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Abstract

The self-screening error in the GW approximation is studied by applying correction schemes
beyond the random-phase approximation in model and ab inito calculations. Two model
systems in the form of Hubbard dimers, with one and two orbitals per site respectively,
are considered. Both the self-screening (GW -ss) and self-polarization (GW -sp) correction
schemes are compared to ordinary GW calculations as well as to the exact results. It is found
that GW -ss provides a significant improvement for small values of the interaction strength U0,
almost correctly describing the linear density response function and improving the spectral
function over that obtained within GW . GW -sp instead correctly describes the HOMO-
LUMO gap for the one-orbital model in the limit of large U0, and provides a better agreement
also for the spectral function in that regime, while still being approximately as accurate
as GW -ss in describing the response and spectral function for lower interaction strengths.
It is further found that GW -sp suffers from causality issues. The ab initio calculations
were performed using a version of the SPEX code modified to include the self-screening
correction. The correction is applied to four semiconductors: GaAs, ZnSe, Ge, and ZnO.
It is found that the self-screening correction significantly improved the band gap for GaAs
and ZnSe compared to ordinary GW calculations, while it marginally overestimates the
width for Ge, and improves the ZnO one slightly. Further it is found to provide a small
improvement also of the energy-placement of the semicore 3d states. A comparison is also
made regarding the differences of the two correction schemes. It is concluded that the GW -ss
scheme seems to provide the best correction for delocalized systems. GW -sp instead gives the
better description for large interaction strengths, and hence more localized systems, although
simultaneously being able to give a good agreement for small U0 in the model calculations.
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Section 1

Introduction

The calculation of the electronic structure of materials has long been a major area within
condensed matter physics. Although the equation governing the behaviour of the electrons is
known exactly, the Schrödinger equation, solving it efficiently and accurately has been at the
center of attention in much work; the issue is the Coulomb term in the many-electron Hamil-
tonian, quickly rendering exact calculations of larger systems unfeasible. In order to simplify
the problem, various approximations have been devised, such as the simple Hartree approxi-
mation, where the electrons are subjected to a potential originating from the average field of
all the electrons, and the Hartree-Fock approximation (HFA), where the self-interaction in
the Hartree approximation is removed. Another method is the local density approximation
(LDA) [1] within density functional theory (DFT) [1,2], where the potential beyond Hartree
is approximated using the electron gas.

LDA has provided good results for various properties and is widely used today for a wide
variety of applications. However, it is well-known that, for example, the description of band
gaps in semiconductors is lacking [3], and it has also been found to place the energy of
semicore states too high [4, 5]. In order to improve these, and other issues, theories beyond
DFT are used. Green’s function theory (see e.g. Refs. [6, 7]) is one such method useful to
compute, e.g., the excitation energies of the system and expectation values of ground state
properties. The self-energy Σ, which is a non-local and energy dependent potential, is used
to incorporate interaction effects beyond the Hartree approximation. Although Σ in principle
could be calculated exactly, for more complicated systems it is not feasible in practice: one
must hence resort to approximations.

The GW approximation (GWA) [8], proposed by Hedin in 1965, is one of the main
methods used today to accomplish this. Based on many-body perturbation theory using the
Green’s function formalism, Hedin showed that the self-energy and related quantities could be
expanded in terms of the screened interaction, W , providing an exact set of self-consistency
equations. Within GWA, the self-energy is schematically calculated using the lowest order
term in the aforementioned expansion as Σ = iGW , where G is the Green’s function, from
which the name stems. GW is calculated within the random-phase approximation (RPA)
[9, 10] in order to obtain the polarization and response functions of the system used in the
computation of W .

GW is known to rectify the band gap problem of LDA very well (see e.g. Refs. [3,11]) and
to in general further improve the band structure over LDA when comparing to experiments.
As another example of its success, but also the limitations of GW, it is known to improve the
energy of semicore 3d states in important semiconductors such as GaAs and Ge over the values
calculated using LDA, yet it still places them too high in energy as compared to experiments
[4,5]. Although in many respects improving the description of the electronic structure, GWA
still suffers from a number of deficiencies, besides the remaining discrepancy in the semicore
energies and band gap. In order to further improve it different vertex corrections can be
included; however, this becomes difficult to do in practice. Firstly, including arbitrary higher
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order terms for the self-energy in the expansion in W is not guaranteed to yield an improved
result [12], and one therefore has to choose which to include carefully, and secondly these
computations tend to be costly for higher order corrections, limiting their applicability for real
systems. Nevertheless, fully summing up all the terms would provide the entirety of Hedin’s
equations, which are exact. For other types of problems, such as for for strongly correlated
systems where GW is known to not provide an accurate description [12,13], different methods
can be used instead to obtain better results. The poor description for strongly correlated
systems which GW displays can be seen from its origin in a perturbation expansion in
W . Strong onsite interactions, due to localized electrons, will therefore result in an incorrect
picture, which is the case for these systems. For these materials instead dynamical mean-field
theory (DMFT) (for a review see Ref. [14]) can be used, where the system under consideration
is mapped to an impurity problem from which the Green’s function can be calculated using
a local self-energy. Another possibility would be to combine the two approaches, as done in
GW+DMFT [15].

Another issue with GW , which has been the focus of this work, is self-screening. It is a
type of self-interaction where an electron screens itself through the screened interaction W ,
due to it being calculated within RPA. The problem is readily seen for the hydrogen atom,
where the correlation part of the self-energy becomes non-zero, causing the quasiparticle
energy to be too high compared to the exact result [16]. Within the HFA, however, the correct
result is obtained as it cancels the self-interaction introduced by the Hartree potential through
the inclusion of exchange, while not including the correlation part of the self-energy from
where the problem stems. The self-screening error has also been studied for models [17, 18],
and it has furthermore been suggested that the self-screening could be responsible for the
aforementioned error in the localized semicore states [19].

Two schemes to remedy the inherent self-screening error in RPA and GWA were proposed
by Aryasetiawan et. al. in 2012 [19]. They were applied to a simple hydrogen dimer model,
improving the agreement with the exact result when compared to GW for small interaction
strengths. One of the schemes is based on that the Green’s function can be divided into orbital
components gm, whereupon one can note that a given orbital is involved in the screening of
itself in Σ =

∑
m gmW through its inclusion in the screened interaction. Physically this means

that, as only one electron with a given spin can occupy an orbital, the electron will participate
in screening itself while propagating, which clearly is unphysical. The second scheme is based
on a similar principle, but instead from the point of view of the excitations in the system.
Another approach to correct the self-screening error has recently been proposed by Wetherell
et. al. [17], where a local density functional is used to derive a local potential which is added
to the GW self-energy in order to remove the self-screening, and vertex corrections have also
been devised to attempt to eliminate the error [18].

The purpose of the present work has been to further investigate the correction schemes
for the self-screening error proposed in [19]. This was done in two ways: first by in more
depth exploring model systems with variable parameters in the form of Hubbard dimers with
one and two orbitals per site, respectively, and secondly by using ab initio, or first principles,
calculations. The models were examined to see how well the schemes worked in different
parameter ranges. These parameters were subsequently related to different physical regimes
to see where the corrections provided improved (or worsened) the agreement with exact results
in order to explore their usability. For example the effect on the density response function,
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giving the response of the system to an external perturbation, and the renormalized Green’s
function was investigated for both models. The ab initio part was carried out by using a
version of the GW code SPEX [11, 20, 26], which was modified to include the self-screening
correction. The code was applied to four semiconductors, GaAs, ZnSe, Ge, and ZnO, and
the results were compared to the band structures calculated within LDA and GW, and to
experimental values, to ascertain the effect of the scheme. Specifically, the effects on the
energy of the semicore states and the band gap were investigated.

The work is structured as follows. In Section 2 the necessary theory and theoretical
background is presented. The schemes in [19] will be the basis for the work and are therefore
explained in detail in Sections 2.7 - 2.8, preceded by a general introduction to the formalism
and GWA. The model calculations using the proposed schemes will be carried out in a one-
shot manner, that is only doing the first iteration of the self-consistency, in Section 3, and
compared to the usual GW calculation within RPA as well as the exact solution of the
systems. The investigation of real materials using the ab initio calculations of the electronic
structure in section is detailed in Section 4, with the SPEX code and its modifications being
described in Sections 4.1 - 4.2, and a description of the materials being investigated in Section
4.3. The results are presented and analyzed in Section 5 and the conclusions from the study
are presented in Section 6. Finally, in Section 7 an outlook on potential future directions of
work is explored.
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Section 2

Theory

2.1 The many-electron Hamiltonian

In many-electron systems the term causing difficulties in solving the system exactly arises
from the electron-electron interaction, v(r− r′) = 1/|r− r′|, in the Hamiltonian

H =
∑
i

−1

2
∇2
i + V (ri) +

1

2

∑
i 6=j

1

|ri − rj|
. (2.1)

H is here in Hartree atomic units, which will be used throughout this work, where ~ =
me = e = 1/4πε0 = 1. In V (r) the external potential and the electron-nucleon interaction
are included. The electron-electron interaction becomes difficult to treat already for small
systems, and increasingly so for calculations of the electronic structure of real materials. The
issue is that the Schrödinger equation HΨn = EnΨn becomes ever more complicated to solve
as the number of electrons in the system grows. As a consequence, many approximations
of various types have been devised in order to obtain the energies and states in a simplified
manner.

The aforementioned Hartree approximation is a simple mean-field approximation of the
electron-electron interaction as a one-particle effective potential,

VH(r) =

∫
dr′

ρ(r′)

|r− r′|
, (2.2)

using the electron density ρ. It originates from the idea that the electrons should feel the
interaction from an average field from all of the electrons, instead of from each electron
individually. A step beyond Hartree is the Hartree-Fock approximation (HFA) which removes
the issue of self-interaction which is present in the Hartree potential, equation (2.2). It does
this by including an exchange term besides the Hartree potential, resulting in the Hartree-
Fock equation(

−1

2
∇2 + V (r) + VH(r)

)
φnσ(r) +

∫
dr′Σx

σ(r,r′)φnσ(r′) = εHFφnσ(r), (2.3)

for a state φnσ with spin σ. The exchange potential is given by

Σx
σ(r,r′) = −v(r− r′)

occ∑
m

φmσ(r)φ∗mσ(r′). (2.4)

Another, more rigorous, approach to approximate the problem is by going beyond the mean-
field methods described above. One way is provided by the Green’s function theory, described
in Section 2.3, which will be the main framework utilized in this work.
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2.2 The Hubbard Hamiltonian

The model calculations will be performed on a Hubbard dimer with one and two orbitals
per site, respectively. That is, two sites with a Hamiltonian due to Hubbard [21] using the
occupation number formalism:

H =
∑
i,j,σ

hijc
†
iσcjσ +

∑
i,j

Uii,jjni↑nj↓. (2.5)

Here cjσ is the annihilation operator, removing an electron of spin σ occupying orbital j,

and c†iσ instead creates an electron, implying the first term to represent hopping in-between
orbitals. The hij are the variable parameters governing the strength of these effects. Further

the number operator niσ = c†iσciσ counts the number of electrons present in orbital i, and the
second term thus represents the interaction between the electrons, with Uii,jj providing its
strength.

Two Hubbard models in the form of dimers (two sites) are used in this work: one with
a single orbital per site and one with two orbitals per site. In the one-orbital model, both
on-site and off-site Coulomb interaction is included. We thus set U1 orb

11,11 = U1 orb
22,22 = U0 and

U1 orb
11,22 = U1 orb

22,11 = U1 here, as the two sites are interchangeable by symmetry. The Hamiltonian
can then be written as

H1 orb = ε0
∑
iσ

c†iσciσ + t
∑
i 6=j,σ

c†iσcjσ + U0

∑
i

ni↑ni↓ + U1

∑
i 6=j

ni↑nj↓. (2.6)

with t = hij (i 6= j) being the hopping parameter, and ε0 = hii is the one-particle energy of
the orbitals. For the two-orbital case, only the on-site interaction is taken into account in
the two lower orbitals, U1111 = U2222 = U0, yielding a Hamiltonian of the form

H2 orb =
∑
iα

εiαc
†
iασciασ +

∑
i 6=j

∑
αβ

∑
σ

t(i,α)(j,β)c
†
iασcjβσ + U0

∑
i∈{1,2}

ni(α=1)↑ni(α=1)↓ (2.7)

where εiα is ε0 for the two lower orbitals, α = 1 on sites i = 1,2, and ε1 for the two upper
ones, α = 2 on sites i = 1,2. The hopping terms included in this model are t(1,1)(2,1) = t1,
t(1,1)(2,2) = t(1,2)(2,1) = t2 and t(1,2)(2,2) = t3, where a reordering of (i,α) provides the same
hopping strength due to symmetry. The two lower states can physically be interpreted as
localized valence states, where the interaction occurs, and the two higher lying states as a
delocalized conduction band, hence the lack of interaction. For a schematic view of the model
systems see Figure 2.1.

2.3 The Green’s function in many-body theory

In this section the theory for the Green’s function (see e.g. Refs. [6, 7]) used in many-body
theory at zero temperature will be described. The electron Green’s function is defined as

G(1,2) = −i 〈Ψ0|T ψ̂(1)ψ̂†(2) |Ψ0〉 (2.8)
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Figure 2.1: The two model Hubbard dimers used in this work, with the parameters corre-
sponding to hopping (ti), interaction (Ui) and orbital energies (εi) marked out for the different
sites. Left: One orbital per site. Right: Two orbitals per site

where T is the time-ordering operator moving operators at later times to the left, with a
possible sign change if two operators are interchanged due to their fermionic nature, and
Ψ0 is the ground state of the system. As ψ+(2) creates an electron at (2) = (r2,t2) =
(r2,σ2,t2) and ψ(1) annihilates it at (r1,t1), the Green’s function describes two processes;
for t1 > t2 an electron is created at position r2 at time t2 and propagates to r1 at time t1
where it is annihilated, with the Green’s function providing the probability amplitude for
the propagation. Similarly for t1 < t2 an electron is annihilated at r1 at t1 and subsequently
created again at the later time t2 at r2, or equivalently, a hole is created at (1) propagating
to (2).

