The elastic extension is very small compared to the total

extension. One characteristic is the initial yielding load, Fy, at which plastic deforma-

tion starts to occur. Following the initial yielding is a region where load increases due to

strain-hardening which is a phenomenon that exhibits by most metals and alloys. [4]
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Figure 3.1: A typical force-displacement diagram for a tensile test of sheet steel [4].

In order to obtain mechanical properties of a material, a stress-strain curve needs to be

formed. The program that is used to obtain the data scales the load-extension diagram in

a manner that will be presented in the following steps [2].

The nominal or engineering stress is defined as the load divided by the initial cross-sectional

area,

σn =
F

A0

(3.1)

The convectional or engineering strain is represented by,

ε =
l − l0
l0

(3.2)

where l0 and l are the initial and current gauge length respectively. The engineering

stress and strain are not accurate, since the changes of the cross-sectional area and the

gauge length with load are not considered. Assuming the volume of the specimen remains

constant,

A0l0 = Al (3.3)

The true stress can now be defined as the load divided by the current area (the changing
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area with respect to time),

σ =
F

A
=

Fl

A0l0
(3.4)

The true stress can also be expressed in terms of the engineering stress and strain. Insertion

of (3.1) and (3.2) in (3.4), gives the relation between the true and engineering stress,

σ = σn(1 + ε) (3.5)

The increment of the strain has the following relation,

dε̄ =
dl

l
(3.6)

Integration of (3.6) from the initial length to the length l gives,

ε̄ =

∫ l

lo

dl

l
= ln

l

l0
(3.7)

The true strain can be obtained using the engineering strain by using (3.2) in (3.7),

ε̄ = ln(1 + ε) (3.8)

Figure 3.2: A typical stress- strain curve for metals.
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In Fig. 3.2, a typical stress-strain curve is observed. The slope in the elastic region is

expanded for a clearer view of the displayed material properties. One of which is a measure

of elastic stiffness called the Young’s modulus. It is defined as a ratio of stress-strain curve

in the elastic region. This mechanical property can be calculated as,

E =
∆σ

∆ε
(3.9)

Following the calculation of the Young’s modulus, the yield strength σy, is found as dis-

played in Fig. 3.2. The slope of the Young’s modulus is used to construct a parallel

line with an offset in the positive x-axis by 0.2%. It is necessary to construct since some

materials do not display a sharp transition between the elastic and plastic region.

3.2 Material

The tubes used in Tetra Pak’s processing equipment are made of stainless steel 316L. In

some manufacturing steps, a deformation is done on the tubes to change the geometry.

The material proves great corrosion resistance and is commonly used in industries such

as food processing. The tubes are welded and heat treated. The material composition

provided by the material producers, is given in Table 3.1. .

Table 3.1: Chemical composition of Stainless Steel 316L

C Si Mn P S Cr Mo Ni N Ferz
Composition (%) 0,028 0,53 0,87 0,035 0,0010 17,00 2,03 10,10 0,032 8,3
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3.3 Tensile test procedure

Before performing the tensile test, the specimen geometry had to be defined. This was

chosen according to ASTM E8/E8M standard as specified in Table 3.2. Once the geometry

was defined, a drawing of the test specimen was created using Creo Parametric. At Tetra

Pak, a water jet cutting process could then be used to prepare the specimens from sheet

plates with a thickness of 0.8 m.

Figure 3.3: Specimen geometry

Table 3.2: Dimensions of specimen according to ASTM E8/E8M standards
Description Dimensions [mm]
Thickness (T) 0.8
Width (W) 4.2
Gauge length (G) 21.0
Radius of fillet (R) 3.49
Sample length (L) 45.5
Parallel length (A) 23.625
Grip length (B) 7.5
Grip width (C) 10

In this study, uni-axial tensile tests were performed using Instron ElectroPulsTM E10kN

(bi-axial), housed at Lund University. A software, called Bluehill, was also used as part of

the testing method.
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Figure 3.4: The testing set-up

As seen in Fig. 3.4, the specimen was fixed with two vertically aligned pneumatic clamps.

Before the specimen was tested, the initial dimension of the cross-sectional area was mea-

sured using a digital micrometer. Two white dots were also marked on the specimen (see

Fig. 3.5) representing the gauge length, G, given in Table 3.2. Afterwards, the specimen

was mounted in the clamps. A video extensometer was used to monitor the change in

gauge length.

