
Edvin Olofsson

Quantum teleportation of single-electron states

Thesis submitted for the degree of Master of Science
Project duration: 4 months

Supervised by Peter Samuelsson and Patrick Potts

Department of Physics
Division of Mathematical Physics

May 2019





i

Abstract

Quantum teleportation is a way to transfer a quantum state between two locations, by
utilizing a shared entangled state, measurements and the ability to communicate measure-
ment outcomes between the two locations. This thesis consists of a theoretical investiga-
tion of an experiment that would implement quantum teleportation using single-electron
states in mesoscopic architectures. First, we studied an idealized version, where it is
assumed that single-electron states can be detected, which is yet to be demonstrated
for certain types of implementations. There we �nd a teleportation e�ciency of 25% or
12.5%, depending on whether a conditional unitary operation can be applied to the tele-
ported state. We also show how to verify successful teleportation, by describing a way to
perform state tomography on the teleported state. Next, we considered a more realistic
setup where single-electron states called levitons are periodically injected. We show that
at T = 0 it is possible to perform state tomography using measurements of low-frequency
current correlators up to order three. This opens the possibility to perform teleportation
experiments that do not rely on single-electron detection. The correlators were calculated
within the framework of Floquet scattering theory. Strictly speaking, the simple picture
of single-electron state teleportation breaks down at �nite temperatures. However, we
�nd that the generalized observables can be interpreted in terms of noisy teleportation.
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Chapter 1

Introduction

Teleportation, transferring objects between di�erent locations without physically trans-
porting them, has long been a feature of science �ction stories. The idea does have a
science �ction feel to it, so it might seem a little surprising that in 1993 it was realized
by Bennett et al. that something analogous can take place in the realm of quantum me-
chanics [1]. They showed that it is possible to transfer the quantum state of a particle
from one location to another, by utilizing the correlations that exist between entangled
particles. The �rst step is to perform speci�c measurements on the original state and
one half of an entangled state. By sending classical information about the measurement
outcome to where the other half of the entangled state is located, the original state can be
recovered there by performing a unitary transformation that is determined by the mea-
surement outcome. In this context, classical information means something that can be
represented using standard bits on a computer. The states that were considered in [1] are
known as qubits, and are built from superpositions of two basis states. Qubits serve as
the fundamental building blocks of quantum computers, and teleportation could therefore
be used to transfer qubit states between di�erent quantum computers.

There are a number of di�erent applications of quantum teleportation within the
�eld of quantum information. One example is to use teleportation to transfer quantum
information between quantum computers, as suggested above. Quantum teleportation
cannot lead to faster than light communication between the involved parties, since the
protocol relies on transferring classical information between two locations, and classical
signals are limited by the speed of light. By a slight modi�cation to the teleportation
scheme, it is possible to perform entanglement swapping which enables the generation
of entanglement between physically separated locations with no direct link between the
locations [2, 3]. Entanglement swapping is a crucial part of a quantum repeater, a protocol
that can generate entanglement over long distances by using ancillary entanlged pairs and
repeated entanglement swapping [4]. This could be used to extend the range of existing
teleportation protocols, by increasing the distance over which entalged states can be
shared [3]. It has also been demonstrated that it is possible to build a quantum computer
where the qubit operations are performed using teleportation [5, 6].

Quantum teleportation is not only interesting for its technological applications, but
when viewed from a quantum information theory perspective it shows that entanglement
should be thought of as a useful resource. It also shows that there can exist a relation-
ship between classical information, in this case the measurement outcomes, and quantum
information, i.e. the state of a qubit. Speci�cally, teleportation demonstrates that two
parties having a two-bit classical information channel together with a shared entangled
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2 CHAPTER 1. INTRODUCTION

state can be equivalent to them having a quantum information channel, i.e. a way of
directly transferring the original state between the parties [1, 7].

Successful teleportation of the polarization states of photons was reported in 1997 [8].
Since then, quantum teleportation has been performed using a variety of systems. Some
examples are photonic qubits [9, 10], trapped ions [11], nuclear spins [12] and solid state
qubits [13]. The distance over which states can be teleported varies greatly for the di�erent
techniques, with nuclear magnetic resonance (NMR) teleportation working on a typical
distance on the order of 1Å [3], while photon polarizations were teleported between a
ground station and an orbiting satellite in 2017 [14].

Although distance is one of the parameters that is interesting to consider when com-
paring di�erent teleportation schemes, it is also important to consider the e�ciency of
the di�erent alternatives. The e�ciency quanti�es the success probability of a telepor-
tation scheme. According to the original teleportation proposal an e�ciency of 100% is
possible [1], but di�erent implementations have di�erent e�ciencies. If we again compare
NMR teleportation with the teleportation of polarization qubits, we �nd that NMR can in
principle have a success rate of 100% [12], while for photonic polarization qubits the max-
imum e�ciency is 50%, due to restrictions in the measurement [3]. Therefore, depending
on how one wishes to apply quantum teleportation, it will be necessary to consider if
a high e�ciency or a long range is a more important feature. This suggests a need to
study di�erent approaches to quantum teleportation in order to �nd their advantages and
disadvantages.

This thesis aims to investigate a teleportation approach that uses spatial modes of
single electrons as the qubits we wish to teleport and as the entanglement resource. The
focus will be on a theoretical demonstration of teleportation using single-electron states, a
determination of the e�ciency, and suggestions for experimental veri�cation. The motiva-
tion behind this approach to teleportation is that on the mesoscopic and nanometer scales
there are electronic analogs to optical components such as beamsplitters, phase shifters
and waveguides that can be used to manipulate single electrons. Phase shifting can be
performed with magnetic �elds and the role of beamsplitters is taken by quantum point
contacts (QPC), which act as tunnel barriers for the electrons. The chiral edge states of
the integer quantum Hall e�ect (QHE) function as one-dimensional and backscattering-
free electronic waveguides. This �eld is called electron quantum optics [15]. There have
been recent advances in single-electron sources that have fueled an interest in this �eld as
a means to perform quantum information processing tasks [16]. In this thesis the focus
will be on a type of source that uses Lorentzian voltage pulses applied to metallic contacts
to create single-electron states called levitons. Teleportation requires a way to generate
entangled states on demand and this can be achieved using electron quantum optics [17].
It was shown in [18] that if an electron in a chiral edge state scatters on a QPC the
resulting superposition should be viewed as an entangled state. This will be the method
used for entanglement generation in this thesis.

As we will see in Secs. 2.1 and 3.1, quantum teleportation experiments require the
ability to prepare qubits in speci�c states, generate entangled states, perform accurate
measurements in speci�c bases and manipulating qubits based on measurement outcomes.
These operations are fundamental ingredients of quantum information and quantum com-
puting [7]. Performing a quantum teleportation experiment using electron quantum optics
can therefore serve as an indicator for how well suited electron quantum optics is for use
in quantum information applications, or more generally how well such systems can be
controlled. Such an experiment can also give insight into how enviromental e�ects impact
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the performance of electron quantum optics systems in quantum information processing
tasks.

The rest of this thesis is structured as follows. After the theoretical tools used in this
work have been discussed, the teleportation setup that will be considered is presented
and it will be demonstrated that teleportation can take place in that system. The system
will be analyzed by a scattering matrix formalism [19], neglecting Coulomb interactions.
Then, a positive operator-valued measure (POVM) describing an idealized electron mode
detection used in the teleportation scheme will be de�ned. With the help of the POVM
it will be possible to calculate both the probability for teleportation to succeed and the
post-measurement states at the receiving location.

Next we will discuss an experiment that can verify that teleportation has taken place.
The scheme is based on performing state tomography on the state at the receiving location,
after the original measurement has taken place. This is done by performing measurements
that probe the density matrix of the received state. First, we will discuss an idealized
experiment that requires reliable single-electron detection. While there has been progress
towards such detectors, they do not currently exist for the experimental architecture
based on QHE edge states and levitons considered here [16]. Instead, it will be shown
that using a periodic driving voltage and measuring zero frequency average currents and
current correlators of second and third order it is possible to experimentally verify that
teleportation takes place in the system. This line of thinking follows closely the scheme
presented in [18] for detection of single-electron entanglement. It should be noted that
an architecture where both single-electron sources and detectors are available does exist.
In this approach, where an electron surfs on a surface acoustic wave (SAW), su�cient
coherence times have not yet been reported and the approach is not considered here.

Because of the periodicity of the driving voltages, the relevant quantities can be calcu-
lated within the framework of Floquet scattering theory [19]. The calculations that deal
with observable quantities will be carried out in two steps. First, we will consider the sys-
tem at zero temperature where a rigorous correspondence between observable quantities
in the single-shot regime and the periodically driven case can be found. This correspon-
dence will be considered in the light of the leviton quasiparticle that is created by periodic
voltage pulses.

Afterwards, the periodically driven case will be considered at non-zero temperatures.
While �nite temperatures spoil the ideal picture of teleporting isolated single-particle
states, observables are still expected to show signatures of teleportation. More precisely,
we can interpret the results as describing a noisy teleportation process, although it should
be pointed out that the connection to teleportation is not completely rigorous. The cal-
culations at non-zero temperature will also be performed using Floquet scattering theory.



Chapter 2

Background

This chapter contains the background material that is necessary to understand telepor-
tation and how it has been treated in this thesis. It also contains the di�erent theoretical
tools that are needed to analyze the systems considered in the thesis, as well as the tools
needed to perform calculations of states and relevant quantities. Section 2.1 will give a
more quantitative look at teleportation than the one presented in Chapter 1. That will
be followed by some background information about qubits in Section 2.2 and a descrip-
tion of generalized measurements in quantum mechanics in Section 2.3. Then we will
discuss electron quantum optics, which is a framework that relies on electronic analogs
of optical components, in Section 2.4. Section 2.5 provides a description of the scattering
theory formalism that was used to analyze the teleportation setup. Section 2.5.1 intro-
duces second quantization and the concept of a scattering matrix, while Section 2.5.2
introduces the Floquet scattering theory formalism that was used to perform calculations
when we consider a system driven by periodic voltages both at zero and non-zero temper-
atures. Lastly, Section 2.6 presents the quasiparticles called levitons which are created by
Lorentzian voltage pulses. The levitons will be useful for the interpretation of the results
that are obtained for the periodically driven teleportation setup, since the driving voltage
will be a train of Lorentzian pulses.