From the Green’s function it is possible to obtain the total energy and the expectation
value of any one-particle operator in the ground state as well as the one-particle excitation
energies. We will limit the exposition of these properties to the excitation energies, as only
these will be investigated in the current work. By using a time-independent Hamiltonian,
the Green’s function will only be dependent on the difference in time t1 − t2, and not their
absolute values. G(r1,r2; t1 − t2) can therefore be Fourier transformed with respect to the
difference in time, and it can be written in a spectral representation as [6]:

G(r1,r2;ω) =
∑

n(N−1)

〈Ψ0(N)| ψ̂†(r2) |Ψn(N − 1)〉 〈Ψn(N − 1)| ψ̂(r1) |Ψ0(N)〉
ω + En(N − 1)− E0(N)− iδ

+
∑

n(N+1)

〈Ψ0(N)| ψ̂(r1) |Ψn(N + 1)〉 〈Ψn(N + 1)| ψ̂†(r2) |Ψ0(N)〉
ω − En(N + 1) + E0(N) + iδ

(2.9)

Ψn(N) is the n’th state of the N-particle system with energy En(N). It is then clear that
the denominators of G provide the exact excitation spectra, through its pole structure, for
both of the (N ± 1)-electron systems. It is in this form directly related to photoemission
experiments, such as angle-resolved photoemission spectroscopy (ARPES) or inverse photoe-
mission spectroscopy (IPES), where electrons are emitted from and absorbed in the material
respectively. In ARPES the electrons are photoemitted by incident photons with energy
ω, and the kinetic energy Ekin and momentum k of the outgoing electrons are measured,
providing the excitation energies Eexc(k) in the (N − 1)-electron system [12]

Eexc(k) = ω − Ekin. (2.10)
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In IPES, instead electrons with known momentum and kinetic energy are absorbed by the
material and an outgoing photon is measured providing the excitation energy of the (N + 1)-
electron system, similarly to equation (2.10).

The spectral function can be written as

A(r,r′;ω) = − 1

π
ImG(r,r′;ω)sgn(ω − µ) (2.11)

where µ for an infinitely large system is the chemical potential. In calculations it can be
obtained by integrating the trace of the spectral function as

N =

∫ µ

−∞
dωTr(A(ω)). (2.12)

with N being the number of particles in the system. The Green’s function can subsequently
be regained by a transformation [3]

G(r,r′;ω) =

∫ µ

−∞
dω′

A(r,r′;ω′)

ω − ω′ − iδ
+

∫ ∞
µ

dω′
A(r,r′;ω′)

ω − ω′ + iδ
. (2.13)

The peak structure of A, as for the poles of G, provides the excitation spectrum for both the
(N ± 1)-electron systems.

Another equivalent way to rewrite G in equation (2.9) comes from finding the solution to
the Fourier transform of the equation of motion for the Green’s function.

(ω −H0)G(r,r′;ω)−
∫

dr1Σ(r,r1;ω)G(r1,r
′;ω) = δ(r − r′). (2.14)

where H0 is the one-particle Hamiltonian including the Hartree potential. The self-energy Σ,
which is non-local and energy-dependent, thus incorporates the part of the interaction beyond
the Hartree mean-field: both the exchange obtained in HFA and additional correlation effects.
The solution is in general given by the Green’s function [22]

G(r,r′;ω) =
∑
j

Ψj(r,ω)Ψ†j(r
′,ω)

ω − En(ω)
(2.15)

with the complex eigenvalues Ej and wavefunctions Ψj given by

H0(r)Ψj(r,ω) +

∫
dr1Σ(r,r1;ω)Ψj(r1,ω) = Ej(ω)Ψj(r,ω). (2.16)

As the definitions in equations (2.9) and (2.15) must be the same, the Re(Ej) provide the
excitation energies E of the system, as it gives a pole when Re(Ej(ωj)) = ωj. For a large
system they are also referred to as quasiparticle energies, where the wavefunction of the
quasiparticle is defined as Ψj(r,Re(Ej(ωj))), and the imaginary part provides the inverse
lifetime [12]. Furthermore, equation (2.16) is known as the quasiparticle equation for ω = ωj,
as it then provides the quasiparticles in the system. By solving the equation for Σ = 0 the
result is a non-interacting Green’s function

G0(r,r′;ω) =
∑
n

ϕn(r)ϕ∗n(r′)

ω − εn
(2.17)
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with ϕn and εn being the non-interacting wavefunctions and energies respectively. G0 will
be used extensively in the following sections, as the full G becomes impractical for realistic
calculations.

2.4 The linear density response function

How a system responds to an external perturbation is an important property to know in
order to describe its electronic structure. The response function, R, [6,7] gives the change in
the density ρ due to the application of an external field ϕ according to

R(1,2) =
δρ(1)

δϕ(2)
. (2.18)

The spectral representation of the time-ordered linear density response function can be shown
to take the form

R(r,r′;ω) =
exc∑
n6=0

[
〈Ψ| ρ̂(r) |n〉 〈n| ρ̂(r′) |Ψ〉
ω − En + E0 + iδ

− 〈Ψ| ρ̂(r′) |n〉 〈n| ρ̂(r) |Ψ〉
ω + En − E0 − iδ

]
. (2.19)

with the density operator being ρ̂(r) = ψ̂†(r)ψ̂(r) =
∑

ij c
†
icjφ

∗
i (r)φj(r). |Ψ〉 is the ground

state with energy E0 and the sum is limited to run only over the excited states |n〉. As such,
it can readily be seen that the denominator of (2.19) gives the exact excitation energies of
the system. The spectral function of the response, S, given by

S(r,r′;ω) = − 1

π
ImR(r,r′;ω)sgn(ω) (2.20)

therefore exhibits a peak structure providing the excitation spectrum.

2.4.1 The Random-Phase Approximation

Within the random-phase approximation (RPA) [9, 10], the response of the system to an
external perturbation ϕ is considered to be the response of a non-interacting system to the
perturbation as well as the Hartree potential induced by it. Schematically this can be written
using the non-interacting response, P 0, to the total field V = ϕ + VH which will be further
explained in Section 2.6, as:

δρ = RRPAδϕ = P 0(δϕ+ δVH) (2.21)

Furthermore, the Hartree potential changes due to the induced charge density according to
δVH = vδρ. Equation (2.21) can then be rewritten as

RRPAδϕ = (P 0 + P 0vRRPA)δϕ (2.22)

As stated before the response is a system dependent property, and since the external field ϕ
was chosen arbitrarily it can be dropped and the RPA equation takes the form

RRPA(r,r′;ω) = P 0(r,r′;ω) +

∫
dr1 dr2P

0(r,r1;ω)v(r1 − r2)RRPA(r2,r
′;ω). (2.23)

How this is calculated in practice is left for Section 2.6.
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2.5 Hedin’s equations

In 1965 Lars Hedin derived an expansion of the self-energy within many-body perturbation
theory where Σ was expanded in a screened interaction W , instead of in the bare interaction
v which was known to produce incorrect results in metals [8]. The resulting equations, known
as Hedin’s equations, are an exact set of self-consistency equations which since their inception
have been used extensively in electronic structure calculations. The equations are derived
from the equation of motion of the Green’s function, however they will only be presented
here and the derivations can be found in Ref. [8].

In the first of Hedin’s equations the self-energy is expanded as

Σ(1,2) = i

∫
d3 d4W (1,3)G(1,4)Λ(4,2,3) (2.24)

where

Λ(1,2,3) = −δG
−1(1,2)

δV (3)
= δ(1− 2)δ(1− 3) +

δΣ(1,2)

δV (3)
(2.25)

is an introduced vertex function, with the functional derivative being with respect to the
total field V . Λ can in turn also be written as an integral equation, involving the Green’s
function and the self-energy, as the second of Hedin’s equations

Λ(1,2,3) = δ(1− 2)δ(1− 3) +

∫
d4 d5 d6 d7

δΣ(1,2)

δG(4,5)
G(4,6)G(7,5)Λ(6,7,3). (2.26)

Schematically, the screened interaction is related to the bare interaction v through the di-
electric function, ε, as W = ε−1v. Formally it can be shown to be expressible in terms of the
polarization function P in the third of Hedin’s equations as

W (1,2) = v(1,2) +

∫
d3 d4v(1− 3)P (3,4)W (4,2). (2.27)

The polarization function P , introduced for the non-interacting case in Section 2.4, gives
the response of the density to the total field and is related to the Green’s function through
the fourth of Hedin’s equations:

P (1,2) = −i
∫

d3 d4G(1,3)Λ(3,4,2)G(4,1+). (2.28)

Here the 1+ is used to denote that the time is evaluated infinitesimally later than t1. Another
equivalent way to compute the screened interaction is in terms of the response function in
Section 2.4. Equation (2.27) can be rewritten as

W (1,2) = v(1,2) +

∫
d3 d4v(1− 3)R(4,3)v(4,2). (2.29)

with the help of which the aforementioned inverse of the dielectric function, effectively screen-
ing the bare interaction in W = ε−1v, can be written schematically as

ε−1 = 1 + vR. (2.30)
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R can in turn be obtained through an integral equation involving the polarization

R = P (1,2) +

∫
d3 d4P (1,3)v(3− 4)R(4,2), (2.31)

which can be seen to take the same form as the RPA equation in equation (2.23), only differing
in the polarization function used. Finally, the fifth of Hedin’s equations (also known as the
Dyson equation) provides the Green’s function itself and can be related to the non-interacting
G0 by

G(1,2) = G0(1,2) +

∫
d3 d4G0(1,3)Σ(3,4)G(4,2). (2.32)

Further, the spectral function A can now be rewritten as [22]

A(ω) =
1

π

∑
n

|ImΣn(ω′)|
|ω′ + ∆− ε− Re(Σn(ω′))|2 + | Im(Σn(ω′))|2

(2.33)

to take proper care of the shift in Fermi level ∆ = Ef−εf when going from the non-interacting
G0, with εf and eigenenergies εn, to the system described by G, with fermi level Ef . Here
the n index means the matrix element of the object with respect to the non-interacting
wavefunctions in the G0 system.

Albeit that the five integral equations equations (2.24), (2.26) – (2.28) and (2.32), collec-
tively known as Hedin’s equations, are supposed to be solved self-consistently, this becomes
impractical for realistic systems due to the large numerical cost associated. Instead approx-
imations have to be employed to simplify the problem and the GW approximation, the one
being used in this work, will be described in Section 2.6.

2.6 The GW approximation

The GW approximation (GWA) [8,12], used to simplify the calculation of the self-energy, was
proposed in 1965 by Hedin and has since then become a widely used method to calculate, e.g.,
the electronic structure of materials. The approximation is based on neglecting the correction
δΣ/δV to the vertex function when calculating the self-energy in equation (2.24), which yields
a vertex function of the form Λ(1,2,3) = δ(1−2)δ(2−3). The resulting self-energy expression
then takes the form,

Σ(1,2) = iG(1,2)W (1,2). (2.34)

It is diagrammatically shown in Figure 2.2 and describes the propagation of the particle
through the propagator G subjected to the screened interaction W . After a Fourier trans-

ΣGW =
G

W

Figure 2.2: Diagram for the self-energy calculated within GW .
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formation of the time coordinates we obtain the energy-dependent and non-local self-energy
as

Σ(r,r′;ω) =
i

2π

∫
dω′G(r,r′;ω + ω′)W (r,r′;ω′) (2.35)

which can be used in the quasiparticle equation from Green’s function theory, equation (2.16),
in order to obtain the quasiparticle energies, Ei, of the system.

It should be noted that if the screened interaction W in equation (2.34) is replaced by
the bare interaction v the HFA is recovered. Further, noting that the screened interaction
can be written as W = v+W c, where W c is the correlation part of the screened interaction,
the total self-energy can be divided as

Σ(r,r′;ω) = Σx(r,r′) + Σc(r,r′;ω). (2.36)

This implies that the GWA includes the exchange part from the HFA, Σx
σ, and additionally

the effects of screening are taken into account in Σc, the correlation part of the self-energy
coming from W c:

Σc
σ(r,r′;ω) =

i

2π

∫
dω′G(r,r′;ω + ω′)W c(r,r′;ω′). (2.37)

GWA is calculated within RPA, described in Section 2.4.1, and the response function
R is hence obtained from the RPA equation, (2.23). The screened interaction can then be
obtained from the response function as W = v + vRv, formally using the Hedin’s equations
(2.29), where the response has been replaced by the RPA one. The polarization propagator
from equation (2.28) is obtained within RPA by also neglecting the vertex corrections here,
identically as for Σ, and by using a non-interacting G0, yielding the expression

P 0(r,r′;ω) = −i
∫

dω′

2π

∑
σ

G0
σ(r,r′;ω + ω′)G0

σ(r′,r;ω′). (2.38)

where the G0
σ is now explicitly defined for each spin. The self-energy is similarly obtained by

replacing the Green’s function with the non-interacting one, where the exchange part can be
written as

Σx
σ(r,r′) = −

occ∑
m

ϕm(r)ϕ∗m(r′)v(r − r′), (2.39)

and the Dyson equation, (2.32), can subsequently be used to calculate the renormalized
Green’s function as G = G0 +G0ΣG.

Although Hedin’s equations should be solved self-consistently, by updating G and calcu-
lating a new self-energy until the result is converged, this is seldom done in GW calculations.
Instead, a one-shot GW (G0W0) approach is usually used, where the screened interaction is
calculated only once from the non-interacting G0. In practical applications the input into a
GW calculation is commonly obtained from a preceding mean-field or DFT calculation, and
it is well known that, unless fully self-consistent, the result will depend on the initial values.
However, one reason that the calculations commonly are carried out in this way is that the
full self-consistent scheme is very numerically heavy, and thus too demanding to be fully
employed. Another reason for justifying that G0W0 is used instead of a fully self-consistent
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approach is that self-consistent GW is known to worsen the result for a number of properties,
such as a worsening bandwidth, over those computed using a one-shot approach [12,23].