Figure 3.5: The specimen loaded into the clamps

The machine works by pulling the upper clamp (called crosshead) at a speed, v, as given

in Table 3.3, while maintaining the bottom clamp stationary. This continued until the

specimen broke. After breaking, the specimen was removed from the machine and the final
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dimensions of the cross-sectional area were measured. At the end of the test, the software

produced an excel file containing the results. These results included the following,

• Force [N] - Reaction force measured by the load cell

• Extension [mm] - Extension of the clamps

• Engineering stress [MPa] - Calculated by a software using Eq. (3.1)

• Engineering strain [mm/mm] - Measured by the video extensometer

The true stress and strain values were then calculated using Eq. (3.2) and Eq. (3.1). This

data was then used to determine material properties of 316L, according to Section (3.1).

The tensile tests were conducted for 9 samples at room temperature. The mechanical

behaviour of the material was investigated under quasi-static loading. The quasi-static

tests were performed according to the standard ISO 6892-1 [16] at a strain rate of 10−3

s−1 to obtain material properties, such as Young’s modulus and yield stress. The dynamic

testing standard used is named ISO 26203-2 [16]. There were limitations when performing

tensile tests at higher strain-rates, resulting in inaccurate data. Due to that, a low range

of strain-rates were performed to study the material behaviour under dynamic conditions,

namely 10−2 s−1 and 5 · 10−2 s−1. The velocities and strain-rate values are summarized in

the table below,

Table 3.3: Displacement rates corresponding to the different strain rates
Test type Quasi-static Dynamic Dynamic
ε̇p [s−1] 10−3 10−2 10−2

v [mm/s] 0.021 0.21 1.05

To investigate the value of the Young’s modulus, a test was conducted for a specimen with

a larger dimension, shown in Table 3.4.

36



Table 3.4: Dimensions of specimen according to ASTM E8/E8M standards
Description Dimensions [mm]
Thickness (T) 0.8
Width (W) 12.5
Gauge length (G) 50
Radius of fillet (R) 12.5
Sample length (L) 200
Parallel length (A) 57
Grip length (B) 50
Grip width (C) 20

In this case, a mechanical extensometer was used to ensure accurate extension measure-

ment. The extensometer was connected to the specimen as in Fig. 3.6.

Figure 3.6: Mechanical extensometer connected to the specimen
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4 Finite Element Analysis

The finite element analysis (FEA) is a numerical method used to solve physical problems

that are described by partial differential equations [19]. A model of the physical problem

is set up in an FE-program to simulate and analyze the model. The applications for this

method are wide, some models are linear, others are non-linear. FE-models can be used

for both static and dynamic analyses. For this study, the application is to study material

non-linearity and the dynamics at different strain rates. Solving non-linear problems by

finite element method involves modeling, describing the problem with a set of non-linear

equations and using an iterative procedure to solve the problem [5]. Modeling and analysis

of a physical problem include the following steps [7]:

1. Preprocessing - material properties, element type, mesh, boundary conditions and

load conditions are defined.

2. Simulation - solving the numerical problem.

3. Postprocessing - visualization and interpretation of results.

These three steps are explained in more details in this chapter.

4.1 Preprocessing - set up of a virtual tensile test

Preprocessing is the initial step to analyze a physical problem. For that, a preprocessor is

used for creating geometries, setting up boundary conditions, defining material properties

and other necessary specifications that will mimic the physical problem. The preprocessor
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that was provided for this study is called HyperMesh, which is a package within the soft-

ware HyperWorks. Its function is not to solve the problem, but to generate an input file

(.inp) that can be interpreted by a solver to run the simulation. For this study, the input

files were created to be compatible with the Abaqus/Explicit solver.

To start, the specimen was created as a solid with the same geometry as in the experiment.

Next, a mesh consisting of solid elements of type C3D8R, (Continuum 3D, hexahedron/8

nodes, reduced integration) was constructed onto the solid. Finer mesh was desired in

the region where stresses were assumed to be concentrated, i.e. the gauge length region.

Whereas the remaining region, especially at the ends of the specimen, was constructed

with a coarser mesh to reduce simulation time.

