
Master thesis

Deblurring of Cell Images Using
Generative Adversarial Networks

Cajsa Olofsson and Ida Wagnström

June 26, 2019

Supervisors:
Martin Almers, CellaVision AB
Niels Christian Overgaard, LTH

Abstract

The digital microscopes that CellaVision produces today use a mechanical auto focus when cap-
turing cell images. This requires the camera objective to be vertically positioned with a precision
of 0.4 µm in order for the objects in the images to be considered properly focused. Because of the
small distances, the system is sensitive to vibrations and errors due to mechanical imperfections are
hard to avoid. In order to replace the mechanical auto focus in the system, it would be desirable
to digitally transform unfocused images to appear focused after they were captured.

In this thesis we investigate if it is possible to transform an unfocused cell image to a sharp one
using generative adversarial networks (GANs). A data set of 10 786 sharp images were collected
together with blurry images captured at different distances from the optimal focus, using Cella-
Vision’s systems. From implementing and comparing three already defined GANs - pix2pix, PAN
and deblurGAN - we saw that pix2pix performed best for our problem. Moving on with pix2pix,
we added losses and changed the network structure to improve the result. To make the network
faster, we also changed the architecture of the generator network. We ended up with three different
GANs, whereof one met the time requirement of transforming a 360×360 image in 70 ms on a CPU.

Generally, all of the three final networks managed to sharpen all of the blurry images to some
extent, but not always to the desired focus. The best of the networks was able to successfully
transform around 90% of images captured in the interval −0.8 to 0.8 µm from the optimal fo-
cus. The fastest network had the poorest performance of them, but still managed to successfully
transform 78% of the blurry images from the same interval.

1

Acknowledgements

First, we wish to thank our supervisor at the department of Mathematics at LTH, Niels Christian
Overgaard, for all the meetings and discussions that has helped us throughout the project.

We would like to thank CellaVision for giving us the opportunity to do this master thesis and
for providing us with the necessary tools. We also wish to extend our gratitude to the employees
of CellaVision for welcoming us and making us feel like a part of the team. The enjoyable breakfast
time each morning with freshly baked bread has made our mornings fun and productive.

A huge appreciation goes to our supervisor at CellaVision, Martin Almers, for his enthusias-
tic, valuable and constructive guidance during the planning and development of this thesis. His
generosity with his time and his many ideas has been much appreciated, and the results would
not have been as good without his unwavering support. Additionally, we would like to thank last
year’s thesis workers, Jesper Jönsson and Emmy Sjöstrand, for the invaluable insight they provided
about their previous work on GANs [12].

Special thanks to Olof Englund for the Git support and to Carl Brishammar for various tips
during the project. At last, we would like to thank our families and friends for the encouragements
they have given us all through our education.

2

Contents

1 Introduction 6
1.1 Aim . 8
1.2 Image blurring and deblurring . 8
1.3 Focus measure . 10

2 Data 11
2.1 Preprocessing of data . 14

2.1.1 Finding the ground truth . 14
2.1.2 Alignment . 16

2.2 Data sets . 17
2.3 Augmentation of data . 17

3 Deep learning 18
3.1 Convolutional neural network (CNN) . 18

3.1.1 Convolution . 19
3.1.2 Non linearity . 19
3.1.3 Pooling . 19
3.1.4 Fully connected layer . 19
3.1.5 Batch normalization . 19

3.2 Generative adversarial network (GAN) . 20
3.2.1 Binary cross entropy loss . 20

3.3 Conditional generative adversarial network (CGAN) 21
3.4 Wasserstein generative adversarial network (WGAN) 22
3.5 U-net . 22
3.6 Residual network (ResNet) . 23

4 Method 24
4.1 Pix2pix . 24
4.2 Perceptual adversarial network (PAN) . 26
4.3 DeblurGAN . 27
4.4 Training details . 29

5 Metrics for evaluation 30
5.1 Mean squared error (MSE) . 30
5.2 Peak signal to noise ratio (PSNR) . 30
5.3 Structural similarity index (SSIM) . 30
5.4 Focus measure - ratio (FR) . 31
5.5 Focus measure - pixelwise (FPW) . 31
5.6 Visual assessment . 31

3

6 Results 32
6.1 Pix2pix vs PAN vs deblurGAN . 33
6.2 Quality of data . 35

6.2.1 Amount of data . 35
6.2.2 Augmentation of data . 36

6.3 Additional losses . 36
6.3.1 Focus loss . 36
6.3.2 VGG loss . 37
6.3.3 Distance loss . 38

6.4 Two inputs . 40
6.5 Faster network . 41
6.6 Reaching convergence . 43
6.7 Unbalanced networks in pix2pix . 49

7 Discussion and conclusion 52
7.1 Quality of results . 52
7.2 Model selection . 54
7.3 Potential risks with the method . 55
7.4 Faster network . 55
7.5 The effectiveness of GAN . 56
7.6 Quality of data . 57
7.7 Conclusions . 57
7.8 Future work . 57

Appendices 61

A Tables for evaluation 61

B Predictions 68

4

List of notations

Table 1: Recurring notations used in the project.

WBC White Blood Cell
DC-1 The CellaVision microscope used to obtain the images.

Focus level (FL) The distance from the optimal position between the camera and
the glass.

Stack A set of images of the same cell of different focus levels.
PSF Point Spread Function
F Focus measure

CPU Central processing unit
GPU Graphics processing unit

CNN Convolutional Neural Network
GAN Generative Adversarial Network

CGAN Conditional Generative Adversarial Network
WGAN Wasserstein Generative Adversarial Network

GP Gradient Penalty loss

G = Generator network
D = Discriminator network
X = (List of) blurred image(s)
Y = (List of) sharp image(s)

Ŷ = (List of) generated image(s) = G(X)

MSE Mean Squared Error
PSNR Peak Signal to Noise Ratio
SSIM Structural Similarity Index

FR Focus measure - Ratio
FPW Focus measure - Pixelwise

SR Success Rate

5

Chapter 1

Introduction

The analysis of blood is an integral part of modern health care and it is an important tool for
doctors to discover diseases and confirm diagnoses. Traditionally, blood analyses are carried out
manually by highly trained experts using optical microscopes to examine blood samples, which
is both time consuming and labour intensive. Hospitals always seek to deliver better and more
reliable results, reduce costs, speed up testing and improve productivity while also taking on an
increasing number of samples. CellaVision produces digital microscopes and supporting software
that replaces conventional microscopy to aid pathologists in their analyses and in this way improve
the efficiency and quality of blood analysis.

Blood contains three different types of cells: red blood cells (RBC), white blood cells (WBC)
and platelets (PLT) [3]. The red blood cells have the function of transporting oxygen via the
blood system and platelets stop bleeding. The white blood cells are a part of the immune system
and can in turn be classified in five different subcategories for healthy blood. Some diseases affect
the production of blood in a way that causes the cells to develop differently. Because of this, there
are more subcategories of white blood cells when considering non-healthy blood. By examining
whether the proportion of the cell classes of the white blood cells deviates from the normal, it can
give an indication of e.g. a bacterial infection or an inflammation. Examining the morphology of
the white blood cells and finding anomalies, such as immature cells, can indicate diseases, such as
lymphoma and leukemia.

CellaVision’s main analysis is the differential count of white blood cells. By using CellaVision’s
system, one removes the manual labour of finding cells in a sample. To analyze a blood sample,
an operator feeds the sample to the system which then proceeds to capture images of the cells. By
using a pretrained artificial neural network, the system then proposes classifications of the white
blood cells. The classifications together with the images of the white blood cells, are presented to
the user on a screen. The biomedical scientist analyzes the presented images that were captured
and the proposed classifications from the system to then make a final decision on the classification
of the white blood cells.

The digital microscopes that CellaVision produces today uses an auto focus system which re-
quires around 0.4 µm precision in order for the objects in the images to be considered properly
focused. The auto focus consist of moving the objective of the camera vertically, capturing images
with 0.2 µm intervals and determining the optimal focus using a so-called focus measure. Because
of the small distances, the system is sensitive to vibrations and errors due to mechanical imper-
fections are hard to avoid. This makes it difficult to design a system that quickly reaches the
required precision. In order to set lower requirements on the mechanics of the system, it would

6

be desirable to digitally transform unfocused images to appear focused after they were captured.
Since CellaVision’s system is a real time system, it requires the transformation to be fast enough
to not affect the speed of the system substantially. Such a transformation could result in that
cheaper mechanics could be used and that the speed of the system could be increased.

The auto focus takes about 70 ms to run and is applied a number of times during the analy-
sis of a sample. The system begins by scanning for what is called a monolayer (an area where the
red blood cells are spaced with little to no overlap), after which the auto focus is applied. This area
is photographed with a magnification of 20× and a resolution of 1920 × 1200 pixels. The system
then proceeds to photograph the white blood cells within this area, now with a magnification of
100× and a resolution of 360× 360 pixels. In this step, the auto focus must be applied repeatedly
to refocus for the individual cells. A digital sharpening of unfocused images could eventually be
applied both when photographing the larger 1920 × 1200 scan image and the smaller 360 × 360
WBC images.

Today there is no method in place to digitally make unfocused images focused. However, as
the last step in CellaVision’s systems a normalization is applied to improve the appearance of the
images when presented to the user. It is made up of different filters to strengthen the spectral
content in the images. Examples of these filters being applied to cell images can be seen in Figure
1.1. Here we can see that the details of the cells are more distinguishable and the contrast between
the different parts of the images have increased. Moreover the colors are normalized to be more
visually pleasing. As can be seen in Figure 1.2, where the normalization is applied to some unfo-
cused images, the filters does not correct the focus of images. These algorithms are just used in
the very final step when the images are being presented to the operator, but to actually increase
focus digitally as a part of the analysis, we need to develop a new method.

Figure 1.1: Some examples of normalization applied to different images of white
blood cells. The upper row contains cell images before and the lower row contains
cell images after CellaVision’s DC-1 normalization filters are applied.

7

Figure 1.2: A figure showing images of a white blood cell at different focus levels
before (upper row) and after normalization (lower row). It is visible that even
though the normalization strengthen the spectral content, it does not make the
unfocused images more focused.

1.1 Aim

The aim of this project is to develop a generative adversarial network or another deep learning
method to reconstruct a focused image using only one or two unfocused images. This network could
then be applied to CellaVision’s systems in order to reduce the requirements on the hardware when
it comes to capturing focused images, as it could in part be done digitally. For the method to
be useful, it needs to be accurate as well as time efficient, as it should be applied to a real time
system. Today it takes about 70 ms for the system to capture a focused image using auto focus
and therefore it would be desirable if the transformation would meet that time requirement. Since
CellaVision’s systems is not equipped with a GPU, the requirement should preferably be fulfilled
on a CPU. The aim can be summarized in the following questions:

• Is it possible to make a transformation on CellaVision’s unfocused images so that they become
sharp by using primarily generative adversarial networks?

• Is it possible to do the transformation in 70 milliseconds or less on a CPU, so that it does
not affect the speed of the system significantly?

• How far away from the optimal focus can one capture an image so that the transformation
to sharpness works?

1.2 Image blurring and deblurring

The sharpness or blurriness of an image is a concept central to this thesis. There are essentially
two types of image blurring; motion blur and focus blur. Motion blur occurs when the object of
a photo is moving during the taking of the photo, resulting in a blurred image where the object
looks smeared. Focus blur is the effect of taking a photo with the wrong distance between the lens
of the camera and the object of the photo. An image that is blurred due to bad focus is smoothed,
which leads to loss of details and less defined edges.

When modelling a blurry image, one often uses convolution [5]. The blurry image X is approxi-
mated as a latent sharp image Y convolved with some kernel h.

X = h ∗ Y + n, (1.1)

8

where n is some noise.

The convolution kernel h is called a point spread function (PSF), and contains information of
the way the image is blurred. In the case of motion blur, the PSF mimics the path that the
camera was moved in relation to the object while the image was captured. An example of this is
shown in Figure 1.3. By convolving with such a PSF, each pixel is a mixture of the pixels along the
camera trajectory from that point. In focus blur on the other hand, the PSF corresponds to the
smudge effect of the pixels. Here the PSF should be symmetric and have a width that corresponds
to the dependencies of the pixels. This is often approximated as a Gaussian kernel, as shown in
Figure 1.4.

Figure 1.3: An example of motion blur presented by Kupyn et al. in [14]. To the
left is the blurred image X which is produced by convolving a point spread function
h with a sharp image Y , as pictured on the right.

Figure 1.4: An example of focus blur. To the left is the blurred image X which is
produced by convolving a point spread function h with a sharp image Y , as pictured
on the right.

The aim of this project is to reconstruct a sharp image from an image with focus blur. If the
unfocused image was simply a convolution between the sharp image and a point spread function,
i.e.

X = h ∗ Y,

then the sharp image could be retrieved by moving the problem to the frequency domain. By
computing the Fourier transformation F of the PSF and the blurred image the sharp image could
then be completely reconstructed as

Y = F−1(F(X)/F(h)).

Unfortunately, this is not the case in a real life problem. Due to information loss as a result of
noise and the mechanics of the camera, it is not that simple to fully recover the sharp image. This

9

operation is in general also mathematically ill-posed and numerically unstable.

There are methods to approximate a deconvolution kernel, i.e. g in Ŷ = g ∗X. This kernel can be
applied to the blurry image in order to reconstruct the sharp image. However, there are several
problems with traditional deconvolution methods, for example the resulting images often have
significant unwanted artifacts. Another drawback of using this type of method is that it is often
both hard to approximate the kernel and the parameters needs to be tuned manually [18]. This
makes them inefficient to adapt to new settings and data. In our case of focus blur the PSF would
have to be estimated separately for different distances from the optimal focus. This is one of the
reasons to that we intend to use machine learning to solve the problem in this project.

1.3 Focus measure

Since sharpness is not an absolute measure, but a somewhat subjective property, there is no truly
objective way of telling whether an image is sharp or not. Because it is not an definitive state, a
way of ranking sharpness of images must be defined. To do this, CellaVision has defined a focus
measure that is used in their systems to determine how the camera should be positioned for the
optimal focus.

The measure aims to detect edges and information that is visually important in the image, which
is done by convolving with kernels that detect high frequency changes in the image in the x- and
y-directions. The kernels used for this are

ωx =
[
−1 0 0 0 0 0 2 0 0 0 0 0 −1

]
, ωy = ωTx .

A given RGB image X contains three color channels, i.e. X = (XR, XG, XB). These filters are
applied to the green channel of the image, due to that this channel contains the most information
in cell images. Also because the objective can have problems focusing all the channels on the same
focus plane due to axial chromatic aberration and the green channel is the channel that has the
focus plane in the middle of the three channels [16]. Applying the filter on the green channel of the
image, squaring it and taking the mean of the pixel values of the filtered images gives the focus
measure as

F (X) =
1

MN

M∑
i=1

N∑
j=1

(ωx ∗XG)2i,j + (ωy ∗XG)2i,j ,

where M , N are the number of columns respectively rows of the image and XG is the green channel
of the image.

The focus measure is used in CellaVision’s systems during the auto focus step to determine what
distance between the objective and the object that gives the best focus. In this project it was also
used to find the most focused image and to assess the quality of the results.