As mentioned in the introduction, GWA has been successful at describing many properties
of various systems, including almost correctly predicting the correct band gap and improving
the description of high lying core states, known as semicore states, in semiconductors. Despite
the wide applicability and use, there are still several shortcomings which GWA suffers from,
as was previously discussed. The approach to correct them is by including corrections to
the simple vertex function used within GW, and, as previously noted, if the entire δΣ/δV
is utilized the equations become exact. However these corrections, in the form of including
additional diagrams, are difficult objects, and further it is not certain that including arbitrary
diagrams will necessarily improve the results, implying care has to be taken when deciding
which diagrams to include [12].

One of the problems GW faces is the inherent issue originating from self-screening. This
can directly be seen in the case of the hydrogen atom, as was done by Nelson et. al. in [16].
The eigenenergy for the 1s state using the HFA becomes the correct result, as it cancels the
self-interaction introduced by the Hartree term, while GW gives an erroneous quasiparticle
energy. Even when the exact wavefunctions and energies are used as input the error persists,
and the error is thus not from the initial data, but instead due to the approximation itself. The
error is found to originate from the correlation part of the self-energy Σc, which schematically
is calculated as

Σc = iGW c = iG(W − v). (2.40)

Looking at the hydrogen atom there is only one electron present, and therefore no other
electron able to screen it. As such the interaction it experiences should be the bare interaction,
that is W = v, and hence W c = W − v = 0, implying Σc to be zero. However, when
calculating within GW the correlation part of the self-energy was found to be Σc 6= 0, W c

must therefore also be non-zero. The only possibility for this to be the case is if the only
electron has screened itself, clearly illustrating the issue.

2.7 Self-screening correction for the GW approxima-

tion

The self-screening error can be seen to arise directly in the equations for the calculation of
the self-energy within GW . The non-interacting G0 can be written as [12,19]

G0
σ(r,r′;ω) =

∑
m

gmσ(r,r′;ω) =
∑
m

ϕmσ(r)ϕ∗mσ(r′)

ω − εmσ
(2.41)

where εmσ is the eigenenergy corresponding to the state ϕmσ of the non-interacting Hamil-
tonian H0, and a finite broadening δ is used as εnσ → εnσ ± iδ with (+) for an occupied and
(−) for an unoccupied state. Using this non-interacting G0 the self-energy in equation (2.34)
can be rewritten as

Σσ(1,2) = i
∑
m

gmσ(1,2)W (1,2). (2.42)
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ΣGW
σ =

G0
σ

W

=
g1σ

W

+
g2σ

W

+ · · ·

Figure 2.3: Diagram for the self-energy calculated within ordinary GW, with the individual
terms shown explicitly.

for which the diagram is shown in Figure 2.3 similarly to the one in Figure 2.2, but now with
the individual orbital Green’s functions gmσ being used as the propagators.

The self-screening correction for GW proposed in [19] consists of identifying that a given
gmσ, describing an electron propagating as illustrated in Figure 2.3, should not be involved in
the screening process of itself, through its inclusion in W . This is the case because another
electron with identical spin cannot occupy that same orbital. However, in equation (2.42)
this is indeed the case as W is calculated within RPA from the polarization propagator
P 0 = −i

∑
σ G

0
σG

0
σ which involves each of the gmσ lines in the calculation. The Σ is hence

calculated in GW with electrons screening themselves.
To remove the self-screening, a unique screened interaction can be calculated for each of

the mσ in equation (2.42) by going beyond RPA in the calculation of W . The correction
consists of calculating unique Wmσ for each mσ where the given gmσ has been omitted in the
calculations. This is done by setting

G0
mσ = G0

σ − gmσ (2.43)

from which the polarization function can be calculated as

P 0
mσ(r,r′;ω) = − i

2π

∫
dω′

[
G0
mσ(r,r′;ω + ω′)G0

mσ(r′,r;ω′) +G0
−σ(r,r′;ω + ω′)G0

−σ(r′,r;ω′)
]
.

(2.44)
The full Green’s function of the opposite spin is used here as both spins are allowed in
the same orbital, and thus gm−σ should be included in the screening process. Each of the
polarization functions Pmσ can then be used to calculate different response functions Rmσ

within the RPA as in usual GW calculations,

Rmσ(r,r′;ω) = P 0
mσ(r,r′;ω) +

∫
dr1 dr2P

0
mσ(r,r1;ω)v(r1 − r2)Rmσ(r2,r

′;ω) (2.45)

and finally a unique screened interaction for each mσ can be found as

Wmσ(r,r′;ω) = v(r − r′) +

∫
dr1 dr2v(r − r2)Rmσ(r2,r1;ω)v(r1 − r′) (2.46)

with the given gmσ line removed. The correction scheme then alters equation (2.42) to
explicitly become [19]

ΣGW -ss
σ (1,2) = i

∑
m

gmσ(1,2)Wmσ(1,2). (2.47)

The diagram for the self-screening corrected GW (GW -ss) can be seen in Figure 2.4 and
be directly compared to the ordinary GW diagram in Figure 2.3. It can be noted that the
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form of the diagrams are the same, however, the modification causes the propagation of gmσ
to occur without the presence of itself in the screening process of v to W ; the self-screening
has hence been removed from the equations.

ΣGW−ss =
g1

W1

+
g2

W2

+ · · ·

Figure 2.4: Diagram for the self-energy calculated with the self-screening corrected GW.

The self-energy can as usual be split into the exchange and correlation parts Σ = Σx + Σc

where now

Σx
σ(r,r′) = −

occ∑
m

ϕm(r)ϕ∗m(r′)v(r − r′) (2.48)

and

Σc
σ(r,r′;ω) =

i

2π

∑
m

∫
dω′gmσ(r,r′;ω + ω′)W c

mσ(r,r′;ω) (2.49)

respectively, with W c
mσ = Wmσ − v = vRmσv. The Fock part clearly remains the same as in

GW, as it does not contain any screening, and the change enters only through the correlation
part of the self-energy where the screening is included. Moreover, the quantities Gmσ, Pm,
Rm, and Wm introduced above are only auxiliary objects meant to be used for the calculation
of the self-energy. This fact, and the consequences attached to attempting to compare them
with their physical counterparts used in GW , will be illustrated and shown in Sections 3.1
and 3.2

Despite of the more phenomenological origin of the modifications, the scheme can be
shown to be partly equivalent to adding vertex corrections [19]. By including higher order
exchange diagrams, it is found that parts of these cancel the self-screening terms in the direct
diagrams. It should furthermore be noted that the current scheme is not applicable to a full
self-consistent calculation, as it requires the Green’s function to be written in the form of
equation (2.41), which is not necessarily possible for the renormalized G using the Dyson
equation. Nevertheless, in principle it should be a possibility to extend the scheme, although
no work has been carried out in that direction at this point.

2.8 Self-polarization correction for RPA

Another approach also proposed in [19], with the same intention of removing the self-screening
error, is to remove the self-polarization caused by an electron-hole excitation instead of remov-
ing the self-screening caused by an electron in a given orbital. Instead of directly correcting
Σ, it provides a correction of the response within RPA. The polarization propagator, P , can
within RPA be found from the individual polarizations pα corresponding to the excitations
of the system, denoted by α. It is calculated as

P 0(r,r′;ω) =
∑
α

pα(r,r′;ω), (2.50)
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where the sum is over each excitation α = (n,m,σ) in the system between the occupied state
ϕn and the unoccupied state ϕm for a given spin. We have [12,19]

pα =
ϕmσ(r)ϕ∗nσ(r)ϕ∗mσ(r′)ϕnσ(r′)

ω − εm + εn + iδ
− ϕmσ(r′)ϕ∗nσ(r′)ϕ∗mσ(r)ϕnσ(r)

ω + εm − εn − iδ
. (2.51)

where the denominator gives the energy difference between the non-interacting states, εm−εn,
with a small broadening iδ.

The RPA equation (2.23) can schematically be expanded in the pα as

RRPA = P 0 + P 0vRRPA = [1− P 0v]−1P 0 =
∑
α

[1−
∑
β

pβv]−1pα, (2.52)

where the non-interacting system’s response, P 0, is screened by [1 −
∑

β pβv] in order to
obtain the response of the system within RPA. Similarly to how gmσ screened itself through
W when calculating Σ in GWA, pα screens itself here when calculating R, resulting in what
is termed self-polarization. To remedy this, a new polarization is introduced,

Pα = P 0 − pα, (2.53)

with a given excitation removed, and thereupon the self-polarization corrected response func-
tion is introduced [19]

Rsp =
∑
α

[1− Pα]−1pα. (2.54)

The usual GW approximation can thereafter be used to calculate the self-energy as in equa-
tion (2.35), but now using Rsp to obtain the screened interaction, W = v + vRspv, pro-
viding the self-polarization corrected GW (GW -sp) scheme. Similarly to the case of the
self-screening correction, also this approach can be shown to be partly equivalent to includ-
ing additional diagrams.

2.9 The GW approximation in matrix representation

In order to simplify the treatment of GWA numerically for the models it is possible to rewrite
the equations in matrix form. It can be noted that the eigenstates ϕm can be expanded in the
basis orbitals φi as ϕm =

∑
i c
m
i φi, and as a result the polarization function can be written

as

P (r,r′;ω) =
occ∑
n

unocc∑
m

∑
αβγκ

cnαφα(r)cmβ φβ(r)cnγφγ(r
′)cmκ φκ(r

′)Pnm(ω), (2.55)

assuming the orbital wavefunctions to be real. cmi is the i’th expansion coefficient for eigen-
state m and Pnm(ω) are the terms in equation (2.51). It can as such be written as a matrix
in the φα(r)φβ(r) product basis: P(αβ)(γκ). Similarly R in the RPA equation, (2.23), can be
seen to take on the same form as P above, and by including the expansion coefficients and
the summations in the ω dependent part for simplicity we can rewrite it as
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∑
αβγκ

φα(r)φβ(r)φγ(r
′)φκ(r

′)R(αβ)(γκ)(ω) =
∑
αβγκ

φα(r)φβ(r)φγ(r
′)φκ(r

′)P(αβ)(γκ)(ω)

+
∑
α′β′γκ

∑
αβγ′κ′

φα(r)φβ(r)φγ(r
′)φκ(r

′)P(αβ)(γ′κ′)(ω)R(α′β′)(γκ)(ω)

×
∫

dr1 dr2φγ′(r1)φκ′(r1)v(r1 − r2)φα′(r2)φβ′(r2)

By identifying the last integral as V(γ′κ′)(α′β′), the matrix element of the interaction in the
φαφβ basis, we can for a given (αβ)(γκ) write

R(αβ)(γκ)(ω) = P(αβ)(γκ)(ω) +
∑

α′β′γ′κ′

P(αβ)(γ′κ′)(ω)V(γ′κ′)(α′β′)R(α′β′)(γκ)(ω). (2.56)

This can be seen as a matrix equation

R = P + PV R (2.57)

in the product basis φα(r)φβ(r). The same argument also holds for the self-screening and
self-polarization corrected response functions and as such they can be treated numerically as
matrices in the same way.

The next step to use the equations numerically is to find W and Σ in matrix form in the
orbital wave function basis. The exchange part of the self-energy can be found in matrix
form by taking the matrix elements of Σx in equation (2.39), assuming real wave functions:

〈φk|Σx|φp〉 = −
∫

dr dr′φk(r)
occ∑
m

ϕm(r)ϕm(r′)v(r − r′)φp(r′)

= −
∑
i,j

occ∑
m

cmi c
m
j V(ki,jp)

where the eigenstates ϕm have been expanded in the orbital basis. To find the correlation part
of the self-energy we first find the imaginary part, whereupon the real part can be acquired
through a Hilbert transform. The correlation part of the self-energy in equation (2.37) can
in turn be rewritten using the spectral representation of W c [12]

D(r,r′;ω) = − 1

π
ImW c(r,r′;ω)sgn(ω) (2.58)

and by splitting the sum into occupied and unoccuped states. For the occupied ones the
expression can be shown to take the form

Im Σc
occ(r,r

′;ω) = π
occ∑
m

ϕm(r)ϕm(r′)D(r,r′; εm − ω)θ(εm − ω) (2.59)

and for the unoccupied states it becomes

Im Σc
unocc(r,r

′;ω) = −π
unocc∑
m

ϕm(r)ϕm(r′)D(r,r′;ω − εm)θ(ω − εm) (2.60)
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The spectral function of the correlation self-energy [12]

Γ(r,r′;ω) = − 1

π
Im Σc(r,r′;ω)sgn(ω − µ) (2.61)

can therefore be written as

Γocc(r,r
′;ω) =

occ∑
m

ϕm(r)ϕm(r′)D(r,r′; εm − ω)θ(ε− ω) (2.62)

and

Γunocc(r,r
′;ω) =

unocc∑
m

ϕm(r)ϕm(r′)D(r,r′;ω − εm)θ(ω − ε) (2.63)

when summing over the the occupied and unoccupied states respectively. As the terms in
the sum over all states are independent, the full spectral representation of the self-energy
will only be Γ = Γocc + Γunocc. We rewrite this into matrix form for the occupied part as,
remembering that W c = vRv,

〈φk|Γocc|φp〉 = − 1

π

occ∑
m

∑
ij

cmi c
m
j Im [V R(εm − ω)V ](ki)(pj) θ(εm − ω) (2.64)

where the ϕ’s have been expanded in the φ-basis functions and [V RV ] denotes a matrix
multiplication. The unoccupied part is similarly

〈φk|Γunocc|φp〉 = − 1

π

unocc∑
m

∑
ij

cmi c
m
j Im [V R(ω − εm)V ](ki)(pj) θ(ω − εm) (2.65)

The real part can subsequently be obtained by a Hilbert transform

Re Σc
kp(r,r

′;ω) =

∫ ∞
−∞

Γkp(r,r
′;ω′)

ω − ω′
, (2.66)

where in the matrix representation the transform is carried out for each individual element.
The full self-energy in matrix form then simply becomes,

〈φk|Σ(ω)|φp〉 = Σkp = Σx
kp + Re(Σc

kp(ω)) + i Im(Σc
kp(ω)) (2.67)

with the imaginary parts being obtained from Γkp using equation (2.61). In the case of GW -
sp the equations become identical, except for using the self-polarization corrected response
in W , and for GW -ss several different Rmσ and Wmσ are calculated, though each identically
as described here, and thereafter Σc is calculated by using the W c

m as described in Section
2.7. To obtain the Green’s function after a GW calculation, the Dyson equation, equation
(2.32), is used. In matrix form it can be written as

G =
[
1−G0Σ

]−1
G0. (2.68)

with the matrix elements 〈φk|G0|φp〉 straightforwardly obtained by expanding equation (2.17)
in the φk basis.
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Section 3

Model calculations

To ascertain the accuracy of the correction schemes presented in Sections 2.7 and 2.8 the
two model dimers will be investigated in the following sections. The one-orbital system is
calculated analytically, while the calculations for the two-orbital one are carried out numeri-
cally. Since we will only be interested in G0W0 calculations, GW will henceforth refer to the
one-shot approach unless otherwise specified.