As seen in Fig. 4.1, only half of the specimen was modelled. This is because the problem

allows use of symmetry constraints. Each element needs to be solved later with a set of

non-linear equations, therefore, a benefit of using symmetry is that a reduced model re-

sults in reduced computational time. The symmetry constraints are described by boundary

conditions at a surface that lies on the symmetry plane. The nodes on this surface are

not allowed to translate normal to the surface nor rotate about the axis of the symmetry

plane. Thus, the expected deformation would also be symmetrical.

Figure 4.1: Simulation model using symmetry constraints

Apart from symmetry constraints, only the domain of the specimen in-between the clamps

was analyzed. Thus, a reduction in length of the model was also made possible. The
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loading conditions were applied in the same manner as in the physical tensile test. That

is, one end of the specimen was fixed while the other end was subjected to a prescribed

displacement. For the fixed end, all the nodes at the bottom surface were prescribed fixed

(see Fig. 4.2).

For the other end, a so-called multi-point constraint (MPC) was used, which allows con-

straints to be imposed between different degrees of freedom [6]. Here, one node that is

defined away from the model is chosen as a master node and is only allowed to move lon-

gitudinally. It is connected using a multi-point-constraint (MPC) to a set of nodes on the

upper surface, the connection is seen as green lines in Fig. 4.1. A constant displacement

rate, v, as specified in Table 3.3, is then given to the MPC master node and all the con-

nected nodes will behave accordingly. To obtain strain measurements, the gauge length

was defined with two node sets in the same region and the same length as in the physical

tensile test.

Figure 4.2: Zoomed view of model

The next step was to assign material properties to the model. These material properties

were defined with the same values as obtained from the physical tensile test. Since isotropic

elastic behaviour was assumed, the elasticity was defined with the calculated Young’s

modulus and Poisson’s ratio was assumed to be 0.3. When this was done, an input file from

HyperMesh was created and further material model definitions could be made manually
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in the file. For each material model, the plastic part was defined with values obtained

from calibration with respect to test data. The simulation time was defined, which was

calculated as

t =
∆

v

where ∆, is the displacement and v, the displacement rate according to Table 3.3. Some

of the additional outputs listed below, were also added in the input file:

• History outputs

– U2 - displacement in the y-direction. One for the MPC master node and two

for the gauge points

– RF2 - reaction force in the y-direction for the MPC master node

• Global field outputs

– PEEQ - equivalent plastic strain as Eq. (2.21)

– S - all stress components, including the von Mises effective stress as Eq. (2.11)

– ER - all logarithmic strain rate components, including the effective plastic strain

rate as Eq. (2.20)

In the input file, the specification of how often these outputs would be requested was also

defined.

4.2 Material models and calibration

Material models were picked in consideration of what was available in Abaqus. The ones

that were suitable for this case were discussed in Chapter 2. The implementation of each

of the models will now be presented.
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4.2.1 Rate independent material model

Current bilinear model implementation

The already existing bilinear material model was implemented with an elastic part defined

with a Young’s modulus of 200 GPa and Poisson’s ratio of 0.3. Two pairs of plastic stress-

strain values were used to defined the plastic region. These pairs were provided by Tetra

Pak as listed in Table 4.1.

Table 4.1: Calibrated plastic stress-strain values for the current bilinear model.
Stress [MPa] Plastic strain

265 0
605 0.66

Bilinear model implementation

Implementation of this material model in Abaqus required defining an elasticity modulus

and two pairs of plastic stress-strain values. A Young’s modulus of 200 GPa was used for

the linear elastic region up to the yield stress. For plasticity, two pairs of plastic stress-

strain values were used (see Table 4.2). The first pair was defined as the initial yield stress

with a plastic strain of zero. The tangent modulus was determined using curve fitting in

Matlab. Inserting the Young’s and tangent modulus into relation (2.26), the hardening

modulus was obtained. Since the hardening modulus is the slope of plastic stress-strain,

the stress value for the second pair was calculated using this modulus for a plastic strain

of 0.6 mm/mm.

Table 4.2: Calibrated plastic stress-strain values for the bilinear model.
Stress [MPa] Plastic strain

275 0
1392.8 0.6
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Multilinear model implementation

The multilinear model was fitted by selecting points along the tensile curve in the plastic

region. The tangent modulus at each linear section were calculated and used in Eq. (2.26)

to obtain the hardening modulus. The point selection was denser at the elasto-plastic

region and sparser at higher stress value (see Fig. 4.3).