10

Chapter 2

Data

The data used for this project is microscopy images primarily featuring white blood cells. The
images were collected using CellaVision’s DC-1 system, which photographs blood samples with
100× magnification. The setup is illustrated in Figure 2.1. After locating a monolayer, the system
was set to move the camera over this area and stop at up to 200 positions per slide. The number
of positions depended on how many cells the system was able to locate within the monolayer and
could therefore be less than 200 for some slides. Our data was collected using four different DC-1
systems and from 120 slides. The diversity of cells and staining is illustrated in Figure 2.2, where
a number of cells are shown. These were collected from different slides and using different systems.

Figure 2.1: An illustration of the setup for data gathering. The slide consists
of a rectangular glass with a bar-code in the end and a drop of blood smeared
out to a thin layer, which is stained with some type of staining to make the cells
distinguishable. The system identifies an area from which it gathers images at
different (x, y) positions.

11

Figure 2.2: Some examples of different cell images, showing the diversity in the data
that was used regarding illumination, staining, cell appearance etc.

For any (x, y) position, the blood samples were photographed at different distances along the z-axis
to achieve different planes of focus. In addition to the focused image, 16 unfocused images were
collected for each cell. These were captured with intervals of 0.2 micrometers from the ideal focus.
This resulted in a stack of images with distances 0, ±0.2, ±0.4, ±0.6, ±0.8, ±1.0, ±1.2, ±1.4 ,±1.6
micrometers from the expected focus point as determined by the system. In total, around 11 000
different stacks were gathered. The images in a stack are RGB images of size 401×401 pixels. An
example stack is shown in Figure 2.3. As can be seen, the images captured in the range −0.2 µm
to 0.4 µm are very similar and can all be considered focused. The reason for that 0.4 µm and not
−0.4 µm are considered focused is because the focus is not linear and the image is affected more
when moving in the negative direction than the positive direction.

12

Figure 2.3: An example stack. From the top left: the images are captured with
distances −1.6,−1.4, ..., 1.4, 1.6 µm from the best focus. The image marked with a
black box is, according to the DC-1 system using the focus measure, the one with
the best focus.

13

2.1 Preprocessing of data

In order to speed up the training of the networks, the images were cropped to a smaller size of
256×256 pixels before they where fed to the network. Before an image was cropped, the nucleus
of the white blood cell in the image was located by applying a threshold regarding the darkness
in the image and then finding the largest of those dark segments. When the center of the white
blood cell was found, a normal distributed randomness in the x- and y-direction determined where
the image was cropped. In this way, the white blood cell could appear both in the center of the
cropped images and near the edges and corners. This was done because we wanted the neural
network to only learn how to focus the image and not where the cells were located in the image.

2.1.1 Finding the ground truth

A blood smear will have a certain three dimensional structure, since it contains blood cells of
different sizes (see Figure 2.4). These differences in depth will cause the optimal focus to fluctuate
over the different regions of an image, since the distance between the objective and the object
differs. When cropping the images, the number of cells present in the image will change from when
the data was gathered, which could affect the optimal focus. For instance, if the number of red
blood cells decreased in relation to the number of white blood cells, the mean depth of the slide
would increase and the optimal focus would be moved further away from the slide. Because of this
and mechanical problems, the sharpest image must be found again after gathering and cropping
the images.

Figure 2.4: A sketch of how the depth in the samples differs. Here we see that the
white blood cell will be most in focus at one distance, and the red blood cells at
another.

To choose the target for a deblurring transformation, for every stack we needed to determine which
image was the sharpest. This was done by applying the focus measure, F , introduced in section
1.3 to the images and finding the one with the highest value. Among the images Xk, k = 1, ..., 17,
the sharp image Y was determined by

Y = max
k

F (Xk).

When running a stack through the focus measure, we got a focus curve showing the focus measure
for each of the images. This curve should have a somewhat steady incline and decline with the
peak at 0. If the curve peaks at 0, it means that the optimal focus is the same as the one found
during the gathering of the images. Figure 2.5 shows the focus curve for the example stack shown
in Figure 2.3. We see here that the peak is located at 0, meaning that the image with the best
focus is the one marked in Figure 2.3. We can also note that the curve is smooth, meaning that
there are no sudden changes in the sharpness of the images.

14

Figure 2.5: The focus curve for the stack shown in Figure 2.3. The x-axis shows
the distance in 0.1 µm in z-direction from the optimal focus.

If the curve is not centered around 0, but rather offset in some direction, it means that there now
is a new optimal focus point for the cropped images. In this case, the sharp image is redefined by
the peak of the focus curve so that all focus levels are shifted backward or forward along the z-axis.

In order for all stacks to contain the same set of focus levels, we redefined the range of the stacks.
We chose to only keep stacks with focus curves peaking in −0.2, 0, 0.2, 0.4 µm, since the number
of stacks with optimal focus outside of this interval were few enough to be discarded as outliers.
By doing this, some of the uttermost focus levels disappeared and the range of the resulting stacks
became −1.4 µm to 1.2 µm from the optimal focus. The focus curve of such an offset stack is
shown in Figure 2.6. Here the optimal focus is reached at +0.6 µm from the original optimal focus,
leading us to discard this stack.

Figure 2.6: A shifted focus curve having the optimal focus at 0.6 µm. The x-axis
shows the distance in 0.1 µm in z-direction from the optimal focus. One can also
notice that the system has a big jump in focus between −0.4 µm and −0.2 µm.

Another issue that can occur with a focus curve is irregularities. These could be an effect of the
different depths of blood cells or the three dimensional texture of a single cell, which could cause
the focus to be optimal at one level for some cells and another level for others. The irregularities
could also be a result of mechanical problems. An example of this can be seen in Figure 2.7, where

15

the curve is jagged. Due to mechanical issues the images are not captured at the correct distances,
leading the focus measures to be unpredictable. A part of the corresponding stack is shown in
Figure 2.8. Here we can see that the image captured at −0.6 µm is nearly as sharp as the sharpest
one, as indicated by the curve.

Figure 2.7: A focus curve showing one of the problems with disturbances and lack of
accuracy in mechanics affecting the focus of the cell. The x-axis shows the distance
in 0.1 µm from the optimal focus. As one can see −0.6 µm is the second most
focused image.

Figure 2.8: The images that corresponds to the focus curve in Figure 2.7 that are
captured with distances (from the left) −0.8, −0.6, −0.4, −0.2, 0, 0.2 µm in z-
direction from the optimal focus. The image marked with a black box is, according
to the focus measure, the one with the best focus and the image marked with a blue
box is the second most focused image.

2.1.2 Alignment

To be able to train a network on paired images, i.e. one sharp and one blurry image, the images
in a stack needed to be aligned properly. If not, the network could learn patterns in the displace-
ment of the object, that are not relevant to the task at hand. Since the images were gathered in
sequence, there could occur some changes in the positioning of the camera and the blood sample
due to mechanical errors or external disturbances. To avoid this, the images were aligned digitally
after they were captured.

To achieve subpixel accuracy of the alignment, we started by interpolating the images to be 3
times their original size, using bicubic interpolation. We then found the displacement that gave
the highest cross correlation for each of the images in a stack. This displacement was then applied
to the image, making it aligned to the sharp image. The images were then scaled down to their
original size.

16

2.2 Data sets

After discarding some of the images in the preprocessing step, 10 786 stacks remained. These were
divided into a training set, a validation set and a test set. Both the validation and the test sets
were collected on separate DC-1 systems, containing 863 and 727 stacks respectively. The rest of
the data, 9196 stacks collected on two systems, were used for training.

2.3 Augmentation of data

Augmentation was introduced in the training of the network in order to make the model more ro-
bust to changes in the data. The aim of the augmentation was to prepare the model for differences
in staining of the samples and differences resulting from using different systems when retrieving
images. The changes in coloration were made through adjustments in the contrast, brightness,
white balance, saturation and staining of the images. The augmentation also included a rotation
to make sure that the model would not learn any irrelevant patterns in how the cells are oriented
in the images.

The augmentation was applied randomly when loading data for training the model, but not for
testing or validation. To get an understanding of the augmentation used, one can see Figure 2.9
which shows some example of augmentation of five different cell images.

Figure 2.9: Here one can see five different augmentations of five different cells. The
first columns contains the original cell and the other columns contains a random
augmentation of the cell.

17

Chapter 3

Deep learning

A deep learning network can be described as a composite function f that, given some input X and
parameters θ, produces an output

Ŷ = f(X, θ).

The θ parameter represents the network weights that are used to regulate the behaviour of the
network. The tuning of these weights is done iteratively, in a process that is referred to as training
the network. Given some batch of training data (Xi, Yi), for i = 1, ..., n, this process can be
described as

θ̂ = argmin
θ

E[L(Yi, f(Xi, θ))] = argmin
θ

1

n

n∑
i

L(Yi, f(Xi, θ)),

where L is some loss function that is to be minimized on the batch and Yi is a given ground truth.
In our project the minimization of L is done using an iterative optimization algorithm, which in
our project is carried out using an Adam optimizer. After training the network, the finished model
is given by Ŷ = f(X, θ̂).

3.1 Convolutional neural network (CNN)

A Convolutional Neural Network (CNN), as presented in [13], is a deep learning algorithm which
takes in an input image and learns what is important information in the image and what is not,
according to the loss function. With the information in the image, it creates features representing
different dependencies and importance and these are used by the network to create the desired
output. In this way all the information in the image can be used by the network and not only some
features from the image as for a regular neural network. A CNN consists of four main operations:

• Convolution,

• Non linearity,

• Pooling or sub sampling

• Fully connected layer,

which will be explained more detailed in further reading.

18

3.1.1 Convolution

The convolution step is the step where a filter/kernel of a certain size operates over the image
to catch different local dependencies between pixels in the image. When the filter operates over
the image, a matrix multiplication is performed between the filter and the different part of the
image to create a feature map. The bigger size of the filter, i.e. the bigger receptive field, the
bigger dependencies are being caught. The size of the resulting feature map depends on three
different parameters. One parameter that affect the size of the feature map is the depth of the
convolution, i.e. the number of filters in the convolution operation. The larger number of filters,
the more feature maps are created. The stride is also an affecting parameter, which is the number
of pixels by which we slide our filter over the image; having a larger stride will result in smaller
feature maps. The last thing that affects the size is zero-padding, which means that it add zeros
around the image in the convolution step so that the corners includes in the right way. Adding
zero-padding is called wide convolution and results in larger feature maps.

3.1.2 Non linearity

The non linearity step is performed to each feature map after it has been created, by having a non-
linear activation function operating over the feature map. The non-linear function is often either
ReLU or leaky ReLU. ReLU, stands for rectified linear unit and it extinguishes all the negative
values as

f(x) = max(0, x).

A problem with this is that it can get stuck, because of the zero values. Leaky ReLU can fix this
by instead having the form

f(x) =

{
x if x > 0,

αx otherwise,

where α is a small positive scalar. ReLU corresponds to choosing α = 0. The non linearity step is
done due to that most of the real-world data which the CNN is about to learn would be non-linear.

3.1.3 Pooling

Spatial pooling or sub sampling can be done after the convolutional and the non linearity step. It
reduces the dimensionality of each feature map but retains the most important information. There
are many different types of spatial pooling such as max, average, sum, etc. In our case, this will
not be used due to that we have an image to image transformation and therefore we do not want
to reduce or loose information.

3.1.4 Fully connected layer

After all the layers of convolutions, non-linearity and pooling, a fully connected layer (multilayer
perceptron) can be applied to learn non-linear combinations of the high-level features so that we
get the correct output. This is often the part where it learns to classify the image from the features
that have been extracted. When having an image to image transformation, it is often not used.

3.1.5 Batch normalization

Batch normalization is often applied in between convolutional layers in order to stabilize the
training of the network. The normalization is applied through fixing the mean and variance of all
inputs to the layer. In this way, all inputs will have equal influence on the weight update of the
network. Thus, the training will be less dependant on the individual inputs and more stable.

19

3.2 Generative adversarial network (GAN)

A generative adversarial network (GAN) is a machine learning structure that was first described
by Ian Goodfellow et al. in [6]. A GAN consists of two CNNs; a generator G and a discriminator
D. The idea of the GAN is for these two networks to train against each other in an adversarial
manner. The generator is trained to produce data samples, Ŷ = G(Z, θ) = G(Z), that could
realistically belong to the training data, given some noise Z. The discriminator’s task is then to
distinguish which data samples are real, and which are generated by the generator, by outputting
a probability P = D(Ỹ , θ) = D(Ỹ), where Ỹ is either a real or generated sample. The structure is
illustrated in Figure 3.1.

Figure 3.1: A GAN. The generator is given noise and produces a generated im-
age. The discriminator is given an image, generated or a real sample, and gives a
probability of the image being a real sample.

In a GAN, both the G and D are trained along side each other, getting better at their respective
tasks. In the end, after the training is done, the generator can be used to generate realistic samples
as a stand alone CNN. In that way, the discriminator is only used as a tool in the training process,
and is omitted in the final product.

3.2.1 Binary cross entropy loss

The idea of the generative adversarial network is to have two networks working against each other.
Practically, this is carried out by an adversarial loss. The adversarial loss is used to check whether
the generator can fool the discriminator. This is the core of the GAN framework, as it is this loss
that creates the adversarial behaviour of the network. This is a loss that is used to train both the
generator and the discriminator, as one of them tries to minimize it and the other maximize it. The
adversarial loss is traditionally a binary cross entropy loss. For when training the discriminator,
the binary cross entropy is defined as

LBCED
= −E[logD(Y)]− E[log(1−D(Ŷ))],

where the D(Y) should be maximized and D(Ŷ) minimized. When training the generator however,
we want the discriminator to fail and so we flip the labels

LBCEG
= −E[logD(Ŷ)]− E[log(1−D(Y))].

Since the second term is not affected by the generator, this can be omitted during training. The
binary cross entropy used for the generator is then

LBCEG
= −E[logD(Ŷ)].

20

In addition to an adversarial loss, many GANs have other losses, e.g. a perceptual loss or a pixelwise
comparison loss that are used to train the generator. A perceptual loss is comparing the input
and output on a feature level, which is achieved by letting the images pass through a CNN and
picking a certain output of a layer in the network. The pixelwise comparison loss on the other
hand, compare the images as they are. The reason behind using these kinds of losses is to ensure
that the generated image resembles the target image. This prevents the generator from fooling the
discriminator with nonsense.

3.3 Conditional generative adversarial network (CGAN)

In this project, we will use conditional GANs [17]. Instead of noise, this version of a GAN gets
some relevant information X as input to the generator; G(X) = Ŷ , as illustrated in Figure 3.2.
This information is also passed to the discriminator along with the generated or real image. For
example, by conditioning on a blurry image, we can force the generator to produce a sharp image
that is similar to the blurry one. Without conditioning, the network can simply generate the exact
same image every time and always fool the discriminator. In other words, we need to include
conditioning in order to be sure that the generator aims to produce the correct sharp image and
not just any sharp image.

Figure 3.2: A conditional GAN. Both the generator and the discriminator are now
given a condition X, containing some relevant information.

By including conditioning we get new binary cross entropy loss functions with dependencies:

LBCED
= E[logD(Y |X)] + E[log(1−D(Ŷ |X))], (3.1)

LBCEG
= −E[logD(Ŷ |X)]. (3.2)

21

3.4 Wasserstein generative adversarial network (WGAN)

The Wasserstein GAN was first presented in [1]. This type of GAN is not as sensitive to imbalance
between the generator and the discriminator as an ordinary GAN. The losses of a WGAN are

Lwass,D = −E[D(Y)] + E[D(Ŷ)]

Lwass,G = −E[D(Ŷ)].