3.1 One-orbital system

The one-orbital model is simple enough to be solved analytically since it consists of only two
electrons, with opposite spin, occupying a dimer with two sites and one orbital on each. The
Hamiltonian of the system is given by equation (2.6) with the orbital set at zero energy, i.e.
ε0 = 0, as this only provides a constant shift. It takes the form

H1 orb =


U1 0 t t

0 U1 −t −t
t −t U0 0

t −t 0 U0


using the basis states in the occupation representation formalism

|1〉 = c+
1↑c

+
2↓ |0〉 = |↑ · ↓〉 |3〉 = c+

1↑c
+
1↓ |0〉 = |↑↓ · 〉

|2〉 = c+
1↓c

+
2↑ |0〉 = |↓ · ↑〉 |4〉 = c+

2↑c
+
2↓ |0〉 = | · ↑↓〉

with the dot separating the two sites as |site 1 · site 2〉. The diagonalization of the Hamilto-
nian and the calculation of the exact response function in equation (2.19) has been done in
a previous work [24], however with U1 = 0. The response was in matrix form found to be

R11,11(r,r′;ω) = R22,22(r,r′;ω) = 2x2

[
1

ω − ε3 + ε1 + iη
− 1

ω + ε3 − ε1 − iη

]
R11,22(r,r′;ω) = R22,11(r,r′;ω) = −R11,11(r,r′;ω)

R12,12(r,r′;ω) = R21,21(r,r′;ω) = 16(x2 − y2)2

[
1

ω − ε4 + ε1 + iη
− 1

ω + ε4 − ε1 − iη

]
using the product basis φiφj as outlined in Section 2.9. The εi are the energies of states φi
and are together with the x and y variables obtained from the diagonalization to be

2x2 + 2y2 = 1, x = 2yt/(ε4 − U1)

ε1 =
1

2
(U0 + U1 −

√
(U0 − U1)2 + 16t2)

ε2 = U1, ε3 = U0

ε4 =
1

2
(U0 + U1 +

√
(U0 − U1)2 + 16t2).
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The exact Green’s function is straightforwardly found by also diagonalizing the N±1 Hamil-
tonians and finding the matrix elements with the N -particle states, according to equation
(2.9). The matrix elements of the resulting Green’s function are

G11 = G22 =
1
2
(x+ y)2

ω + E1(N − 1)− ε1 − iδ
+

1
2
(x+ y)2

ω − E1(N + 1) + ε1 + iδ

+
1
2
(x− y)2

ω + E2(N − 1)− ε1 − iδ
+

1
2
(x− y)2

ω − E2(N + 1) + ε1 + iδ

G12 = G21 =−
1
2
(x+ y)2

ω + E1(N − 1)− ε1 − iδ
+

1
2
(x+ y)2

ω − E1(N + 1) + ε1 + iδ

−
1
2
(x− y)2

ω + E2(N − 1)− ε1 − iδ
+

1
2
(x− y)2

ω − E2(N + 1) + ε1 + iδ

where E1(N−1) = −t, E2(N−1) = t, E1(N+1) = U0 +2U1−t and E2(N+1) = U0 +2U1 +t.
When calculating the mean-field states used as input into GWA the only states which

need to be considered are the one-particle ones as both electrons will feel the same mean-field
on both sites due to symmetry, and it can as such be neglected. The Hamiltonian therefore
takes the simple form

HMF 1 orb =

(
0 t

t 0

)
Also the response function within RPA was in [24] found to be

RRPA(r,r′;ω) = ϕA(r)ϕB(r)

[
ano

ω −∆no + iδ
− ano
ω + ∆no − iδ

]
ϕA(r′)ϕB(r′) (3.1)

where ϕA(r) = 1√
2
(φ1(r)−φ2(r)) is the unoccupied antibonding state with energy εA = t, and

ϕB(r) = 1√
2
(φ1(r) + φ2(r)) is the occupied bonding state with eigenenergy εB = −t. Thus

the two states are split by ∆ε = 2t, and ∆no =
√

∆ε2 + 4UAB,AB∆ε, the excitation energy
for normal GW , and ano = 2∆ε/∆no will depend on the chosen parameters. t will be used
as the unit here throughout the section and is hence set to 1. Furthermore, the Uij,kl matrix
elements in the orbital basis are the ones used as parameters and UAB,AB must therefore be
found in this basis. This is done by expanding the ϕ’s:

UAB,AB =

∫
dr dr′ϕA(r)ϕB(r)v(r − r′)ϕA(r′)ϕB(r′)

=
1

4
(U11,11 + U22,22 − U11,22 − U11,22)

=
1

2
(U0 − U1).

With knowledge of the RPA response function, the self-energy Σ = Σx+Σc can be calculated
using GW. The following derivation of Σc and Σc

ss has previously been done in [19], but is
redone here as it serves to illustrate the scheme using an exactly solvable system. In the final
part of the section further investigation of the model beyond what was previously done will
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also be presented, including the self-polarization correction and a comparison between the
schemes.

The exchange part from equation (2.39) can directly be written

Σx(r,r′) = −v(r − r′)ϕB(r)ϕB(r′) (3.2)

for which the diagonal matrix elements in the ϕA,B basis are

〈ϕA|Σx|ϕA〉 = −
∫

dr dr′ϕA(r)ϕB(r)v(r − r′)ϕA(r′)ϕB(r′) = −1

2
(U0 − U1)

〈ϕB|Σx|ϕB〉 = −
∫

dr dr′ϕB(r)ϕB(r)v(r − r′)ϕB(r′)ϕB(r′) = −1

2
(U0 + U1)

The correlation part can be calculated using equation (2.37) where the non-interacting
Green’s function in equation (2.17) is used,

G0
σ =

ϕA(r)ϕA(r′)

ω − εA + iδ
+
ϕB(r)ϕB(r′)

ω − εB − iδ
. (3.3)

Since W c = vRv, Σc is obtained as

Σc(r,r′;ω) =
λ1(r,r′)

ω + ∆no − εB − iδ
+

λ2(r,r′)

ω −∆no − εA + iδ
(3.4)

where contour integration has been used to carry out the frequency integral. All the space
dependent parts have been hidden inside λ(r,r′) for simplicity in accordance with [19],

λ1(r,r′) = anoϕB(r)ϕB(r′)

∫
dr1 dr2v(r − r2)v(r′ − r1)ϕA(r1)ϕB(r1)ϕA(r2)ϕB(r2)

λ2(r,r′) = anoϕA(r)ϕA(r′)

∫
dr1 dr2v(r − r2)v(r′ − r1)ϕA(r1)ϕB(r1)ϕA(r2)ϕB(r2)

(3.5)

The diagonal matrix elements of the correlation part of the self-energy can finally be found
to be

〈ϕA|Σc|ϕA〉 =
ano

ω + ∆no − εB − iδ
UAB,ABUAB,AB +

ano
ω −∆no − εA + iδ

UAA,ABUAA,AB

=
1

4

ano(U0 − U1)2

ω + ∆no − εB − iδ
+ 0

(3.6)

where UAA,AB = 0 is found by again expanding ϕA,B in the orbital basis. Similarly the matrix
element for the bonding state becomes

〈ϕB|Σc|ϕB〉 =
1

4

ano(U0 − U1)2

ω −∆no − εA + iδ
(3.7)

Next the self-screening correction described in Section 2.7 is applied to the system.
Rewriting the Green’s function of the system in equation (3.3) in terms of gm according
to equation (2.41), the non-interacting Green function of the system is

G0
σ =

ϕA(r)ϕA(r′)

ω − εA + iδ
+
ϕB(r)ϕB(r′)

ω − εB − iδ
= gA + gB. (3.8)
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Following the prescription we define Gmσ = Gσ − gmσ and obtain

GA = G0
σ − gA = gB (3.9)

GB = G0
σ − gB = gA (3.10)

for each of the spins, and the polarization function can straightforwardly be found by carrying
out the integral in

PAσ(r,r′;ω) = − i

2π

∫
dω′

[
GA(r,r′;ω + ω′)GA(r′,r;ω′) +G0

−σ(r,r′;ω + ω′)G0
−σ(r′,r;ω′)

]
.

(3.11)
Since GAGA has poles only in the upper half-plane the contour can be closed in the lower

one giving no contribution to the polarization function. Hence PAσ = −iG0
σG

0
σ, which is half

the one found for the uncorrected case, namely P = −2iG0G0. In the same way it follows
that PBσ = PAσ. Using the RPA equation (2.23), it can easily be verified that the response
function will be of the same form as for the uncorrected case

Rss
Aσ(r,r′;ω) = ϕA(r)ϕB(r)

[
ass

ω −∆ss + iδ
− ass
ω + ∆ss − iδ

]
ϕA(r′)ϕB(r′). (3.12)

where only ∆ss =
√

∆ε2 + 2UAB,AB∆ε and ass = ∆ε/∆ss have changed for the self-screening
correction compared to the usual RPA. Furthermore, Rss

Bσ = Rss
Aσ. A comparison between

the approximate results and the exact results will be presented later on in Section 5.1.1.
Proceeding identically to the calculation of Σ above for the uncorrected case, the exchange
part is noted to be the same as in equation (3.2), since only the screening in the correlation
part will be affected. Next the diagonal matrix elements for the correlation part becomes

〈ϕA|Σc
ss|ϕA〉 =

1

4

ass(U0 − U1)2

ω + ∆ss − εB − iδ

〈ϕB|Σc
ss|ϕB〉 =

1

4

ass(U0 − U1)2

ω −∆ss − εA + iδ
.

(3.13)

To check how the correction affects the system the HOMO-LUMO gap between the two
states can also be calculated. The gap caused by the one-particle and exchange energies are
the same for both cases

εA − εB + 〈ϕA|Σx|ϕA〉 − 〈ϕB|Σx|ϕB〉 = 2t+ U1,

and the total gaps can thus be calculated to be using a perturbation example of the quasi-
particle equation, which will be further explained in Section 4.1,

∆EGW = 2t+ U1 + 〈ϕA|Σc|ϕA〉 − 〈ϕB|Σc|ϕB〉 = 2t+ U1 +
∆ε

∆no

(U0 − U1)2

∆ε+ ∆no

∆EGW−ss = 2t+ U1 + 〈ϕA|Σc
ss|ϕA〉 − 〈ϕB|Σc

ss|ϕB〉 = 2t+ U1 +
∆ε

2∆ss

(U0 − U1)2

∆ε+ ∆ss

.

Additionally, when using the self-polarization correction outlined in section 2.8 instead
of the self-screening correction, which was not done in [19], we find the response function to
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only differ from the self-screening ones by a factor of two. This also causes the correlation
part of the self-energy to be twice as large:

Rsp = 2Rss
Aσ (3.14)

Σc
sp = 2Σc

ss, (3.15)

while the exchange part remains unaffected as usual. That the results would become identical
for the two approaches, except for the factor of two, could also be seen directly from a simple
argument. The expression for P 0 in equation is found by doing the contour integration
in equation (2.38) using G0

σG
0
σ + G0

σG
0
σ. This is what gives us the expression for the pα

found in equation (2.51), where a given excitation α is a combined index of an occupied
nσ and an unoccupied mσ. This occurs because the terms in the contour integration of
(
∑

n gn) (
∑

m gm) provides zero contribution if the poles are in the same half-plane, and a
non-zero one for products which have poles in both half-planes, the latter being the case
for a term with a product of an occupied and an unoccupied state. When the self-screening
correction is used, a given gnσ is removed from the calculation of P and hence all combinations
α = (nσ,mσ) with this n are removed. For this simple model there is only one other state
for a given n to couple to, and therefore only one excitation to remove. The self-polarization
correction corresponds to removing one excitation from the polarization and as there only
exists one per spin the corrected polarization functions are the same.

The difference arises when calculating the response function, where, using self-screening,
only the excitation involving spin σ is a part of Rmσ, while for self-polarization both spins are
summed over to give Rsp, because all excitations in the system are involved. Since both spins
provide equal polarization and response functions, due to not using a spin-polarized system,
we get a factor of two more with the self-polarization correction. Besides this, the rest of
the calculation is the same and the excitation energies therefore remain identical. It should
however be noted that the methods are not directly related in this way for larger systems with
several unoccupied or occupied states, as will become clear already for the two-orbital system
to be treated in the next section. The result found here also gives a first indication to the
auxiliary nature of the self-screening Rss

mσ, as only one of the spins is involved in calculating
it. In the other two cases both spins are used. This will cause the weight of the excitation
peak to be about halved as compared to the exact case, as will be further discussed in Section
5.1.1.