Figure 4.3: Pairs of plastic stress-strain values for the multilinear model demonstrated as red
circles on the experimental curve.

For the elastic part, the same value for Young’s modulus was used. This material model

was built up by 17 plastic stress-strain points as shown in Table 4.3.
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Table 4.3: Pairs of plastic stress-strain values for the multilinear model.
Stress [MPa] Plastic strain

256.73 0
279.62 0.0020
305.09 0.0080
325.69 0.0148
344.21 0.0219
377.02 0.0355
438.73 0.0628
502.79 0.0922
555.43 0.1174
605.71 0.1431
688.73 0.1902
764.78 0.2399
829.34 0.2875
885.64 0.3339
935.08 0.3792
980.82 0.4333
1134.19 0.598

Johnson-Cook model implementation

The elastic part was defined in the same manner as the previous material models. For

the plastic part, the Johnson-Cook model (2.28) involves several material parameters that

need to be calibrated against results from experimental data. Since the experiment was

done in room temperature, m is set to zero. Moreover, the parameter A is set as the initial

yield, i.e. A = R0.2, obtained from the quasi-static data. The remaining parameters B and

n are established by a curve fitting tool in Matlab. The results from curve fitting are seen

in Table 4.4.

Table 4.4: Calibrated quasi-static parameters for Johnson-Cook model.
Material A [MPa] B [MPa] n
316L 275 1356 0.7344
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4.2.2 Rate-dependent material model

Cowper-Symonds

To determine Cowper-Symonds parameters D and p, Eq. (2.37) was used to fit the ex-

perimental data. The results are presented in Table 4.5. These values are only valid for

strain-rates showed in Table 3.3.

Table 4.5: Calibrated Cowper-Symonds parameters
D p

10−3 1.465

Using these values with higher strain-rates will result in an overestimated prediction of

yield stress. The parameters could not be calculated correctly due to the limitation of

performing tensile test at higher strain-rates with the current tensile testing machine. In

order to determine the C-S parameters accurately, other experimental techniques such as

Taylor test and Split Hopkinson Pressure Bar should be used. Unfortunately, they were

not available for this study.

Johnson-Cook

The rate dependency is important to implement at higher strain rates since it has an

impact on the yield stress. In Johnson-Cook, the selection of the strain-rate normalization

parameter, ε̇0 can be done in two ways. It is important to be consistent with the choices of

the parameters A and B when selecting ε̇0. If the parameters A and B are determined from

quasi-static data, then ε̇0 should be set to the value of the effective plastic strain-rate used

in the quasi-static test: ε̇0 = ε̇peff . If not, the parameters A and B need to be modified.

The selection of ε̇0 = 1s−1 together with the parameters A and B from quasi-static data

is often seen in research, but this misunderstanding underpredicts the static response [17].

After estimating the other J-C parameters, the remaining strain-rate parameter, C was

obtained by curve fitting the dynamic tensile test data and an average of C was calculated.

Table 4.6 shows the Johnson-Cook parameters employed in this study.
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Table 4.6: Calibrated parameters for Johnson-Cook model from dynamic data
Material A [MPa] B [MPa] C n ε̇0 [s−1]
316L 275 1356 0.002498 0.7344 10−3

4.3 Simulation

After modeling the problem, an Abaqus/Explicit input file (.inp) was generated. The input

file was submitted to Abaqus for solving the numerical problem defined in the model. It

was done using an explicit time-integration scheme. The explicit analysis procedure in

Abaqus/Explicit uses Euler forward discretization scheme to solve the non-linear problem.

During the first phase of the simulation, Abaqus calculates the initial stable time increment

which yields the time frame of each iteration, shown in Eq. (4.1).

∆t ≤ 2

ωmax
(4.1)

where ωmax is the highest eigenvalue in the system. The stable time increment is regularly

updated throughout the simulation.