2.1 Quantum Teleportation

The basic idea of how to teleport a quantum state was introduced in Chapter 1. The aim
of this section is to provide a more in depth description of what teleportation is and how
it can be achieved. The original idea is due to Bennett et al. [1] and the version presented
here is based on [20]. Figure 2.1 provides a schematic view of the teleporation protocol.

Assume that Alice has been given some unknown qubit state as an input

|ψ〉A0
= α |0〉A0

+ β |1〉A0
, (2.1)

where A0 labels the subsystem. Suppose also that Alice and Bob are each in possession
of one half of the state ∣∣Φ+

〉
A1B

=
1√
2

(|00〉+ |11〉)A1B , (2.2)

where A1 is the subsystem belonging to Alice and B is the subsystem belonging to Bob.
This is an entangled state, which means that it cannot be written as a product of two
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2.1. QUANTUM TELEPORTATION 5

Figure 2.1: Alice and Bob are each given one half of an entangled state. Alice also receives
an unknown qubit state. She performs a measurement on the combined state of the qubit
and her part of the entangled state. After the measurement, she sends the result to Bob.
Based on the measurement outcome, he can perform a unitary operation on his part of
the entangled state and recover the unknown qubit.

single-particle states. The combined state of the three subsystems can be expressed as

|φ〉 = |ψ〉A0

∣∣Φ+
〉

A1B
=

1√
2

(
α |000〉+ α |011〉+ β |100〉+ β |111〉

)
. (2.3)

Alice then makes a measurement on the combined A0A1 system in the basis∣∣Ψ±〉
A

=
1√
2

(|01〉 ± |10〉)A0A1
,∣∣Φ±〉

A
=

1√
2

(|00〉 ± |11〉)A0A1
.

(2.4)

To see what the outcomes of the measurement will be, the combined state can be expressed
in this basis

|φ〉 =
1

2

(∣∣Φ+
〉

A
(α |0〉B + β |1〉B) +

∣∣Φ−〉
A

(α |0〉B − β |1〉B) +

+
∣∣Ψ+

〉
A

(β |0〉B + α |1〉B) +
∣∣Ψ−〉

A
(−β |0〉B + α |1〉B)

)
.

(2.5)

The possibilities for Bob's post-measurement state are

α |0〉B + β |1〉B ,
α |0〉B − β |1〉B ,
β |0〉B + α |1〉B ,
−β |0〉B + α |1〉B .

(2.6)

Each of these states is related to |ψ〉A0
by a unitary transformation, although in the

�rst case the transformation would just be the identity since it is identical to the input
state. Since the form of the unitary transformation depends on the outcome of Alice's
measurement, Bob can recover |ψ〉 at his location if Alice communicates the outcome of her
measurement, and he is able to apply the correct transformation to his post-measurement
state. Alice has then been able to transfer the input state to Bob using only entanglement
and classical communication. There are four possible messages that Alice needs to send
to Bob, which can be accomplished by two classical bits.



6 CHAPTER 2. BACKGROUND

As has been pointed out in ref. [20], successful teleportation of |ψ〉 depends on whether
Alice can gain any knowledge of |ψ〉 when she carries out her measurement. If we consider
the example that has been described here, we see that the probabilities of Alice's measure-
ment outcomes are all equal to 1/4 and thus independent of |ψ〉. Her post-measurement
state does therefore not contain any information about |ψ〉. However, if Alice had chosen
to perform her measurement in the original basis, then an outcome of say |00〉 means that
she can infer α 6= 0. If such a basis is used, then the only possible post-measurement
states for Bob is |0〉 and |1〉, and this cannot be transformed into |ψ〉 with only knowledge
of Alice's measurement result, unless |ψ〉 is one of those two states. When the results of
single-electron teleportation are presented later, we will see that teleportation will not be
successful when Alice gains information about |ψ〉 in the course of her measurement.

The results of this section shows that a shared entangled state and a classical channel
can be considered equivalent to a communications channel that directly transfers quantum
information [7]. In other words, two classical bits, which is enough to communicate
the measurement outcome, and one shared entangled state is equivalent to one qubit of
quantum information. Since Alice and Bob share an entangled state, they are in a sense
already linked by a quantum channel, but one does not require that this channel can send
arbitrary qubit states, as one would of a proper quantum channel. The entangled state
does not have to be generated by either Alice or Bob, but it can instead be created by a
third party which sends them their halves of the state.

Another important thing to note is that we cannot teleport arbitrary states if the state
that is shared between Alice and Bob is not entangled, since if that were the case one
would have for the total state of all three systems

|ψ〉 = |ψ〉A |ψ〉B , (2.7)

and Bob's post-measurement state would be independent of Alice's measurement outcome.
It turns out that it is only possible to achieve 100% e�ciency if the shared state is of the
form

1√
2

(
|a〉A1

|c〉B + |b〉A1
|d〉B

)
, (2.8)

where {|a〉 , |b〉} and {|c〉 , |d〉} are pairs of mutually orthonormal states [1].

2.2 Qubits

It is often very convenient to represent the state of a qubit by its density matrix ρ. One
can show that any qubit density matrix can be written in the form [7]

ρ =
I + ~r · ~σ

2
, (2.9)

where I is the 2 × 2 identity matrix, ~σ = (σx, σy, σz) are the Pauli matrices and ~r is a
vector in R3 with ‖~r ‖ ≤ 1. The components of ~r are given by

ri = Tr (σiρ) = 〈σi〉. (2.10)

~r can be used to visualize the state of the qubit by drawing it in R3. The surface ‖~r ‖ = 1
is called the Bloch sphere and ~r is called the Bloch vector. Figure 2.2 shows an illustration
of how one represents qubit states on the Bloch sphere.
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Figure 2.2: This �gure shows how a pure qubit state can be represented on the Bloch
sphere. The vector in the �gure represents a state with Bloch vector ~r = 1√

2
(0,−1, 1).

A density matrix that is given as the outer product of a single state is called pure,
since the state is known with complete certainty. If no such representation exists, then
the state is said to be mixed. An important quantity that relates to this concept is the
purity γ of a quantum state. γ is de�ned as

γ = Tr
(
ρ2
)
, (2.11)

and one can show that 0 ≤ γ ≤ 1, with γ = 1 if and only if ρ represents a pure state [7].
A direct calculation using the representation in Eq. (2.9) shows that the purity of a qubit
state is given by

γ =
1 + ‖~r ‖2

2
. (2.12)

ρ therefore represents a pure state precisely when ‖~r ‖ = 1. This means that the Bloch
sphere contains all possible pure states of a qubit.

When discussing how well a speci�c implementation of quantum teleportation per-
forms, it seems reasonable to ask how much Bob's state resembles the original state. A
quantity that can be used to represent how close two quantum states ρ1, ρ2 are to each
other is the �delity F . For two qubits ρ1, ρ2 with Bloch vectors ~r1, ~r2 the �delity takes
the form

F =
1

2

(
1 + ~r1 · ~r2 +

[(
1− ‖~r1 ‖2

) (
1− ‖~r2 ‖2

)]1/2)
, (2.13)

as shown in ref. [21]. The �delity is bounded between 0 and 1, and is equal to 1 precisely
when ρ1 = ρ2 [21]. What is often considered for quantum teleportation experiments is the
teleportation �delity Ftel, which is the �delity of the input and output states averaged
over all possible input states [3]. A classical version of teleportation could be that Alice
directly measures the input state in the regular |0〉, |1〉 basis and sends the result to Bob
for him to prepare as the output state. One can show that the teleportation �delity will
be 2/3 and it turns out that this is the best one can do classically. That value is therefore
used as a benchmark value for Ftel since a value over this limit indicates that quantum
resources are utilized [3].
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2.3 Generalized measurements

In standard quantum mechanics courses, measurements are usually discussed in terms of
projective measurements. In a projective measurement of an observable X, the possible
measurement outcomes are the eigenvalues of X and the state of the system after the mea-
surement has taken place, the post-measurement state, is the corresponding eigenstate.
However, not every imaginable measurement that can be performed on a quantum system
can be described as a projective measurement on only that system. Consider for instance
the case of counting the number of photons of a certain energy. One way this could be
done is by absorbing the photons, but this means that the number of photons before
and after the measurement has changed. This in turn means that the measurement has
moved the state between two di�erent eigenspaces of the photon number operator and
the measurement is therefore not projective. A more general theory for measurements
in quantum mechanics is formulated in terms of Kraus operators and positive operator-
valued measures (POVM). Projective measurements can then be seen as a special case
of the general theory. The usefulness of the POVM formalism, is partly due to the fact
that it is possible to discuss non-projective measurements and partly due to making it
possible to make statements about measurement outcomes without specifying exactly how
the measurement is performed.

