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Abstract

The restoration of particle number and angular momentum symmetry using pro-
jection operators has been theoretically investigated for mean-field Hartree-Fock-
Bogoliubov (HFB) states. A computer code for the projection of particle number
was then implemented. To do so efficiently and avoid the sign ambiguity of the
Onishi formula, the computation of overlap between quasi-particle vaccums using
Pfaffians was investigated. Different algorithms for the the Pfaffian from [1],[2],
was tested for performance and accuracy. For the same reason different trunca-
tions of the model space was also investigated. The particle number projector
was then implemented in HOSPHE [3] for calculations of ground states pertaining
to an effective Quadrupole plus Pairing Hamiltonian calculated using the SLy4
parametrization of the Skyrme interaction.



Populärvetenskaplig
sammanfattning

Den vanligaste formen av materia i v̊art universum best̊ar av elemntarpartiklar som
kallas för kvarkar och leptoner. Dessa kvarkar attraherar varandra som en effekt
av den starka och svaga växelverkan - som förmedlas genom utbytet av bosoner.
I atomkärnan är det den starka växelverkan, vars effekt bärs av gluoner, som
binder samman upp- och nerkvarkar till neutroner och protoner. Kombinationen
av kvarkar, som ocks̊a är elektrostatiskt laddade, gör i sin tur att protonen blir
positivt laddad och neutronen oladdad. Den positiva laddning hos protonerna gör
att atomkärnan kan binda elektroner till sig. Denna kombination av olika krafter
eller växelverkan är orsaken bakom strukturen hos grundämnena i det periodiska
systemet. Dessa grundämnen utgör majoriteten av den materia vi som människor
p̊a jorden kommer i direkt kontakt med p̊a daglig basis.

Människan har sedan slutet av 1700-talet haft en god först̊aelse för den elek-
trostatiska Coulomb-växelverkan. Däremot har vi fortfarande inte en komplett
beskrivning av den starka växelverkan som binder samman nukleoner. Detta är för
att växelverkan mellan nukleoner, som egentligen är växelverkan mellan kvarkar,
blir ett ökänt komplext flerpartikelproblem om det ska behandlas exakt. Den
starka växelverkan mellan nukleoner kallas ofta för den starka kärnkraften och är
en effektiv växelverkan, snarlikt van der Waals-kraft mellan atomer. Problemet
med att beskriva denna växelverkan i form av en potential för flera interagerande
nukleoner, som är fallet för en atomkärna, kan lösas approximativt p̊a m̊anga sätt.

Ett vanligt sätt att lösa flerpartikelproblem i allmänhet är att införa s̊a kallade
medelfältsapproximationer, som möjliggör att interaktionen mellan N-partiklar
kan separeras till N stycken enpartikelsproblem. För atomkärnor används ofta
en metod l̊anad fr̊an fasta tillst̊andets fysik, där man studerar elektroners effektiva
växelverkan. Denna metod kallas för BCS-metoden och till̊ater parbildning, allts̊a
att nukleoner binder till varandra. Med denna parbildning i åtanke kan man sedan
behandla hela kärnan utifr̊an dessa par, istället för enskilda nukleoner. En effekt
av denna metod är att symmetrier i systemet bryts, och man kan inte längre vara
säker p̊a att lösningarna, allts̊a ungefärliga beskrivningar av kärnan, inneh̊aller ett
korrekt antal nukleoner. Andra egenskaper som spin bevaras inte heller.

För att återinföra dessa symmetrier till kärnan används s̊a kallade projektionsme-
toder. I denna avhandling studeras dessa metoder för partikelantal- och spinpro-
jektion. Vidare implementeras en datorkod som projicerar partikelantal genom att
använda en s̊a kallad Pfaffian. Olika metoder för att beräkna Pfaffianen studeras
samt metoder för att snabba upp dess beräkning. Slutligen implementeras par-
tikelantalsprojektionen i en mer realistisk beräkning för att se hur mycket närmare
en korrekt beskriving av 18

8 O denna symmetri̊aterföring åstadkommer.
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Chapter 1

Introduction

The ordinary matter in our universe is made up of elementary particles known as
quarks and leptons; of which the up and down quarks together with the gluons
create the nucleons. Nucleons and electrons aggregated form the atoms of the
chemical elements found in nature. The electrons are bound to the nucleons by
the coloumb force - an interaction that has been well described since 1785. The
force keeping the nucleons together on the other hand, is the strong nuclear force.
This interaction has not been given a final end-all-be-all potential, but models
have been worked on since the beginning of nuclear physics. For larger many-
body systems of nucleons the problem of a complete description of the interaction
becomes even more challenging. By the introduction of mean-field approaches the
N -body problem can be reduced to N single-particle systems. The solution of
these fields leads, in the case of fermions, to product-state solutions of an anti-
symmetrized Fock space called slater determinants. The most common way of
optimising the mean-field is through the self-consistent variational principle of
Hartee-Fock.

Analogous to electron systems with short-range particle-particle interactions lead-
ing to superconductive states, the introduction of Cooper-pairs in nuclei can fur-
ther improve the mean-field solutions. This approach is called Hartee-Fock-Bogoliubov
mean-field theory and is a very common strategy to computationally approach the
nuclear many-body problem. Albeit being a powerful method, it yields a wave
function that spontaneously breaks certain symmetries of the original Hamiltonian
such as particle number and nuclear spin. Hence a way to increase the accuracy
of the solution is to restore said symmetries, which is commonly done through the
use of projection operators.

Another very common approach that also lends much of its theoretical background
from electron systems is density functional theory. This approach uses effective
interactions tuned to their purpose by mean-field calculations. In nuclear theory
the structure of the effective interaction is often not derived ab-intio as is the
case for electrons. Instead the shape is merely motivated ab-initio followed by
comprehensive fitting of the parameters to structural data.
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In this thesis the introduction of symmetry restoration through projection of HFB-
states is studied. The theoretical framework for symmetry restoration of particle
number projection as well as angular momentum using a variation after projec-
tion approach is outlined, together with a general generator coordinate method.
Computations for restoration of particle number is implemented using Pfaffians
for a BCS-model with seniority pairing, in HFB-formalism. Different Pfaffian rou-
tines are tested for performance using the metrics of runtime and relative error.
Methods of truncating the model space for further computational optimization is
investigated. Lastly particle number restoration is implemented in an extension
of the program HOSPHE ; these calculations map DFT-interactions to an effective
Hamiltonian with pairing plus quadrupole deformation which is then solved us-
ing HFB mean-field variation where the resulting states are used for configuration
mixing with deformation together with proton and neutron number as generator
coordinates.
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Chapter 2

Theory & Methodology

2.1 The Model space

The model space we start from is generated by the eigenstates of the BCS Hamil-
tonian using seniority pairing. This means we treat the pairing interaction G as a
constant interaction between pairs of conjugate states {α, ᾱ} [4]. Hence we start
from the following Hamiltonian:

HBCS =
∑
α>0

εα(c†αcα + c†ᾱcᾱ)−G
∑
α,α′>0

c†αc
†
ᾱcᾱ′cα′ ≡ Hs.p. +HG (2.1)

Where c†α and cᾱ are fermionic creation and annihilation operators for the state
α. The sums α, α′ runs over half the states, as for each state α there exists a
conjugate state ᾱ, which in the case of BCS is the time-reversed state. The set
of states {α, ᾱ} generate the whole model space[4]. The single particle energies
εα are the eigenvalues of the spherical modified oscillator (MO) Hamiltonian also
called the Nilsson model[5] (using . . . to denote line break):

ε(Nosc, `, j) ≡ h̄ω0

[
Nosc +

3

2
− κ

{
`

−(`+ 1)
. . .