4.4 Postprocessing

Once the FE analysis was completed, Abaqus generated an output file (job.odb) contain-

ing the calculated results. These results were displayed using the Visualization module of

Abaqus/CAE (Abaqus/Viewer). The field results were displayed on the model and simu-

lation was animated to understand how the specimen was deformed. The history results

were then exported as vectors and imported into Excel for plotting.
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4.5 Single element test

Before running the non-linear finite element analysis, the material response was controlled

using a single element test. For this purpose, an Abaqus/CAE plug-in was provided by

Tetra Pak. The single element plug-in consists of an element with the boundary and load

condition as shown in Fig. 4.4.

Figure 4.4: Single element test set-up in Abaqus.

The solid element (C3D) was used with the same dimensions as the elements in the model.

The tests were performed using an explicit numerical solver.

4.6 Goodness-of-fit

After model fitting, it is important to check how well the model fits the experimental data.

It can be measured with the coefficient of determination also known as R-squared [20].

The R2-value usually ranges between 0 and 1,

• R2 = 0 indicates the model does not properly fit the experimental data.

• R2 = 1 indicates the model fits the experimental data perfectly.

The common expression for R2 is presented as,

R2 = 1− SSresid
SStotal

(4.2)
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where the sum of the squared residuals, SSresid, and the sum of the squared differences,

SStotal, are obtained as,

SSresid =
∑
i

(yi − fi)2, SStotal =
∑
i

(yi − ȳ)2, ȳ =
1

n

n∑
i=1

yi (4.3)

y is the model values, ȳ the average value of y and f is the experimental values. A Matlab

script was written containing Eq. (4.2) and Eq. (4.3) to calculate R2-value for each fitted

model.
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5 Empirical Analysis

In this chapter, the results obtained from both tensile testing and postprocessing will be

presented. Illustrative comparisons of data from testing and simulations are made using

Matlab, whereas Abaqus Viewer is used to capture images of the postprocessing.

5.1 Results

Tensile test results

Results for the material response at the reference strain rate of 10−3 s−1 are shown in Fig.

5.1.

(a) Force-Displacement curve (b) True stress-strain curve

Figure 5.1: Experimental results at a strain rate of 10−3s−1.

Fig. 5.2 illustrates the experimental results at different strain-rates.
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Figure 5.2: Experimental results at different strain-rates.

The yield stress and the Young’s modulus for each experiment are determined and presented

in the following table,

Table 5.1: Obtained material properties at different strain rates.
Strain rate [s−1] Yield stress [MPa] Young’s modulus [GPa]

10−3 275 200
10−2 287 180

5 · 10−3 311 148

The stress variation are plotted with respect to the logarithmic strain-rate for four different

strain levels.
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Figure 5.3: The stress variation with respect to the logarithmic strain-rate.

Virtual tensile test results

Calibration of the proposed material models from quasi-static experimental data are pre-

sented in Fig. 5.4 - 5.6.

(a) Force-Displacement curve (b) True stress-strain curve

Figure 5.4: Virtual vs experimental tensile test using bilinear model under quasi-static loading
condition.
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(a) Force-Displacement curve (b) True stress-strain curve

Figure 5.5: Virtual vs experimental tensile test using multilinear model under quasi-static loading
condition.

(a) Force-Displacement curve (b) True stress-strain curve

Figure 5.6: Virtual vs experimental tensile test using Johnson-Cook model under quasi-static load-
ing condition.

To better understand how well the materials models fit the experimental curve, the coeffi-

cient of determination, R2-value, is calculated and showed in Table 5.2.

Table 5.2: Calculated R2-value for the proposed models.
Model Bilinear Multilinear Johnson-Cook
R2-value 0.9692 0.9935 0.9919
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Results from the proposed material models, the current bilinear model and the experimen-

tal tests are plotted as stress-strain curves in Fig. 5.7.

Figure 5.7: A comparison between the experimental values and the different material models.

The effective plastic strain and von Mises stress are displayed as field results on the model

and presented in Fig. 5.8-5.11.
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(a) (b) (c) (d)

Figure 5.8: Equivalent plastic strain at 0.1 mm displacement, (a) Current bilinear, (b) Bilinear,
(c) Multilinear and (d) Johnson-Cook.

(a) (b) (c) (d)

Figure 5.9: von Mises effective stress at 0.1 mm displacement, (a) Current bilinear, (b) Bilinear,
(c) Multilinear and (d) Johnson-Cook.
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(a) (b) (c) (d)

Figure 5.10: Equivalent plastic strain at 10 mm displacement, (a) Current bilinear, (b) Bilinear,
(c) Multilinear and (d) Johnson-Cook.