A general measurement in quantum mechanics is described by a set of measurement
outcomes {x} and associated Kraus operators {Mx} [7]. If the state prior to the measure-
ment is |ψ〉, then the outcome x occurs with probability

p(x) = 〈ψ|M †
xMx |ψ〉 , (2.14)

and the post-measurement state is given by

Mx√
p(x)

|ψ〉 . (2.15)

For p(x) to be a probability distribution we require∑
x

p(x) = 1, (2.16)

for all states |ψ〉 in the Hilbert space. This requirement is equivalent to∑
x

M †
xMx = I. (2.17)

If one is working with density matrices instead of state vectors then the probabilities are
calculated as

p(x) = Tr
(
MxρM

†
x

)
= Tr

(
M †

xMxρ
)
, (2.18)

while the post-measurement state for outcome x is

1

p(x)
MxρM

†
x. (2.19)

A POVM is de�ned as a set of positive operators {Ex} satisfying the completeness
relation ∑

x

Ex = I. (2.20)
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A linear operator A is positive if 〈ψ|A |ψ〉 ≥ 0 for all |ψ〉. It can be shown that all positive
operators are Hermitian and that A†A is positive for any A. With these de�nitions we see
that the operators

{
M †

xMx

}
de�ned above satisfy the de�nition of a POVM. Note that

for a set of unitary operators {Ux} the set {M̃ †
xM̃x} with M̃x = UxMx de�nes the same

POVM as
{
M †

xMx

}
. From the de�nition of a POVM we can see that

p(x) = 〈ψ|Ex |ψ〉 , (2.21)

and
p(x) = Tr (Exρ) , (2.22)

should be considered probability distributions, i.e. they are positive and sum to one. In
general, having only knowledge of the POVM describing a measurement will not provide
enough information to determine the post-measurement state of the system. However,
for our purposes it will su�ce to de�ne a POVM for mode detection of electrons in order
to determine Bob's state following Alice's measurement. Let {M(X)} be a set of Kraus
operators describing Alice's measurement. Since this measurement is only performed at
Alice's location, the action of M(X) on the combined state of Alice and Bob is given by
M(X)⊗IB. Bob's post-measurement state is written in terms of a reduced density matrix

ρB(X) =
1

p(X)
TrA

(
(M(X)⊗ IB) ρ

(
M †(X)⊗ IB

))
. (2.23)

Here we have introduced the partial trace TrA over the states in Alice's subsystem, which
is de�ned by

TrA (|A〉 〈A′| ⊗ |B〉 〈B′|) = Tr (|A〉 〈A′|) |B〉 〈B′| , (2.24)

with |A〉, 〈A′| arbitrary states in the A space and |B〉, 〈B′| arbitrary states in the B
space [7]. It is extended to other operators by linearity. By expanding ρ in a basis for the
operators acting on the combined Hilbert spaces of Alice and Bob one can show that Eq.
(2.23) reduces to

ρB(X) =
1

p(X)
TrA ((E(X)⊗ IB) ρ) . (2.25)

This shows that it su�ces to work with the POVM describing Alice's measurement if only
Bob's post-measurement state is important.

Another property of the partial trace that will be useful is that if M is an observable
on Bob's system, then

Tr (M TrA(ρ)) = Tr ((IA ⊗M)ρ) . (2.26)

This implies that we can compute expectation values for observables on a subsystem by
considering either TrA(ρ) or the full density matrix ρ [7].

2.4 Electron quantum optics

The teleportation setup that will be treated in this thesis has natural analogies with
optical systems. This is because the components that make up the system can be seen
as electronic analogs of optical components. There are single-electron sources that emit
single-electron states that we wish to control. It is also possible to treat the chiral edge
states of the integer quantum Hall e�ect as one-dimensional waveguides for electrons.
Quantum point contacts can be treated as beamsplitters, and magnetic �uxes can be
used to manipulate phase di�erences for di�erent electron paths. We would also like to
detect the presence of single electrons with some kind of single-electron detector. This
section will provide a short review of these components.
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2.4.1 Single-electron sources

One important component of electron quantum optics experiments is the single-electron
source. Four important single-electron sources are the mesoscopic capacitor, the single-
electron pump, leviton sources and surface acoustic wave (SAW) sources [16].

Leviton sources generate a single electron excitation above the Fermi sea. This is done
by applying short Lorentzian voltage pulses to metallic contacts. The resulting excitation
is known as a leviton. This single-electron source will play a large role in this thesis and
is discussed in more detail in Section 2.6.

The mesoscopic capacitor is a quantum dot which is tunnel coupled to a conductor. It
is operated by raising the highest occupied level of the dot above the Fermi energy of the
conductor so that an electron is emitted. The levels of the dot are then returned to their
original heights, causing an electron to be captured by the dot and creating a hole state
in the conductor. Continuous operation thus results in a stream of alternating electrons
and holes.

A single-electron pump consists of a quantum dot where the height of one potential
barrier can be dynamically controlled, while the other remains static. The controllable
barrier is �rst set to a low height so that electrons can enter the dot. It is then raised so
that electrons are captured in the dot, but some of them will tunnel out. The goal is to
only have one electron left in the dot after this stage. The barrier is then raised further
and eventually the potential at the edges of the barrier will be so large that the remaining
electrons tunnel through the static barrier. Electrons generated by this source typically
have high energies and it is not clear to what extent relaxation processes will negatively
impact the distance over which they can be considered to be coherent [16, 22].

The SAW single-electron source uses the piezo-electric properties of for instance gal-
lium arsenide to create an electric �eld moving along the surface of the GaAs substrate.
The �rst step is to have a single-electron located in a quantum dot. Then, a pulse of
soundwaves is directed towards the quantum dot, generating a traveling electric �eld due
to the piezo-electric e�ect. If the pulse has su�cient amplitude, it can remove the electron
from the dot and trap the electron in a minimum of the wave, essentially forming a moving
quantum dot. The electron will follow along with the wave, thus enabling single-electron
transport, if one can control the propagation of the wave.

2.4.2 Chiral edge states

Chiral edge states appear in the integer quantum Hall e�ect. The integer quantum Hall
e�ect is observed for two-dimensional electron gases (2DEG), such as gallium arsenide
heterostructures, when they are subjected to strong magnetic �elds perpendicular to the
sample. This will essentially cause the electrons in the bulk of the sample to perform
localized circular orbits, while the con�ning potential at the edge of the sample will allow
electrons close to the edge to travel over longer distances [23]. As the name suggests,
the edge states are localized at the edges of a sample and this localization means that
the states can e�ectively be treated as one-dimensional. The word chiral is referring to
the fact that the edge states travel only along one direction for each edge of the sample.
States on opposite edges travel in opposite directions. This makes edge states particularly
interesting since backscattering would require them to scatter to the opposite edge of the
sample. If the sample is su�ciently wide, scattering across the sample will be strongly
suppressed and this process can be neglected [24]. Due to the presence of the magnetic
�eld, the electrons in the bulk of the material will form �at energy bands called Landau
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levels and the edge states arise when the con�ning potential change the energy of states
close to the edge [23]. There will also be a splitting of these bands due to the Zeeman
e�ect which means that, we can treat the edge states as spin polarized if we only consider
the edge states belonging to a single Landau level [23].

2.4.3 Quantum point contacts

Quantum point contacts (QPC) are objects that can act as beamsplitters for chiral edge
states. A QPC is a pair of contacts that have been deposited onto the surface of the
sample, with a typical separation on the order of a few hundred nanometers. Applying a
negative voltage to the contacts will create a repulsion barrier. If an electron is passed
through a 50/50 beamsplitter the resulting state is entangled [18], which will be one of
the purposes for QPCs in the teleportation setup. The entangled state will be of the form

|Φ〉 =
1√
2

(i |1〉r |0〉t + |0〉r |1〉t), (2.27)

where r and t denote the re�ected and transmitted modes, respectively. The i factor of
the �rst term comes from the scattering matirx of the QPC, which will be introduced in
Ch. 3. |Φ〉 is an entangled state of a single particle, where the entanglement is between
two subspaces of a single-particle Hilbert space [25]. It is not an entangled state of two
particles, which is perhaps a more familiar notion, where the entanglement is between the
Hilbert spaces of two di�erent particles. Demonstrating that a state of the form above
should be viewed as entangled is done in ref. [18], where it is shown that such states can
be used to violate a Bell-type inequality. Another purpose for a QPC is to help generate
the input state for teleportation by creating superpositions of transmitted and re�ected
electron modes.

2.4.4 Single-electron detectors

Since it is possible to generate single-electron states, a natural question to ask is whether
it is possible to then detect their presence. Since teleportation relies on Alice to perform
measurements on her states, this question is important when one considers the idealized
teleportation experiment that will be presented in Chapter 3. Levitons in an edge channel
have to be distinguished from the underlying Fermi sea, which is not trivial to do. Elec-
trons generated by the SAW technique travel in depleted channels, and the e�ect of the
Fermi sea is removed, making it possible to detect these electrons. It has been suggested
that electrons traveling in edge channels could be detected by having them interact with
a nearby double quantum dot, although single-shot detection has not been achived yet
[16, 26].

2.5 Scattering theory

Scattering theory is an important topic in physics. It has been used to study topics rang-
ing from how celestial objects scatter in gravitational �elds to how elementary particles
interact with each other, and can be formulated both in terms of classical mechanics,
relativity, and quantum mechanics [27, 28]. The idea is that you shoot particles into a
region where they are subject to some type of interaction and study how their properties
have changed as they leave the interaction region. In experiments, this might be done to
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Figure 2.3: Illustration of a setup for a scattering experiment. Metallic contacts are
connected to the scattering region S by one-dimensional leads. It is assumed that the
temperature of the contacts are �xed and that we can control the voltage biases between
them.

gain more knowledge of the scattering region itself, i.e. how a certain potential looks. An
illustration of how a scattering experiment could look is shown in Figure 2.3. The per-
spective that will be used in this thesis is that scattering theory is useful in the calculation
of transport properties of mesoscopic and nanoscale samples. If it is known how a single
electron scatters, this should give a fairly good picture of how an electric current �ows
through the sample [29], provided electron-electron interactions are not too strong. One
of the primary tools in the study of scattering in quantum mechanics is the scattering
matrix, which relates the incoming states to the outgoing states.