For the exact case the HOMO-LUMO gap can be found to be [19]

∆Eexact = −2t+ U1 +
√

(U0 − U1)2 + 16t2. (3.16)

By expanding the above expressions with respect to U0−U1

2t
< 1, we see that the exact result

and the self-screening corrected one both yield

∆E ≈ 2t+ U1 +
t

2

(U0 − U1)2

4t2
(3.17)

as was previously shown in [19], while GW and GW -sp have a factor of two larger in the last
term. Thus GW -ss agrees with the exact HOMO-LUMO gap for weak to medium interaction
strengths, which also will be analyzed further in Section 5.1.1.
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By using the Dyson equation, (2.32), a new renormalized G can be calculated using the
self-energy. It is readily seen that the off-diagonal elements ΣAB and ΣBA are zero since they
will involve UAA,AB = UAB,BB = 0. The Dyson equation can thus be written as the matrix
equation

(
GBB 0

0 GAA

)
=

(
G0
BB 0

0 G0
AA

)
+

(
G0
BB 0

0 G0
AA

)(
ΣBB 0

0 ΣAA

)(
GBB 0

0 GAA

)
(3.18)

which can be inverted as G = [1−G0Σ]−1G0 and is found to take the form

(
GBB 0

0 GAA

)
=

 G0
BB

1−G0
BBΣBB

0

0
G0

AA

1−G0
AAΣAA

 (3.19)

This expression holds for all three cases with Σ, Σss and Σsp being used respectively. These
renormalized Green’s functions will be compared to the exact one in Section 5.1.1.

3.2 Two-orbital system

The second model considered is a Hubbard dimer with two orbitals per site. Although not
being an overly complicated system it is cumbersome to solve analytically, and therefore
a numerical approach was taken. Also for this model only two electrons with total spin 0
are considered, giving a total of 16 states in the exact case. The code produced to solve
the problem is based on a previous work [24]. The diagonalization of the Hamiltonian and
calculation of the response function of the system in question within RPA and for the exact
case are maintained as before, while the calculation of the self-energy and Green’s function,
as well as the self-screening and self-polarization schemes, have been added. In the model
the parameters U0, t2, t3, and ε1 will be varied to see their effects on the results, while t1 = 1
will be kept fixed as a reference point as in the one-orbital system. ε0 is set to 0 as only the
separation between the orbital energies is important since an overall constant can always be
added.

The exact Hamiltonian is obtained in matrix form by calculating the matrix elements
〈i| c+

kσclσ |j〉, for all states i,j = 1, . . . ,16, and the orbitals k,l = 1, . . . ,4 are labeled according
to Figure 2.1. The non-zero matrix elements are assigned values according to the two-orbital
Hamiltonian in equation (2.7). After a subsequent diagonalization, the response function is
calculated using equation (2.19) and the previously obtained matrix elements. The exact
Green’s function is directly obtained using equation (2.9) after also the N ± 1 Hamiltonians
have been diagonalized and the matrix elements with the N = 2 ground state have been
calculated. The self-energy is in turn simply acquired by inverting the Dyson equation as
Σ = G−1

0 −G−1.

To calculate the quantities within GWA, instead a mean-field Hamiltonian for each of the
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spins is solved self-consistentlyt:

HMF 2 orb =


b2

1U0 t1 0 t2

t1 b2
2U0 t2 0

0 t2 ε1 t3

t2 0 t3 ε1

 (3.20)

with the matrix elements being in the basis states where the electron under consideration
occupies each of the four orbitals in Figure 2.1. Here the ni↑ni↓ term has been approximated
as ni↑〈ni↓〉, and similarly for the down-spin electron, such that the given electron only feels
the average presence of the other one. To ensure convergence a mixing parameter x = 10−5

is introduced, with the expansion coefficients bi of the ground state in the orbital φi being
modified as bi =

√
(bold
i )2(1− x) + (bnew

i )2x to mix the old and new densities after each
iteration. As the system is not spin-polarized, the mean-occupation will be the same for both
spins. The non-interacting Greens function can subsequently be found using equation (2.17),
and the GW, GW -ss and GW -sp calculations are performed as outlined in sections 2.6 – 2.8,
using the matrix formalism described in Section 2.9. The results are presented and discussed
in Section 5.1.2.

It was noted for the one-orbital model that the direct correspondence between the self-
screening and self-polarization correction schemes found there does not necessarily apply to
larger systems. Indeed it is seen that they differ for the two-orbital model, even though they
are based on the same principle of removing the issue of an electron screening itself. To see
this we consider the four eigenstates arising from diagonalizing the mean-field Hamiltonian,
schematically drawn in Figure 3.1a.

Figure 3.1: a) Schematic drawing of the eigenstates of the non-interacting system with only
the lowest orbital occupied. b) The system as viewed from the self-screening perspective,
where the excitations involving g1↑ have been marked out. c) The system from the self-
polarization perspective, with all possible excitations for the up-spin electron being shown.

When observing the system from the point of view of the self-screening correction, the
important aspect is how removing a given state will affect the polarization. If we take
(mσ) = 1 ↑, which is the only occupied state, it is clear that upon removal of this g1↑ all the
excitations will be removed for the spin, shown in Figure 3.1b. This occurs when doing the
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contour integration in equation (2.38) since occupied states will be coupled to unoccupied
states to give the polarization in the form of equations (2.50) and (2.51), as also discussed for
the one-orbital model. This means that the only channels still contributing to the polarization
are for the other spin, i.e. effectively we could see it as P1↑ = −i(0 + G↓G↓). If instead the
self-polarization correction is used, the contour integration has already been carried out and
the system can be viewed as having three excitations for each spin, drawn in Figure 3.1c. The
new polarization propagators calculated in equation (2.53) remove one of these excitations,
α = 1,2,3, each.

Comparing the two approaches it becomes clear that they are similar but not the same, as
neither of the Pα, with only one excitation removed, is the same as P1σ where all excitations,
three in this case, have been removed for the given spin. Nevertheless, if instead m = 2 (or
m = 3,4) was considered we would see that Pmσ=2↑ = Pα=1, as can be seen directly from that
the only excitation involving m = 2 is the one designated α = 1 in Figure 3.1c. Thus the same
excitation is removed in both schemes, creating identical polarization functions. A general
conclusion can then be drawn: a system with only one possible excitation, for any given
state, will have the same modified polarization propagators, Pα and Pmσ, for both schemes.
However, whenever any state is involved in two or more possible excitations there will be
polarization propagators which will be different for the two approaches; the self-screening
scheme will remove all of the excitations involving this state, while the self-polarization at
most removes one excitation.
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Section 4

Ab initio calculations for real materials

Calculating material properties from first principles is an important application for electronic
structure methods. As was described in section 2.6, GW has proven to provide good agree-
ment with experiments in many cases and is today a widely used method. To carry out the ab
inito calculations in this work an older version of the GW code SPEX [11,20,26], previously
modified by Rei Sakuma [25] was used. It was further modified in this work to also include
the self-screening correction for GW. As input to SPEX the DFT code FLEUR [20] is used
to provide the initial wavefunctions and eigenenergies used in the GW calculations.

4.1 The SPEX code

SPEX is an all-electron code, treating both valence and core electrons, using the full-potential
linearized augmented-plane-wave (FLAPW) method. The polarization matrix is expanded
in a mixed-product basis (MPB), denoted Mk

I , consisting of products of the basis func-
tions within the FLAPW method, obtained from FLEUR. The basis consists of interstitial
plane waves in a so-called interstitial region surrounding muffin-tin spheres, which are non-
overlapping, wherein there are numerical wavefunctions [26]. The DFT wavefunction for a
given band n takes the following form

ϕσnk(r) =


1√
N

lmax∑
l=0

l∑
m=−l

1∑
p=0

Ankσalmpu
σ
almp(r−Ra) , r ∈MT (a)

1√
V

∑
|k+G|≤Gmax

cnkσG ei(k+G)r , r ∈ IR
(4.1)

with the muffin-tins (MT) being centered at an atom a at position Ra in the unit cell, and
cnkσG and Ankσalmp being expansion coefficients with the condition to have continuity in its value
and first derivative at the boundary between the muffin-tin and interstitial regions (IR). The
uσalmp are numerical functions, N the number of particles, and V the volume of a crystal. For
more details on the FLAPW basis and the mixed product basis employed in SPEX see e.g.
Refs. [26, 27]. The energy corresponding to a given band n and k-point k is εσnk, providing
the DFT band structure.

In order to calculate the wavefunctions and energies, FLEUR takes as input material data
in the form of the unit cell, as will be outlined in Section 4.3. Related to the actual numerical
calculations several adjustable cut-off parameters are introduced in FLEUR, such as Gmax in
equation (4.1), which gives the plane wave cut-off of the wavefunction, and lmax, the angular
momentum cut-off inside the muffin-tins. Also the muffin-tin radius for the atoms can be
varied, and the number of bands and k-points in the discretized BZ, for which the states are
calculated, have to be chosen. For a given set of parameters the code is then iterated until
the charge density is converged. Thereafter the cut-offs are improved in new runs until there
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is convergence in properties of interest. When doing the DFT computations in this work
the convergence of the band structure and total energy was checked. Furthermore, various
approximations of the exchange-correlation functional are available; in this work only LDA
has been emplyed however. A short overview of DFT and LDA, which is used in this work,
are presented in Appendix A.

In short, the flow of a SPEX calculation is as follows. The polarization PIJ and Coulomb
matrices vIJ are first obtained in the MPB. The polarization takes the form [26]

PIJ(k,ω) =
∑
σ

BZ∑
q

occ∑
n

unocc∑
n′

Mσkq
Inn′M

σkq ∗
Jnn′

(
1

ω + εσnq − εσn′q+k + iδ
− 1

ω − εσnq + εσn′q+k − iδ

)
(4.2)

where the summation over the Brillouin zone (BZ) is carried out using the tetrahedron
method. For notational simplicity the quantity Mσkq

Inn′ is introduced according to

Mσkq
Inn′ =

〈
Mk

I ϕ
σ
nq

∣∣ϕσn′q+k

〉
=

∫
Mk∗

I (r)ϕσ∗nq(r)ϕσn′q+k(r) dr, (4.3)

where Mk
I (r) is the mixed product basis used to expand products of the ϕσnk(r) wavefunctions

in the separate regions. Inside the MT the basis describes products between two numerical
functions uσ∗almp and uσal′m′p′ , and I is a combined index of the a,l,l′,m,m′,p and p′ indices.
The resulting products are then artificially made into Bloch functions, providing the k-
dependence. The MPB inside the IR is instead a new set of interstitial plane waves, which
are products of each other, and the index I represents a new G with at most twice the cutoff,
≤ 2Gmax, for the new basis. For more details on the mixed product basis see Refs. [26,28]. To
simplify the calculation of the dielectric function ε, used to calculated the screened interaction
W , the polarization matrix is transformed into the Coulomb eigenbasis, Ek

µ , with eigenvalues
vµ(k). The equations used in GWA to obtain W can now simply be rewritten as [26]:

εµν(k,ω) = δµν −
√
vµ(k)Pµν(k,ω)

√
vν(k) (4.4)

Wµν(k,ω) =
√
vµ(k)ε−1

µν (k,ω)
√
vν(k) (4.5)

The self-energy is subsequently found by carrying out the contour integration similarly to
as in equation (2.35). As usual the self-energy is split up into the exchange and correlation
parts 〈

ϕσnq
∣∣Σσ

x

∣∣ϕσnq〉 = −
BZ∑
k

occ∑
n′

∑
I,J

vIJ(k)Mσkq ∗
Inn′ M

σkq
Jnn′ (4.6)

〈
ϕσnq
∣∣Σσ

c (ω)
∣∣ϕσnq〉 =

i

2π

BZ∑
k

all∑
n′

∑
µ,ν

Eσkq ∗
µnn′ E

σkq
νnn′

∫
dω′

W c
µν(k,ω

′)

ω + ω′ − εσn′q+k + iδsgn(εσn′q+k)
(4.7)

where the overlap matrices Eσkq
νnn′ are defined similarly to equation (4.3), but instead of the

MPB the Coulomb eigenbasis is used. The complete frequency dependent self-energy is then
obtained and can further be analyzed outside of SPEX. It is used to find the quasi-particle
energy from equation (2.16), where first order perturbation theory is employed to simplify
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the equation. Herein the self-energy is taken as the one in the DFT basis, as usually within
first order perturbation theory, instead of Ψσ

nq. The quasiparticle energies providing the
bandstructure are then to first order given by [3]

Enq = εnq + 〈Σx〉+ 〈Σc(Enq)〉 − 〈vxc〉 (4.8)

with −vxc being present to remove the double counting from the DFT energies.
As the Coulomb matrix v and the screened interaction W diverge at the Γ-point (k = 0),

this is treated as a special case due to the important contribution it yields. Reference [26]
provides the details on how the Γ-point is treated in the SPEX code by splitting up the
matrix into body, wing, and head elements and treating these separately.

To minimize the computational effort needed, SPEX reduces the set of k-points to the
irreducible BZ (IBZ), from which the full BZ can be obtained using the possible space and
time-reversal symmetries allowed in the system. In this way the quantities under consider-
ation only have to be calculated for these IBZ points, significantly reducing the number of
k-points required. In equations (4.2), (4.6), and (4.7) the integrations must be carried out
for a larger number of points due to the additional dependence on k + q. However, it can
efficiently be done by instead using an extended IBZ. In addition, the this version of the code
is parallelized to calculate PIJ , εµν , and Wµν for each of the k-points in the IBZ individually,
since they do not depend on one another. As a consequence the self-energy is also split up
into components Σk(q) for each k and q in equation (4.7) [25], with the full self-energy finally
being re-summed as Σ(q) =

∑
k Σk(q) at the end of the calculation for each state ϕσnq.

4.2 The self-screening correction in SPEX

The modification of the SPEX code to incorporate the self-screening correction in section
2.7 is in essence to calculate a new Pm

IJ(k,ω), for a given band in equation (4.2), with the
state labelled by m removed. Then for each of these new polarization matrices, εmµν and Wm

µν

are calculated and subsequently used in a modified version of equation (4.7) to obtain the
self-energy. The expression is altered according to

〈
ϕσnq
∣∣Σσ

c (ω)
∣∣ϕσnq〉 =

i

2π

BZ∑
k

all∑
m

∫
dω′

W c
m(k,ω′)

ω + ω′ − εσmq+k + iδsgn(εσmq+k)
(4.9)

where the W c
m has been connected with the corresponding gm, as in equation (2.49); that is

the state m for which W c
m is calculated is the same as in the denominator. The summation

over the µ and ν basis as well as the products with Eσkq
µnm have been omitted for simplicity.