(a) (b) (c) (d)

Figure 5.11: von Mises effective stress at 10 mm displacement, (a) Current bilinear, (b) Bilinear,
(c) Multilinear and (d) Johnson-Cook.

55



Simulation and manufacturing process

The material models were implemented on one application where the tube is deformed.

Results from the virtual process are shown in the following figures.

(a) Outside of tube (b) Inside of tube

Figure 5.12: Deformation of the outside and the inside of tube at full step, analyzed region is
magnified.

(a) Outside of tube (b) Inside of tube

Figure 5.13: Effective plastic strain-rate for Johnson-Cook material model.
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Table 5.3: Equivalent plastic strain for different material models.

Material model Outside of tube Inside of tube

Current bilinear

Bilinear

Multilinear

Johnson-Cook
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Table 5.4: von Mises effective stress for different material models.

Material model Outside of tube Inside of tube

Current bilinear

Bilinear

Multilinear

Johnson-Cook
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(a) Outer profile

(b) Inner profile

Figure 5.14: Comparison of the outer and inner profile for the different material model.
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5.2 Discussion

Tensile test

From the test machine, the outputs were the force, extension and engineering strain from

the video extensometer. The engineering strain cannot be calculated using the measured

extension from the machine, since it includes the interactions of the grips to the specimen.

Instead, the true stress-strain curve is obtained using Eq. (3.5) and Eq. (3.8) with the

engineering strain, ε, measured from the video extensometer for more accurate results.

In Fig. 5.1, three samples and the average of the test with the same conditions is ob-

served. As it can be seen, the experimental curves are consistent. The elastic region is

very small in comparison with the plastic region as expected. The material breaks when

the strain is around 43%, making 316L very ductile. At this strain, the corresponding

ultimate tensile strength is roughly 990 MPa.

Fig. 5.2 compares the experimental stress-strain curves performed at different strain rates.

It can be hard to see the impact from the different strain rates. For the sake of clar-

ity, the differences are listed in Table 5.1, where a significant increase in yield stress is

noted. This means the mechanical behaviour of the material is strain-rate-dependent. To

further investigate the effect of strain-rate, the variation of the stress are plotted with

respect to the logarithmic strain-rate as seen in Fig. 5.3. It is done for four levels of

strain: at yielding, 5%, 15% and 25%. The highest increase in stress with increasing strain

rate is at yielding and this is the impact of strain rates that is expected for the material.

If the variation of tested strain rates was wider as in article [9], the impact would be clearer.

When looking at the Young’s modulus of the performed tensile tests, some differences

can be observed in Table 5.1. It may be due to the inability of the video extensometer

to track the gauge points at different strain rates accurately, especially in a small region
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as elastic one. Therefore, one test was performed with a bigger specimen to capture a

more consistent deformation in the elastic region. Another possible reason that can affect

this material property is how the specimen is loaded into the machine. In order to obtain

an accurate value of the Young’s modulus, the specimen must be placed parallel to the

direction of the applied load. It must be noted that the Young’s modulus is a material

property in the elastic region and does not depend on the specimen geometry nor on the

strain rate.

Virtual tensile test

Results from the bilinear material model under quasi-static loading condition are plotted in

Fig. 5.4 with a comparison to the experimental curves. A good agreement can be observed

in the elastic region. A significant difference between the results from using the material

model and experimental data, can be noted beyond the yielding. It is seen from the figure

that the onset of plastic deformation occurs at a lower value of strain. An underprediction

of the stresses can be seen up to a strain of about 35%. While at larger plastic strains, the

stresses are overestimated.

In order to get a more accurate result in the plastic region, a multilinear model was used.

Looking at the results from the multilinear model, shown in Fig. 5.5, it can be seen that

the model agrees with the experimental curve both in the elastic and plastic region. The

more stress-strain points that are chosen, the more accurate is the curve fitting with this

material model. Just as for the bilinear material model, the curve fittings are only valid

for this quasi-static case. For other strain rates, new predictions need to be made or take

use of a rate-dependent model, e.g. Cowper-Symonds (see Section 2.5.1).