2.5.1 Scattering matrix

This approach to scattering theory is built on using a scattering matrix to connect in-
coming and outgoing electron states. This is conveniently formulated within the second
quantization framework, where the relevant objects are single-particle creation and anni-
hilation operators de�ned by their action on states in the occupation number basis, i.e.
where we represent a many-particle state by the number of particles that occupy each
available mode. The annihilation operator ai acting in the subspace corresponding to
mode i annihilates the state where the mode is unoccupied

ai |0〉i = 0, (2.28)

while the creation operator a†i acting on the same state will add a particle to that mode

a†i |0〉i = |1〉i . (2.29)

The creation and annihilation operators for electron states satisfy the fermionic anticom-
mutation relations {

ai, a
†
j

}
= δij, {ai, aj} =

{
a†i , a

†
j

}
= 0. (2.30)
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These anticommutation relations imply that each mode can only support one particle,
since a†ia

†
i = 0, which is the Pauli exclusion principle. The scattering matrix relates the

creation operators for incoming electrons aj to the annihilation operators bi for electrons
leaving the scattering region by

bi =
∑
j

Sijaj. (2.31)

A more formal discussion of this relation is provided in Section 2.5.2. The scattering
matrix is required to be unitary since the scattering process should conserve probability.
From Eq. (2.31) the creation operators of incoming and outgoing electrons are related by

b†i =
∑
j

S∗ija
†
j. (2.32)

The formalism presented so far will be enough for the calculations for teleportation per-
formed under the assumption that single-electron detection is possible, since that calcu-
lation will simply rely on creating one electron at each of the source contacts and letting
them scatter through the beamsplitters to the detector regions. When the periodic driv-
ing voltage is added, the picture changes since the Hamiltonian of the system will be time
dependent and the sources are not creating just a single free electron but an electron
wavepacket known as a leviton, which will be discussed in Section 2.6.

2.5.2 Floquet scattering theory

Floquet scattering theory is a way to treat scattering problems where the Hamiltonian
is periodic in time. The general idea is that for such a system the single-particle wave
functions can be written as [19, 30]

Ψ(t, ~r) = e−i
Et
~ φ(t, ~r), (2.33)

with energy E and φ a function periodic in t with the same period, T , as the Hamiltonian.
Expanding φ in a Fourier series gives

Ψ(t, ~r) = e−i
Et
~

∞∑
q=−∞

e−iqΩtψq(~r), (2.34)

with Ω = 2π/T . If the time dependence of the Hamiltonian is due to the presence
of a scattering potential of limited range, then far away from the scattering region the
wavefunctions should look like plane waves, or Bloch waves if we are considering a crystal.

From Eq. (2.34) we can see that E is not well-de�ned, since one can make the trans-
formation E → E + n~Ω and still recover the original Ψ by a simultaneous relabeling of
the functions ψq by ψq → ψq+n [19, 30]. This will be given the interpretation that an
electron with energy E entering the region of a scatterer with periodically time varying
properties, can scatter into an outgoing state with energy E + n~Ω where n is an inte-
ger. The scattering matrix that connects such states will be called the Floquet scattering
matrix SF (En, E)αβ.

The system will be modeled as set of metallic contacts α, with temperature Tα and
voltage Vα, connected to the scattering region by leads. The wavefunctions for electrons
in the lead connected to contact α going into (out of) the scattering region are found
by solving the Schrödinger equation. Close to the scatter, these functions may have
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complicated shapes, but far away from the scatterer, they will look like sums of plane
(Bloch) waves [31]. We choose boundary conditions such that the part of the wavefunction
that looks like a plane wave or a Bloch wave entering (leaving) the scattering region from
contact α has unit �ux [19]. It is assumed that there is no backscattering at the interface
between the contact and the lead, or in other words that scattering only takes place in
the region marked S in Figure 2.3. The resulting wavefunctions will be the sum of the
incoming (outgoing) parts, speci�ed by the boundary conditions, and outgoing (incoming)
parts that are a result of the presence of the scatterer. The Floquet scattering matrix will
connect the incoming and outgoing states through the relation [32]

Ψout
α (E) =

∑
β,n

SF (E,En)αβΨin
α (En), Ψin

α (E) =
∑
β,n

S∗F (En, E)βαΨout
α (En), (2.35)

where Ψin
α (E) and Ψout

α (E) are the incoming and outgoing states described above. Let
the operators that annihilate these states be aα(E), for the incoming, and bα(E), for the
outgoing. These operators also satisfy the relations in Eq. (2.35)

bα(E) =
∑
β,n

SF (E,En)αβaα(En), aα(E) =
∑
β,n

S∗F (En, E)βαbα(En). (2.36)

The system that will be considered in this thesis will have no time dependence in
the beamsplitters and phases, instead the time dependence is fully in the source contacts
where the driving voltage is applied. This leads to a simpli�cation in the form of the
Floquet scattering matrix in that the individual elements can be written as the product
of the Fourier coe�cient of the phase that is picked up by the electrons leaving the contact
and an element of the regular scattering matrix that describes the system when the time
dependent voltages are removed. This factorization turns out to be very useful when
computing the observables of interest since it allows one to separately deal with the sums
over the Fourier indices and the channel indices.

Under the assumption that the potential in the contact is uniform, the electron wave
functions in contact α pick up a time dependent phase factor eiφα(t) with

φα(t) = −1

~

∫ t

−∞
dt′eVα(t′), (2.37)

where Vα(t) is the voltage applied to contact α [19]. We then assume that there is
no voltage in the leads that connect the contacts to the scattering region. With this
assumption we can write the operators annihilating electron states leaving the contact
with energy E in terms of the annihilation operators in the contacts as

a′α(E) =
∞∑

n=∞

Sα(n)aα(E − n~Ω), (2.38)

where

Sα(n) =
1

T

∫ T
0

einΩteiφα(t), (2.39)

are the Fourier coe�cients of the phase that the electrons pick up in the contact [19].
Since the beamsplitters and phase di�erences are not time dependent, it is possible to

connect the state leaving the scattering region towards contact α, bα(E), to those entering
the region, a′β(E), with a stationary scattering matrix as in the previous section

bα(E) =
∑
β

Sαβa
′
β(E), (2.40)
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where it has also been assumed that the scattering is energy independent. In principle
the beamsplitter transmission and re�ection probabilities will depend on energy [33], but
here we assume that this variation is small over the span of energies we are interested in,
which are close to the Fermi energy. Using Eq. (2.38) in the previous equation gives

bα(E) =
∑
β

∞∑
n=−∞

SαβSβ(n)aβ(E − n~Ω) =
∑
β

∞∑
n=−∞

SF (E,E−n)αβaβ(E−n). (2.41)

In the last equality the Floquet scattering matrix has been introduced. It connects states
with energy E−n = E − n~Ω in contact β to outgoing states with energy E in lead α and
in this case it takes the form

SF (E,E−n)αβ = SαβSβ(n). (2.42)

Next we want to study how to compute observable quantities using Floquet theory,
and we will start with the current operator in lead α. Under the assumption that only
states close to the Fermi energy contribute signi�cantly to the current, which is where
there can be appreciable di�erences in two Fermi distributions, it can be reduced to [19]

Îα(t) =
e

h

∫ ∫
dEdE ′ei

E−E′
~ t
[
b†α(E)bα(E ′)− a†α(E)aα(E ′)

]
, (2.43)

where e represents the electron charge and a hat is used for the current operator to
distinguish it from the average current. The expression for the current operator has a
very intuitive form, since it says that the current in each lead is proportional to the
di�erence between the number of states leaving and entering the scattering region. The
Fourier transform of Eq. (2.43) gives

Îα(ω) = e

∫ ∞
−∞

dE
[
b†α(E)bα(E + ~ω)− a†α(E)aα(E + ~ω)

]
. (2.44)

For the purposes of this thesis, the current operator itself is not what is important
but rather its quantum statistical average Iα(ω) =

〈
Îα(ω)

〉
. Under the assumption that

the electrons in each contact are in thermal equilibrium and that electrons from di�erent
contacts are uncorrelated it is possible to calculate Iα(ω) from the quantum statistical
averages

〈a†α(E)aβ(E ′)〉 = δαβδ(E − E ′)fα(E),

〈aα(E)a†β(E ′)〉 = δαβδ(E − E ′) (1− fα(E)) .
(2.45)

Here
fα(E) =

1

e
E−µα
kT + 1

, (2.46)

is the Fermi distribution in contact α and δ(E) is the Dirac delta distribution. For the
case that we are interested in, µα = 0 for all α which means that there is no constant bias
between any of the contacts. With the help of Eqs. (2.41) and (2.45) the average current
can be expressed in terms of the Floquet scattering matrix and the Fermi distribution.
The end result is

I(ω) =
∞∑

l=−∞

2πδ(lΩ− ω)Iα,l, (2.47)
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with

Iα,l =
e

h

∫ ∞
−∞

dE

[∑
β

∞∑
n=−∞

S∗F (E,En)αβSF (El, En)αβf(En)− δl0f(E)

]
. (2.48)

Computing the inverse Fourier transform of Iα(ω) reveals that

Iα(t) =
〈
Îα(t)

〉
=

∞∑
l=−∞

e−ilΩtIα,l, (2.49)

i.e. the Iα,l should be regarded as the Fourier components of Iα(t), which will be periodic
with period T . Here we will only concern ourselves with the direct current Iα,0 = Iα
which corresponds to the average value of I(t) over one period,

Iα =
1

T

∫ T
0

dtI(t). (2.50)

In addition to computing currents Iα(t) and current spectra Iα(ω), Floquet scattering
theory can be used to calculate correlation functions of di�erent combinations of current
operators, with the prototypical example being

Pαβ(t1, t2) =
〈

∆Îα(t1)∆Îβ(t2)
〉
. (2.51)

Here the current �uctuation operators ∆Î(t) = Î(t) −
〈
Î(t)

〉
have been introduced.