. . .− µ′
(
`(`+ 1)− Nosc(Nosc + 3)

2

)] {
j = `+ 1/2

j = `− 1/2
,

h̄ωN,Z
0 ≡ 41 · A−1/3

(
1± 1

3

N− Z

A

)
MeV.

(2.2)

Nosc is the principal quantum number, denoting the major oscillator shell, ` is the
orbital angular momentum quantum number and j = ` + s is the total angular
momentum (per nucleon) quantum number. As usual in the literature: N is the
neutron number, Z is the proton number and A=N+Z is the atomic number. The
values of the MO parameters (κ, µ′) are chosen in accordance with [5]. κ is the
strength of the spin-orbit or ` · s-coupling and µ′ is the strength of the `2-term.
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The single particle states of Hbcs are found by the introduction of pairing operators,

P † ≡
∑
α>0

c†αc
†
ᾱ, (2.3)

which create Cooper-pairs of particles coupling to mj = 0. The pairing interaction
can now be cast in a new form;

HG = −GP †P, (2.4)

which lends itself to a straightforward linearization giving a (mean-) pair field

H∆ = −∆(P † + P ) , ∆ ≡ G
〈
P †
〉
. (2.5)

Linearization of the pairing interaction:

HG = −GP †P = −G(P † −
〈
P †
〉

+
〈
P †
〉
)(P − 〈P 〉+ 〈P 〉)

= −G
〈
P †
〉

(P † + P )−G(P † −
〈
P †
〉
)(P − 〈P 〉) +G

〈
P †
〉2

≈ −G
〈
P †
〉

(P † + P )

where the third equality makes of 〈P 〉 =
〈
P †
〉

and the final approximation assumes

that P † ≈
〈
P †
〉
, P ≈ 〈P 〉 and

〈
P †
〉2
<< 1.

Replacing the original pairing interaction HG by the pairing field or potential H∆

the Hamiltonian is bilinear in the single particle creation operators {c†α, cα}. This
fact was utilized by Bogoliubov and Valantin (1958) by a unitary transformation
of these operators into quasi-particle operators given by{

b†α = Uαc
†
α − Vαcᾱ

bα = Uαcα − Vαc†ᾱ
,

{
b†ᾱ = Uαc

†
ᾱ + Vαcα

bᾱ = Uαcᾱ + Vαc
†
α

. (2.6)

These quasi-particle operators obey the standard fermionic anti-commutation re-
lations. This rotation in the Fock-space yields a variational minimization problem
where the parameters Uα, Vα must obey

|Uα|2+|Vα|2= 1, (2.7)

if the solution is to be normalized. Using the time reversed states;

|α〉 = |nljm〉 , |ᾱ〉 = |nlj −m〉 , m > 0, (2.8)

gives the phase convention

Uα = Uᾱ > 0 , Vα = −Vᾱ > 0. (2.9)

One can now identify the V 2
α as the occupation probability of the the state α, and

U2
α as the complementary probability of the state being unoccupied.
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The resulting Hamiltonian no longer preserves particle number, but can be forced
to do so on average by Langrange multiplier −λN . The final Hamiltonian H ′ is
then given as

H ′ = Hs.p. +H∆ − λN, (2.10)

where diagonalization gives the equation [4],[5]:

2UαVα(εα − λ)−∆(U2
α − Vα)2 = 0. (2.11)

The physical solutions are then

Uα =

[
1

2

(
1 +

εα − λ
Eα

)]1/2

,

Vα =

[
1

2

(
1− εα − λ

Eα

)]1/2

,

with the quasi-particle energies:

Eα ≡
√

(εα − λ)2 + ∆2. (2.12)

From (2.12) one can see that the ground state should have zero quasi-particles
since Eα is a monotonous function of ∆. Denoting this quasi-particle vaccum by
|−〉 it must obey

bα |−〉 = bᾱ |−〉 = 0 ∀ α. (2.13)

The quasi-particle vacuum can thus be constructed as

|−〉 ∝
∏
α

bαbᾱ |0〉 , (2.14)

which transformed back into single particle operators of the MO is given as

|−〉 =
∏
m

(
Um + Vmc

†
jmc
†
jm̄

)
|0〉 . (2.15)

Using the empirical relation for the pairing strength [5]:

∆emp =
12√
A

MeV, (2.16)

the Uk, Vk factors can be determined by a scan of λ until

λ = 〈N〉 =
∑
α>0

2V 2
α = N/Z. (2.17)

The result of the these BCS calculations can then be cast in HFB formalism as(
b†

b

)
=W†

(
c†

c

)
, W ≡

(
U V ∗

V U∗

)
∈ C2n×2n, (2.18)
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where C2n×2n denotes the set of all complex 2n× 2n matrices. From the definition
of the Bogoliubov-Valantin transformation, forcing fermion commutation relations
translates into [4]:

W†W =WW† = 1. (2.19)

From the Bloch-Messiah theorem the form of W can be deduced. In the BCS
formalism the density matrix is diagonalized to begin with and by choosing the
time reversed states as the conjugate states the U, V matrices are given as:

U =


U1 0
0 U1

0
. . .

0 Un 0
0 Un

 ,

V =


0 V1

−V1 0
0

. . .

0 0 Vn
−Vn 0

 .

The above linearization of the pairing interaction into a mean field can be seen
as a phase transition of the nuclei into a superfluid state. This approximation,
as it turns out, is better the stronger the pairing interaction is. However, as
stated above, the resulting Hamiltonian now breaks certain symmetries. This is
equivalent to the Hamiltonian no longer commuting with the angular momentum
operator nor the particle number operator[4]:

[H,N ] 6= 0, [H, J2] 6= 0. (2.20)

This means the ground-state solution obtained contains correlations with excited
states. To remove these correlations and obtain better approximations of the true
ground state a superposition of many-body wave functions i.e. slater determinants
is used. This method of configuration mixing actually gives the exact ground state
in the case of the BCS model, and greatly improves the calculations based on the
DFT to Hamiltonian calculations.o
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2.2 Projection operators

To restore the symmetry of the true Hamiltonian the projection operator method
is utilized. The method of particle number symmetry involves the projection by
abelian symmetry groups, whereas the angular momentum restoration utilize non-
abelian symmetry groups. This makes the mathematical structure of the projectors
different, which means the initial definition of the operators needs a rather different
treatment. The mathematical framework behind both methods will be outlined in
the following section.