A requirement for the WGAN is that it imposes a so called Lipschitz constraint. This implies that
the norm of the gradient of the discriminator does not exceed 1 anywhere. In [19] they enforce this
by clipping the gradient to be within an interval [−1, 1]. However, as described in [7] this method
can cause a range of issues, such as vanishing gradients and not using the networks full capacity.
Instead, they propose a gradient penalty term on the gradient norm. The gradient penalty loss is
given by

LGP = E[(‖∇ỸD(Ỹ)‖2 − 1)2],

where Ỹ is a randomly weighted average of Y and Ŷ . This ensures stable training that is robust
to the choice of generator architecture.

3.5 U-net

A U-net is a type of encoder-decoder network. This is a convolutional neural network that is made
up of a encoder, i.e. a downsampling part that translates the input to features, and a decoder, i.e.
an upsampling part that translates these features to higher level information. In image transfor-
mation, an encoder-decoder architecture comes in handy, as we want to input an image, extract
relevant features, and use these features to produce a new image.

In a U-net, there is the additional benefit of having skip connections from layers in the encoder
to corresponding layers of the decoder, see Figure 3.3. This allows the network to pass general
information directly from the encoder to the decoder, without passing this information via the
feature layers.

Figure 3.3: A U-net structure. The downsampling is done by convolution with stride
larger than 1, or in some cases pooling. The upsampling is done with transposed
convolution. The skip connections concatenate the encoder layer to the decoder
layer, making the decoder layer deeper.

22

3.6 Residual network (ResNet)

The ResNet structure is presented in [8]. The building blocks of this type of network contains skip
connections between layers that are close to one another. These layers are called resblocks, one is
illustrated in Figure 3.4, where we can see that the input X is put through some layers f . The
output is then given by the summation of f(X) and the input, i.e. f(X) + X. Since the input is
given at this point, the network only learns the residual f(X). This idea is called residual learning.

Figure 3.4: A Resblock. A skip connection passes the block input over the con-
volutional layers to be added to the output of the convolution to give the block
output.

23

Chapter 4

Method

Now looking into our specific problem with transforming images from unfocused to focused, we
used conditional generative adversarial networks (CGAN). As described in [10], these networks have
previously been used in a wide range of image-to-image translations. We began by implementing
three different CGANs structures that have previously been described in [10], [22] and [14], called
pix2pix, PAN and deblurGAN.

4.1 Pix2pix

The pix2pix network was proposed by Isola et al. [10] to be used for different types of image trans-
lations. It has been used for a wide variety of problems, showing promise to be a very adaptable
model.

The pix2pix generator is illustrated in Figure 4.1. It is a U-net, i.e. it contains multiple skip
layers from the encoder layers to the decoder. The encoder layers are of the form convolutional
layer, batch normalization (except on the first layer) and a leaky ReLU activation with slope 0.2.
The decoder blocks differ from the encoder blocks in the fact that they have transposed convolu-
tion instead of convolution, as well as an ordinary ReLU instead of a leaky one. The first three
decoder blocks have a dropout factor of 0.5, meaning that the nodes randomly are being ignored
by a probability of 50%. All convolutions of the U-net have kernel size 4×4 and stride 2, and
the number of filters in each block can be seen in Figure 4.1. After the U-net there is one final
convolutional layer with 3 filters that maps the data to a RGB image again, followed by a tanh
activation function.

24

Figure 4.1: An illustration of the architecture of the pix2pix generator.

The discriminator in the pix2pix network can be seen in Figure 4.2. This discriminator is a patch-
GAN, which means that the discriminator classify smaller patches of the image (in this case 70×70
pixels) and then outputs the mean of the patch probabilities. This allows the discriminator to only
look locally when classifying, and not find dependencies between pixels that are far away from
each other.

The convolutions in the discriminator have kernel size 4×4, with a stride 2 for the first three
layers and stride 1 for the last two. Each of the first four layers have a leaky ReLU activation with
slope 0.2 and the last layer has a sigmoid activation.

Figure 4.2: An illustration of the architecture of the pix2pix discriminator.

For the adversarial loss pix2pix uses a binary cross entropy, defined in (3.1) and (3.2). In addition,
it also uses the L1-norm of the difference between the generated image and the target image when
training the generator.

LL1 = E[‖Y − Ŷ ‖1]

25

The losses are then combined by summation and loss weights λ. The losses for the generator and
the discriminator are

LG = λBG
LBCEG

+ λL1
LL1

LD = λBD
LBCED

.

4.2 Perceptual adversarial network (PAN)

The perceptual adversarial network PAN was presented in [22], as a network that can perform
a range of image transformations. It consists of an image transformation network T and a dis-
criminative network D. The image transformation network T is trained to synthesize the real
samples given some prior information, and is in this report referred to as a generator G according
to standard GAN notation.

The generator of a PAN is illustrated in Figure 4.3 and is composed of an encoding and a de-
coding part. The encoder layers are of the form convolutional layer, batch normalization and leaky
ReLU activation with slope 0.2. The convolution is done with kernel size 3×3 and stride 2. The
decoder layers contains deconvolution, batch normalization and regular ReLU activation. In the
deconvolution the kernel size is 4×4. After the last layer of the decoder a tanh activation is applied.

Figure 4.3: An illustration of the architecture of the PAN generator.

The discriminative network D of a PAN is shown in Figure 4.4. It is also a CNN that consists
of convolution, batch normalization and leaky ReLU activation. The convolutions are done with
kernel size 3×3 and the stride is 1 for layers 1, 3, 5 and 7, and the stride is 2 for layers 2, 4, 6, 8 and
9. After the last convolutional layer, the output is flattened and fed through a sigmoid activation,
resulting in a probability. Hidden layers of the network D are utilized to evaluate the perceptual
adversarial loss described below.

26

Figure 4.4: An illustration of the architecture of the PAN discriminator.

In addition the a binary cross entropy as the adversarial loss, PAN also includes a perceptual loss.
This loss is based on outputs of intermediate layer of the discriminator network. We denote the
output of layers 1, 4, 6, and 8 of the discriminator as H1, H2, H3 and H4 respectively. These
are used to compute the perceptual adversarial losses LD for the discriminator and LG for the
generator:

Pi(Y, Ŷ) = ‖Hi(Y)−Hi(Ŷ)‖1

Lperc,G =

4∑
i=1

λiPi(Y, Ŷ), (4.1)

Lperc,D = max

(
0,

[
m−

4∑
i=1

λiPi(Y, Ŷ)

])
, (4.2)

where λi are the weights of the different layers and the variable m is a positive margin. Combining
these with the adversarial loss, we get the total loss of the PAN:

LG = θLBCEG
+ Lperc,G, (4.3)

LD = θLBCED
+ Lperc,D, (4.4)

where θ is the weight of the BCE-loss.

4.3 DeblurGAN

The deblurGAN was presented in [14] as a network that removes motion blur from images. The
network aims to estimate the difference between a sharp and a blurred image, and to then remove
this difference from the blurred image.

The deblurGAN generator contains two strided convolution blocks with stride 0.5, nine resid-
ual blocks (Resblocks) and two transposed convolution blocks. An illustration of the generator is
shown in Figure 4.5. Each Resblock consists of a convolution layer, instance normalization layer,
and ReLU activation. Instance normalization is in practice the same thing as batch normalization
with batch size 1. Dropout regularization with a probability of 0.5 is added after the first convo-
lution layer in each Resblock. In addition, it introduces a global skip connection, from the input
to the last layer.

27

Figure 4.5: An illustration of the architecture of the deblurGAN generator.

The architecture of the deblurGAN discriminator network is identical to the discriminator in
pix2pix, see Figure 4.6. All the convolutional layers except the last are followed by instance
normalization layer and Leaky ReLU with α = 0.2.

Figure 4.6: An illustration of the architecture of the deblurGAN discriminator.

The deblurGAN loss is made up of a Wasserstein loss with gradient penalty and a perceptual loss.
The perceptual loss is calculated using a pretrained network, VGG-19. The VGG-19 network is a
CNN trained to extract features on a large data set [20]. By using a pretrained net, we get a very
efficient feature extraction that is trained to differentiate between vastly different images. The loss
is given by

LV GG =
1

MNC

M∑
i=1

N∑
j=1

C∑
k=1

(φ(Y)i,j,k − φ(Ŷ)i,j,k)2

where M , N and C are the number of rows, columns and number of filters of the feature maps φ.
The feature maps φ are extracted using the VGG-19 net at layer conv3,3, φ(Y) =VGG-19conv3,3

(Y).

The loss functions of the generator and the discriminator are then given by

LG = λwass,GLwass,G + λV GGLV GG

LD = λwass,DLwass,D + λGPLGP

28

4.4 Training details

All networks were trained using an Adam optimizer with momentum parameters β1 = 0.9 and
β2 = 0.999, and with learning rate 0.0002. The batch size was set to 4 for pix2pix and PAN. Since
the deblurGAN uses instance normalization, the batch size was set to 1 in this case. When training
the deblurGAN we used a training ratio of 5:1, since this was proposed in [14]. This means that
the discriminator was trained 5 times more often than the generator. For the other networks the
training ratio was 1:1. The loss weights for the different networks are shown in tables 4.1-4.3.
They were determined by tests which gave an understanding in how they affected the performance
and what were reasonable weights for the different networks.

Table 4.1: Loss weights for training pix2pix.

λB λL1

G 1 10
D 1 -

Table 4.2: Loss weights for training PAN.

θ λ1 λ2 λ3 λ4
G 2 100 1 1 1
D 10 5 1.5 1.5 5

Table 4.3: Loss weights for training deblurGAN.

λwass λGP λV GG
G 1 - 100
D 1 1 -

29

Chapter 5

Metrics for evaluation

In order to assess the quality of the generated images we used a set of evaluation metrics. When
evaluating the images, they should be compared to the corresponding ground truth images, i.e.
the sharp image in the given stack. The comparison should aim to compare both the general
appearance, such as color and motif, as well as the details we aim to reconstruct in the blurry
image.

5.1 Mean squared error (MSE)

To compare the images pixel by pixel we used mean squared error, MSE. This is a pixelwise metric,
that does not account for spatial structures in the image, and so is not a very good tool to measure
details. It does, however, tell us a lot about whether the images compared resemble each other in
color and overall appearance. The MSE is given by

MSE(Y, Ŷ) =
1

MNC

M∑
i=1

N∑
j=1

C∑
k=1

[Yi,j,k − Ŷi,j,k]2,

where Ŷ and Y are image to be compared and M , N and C are the number of columns, rows and
color channels respectively.

5.2 Peak signal to noise ratio (PSNR)

The peak signal to noise ratio (PSNR) builds on the MSE metric. In addition to comparing the
images, it also takes the maximum pixel value into account. This scales the metric to the dynamic
range of the image.

PSNR(Y, Ŷ) = 10 · log10

(
MAX2

Y

MSE

)
,

where MAXY is the maximum pixel value of the sharp image Y .

5.3 Structural similarity index (SSIM)

The structural similarity index SSIM is described in [24] as a evaluation metric that, in contrast
to the MSE and PSNR, evaluates the image quality as perceived by the human eye. The index is

30

calculated as

SSIM(Y, Ŷ) =
(2µY µŶ + c1)(2σY Ŷ + c2)

(µ2
Ŷ

+ µ2
Y + c1)(σ2

Ŷ
+ σ2

Y + c2)
,

where µŶ is the average of Ŷ , σ2
Ŷ

is the variance of Ŷ , σY Ŷ is the covariance of Y and Ŷ . The c1
and c2 variables are meant to stabilize the division. They are given by c1 = (k1L)2 and c2 = (k2L)2,
where L is the dynamic range of the pixel values (in our case 255) and the constants are given
from [24] as k1 = 0.01 and k2 = 0.03.

5.4 Focus measure - ratio (FR)

In order to asses whether the focus has been improved in the generated image, we once again used
the focus measure described in section 1.3. This metric was calculated by the ratio of the focus
measure applied to the sharp and the generated image

FR(Y, Ŷ) =
F (Ŷ)

F (Y)
.

The optimal value for this metric is 1, which means that the generated image is as sharp as the
ground truth. A lower value indicates that the image has not been sufficiently sharpened. If this
metric reaches a value higher than 1, it indicates that the network over-corrects the focus, resulting
in a generated image with higher focus value than the sharp image. This is probably the case when
the network make up dots, lines or other things in the image that does not correspond to the sharp
image.

5.5 Focus measure - pixelwise (FPW)

The last metric we used was also based on the focus measure in section 1.3, this time as a pixelwise
comparison between the focus level of the images Y and Ŷ . The metric is defined given by

FPW(Y, Ŷ) =
1

MN

M∑
i=1

N∑
j=1

|(ωx ∗ YG)2i,j − (ωx ∗ ŶG)2i,j |+ |(ωy ∗ YG)2i,j − (ωy ∗ ŶG)2i,j |,

where M , N are the number of columns respectively rows, YG is the green channel of the sharp
image and ŶG is the green channel of the generated image.

5.6 Visual assessment

In order to choose the network that generates the sharpest images from a visual standpoint,
we needed to include a visual assessment in our evaluation. The metrics described above were
necessary in the development of the network, as they were used to choose how we proceeded with
the alternations to the network. However, because the aim of the project is to make sharp images,
and as this is a rather subjective property, we needed to look at the images to determine what is
visually perceived as the best result.

31

Chapter 6

Results

In the evaluation phase of the project, we began by comparing the networks presented in Chapter
4 to each other. From there we moved on with the best performing network and tried to enhance
it by tuning parameters, adding losses and changing the architecture. Lastly we tried to make
the generator network more time efficient, in order to make them applicable to CellaVision’s real
time requirements. The method of trying different changes to the network means training many
networks. Due to time constraints on the project, the networks could not be trained until fully
converged. Because of this, the number of iterations they where trained for was fixed for every
network in a certain comparison, in order to be able to evaluate the networks and continue with
the best one. Even though the networks converge in different time, it in some way gave them the
same conditions, since the time it takes to train a network to convergence is one important factor.

In Table 6.1 the evaluation metrics are applied to the test set to get a mean score for each focus
level, to be able to compare further networks. As expected, images captured at the optimal focus
gives the best result, as this is the ground truth. The scores presented in the rest of the tables in
the chapter are the mean of all focus levels, as the last row in this table.

Table 6.1: Evaluation scores for input images X, calculated as a mean of all images of a focus level
in the test set. The best score for each metric is marked in bold. At the bottom is the mean score
of all the focus levels.

MSE SSIM PSNR FR FPW

-1.4 µm 41.48 0.969451 32.10 0.1344 1279
-1.2 µm 36.10 0.976575 32.71 0.1815 1229
-1.0 µm 29.95 0.983287 33.55 0.2558 1128
-0.8 µm 22.87 0.989277 34.77 0.3763 953.0
-0.6 µm 15.32 0.994050 36.57 0.5511 710.4
-0.4 µm 8.561 0.997072 39.10 0.7573 443.9
-0.2 µm 4.623 0.998454 41.56 0.9273 244.6
0.0 µm 0.0 1.0 50 1.0 0.0
0.2 µm 4.317 0.998551 41.82 0.9312 233.5
0.4 µm 6.241 0.997901 40.31 0.7914 378.4
0.6 µm 9.904 0.996576 38.38 0.6310 571.7
0.8 µm 15.15 0.994389 36.53 0.4828 761.0
1.0 µm 21.10 0.991275 35.03 0.3582 923.3
1.2 µm 27.04 0.987128 33.92 0.2585 1054

Mean 17.33 0.990999 37.60 0.5455 707.8

32

6.1 Pix2pix vs PAN vs deblurGAN

We compared pix2pix, PAN and deblurGAN when they were trained for 100 000 iterations each.
The evaluation scores for the three networks are shown in Table 6.2. Here we see that the pix2pix
network is superior in all metrics except the focus ratio, which gives a somewhat better result for
the PAN network. However, due to the pixelwise focus measure being better for the pix2pix this
indicates that the focus has been enhanced by the PAN in a way that does not correspond to the
ground truth image. Compared to the evaluation of the input images (Table 6.1), the MSE is lower
for both pix2pix and PAN. This suggests that the overall resemblance has been improved for these
images. This is not the case for the deblurGAN, where the MSE is instead higher for the output
than the input.