Pαβ(t1, t2) is often de�ned in a symmetrized form, see e.g. ref. [19]. However, only correla-
tors with α 6= β will be considered in this thesis. In that case Îα(t1) and Îβ(t2) commute,
which can be checked using Eqs. (2.30) and (2.43), and the two de�nitions agree. The
Fourier transform of Eq. (2.51) is

Pαβ(ω1, ω2) =
〈

∆Îα(ω1)∆Îβ(ω2)
〉
. (2.52)

Equation (2.52) will contain averages of products of four creation and annihilation oper-
ators, and each such product can be written as a sum of products of pairs of averages by
an application of Wick's theorem, which also generalizes to larger products [34]. After
applying Wick's theorem, Eqs. (2.41) and (2.45) can be used to show that

Pαβ(ω1, ω2) =
∞∑

l=−∞

2πδ(lΩ− ω1 − ω2)Pαβ,l(ω1, ω2), (2.53)

where the Pαβ,l(ω1, ω2) are known as spectral noise powers. Again, the higher order l
terms in the sum will not be of interest, and the relevant quantities will be the zero
frequency correlators

Pαβ = Pαβ,0(0, 0) =

∫ T
0

dt

T

∫ ∞
−∞

dτPαβ(t, t+ τ), (2.54)

where the last equality can be proved by writing Pαβ(t, t+ τ) as the Fourier transform of
Pαβ(ω1, ω2) and using Eq. (2.53).
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The Pαβ is interpreted as the noise in the current due to �uctuations and can be
written as the sum of two contributions, the thermal noise, Pth

αβ, and the shot noise, Psh
αβ.

Assuming that the Fermi distributions are the same in each contact, which will be true
in the teleportation setup, the thermal noise takes the form

Pth
αβ =

e2

h

∫ ∞
−∞

dEf(E) (1− f(E))

[
δαβ

(
1 +

∑
γ

∞∑
n=−∞

|SF (En, E)αγ|2
)

−
∞∑

n=−∞

(
|SF (En, E)αβ|2 + |SF (En, E)βα|2

)]
,

(2.55)

and the shot noise

Psh
αβ =

e2

2h

∫ ∞
−∞

dE
∑
γδ

∞∑
n,m,p=−∞

(f(En)− f(Em))2 S∗F (E,En)αγSF (Ep, En)βγ

× SF (E,Em)αδS
∗
F (Ep, Em)βδ.

(2.56)

Pth
αβ will vanish at zero temperature due to the f(E)(1 − f(E)) factor, and is therefore

interpreted as arising from thermal �uctuations in the energy of the electrons, which are
not present when T = 0. Psh

αβ on the other hand can be nonzero also when T = 0, but it
will vanish if the scattering process is energy conserving, since then SF (E,En)αβ ∝ δn0,
although this is a particular feature of assuming equal Fermi distributions in all contacts
and it will be present if there are temperature or voltage di�erences between the contacts.
The shot noise is usually interpreted as a consequence of the discrete nature of the electrons
causing instantaneous current �uctuations in each contact [19]. Since the scattering is
probabilistic, it will sometimes happen that more electrons end up at one contact and
fewer at another which will cause a shift in the instantaneous values of the currents.

Below, we will also need to consider the third order correlator

Qαβγ(t1, t2, t3) =
〈

∆Îα(t1)∆Îβ(t2)∆Îγ(t3)
〉
, (2.57)

and its Fourier transform

Qαβγ(ω1, ω2, ω3) =
〈

∆Îα(ω1)∆Îβ(ω2)∆Îγ(ω3)
〉
. (2.58)

The argument that follows Eq. (2.51) concerning symmetrization also applies here. The
same reasoning that lead to Eq. (2.53) can also be used to write Qαβγ(ω1, ω2, ω3) as

Qαβγ(ω1, ω2, ω3) =
∞∑

l=−∞

2πδ(lΩ− ω1 − ω2 − ω3)Qαβγ,l(ω1, ω2, ω3). (2.59)

Again, we will only consider the zero frequency component

Qαβγ = Qαβγ,0(0, 0, 0) =
1

T

∫ T
0

dt

∫ ∞
−∞

dτβ

∫ ∞
−∞

dτγQαβγ(t, t+ τβ, t+ τγ). (2.60)

2.6 Levitons

It has been shown that applying voltage pulses of Lorentzian shape in time to metallic
contacts creates a quasiparticle excitation above the Fermi sea that consists of one electron
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and no holes [35, 36]. These quasiparticles are called levitons. In this thesis levitons will be
important when we consider the periodically driven teleportation setup, since the voltage
pulses that are used are Lorentzian and will create levitons. It will be possible to interpret
the measurement results as due to teleportation of leviton states. Levitons are named in
the pioneering experimental work [37], after L. S. Levitov, who was one of people who
theorized their existence [35, 36].

The voltage pulses that are used to create Levitons have the form

eV (t) =
∞∑

j=−∞

2~Γ

(t− jT )2 + Γ2
, (2.61)

where T is the period of the pulse train and Γ is the width of each pulse. If such a voltage
is applied to a contact in a scattering setup, then Sα(n) can be shown to take the form [18]

Sα(n) = S(n) =


−2e−nΩΓ sinh(ΩΓ) n > 0

e−ΩΓ n = 0

0 n < 0.

(2.62)

So an electron leaving the contact can keep its original energy or increase it by n~Ω,
n > 0, but never decrease it since S(n) = 0 for n < 0. This has the interpretation that
the voltage pulses create only electronic excitations and that no holes will be present.
Note that for smaller Γ, higher energies will be involved.

The excitations that are created by the voltage pulses are called levitons and can be
described by the following annihilation operator [36]

Aα =
√

2Γ
∑
E>0

e(itα−Γ)E/~aα(E), (2.63)

where tα is the time at which the leviton is created. At zero temperature, the voltage
pulses will create a leviton each period. At �nite temperature the created state will be
a mixed one, and the simple interpretation of our results will no longer apply due to the
presence of thermal excitations [38]. The energy distribution of the leviton wavepacket
has an exponential shape above the Fermi energy, which means that the levitons can be
thought of as having energy very close to the Fermi energy for large ΓΩ. Since there are
no holes accompanying the leviton, there will be no unoccupied states in the Fermi sea
and the leviton is therefore very robust against energy relaxtion processes, meaning that
relatively long coherence lengths should be possible when compared to other sources [16].
The spatial shape of the modulus squared of the leviton wavepacket will be a Lorentzian
of width Γ [36] and this parameter is referred to when the width of levitons are discussed
throughout the text.



Chapter 3

The teleportation setup

In this chapter the teleportation setup that has been studied in this thesis is presented
and described. The �rst step is an abstract picture of the setup that can in principle be
used to describe any implementation that uses backscattering free states. This will be
followed by a more concrete realization of the setup, which is based on the Corbino disk
geometry which is a 2DEG in the shape of an annulus. The Corbino geometry presented
here can be used to realize the experiments that have been discussed in this thesis.

3.1 Teleporting a single electron

Figure 3.1: Schematic view of the teleportation setup. The Si are single-electron sources,
the Gi are grounded contacts, the QPCs act as beamsplitters. The A and A′ modes go
to Alice while the B modes go to Bob. Electrons are detected at two detectors at A1 and
two detectors at A2. The aim of the experiment is to transfer a superposition of A′ modes
to a superposition of B modes.

The experiment that we want to describe is presented in Figure 3.1, which shows how
the di�erent components of the experimental setup are arranged. The architecture uses
dual-rail qubits, where there are two spatial modes that an electron can occupy. We use
as basis for our qubit space the states where one of the modes is occupied and the other
is empty.

19
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The �rst step is to prepare both the state that is going to be teleported, call it |ψ〉,
and the shared entangled states. First, each of the three electron sources Si generates an
electron, which will travel towards the �rst set of beamsplitters, QPC1-QPC3. This can
be described by the state

|φ〉 = a†S3
a†S1

a†S2
|0〉 . (3.1)

The electron sources can for instance be one of the ones mentioned in Section 2.4.1, and
since we will later work speci�cally with levitions, it can be useful to think of the sources
as leviton sources. The scattering through QPC1 and QPC2 is described by the scattering
matrix

Sj =
1√
2

[
i 1
1 i

]
, (3.2)

while for QPC3 the scattering matrix is

S3 =

[
i
√
R
√
D√

D i
√
R

]
, (3.3)

where R is the re�ection probability and D the transmission probability, with R+D = 1.
After QPC3 we also introduce a phase di�erence ϕ between the mode going to A1 and
the mode going to A2. By using the scattering matrices for the QPC's and including ϕ,
|φ〉 can be expressed in terms of the A′j, Aj and Bj modes as

1

2

(
i
√
Re−iϕa†A′1

+
√
Da†A′2

)(
ia†A1

+ a†B1

)(
ia†A2

+ a†B2

)
|0〉 . (3.4)

The A1 and A2 modes represent electrons traveling from the S1 and S2 sources, respec-
tively, to Alice's detector regions. A′1 and A′2 modes instead represent electrons created
at S3 and heading to Alice. The B1 and B2 modes corresponds to electrons traveling to
Bob. Each mode is labeled in Figure 3.1.

Equation (3.4) can be written as

|ψ〉 |Φ〉1 |Φ〉2 , (3.5)

with
|ψ〉 =

(
i
√
Re−iϕa†A′1

+
√
Da†A′2

)
|0〉 (3.6)

and
|Φ〉j =

1√
2

(
ia†Aj + a†Bj

)
|0〉 . (3.7)

If R, D and ϕ can be controlled then |ψ〉 can be any qubit state, and it is this superposition
that we wish to teleport. |Φ〉j is an entangled state since it has the form

1√
2

(
i |1〉Aj |0〉Bj + |0〉Aj |1〉Bj

)
. (3.8)

These are entangled single-particle states, as was mentioned in Section 2.4.3. It has been
suggested that one can use entangled particle-hole pairs to teleport electrons [39], and
there the entanglement is instead between two particles. We have so far prepared the
state |ψ〉 that is going to be teleported, and we have generated entangled states that are
shared between Alice and Bob.