In general a projection can be seen as an expansion of the wave function in the
basis functions of the irreducible representation of the symmetry group. To find
such an expansion one wish to construct a projection operator P ν such that for
any arbitrary state |Ψ〉 the action upon this state is the projection P ν |Ψ〉 into
the irreducible subspace defined by the operator. Let {|Φν〉} be a basis of this
irreducible subspace, these functions then transform as [6],[7]

R(g) |Φν
i 〉 =

∑
j

Dν
ji(g)

∣∣Φν
j

〉
, (2.21)

where g is the group element and {R(g)} is the group transformations. The matrix
functionsDν

ji(g) are the single-valued representations of the group. For the rotation
group in three dimensions SU(3) , they correspond to the so called Wigner D-
functions. For the gauge rotation in particle number U(1) they are simply e−iϕN

[7],[8]. According to group representation these matrix representations must obey
their own orthogonality relation

V

nν
δνν′δii′δjj′ =


∑

gD
ν′∗
j′i′(g)Dν

ji(g), for finite groups,∫
dgDν′∗

j′i′(g)Dν
ji(g), for infinite groups

. (2.22)

The number nν corresponds to the dimension of the irreducible representation and
V , for finite groups is the order of the group, whereas for continuous groups it is
the volume of the parameter space [6].

Multiplying equation (2.22) by Dν′∗
j′i′(g) and sum over the group gives:

δνν′δjj′
V

nν

∣∣Φν
j

〉
=


∑

gD
ν′∗
j′i′(g)R(g) |Φν

i 〉 , for finite groups,∫
dgDν′∗

j′i′(g)R(g) |Φν
i 〉 , for infinite groups

. (2.23)

This leads to a natural definition of the operators

P ν
ij ≡

nν
V

∫
dgDν∗

ij (g)R(g) (2.24)

which means we can project out corresponding components

P ν
ij

∣∣∣Φν′

j′

〉
= δνν′δjj′ |Φν

i 〉 (2.25)
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and they obey
P ν
ijP

ν′

i′j′ = δνν′δji′P
ν
ij′ , (P ν

ij)
† = P ν

ij. (2.26)

For abelian groups we can define the projector that filters out the i-th columns of
the ν-th irreducible representation as P ν

ii = P ν
i . These operators are both trivially

hermitian and idempotent. For non-abelian groups however these operators give
unphysical results as the action of the operators P ν

ii |Ψ〉 no longer gives the complete
i-th column[6]. Therefore the (2.26) operator is needed to project out the correct
representation in the irreducible subspace for non-abelian groups.

Following the reasoning in above the particle number projection operator can be
seen as a one-dimensional rotation in gauge space[7],[4],[8]. Rotations along one-
dimensions is abelian and with g = φ the symmetry operator is

R(φ) |Φ〉 = e−iφN̂ |Φ〉 , (2.27)

in the representation ν = N , nν = 1 and thus, using (2.24);

V =

∫ 2π

0

dφ = 2π,

DN(φ) = e−iNφ,

PN ≡ 1

2π

∫
dφe−iφ(N̂−N).

(2.28)

This operator has a full resolution of unity as, with a complete and orthogonal set
of Nilsson orbital configurations with good particle number |N〉 (neglecting the
remaining good quantum numbers for convenience), we get

1PN
1 =

∑
N ′′

|N ′′〉〈N ′′| 1

2π

∫
dφe−iφ(N̂−N)

∑
N ′

|N ′〉〈N ′| =

∑
N ′,N ′′

1

2π

∫
dφe−iφ(N ′−N) |N ′′〉〈N ′′| |N ′〉〈N ′| =∑

N ′,N ′′

δN,N ′δN ′,N ′′ |N ′〉〈N ′′| =
∑
N

|N〉〈N |

(2.29)

which spanns the whole set of single particle states. From (2.29) we can also see
that PN is truly a projection operator [9].

For the angular momentum projection the three-dimensional rotation group is
usually parameterized by the Euler angles g = Ω = (α, β, γ) and we use the
angular momentum as the irreducible representation ν = I, nν = 2I + 1 which
gives the group element and volume:

R(Ω) = e−iαJze−iβJye−iγJz ,

V =

∫
dΩ = 8π2.

(2.30)

8



As mention above the irreducible representations are the Wigner D-functions,
which do note commute as the group is non-abelian. If we use the generalised
projector definition of (2.24) we get:

P J
MK ≡

2J + 1

8π2

∫
dΩDJ∗

MK(Ω)R(Ω), (2.31)

which is, as mentioned, not a true projection operator. If we introduce a complete
and orthogonal set of Nilsson orbital configurations with good quantum numbers
of I2 and Iz with the remaining good quantum numbers α denoted |IMα〉 we see
that

R(Ω) |JMα〉 =
∑
K

DJ
KM(Ω) |JKα〉 . (2.32)

So expanding the operator (2.31) (again, using . . . to denote line break);

1P J
MK1 =

∑
J ′M ′′α

|J ′M ′′α〉〈J ′M ′′α| 2J + 1

8π2

∫
dΩDJ∗

MK(Ω)R(Ω) · . . .

. . . ·
∑
I′M ′α

|I ′M ′α〉〈I ′M ′α| =

2J + 1

8π2

∑
J ′M ′′M ′Kα

|J ′M ′′α〉〈J ′M ′′α| · . . .

. . . ·
(∫

dΩDI∗
MKD

J ′

K′M ′(Ω)

)
|J ′K ′α〉 〈J ′M ′α| =∑

M ′′α

|JM ′′α〉 〈JM ′′α|JMα〉 〈JKα| =
∑
α

|JMα〉〈JKα|

(2.33)

which clearly does not completely resolve unity. As mentioned above, even the
diagonal form of P J

MM can’t be used, which we now clearly see from (2.33) as
would only project out the M -th state, when in fact all states with K = M ∈
{−I,−I + 1, . . . , I} are needed to span the J-th irreducible subspace. To find the
complete representation we thus need to expand the projection operator in the
K-th columns as [4],[7]:∣∣ΨJ

K

〉
=
∑
K

gKP
J
MK |Φ〉 =

∑
K

2J + 1

8π2

∫
dΩgkD

J∗
MK(Ω)R(Ω) |Φ〉 . (2.34)

where
∣∣ΨJ

K

〉
is a many-body state with good quantum numbers

J2
∣∣ΨJ

K

〉
= J(J + 1)

∣∣ΨI
K

〉
and Jz

∣∣ΨJ
K

〉
= M

∣∣ΨJ
K

〉
, (2.35)

as can be seen from the derivation (2.33). However we’ve now introduced a new
unknown into the problem, the expansion coefficients gK , which needs to be de-
termined. To do so we use the so-called generator coordinate method to minimize
the projected energy with respect to these coefficients.
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2.3 Generator Coordinate Method

To describe collective phenomena of nuclei such as collective motion, deformation
and rotation but also pairing correlations between nucleons it is common to employ
the generator coordinate method (GCM). The minimization of the projected wave
function is in itself only a special case of the GCM method. The state of the nuclei
|Ψ〉 is assumed to be a continuous sum of coherent collective wave-functions along
a path of generator coordinates {a}, that is[4]:

|Ψ〉 =

∫
daf(a) |φ(a)〉 . (2.36)

The function f(a) is called the generator function, which acts as a weight depend-
ing on the continuous summation index a. When minimizing the projected states,
the summation index is the group elements and the weight functions are the irre-
ducible matrix representations Dν′

j′i′(g). In general the generator coordinates are
multidimensional complex parameters chosen to fit the potential of interest. In
the DFT to effective Hamiltonian calculations a (γ, β2) quadrupole deformation
parameter expansion is used. For the restoration of symmetries we should then
add to the generator coordinates the Euler angles Ω = (α, β, γ) and the gauge an-
gle in neutron and proton number ϕN , ϕZ . The total set of generator coordinates
used would be a = (γ, β2,Ω, ϕN , ϕZ), however time constraint left us with only
a = (γ, β2, ϕN , ϕZ).