In Figure 6.1 the MSE, FPW and FR scores are plotted for each focus level along with the corre-
sponding values for the input images. Here we see that both the pix2pix and PAN have flattened
the curves for all three metrics, meaning they have improved the focus of the images taken far
away from optimal focus. The images captured at the optimum, in the interval −0.2 µm to 0.4
µm, are somewhat worse after going through the networks. The deblurGAN largely follows the
scores for the inputs, but gives a bit worse results overall. Looking at the focus ratio, we see that
the PAN is more peaked than the pix2pix. This implies that the sharpening of the pix2pix is more
even across the different focus levels.

Table 6.2: Evaluation scores for pix2pix, PAN and deblurGAN. The evaluation is made on the test
set after 100 000 iterations and is represented by the mean score of all images and focus levels.
The best score for each metric is marked in bold.

MSE SSIM PSNR FR FPW

Pix2pix 8.805 0.997212 39.20 0.8921 472.9
PAN 13.93 0.993035 37.11 1.019 843.9
DeblurGAN 19.53 0.991029 36.55 0.5520 851.5

(a) MSE (b) Focus pixelwise (c) Focus ratio

Figure 6.1: Three plots showing the evaluation scores at the different focus levels
for the metrics MSE, FPW and FR for networks trained for 100 000 iterations. The
black solid line is the target, the black dashed line is the evaluation of the input,
the blue squares is the evaluation of pix2pix, the purple dots is the evaluation of
PAN and the green triangles is the evaluation of deblurGAN.

The networks were also compared by looking at the generated images using their respective gener-
ators trained for 100 000 iterations. In Figure 6.2 we can see the generated images given a blurry
image captured at focus level 1.2 µm and −0.8 µm from focus respectively. We can see that both

33

the pix2pix and the PAN have begun to sharpen the image significantly, while the output of the
deblurGAN is still as blurry as the input image. Comparing the pix2pix and PAN outputs, we
can see that the details are more clear in the pix2pix image. This corresponds well to the MSE
scores, that indicates that the deblurGAN result should be least similar to the ground truth, and
that pix2pix result should be most similar.

Figure 6.2: Predictions made with the three networks trained for 100 000 iterations
each. To the left is the blurry images and to the right is the sharp ground truth
images. The blurry images are captured at distances 1.2 µm and −0.8 µm from
optimal focus. In the middle are the images generated using pix2pix, PAN and
deblurGAN respectively.

It should also be noted that all outputs from our PAN has periodical artifacts, as marked in Figure
6.3. The placements of these artifacts are the same for all predictions done with the PAN that was
trained for 100 000 iterations, as well as for predictions done at different stages in the training.
This implies that they would probably not disappear by further training. GANs in general has in
many cases given results with artifacts, which due to [23] could depend on the batch normalization
and could therefore may be removed by removing the batch normalization.

Figure 6.3: Predictions made with PAN trained for 100 000 iterations. The gener-
ated images have artifacts as marked in the images. The placements of the artifacts
are constant.

34

In addition to producing a good result, the network should be able to do the transformation in a
short time. This aspect of the networks is compared in Table 6.3, where the generators are timed
on a Intel Xeon E5-1620 3.5 GHz CPU and a NVidia GeForce GTX 1050 Ti GPU for a 360×360
image and a 1920×1200 image. This is the time it takes to perform the transformation on the
images of these sizes. The fastest generator is that of the PAN, which is to be expected as this
is the smallest generator network. Correspondingly, the deblurGAN generator is the largest and
slowest. On the GPU, both pix2pix and PAN manages to transform the small WBC images in the
required amount of time, i.e. under 70 ms. However, none of the networks meet this demand on
the CPU. One can also conclude that the transformations of the large scan images are pretty far
away from meeting the real time requirements in all cases.

Table 6.3: The prediction time for the generator of pix2pix, PAN and deblurGAN both for the
small WBC image (360×360) and for the large scan image (1920×1200). The networks are timed
on a Intel Xeon E5-1620 3.5 GHz CPU and a NVidia GeForce GTX 1050 Ti GPU. The best score
for each metric is marked in bold.

360×360 1920×1200
CPU (s) GPU (s) CPU (s) GPU (s)

Pix2pix 0.49 0.053 7.9 0.55
PAN 0.32 0.028 5.2 0.41
DeblurGAN 3.6 0.14 72 3.8

Lastly we can note that pix2pix is easier to adapt than the other networks. In pix2pix there are
relatively few parameters to tune, for example due to having fewer loss weights than PAN. It is also
faster to train. One training iteration on the GPU takes about 0.8 seconds for pix2pix, 2.1 seconds
for PAN and 2.2 seconds for deblurGAN. This allows us to test more changes to the network in
the tuning stage.

To summarize, we see that the pix2pix and PAN networks both do some work on sharpening
the images. The pix2pix produced better results overall than the PAN, and the PAN had trou-
ble with artifacts. When it comes to time efficiency, the PAN was the fastest of the generators.
However, both pix2pix and PAN were fast enough on a GPU for transforming a 360×360 image
and none of the networks where fast enough on a CPU. The PAN and deblurGAN networks are
slower to train and have more hyperparameters, making them harder to adapt. Due to all this, we
decided not to move on with PAN or deblurGAN, leaving us with the pix2pix network.

6.2 Quality of data

Before we continued to train and develop the pix2pix network, we did some evaluation of the data
quality in order to see how the amount and the augmentation of data contributed to the result.

6.2.1 Amount of data

The data was gathered using four DC-1 systems, which we call systems 1, 2, 3 and 4. To investigate
the effect of using more or less training data and the quality of the data from the different systems,
we compared two pix2pix networks. For this, we had to arrange the data in another way and
therefore non of the results correspond to the pix2pix result in Table 6.2. One network is trained
on a small data set containing 863 stacks gathered using system 1 and the other networks is trained
on a larger data set containing 10 059 stacks from systems 1, 2 and 3. Both systems where then
evaluated on 727 stacks from the fourth system. The results of the evaluation are shown in Table

35

6.4. It is clear that the additional data has contributed to the training of the generator. The fact
that we used data from a larger number of systems should lead to the resulting network being
more adaptable to new data and more robust to outliers.

Table 6.4: Evaluation scores for pix2pix trained with the small data set respectively the large data
set. The evaluation is made on the test set after 100 000 iterations and is represented by the mean
score of all images and focus levels. The best score for each metric is marked in bold.

MSE SSIM PSNR FR FPW

Small data set 8.879 0.997325 39.06 1.097 545.8
Large data set 7.644 0.997794 39.88 0.9550 440.1

6.2.2 Augmentation of data

In order to see if the changes in contrast, brightness, white balance, saturation and staining of
the images resulted in a more robust network, we investigated what happened when training the
network with or without the augmentation. The result can be seen in Table 6.5. There one can
see that network trained with augmentation gave better scores than that trained without it, and
so the augmentation had a positive effect on the training. The augmentation seems to have an
especially big impact on the MSE and FPW metric.

Table 6.5: Evaluation scores for pix2pix trained with and without augmentation on the training
data. The evaluation is made on the test set after 100 000 iterations and is represented by the
mean score of all images and focus levels. The best score for each metric is marked in bold.

MSE SSIM PSNR FR FPW

Without augmentation 9.344 0.996897 39.10 0.9073 517.1
With augmentation 8.805 0.997212 39.20 0.8921 472.9

6.3 Additional losses

The original pix2pix network has two losses; an adversarial binary cross entropy loss and an L1

loss. A way to tweak the generator is to introduce more losses when training it. By adding losses
we can decide what aspects of the ground truth images the generator should focus on mimicking
in the transformation. Below we present three new losses and their results.

6.3.1 Focus loss

We defined a focus loss based on the focus measure described in section 1.3, that was added to
the generator loss with a weight λfocus. The loss was calculated by applying the edge detection

filters on the generated image Ŷ and the sharp image Y and comparing them in the same way as
the FPW metric described in section 5.5, i.e. Lfocus = FPW(Y, Ŷ). The meaning of this loss was

to tell the generator that the difference in focus between Y and Ŷ was something it should train
to minimize. The result of different weights of the focus loss can be seen in Table 6.6.

The loss weights where chosen from how much the losses contributed to the total loss. We started
out by letting λfocus = 0.02, since this meant that it contributed as much as the L1 loss to the total
loss. Looking at the table, one can see that it gave better result for FR and FPW while the other
metrics became worse than the original pix2pix. In order to see if this was a legitimate weight loss,

36

we investigated what happened when picking the weight ten times smaller, i.e. λfocus = 0.002.
This meant that the focus loss did not contribute as much to the total loss, which probably is the
reason for the FR and FPW becoming worse than before. Further investigating a 5 times larger
weight, i.e. λfocus = 0.1, resulted in that the FPW became better than for the original pix2pix
but worse than the network with focus loss λfocus = 0.02.

The reason to that the focus loss was introduced from the beginning, was to make the gener-
ator penalize not just the direct difference between the images but also the difference in focus
between them. Watching Table 6.6, one can conclude that having the weight λfocus = 0.02, re-
sulted in best result in FPW and therefore was the one that best fulfilled the aim. However, it
seems like the focus loss did not result in better performance in MSE, SSIM and PSNR than the
original pix2pix. Because of this, we discarded this loss and moved onto testing others.

Table 6.6: Evaluation scores for pix2pix with the focus loss with different weights. The evaluation
is made on the test set after 200 000 iterations and is represented by the mean score of all images
and focus levels. The best score for each metric is marked in bold.

MSE SSIM PSNR FR FPW

Pix2pix 6.788 0.997891 40.48 0.9125 428.7
Focus loss λfocus = 0.002 7.069 0.997799 40.29 0.8945 433.7
Focus loss λfocus = 0.02 8.882 0.997306 39.10 0.9515 417.5
Focus loss λfocus = 0.1 8.817 0.997469 39.23 0.9672 422.2

6.3.2 VGG loss

We also tried applying a loss based on a layer of a VGG network, now to the pix2pix network
instead of the deblurGAN. For this loss we used the VGG-16 network and not the VGG-19 used
before. The choice of the VGG network was based on [21], where it is concluded that the VGG-
16 produces better results than VGG-19 despite being a smaller network. The VGG-16 network
is made up of 6 blocks, where 5 of them contains 2-3 convolutional layers each, followed by max
pooling between each block. The last block is made up of three fully connected layers. The network
is illustrated in Figure 6.4.

Figure 6.4: The VGG-16 network. Each color represents a separate block of the
network and between each block is a maxpooling layer.

We also changed the way the loss was calculated from the deblurGAN VGG loss. Instead of using
the same loss function, we used a style reconstruction loss used in [11]. This was because the style
reconstruction loss penalize differences in style, i.e. colors, textures, common patterns, etc. This
means that generating an image Ŷ that minimizes the style reconstruction loss preserves stylistic
features from the target image Y , which in our case included the sharpness of the image. The loss

37

can be described as
LSRL = ||Gθj (Y)−Gθj (Ŷ)||22,

where Gθj (Y) is the Gram matrix, a C × C matrix described by

Gθj (Y) =
1

MNC

M∑
i=1

N∑
j=1

φ(Y)i,j,cφ(Y)i,j,c′ ,

and M , N and C are the number of rows, columns and number of filters of the feature maps φ(Y).

The result for three different layers and loss weights are presented in Table 6.7. The loss was
implemented with the layers at the end of block 3, 4 and 5 of the VGG-16. The loss weights
were at first tuned to match the influence of the VGG loss to that of the L1 loss, with weights
λV GG = 0.05, 0.5, 10 for block 3, 4 and 5 respectively. Among these losses, the one based on the
output of the fifth block produced the best result. However, the original pix2pix was still superior
in all aspects except the pixelwise focus measure. To see if a larger influence of the VGG loss
would give better results, we increased the weight on the loss to five times its size, λV GG = 50. As
seen in the table, this gave us worse results, implying that the loss weight should not be increased.
One could also have tested to decrease the loss weight, but since the result of the best layer was
very similar to the original pix2pix, we did not proceed with testing more weight losses. Due to
the results being worse than for pix2pix, we did not continue using this loss.

Table 6.7: Evaluation scores for pix2pix with the VGG loss with different network layers and
weights. The evaluation is made on the test set after 200 000 iterations and is represented by the
mean score of all images and focus levels. The best score for each metric is marked in bold.

MSE SSIM PSNR FR FPW

Pix2pix 6.788 0.997891 40.48 0.9125 428.7
VGG loss, layer 3, λV GG = 0.05 15.69 0.996128 36.33 0.9621 527.3
VGG loss, layer 4, λV GG = 0.5 7.510 0.997879 39.89 0.8883 429.5
VGG loss, layer 5, λV GG = 10 7.101 0.997871 40.21 0.9138 425.7
VGG loss, layer 5, λV GG = 50 8.152 0.997770 39.50 0.9256 429.9

6.3.3 Distance loss

Next we defined a distance loss, which was based on a network by CellaVision that is trained to
classify how far from the optimal focus a cell image is captured. This network was made up of
five convolutional layers with intermediate max pooling layers and the last three layers are fully
connected. The network was illustrated in Figure 6.5. The loss was defined from letting Y and
Ŷ go through the network, picking the difference in output from certain layers, as for the VGG
network.

38

Figure 6.5: The distance classification network. Each color represents a separate
block of the network and between each block is a maxpooling layer.

The loss was calculated by
Ldistance = ‖ψi(Y)− ψi(Ŷ)‖1,

where ψi(Y) is the feature map generated by the pretrained networks ith layer. The idea behind
this loss is to train the network on features that is relevant to recognize the level of focus of the
image, so that this information can be used in the deblurring. The loss is tested with different
layers and weights, and are evaluated after 200 000 iterations of training. The results are shown
in Table 6.8 for losses using the feature map from the third, fourth and fifth convolutional layer.
The weights are tuned to match the amplitude of the loss to that of the L1 loss, in order to give
both losses equal influence on the training, giving λdistance = 50, 50 and 10 for layers 3, 4 and 5
respectively.

Using the fourth and fifth layers only seems to worsen the results in comparison to the origi-
nal pix2pix. However, using the third layer produces better results than the original pix2pix in all
metrics. To see if a larger influence of the distance loss would further better the results, we tried
increasing the weight loss to twice its size, i.e. λdistance = 100. This resulted in a worse result in
all metrics. We also tested a lower weight of λdistance = 10 for the third layer in order to see if the
distance loss contributes too much, but this only slightly increased the results for the focus ratio
and non of the other metrics. Because of this we can say that the distance loss based on layer 3
with weight λdistance = 50 is the best option and the one we will continue with. From now on, this
network will be called pix2pix-dist.