Next, Alice performs her measurement. The �rst step of this procedure is to let
the electron traveling to Alice pass through another set of Beamsplitters, QPCA1 and
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QPCA2, that are also described by the scattering matrix Sj, de�ned in Eq. (3.2). Alice
then measures the number of electrons in each mode A±j . The state prior to Alice's
measurement is

1

2

(
1

2
a†

A+
1

a†
A+

2

(
i
√
Re−iϕa†B1

+
√
Da†B2

)
+

1

2
a†

A−1
a†

A−2

(
i
√
Re−iϕa†B1

+
√
Da†B2

)
+

+
1

2
a†

A+
1

a†
A−2

(√
Re−iϕa†B1

+ i
√
Da†B2

)
− 1

2
a†

A−1
a†

A+
2

(√
Re−iϕa†B1

+ i
√
Da†B2

)
+

− i
√
Re−iϕ√

2

(
ia†

A+
1

a†
A−1
a†

A+
2

+ a†
A+

1

a†
A−1
a†

A−2

)
+

√
D√
2

(
ia†

A+
1

a†
A+

2

a†
A−2

+ a†
A−1
a†

A+
2

a†
A−2

)
−

−
√
Re−iϕa†

A+
1

a†
A−1
a†B2
− i
√
Da†

A+
2

a†
A−2
a†B1

+

+
1√
2

(
i
√
Re−iϕ

(
a†

A+
1

+ ia†
A−1

)
+
√
D
(
a†

A+
2

+ ia†
A−2

))
a†B1

a†B2

)
|0〉 = |φ〉 .

(3.9)

In terms of the B1 and B2 modes, the �rst four terms of |φ〉 have a similar structure
to |ψ〉. If one mode at each of A1 and A2 is occupied, then Bob's part of the state
will be a superposition of his two modes. The rest of the terms in |φ〉 do not have this
structure. Some terms correspond to having all particles at Alice's location, which defeats
the purpose of trying to send a state to Bob. Others have two particles at the same Aj,
which means that Bob can not have a superposition of his two modes. In the remaining
cases Bob ends up with two of the particles, which means that both of Bob's modes will
be occupied, and he can therefore not have a superposition state. If Bob ends up with
two particles, he has also lost his entanglement link to Alice. From this discussion we can
conclude that our focus should be on outcomes where Alice �nds one particle at A1 and
one at A2, if we want to be able to teleport |ψ〉 to Bob. Analysis of the measurement
outcomes and Bob's post-measurement state is performed in Section 4.1.

Figure 3.2: It is possible to compare Bob's state to the input state by estimating the
components of the Bloch vector. For single-electron teleporation this can be done by
measuring the di�erence in occupation number between Bob's two modes. Which com-
ponent of the Bloch vector that is being measured can be selected by changing θ and the
transparency of the beamsplitter QPCB.

In order to verify that the teleportation protocol is working, Bob can perform quantum
state tomography on his part of the combined state. Quantum state tomography is a
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way to estimate the state of a quantum system and it is based on the Bloch sphere
representation of qubits presented in Section 2.2. From the results presented there, we
know that by measuring the expectation value of σx, σy and σz on his state after Alice's
measurement, Bob can estimate the Bloch vector ~r′ of the state he received. Measuring
〈σz〉 for a qubit corresponds to a measurement of 〈NB1 −NB2〉 in this case. 〈σx〉 and
〈σy〉 can also be expressed as 〈NB1 −NB2〉, provided the state has been transformed
appropriately prior to the measurement. To do this it su�ces to apply a phase shift θ to
one of the electron modes, and then let them pass through another beamsplitter, which
we will call QPCB. The phase and the beamsplitter will implement the transformation[

a†B1

a†B2

]
=

[√
D′eiθ i

√
R′

i
√
R′eiθ

√
D′

][
a†B′1
a†B′2

]
, (3.10)

where D′ and R′ are the transmission and re�ection probabilities of the beamsplitter. A
sketch of the tomography setup can be seen in Figure 3.2. The B′ modes are the modes
going from the entanglement generation region to the state tomography region in Figure
3.2. The derivation of the correct settings for θ and QPCB is provided in Appendix A
and the results are presented in Table 3.1.

Table 3.1: The phase and beamsplitter settings required for the di�erent state tomography
measurements.

Measurement D′ θ

r′x 1/2 π/2
r′y 1/2 0
r′z 1 0

The total scattering matrix for the entire system is found by combining the e�ect of
scattering matrices for the individual QPCs. The result for our system is

aA+
1

aA−1
aA+

2

aA−2
aB1

aB2


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2



−1√
2

i√
2

0 0 i
√
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√
De−iϕ

i√
2

1√
2

0 0 −
√
Re−iϕ i

√
De−iϕ

0 0 −1√
2

i√
2

√
D i

√
R

0 0 i√
2

1√
2

i
√
D −

√
R√

D′e−iθ i
√
D′e−iθ −i

√
R′

√
R′ 0 0

−i
√
R′e−iθ

√
R′e−iθ

√
D′ i

√
D′ 0 0




aS1

aG1

aS2

aG2

aS2

aG3

 .

(3.11)

3.2 Periodically driven teleportation setup

Here we will consider what happens in the teleportation setup above when the sources are
periodically injecting levitons into the experiment. This is a useful case to consider since
the version presented above assumes that single-electron detection is possible, which is
yet to be demonstrated for e.g. electrons in an edge channel, see Section 2.4.4. However,
measurements of average currents and current cross correlators are possible to perform.
Such quantities can be calculated using the machinery of Floquet scattering theory, which
is presented in Section 2.5.2. One of the main results of this thesis is that it is possible
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to relate the direct current, as well as second and third order cross correlators, to the
quantities that are measured in the quantum state tomography part of the single-electron
teleportation setup. There has been previous suggestions that state tomography can be
performed on electrons by measuring current correlators [40]. The approach presented
here uses the assumption that the leviton sources are con�gured so that the temporal
width of each leviton is su�ciently small, meaning that levitons emitted during di�erent
periods are uncorrelated. If the period of the voltage is su�ciently long, we can say that
only levitons emitted during the same period are passing through the setup at any one
time, which recreates the picture of teleportation given in the previous section. We can
interpret this as repeating the teleportation experiment very many times. Typical leviton
sources operate at GHz frequencies [37].

3.3 Corbino disk experimental geometry

Before the situations that have been discussed so far are analyzed further, a more concrete
experimental implementation of the experiment is presented. The setup is based on the
Corbino disk geometry for the quantum Hall e�ect. A Corbino disk is an annular sample of
a material that supports a 2DEG, and is brought into the integer QHE through the use of
strong magnetic �elds. The edge states propagate along the bounding circles. A Corbino
disk can be thought of as a regular Hall bar that has been joined along the short edges.
Figure 3.3 shows how the experiments described above can be mapped onto a Corbino
setup. Similar setups have been studied before [41, 42], and it can be shown that currents
and second order correlators do not depend on the phases, while third order correlators
will depend on the sum of the phases, which can be tuned by altering a magnetic �ux Φ
that that is threaded through the center of the disk. The Corbino disk is named after O.
M. Corbino, who studied magnetoresistance using an annular geometry [43, 44].

Figure 3.3: An illustration of a possible experimental setup, based on a Corbino disk.
Electrons are generated at the sources (red) and travel along the boundaries of the disk,
with the possible trajectories indicated by the lines. The two arrows indicate the direcetion
of travel for the corresponding edge states. The QPCs (blue) act as beamsplitters and
facilitate scattering between the two edges, with scattering matrices de�ned in Section
3.1. Phase di�erences ϕ and θ are introduced along two of the paths and their sum, which
is what the observables of interest depend on, can be tuned by altering a magnetic �ux
Φ. Current measurements are performed at six di�erent detectors (purple).



Chapter 4

Results

This chapter presents the results of the calculations that have been performed in this
thesis. To start with, the focus will be on the single-electron picture of teleportation
where it is assumed that single-electron detection is possible. After that the focus will
be shifted to the results for the periodically driven teleportation setup, starting with
what happens at zero temperature and then what changes when �nite temperatures are
introduced.

4.1 Single-electron picture

Here an analysis of Alice's measurement and Bob's post-measurement state is presented.
First a POVM describing ideal single-electron detection will be de�ned. This will be
followed by the results for the teleportation e�ciency and the post-measurement states.
Lastly, we will discuss the state tomography procedure in light of these results.

4.1.1 Basic picture and measurement

From the discussion following Eq. (3.9), we know that the measurement outcomes that
are interesting for teleportation are those where two particles are detected at A with one
at A1 and the other at A2. These leave one particle at B, and it can be in a superposition
of the two B modes. If two particles are detected at A1 for instance, then the third is
found with complete certainty in the B2 mode. If one takes the point of view that was
presented in Section 2.1, then the useful outcomes are those where Alice cannot tell where
the electron created at S3 was detected, and that means she does not learn anything about
the state |ψ〉 that we want to teleport. The useful outcomes can be labeled by ji ∈ {+,−},
depending on which of the modes at Ai is occupied. Appendix B contains the de�nition of
the full POVM for Alice's measurement. There it is also veri�ed that the POVM ful�lls
the conditions speci�ed in Section 2.3. The POVM elements E(j1, j2) for the relevant
outcomes are

E(+,+) = NA+
1
NA+

2
(I −NA−1

)(I −NA−2
),

E(+,−) = NA+
1
NA−2

(I −NA−1
)(I −NA+

2
),

E(−,+) = NA−1
NA+

2
(I −NA+

1
)(I −NA−2

),

E(−,−) = NA−1
NA−2

(I −NA+
1

)(I −NA+
2

).

(4.1)

24
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Nk = a†kak is the number operator for mode k. These operators project the state onto the
subspace where the j1 and j2 modes are occupied. The probability for Alice to �nd each
of the desired outcomes is 1/16, as can be seen by calculating p(+,+)

p(+,+) = 〈φ|E(+,+) |φ〉 = 〈φ|NA+
1
NA+

2
(I −NA−1

)(I −NA−2
) |φ〉 =

=
1

4
〈φ| a†

A+
1

a†
A+

2

(
i
√
Ra†B1

+
√
Da†B2

)
|0〉 =

1

16
.