Once more it can be noted that only the correlation part is affected by the self-screening
correction and the exchange part remains the same as in the original version. This is because
all screening effects are taken into account in W c, while v = W −W c is the bare interaction
for which the screening does not come into effect.

In practice, the bracket in equation (4.2) can be considered as a particle-hole factor,
originating from pairs of occupied and unoccupied bands. When calculating the polarization
these factors are multiplied by the transformation matrices, and the products are summed
over all q-points, bands, and spins in order to give the polarization at k. In order to remove

28



a given band to obtain Pm, it suffices to remove all of the particle-hole factors involving that
given m as either an occupied or unoccupied state. For a spin-polarized calculation this is
done by directly setting the given (ph-factor) = 0, while for the non-polarized case the factor
is instead set to 1/2, as the contribution from the other spin is equivalent to the one removed.
This approach eliminates the need to explicitly do the sum over spins in the latter case, as
would otherwise have been necessary, and instead retains that the sum can be substituted
for a factor of 2, i.e.

∑
σ = 2.

The dielectric matrix and screened interaction are thereafter calculated for each of the
Pm according to equations (4.4) and (4.5). Extra care has to be taken when calculating the
contribution from the Γ-point, as stated in the previous section. As a consequence of the
scheme, the aforementioned head and wing elements also would need to be treated for each
of the bands, however currently this has not been implemented and only the body elements
are treated properly; the non-corrected elements are presently used instead for the wing and
head elements.

Due to that the Pm, εm, ε−1
m , and Wm arrays have to be saved for each of the bands,

the memory and time requirements quickly become huge as many unoccupied states are
necessary for a correct description. A way to reduce the computational effort significantly is
therefore to reduce the correction to only encompass a few bands, and the modifications were
implemented with this in mind. When doing calculations one begins by first identifying the
nssc states to be treated with the self-screening correction from the DFT results. Then the
self-screening corrected version of SPEX is set to create nssc + 1 different Pm, with m = 0
denoting the uncorrected case. When spin-polarization is used, the number of nssc which have
to be calculated are twice the number of bands removed, as Pm↑ 6= Pm↓ in this case, although
through the rest of this work we will limit ourselves to non-polarized systems. Calculating
εm, ε−1

m and Wm are done by looping over the routines using the nssc + 1 different quantities.
Finally when doing the summation for the self-energy the different Wm are connected with
their corresponding gm, as usual in GW -ss. However, now the bands n which are not treated
with the self-screening correction will all use the normal screened interaction Wn = W0 from
GWA. The expression schematically takes the form

Σ = Σx +
∑
n′

gn′W c
n′ (4.10)

W c
n′ =

{
Wm if n′ = m subject to self-screening correction

W0 if n′ not subject to self-screening correction
(4.11)

Since the self-screening is expected to be largest for localized states, a choice can be made
to only calculate the self-screening corrected Wm for these states, while all other retain the
usual W . For instance, GaAs is a good candidate to employ this approximate scheme too.
As can be seen in Figure 4.1 there are narrow semicore bands located around -15 eV, relative
to the highest occupied state, in the DFT bandstructure obtained from FLEUR (details on
the input used for these calculation are given in Section 4.3). It is known that narrow bands
correspond to localized states, and by analyzing the corresponding density of states (DOS) in
Figure 4.1 it is is indeed seen that the band originates almost completely from the 3d orbitals.
Employing the approximate self-screening correction can then be done by calculating Pm for
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the m = 1, . . . , 5 bands from the localized 3d orbitals, with the rest of the bands using the
common P calculated for m = 0.

Figure 4.1: Left: GaAs Bandstructure using the DFT code FLEUR. Right: GaAs density of
states using FLEUR, with the contribution from the 3d orbitals marked out.

It is of course possible to also include more of the higher lying bands using the correction,
as was also done in additional computations for bands to just above the Fermi level for
comparison. The elements the scheme was applied to are given in the next section. For the
semiconductors considered the properties investigated are the positions of semi-core states,
by calculating their removal energies relative the lowest unoccupied states, and the width of
the band gap. The results obtained using the modified code are presented in Section 5.1.3
where they are compared to experimental values, and those calculated within GWA.

4.3 Material data

The only input which is required for an ab initio calculation is information about the unit
cell of the material in question, in the form of the lattice constant a0 (in atomic units),
the primitive lattice vectors ~ai for the given crystal structure, and the basis. The basis
details the atomic positions and their respective atomic numbers, Z, also providing the
number of electrons. In the current work calculations using the self-screening correction
scheme, as outlined in the previous section, have been performed for four bulk semiconductors;
GaAs, ZnSe, Ge, and ZnO. The input data used is given in Table 4.1 and was taken from
References [29,30].

The diamond structure is a face-centered cubic lattice with a two atom basis. It has
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Material Structure a0 c

GaAs a Zincblende 10.68

ZnSe a Zincblende 10.71

Ge a Diamond 10.70

ZnO b Wurtzite 6.14 9.828

Table 4.1: Crystal structure and lattice constant a0 in atomic units for the materials used in
this work. The c parameter is also given for wurtzite ZnO. The structure is further detailed
in the text. a Ref. [29], b Ref. [30]

primitive lattice vectors
~a1 = (0.0, 0.5, 0.5)a0

~a2 = (0.5, 0.0, 0.5)a0

~a3 = (0.5, 0.5, 0.0)a0

(4.12)

and the basis atoms are separated with a displacement of a0/4 along the diagonal, placed at
the origin. For Ge the basis was chosen as:

Z1 = 32, (0.125, 0.125, 0.125)a0

Z2 = 32, (−0.125,− 0.125,− 0.125)a0.
(4.13)

The zincblende structure is the same as the diamond structure except that the basis consists
of two different elements, causing each type to be surrounded by four nearest neighbours of
the other element. For both GaAs and ZnSe the basis was chosen as:

Z1, (0 ,0, 0)

Z2, (0.25, 0.25, 0.25)a0.
(4.14)

where Z1 = 31, Z2 = 33 for GaAs and Z1 = 30, Z2 = 34 for ZnSe. For the ZnO calculations
the example input file provided by the FLEUR-project found in Ref. [30] was used. For a
detailed description of the wurtzite structure see e.g. Ref. [31].
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Section 5

Results and discussion

In the following, the results obtained during this work will be presented and discussed. First
the model calculations will be analyzed, where the validity of the GW -ss and GW -sp schemes
will be compared to the common GW approximation in different parameter ranges. In this
part the parameters are given in units of t = 1. Thereafter the Ab initio results for the band
structure of bulk semiconductors, for which the unit cells are given in Section 4.3, will be
presented and compared to experimental values obtained from the literature.

5.1 Model calculations

5.1.1 One-orbital system

To analyze the effect of the two schemes the excitation energies of the system can be found
from the spectral function of the response, S, which is straightforwardly obtained from the
response functions R, RRPA, Rss

mσ, and Rsp. As previously argued, the self-screening corrected
response functions are only auxiliary quantities and are merely Rss

Aσ = Rsp/2 for this model.
Therefore only the self-polarization corrected one will be compared to the exact and RPA

Figure 5.1: The trace of the spectral part of the response function for the exact (blue, full
line), RPA (green, dash-dotted line), and RPA with self-polarization correction (red, dashed
line). Upper: t = 1, U0 = 0.5, U1 = 0.2, lower: t = 1, U0 = 2, U1 = 0.2.
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response functions. In Figure 5.1 the traces of the spectral function of the response, S1 orb =
SAA,AA +SBB,BB = S11,11 +S22,22 which is independent of basis, are plotted for U0 = 0.5 and
2, and U1 = 0.2.

For a small difference, (U0 − U1) = 0.3, it is clear that the self-polarization correction
is almost identical to the exact result, while the RPA response provides an incorrectly, too
large, excitation energy. When (U0 − U1) is increased the error within RPA increases while
the self-polarization correction worsens and gives a too small excitation energy. As can be
seen in Figure 5.1, around (U0−U1) = 1.8 RPA is just slightly better at describing the peak
position than when using the self-polarization correction, although the errors are of opposite
sign.

As the peak structure of S provides the excitation energies, so does the poles of R. We
have obtained the position of these analytically in Section 3.1 as ∆no for RPA, ∆ss for self-
screening and self-polarization, and ∆exact = ε3− ε1 for the exact case. These are plotted for
a fixed U1 = 0.2 in Figure 5.2 as a function of U0. It is clear that for small (U0 − U1) the
excitation energy calculated using the correction schemes is almost identical to the exact one.
Although RPA is in better agreement for (U0 − U1) > 1.6 and in decent agreement also for
smaller values, this is more an artifact of that it first underestimates the energy for negative
(U0−U1) and thereafter overestimates it for a range of U0, whereas the corrected ones follow
closely the exact curve for small values, whereafter it immediately underestimates the energy.

Figure 5.2: Excitation energy ∆ for the exact (blue, full line), RPA (green, dash-dotted line),
and self-polarization corrected (red, dashed line) cases plotted as a function of U0 for a fixed
U1 = 0.2. The lower figure shows a zoom in of the box in the upper one.
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Also the HOMO-LUMO gap, ∆E, for the full range of interaction strengths can provide
insight into how well the corrected schemes work. By plotting the gap in Figure 5.3, for a
fixed U1 = 0.2, it is seen that the factor of two by which GW -ss and GW -sp differ comes
into effect. GW -ss proves to be significantly better than the rest for small (U0 − U1), as was
indicated by expanding the gap in Section 3.1 whereupon the exact result was obtained, and
almost perfectly describes the behaviour of it. Up to U0 ≈ 1 the self-screening correction
provides the best agreement, and in-between U0 ≈ 1 and U0 ≈ 2.6 GWA is in best agreement
in the absolute value of the gap. Even though GW seems to be better, it is not because it
describes the trend of the gap for increasing U0 well, but rather due to first overestimating
and then subsequently underestimating it, providing an accidental improvement in the region.
After U0 ≈ 2.6 GW -sp clearly gives the best agreement with the exact result. In this case it
is also evident that GW -sp overestimates the gap for a longer duration than both GW and
GW -ss and thereafter underestimates it. However, a distinction compared to the accidental
improvement seen for GW becomes clear by further increasing U0 to exaggerated values, as
can be seen in Figure 5.4. It is here visible that GW remains slightly better than GW -ss, in
agreement with the previous results for larger (U0−U1) obtained for S above. It nevertheless

Figure 5.3: The HUMO-LUMO gap plotted as a function of U0 for the exact (blue, full
line), GW (green, dash-dotted line), self-screening corrected GW (black, dotted line) and
self-polarization corrected (red, dashed line) cases for fixed U1 = 0.2. The lower figure shows
a zoom-in for small U0 marked out by the box in the upper figure.
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becomes clear that GW -sp gives a significantly better description of the trend of the gap
for large values of U0, while for small (U0 − U1) being approximately of the same accuracy
as that of GW . The improvement for GW -sp is therefore probably not only due to the
accidental crossing which GW was attributed with, but also from the fact that it seems to
give a better picture of the behaviour of the gap at very large U0 in general. This is verified
by expanding ∆E for U0 � 1, where it is found that both the exact and GW -sp provide
∆Eexact = ∆EGW−sp ≈ U0 while GW and GW -ss goes as U0/2. It is thus clear that GW -
sp provides a qualitatively correct description of the gap for large U0, something the other
schemes fail to do. This could potentially be a very important feature if it also extends
to more complicated systems, however, it has not been investigated for the more complex
two-orbital model in this work.

Figure 5.4: The HUMO-LUMO gap plotted for exaggerated values of U0 for the exact (blue,
full line), GW (green, dash-dotted line), GW -ss (black, dotted line) and GW -sp (red, dashed
line) for fixed U1 = 0.2.

Finally, also the spectral functions A using the renormalized G, calculated within GW ,
GW -ss and GW -sp, can be compared to the exactly calculated one. The effect is limited
for the main peak in the regime of small U0, yet GW -ss and GW -sp seem to improve the
placement of the satellite features by about half of the error in GW , which can be seen in
Figure 5.5. Increasing U0 maintains the improved description of the satellite features for both
correction schemes, while the placement of the GW -ss main peak worsens slightly compared
to GW . However, similarly to as for the HOMO-LUMO gap the GW -sp scheme seems to
also provide the best description of the (N ± 1) excitation energies in this regime. Note that
the heights of the peaks are not directly comparable as the iδ broadening has been chosen
differently for the exact and approximate schemes, where A for the latter are calculated using
equation (2.33) to properly account for the shift. Their integrated weights on the other hand
are the same, as they should due to it being related to the number of particles in the system
according to equation (2.12).
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Figure 5.5: The trace of the spectral function A for the exact (blue, full line), GW (green,
dash-dotted line), GW -ss (red, dashed line) and GW -ss (black, dotted line) cases. Left:
U0 = 1, U1 = 0.2. The left inset is a zoom-in of the marked main peaks, and the right inset
is of the satellite features. Right: The main peaks for U0 = 5, U1 = 0.2.

5.1.2 Two-orbital system

The two-orbital system is also analyzed for all four cases: the exact one, normal RPA and
GW , self-screening corrected RPA and GW , and self-polarization corrected RPA and GW .
The effects of the schemes will be compared by observing how they affect the matrix elements
of S, which gives the excitation energies in the system, as well as A, giving the excitation
energies for the N ± 1 electron systems. Due to being a more complicated system with
additional variable parameters (U0, t2, t3, ε), all parameters except one will be kept fixed at
a time to investigate their respective effects.