Table 6.8: Evaluation scores for pix2pix with the distance loss with different network layers and
weights. The evaluation is made on the test set after 200 000 iterations and is represented by the
mean score of all images and focus levels. The best score for each metric is marked in bold.

MSE SSIM PSNR FR FPW

Pix2pix 6.788 0.997891 40.48 0.9125 428.7
Distance loss, layer 3, λdistance = 10 6.502 0.997952 40.71 0.9164 416.8
Distance loss, layer 3, λdistance = 50 6.433 0.997999 40.72 0.8905 413.6
Distance loss, layer 3, λdistance = 100 6.9634 0.997877 40.36 0.8975 422.5
Distance loss, layer 4, λdistance = 50 7.2970 0.997823 40.09 0.8999 424.2
Distance loss, layer 5, λdistance = 10 9.416 0.997554 38.78 0.9240 456.7

39

6.4 Two inputs

Now when having concluded that the distance loss makes the transformation even better, one
can think of changing other things to this network. A simple change is the number of unfocused
images that are used to produce a sharp one. By allowing the system to capture two consecutive
photos at different random focus levels and input them to the network, we increase the amount of
information passed to the system. The new GAN structure with two inputs is illustrated in Figure
6.6.

The network with one and two inputs are compared in Table 6.9. The comparison can not be
done in the same way as before, due to that more information is passed to the one with two inputs.
Therefore, they where compared by the most focused image being sent to the system, meaning
that the focus levels −1.4 µm and 1.2 µm are not contained in the comparison.

Figure 6.6: A conditional GAN with two inputs. Both the generator and the dis-
criminator are now given two conditions X1 and X2.

Table 6.9: Evaluation scores for pix2pix with one and two blurry images as input to the generator.
The evaluation is made after 200 000 iterations and is represented by the mean score of all images
and focus levels. The best score for each metric is marked in bold.

MSE SSIM PSNR FR FPW

Pix2pix-dist one input 5.698 0.998281 41.16 0.9061 375.2
Pix2pix-dist two inputs 5.638 0.998301 41.22 0.9311 364.4

From Table 6.9, one can conclude that the pix2pix-dist with two inputs performs a bit better than
that with one input, but it is a pretty small difference in the result. In addition to the digital
change of letting the network use two inputs, the approach of using two images calls for some
changes in the mechanics of the system as well. It would need to snap two pictures of every cell.
The information gained by doing this needs to be weighed against the extra time it takes to capture
the second image. Since it is two different methods, both in a mechanical and a digital aspect,
to use two images for the transformation, we chose to continue with both of them to see what
happens when they reach full convergence. The network with two inputs is from now on called
pix2pix-dist-2inputs.

40

6.5 Faster network

Since CellaVision’s system is a real time system, it would be desirable that the transformation
could be accomplished in no more time than it takes to perform the auto focus mechanically, i.e.
70 ms on a CPU, to not remarkably increase the time it takes to analyze a slide in today’s system.
This threshold could be set on the transformation time of a 360×360 WBC image or 1920×1200
scan image, depending on the application. As can be seen in section 6.1 in Table 6.3, the original
pix2pix network meets this demand when transforming a 360×360 WBC image on a GPU, but
not on a CPU, and not when transforming a larger image.

In order to make the transformation faster, we needed to reduce the complexity of the genera-
tor. To evaluate how different changes in the generator affect the time it takes to transform an
image, we took the time of different changes. The changes involved reducing the number of blocks
in the generator, reducing the number of filters in all the blocks through the generator and reduc-
ing the kernel size of each block. The reduction of the number of filters was done by dividing the
number of filters in every layer by the same factor. One could go even further with these changes,
by reducing them even more. However, this would make the generator lose to much complexity.

The results for the changes can be seen in Table 6.10, 6.11 and 6.12. Here one can see that
even though the time reduces remarkably when reducing the number of blocks and the kernel size
it turns out that reducing the number of filters reduces the time the most. Reducing the number
of filters is the only change that meets the time requirement as a stand alone change for the small
WBC image on a CPU. For the scan image, no changes meet the requirement on either a CPU
or a GPU. We also tried to combine some of the changes to fulfill the criteria for a WBC image
on a CPU. We tried a number of different combinations to see how they affected the results. The
transformation times for the combinations that met the time criteria are shown in Table 6.13, and
their evaluation scores are shown in Table 6.14.

Table 6.10: The prediction time for the generator of pix2pix-dist when reducing the number of
blocks for the small WBC image (360×360) and for the large scan image (1920×1200). The
networks are timed on a Intel Xeon E5-1620 3.5 GHz CPU and a NVidia GeForce GTX 1050 Ti
GPU. The scores that fulfills the time criteria is marked in bold.

360×360 1920×1200
CPU (s) GPU (s) CPU (s) GPU (s)

16 blocks (original) 0.49 0.053 7.9 0.55
14 blocks 0.47 0.047 8.0 0.55
12 blocks 0.45 0.040 7.8 0.53
10 blocks 0.42 0.033 7.4 0.52
8 blocks 0.36 0.027 6.6 0.46

41

Table 6.11: The prediction time for the generator of pix2pix-dist when reducing the number of
filters in all the layers through the generator for the small WBC image (360×360) and for the large
scan image (1920×1200). The number of filters specified in the table is that of the first layer in the
generator. The networks are timed on a Intel Xeon E5-1620 3.5 GHz CPU and a NVidia GeForce
GTX 1050 Ti GPU. The scores that fulfills the time criteria is marked in bold.

360×360 1920×1200
CPU (s) GPU (s) CPU (s) GPU (s)

64 filters (original) 0.49 0.053 7.9 0.55
32 filters 0.19 0.022 3.0 0.30
16 filters 0.087 0.017 1.5 0.21
12 filters 0.063 0.015 1.1 0.20
8 filters 0.046 0.014 0.85 0.19

Table 6.12: The prediction time for the generator of pix2pix-dist when reducing the kernel size
for the small WBC image (360×360) and for the large scan image (1920×1200). The networks
are timed on a Intel Xeon E5-1620 3.5 GHz CPU and a NVidia GeForce GTX 1050 Ti GPU. The
scores that fulfills the time criteria is marked in bold.

360×360 1920×1200
CPU (s) GPU (s) CPU (s) GPU (s)

Kernel size 4×4 (original) 0.49 0.053 7.9 0.55
Kernel size 3×3 0.35 0.034 5.9 0.44

Table 6.13: The prediction time for the generator when having a combination of the changes above
that fulfills the requirements for the WBC image (360×360). The networks are timed on a Intel
Xeon E5-1620 3.5 GHz CPU and a NVidia GeForce GTX 1050 Ti GPU. The scores that fulfills
the time criteria is marked in bold.

360×360 1920×1200
CPU (s) GPU (s) CPU (s) GPU (s)

16 filters + 8 blocks 0.070 0.014 1.2 0.20
16 filters + kernel 3×3 0.065 0.015 1.2 0.21
18 filters + 10 blocks + kernel 3×3 0.069 0.014 1.3 0.21
20 filters + 8 blocks + kernel 3×3 0.070 0.013 1.2 0.21

The result after 200 000 iterations when having applied the changes to the generator that fulfilled
the time criteria for a WBC image on a CPU can be seen in Table 6.14. There one can see that
all the fast generators perform worse in all metrics but the FR compared to the pix2pix-dist with
no changes. It is a bit tricky to say exactly how the reductions of filter, blocks and kernels affect
the result when watching the table of combinations. However, the best performing of the smaller
networks is the pix2pix-dist with 16 filters and 8 block. This is the network we chose to continue
with as the fast network and from now on it is called pix2pix-dist-fast. An illustration of the
generator of this network can be seen in Figure 6.7.

42

Table 6.14: Evaluation scores for the pix2pix-dist and the pix2pix-dist with the different changes
in the generators that fulfilled the time criteria. The evaluation is made after 200 000 iterations
and is represented by the mean score of all images and focus levels. The best score for each metric
is marked in bold.

MSE SSIM PSNR FR FPW

Pix2pix-dist original 6.433 0.997999 40.72 0.8905 413.6
12 filters 10.13 0.997066 38.51 0.9069 499.1
16 filters and 8 blocks 9.226 0.997254 39.00 0.9030 479.2
16 filters and kernel 3×3 13.21 0.996874 37.19 0.8343 508.8
18 filters, 10 blocks and kernel 3×3 9.343 0.997082 38.99 0.8793 493.6
20 filters, 8 blocks and kernel 3×3 9.802 0.997035 38.80 0.8792 508.6

Figure 6.7: An illustration of the generator of pix2pix-dist-fast. As one can see, the
blocks has been reduced to only contain 8 blocks and the filter size in the first block
has been reduced to 16.

6.6 Reaching convergence

In order to get the final results when the networks pix2pix-dist, pix2pix-dist-2inputs and pix2pix-
dist-fast had reached full convergence, they were trained until the validation loss did not decrease
anymore. This happened for 900 000 iterations for pix2pix-dist, 1 000 000 iterations for pix2pix-
dist-2inputs and 600 000 iterations for pix2pix-dist-fast. The result can be seen in Table 6.15 and
6.16. There one can see that pix2pix-dist outperforms pix2pix-dist-fast even after they have fully
converged. For the pix2pix-dist-2inputs one can see that it has better mean scores than pix2pix-
dist but it is in general a very small difference between the scores, just as has been concluded before
for 200 000 iterations (Table 6.9). Notice that the reason for that pix2pix-dist has better scores in
Table 6.16 than in Table 6.15 is that the focus levels −1.4 µm and 1.2 µm are not included.

Table 6.15: Evaluation scores for the pix2pix-dist and the pix2pix-dist-fast. The evaluation is
made after 900 000 iterations respectively 600 000 iterations and is represented by the mean score
of all images and focus levels. The best score for each metric is marked in bold.

MSE SSIM PSNR FR FPW

Pix2pix-dist 5.820 0.998218 41.22 0.9157 385.6
Pix2pix-dist-fast 7.670 0.997545 39.97 0.9038 459.3

43

Table 6.16: Evaluation scores for the pix2pix-dist and the pix2pix-dist-2inputs. The evaluation
is made after 900 000 iterations respectively 1 000 000 iterations and is represented by the mean
score of all images and focus levels. The best score for each metric is marked in bold.

MSE SSIM PSNR FR FPW

Pix2pix-dist 5.117 0.998483 41.67 0.9337 346.6
Pix2pix-dist-2inputs 4.996 0.998551 41.71 0.9399 334.6

In Figure 6.8, the score for MSE, SSIM, PSNR, FR and FPW has been plotted for each focus level
for each of the networks. There one can see the same pattern as in the tables, i.e. that pix2pix-
dist-2inputs is best, closely followed by pix2pix-dist and that pix2pix-dist-fast is the poorest of
them. One interesting thing is that pix2pix-dist seems to be best close to the optimal focus. It
also seems like pix2pix-dist-fast diverge more from the others far away from the focus. Generally,
one can notice that the curve has flattened out relative to the input for all of the networks, which
was part of the the aim.

In Figures 6.9-6.14, we present the results from some transformations using the final networks
together with the MSE and FPW scores. Here one can see that in general, the transformations
produce good results. Starting with Figures 6.9-6.12, we see examples of severely blurry images
being sharpened. The output of the pix2pix-dist network looks to be the sharpest and is very
close to the target image. The Ŷ of pix2pix-dist-2inputs is somewhat less sharp, which can be seen
when looking at the high frequency details. The image generated by the fast network is the least
sharpened of the three, but is still significantly sharper than the input image. This also reflects the
score of MSE and FPW for most of the images. Notice however that the scores can not directly
be compared between images visualizing different cells.

Figure 6.13 shows an example of a ground truth image being sent through the networks. Here we
can see that the outputs of all the generators are equally sharp, and are indistinguishable from the
ground truth. This implies that there are no disadvantages of applying the network, no matter the
focus level of the input. By looking at the score of the generated images, one can conclude that
pix2pix-dist is the best of them, but it is not sure that this reflects all the images that are sharp
before they are sent to the network.

An example of a poorly focused image is shown in Figure 6.14. Though the outputs are sharper
than the input, as can be seen in the edges, it does not reach the desired quality. In the input
image, many details are lost within the WBC. These are to a small degree reconstructed in the
generated images, with the pix2pix-dist output being the best.

Even more predictions can be seen in Appendix B.

44

(a) MSE (b) SSIM

(c) PSNR (d) Focus ratio

(e) Focus pixelwise

Figure 6.8: Five plots showing the evaluation scores at the different focus levels
for the metrics MSE, SSIM, PSNR, FR and FPW for the three final networks, i.e.
pix2pix-dist, pix2pix-dist-fast and pix2pix-dist-2inputs. The black solid line is the
target, the black dashed line is the evaluation of the input, the blue squares is the
evaluation of pix2pix-dist, the purple dots is the evaluation of pix2pix-dist-fast and
the green triangles is the evaluation of pix2pix-dist-2inputs.

45

Figure 6.9: Results of transformations of a cell image taken at −1.0 µm from focus
before and after normalization. From the left: input image X, generated images
Ŷdist, Ŷdist−2inputs, Ŷdist−fast and the ground truth image Y . Top row is before
normalization and bottom row is after. The MSE and FPW scores are written
under respectively image.

Figure 6.10: Results of transformations of a cell image taken at −0.8 µm from focus
before and after normalization. From the left: input image X, generated images
Ŷdist, Ŷdist−2inputs, Ŷdist−fast and the ground truth image Y . Top row is before
normalization and bottom row is after. The MSE and FPW scores are written
under respectively image.

46

Figure 6.11: Results of transformations of a cell image taken at 1.0 µm from focus
before and after normalization. From the left: input image X, generated images
Ŷdist, Ŷdist−2inputs, Ŷdist−fast and the ground truth image Y . Top row is before
normalization and bottom row is after.The MSE and FPW scores are written under
respectively image.

Figure 6.12: Results of transformations of a cell image taken at −1.0 µm from focus
before and after normalization. From the left: input image X, generated images
Ŷdist, Ŷdist−2inputs, Ŷdist−fast and the ground truth image Y . Top row is before
normalization and bottom row is after. The MSE and FPW scores are written
under respectively image.

47

Figure 6.13: Results of transformations of a cell image taken at 0.0 µm from focus
before and after normalization. From the left: input image X, generated images
Ŷdist, Ŷdist−2inputs, Ŷdist−fast and the ground truth image Y . Top row is before
normalization and bottom row is after. The MSE and FPW scores are written
under respectively image.

Figure 6.14: Results of transformations of a cell image taken at −0.6 µm from focus
before and after normalization. From the left: input image X, generated images
Ŷdist, Ŷdist−2inputs, Ŷdist−fast and the ground truth image Y . Top row is before
normalization and bottom row is after. The MSE and FPW scores are written
under respectively image.

48

6.7 Unbalanced networks in pix2pix

The objective of the project was to investigate whether a GAN could be used to sharpen unfocused
images. The choice to use a GAN was mainly based on the fact that this type of network has been
used for similar tasks before and so should have some fitting properties for the problem. In the end
we wanted to assess the value of using a GAN rather than a simple CNN. We did this by using the
generator of the original pix2pix as a stand alone CNN and comparing it to the GAN. By leaving
out the discriminator we reduced the network to being a CNN without any adversarial behaviour.
This means that it was no longer trained using a adversarial loss, but only a L1 loss. The results
of this can be seen in Table 6.17. Here one can see that the CNN even outperforms the GAN in
most of the metrics.