(4.2)

The calculations for the three other cases follow the exact same steps.
Since the interesting part of the post-measurement state is the state at B, it makes

sense to study the partial trace over states at A of the post-measurement density matrix.
As was shown in Section 2.3, it is not necessary to de�ne Kraus operators for this mea-
surement to �nd Bob's post-measurement state, since when calculating the partial trace
it su�ces to know the POVM elements. Calculating the post-measurement states for the
four relevant measurement outcomes results in

ρB(+,+) =
(
i
√
Re−iϕa†B1

+
√
Da†B2

)
|0〉 〈0|

(
−i
√
ReiϕaB1 +

√
DaB2

)
= |ψ〉 〈ψ| ,

ρB(−,−) =
(
i
√
Re−iϕa†B1

+
√
Da†B2

)
|0〉 〈0|

(
−i
√
ReiϕaB1 +

√
DaB2

)
= |ψ〉 〈ψ| ,

ρB(+,−) =
(√

Re−iϕa†B1
+ i
√
Da†B2

)
|0〉 〈0|

(√
ReiϕaB1 − i

√
DaB2

)
= U |ψ〉 〈ψ|U †,

ρB(−,+) =
(√

Re−iϕa†B1
+ i
√
Da†B2

)
|0〉 〈0|

(√
ReiϕaB1 − i

√
DaB2

)
= U |ψ〉 〈ψ|U †,

(4.3)

where U is the unitary transformation

U =

[
−i 0
0 i

]
(4.4)

on the space spanned by a†B1
|0〉 and a†B2

|0〉. The �rst two states are the same as the
state we wished to teleport, and they are found with a total probability of 1/8. The two
following states can be transformed into the original state by applying U †, and they are
also found with a total probability of 1/8. This means that teleportation is successful 1/8
or 1/4 of the time, depending on whether it is possible to apply U † to the state at B.

Compared to the original teleportation protocol [1], which in principle has a 100%
success rate, our approach can only be successful 25% of the time. However, the original
protocol has four di�erent outcomes at B, whereas here there are only two outcomes at B
when teleportation is successful. If the unitary transformation at B is not implemented
in both of the protocols then the standard protocol is successful 25% of the time while
our approach would be successful 12,5% of the time. We have now showed that it is
in principle possible to perform (probabilistic) quantum teleportation using an electron
quantum optics approach. Improving the e�ciency �gures, if possible, would require a
change in architecture, presumably one that minimizes the number of outcomes that do
not contribute to teleportation. Trying to scale probabilistic protocols to perform more
complex quantum information processing tasks requires care, so that run time is not
wasted by unwanted outcomes.

4.1.2 State tomography

For teleportation, the only interesting cases to perform state tomography on Bob's state
are those where teleportation should have succeeded. This means that we should only
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perform the tomography measurement when Alice has obtained an outcome where tele-
portation is possible. Assuming Alice got outcome X for her measurement, then Bob's
post measurement state ρB is given by Eq. (2.25). Combining this with Eq. (2.26) tells us
that the Bloch vector components of Bob's state, given that Alice gets outcome X, are

r′i = Tr (σiρB) =
1

P (X)
Tr
(
IA ⊗ σiM (X) ρM † (X)

)
=

1

P (X)
Tr (E(X)σiρ) =

=
1

P (X)
〈E(X)σi〉,

(4.5)

where {M(X)} is any set of Kraus operators that gives rise to the POVM de�ned in Eq.
4.1. Since our tomography setup always ensures that a measurement of 〈σi〉 corresponds
to a measurement of 〈NB1 −NB2〉 we can write

r′i =
1

P (X)
〈E(X)(NB1 −NB2)〉, (4.6)

with the appropriate values of D′ and θ so that this corresponds to measuring the i
component of the Bloch vector of Bob's state. Computing ri for the state we wish to
teleport gives

rx = 2
√
RD sinϕ,

ry = −2
√
RD cosϕ,

rz = R−D.
(4.7)

This is also what one �nds by computing r′i for the teleported state with the method
described above, if Alice measures ++. This case is su�cient to consider in order to
demonstrate that teleportation works, since we are not implementing the conditional
unitary transformation that would mean that also the +− and −+ outcomes could be
used for teleportation. Equation (4.6) for the outcome ++ becomes

r′i =
〈E(1, 0, 1, 0)(NB1 −NB2)〉

〈E(1, 0, 1, 0)〉
=

〈NA+
1
NA+

2
(NB1 −NB2)〉

〈NA+
1
NA+

2
(I −NA−1

+NA−2
)〉
, (4.8)

where in the last expression we have dropped terms that involve more than three electrons,
since there are only three electrons in the system.

4.2 Periodic driving and levitons

We now present the results of having the teleportation setup driven by the voltage pulses
that create levitons. The �rst step is to show how we can relate the state tomography
measurements that were performed in the previous section to observables that can be
calculated using Floquet scattering theory. These involve correlators up to order three.
The �nal step will be to present the temperature dependence of the involved quantities,
with special attention given to the case T = 0 where we can make a clear interpretation
of the results as being due to quantum teleportation of levitons. When we go to �nite
temperatures, an interpretation in terms of single-particle teleportation becomes di�cult
due to the presence of other excitations, but we will see that the results can still be given
the interpretation of average quantities describing noisy teleportation of a leviton.
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4.2.1 Current correlators and the single-shot picture

In order to perform the state tomography described in Section 3.1 in the setup where
we periodically inject levitons, we need to �nd observables that can be connected to Eq.
(4.8). The goal of this section is to show that at zero temperature it is possible to �nd a
correspondence between leviton number operators and current correlators. One example
of such a correspondence is

〈NαNβNγ〉 =
T
e3
Qαβγ +

T 2

e3
(IαPβγ + IβPαγ + IγPαβ) +

T 3

e3
IαIβIγ. (4.9)

This is important because Eq. (4.8) implies that the Bloch vector of the teleported state,
and the success probability, can be expressed in terms of di�erent combinations of number
operators. With this correspondence we will be able to express these quantities in terms
of correlators, and therefore have another way to measure them.

As was discussed in Section 2.5.2, the quantities Iα, Pαβ and Qαβγ can be expressed
in the following way

Iα =
1

T

∫ T
0

dt〈Îα(t)〉, (4.10a)

Pαβ =
1

T

∫ T
0

dt

∫ ∞
−∞

dτ〈∆Îα(t)∆Îβ(t+ τ)〉, (4.10b)

Qαβγ =
1

T

∫ T
0

dt

∫ ∞
−∞

dτβ

∫ ∞
−∞

dτγ〈∆Îα(t)∆Îβ(t+ τβ)∆Îγ(t+ τγ)〉. (4.10c)

Since our system is periodic in time with period T , we de�ne the operator for the
number of electrons detected in contact α during one period of the external voltage as

Nα =
1

e

∫ T
0

dtÎα(t). (4.11)

Using Eq. (4.10a), the expectation value for Nα is seen to be

〈Nα〉 =
T
e
Iα. (4.12)

With ∆Nα = Nα − 〈Nα〉 we �nd

〈∆Nα∆Nβ〉 =
1

e2

∫ T
0

dt

∫ T
0

dτ〈∆Îα(t)∆Îβ(τ)〉 =
T
e2

1

T

∫ T
0

dt

∫ T −t
−t

dτ〈∆Îα(t)∆Îβ(t+τ)〉.

(4.13)
We now assume that ∆Îα(t) and ∆Îβ(t′) are uncorrelated when t and t′ lie in di�erent

periods, i.e. 〈∆Îα(t)∆Îβ(t′)〉 = 0 for bt/T c 6= bt′/T c, where bxc is the �oor function. This
assumption is expected to be valid if the Lorentzian voltage pulses have small widths,
such that subsequent pulses do not overlap signi�cantly. From this we can show that

Pαβ =
1

T

∫ T
0

dt

∫
b tT c=b t+τT c

dτ〈∆Îα(t)∆Îβ(t+τ)〉 =
1

T

∫ T
0

dt

∫ T −t
−t

dτ〈∆Îα(t)∆Îβ(t+τ)〉.

(4.14)
From Eqs. (4.13) and (4.14) it follows that

〈∆Nα∆Nβ〉 =
T
e2
Pαβ. (4.15)
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For 〈∆Nα∆Nβ∆Nγ〉 we get

〈∆Nα∆Nβ∆Nγ〉 =
T
e3

1
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∫ T
0

dt

∫ T
0

dτβ

∫ T
0

dτγ〈∆Îα(t)∆Îβ(τβ)∆Îγ(τγ)〉 =

=
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0

dt

∫ T −t
−t

dτβ

∫ T −t
−t

dτγ〈∆Îα(t)∆Îβ(t+ τβ)∆Îγ(t+ τγ)〉.
(4.16)

Under the assumption that 〈∆Îα(t)∆Îβ(t′)∆Îγ(t
′′)〉 vanishes unless t, t′ and t′′ all lie

in the same period, Qαβγ becomes

Qαβγ =
1

T

∫ T
0

dt

∫ ∞
−∞

dτβ

∫ ∞
−∞

dτγ〈∆Îα(t)∆Îβ(t+ τβ)∆Îγ(t+ τγ)〉 =

=
1

T

∫ T
0

dt

∫ T −t
−t

dτβ

∫ T −t
−t

dτγ〈∆Îα(t)∆Îβ(t+ τβ)∆Îγ(t+ τγ)〉.
(4.17)

We therefore have
〈∆Nα∆Nβ∆Nγ〉 =

T
e3
Qαβγ. (4.18)

From the relation

〈NαNβNγ〉 = 〈Nα〉〈Nβ〉〈Nγ〉+ 〈∆Nα∆Nβ〉〈Nγ〉+ 〈∆Nα∆Nγ〉〈Nβ〉+
+ 〈∆Nβ∆Nγ〉〈Nα〉+ 〈∆Nβ∆Nγ∆Nα〉,

(4.19)

we can establish Eq. (4.9). Similar relations for e.g. 〈NαNβ〉 can be established analo-
gously. The procedure used to �nd the correspondences could in principle be extended to
higher order correlators. However, for the purposes of demonstrating teleportation with
levitons, it su�ces to consider correlators up to order three, since Eq. (4.8) does not
contain higher orders.