To determine a good approximation of the symmetry preserving ground state of
the nuclei, we need to determine the minimum of the energy functional

E{φ(a)} ≡ 〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

, (2.37)

this energy functional is a multidimensional surface which depends upon the gen-
erator coordinates used. It can be minimized with respect to the weight functions,
which stand to be determined for the continuous expansion:

δE{φ(a)}
δf(a)

= 0. (2.38)

In accordance with [10], [11] this minimization is then formulated as an integral
equation, the so called Hill-Wheeler equation:

∫
db [H (a, b)− EO(a, b)] f(b) = 0

H (a, b) ≡ 〈φ(a)|H|φ(b)〉 , O(a, b) ≡ 〈φ(a)|φ(b)〉 .
(2.39)

A more general form of this equation is:

H f = EOf. (2.40)
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Constructing a combined symmetry operator for the angular momentum J us-
ing (2.34) and neutron and proton number Z,N from (2.28), we get

P JM
N,Z ≡

∑
K

gKP
J
MKP

NPZ =
∑
K

gKP
J,MK
N,Z . (2.41)

Denoting the the symmetry conserving state
∣∣∣ΨJ,M

N,Z

〉
we arrive at the equation

[4],[12]:

EP =

〈
ΨJ,M
N,Z

∣∣∣H∣∣∣ΨJ,M
N,Z

〉
〈

ΨJ,M
N,Z

∣∣∣ΨJ,M
N,Z

〉 =

∑
KK′ g

∗
KgK′h

J
KK′∑

KK′ g
∗
KgK′n

J
KK′

, (2.42)

with the projected kernels, using the fact that the projector is idempotent and
commutes with the Hamiltonian,

hJKK′ = 〈Φ|HP J,KK′

N,Z |Φ〉 ,

nJKK′ = 〈Φ|P J,KK′

N,Z |Φ〉 .
(2.43)

The coefficients gK are then to be determined by the eigenvalue problem[4]∑
K′

hJKK′gK′ = EP
∑
K′

nJKK′gK′ . (2.44)

This result is a matrix equation of the form (2.40). How to solve this equation is
a topic beyond the scope of this thesis, but it is done for the DFT to Hamiltonian
calculations. The focus of this thesis is instead on how to calculate the actual
matrix elements of equation (2.43).

2.4 Projected matrix elements

For all of the symmetry transformations R(g) introduced above the generators are
one-body Hermitian operators G, which can be written as [13]:

R = eiG. (2.45)

From this we can define the transformation in the HFB formalism, starting from
the single particle orbitals, using the creation and annihilation operators[14]

Rc†iR
† =

∑
j

Rijc
†
j , RciR

† =
∑
j

R∗ijc
†
j, (2.46)

where each, letting Ω denote the three-dimensional Euler angles,

Rij = Rij(Ω, N, Z) = 〈i| e−iαJze−iβJye−iγJze−iφN N̂e−iφZ Ẑ |j〉 . (2.47)
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Where Rij is the matrix elements of the operator in the single-particle Nilsson
orbitals. This can be cast in matrix form as [15], with Θ ≡ (Ω, N, Z) and R (Θ) =
RΘ ;

RΘ

(
c†

c

)
R†Θ =

(
RT

Θ 0

0 R†Θ

)(
c†

c

)
≡
(
c̃†

c̃

)
. (2.48)

From the quasi-particle transformation we can define a new, rotated quasi-particle
vacuum:(

b̃

b̃†

)
=W†

(
c̃†

c̃

)
=

(
[R†ΘU ]† [R∗ΘV ]†

[R∗ΘV ]T [RΘU ]T

)(
c†

c

)
≡ W̃† (Θ)

(
c†

c

)
. (2.49)

Which means a quasi-particle vacuum |Φ〉 and its rotated analog RΘ |Φ〉 ≡ |ΦΘ〉
can be expressed in the following matrix form:

|Φ〉 7 −→
(
b
b†

)
=W†

(
c†

c

)
,

|ΦΘ〉 7 −→
(
b̃

b̃†

)
=W† (Θ)

(
c†

c

)
.

(2.50)

The norm kernel can now be written as:

〈Φ|P J,KK′

N,Z |Φ′〉 =
2I + 1

32π4

∫
dΩDJ∗

KK′(Ω)

∫
dϕNe

iϕN

∫
dφZe

iϕN · . . .

. . . · 〈Φ|RdΘ|Φ′〉 ≡ IdΘ 〈Φ|Φ′dΘ〉 .
(2.51)

Equation (2.51) introduce the main computational problem of investigation in this
thesis; integration and the evaluate of the overlap at each point of integration. To
evaluate the integrals on a computer some sort of discretization is needed. One
way of doing this is following [16],[8] and using a straight forward (left) Riemann
sum. For the particle number (both proton and neutron numbers), with the mesh
divided into L points, we get

1

2π

∫ 2π

0

dϕe−iϕ(N̂−N) −→ 1

2π

L∑
k=0

∆ϕe−i∆ϕ·k(N̂−N) ,∆ϕ =
2π

L+ 1
(2.52)

whereas for the angular momentum projection, starting by using the definition of
the Wigner D-functions

2J + 1

8π2

∫
dΩDJ∗

MK(Ω) =
1

2π

∫ 2π

0

dγe−iγM
1

2π

∫ 2π

0

dαe−iαK · . . .

. . . · 2J + 1

2

∫ π

0

dβ sin(β) dJ∗MK(β) e−iJyβ.

(2.53)

The first two integrals of (2.53) and (2.52) being very similar leads us to a to-
tally analogous discretization of both. For the third and last integral of (2.53),
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which now contains the Wigner small d-matrix, the following left Riemann sum
discretization is made;∫ π

0

dβ sin(β)dJ∗MK(β)e−iJyβ −→
L∑
k=0

∆β sin(∆β · k)e−i∆β·kJydJ∗MK(∆β·k) ,∆β =
π

L+ 1
.

(2.54)
What remains now for the norm kernel is the overlap 〈Φ|ΦδΘ〉, whose arguments are
now discretized as well which is denote by the δ. It turns out that this problem is
also the core computational challenge of the Hamiltonian kernel. Using Thouless’
theorem together with Wick’s theorem, one can show that [4],[7]:

hJKK′ = 〈Φ|HP J,KK′

N,Z |Φ′〉 = IδΘ 〈Φ|H|Φ′δΘ〉 =

IδΘ 〈Φ|Φ′δΘ〉
{

Tr(ερ (δΘ)) +
1

2
Tr(Γ (δΘ) ρ (δΘ))− 1

2
Tr(∆ (δΘ) κ̄∗ (δΘ))

}
,

(2.55)
where ε is the single particle energy and the one body transition density matrix ρ
and pairing tensors κ, κ̄∗:

UδΘ ≡ U ′
†
R†δΘU + V ′

†
RT
δΘV,

ρnn′(δΘ) = 〈Φ|c†n′cn|Φ
′
δΘ〉 = (RδΘV

′∗UT−1

δΘ V T )nn′ ,

κnn′(δΘ) = 〈Φ|cn′cn|Φ′δΘ〉 = (RδΘV
′∗UT−1

δΘ UT )nn′

κ̄∗nn′(δΘ) = 〈Φ|c†nc
†
n′|Φ

′
δΘ〉 = −(RδΘU

′∗UT−1

δΘ UT )nn′ .