Table 6.17: Evaluation scores for the original pix2pix GAN and the pix2pix generator as a stand
alone CNN. The evaluation is made after 150 000 iterations and is represented by the mean score
of all images and focus levels. The best score for each metric is marked in bold.

MSE SSIM PSNR FR FPW

Pix2pix GAN 7.791 0.997769 39.77 0.9370 448.0
Pix2pix CNN 6.961 0.997943 40.27 0.8969 425.0

To find out why this was the case we studied the training loss for pix2pix. This seemed to indicate
that the generator and discriminator were unbalanced, as the discriminator loss reached zero very
quickly. This could prevent the discriminator network from helping the generator to learn, as the
generator must sometimes succeed in order to find out how to fool the discriminator.

Due to that the loss of the discriminator went to zero very fast, our suspicion is that the dis-
criminator was ”too good”. Though we want the discriminator to perform well, the risk of a too
good discriminator is that the adversarial behaviour collapses and the generator is left only being
guided by its other losses. This is a common problem with GANs and is described in [9]. To fix
this, we tested a number of changes to make the networks more balanced. The changes are listed
and described below.

• Soft target labels for the discriminator

• Smaller discriminator network

• Training ratio 1:2

• Smaller learning rate for training of discriminator

• Train separate on real and fake samples

The first change was based on [4], where it is suggested that the discriminator in a GAN should
not be trained with hard labels, i.e. 0 or 1. Instead the labels should be soft, meaning that they are
randomly sampled from an interval. We choose the intervals [0, 0.1] for false and [0.9, 1] for true.
This is to prevent the discriminator from forcing the classification to be to certain, and instead
output soft probabilities that are more easily adapted during the training.

A way to make the discriminator less complex is to remove some of its layers. In the pix2pix
terminology, this would result in a patchGAN with smaller patches. By removing the last two con-
volutional layers of the discriminator, we got a 16x16 patchGAN instead of the 70x70 patchGAN
used in the original pix2pix. The new discriminator is shown in Figure 6.15.

49

Figure 6.15: The pix2pix discriminator with fewer layers.

If the discriminator is too good, a way of combating this would be to tone down the training of it.
This would allow the generator to catch up in the case that it is not good enough. We tried doing
this in two different attempts. First, we changed the training ratio to 1:2, which means that we
let the generator train twice as often as the discriminator. In a second attempt, we tried lowering
the learning rate for the discriminator to be a tenth of the learning rate of the generator (2 · 10−4

vs 2 · 10−3). Both these changes let the generator get more of an upper hand in the training, and
could stop the discriminator from outperforming the generator.

During training the discriminator is passed both real and generated samples in order for the
network to learn to distinguish between them. Our way of doing this was to, for each batch of
(X,Y) that is sent through the generator training, construct a batch of both the ground truth
and corresponding generated samples, ([X,X], [Y, Ŷ]). However, according to [2], the real and fake
samples should not be passed to the network in the same batch, but rather in separate mini batches.

After the training of each of the pix2pix networks with changed discriminators, we evaluated
them. The results are presented in Table 6.18 along with the original pix2pix and the standalone
generator CNN. To assess the performance of the discriminators we study their outputs given
blurry images, as well as generated and real sharp images, the results are given in Table 6.19. The
results are discussed in section 7.5.

Table 6.18: Evaluation scores for pix2pix with the discriminator changes described in section 6.7.
The evaluation is made on the test set after 150 000 iterations and is represented by the mean
score of all images and focus levels. The best score for each metric is marked in bold.

MSE SSIM PSNR FR FPW

Pix2pix 7.791 0.997769 39.77 0.9370 448.0
CNN 6.961 0.997943 40.27 0.8969 425.0
Soft labels 6.792 0.997893 40.52 0.8783 438.6
Smaller D 7.993 0.997043 39.71 0.8450 459.6
Training ratio 1:2 6.709 0.997916 40.55 0.9020 430.3
Lower learning rate 6.653 0.997964 40.60 0.8843 427.5
Separate batches 17.66 0.992601 36.49 0.6593 794.9

50

Table 6.19: Discriminator outputs given X, Ŷ and Y for the different changes in the discriminator.
The evaluation is made on the test set after 150 000 iterations.

D(X) D(Ŷ) D(Y)

Pix2pix 0.111 0.0984 0.189
Soft labels 0.573 0.0478 0.594
Smaller D 0.999 0.893 0.999
Training ratio 1:2 0.990 0.000135 0.996
Lower learning rate 1.0 1.0 1.0
Separate batches 0.214 0.211 0.214

51

Chapter 7

Discussion and conclusion

7.1 Quality of results

The aim of the thesis was to transform images from blurry to sharp, and to determine how far
away from focus an image can be captured and still be sharpened with the network. As seen in
Chapter 6, the networks succeed in sharpening the images to a certain degree. What is left to
determine is whether the results are good enough to be considered properly sharpened, and how
this varies with the distance from focus.

From studying the data set, it can be noted that the images captured at focus levels −0.2 µm
to 0.4 µm are all very similar. This can for example be seen in Figure 2.3 in Chapter 2. Because of
this, all images at these focus levels were considered to be sharp. Furthermore, we decided to set
these images as the threshold for what is sharp when doing our final evaluation. In other words, if
we can get the generator to produce images that are as good as these images, the transformation
to sharpness has succeeded. To assess the results of the transformations we compare the metric
scores calculated for the transformed images Ŷ to those of the input images X of the corresponding
stack. Through this comparison we can get an idea of how much the generator has changed the
images. The goal would be that the evaluation scores of any Ŷ would be as good as those of the
X images taken at focus levels −0.2, 0.0, 0.2 and 0.4 µm of the same stack.

In Tables A.1-A.6 in Appendix A, the generated images are compared to the input images for
the test set with respect to the MSE and FPW metric. The rows of the table contains the proba-
bility of the score for the generated image Ŷ , at a certain focus level, being less than or equal to
the score of the input images X at the different focus levels in that stack. The goal is to only have
non-zero values in columns −0.2, 0.0, 0.2 and 0.4, as this would mean that the generated images
are always sharpened properly. However, since the input image X with focus level 0.0 is the same
as the ground truth, the MSE and FPW scores are always 0 for X at this level. This means that
the generated image would need to be exactly the same as the target image for the probability of
the center column to be non-zero, which does not happen.

One thing to note in these tables is that the probabilities in the first three columns are always close
to zero. This means that the generated images are almost always better than the images captured
at distances −1.4 to −1.0. The rightmost columns, however, are non-zero. The higher probabilities
here has to do with how the focus changes when moving the camera in different directions. As
there is an asymmetry in the metric curves (such as those that can be seen in Figure 6.8), there
will be a higher probability that the sharpened images resemble the X captured in the interval 0.2

52

to 1.2 than the corresponding interval on the other side of the optimal focus. This asymmetry can
also be seen to affect the success rate. When moving 0.8 µm closer to the slide, the success rate
of the transformation is 95% for pix2pix-dist, while moving the same distance away from the slide
lowers the success rate to 61%.

The success rate for the three networks, based on MSE and FPW, for different intervals can
be seen in Table 7.1. The columns are intervals for the distance from focus the images may be
captured, i.e. −1.2 : 1.2 means the interval from −1.2 to 1.2 µm from focus. The success rates are
calculated for the three final networks and are based on the MSE and FPW scores. The reason to
that pix2pix-dist-2inputs has missing values for the interval −1.2 : 1.2 is because it has two input
images and the best of the input images always lays somewhere in the interval −1.2 : 1.0. The table
shows that the best performing network for each of the intervals is the pix2pix-dist network, which
can successfully transform 93.3% respectively 87.3%, of all images captured between focus levels
−0.8 and 0.8 µm, with respect to MSE and FPW. It is closely followed by the pix2pix-dist-2inputs
with a success rate of 92.4% for MSE and 86.4% for the FPW in this interval. The pix2pix-dist-
fast network gives the poorest result and could properly sharpen 78.9% according to the MSE and
77.2% according to FPW for images from the same interval. This is to be expected as its small
network size sets limits on the transformation. We can see that the fast network performs well in
the smallest interval, however. This interval only contains images generated from sharp inputs,
and does not call for an advanced transformation.

Table 7.1: The success rates (%) for the three final networks based on the MSE and FPW, given
for different intervals, based on the focus level being closest. The numbers are calculated from the
tables in Appendix A.

−1.2 : 1.2 −1.0 : 1.0 −0.8 : 0.8 −0.6 : 0.6 −0.4 : 0.4 −0.2 : 0.2

Pix2pix-dist
MSE 79.1 87.0 93.3 97.6 99.7 100
FPW 73.8 80.9 87.3 92.9 97.4 99.5

Pix2pix-dist- MSE − 85.5 92.4 97.6 99.7 99.9
2inputs FPW − 79.2 86.4 92.3 97.2 99.3

Pix2pix-dist- MSE 58.2 67.8 78.9 90.2 97.5 100
fast FPW 59.6 68.0 77.2 86.6 94.7 99.0

We chose to asses the results using MSE and FPW, due to that MSE being widely used and es-
tablished respectively that FPW is based on a measure specific for CellaVision. SSIM and PSNR
always correspond to the MSE in the tables, and so they strengthen the choice of MSE. The MSE
compares the whole image pixel by pixel and is therefore suitable for an image generation prob-
lem, while the FPW compares the details that are detected with the focus measure. This means
that they compare different aspects between the images, which is probably the reason for that the
success rates based on MSE and FPW differ a bit. To say exactly which metric that is the best,
one would need an expert to look at many different images of generated cell images, to determine
what best describes a focused image.

As can be noticed, the mean of all metric scores implied that pix2pix-dist-2inputs generates the
best images, but when visually assessing the results pix2pix-dist seemed best. Also, the success
rates imply that pix2pix-dist is the best. The difference in result is a bit strange and is hard to
explain. It could depend on that pix2pix-dist-2inputs in general has a higher standard deviation
for the metrics and therefore has better result on some and worse result on some. It is also a ran-
domness in pix2pix-dist-2inputs that could affect, since it takes in two blurred images at different

53

focus levels which means that the scores in the metrics could change depending on the outcome.
The reason for that pix2pix-dist-2inputs does not produce better results even though having more
information from two images, could be that it has no way of telling which of the inputs is the
sharpest. This might lead to that it collects blurriness from the blurrier of the images which could
worsen the result.

7.2 Model selection

The choice of the three networks pix2pix, PAN and deblurGAN was based on that they had per-
formed well in similar transformation and because they had different architectures, losses and
training methods. The deblurGAN was not developed to fix focus blur, but rather motion blur,
which could be one of the reasons for it not producing focused results. This network tries to
estimate the PSF for each image, which may be harder when working with focus blur. PAN on
the contrary, produces pretty good results but has some artifacts. One idea is that those artifacts
depend on the batch normalization and may therefore have disappeared after removing the batch
normalization. Another idea is that it could depend on the perceptual loss it uses and that using
different loss weights may have removed them. Both deblurGAN and PAN might also have per-
formed better if they were trained until fully converged.

A large aspect of the development of the final network was the choice of losses. As a loss de-
termines what the network should aim to accomplish, this was a vital part of the design. The
original pix2pix network has two losses, the binary cross entropy used to train the generator and
the discriminator against each other, as well as the pixelwise L1 loss used only in training the
generator. The idea of the L1 loss is to encourage the generated image to resemble the target
image when compared pixelwise. One could think that this loss by itself should be sufficient when
creating a network whose aim is to translate between two images. However, as described in [15],
the L1 loss tends to produce blurry results on image generation problem. Since our translation
problem is centered around deblurring images, this loss may not be sufficient. It can, however, in
many cases accurately capture the low frequencies in the image.

The addition of losses to the pix2pix network was limited to testing three different types: Fo-
cus loss, VGG loss and distance loss. The two perceptual losses, i.e. VGG and distance loss, were
tested by extracting features from different layers, which is something that could be done even
more, as some of the layers were not tested. The losses could be further investigated by combining
the different losses, or by doing feature extraction from more than one layer and combining them as
a sum in the perceptual losses. One could also use completely different losses, that have not been
explored in this project. For example one could define a new perceptual loss on the classification
network used in CellaVision’s systems. As this network extracts features that are important when
classifying cells, it could help the generator to preserve relevant information. This could be an
issue with the VGG loss, as this is based on a network that is trained on a vast variety of images,
and so the features it extracts could be irrelevant for this problem.

When it comes to pix2pix-dist-2inputs, the two inputs were aligned before passed to the net-
work. When the system captures the images, it is not always certain due to mechanical issues.
This implies that you either have to create a network that could handle inputs that are not per-
fectly aligned or that you have to align the images before you send them to the network, which
would take more time. This is something that should be taken into consideration when choosing
the method, as it could affect either the time or performance of the network.

54

7.3 Potential risks with the method

The process of choosing our optimal network was based on a series of tests of different architec-
tures, losses and hyper parameters. Because of the time limitations on the project, all networks
could not be trained until fully converged. This could possibly mean that the one that was best
in a certain test would not be the best after convergence. The fact that the initial state of every
network is randomly assigned could also affect which network is the best. One solution for making
the results more certain would be to train the same network from start to finish a number of times
and then averaging the results. These issues could also be minimized by initializing all networks
with the same network weights and letting them train until convergence, if time permitted.

In order to choose the best network at any step of our tests we used the evaluation metrics
described in Chapter 5. These were chosen as numerical ways of assessing the quality of the gen-
erated images, which was necessary in order to efficiently compare and find the best alternative
among the networks. Due to the results of the different networks being very similar, the metrics
also helped in finding the best alternative when it was difficult doing this by simply looking at
the images. Using the metrics could come with some problems however. Due to the fact that
the focus of images is essentially a subjective property, a numerical and a visual assessment might
not always coincide. Therefore it would have been desirable to let an expert visually assess the
result to ensure that the network chosen is the best, but it takes resources and it is a very time
consuming process.

Using a machine learning approach to focus a blurred cell image instead of mechanically find-
ing the correct focus comes with some risks. As could be seen in the images, sometimes important
details in the cells are lost which could lead to that the biomedical scientist makes another assess-
ment of the blood. This is very dangerous since it could lead to incorrect conclusions of human
diseases. It would therefore be desirable to know how much important information that is lost in
the image when moving the objective away from the optimal focus in order to say how far away
one can go. Another aspect is that using a machine learning method means that it could come
up with details in the image that does not exist, which could be just as bad as losing information.
This is however something that has not been identified in the images we have seen for the test set.

7.4 Faster network

Since CellaVision’s systems do not have a GPU, one of the requirements on the network was to
make the generator transform images on a CPU in 70 ms or less. In section 6.5 we tried to make the
generator faster by reducing the number of filters, the number of blocks and the kernel size. One
could proceeded in another way when making the generator smaller. For example by investigating
which steps in the network that where time consuming and removing those one at a time. We could
also have investigated if there where any filters or connections with weights close to zero, since
those may not contribute to the result and therefore could be removed. Another thought is to con-
tinue reducing the number of filters, the number of blocks and the kernel size even more, but from
watching the result, one can conclude that this probably would have resulted in worse performance.

The result from making the generator faster was that we made it possible to transform a 360×360
image on a CPU in around 70 ms and around 15 ms on a simple GPU, while the fastest time for
a 1920×1200 image on a CPU was around 1 s and 0.2 s on a simple GPU. This means that if it
should be applied to CellaVision’s systems today, it would be most reasonable to only focus the
WBC images digitally and not the scan images. By doing this, the system only needs to use the
mechanical auto focus once per analysis to focus a scan image. When proceeding to capture the

55

WBC images, it only needs to stop very fast to take one or two images without applying the auto
focus again, to then send these images through the network.