Implementing the Johnson-Cook material model, the results obtained from the virtual

quasi-static tensile test are seen in Fig. 5.6. A comparison on how well this model fits

the experimental can be made. From observation, the numerical values seem to capture
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both the elastic and plastic response. The curve fitting is valid for strain rates that are

considered quasi-static. For higher strain rates, the rate-dependent relation parameters

need to be included as explained in Section 2.5.2.

Table 5.2 tells how well the material models fit the experimental data. All three mod-

els have an R2-value that is above 0.99, indicating that the fit of the models are more than

99% accurate. Thus, the material model that has the highest R2-value, gives the best fit

to the experimental result. With that in mind, it is noted that the multilinear model gives

the best fit, which is due to the multiple points that are used to describe the material

behaviour in the plastic region.

It is important to note that the bilinear and multilinear models have an upper stress-

strain limit. After this limit is exceeded, the solver assigns ideal plasticity behaviour.

Therefore the models are only valid up until that point. The Johnson-Cook model does

not have this behaviour since it is described with a set of parameters that relate the stress

to any strain values. In Fig. 5.4-5.7, the stress-strain curves obtained from simulation are

extrapolated for higher strains using a stress-strain relation for each model.

Fig. 5.7 compares the predictions of the proposed material models and the experimen-

tal curves under quasi-static loading condition. Once the equivalent stress value in Eq.

(2.11) reaches the yield surface, the material begins to deform plastically. As it can be

seen in the figure, all proposed material models predicted the onset of plasticity accurately.

It can also be noted that the elastic region in all models are identical, while the major dif-

ference appears beyond the yielding. The proposed models are stiffer than the current

model, which means a higher force is required to deform the material. It should also be

noted that the current bilinear model has a lower fracture point (at 605MPa).

At the first time step, which corresponds to 0.1 mm displacement, distribution of the

equivalent plastic strain and the von Mises effective stress are shown in Fig. 5.8 and Fig.
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5.9 respectively, for the different material models. As seen in Fig. 5.8, the onset of plastic-

ity occurs in the same region (seen as red marks) for all material models. The difference is

how intense the plastic strain and the effective stress distribution are in the middle of the

specimen. The field results, according to the Johnson-Cook model show that the specimen

is less deformed. Especially in comparison with the current bilinear model which is easily

deformed, i.e. softer. From Fig. 5.7, one can see how the different material models relate

to one another when it comes to the onset of plasticity. The differences in plastic stress is

confirmed when looking at the stress distribution in Fig. 5.9. The Johnson-Cook model

can therefore be considered as stiffer than the other material models at this step.

The model response at 10 mm displacement is also shown for the different material mod-

els in Fig. 5.10 and Fig. 5.11. Significant deformation is already seen for the current

bilinear model even though the stress is roughly half of what the material can withstand.

The other three models, predict similar stress distribution. When it comes to PEEQ,

the concentration is higher for the current bilinear material model. When looking at the

stress distribution in Fig. 5.11, the material model that stands out is the current bilinear

model. The stress level for this model is roughly half in comparison with the other models.

However, the other material models show almost the same response.
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Manufacturing process

Fig. 5.12 shows how the deformed tube looks like from the outside and the inside. A small

section of the middle region is chosen for analysis with a fine mesh. Lines between the

colored and grey element band are the transition lines of a fine to a coarse mesh. Therefore,

results close to these transition lines are not accurate.

The plastic deformation in the deformation process occurs in a range of 20% to 35%

according to the figures in Table 5.3. When deforming the tube using the current bilinear

model, the maximum strain and stress value are beyond the fracture point (see Table 5.3).

Use of this model in the deformation process will therefore result in failure of the material.

Comparing the proposed material models, the stress distribution according to Table 5.4

shows that the outer region of the tube is exposed to higher stress when using the bilinear

model. The response using the multilinear and Johnson-Cook is similar. This is explained

by Fig. 5.7, where one can see that the difference in stress values is small for these two

models.

Effective strain rate results using the Johnson-Cook rate-dependent model are shown in

Fig. 5.13. The results show that the deformation process is rate-dependent. Therefore, it

is necessary to use a rate-dependent model.