(2.56)

using the rotated fields Γ(δΘ),∆(δΘ) defined using matrix multiplications as;

Γnm(δΘ) =
∑
n′m′

vnn′mm′ρm′n′(δΘ) =
∑
n′m′

Gρm′n′(δΘ),

∆nm(δΘ) =
1

2

∑
m′n′

vnmn′m′κn′m′(δΘ) =
1

2

∑
n′m′

Gρm′n′(δΘ).
(2.57)

Yet again, what remains to be found is thus the overlap in (2.55). This can be done
either using the Onishi formula or the Pfaffian [17],[7]. The Onishi formula makes
for a rather straight forward computation, but leaves the phase of the overlap
undefined. The main part of the computational focus of this thesis is the Pfaffian
approach.

2.5 The Pfaffian

To calculate the overlap between different and rotated quasi-particle vacuums three
different algortihms were used and tested for performance. The main focus of this
thesis is the Pfaffian approach, the derivation of which is can be done in many
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different ways [14],[4],[18],[19] but is outside of this thesis. The results gives that,
for two normalized states [14]:

〈Φ|Φ′δΘ〉 =
(−1)n(n−1)/2∏n

α VαV
′
α

Pf

[
V TU V TRT

δΘV
′∗

−V ′†RδΘV
′ U

′†V ∗

]
=

Sn
NN ′

Pf[MδΘ], (2.58)

with

MδΘ ≡
(

V TU V TRT
δΘV

′∗

−V ′†RδΘV
′ U

′†V ∗

)
, (2.59)

and Sn ≡ (−1)n(n−1)/2 is the overall phase after normal ordering and the norm N
is calculated as

N ≡ 〈Φ|Φ〉 = (−1)nPf

[
V TU V TV ∗

−V †V U †V ∗

]
= (−1)nPf[M] =

n∏
α

V 2
α . (2.60)

For comparison, the Onishi formula is defined as, with the definition of (2.57) [12]:

〈Φ|Φ′δΘ〉
2

= Det[UδΘ]. (2.61)

The Pfaffian itself is intimately connected to the determinant, as can be seen from
the combination of (2.58) and (2.61). The Pfaffian is defined only for a skew-
symmetric matrix A : A ∈ C2n×2n, where skew-symmetric means that A = −AT .
For such matrix the determinant is the square of a polynomial of degree n called the
Pfaffian, thus the Pfaffian is a unique choice for the square root of the determinant:

Pf(A) =
√

Det(A). (2.62)

The most general definiton of the Pfaffian is given by the equation [2],[1]:

Pf(A) =
1

2nn!

∑
σ∈S2n

sgn(σ)
n∏
i

aσ(2i−1),σ(2i) (2.63)

with S2n being the group of permutations of sets with 2n elements and sgn(σ) is
the signature of σ. By definition, the Pfaffian of an odd-dimensional matrix is
zero, as the determinant of a an odd skew-symmetric is zero.

The computational cost of definition (2.63) being of O(n! ) means it does not lend
it self to implementation on larger model spaces or realistic physical calculations.
To find a more computationally feasible implementation the recursive definition of
the Pfaffian is used [2]:

Pf(A) =
2n∑
i=2

(−1)iPf(A1i). (2.64)

where A1i is the matrix A without row 1 and column i. From this definition it is
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evident that for a tridiagonal matrix AT the Pfaffian is particularly simple;

Pf(AT ) = Pf



0 a1

−a1 0 b1

−b1 0 a2

−a2
. . . . . .
. . . . . . bn−1

−bn−1 0 an
−an 0


=

n∏
i=1

an. (2.65)

But also for an almost triadiagonal matrix AT̃ , a matrix for which the removal of
the odd rows would yield a tridiagonal matrix, the result is the same as in (2.65);

Pf(AT̃ ) = Pf



0 a1

−a1 0 c23 c24 c25 . . .
−c23 0 a2

−c24 −a2
. . . . . .

−c25
. . . . . . c2n−1,2n−1 c2n−1,2n

... −c2n−1,2n−1 0 an
−c2n−1,2n −an 0


=

n∏
i=1

an.

(2.66)
At the same time the, for an arbitrary matrix B : B ∈ C2n×2n one can construct
a transformation BABT for which

Pf(BABT ) = Det(B)Pf(A) (2.67)

As such calculating the Pfaffian of A can be greatly simplified by finding a (in-
vertible) transformation matrix B that brings the A to tridiagonal form.
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Chapter 3

Results and Discussion

3.1 Particle number projection

Here the results of particle number projection in the BCS with seniority pairing-
model, using a total of N = 5 principal Nilsson shells, are presented. Adding the
mean-field pairing interaction to the Nilsson oscillator scatters the nucleons around
the fermi level while breaking particle number symmetry. This results in a change
of the occupation of the single-particle orbitals, giving tails in the Vα, Uα coeffi-
cients into previously unoccupied states, but also spreads the many-body state in
particle number (N/Z) space. The calculations are made for 18

8O and
48
24 Cr using the empirical relationship for the pairing interaction (2.16). The par-
ticle number projection is calculated as, using definitions from (2.58) and (2.52);

P[N ] :=
〈Φ|PN |Φ〉
〈Φ|Φ〉

=
1

2π

L∑
k=0

∆ϕ ei∆ϕkN Pf[MδΘ],

P[Z] :=
〈Φ|PZ |Φ〉
〈Φ|Φ〉

=
1

2π

L∑
k=0

∆ϕ ei∆ϕkZ Pf[MδΘ],

δΘ = ∆ϕ,

(3.1)

using L = 16 to guarantee convergence and the method of Householder reflections
for complex matrices from [2] to reduce runtime of calculations (see next section
for Pfaffian performance analysis).

16



0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45

4 6 8 10 12 14 16

P
[N

]

N

1∆emp
2∆emp
4∆emp
8∆emp
16∆emp

(a) Neutrons: h̄ω0 = 16.22 MeV

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65

2 4 6 8 10 12 14

P
[Z

]

Z

1∆emp
2∆emp
4∆emp
8∆emp
16∆emp

(b) Protons: h̄ω0 = 15.07 MeV

Figure 3.1: Amplitude of the particle number operator (3.1) for neutrons (N) and
protons (Z) in 18

8O.

i ·∆emp [N/A] Energy [MeV]
1 2.88
2 5.66
4 11.31
8 22.63
16 45.25

Table 3.1: Multiples, i, of the empirical pairing gap in MeV for 18
8O.