In Figure 5.6 U0 is varied between 0.5,1 and 2 with ε1 = 2, t2 = 0.2 and t3 = 0.5 being
kept fixed for the S11,11 + S22,22 elements. It is here seen that, similarly to the one-orbital
model, the self-polarization correction and self-screening correction give very good agreement
for small interaction strengths U0. Both the main peak and the satellite are well-described
for these schemes, while RPA only captures the satellite in a satisfying manner. In addition,
also the weight of the main excitation peak is improved when using the self-polarization
correction. Furthermore we once again see the auxiliary status of the Rmσ calculated using
the self-screening correction scheme. R1σ, which is plotted here, is approximately halved
as compared to both the exact and the self-polarization cases. This occurs, as explained in
Section 3.2, because all excitations for a given spin are removed from the polarization function
when the ground state, m = 1, is removed within the scheme. The only contribution therefore
comes from the other spin and as the system is not spin-polarized the two spin channels
provide an equal weight, leading to the weight becoming halved. If instead another gmσ was
chosen, the effect would be seen on the peak corresponding to the given excitation, which
then is approximately halved, while the rest retain their weights from both spins.

As U0 is increased, the agreement of the position of the main excitation peak worsens for
the self-screening and self-polarization schemes. For U0 = 1 the agreement is still slightly
better than the overestimaton found for RPA, but similarly to the one-orbital model the
excitation energy is instead underestimated. For both schemes, however, the weights for
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Figure 5.6: S11,11 +S22,22 plotted as a function of ω for the exact (blue, full line), RPA (green,
dash-dotted line), R1σ from the self-screening corrected RPA (black, dotted line), and self-
polarization corrected RPA (red, dashed line) cases for varied U0 and fixed ε1 = 2, t2 = 0.2
and t3 = 0.5. Upper: U0 = 0.5. Middle: U0 = 1. Lower U0 = 2.

both peaks present are significantly better. Increasing U0 further the peak structure becomes
more complicated, and already for U0 = 2 it is difficult to draw any conclusion as to which
describes the structure the best. The placement of the main excitation peak seems to be as
good within RPA as it is for the self-polarization scheme, while the weight seems to favour
RPA. The self-screening scheme gives a too low excitation energy, but a better weight as it
still is only roughly halved compared to the exact response. Increasing U0 even more than
what is shown here, it is found that the correction schemes give worse excitation energies
than RPA, although all at poor agreement with the exact result. The case is similar to the
one-orbital case though, where RPA now underestimates the excitation energy instead of
overestimating it, as for smaller U0. While RPA and the self-screening scheme only give rise
to three visible peaks, it is found that the self-polarization one also predicts the higher energy

37



excitation found in the exact case, although at a lower energy. As the weight is significantly
larger than the exact peak it is likely that too much of the weight from the main peak has
been transferred here, as well as to the too large peak at lower energy. An important issue
with the self-polarization scheme can however be noted both for U0 = 1 and 2: S, which
should be strictly positive for ω > 0, is found to be negative in a short range. The scheme
therefore has problems with causality, which need to be addressed.

Varying t2 instead in Figure 5.7, it is seen that an increase in the parameter causes both
RPA and the correction schemes to provide better estimates of the excitation energy of the
main peak, as well as the peak weights. The improvement, however, is more pronounced

Figure 5.7: S11,11 +S22,22 plotted as a function of ω for the exact (blue, full line), RPA (green,
dash-dotted line), R1σ from the self-screening corrected RPA (black, dotted line), and self-
polarization corrected RPA (red, dashed line) cases for varied t2 and fixed U0 = 1, ε1 = 2,
and t3 = 0.5. Upper: t2 = 0.2. Middle: t2 = 1. Lower t2 = 2.
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for the correction schemes, indicating that the increase in hopping strength between the
lower and higher lying orbitals effectively mitigates the effect of the interaction. This is
reasonable physically, since allowing the electrons to occupy the higher lying orbitals to a
larger extent would on average decrease the interaction experienced by an electron, as there
only is interaction in the lower ones. Furthermore, for large t2 the negative spectral part of
the response diminishes and will for t2 = 4 be completely removed. By instead decreasing
t2 the negative weight increases. The correction to the three large peaks have almost shifted
them to the exact result, showing an improvement over RPA in the structure, albeit still
lacking the two smaller peaks present in the exact response.

Likewise when instead t3 is increased, as shown in Figure 5.8, the effect is an improvement
for the correction schemes. For t3 = 2 the main excitation peak and the lower satellite feature
are almost correctly described, a considerable improvement over RPA. The remaining weight

Figure 5.8: S11,11 +S22,22 plotted as a function of ω for the exact (blue, full line), RPA (green,
dash-dotted line), R1σ from the self-screening corrected RPA (black, dotted line), and self-
polarization corrected RPA (red, dashed line) cases for varied t3 and fixed U0 = 1, ε1 = 2,
t2 = 0.2. Upper: t3 = 0.5. Middle: t3 = 1. Lower t3 = 2.
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difference for the main peak could possibly originate in that the excitation just above the
main one, which is not captured with the approximate methods, has a part of this weight.
In addition the causality issues from the negative spectral part of the response is cured,
while for t3 = 1 it is present but almost negligible. The improvement could as before be
seen physically by that the increased hopping in-between the higher lying orbitals makes it
energetically beneficial to move away from the lower orbitals with interaction strength U0,
thereby effectively decreasing the mean interaction.

The final parameter, ε1, is varied in Figure 5.9 and does not seem to improve or worsen
the agreement to any larger extent. The largest effect is instead to remove other excitations
than the main one, and limiting the effect of varying other parameters due to the increased
gap. The increased gap between the orbitals causes an equivalent gap in the energy of
the states between the lowest two and the highest two, when observing from the mean-
field point of view, decreasing the probability of occupying the higher states as this is less
favourable energetically. Despite the apparent lack of improvement with increasing ε1, the
aforementioned limited effect of varying other parameters such as U0 should be taken into
account. By more carefully studying the excitation energy of the main peak, it is found that
the increase in ε1 marginally worsens the excitation energy within RPA. This is expected as
the effect of localizing the electrons more in the lower orbitals effectively would make the
electrons feel a larger interaction, which is the regime RPA is known to work worse for. When

Figure 5.9: S11,11 +S22,22 plotted as a function of ω for the exact (blue, full line), RPA (green,
dash-dotted line), R1σ from the self-screening corrected RPA (black, dotted line), and self-
polarization corrected RPA (red, dashed line) cases for varied ε1 and fixed U0 = 1, t2 = 0.2
and t3 = 0.5. Upper: ε1 = 2. Lower ε1 = 4.
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observing the position of the excitation within the self-polarization scheme it is found that
the increase does not worsen the result, albeit not improving it either. This could be taken
as evidence for that the self-screening still is a non-negligible part of the error for relatively
localized states, although not the major contribution. In the regime of large U0 the RPA
positions are still better, yet both underestimate the peak position once more and it could
thus potentially be explained with the accidental improvement observed in the one-orbital
model.

Also the renormalized Green’s function is compared in Figure 5.10 where Tr(A) has been
plotted, note however that equation (2.11) is used, implying that the shift is not properly
taken into account. However, the general trends for both forms of A were found to agree for
the one-orbital model and the qualitative picture are therefore believed to be the same here as
well, although the absolute peak positions are incorrect. The effect of the correction schemes
are less visible here than for the response but a few features can still be noted. Firstly, the
main peaks are very slightly improved using the self-polarization correction over the other
other two approaches for small U0, with the self-screening correction seemingly being the
worst. The effect of the [1 − G0Σ]−1 factor in calculating G = [1 − G0Σ]−1G0 is twofold;
it shifts the main peaks and gives rise to additional satellite features. Since G0 remains

Figure 5.10: Tr(A) plotted as a function of ω using the exact (blue, full line), GW (green,
dash-dotted line), GW -sp (red, dashed line), and GW -ss (black, dotted line) results for
U0 = 1, ε1 = 2, t2 = 0.2 and t3 = 0.5. Lower left: Zoom-in of the marked peak. Lower right:
Zoom-in of the marked satellite features.

unaffected by the schemes, it is reasonable that the main peaks remain largely unaffected in
the regime of small U0. The satellites are on the other hand more interesting to compare
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and provide the second major feature to be compared for the schemes. They are all shifted
to higher energies compared to the exact case, or lowered in the ω < 0 part of the spectrum,
and it is readily seen that both of the correction schemes give significant improvements to
their positions compared to GW . Finally, the issue of causality once again appears for
the self-polarization case, where A has a slightly negative part around the lower satellite
features not shown in the figure. For larger interaction strengths the main peaks are shifted
more compared to the exact result as would be expected, while the satellite features become
increasingly difficult to analyze. Smaller interaction strengths instead give a negligible shift
of the main peaks, but retain the improved positions of the satellite features described above.

5.1.3 Ab initio results for GaAs, ZnSe, Ge, and ZnO

To evaluate the self-screening correction scheme for real materials its effects on the band
structure was investigated. The results of these computations for the semiconductors GaAs,
ZnSe,Ge, and ZnO are presented in this section. The properties which were investigated were
the band gap and the position of the semicore states, and a comparison is made between
LDA, GW , GW -ss with only the 3d semicore states treated, and GW -ss with additional
bands treated to above the Fermi energy. The semicore positions were measured in two ways
to distinguish different effects; relative to the valence band maximum (VBM) and relative to
the conduction band minimum (CBM) at the Γ-point. The values stated as the experimental
energy positions relative to the CBM are obtained by adding the VBM experimental value
with the band gap. Although the 3d bands are mostly dispersionless, there is in fact a
splitting between some of them and the values stated here as the semicore energies are the
average for the bands at the Γ-point.

In Table 5.1 the results from the calculations for GaAs are presented. The computations
for the correction scheme were carried out for the five Ga 3d semicore states, as well as for
the 3d and the 15 higher lying bands (20 in total), where the valence and conduction bands
are included. As expected, the band gap is significantly improved within all of the GW
schemes compared to LDA, and is in agreement with other reported values [26]. However,
the band gap was improved even further by also including the valence and conduction bands
in the correction scheme, almost correctly predicting the experimental value. This result

GaAs LDA GW GW -ss (5: 3d) GW -ss (20) Experiment

Band gap 0.30 1.38 1.38 1.49 1.52 1

Semicore (VBM) 14.84 16.53 16.64 16.56 18.8 2

Semicore (CBM) 15.14 17.92 18.02 18.05 20.3 ∗

Table 5.1: Band gap and energy levels of the semicore Ga 3d states (in eV) in GaAs for
LDA, GW , GW -ss with only the 3d bands removed, and GW -ss with 20 bands removed. 1

Ref. [32], 2 Ref. [33]. ∗ The experimental CBM value is obtained by adding the VBM with
the band gap.

was initially unexpected as these are more extended states, and were as such believed to
not be as affected by the self-screening. On the other hand, the desired improvement in the
semicore states was not observed and the energies were only improved by about 0.1 eV for
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nssc = 5. The inclusion of additional states in the correction scheme (nssc = 20) seems to
remove this improvement when the VBM is used as the reference point, however, if instead
the CBM is used as reference the improvement is slightly larger. This indicates that the
inclusion of these bands in the scheme lowers energy of the valence band and increases the
energy of the conduction band, in total leading to the improved band gap. This would seem
to be in-line with the known fact that band gaps within HFA are too wide, since removing
the self-screening brings it closer to the unscreened picture provided by Hartree-Fock. The
obtained results for the 3d states within GW are about 2 eV lower than those found in [5].
This could, at least in part, be attested to using different exchange-correlation functionals
providing a slightly better LDA starting point of 15.4 eV relative the VBM, but it is likely
also due to the difference in the methods used for the GW calculations. The results are more
in agreement with the 16.9 eV reported in [26], where another version of the SPEX code was
used, indicating that the value obtained here is indeed accurately calculated.

Similarly the band gap for ZnSe, found in Table 5.2, is seen to significantly improve over
the LDA value using the GW schemes. The gap is further improved by the inclusion of the
additional higher lying states, as for GaAs, and almost halves the error in this case. Also
here the effect on the semicore states is on the order of 0.1 eV, far from the 2 eV discrepancy
which GW displays compared to experiment. The same tendency is once more found when
comparing the results using the VBM or CBM as reference points: the nssc = 20 calculation
is worsened and improved, respectively, relative the GW -ss calculation where only the Zn 3d
bands are removed. Also for ZnSe the GW result for the semicore states in [5] is better than
those found here by approximately 1.2 eV.

ZnSe LDA GW GW -ss (5: 3d) GW -ss (20) Experiment

Band gap 1.04 2.45 2.45 2.60 2.8 3

Semicore (VBM) 6.55 7.39 7.47 7.39 9.2 2

Semicore (CBM) 7.59 9.83 9.92 9.99 12.0 ∗

Table 5.2: Band gap and energy levels of the semicore Zn 3d states (in eV) in ZnSe for LDA,
GW , GW -ss with only the 3d bands removed, and GW -ss with 20 bands removed. 3 Ref. [34],
2 Ref. [33]. ∗ The experimental CBM value is obtained by adding the VBM with the band
gap.

Germanium is known to have an indirect band gap [32], and the semicore states were
therefore only calculated with the VBM as reference at the Γ-point. Furthermore, the unit
cell contains two Ge atoms, giving in total 10 Ge 3d bands to be treated with the correction.
As before, there is a slight improvement in the energy of the semicore levels, and the worsened
result for the nssc = 20 case is once more attributed to the lowering of the valence band. LDA
does not predict any band gap and finds it to be a metal, although only with a small overlap
of the bands around the Fermi level. It is, however, correctly described as a semiconductor
using GW , with an indirect band gap where the CBM is at the L point and the VBM at the
Γ-point. The band gap obtained is already in very good agreement with the experimental
value for GW , and it is furthermore in agreement with other reported values [26]. The
application of the correction to the states around the Fermi level is seen to produce a slightly
worsened value for Ge on the other hand. This is attributed to that the correction removes
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the self-screening error, which is still present although cancelled by other effects in GW ,
causing the band gap to widen regardless of the already good description.