It could be an idea for CellaVision to upgrade the systems with a GPU, especially if they want
to use our method. Since we saw that it is possible to affect the speed of the transformation
remarkably, this is truly an advantage and a simple way to improve a system. This is not simply
the case when it comes to mechanically focusing the images, as making this faster is often harder
than just adding one component to the system. There are many more powerful GPUs available
today than the one used for timing in this project. As big data and deep learning is a constantly
growing field, the need for better GPUs is always increasing. By upgrading the systems with a
more powerful GPU, the transformation could be done even faster. This might lead to that the
best of our networks could be used in the future, or that the auto focus could be replaced with the
network for the larger scan image as well. A drawback with a GPU is the extra effect it uses and
the physical size of it, which could affect the system in other ways.

7.5 The effectiveness of GAN

In our project we have primarily used GANs to solve our problem. However, when comparing
the pix2pix with and without the discriminator, the generator as a stand alone CNN produces
better results. This would indicate that the discriminator does not contribute to the network in a
positive way. There could be several reasons for this. As mentioned earlier, it could mean that the
discriminator and generator networks are unbalanced, resulting in a poor collaboration between
the two.

This was investigated through a number of changes to the pix2pix discriminator. It seemed here
that some of the changes could produce better results than the original network. Looking at the
results in Table 6.18, we see that the discriminator with lower learning rate is the networks that
most outperforms the original pix2pix and CNN. However, the discriminator does not seem to
work for this network. According to Table 6.19, the discriminator always outputs 1, no matter
the input. So even though this discriminator change improves the performance of the generator,
the discriminator does not seem to be an active part of the training. When it comes to the other
discriminator changes, the networks with training ratio 1:2 and soft labels have the best perform-
ing discriminators, as well as quite good evaluation scores. This might imply that these changes
improve the adversarial behaviour, something that could be taken into consideration in future work.

The fact that the CNN was better than the GAN could also mean that the GAN concept is
not a good fit for this type of problem. GANs are often used to make style transfers, where trans-
lations are made between two different types of images (e.g. a photo and a painting by a certain
artist). In these cases a simple pixelwise comparison is not sufficient, as the thing that is learned is
the overall type of image which is more general than this. It could be that the issue of sharpening
unfocused images is a simple enough transformation, so that there is no need for the adversarial
behaviour of the GAN. In our transformation, all information is essentially in the input image.
The task of the network is therefore not to transfer information from the target, but rather to
learn from the target how the information in the image should be rearranged.

Just because CNN gives better results, it does not necessarily mean that GAN is a worse al-
ternative than the CNN. It could be a consequence of the randomness of deep learning. It is
however clear that the adversarial part of the GAN does not contribute remarkably to the re-
sults. Combined with the long training time that comes with having two networks (generator and
discriminator), the value of using a GAN instead of a CNN seems low for this problem.

56

7.6 Quality of data

One important factor that plays a big role when training a network is the quality of the data. As
could be seen in section 6.2, the result improved when having more data from different systems
and when using the augmentation. Even though the coloration in the augmentation is not always
realistic, it probably makes the generator concentrate on focusing the images and not to learn
different colors. In terms of the amount of data, more data would probably have improved the
result even more, which is the general case for all deep learning methods. It is more a question
about time and resources.

Another aspect of the quality of data is the diversity of the images. The cell images used con-
tain white blood cells of many cell classes, which vary in appearance. Since the frequencies of
occurrence differs between the types of cells, some classes will be over represented in the training
data. This could result in that the network has problems with transforming the more uncommon
cell types. A way to prevent this is to make sure that each of the cell class occurs in fairly equal
amount, but this implies that either more amount of data would be needed or that part of the
data used needed to be discarded.

Calling back to the focus curves in section 2.1.1, we saw that the data that was collected us-
ing CellaVision’s systems was not always properly focused. This led to that the optimal focus
needed to be located after collecting the images. In 60.8% of the stacks we collected, the optimal
focus needed to be shifted in some way. The optimal focus in 4.5% of all stacks was not even in
the interval of sharpness. This means that even today, the system is not perfect and sometimes
disturbances or lacks in mechanics can cause the system to fail in capturing focused images. Which
is something to take into account when evaluating and drawing conclusions about our method.

7.7 Conclusions

To conclude, it is possible to transform an unfocused image to a sharp one using GANs. Our fastest
network, pix2pix-dist-fast, met the time requirements of transforming a 360×360 image in 70 ms
on a CPU. It could properly sharpen around 78% of images captured at focus levels −0.8 to 0.8
µm. Our best network was pix2pix-dist, which can successfully transform around 90% of all images
captured between focus levels −0.8 and 0.8 µm. Regarding how much one can deviate from the
optimal focus position for the transformations to work, it heavily depends on the direction of the
camera movement. When moving 0.8 µm closer to the slide, the success rate of the transformation
is 95%, while moving the same distance away from the slide lowers the success rate to 61%. To be
able to conclude how far away one can go from the optimal focus, one needs to set a limit for how
much errors that is allowed, which we leave for CellaVision to decide.

7.8 Future work

Although the results were satisfactory, there is room for further development of the method. The
networks we started from, i.e. pix2pix, PAN and deblurGAN, were not the only previously pre-
sented networks used for image-to-image transformations. There are a wide variety of architectures
and network losses that could be investigated and, considering the large difference between the
three networks we tested, it could be valuable to look into more of these.

When developing the fast network we did a series of tests where the network size was system-
atically reduced, with no particular respect paid to the effect of the different parts of the network.

57

This could be done differently, by example removing parts whose contributions were small in re-
lation to their time cost. There are many functions in Python that could help with this as well.
Another way of speeding up the network is to implement it in a low level language.

Since we saw that the discriminator did not contribute to the final result that much and that
there were changes in how the GAN was trained that improved the results, one could further
investigate these changes. One could also, instead of using GANs, develop a CNN with other
architecture and losses, since we saw that a CNN generated satisfactory result.

58

Bibliography

[1] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. ArXiv e-prints,
arXiv:1701.07875v3, 2017.

[2] S. Chintala, E. Denton, M. Arjovsky, and M. Mathieu. How to Train a GAN? Tips and tricks
to make GANs work. https://github.com/soumith/ganhacks, 2016.

[3] L. Dean. Blood Groups and Red Cell Antigens: Chapter 1, blood and the cells it contains.
Bethesda (MD): National Center for Biotechnology Information (US), 2005.

[4] U. Desai. Keep Calm and train a GAN. Pitfalls and Tips on training Generative Adversarial
Networks. https://medium.com/@utk.is.here/keep-calm-and-train-a-gan-pitfalls-and-tips-on-
training-generative-adversarial-networks-edd529764aa9, 2018.

[5] X. fen Wan and X. L. Yi Yang. Point Spread Function Estimation For Noisy Out-offocus Blur
Image Restoration. IEEE, 2010.

[6] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative Adversarial Nets. ArXiv e-prints, arXiv:1406.2661v1, 2014.

[7] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. Improved Training of
Wasserstein GAN. ArXiv e-prints, arXiv:1704.00028v3, 2017.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. ArXiv
e-prints, arXiv:1512.03385v1, 2015.

[9] J. Hui. GAN — Why it is so hard to train Generative Adversarial Networks. Medium, 2018.

[10] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-Image Translation with Conditional
Adversarial Networks, v3. ArXiv e-prints, arXiv:1611.07004v3, 2018.

[11] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual Losses for Real-Time Style Transfer and
Super-Resolution. ArXiv e-prints, 2016.

[12] J. Jönsson and E. Sjöstrand. Cell Image Transformation Using Deep Learning. LTH, 2018.

[13] A. Karpathy. Convolutional neural networks (cnns / convnets). Convolutional Neural Net-
works for Visual Recognition.

[14] O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin, and J. Matas. DeblurGAN: Blind Motion
Deblurring Using Conditional Adversarial Networks, v4. ArXiv e-prints, arXiv:1711.07064v4,
2018.

[15] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther. Autoencoding beyond pixels
using a learned similarity metric. ArXiv e-prints, 2016.

59

[16] D. H. Marimont and B. A. Wandell. Matching color images: The effects of axial chromatic
aberration. Journal of the Optical Society of America A. 11 (12): 3113, 1994.

[17] M. Mirza and S. Osindero. Conditional Generative Adversarial Nets. ArXiv e-prints,
arXiv:1411.1784v1, 2014.

[18] M. Nasse and J. Woehl. Realistic modeling of the illumination point spread function in
confocal scanning optical microscopy. Journal of the Optical Society of America A Vol. 27,
2010.

[19] K. Scaman and A. Virmaux. Lipschitz regularity of deep neural networks: analysis and
efficient estimation. ArXiv e-prints, arXiv:1805.10965v1, 2018.

[20] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image
Recognition. ArXiv e-prints, arXiv:1409.1556v6, 2015.

[21] S.-H. Tsang. Review: VGGNet—1st Runner-Up (Image Classification), Winner (Localization)
in ILSVRC 2014. Medium, 2018.

[22] C. Wang, C. Xu, C. Wang, and D. Tao. Perceptual Adversarial Networks for Image-to-Image
Transformation, v2. ArXiv e-prints, arXiv:1706.09138v2, 2017.

[23] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, C. C. Loy, Y. Qiao, and X. Tang. ESRGAN:
Enhanced Super-Resolution Generative Adversarial Networks. ArXiv e-prints, 2018.

[24] Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multiscale structural similarity for image qual-
ity assessment. Conference Record of the Thirty-Seventh Asilomar Conference on Signals,
Systems and Computers, 2, 2003.

60

Appendix A

Tables for evaluation

61

Table A.1: Evaluation of the pix2pix-dist network trained for 900 000 iterations. The table shows
the probability (%) of the MSE score of a generated image Ŷ , of a certain focus level, being lower
than the score of the different images X in the corresponding stack.

X

F
L

(µ
m

)
−

1.
4
−

1.
2
−

1.
0
−

0.
8
−

0.
6
−

0.
4
−

0.
2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

S
R

(%
)

Ŷ

−
1.

4
0

0
0

1.
7

1
7
.9

1
5
.5

0
.1

0
0
.1

9
.5

2
7
.8

2
2
.1

5
.0

0
.3

9
.7

−
1.

2
0

0
0

0.
4

1
1
.7

1
7
.1

2
.2

0
0
.4

2
0
.1

2
9
.3

1
6
.9

1
.9

0
2
2
.7

−
1.

0
0

0
0

0.
1

5
.9

1
5
.3

5
.1

0
2
.2

3
4
.4

2
3
.8

1
2
.5

0
.7

0
4
1
.7

−
0.

8
0

0
0

0
1
.3

1
0
.7

1
2
.4

0
8
.1

4
0
.7

2
0
.1

6
.6

0
.1

0
6
1
.2

−
0.

6
0

0
0

0
0

3
.6

3
0
.9

0
2
6
.3

2
7
.6

1
0
.0

1
.4

0
.1

0
8
4
.8

−
0.

4
0

0
0

0
0

0
4
4
.7

0
4
1
.8

1
2
.0

1
.4

0
.1

0
0

9
8
.5

−
0.

2
0

0
0

0
0

0
4
3
.1

0
5
4
.9

2
.1

0
0

0
0

1
0
0

0.
0

0
0

0
0

0
0

4
2
.9

0
5
6
.8

0
.3

0
0

0
0

1
0
0

0.
2

0
0

0
0

0
0

4
0
.0

0
5
9
.7

0
.3

0
0

0
0

1
0
0

0.
4

0
0

0
0

0
0

3
9
.5

0
5
6
.1

4
.4

0
0

0
0

1
0
0

0.
6

0
0

0
0

0
0
.3

3
1
.1

0
4
9
.7

1
8
.8

0
.1

0
0

0
9
9
.6

0.
8

0
0

0
0

0
.6

2
.3

2
0
.1

0
2
9
.7

4
5
.4

1
.7

0
.3

0
0

9
5
.2

1.
0

0
0

0
0.

1
2
.5

8
.3

1
4
.0

0
9
.6

5
2
.7

1
2
.4

0
.4

0
0

7
6
.3

1.
2

0
0

0
0.

4
5
.9

1
5
.3

9
.1

0
1
.7

3
7
.6

2
6
.4

3
.6

0
.1

0
4
8
.4

T
o
ta

l
(%

)
0

0
0

0
.2

3
.3

6
.3

2
3
.9

0
2
8
.4

2
1
.8

1
0
.9

4
.6

0
.6

0
7
4
.1

62

Table A.2: Evaluation of the pix2pix-dist network trained for 900 000 iterations. The table shows
the probability (%) of the FPW score of a generated image Ŷ , of a certain focus level, being lower
than the score of the different images X in the corresponding stack.

X

F
L

(µ
m

)
−

1.
4
−

1.
2
−

1.
0
−

0.
8
−

0.
6
−

0.
4
−

0.
2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

S
R

(%
)

Ŷ

−
1.

4
0

0.
1

0
2.

8
1
8
.4

1
2
.2

0
.1

0
0

1
0
.5

3
0
.3

2
0
.2

5
.1

0
.3

1
0
.6

−
1.

2
0

0
0.

1
1.

0
1
2
.8

1
5
.0

1
.2

0
0

2
0
.2

3
3
.1

1
5
.4

1
.1

0
2
1
.4

−
1.

0
0

0
0

0.
4

1
0
.3

1
6
.5

1
.9

0
0
.3

2
9
.8

2
9
.4

1
0
.9

0
.4

0
3
2
.0

−
0.

8
0

0
0

0
3
.9

1
6
.1

2
.9

0
1
.4

4
1
.5

2
6
.4

7
.7

0
.1

0
4
5
.8

−
0.

6
0

0
0

0
0
.4

1
3
.3

6
.7

0
7
.8

5
1
.2

1
6
.8

3
.7

0
0

6
5
.7

−
0.

4
0

0
0

0
0

2
.8

2
4
.2

0
2
2
.0

4
2
.1

8
.1

0
.7

0
.1

0
8
8
.3

−
0.

2
0

0
0

0
0

0
.4

5
1
.8

0
3
2
.3

1
4
.7

0
.7

0
.1

0
0

9
8
.8

0.
0

0
0

0
0

0
0

4
5
.7

0
5
3
.4

0
.9

0
0

0
0

1
0
0

0.
2

0
0

0
0

0
0
.1

2
9
.2

0
6
8
.7

1
.9

0
.1

0
0

0
9
9
.8

0.
4

0
0

0
0

0
0

2
9
.2

0
4
8
.3

2
2
.4

0
0
.1

0
0

9
9
.9

0.
6

0
0

0
0

0
.1

1
.0

2
5
.3

0
2
4
.3

4
8
.4

0
.7

0
.1

0
0

9
8
.0

0.
8

0
0

0
0

0
.6

4
.8

1
8
.0

0
1
2
.7

5
8
.6

5
.2

0
0
.1

0
8
9
.3

1.
0

0
0

0
0

2
.8

1
0
.2

1
1
.3

0
5
.2

5
5
.8

1
4
.3

0
.3

0
.1

0
7
2
.3

1.
2

0
0

0
0.