In figure 3.1 the amplitude of the particle number projection for neutrons and
protons are plotted using a pairing gap in multiples, i, of ∆emp, see table 3.1 for
numerical values. One can clearly see that for the protons, with only the empirical
pairing, being magic in number gives a large peak in particle number for exactly
this number of protons. The distribution then subsides quickly on either end of
Z = 8. For increasing multiples of the pairing strength the distribution of proton
number spreads more and more into other states of even proton numbers, the
peak around Z = 8 becoming less and less prominent. For the neutron number
on the other hand, using the empirical gap, the neutron number is clearly peaked
for N = 10 however not as much nor as sharp as for the protons. This is to be
expected as the pairing interaction is greater for non-magic i.e. non-closed and
tightly bound shells. In a similar manner to the protons, the neutron number gets
a less pronounced peak and gets more evenly distributed among even numbered
states for increasing multiples of pairing gap. Moreover one can see that as the
pairing gap becomes of similar order as the oscillator frequency, which happens
for 4 ·∆emp for both protons and neutrons (see table 3.1) the pairing interaction
is so strong that it completely dictates the distribution of particle number. This
causes both of the distributions to look almost completely the same for the larger
pairing gaps.
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Figure 3.2: Amplitude of the particle number operator (3.1) for neutrons and
protons on 48

24Cr.

i ·∆emp [N/A] Energy [MeV]
1 1.73
2 3.46
4 6.92
8 13.86
16 27.71

Table 3.2: Multiples, i, of the empirical pairing gap in MeV for 48
24Cr.

In figure 3.2 the amplitude of the particle number projection for the N=Z nucleus
48
24Cr is presented, with the strength of the multiples, i, of the empirical pairing
gap given in table 3.2. The distribution for both proton and neutron number look
very similar, which they should as the oscillator frequency for both nucleons is the
same up to two significant figures. Similar to the case for oxygen-18, as the pairing
gap becomes in the order of h̄ω0, which is the case for i = 4 for chromium-48, the
pairing gap dominates the oscillator potential and thus also the particle number
distribution.
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3.2 Pfaffian performance

In this section the results of the performance test of different Pfaffian routines of [2]
and [1], using the different algorithms outlined in the section above, is presented.
From the work in [2] the Parlett-Reid and Householder routines are used, whereas
from [1] a routine using the algorithm of Atiken is employed.
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Figure 3.3: The run-time of the Pfaffian routines.

The seniority pairing-model, using a HFB-formalism outlined in the previous sec-
tions, is used to calculate the norm 〈Φ|Φ〉 = N of the ground state of 48

24Cr using
(2.60):

N = (−1)nPf

[
V TU V TV ∗

−V †V U †V ∗

]
= (−1)nPf[M]

The principal quantum number Nosc, whose degeneracy is
∑Nosc

N ′=1(N ′+ 1)(N ′+ 2),
is allowed to vary from Nosc = 3 to Nosc = 15. This gives a model spaces of n
= 38 up to n = 1630 independent levels, one set for protons and neutrons each.
In figure 3.3 above, the runtime of the different Pfaffian routines for the different
sized model spaces are plotted. Clearly the routine of [2] using the Householder
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reflections is the fastest throughout. Both the Parlett-Reid and the Atiken routines
fair so similar that no preference can really be had.
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Figure 3.4: The relative error (3.2) of the Pfaffian routines.

In figure 3.4 above the relative error of the routines as the models pace varies in
size is plotted. The relative error of the overlaps are calculated using (2.60), noting
the fact that the Pfaffian should equal the product of the V 2

α :

Relative error :=

∣∣∣∣∏n
α V

2
α −N∏n
α V

2
α

∣∣∣∣ . (3.2)

It can be seen that on average the Atiken routine of [1] is the least erroneous, while
for the two routines of [2] are more or less performing equally. However the errors
for all of the routines are so small that for implementations on physical systems,
with a total number of principal shells between 20 − 50 [20],[3], the difference in
runtime should be much more of a determining factor. As such, the routine of
[2] implementing Householder reflections is to be preferred when making future
calculations.
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3.3 Model space truncation

This section presents the results of the investigation into the particle number
stability of a truncated model space. Two different methods of truncation was
used: one method modifies the Uα, Vα factors when they pass below a certain
threshold value ε by simply replacing them with ε as U2

α < ε or V 2
α < ε. The

other method properly truncates the HFB-wave functionW by removing the rows
and columns of the constituting U, V -matrices for states α such that V 2

α < γ.
From here on the former method will be called the ε-method and the latter will
be referred to as the γ-method.

The stability of the methods is evaluated using the expectation value of the neutron
number calculated as

〈N〉 =
〈Φ|NPN |Φ〉
〈Φ|PN |Φ〉

=
IdΘ 〈Φ|ΦδΘ〉 · Tr

[
RδΘV

∗UT−1

δΘ V T
]

IdΘ′ 〈Φ|ΦδΘ′〉
, (3.3)

for the 48
24Cr nucleus used previously, with a pairing gap of ∆emp (see table 3.2).

The size of the model space is varied between Nosc = 5, . . . , 13 giving set of single
particle levels between n= 110 up to n= 1118. The expectation value is calculated
for N = 18, . . . , 30 and when |〈N〉 −N |> 10−2 the method is deemed unstable.
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238

328
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726
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n

γ

Figure 3.5: A classification plot of the ε and γ-method, calculated for 48
24Cr. The

green dot signifies a stable calculation of 〈N〉, while a red dot signifies a non-stable
result.

One expects that the U2
α, V

2
α should reach lower values for larger model spaces

because as they both vary between 1 to 0, a larger model space gives a higher
resolution of the interval meaning that larger n gives more values close to 0 . Hence
it can be reasoned that larger model spaces will be more affected by truncation,
giving some n dependency on the stability of the methods.
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As can be seen in figure 3.5 both the methods are stable for values of ε, γ below
10−2. The reason for this could be due to the fact that the U2

α, V
2
α never reach

values low enough for the truncation to take effect or that the influence of the
truncation preserve stability. This test is unfortunately inconclusive here. Both
methods also break down for ε, γ = 10−2, but for different n - as was argued
for above. This gives a weak implication that the ε-method is a the more stable
method, probably due to the fact that it does not actually remove contributions
to the U2

α, V
2
α but instead forces them to stay above the threshold.

It is impossible to make a conclusive analysis of the methods using the data at
hand. Further investigations with larger model spaces would be needed before
making a judgment. The purpose of the truncation is to decrease runtime at a
reasonable cost of stability - this is much valued pursuit and worth undertaking.
The γ, ε range is likely decent, as smaller values of ε, γ would probably yield more
stable results for larger model spaces, but would likely also defeat the purpose of
the truncation. See the conclusion and outlook section for further suggestions.

3.4 Symmetry restoration in post-DFT calcula-

tions

In this section the results of implementing particle number restoration in a post-
DFT calculation for 18

8 O are presented. The code used in the previous sections are
implemented inside an extension of the HOSHPE [3] program which uses a spherical
harmonic oscillator basis as input for Skyrme SLy4 [21] calculations of energy
density functionals. These energies were then used to fit an effective-force, pairing
plus quadrupole Hamiltonian to be used in Hartree-Fock-Bogoliubov calculations
of differently deformed states in the (β, γ)-plane. Using these symmetry violating
slater determinants in a variation after projection configuration mixing calculation
with (β, γ, Z,N) as generator coordinates the ground state was approximated.