Ge LDA GW GW -ss (10: 3d) GW -ss (20) Experiment

Band gap – 0.72 0.72 0.80 0.741

Semicore (VBM) 24.75 26.94 26.99 26.93 29.64

Table 5.3: The indirect band gap and energy levels of the semicore 3d states (in eV) in Ge
for LDA, GW , GW -ss with only the 3d bands removed, and GW -ss with 20 bands removed.
1 Ref. [32], 4 Ref. [35].

For ZnO only the LDA, GW , and GW -ss with nssc = 20 computations where carried out
due to time constraints. However, as the results follow the previously described trend of a
worsened semicore energy with the VBM as a reference and an improved one if the CBM
instead is used, it is very likely that there would be an improvement in the Zn 3d semicore
states of ZnO as well if the correction was limited to them. It can be noted that the Zn 3d
states are not well separated from an O 2p state in LDA, which is a known issue [4]. The
average was therefore taken to include this O 2p state as well, although it should not make
any difference as they are close in energy. The position of the semicore states calculated
within GW is in good agreement with that found in [4] at 6.4 eV relative the VBM, and once
more the effect of the correction scheme on the localized states is almost negligible. It can
further be noted that the O 2p state separates in the GW calculations, enabling them to be
averaged separately. The band gap is once again widened, although the discrepancy for GW
is too large for the self-screening correction to correct it.

ZnO LDA GW GW -ss (20) Experiment

Band gap 0.76 2.63 2.76 3.44 1

Semicore (VBM) 5.27 6.31 6.30 7.5, 8.8 2

Semicore (CBM) 6.48 8.94 9.07 10.9, 12.2 ∗

Table 5.4: Band gap and energy levels of the semicore 3d states (in eV) in ZnO for LDA,
GW , and GW -ss with 20 bands removed. 1 Ref. [32], 2 Ref. [33]. ∗ The experimental CBM
value is obtained by adding the VBM with the band gap.

To finalize the discussion on the self-screening correction implemented in SPEX, a compar-
ison of the approximate increase in time and memory required to carry out the computations
is needed. As usual in GW calculations the main time duration is spent on the self-energy
summation, however this remains largely unaffected with the addition of the correction. This
comes from that the sum over the bands n′ is carried out irrespectively of whether or not
the correction scheme is used; the only increase in time is from a short loop deciding which
Wm to use. The preceding calculation of Pm, εm and Wm are largely affected though, as they
must be carried out (nscc + 1) times. Already for 10-20 bands, the time requirements are
on the same order, or larger than, the duration for the computation of Σ. Treating ∼ 100
bands would thus be very time consuming in the current implementation. It should be noted
though that the calculations for each m are independent until the summation in Σ, and could
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as such be parallelized. Thus the treatment of a large number of bands within the scheme
with approximately the same time-requirement as for a usual GW calculation would be pos-
sible, although with an increase in the number of cores required. The main issue would then
instead be the memory requirements, as the arrays have to be stored as (nssc +1) · (size of P),
et cetera. A solution would be to have the arrays calculated in turn and saved to the disk,
with the extra time requirement this would entail, until they are used in the summation in
Σ.
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Section 6

Conclusions

For the model calculations the main conclusion which can be drawn is regarding how the
correction schemes from [19] compare to GWA with a change in interaction strength U0.
For small U0 they are found to significantly improve the agreement with the exact results,
and for some properties they are seen to almost eliminate all errors incurred by RPA and
GWA. Specifically for the one-level model the schemes work very well for describing the
excitation energy of the system and improving the satellite features of A in the regime
of small interaction strengths. With an increase in the interaction, the excitation energy
worsens, but the improved description of the satellites is maintained. The differences between
the self-screening and self-polarization schemes is furthermore evident here, with a halved
weight of Rss

mσ compared to Rsp due to the treatment of the spin. Also the behaviour of
the HOMO-LUMO gap shows the contrast clearly; the self-screening correction provides the
exact result for small (U0−U1) , while the self-polarization correction does so in the limit of
large interaction strengths.

The analysis is notably more complicated for the two-level system, due to the greater
complexity of the system and its larger number of variable parameters. The vastly improved
description at smaller interactions is a recurring result of the schemes though, with an almost
entirely cured error in the excitation energy and considerably improved satellite features once
more. When U0 is increased there are additional features which can be compared, and it
is increasingly difficult to make an all-encompassing assessment. However, the excitation
energies seem to worsen by using the corrections while the satellite placements in A improve
for a large U0. When also adjusting the t2 and t3 parameters to increase the hopping strength
in-between the orbitals, it becomes clear that the effective decrease of the interaction, from
the delocalization of the electrons away from the lower orbitals, causes the corrections to
improve the excitation energies again.

It is known that the delocalization improves the description within RPA as well, however,
evidently the self-screening error seems to be a large part of the remaining error of these
more delocalized electrons. This is seen from the substantial improvement of the correction
schemes in these regimes, and to connect these results to the calculations of real materials,
the found improvement in the more delocalized valence and conduction bands. On the other
hand, an increasing U0 localizes, and hence correlates, the electrons, and GWA and RPA
are known to work poorly in this regime. As there is little improvement for larger U0,
and even worsened results for the excitation energy, from the self-screening correction, a
conclusion could be drawn that the issue of GWA and RPA from localization, is not mainly
from self-screening. Instead it originates in other correlation effects. However, since the
satellite features are notably affected and improved for this regime as well, it is likely that
self-screening is still a non-negligible part of the error. Furthermore, the large improvement
observed for the self-polarization correction in both the HOMO-LUMO gap and the spectral
function supports that the self-screening is indeed an important contributor to the error,
and the two schemes complement each other in the different regimes. Drawing far reaching
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conclusions to their applicability solely based on model calculations should, nevertheless,
be done with caution. That RPA is better at describing some features for larger U0 could
possibly be due to cancellation effects. As the error in the excitation energy is of a different
sign for RPA and the correction schemes, it is a possibility that too much has been removed
in the corrections compared to the real case. That is, a part of the self-screening error in RPA
is already effectively cancelled by neglecting higher order corrections. The correction schemes
then include this effective cancellation, from its RPA starting point, while at the same time
being cancellations of the self-screening error themselves. As such, for higher interaction
strengths too much is removed, and the corrected schemes are worsened compared to RPA.

The problem with causality arising from the self-polarization method is a known issue
within many-body perturbation theory. It does, however, not appear in the self-screening
correction scheme. As such it should originate in their inherent differences: the way in which
the corrections are performed. Going back to the difference in the polarization propagators,
Pα and Pmσ, the disparity begins with the additional P1σ, where all the excitations for the
given spin are removed, which is not present for the self-polarization. Viewing this from the
point of view of a gmσ it means that, when calculating Wm within the self-screening correction,
all excitations involving itself are removed, for both the occupied and unoccupied states. On
the other hand, in the two-orbital system the self-polarization correction only fully removes
the unoccupied gmσ from interacting with themselves in [1 − Pαv]−1pα, while an occupied
state is present in Pα in the form of the other allowed excitations. This could conceivably
offer an explanation to the causality issue as the self-polarization correction removes a part,
causing a negative S, while the self-screening neglects the given gmσ entirely. As the one-level
system is not plagued by the issue it seems to be a reasonable origin, although additional
investigation would be required to fully identify it.

From the ab inito calculations two conclusion can be drawn related to the accuracy of
the self-screening correction scheme; the semicore states seems to be largely unaffected by
the corrections, while the improvement in the band gap is substantial, compared to the GW
error for GaAs and ZnSe. A reason for the discouraging results found for the 3d states might
be explained by that the calculations were performed on bulk materials, which have many
possible screening channels. Removing a single one for a given state might therefore produce
only a limited effect. It is possible that atomic and molecular systems or surface calculations
therefore would provide a larger improvement. The improvement in the band gap is in-line
with that the removal of a part of the screening should shift the gap closer to the HFA value,
where there is no screening. As Hartree-Fock is known to overestimate the value compared
to the experimental gap, and GW on the other hand underestimates it, the improvement is
reasonable from a numerical point of view.

It could further be speculated that it potentially would be sufficient to apply the correc-
tion scheme only to the bands closest to the gap in order to obtain the observed improvement,
although that would require further calculations to verify. Additional calculations with im-
proved parameters should also be carried out to verify the results, although it seems unlikely
that it would alter the shift relative GW to any larger extent. Especially the number of
unoccupied bands included in the GW calculations, which in the present calculations might
have been insufficiently converged due to time limitations, should be investigated. In a pre-
liminary GaAs calculation with almost twice as many bands, however, no notable difference
in the GW values for neither the semicore energy nor the band gap was observed, and it is
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therefore probably not a large source of error. It is furthermore also a possibility that the
approximate treatment of the head and wing elements of the matrices in SPEX, as those from
the non-corrected case, could affect the outcome, and a proper treatment of them would be
required to further assess the correction.

Finally, to summarize the results found in this study it was found that the self-screening
correction was able to correctly describe both models for small interaction strengths with a
very high accuracy, while the self-polarization correction only was able to give an improved
picture over RPA and GW for the response and spectral functions. Instead, it correctly
describes the HOMO-LUMO gap in the one-orbital model and gives a substantial improve-
ment of the spectral function in the regime of large U0. As such it would seem as if the
self-screening correction is a good approach to correct the self-screening error for less local-
ized systems, while the self-polarization correction on the other hand would be the choice for
localized ones, while still providing an as accurate description of the response function and
spectral function as GW -ss for small U0. It is with this in mind not too unexpected that the
largest improvement for the real materials was for the states close to the band gap, as these
originate in more delocalized orbitals, even though the self-screening error intuitively would
be the largest for the localized states. That the semicore states, which come from the local-
ized 3d orbitals, are not corrected much relative to the GW results could, at least partly, be
related to the observed inadequacy of the self-screening correction in the localized regime. By
instead applying the self-polarization correction, which from the model calculations is known
to work better for the localized states, the energy placement could possibly be improved
even further than what was observed here. To test this prediction further investigations are
required.
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Section 7

Outlook

There exists several aspects of the self-screening and self-polarization schemes to where fur-
ther effort could be directed. One possibility would be to develop the scheme to properly
incorporate self-consistency, although the usual issues with self-consistent GW and the fur-
ther increase in computational cost might make ab initio calculations unfeasible. It would
nevertheless be be of interest to see how well the schemes perform, although the theory would
have to be reworked to allow for self-consistency. Higher order corrections beyond RPA could
potentially also be included at the G0W0 level, however how these would be affected by the
corrections is not directly evident and would require an extension of the theory.

Another direction would be to thoroughly investigate the causality error occurring in the
self-polarization scheme. As the correction schemes are seen to provide somewhat different
results for larger U0 with for example the excitation energy being better described by the
self-polarization correction (though keeping in mind that Rmσ in fact is an auxiliary quantity)
it would be an interesting prospect to see if resolving the causality problem would affect the
results even further. The origin of the problem would first have to be identified, whereupon
an enhancement of the scheme could be developed and applied to models to test its effect,
and eventually also to real systems. Finding a way of combining the beneficial effects of
the self-screening and self-polarization corrections could further be a profitable, albeit more
complicated, venue.

On the ab initio side more effort could be put into calculating the properties of additional
materials to ensure that the obtained results applies also to other systems. First the correct
treatment of the Γ-point must be included though, to ensure that the head and wing elements
are treated correctly within the method. This is currently being implemented. Another
material which at the moment is under investigation is Gd, with bands originating in 4f
orbitals which are incorrectly described within both LDA and GWA. Although the effect on
the localized 3d semicore states was smaller than expected, it is of interest to see the result
of the scheme on different types of materials. As a further verification of the results obtained
in this work, an application of the scheme to another GW code, independently, would be
beneficial for comparison. Furthermore, as was noted in the discussion, atomic or molecular
systems could potentially be impacted to a greater extent by the correction and are as such
interesting candidates to for future work.

Finally, the application of the self-screening correction scheme to the constrained random-
phase approximation (cRPA) [36] is another avenue, currently being at an early state of de-
velopment. cRPA is known to overscreen in the downfolding procedure [37], and it is hoped
that the reduction of the screening due to the correction could potentially improve this issue.
A potential future use of an improved cRPA scheme could be in the downfolding procedure
in multitier GW+EDMFT (GW+extended DMFT) [38].

The results obtained within this study are intended to be published in the future.
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Appendix A

Density Functional Theory

In density functional theory [1, 2] it is shown that the the Hamiltonian, and with it all
properties of the system, are determined by the ground state density of the system. The
scheme used in practical calculations is due to Kohn and Sham [1], and is based on replacing
the interacting system with a non-interacting one. The auxiliary non-interacting system is
further chosen to have the same ground state density as that of the full interacting system.
The Kohn-Sham equation, (

−1

2
∇2 + VKS

)
ϕn(r) = εnϕn(r) (A.1)

gives the non-interacting wavefunctions and energies, however, only the εn of the highest
occupied value is a real physical quantity. Nevertheless, the other energies are often inter-
preted as excitation energies or used as input into other methods [39], with both roles being
used in this work for the calculation of the bandstructure of real materials. Furthermore, the
Kohn-Sham equation must be solved self-consistently with respect to the density,

n(r) =
∑
σ

occ∑
n

|ϕn(r,σ)|2. (A.2)

The Kohn-Sham potential is given by

VKS = VH(r) + vext(r) + Vxc(r) (A.3)

where VH is the usual Hartree potential, vext is some external potential, and Vxc is known
as the exchange-correlation potential. The exchange-correlation potential incorporates both
interaction effects beyond the Hartree mean-field, as well as the rest of the interacting kinetic
energy not treated in the non-interacting system in equation (A.1). It is formally obtained as
a functional derivative of the exchange-correlation functional Exc as Vxc = δExc[n]/δn. If the
functional was known exactly the problem would have been straightforward to solve, however
this is not the case. Instead various approximate forms are treated in the literature, and one
of the most common is the local density approximation [1] which is used in this work. It is
based on assuming the functional to be given by that of the electron gas εxc, with the density
given by the non-interacting system, according to

Exc[n] =

∫
drn(r)εxc(n(r)). (A.4)

Using this assumed form of the functional it is then possible to self-consistently solve equation
(A.1).
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