3
6
.7

1
3
.1

7
.3

0
1
.4

4
4
.0

2
5
.3

1
.8

0
0
.1

4
8
.4

T
o
ta

l
(%

)
0

0
0

0
.3

4
.0

7
.5

1
8
.2

0
1
9
.8

3
1
.6

1
3
.6

4
.5

0
.5

0
6
9
.6

63

Table A.3: Evaluation of the pix2pix-dist-2inputs network trained for 1 000 000 iterations. The
table shows the probability (%) of the MSE score of a generated image Ŷ , of a certain focus level,
being lower than the score of the different images X in the corresponding stack.

X

F
L

(µ
m

)
−

1.
4
−

1.
2
−

1.
0
−

0.
8
−

0.
6
−

0.
4
−

0.
2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

S
R

(%
)

Ŷ

−
1.

4
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

−
1.

2
0

0
0

1.
2

1
4
.5

1
8
.6

1
.2

0
0

1
7
.5

2
9
.3

1
5
.4

2
.4

0
1
8
.7

−
1.

0
0

0
0

0
7
.0

1
5
.2

4
.5

0
2
.4

3
0
.9

2
4
.1

1
4
.9

1
.1

0
3
7
.8

−
0.

8
0

0
0

0
1
.9

1
2
.6

9
.2

0
8
.5

3
9
.9

2
0
.0

7
.7

0
.2

0
5
7
.6

−
0.

6
0

0
0

0
0

3
.5

2
6
.8

0
2
4
.5

3
3
.9

9
.2

2
.1

0
0

8
5
.2

−
0.

4
0

0
0

0
0

0
4
3
.1

0
4
1
.8

1
3
.7

1
.3

0
.1

0
0

9
8
.6

−
0.

2
0

0
0

0
0

0
4
3
.2

0
5
4
.9

1
.7

0
.1

0
.1

0
0

9
9
.8

0.
0

0
0

0
0

0
0

4
1
.7

0
5
8
.0

0
.4

0
0

0
0

1
0
0

0.
2

0
0

0
0

0
0

4
2
.1

0
5
7
.3

0
.6

0
0

0
0

1
0
0

0.
4

0
0

0
0

0
0

3
5
.9

0
5
6
.8

7
.3

0
0

0
0

1
0
0

0.
6

0
0

0
0

0
0
.7

2
7
.4

0
4
2
.8

2
9
.1

0
0

0
0

9
9
.3

0.
8

0
0

0
0

1
.2

3
.9

1
8
.4

0
2
0
.2

5
2
.4

3
.4

0
.5

0
0

9
1
.0

1.
0

0
0

0
0

3
.1

1
0
.2

1
4
.5

0
8
.0

4
9
.1

1
4
.8

0
.3

0
0

7
1
.6

1.
2

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-

T
o
ta

l
(%

)
0

0
0

0
1
.4

4
.0

2
8
.8

0
3
6
.5

2
0
.0

6
.4

2
.7

0
.2

0
8
0
.0

64

Table A.4: Evaluation of the pix2pix-dist-2inputs network trained for 1 000 000 iterations. The
table shows the probability (%) of the FPW score of a generated image Ŷ , of a certain focus level,
being lower than the score of the different images X in the corresponding stack.

X

F
L

(µ
m

)
−

1.
4
−

1.
2
−

1.
0
−

0.
8
−

0.
6
−

0.
4
−

0.
2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

S
R

(%
)

Ŷ

−
1.

4
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

−
1.

2
0

0
0

0.
3

1
5
.7

1
4
.6

0
.3

0
0

2
0
.4

3
0
.3

1
6
.8

1
.7

0
2
0
.7

−
1.

0
0

0
0

0.
5

9
.4

1
6
.8

2
.3

0
0
.5

2
9
.4

2
8
.4

1
2
.5

0
.3

0
3
2
.2

−
0.

8
0

0
0

0
4
.2

1
6
.0

2
.6

0
1
.5

4
2
.5

2
4
.5

8
.6

0
0

4
6
.6

−
0.

6
0

0
0

0
0
.5

1
2
.6

6
.8

0
1
0
.0

4
8
.8

1
8
.8

2
.6

0
0

6
5
.5

−
0.

4
0

0
0

0
0

3
.8

2
4
.9

0
2
5
.1

3
8
.3

7
.4

0
.4

0
.1

0
8
8
.3

−
0.

2
0

0
0

0
0

0
.9

5
0
.1

0
3
3
.4

1
4
.7

0
.8

0
.2

0
0

9
8
.2

0.
0

0
0

0
0

0
0

4
5
.3

0
5
3
.2

1
.4

0
0

0
0

9
9
.9

0.
2

0
0

0
0

0
0

3
7
.3

0
5
8
.9

3
.7

0
0
.1

0
0

9
9
.9

0.
4

0
0

0
0

0
0
.1

2
9
.0

0
4
0
.4

3
0
.5

0
0

0
0

9
9
.9

0.
6

0
0

0
0

0
3
.3

2
0
.9

0
2
1
.7

5
1
.9

1
.8

0
.5

0
0

9
4
.5

0.
8

0
0

0
0

0
.8

6
.1

1
7
.5

0
1
0
.7

5
6
.3

8
.5

0
0

0
8
4
.5

1.
0

0
0

0
0

4
.6

1
3
.6

1
1
.1

0
3
.4

4
6
.7

1
9
.2

1
.2

0
0

6
1
.2

1.
2

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-

T
o
ta

l
(%

)
0

0
0

0
1
.9

5
.9

2
4
.5

0
2
7
.1

2
8
.6

9
.1

2
.7

0
.1

0
7
4
.3

65

Table A.5: Evaluation of the pix2pix-dist-fast network trained for 600 000 iterations. The table
shows the probability (%) of the MSE score of a generated image Ŷ , of a certain focus level, being
lower than the score of the different images X in the corresponding stack.

X

F
L

(µ
m

)
−

1.
4
−

1.
2
−

1.
0
−

0.
8
−

0.
6
−

0.
4
−

0.
2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

S
R

(%
)

Ŷ

−
1.

4
0

0
0.

3
1
2.

0
2
7
.6

3
.7

0
0

0
0
.7

9
.4

2
5
.0

1
7
.3

4
.0

0
.7

−
1.

2
0

0
0

5
.5

2
5
.3

1
0
.2

0
0

0
2
.3

2
0
.8

2
4
.9

9
.9

1
.1

2
.3

−
1.

0
0

0
0

1
.4

1
8
.7

1
6
.4

0
0

0
1
0
.5

2
6
.0

2
1
.6

5
.4

0
.1

1
0
.5

−
0.

8
0

0
0

0
7
.7

2
0
.1

0
.7

0
0
.6

2
5
.9

2
6
.3

1
6
.0

2
.9

0
2
7
.2

−
0.

6
0

0
0

0
0
.4

1
4
.9

5
.2

0
5
.8

4
5
.0

1
9
.9

8
.4

0
.4

0
5
6
.0

−
0.

4
0

0
0

0
0

1
.2

3
3
.6

0
2
5
.0

2
9
.2

9
.6

1
.4

0
0

8
7
.8

−
0.

2
0

0
0

0
0

0
4
7
.7

0
4
3
.2

8
.9

0
.1

0
0

0
9
9
.9

0.
0

0
0

0
0

0
0

4
2
.9

0
5
6
.8

0
.3

0
0

0
0

1
0
0

0.
2

0
0

0
0

0
0

3
0
.8

0
6
4
.4

4
.8

0
0

0
0

1
0
0

0.
4

0
0

0
0

0
0

2
5
.3

0
3
7
.1

3
7
.6

0
0

0
0

1
0
0

0.
6

0
0

0
0

1
.5

5
.0

1
5
.7

0
9
.1

6
3
.0

5
.7

0
0

0
8
7
.8

0.
8

0
0

0
0
.6

6
.2

1
5
.0

9
.4

0
0
.6

4
1
.4

2
5
.7

1
.2

0
0

5
1
.4

1.
0

0
0

0
1
.8

1
1
.6

1
5
.0

5
.5

0
0

1
9
.9

3
9
.2

6
.9

0
.1

0
2
5
.4

1.
2

0
0

0.
1

3.
7

1
6
.4

1
2
.9

1
.4

0
0

6
.6

3
7
.0

2
1
.5

0
.4

0
8
.0

T
o
ta

l
(%

)
0

0
0

1
.8

8
.2

8
.2

1
5
.6

0
1
7
.3

2
1
.1

1
5
.7

9
.1

2
.6

0
.4

5
4
.0

66

Table A.6: Evaluation of the pix2pix-dist-fast network trained for 600 000 iterations. The table
shows the probability (%) of the FPW score of a generated image Ŷ , of a certain focus level, being
lower than the score of the different images X in the corresponding stack.

X

F
L

(µ
m

)
−

1.
4
−

1.
2
−

1.
0
−

0.
8
−

0.
6
−

0.
4
−

0.
2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

S
R

(%
)

Ŷ

−
1.

4
0

0.
1

0
10

.0
2
2
.8

3
.0

0
0

0
1
.4

1
6
.9

2
9
.0

1
5
.0

1
.7

1
.4

−
1.

2
0

0
0.

1
3.

2
1
9
.1

1
0
.0

0
.1

0
0

6
.7

2
5
.6

2
6
.7

8
.0

0
.4

6
.8

−
1.

0
0

0
0

1
.7

1
8
.8

1
3
.5

0
.1

0
0

1
3
.2

2
9
.0

1
8
.8

4
.7

0
.1

1
3
.3

−
0.

8
0

0
0

0
9
.9

1
6
.6

0
.4

0
0
.1

2
8
.5

2
7
.4

1
5
.0

2
.1

0
2
9
.0

−
0.

6
0

0
0

0
1
.1

1
9
.3

2
.5

0
2
.6

4
4
.0

2
2
.9

7
.4

0
.3

0
4
9
.1

−
0.

4
0

0
0

0
0

6
.1

9
.5

0
1
3
.9

5
3
.8

1
4
.7

1
.9

0
.1

0
7
7
.2

−
0.

2
0

0
0

0
0

1
.0

3
4
.1

0
3
4
.5

2
8
.6

1
.7

0
.1

0
0

9
7
.2

0.
0

0
0

0
0

0
0

4
5
.3

0
5
3
.4

1
.2

0
.1

0
0

0
9
9
.9

0.
2

0
0

0
0

0
0
.1

2
9
.0

0
5
3
.9

1
6
.9

0
0
.1

0
0

9
9
.8

0.
4

0
0

0
0

0
0

2
3
.1

0
2
1
.3

5
5
.2

0
.3

0
.1

0
0

9
9
.6

0.
6

0
0

0
0

1
.0

8
.3

1
3
.5

0
5
.8

6
4
.2

7
.1

0
.1

0
0

8
3
.5

0.
8

0
0

0
0

4
.7

1
3
.5

7
.4

0
1
.8

5
0
.3

2
1
.6

0
.7

0
0

5
9
.5

1.
0

0
0

0
1
.0

8
.0

1
4
.0

5
.0

0
0

3
4
.7

3
4
.2

3
.0

0
.1

0
3
9
.7

1.
2

0
0

0
2
.3

1
3
.6

1
4
.6

1
.8

0
0

1
8
.2

3
8
.7

1
0
.5

0
.4

0
2
0
.0

T
o
ta

l
(%

)
0

0
0

1
.3

7
.0

8
.6

1
2
.3

0
1
3
.4

2
9
.8

1
7
.2

8
.1

2
.2

0
.1

5
5
.5

67

Appendix B

Predictions

Figure B.1: Results of transformations of a cell image taken at 1.0 µm from focus
before and after normalization. From the left: input image X, generated images
Ŷdist, Ŷdist−2inputs, Ŷdist−fast and the ground truth image Y . Top row is before
normalization and bottom row is after. The MSE and FPW scores are written
under respectively image.

68

Figure B.2: Results of transformations of a cell image taken at −0.8 µm from focus
before and after normalization. From the left: input image X, generated images
Ŷdist, Ŷdist−2inputs, Ŷdist−fast and the ground truth image Y . Top row is before
normalization and bottom row is after. The MSE and FPW scores are written
under respectively image.

Figure B.3: Results of transformations of a cell image taken at 1.0 µm from focus
before and after normalization. From the left: input image X, generated images
Ŷdist, Ŷdist−2inputs, Ŷdist−fast and the ground truth image Y . Top row is before
normalization and bottom row is after. The MSE and FPW scores are written
under respectively image.

69

Figure B.4: Results of transformations of a cell image taken at −0.8 µm from focus
before and after normalization. From the left: input image X, generated images
Ŷdist, Ŷdist−2inputs, Ŷdist−fast and the ground truth image Y . Top row is before
normalization and bottom row is after. The MSE and FPW scores are written
under respectively image.

Figure B.5: Results of transformations of a cell image taken at −0.8 µm from focus
before and after normalization. From the left: input image X, generated images
Ŷdist, Ŷdist−2inputs, Ŷdist−fast and the ground truth image Y . Top row is before
normalization and bottom row is after. The MSE and FPW scores are written
under respectively image.

70

Figure B.6: Results of transformations of a cell image taken at 0.6 µm from focus
before and after normalization. From the left: input image X, generated images
Ŷdist, Ŷdist−2inputs, Ŷdist−fast and the ground truth image Y . Top row is before
normalization and bottom row is after. The MSE and FPW scores are written
under respectively image.

Figure B.7: Results of transformations of a cell image taken at −0.8 µm from focus
before and after normalization. From the left: input image X, generated images
Ŷdist, Ŷdist−2inputs, Ŷdist−fast and the ground truth image Y . Top row is before
normalization and bottom row is after. The MSE and FPW scores are written
under respectively image.

71

Figure B.8: Results of transformations of a cell image taken at 1.0 µm from focus
before and after normalization. From the left: input image X, generated images
Ŷdist, Ŷdist−2inputs, Ŷdist−fast and the ground truth image Y . Top row is before
normalization and bottom row is after. The MSE and FPW scores are written
under respectively image.

Figure B.9: Results of transformations of a cell image taken at −0.8 µm from focus
before and after normalization. From the left: input image X, generated images
Ŷdist, Ŷdist−2inputs, Ŷdist−fast and the ground truth image Y . Top row is before
normalization and bottom row is after. The MSE and FPW scores are written
under respectively image.

72

Figure B.10: Results of transformations of a cell image taken at −0.8 µm from focus
before and after normalization. From the left: input image X, generated images
Ŷdist, Ŷdist−2inputs, Ŷdist−fast and the ground truth image Y . Top row is before
normalization and bottom row is after. The MSE and FPW scores are written
under respectively image.

Figure B.11: Results of transformations of a cell image taken at −0.8 µm from focus
before and after normalization. From the left: input image X, generated images
Ŷdist, Ŷdist−2inputs, Ŷdist−fast and the ground truth image Y . Top row is before
normalization and bottom row is after. The MSE and FPW scores are written
under respectively image.

73

Figure B.12: Results of transformations of a cell image taken at −0.6 µm from focus
before and after normalization. From the left: input image X, generated images
Ŷdist, Ŷdist−2inputs, Ŷdist−fast and the ground truth image Y . Top row is before
normalization and bottom row is after. The MSE and FPW scores are written
under respectively image.

Figure B.13: Results of transformations of a cell image taken at −1.0 µm from focus
before and after normalization. From the left: input image X, generated images
Ŷdist, Ŷdist−2inputs, Ŷdist−fast and the ground truth image Y . Top row is before
normalization and bottom row is after. The MSE and FPW scores are written
under respectively image.

74