The Skyrme interaction is a phenomenologically motivated density dependent ef-
fective interaction. The force can be derived from the Hartree-Fock expectation
value of a zero-range momentum-dependent two body force, first introduced by
Skyrme in 1956 [4]. The force is expressed as a sum of different terms pertaining
to: a central interaction, non-local interactions, density-dependent forces and a
spin-orbit interaction. In the SLy4 parametrisation the pairing-interaction from
the energy functional is dropped while using a separate density for neutrons and
protons. This approach introduces a total of 10 terms that are fitted to nuclear
structure data, see [22], [21] for further reference.

The deformation parameters γ, β in the plots are defined using the Lund conven-
tion; rotating the classical β-plane by 30◦. The classical definition of the Hill-
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Wheeler parameter gives β as, using spherical harmonics Y`m,

β =
√
β2
x + β2

y , with βx =

√
4π

5

〈r2Y20〉
〈r2Y00〉

, βy =

√
8π

5

〈r2Y22〉
〈r2Y00〉

. (3.4)

Rotating the the coordinate-space by 30◦ then gives

βx → β · cos

(
θ +

30

360
2π

)
,

βy → β · sin
(
θ +

30

360
2π

)
.

(3.5)

From this β one then defines γ = atan

(
βy
βx

)
. Only the γ = 0◦ to 60◦ is plotted

as it contains all possible deformations, the other sections only represent different
rotational aligment. The (0, 0) point represent sphericity. Along the γ = 0◦ axis
the deformation goes from spherical to prolate and along the axis of γ = 60◦ the
nuclei goes towards oblate from origo.

Figure 3.6: The energy surface of the HFB-calculation in the (β, γ)-plane.

In figure 3.6 is the energy surface of the unprojected HFB states calculated at
different lattice points of triaxial γ and quadrupole β deformation. The energy
surface shows a clear minimum for spherical deformation for the oxygen-18 nucleus.
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Figure 3.7: The ’projected’ energy surface of the generator coordinate mixing.

In figure 3.7 the result of applying configuration mixing using deformation, neutron
and proton numbers is presented. Using the different lattice states |φ〉 pertaining
to different deformations while projecting on proton and neutron number then
gives the energy surface from (2.42):

E{φ(γ, β, ϕN , ϕZ)} =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

,

which is then minimized to give the result.

Not much difference is seen, but that is to be expected as 18
8 O is near doubly magic;

closed shells should give a spherical ground state and cause little pairing. Pairing
of nucleons contributes little to the closed shells of the protons, while only two
neutrons are free to pair amongst the neutrons.

This is also seen in the figure 3.8 where the norm of each state in the lattice is
calculated after projection, that is

〈Φ|PN,Z |Φ〉 ,

for N = 10, Z = 8. The pairing interaction spreads the ground state into different
multi-particle states with differing particle number, as seen in previous sections.
For a pure (N,Z) state, with very well defined particle number, after projection
should have a norm close to unity. Thus we can see from figure 3.8 that, for most
of the states the contribution from the pairing interaction is small.
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Figure 3.8: The projected norm of each individual state in the lattice. A value
closer to 1 is indicative of low pairing, as the multi-body state is a pure N =
10, Z = 8 state.
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Figure 3.9: The projection of the GCM-ground state on each lattice state i.e. the
weight or percentage of each lattice state found in the ground state.

In figure 3.9 the overlap of the spherical ground state (β, γ) = (0, 0) with each
state in the lattice is plotted. Clearly mostly the spherical states contribute, with
some small contributions from the prolate shape. This is to be expected, as the
ground state is clearly spherical in figure 3.7, caused by the fact that the nuclei is
close to doubly magic.
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Chapter 4

Conclusions and outlook

This thesis has investigated the effects of spontaneous symmetry breaking, and the
restoration of said symmetries, in the superfluid states resulting from mean-field
models of nuclei. The restoration of particle number symmetry, and to some extent
angular momentum symmetry, using projection operators has been theoretically
investigated. The details of which have been outlined for a model space using
a BCS mean-field with seniority pairing but treated using Bogoliubov-Valantin
quasi-particle formalism. This lead to the problem of calculating overlaps between
quasi-particle vacuums, for which the approach using Pfaffians was investigated.
Different algorithms for the computation of the Pfaffian, using routines found in
the literature [1],[2], was tested for performance and accuracy. A computer pro-
gram implementing a particle number projection operator for HFB-states, using
the Pfaffian, was then implemented. This operator was then used to project out
the particle number distribution 18

8 O and 48
24Cr in the afore mentioned model space.

The effects of truncating the model space, using two different methods, was inves-
tigated. Finally the particle number projection operator was then implemented
in HOSPHE [3]. These calculations attempts to map phenomenologically moti-
vated Skyrme-interactions (using SLy4 parametrization) to an effective Hamilto-
nian. Whose ground states were then approximated using configuration mixing of
deformation and particle number, for which the particle number projection oper-
ator was used.

The results of Pfaffian performance tests gave pretty clear indications that the
method of Householder rotations of [2] was to be preferred. This due to it fair-
ing best in the runtime analysis and all methods were about equally accurate.
The results seem pretty conclusive thus far, and further studies are not that well
motivated. The authors of [14] has also published their version of Householder
reflections which could be interesting to further investigate. Larger model spaces
would also be of interest to use, as to the see if the computations scale as the
results suggest.

Particle number projection clearly showed the distribution of particle number
states present in the many-body state of the model space. It also showed that
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closed shells are less affected by pairing interaction, which is accordance with ex-
perimental data [4]. For further studies the implementation of angular momentum
would be of great interest, especially when studying heavier and more deformed
nuclei.

The truncation of the model space gave inconclusive results and very much war-
rants further investigation. When doing so I would suggest using a much larger
model space while also studying the Uα, Vα factors simultaneously. Maybe indicate
what states α the truncation is affecting as to get a clear picture of the influence
of the truncation. The results of [20] suggest a truncation for V 2

α ≈ 10−4 gives
stable results for Nosc = 18.

Finally the results for the Skyrme-to-Hamiltonian calculations the results show
great promise as the results are in accordance with experiment: a spherical ground
state with little pairing interaction for 18

8 O. Again, it would be interesting to im-
plement the angular momentum projector to project out spin of the nucleus. One
could also use said projector to find the excited rotational states for some nuclei.
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Appendix A

Occupation number formalism

A.1 Second Quantization

Let H be the hilbertspace of a single fermion system characterized by some hamil-
tonian Ĥ. Furthermore let {|αk〉}∞0 be the set of orthonormal eigenstates, thus
corresponding to some quantum numbers of Ĥ, such that

Ĥ |αk〉 = εk |αk〉 . (A.1)

The quantum numbers |α〉 thus completely characterize the single fermion system
and could for example be the oscillator basis |nljm〉. The wave function for particle
i in state |α〉 represented in x̄i-space, x̄i = (r̄i, si), is written as

〈x̄i|α〉 = ψα(x̄i). (A.2)

To describe a N-fermionic system the total wave function has to obey the Pauli-
principle which gives anti-symmetric states for a fermionic system. To construct
a set of such basis functions let nα denote the number of particles in state α.
According to the Pauli-principle nα can only take the values 0 or 1 as no single
state can be occupied by more than one fermion. Using these occupation numbers
the N-particle basis wave functions can be expressed as

Φ{nα}(1, . . . , N) =
1√
N !