The deformed profile for each material model are plotted in Fig. 5.14. When forming

the profile, the deforming tool pushes the surface of the tube radially. Since the proposed

models are stiffer than the current model, higher force is needed to deform the tube which

results in bending of the tube. Therefore, the tube surface does not lie on the reference

line, which can be seen in area A, C and E in Fig. 5.14. Use of the proposed material

models results in uneven surface (see area A and C in Fig. 5.14).
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6 Conclusions

The general purpose of this paper was to characterize the appropriate material model in

material grade 316L to be used in FEA. For this purpose, samples of the material were

tensile tested at three different strain rates and the plastic deformation was studied. The

material behaviour was assumed independent of direction, i.e. isotropic.

To simulate the tensile test virtually, an FE model was created in HyperMesh with the

same geomerty as the specimens. The material behaviour in the FE model was described

using a current bilinear model and three proposed material models. These were, bilinear,

multilinear and Johnson-Cook isotropic hardening models. The model parameters were

calibrated from the quasi-static tests. A single element test was used to verify the material

response before running the FE analyses.

Rate dependency of the material was also investigated using Cowper-Symonds and Johnson-

Cook rate-dependent models. The rate-dependent parameters were determined using the

dynamic tensile tests.

Comparisons of simulated response and experimental results were then made for verifica-

tion of the material models. After the verification, the deformation process was simulated

using these material models.
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The following conclusions can be drawn from the work:

• The video extensometer was unable to capture accurate displacements of the gauge

points in the elastic region. Therefore, a mechanical extensometer was used.

• In the physical tensile test, 316L was deformed up to 43% strain, proving that the

material is ductile.

• The plastic deformation behaviour of 316L at different strain-rates showed to be

rate-dependent. Increase of the strain rate resulted in increase of the yield stress.

• Results from the virtual tensile tests under quasi-static loading condition showed;

the current bilinear model underpredicted the stress that the material can withstand.

The multilinear and Johnson-Cook models gave a better prediction compared to the

bilinear model.

• To capture the rate dependency of 316L, the Cowper-Symonds and Johnson-Cook

models were used. To obtain the C-S paramters, a wider range of strain rates were re-

quired. Johnson-Cook rate-dependent model provided a good prediction for different

strain rates.

• Results from the manufacturing process showed that use of the current bilinear model

results in the failure of the material. Johnson-Cook rate-dependent model showed

that the deformation process is rate-dependent. Using the bilinear or multilinear

model would not take the strain-rate dependency of the process into account.
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6.1 Source of errors

As mentioned earlier, different sources of experiments will give other data values. This

is expected due to the way the material is treated before and during testing. Moreover,

simplifications and assumptions are made when analyzing the obtained data. These factors

that can contribute to errors are listed below for this work:

• No study was made on how the waterjet affects the material properties.

• To get more accurate results, the specimen must be kept vertical and parallel to the

direction of the applied load.

• The curve fitting in elastic region is made for a few data points to result in a Young’s

Modulus that lies in the range of what theory suggests.

• The higher the strain rates, the harder it is for the video extensometer to record

accurate elongation of the specimen.

• The material is assumed to be isotropic for simplicity and to allow use of Johnson-

Cook as it is one of the most used material models for 316L.

• The geometric imperfections - it is almost impossible to produce an ideal specimen.

• Most engineering materials are in-homogeneous - the in-homogeneity of the material

was not taken into consideration in the FE model.
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7 Future work

• It would be of interest to perform experiments with strain rates of around 300s−1

since the manufacturing process seem to perform at the same magnitude. A popular

experimental technique for the study of materials at high strain rates is the Split

Hopkinson Pressure Bar (SHPB). With this, one is able to induce strain rates with

a magnitude of some thousand of s−1. Other parameters that describe the rate

effects would be established. Consequently, more accurate material models would be

obtained when combining results from quasi-static and dynamic tests. [18]

• Many research work on 316L do not consider anisotropy of the material. Since the

deformation of the tube is done in a certain angle, a suggestion would be to implement

a material model that takes anisotropy into account at that angle.

• Performing DIC (Digital Image Correlation) analysis on the specimens would have

provided a better understanding on the deformations. Consequently, comparisons

with the virtual tensile test field results would have been made easier. Also, DIC

used with a 3D camera can be used to give an accurate value of the Poisson’s ratio.
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