∑
P∈SN

sign(P )P{ψα1 · . . . · ψαN}. (A.3)

In occupation number formalism the single particle states are ordered in increasing
energy (just like above) and written as

|n1, n2, . . . , nN〉 = |α1, α2, . . . , αN〉 . (A.4)

The N-particle basis states Φ{nα} or |n1, . . . , nN〉 thus span a space called the Fock
space F . F should thus contain all the single fermion states in H1, two fermionic
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states in H2, and so on – but also the zero particle state-space H0 = C, i.e.

F = C⊕H1 ⊕H2 ⊕ · · · =
∞⊕
n=0

Hn. (A.5)

The zero particle state, or vacuum state, is written as

|0〉 = |01, 02, . . .〉 , (A.6)

and the fermion creation operator ĉ†i is defined as

ĉ†i |0〉 = (−1)
∑
j<i nj |n1, n2, . . . , 1i, . . .〉 , ĉ†i |n1, n2, . . . , 1i, . . .〉 = 0. (A.7)

The Hermitian conjugate of the creation operator is called the annihilation oper-
ator (ĉ†αi)

† = ĉαi defined as

ĉi |n1, n2, . . . , 1i, . . .〉 = (−1)
∑
j<i nj |n1, n2, . . . , 0i, . . .〉 , ĉi |n1, n2, . . . , 0i, . . .〉 = 0.

(A.8)
Note that these operators are indeed mappings between the different subspaces of
F ;

ĉi : HN → HN−1,

ĉ†i : HN → HN+1.

Consequently they can be represented using anti-symmetric tensor products (⊗−)

ĉ†iΦ{nα} =
1√
N + 1

ψαi ⊗− Φ{nα}, (A.9)

and some Using these operators

|n1, . . . , nαN , . . .〉 =
∏
µ

(ĉ†µ)nµ |0〉 = ĉ†α1
ĉ†α2

. . . |0〉 (A.10)

The operators also obey the following anti-commutator relations;

{ĉi, ĉ†j} = ĉiĉ
†
j + ĉ†j ĉi = δi,j,

{ĉi, ĉj} = {ĉ†i , ĉ
†
j} = 0.

Noting the fact that the first anti-commutator relation gives

ĉ†j ĉi |. . . , ni, . . .〉 = niδi,j |. . . , ni, . . .〉 , (A.11)

the number operator is identified:

N̂ =
N∑
i=1

ĉ†i ĉi =
N∑
i=1

n̂i,

N̂ |n1, n2, . . .〉 = N |n1, n2, . . .〉 .
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A simple proof for the first anti-commutator relation:

ĉiĉ
†
j |. . . , ni, . . . , nj, . . .〉 = ĉiθjnj |. . . , ni, . . . , 1j, . . .〉

= θjθininj |. . . , 0i, . . . , 1j, . . .〉
= δi,j,

the same is true for the reverse order of the operators Q.E.D.

A simple proof of the second anti-commutator relation:

ĉiĉj |. . . , ni, . . . , nj, . . .〉 = ĉiθjnj |. . . , ni, . . . , 0j, . . .〉
= θjθinjni |. . . , 0i, . . . , 0j, . . .〉 ,

while

ĉj ĉi |. . . , ni, . . . , nj, . . .〉 = ĉjθini |. . . , ni, . . . , 0j, . . .〉
= (−1)0−niθiθjninj |. . . , 0i, . . . , 0j, . . .〉
= −θiθjninj |. . . , 0i, . . . , 0j, . . .〉 ,

Q.E.D.

A.2 Operator representation in second quantiza-

tion

The matrix representation of a single particle operator is generally, for any com-
plete sets |α〉, |β〉;

F̂ =
∑
α,β

|α〉 〈α|F |β〉 〈β| . (A.12)

A single particle operator in a N-body system, F̂N , can be written as the sum of
the single particle operators, F̂i acting on each particle i;

F̂N =
N∑
i=1

F̂i. (A.13)

In the occupation number formalism the single particle operators act on the cor-
responding particle state;

F̂i |n1, n2, . . . , ni, . . .〉 = F̂i |α1, α2, . . . , αi, . . .〉 ,

=
∑
βi

〈βi|F |αi〉 |α1, α2, . . . , βi, . . .〉 .
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using equation above. This means that the total action of a single particle operator
can be stated as;

F̂N |α1, α2, . . . , αi, . . .〉 =
N∑
i=1

F̂i |α1, α2, . . . , αi, . . .〉 ,

=
N∑
i=1

∑
βi

〈βi|F |αi〉 |α1, α2, . . . , βi, . . .〉 .

Using the creation and annihilation operators a different representation of F̂N in
F is possible;

F̂F =
∑
α,β

〈α|F |β〉 ĉ†αĉβ. (A.14)

To prove their equivalence, the commutator can be used. Evaluating the action of
F̂F gives

F̂F |α1, α2, . . . , αN , . . .〉 = F̂F ĉ
†
α1
ĉ†α2

. . . ĉ†αN |0〉
= [F̂F , ĉ

†
α1

]ĉ†α2
. . . ĉ†αN |0〉+ ĉ†α1

F̂F ĉ
†
α2
. . . ĉ†αN |0〉

= [F̂F , ĉ
†
α1

]ĉ†α2
. . . ĉ†αN |0〉+ ĉ†α1

[F̂F , ĉ
†
α2

]ĉ†α2
. . . ĉ†αN |0〉

+ . . .+ ĉ†α1
ĉ†α2

. . . [F̂F , ĉ
†
αN

] |0〉

=
N∑
i=1

∑
βi

〈βi| F̂ |αi〉 ĉ†α1
. . . ĉ†βi . . . ĉαN |0〉

=
N∑
i=1

∑
βi

〈βi| F̂ |αi〉 |α1, α2, . . . , βi, . . .〉 .

This proves that the two matrices have the same action and since the representation
holds for any N the two operators must be equivalent.

The matrix elements of the single particle operator can generally be expressed as

〈β| F̂ |α〉 =

∫
dx

∫
dx′ 〈α|x〉 〈x| F̂ |x′〉 〈x′|β〉 ,

=

∫
dxψα(x)∗F̂ (x)ψβ(x)

A general two particle operator in Fock-space is then given as;

V̂ =
N∑

i<j=1

v̂ij =
1

2

∑
i 6=j

v̂(xi,xj) =
1

2

∑
αβδγ

vαβδγ ĉ
†
αĉ
†
β ĉδ ĉγ (A.15)

with the matrix element

vαβδγ =

∫
d3x

∫
d3x′ ψα(x)∗ψβ(x′)∗v̂(x,x′)ψδ(x)ψγ(x

′). (A.16)
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Defining the anti-symmetrized matrix elment v̄αβδγ as:

v̄αβδγ = vαβδγ − vαβγδ, (A.17)
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