4.2.2 Expressions for the Correlators

We will now turn to computing the relevant currents and current correlators. For the
currents we use Eq. (2.44). Since our scattering matrix is of the form Eq. (2.42), we can
write the current as

Iα =
e

h

∑
β

|Sαβ|2
∞∑

n=−∞

|Sβ(−n)|2
∫ ∞
−∞

dE(f(En)− f(E)) =

=
e

T
∑
β=Si

|Sαβ|2
∞∑
n=1

n |S(n)|2 =
e

T
∑
β=Si

|Sαβ|2 ,
(4.20)

where the notation
∑

β=Si
means that the sum runs only over source contacts. The

second equality in Eq. (4.20) follows from the result
∫∞
−∞ dE(f(En) − f(E)) = −n~Ω,

which can be seen by a straightforward computation, and the last equality is due to∑∞
n=1 n |S(n)|2 = 1, which corresponds to the number of electrons emitted from each of

the sources every period [45]. From Eq. (4.20) we can see that the direct currents in the
teleportation setup are temperature independent. It also has a rather intuitive form, since
it is the sum of the currents emitted by each source, weighted by the probability that an
electron from source Si will end up at contact α. (Each source emits one electron per
period on average.)
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Next we compute Pαβ. This means evaluating the expressions (2.55) and (2.56) for
the thermal and shot noise. The �rst term of the thermal noise can be seen to be zero
for α 6= β and the second term vanishes in chiral systems when both α and β refer to
detector contacts, since there are no scattering elements that connect them. Since these
are exactly the types of correlators we are interested in for teleportation, we can disregard
the thermal noise. We can then insert the expression for the scattering matrix into Eq.
(2.56) which gives,

Pαβ =
e2

2h

∑
γδ

∞∑
n,m,p=−∞

χ(n−m)S∗αγSβγSαδS
∗
βδS

∗
γ(−n)Sγ(p− n)Sδ(−m)S∗δ (p−m).

(4.21)

The function χ(n−m) is de�ned as

χ(n−m) =

∫ ∞
−∞

dE(f(En)− f(Em))2 = (n−m)~Ω coth
(n−m)~Ω

2kBT
− 2kBT. (4.22)

This expression can be simpli�ed somewhat by evaluating the sums over n, m and p for
the di�erent combinations of γ and δ. A result that is helpful is a convolution theorem
for Fourier coe�cients of two periodic functions f and h, stated in ref. [19] as

∞∑
n=−∞

f̂(n)
(
ĥ(n+ q)

)∗
= f̂h∗(−q), (4.23)

where f̂(n) is the n-th Fourier coe�cient of f etc. The sum in Eq. (4.21) contains many
factors of the form

∑∞
n=−∞ S(n)S∗(n + q) that reduce to δq0 since S(n) are the Fourier

coe�cients of a phase. If f = h = eiϕ, then fh∗ = 1, which has δq0 as its Fourier
coe�cients. The �nal result is

Pαβ =
e2F (T )

2T

(∑
γ=Si

∑
δ=Gi

+
∑
γ=Gi

∑
δ=Si

)
S∗αγSβγSαδS

∗
βδ = F (T )Pαβ

∣∣∣
T=0

, (4.24)

where the sums run over source contacts Si or grounded contacts Gi. The function F (T )
is de�ned as

F (T ) =
∞∑
n=1

n

(
coth

n~Ω

2kBT
− 2

kBT

n~Ω

)
|S(n)|2 . (4.25)

Equation (4.24) says that the noise is the product of two factors. One factor corresponds
to the noise at zero temperature, and depends only on the details of the settings of the
teleportation setup, which is encoded in the Sαβ. The other factor, F (T ), depends on the
temperature and the settings of the leviton sources.

An expression for the third order correlator is derived in Appendix C. With the Floquet
scattering matrix that describes our system it takes the form

Qαβγ =
e3

h

∑
δεζ

∞∑
k,n,s,u,v=−∞

S∗δ (−n)Sδ(k − v − n)Sε(−s)S∗ε (k − u− s)Sζ(−u)S∗ζ (−v)(
MδεζG(n− k, s− k)−M∗

δεζG(k − n, k − s)
)
,

(4.26)
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with
Mδεζ = S∗αδSγδSαεS

∗
βεSβζS

∗
γζ . (4.27)

The function G(n − k, s − k), which is an energy integral over Fermi distributions, is
de�ned in Appendix C. G(n− k, s− k) can be evaluated analytically, with the result

G(n− k, s− k) =
~Ω

8

(n− s)e(k−n) ~Ω
kBT + (k − n)e

(s−n) ~Ω
kBT + s− k

sinh (n−k)~Ω
2kBT

sinh (n−s)~Ω
2kBT

sinh (s−k)~Ω
2kBT

. (4.28)

The �ve in�nite sums in Eq. (4.26) can be reduced to single in�nite sums by making
use of Eq. (4.23). Calculating this for the possible combinations of detectors for the cross
correlators shows that we will end up in a similar situation to that of the noise, in that
we can separate Qαβγ into one factor that depends only on the beamsplitter and phase
settings, and one that depends on the temperature and the source settings, i.e

Qαβγ = A(T )Qαβγ
∣∣∣
T=0

. (4.29)

It also turns out that the temperature dependent factor A(T ) takes the same form for
every detector combination, namely

A(T ) =
∞∑
n=1

n

(
coth2 n~Ω

2kBT
+

1

2
csch2 n~Ω

2kBT
− 3

kBT

n~Ω
coth

n~Ω

2kBT

)
|S(n)|2 . (4.30)

From the de�nitions of r′i in terms of POVM elements discussed in Section 4.1.2 and
from the correspondence derived in the previous section, we see that the currents and
correlators that are relevant for demonstrating teleportation are those listed in Table 4.1.
The table contains their values at zero temperature and their temperature dependence.
Like in Section 4.1.2, we focus on the case when Alice measures ++.

Table 4.1: Expressions for the currents and correlators that are needed to demonstrate
teleportation. The expressions are given for the three di�erent tomography measurements
needed to determine the state at B, and those expressions are valid at T = 0. The last
column gives the temperature dependent factors of each quantity.

Quantity D′ = 1/2, θ = π/2 D′ = 1/2, θ = 0 D′ = 1, θ = 0 T dep.
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The functions F and A that determine the temperature dependence of the second
and third order correlators can be evaluated numerically, and are shown in Figure 4.1
for di�erent values of ΓΩ. From those plots we see that both the second and third order
correlators will approach zero as temperature increases, although Qαβγ will go to zero
more rapidly than Pαβ. The plots also indicate that if we keep Ω �xed, then decreasing Γ
will keep the correlators closer to their zero temperature values for a larger temperature
span, although at zero temperature the values are independent of Γ.
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Figure 4.1: Temperature dependence of the second and third order correlators.

4.2.3 Zero temperature results

As can be seen from Figure 4.1, F (T ) and A(T ) approach 1 as T → 0. Mathematically
this can be seen either by taking the limit kBT/~Ω → 0 in Eqs. (4.25) and (4.30), or by
replacing f(E) with the step function θ(−E) when calculating the integrals χ(n−m) and
G(n−k, s−k). From Table 4.1 and Alice and Bob's combined pre-measurement state, Eq.
(3.9), we can verify that the correspondence that was derived in Section 4.2.1 holds. This
means that it is possible to perform a teleportation experiment with levitons that relies
on measurements of Iα, Pαβ and Qαβγ instead of relying on single-electron detection. It
should be noted that we need to assume that the settings of the leviton sources, width and
period, are such that only levitons from the same period are traveling in the leads at the
same time. Then it becomes possible to interpret the periodic application of the pulses
as repeatedly teleporting single leviton states. To make the correspondence between the
Floquet correlators and tomography observables concrete, we can write out Bob's Bloch
vector corresponding to when Alice measures ++, in terms of the correlators

r′i =
J

K

∣∣∣∣
T=0

, (4.31)
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where we have de�ned

J =
T
e3

(
QA+

1 A+
2 B1
−QA+

1 A+
2 B2

)
+
T 2

e3

(
PA+

1 A+
2

(IB1 − IB2) + IA+
2

(PA+
1 B1
− PA+

1 B2
)+

+IA+
1

(PA+
2 B1
− PA+

2 B2
)

)
+
T 3

e3
IA+

1
IA+

2

(
IB1 − IB2

)
,

K =
T 2

e2
IA+

1
IA+

2

(
1− T

e
(IA−1

+ IA−2
)

)
− T

2

e3

(
IA+

1
(PA−1 A+

2
+ PA+

2 A−2
)+

+IA+
2

(PA+
1 A−1

+ PA+
1 A−2

)

)
− T
e3

(
QA+

1 A+
2 A−1

+QA+
1 A+

2 A−2

)
.

(4.32)

J and K are found by applying the correspondence derived in Section 4.2.1 to the numer-
ator and denominator, respectively, of Eq. (4.6). This means that K corresponds to the
probability that the outcome ++ is found by Alice. If the T = 0 values from Table 4.1
are plugged in to the above expressions we �nd r′i = ri. We now have enough to be able
to verify that teleportation is possible to perform using levtions in QHE edge modes.

4.2.4 Finite temperature results

At �nite temperatures the simple picture of teleportation that has been presented so
far becomes problematic, since our system will contain thermal excitations in addition
to the levitons. This means that the POVM that was de�ned in Eq. (4.1) is no longer
appropriate to describe the situation, since it only accounts for the presence of levitons. If
there are additional excitations present, it is not guaranteed that 〈Ni〉 is bounded between
zero and one, which in turn would mean that the POVM elements can become negative.
If the operators de�ned in Eq. (4.1) are no longer positive, then they do not de�ne a
POVM. Furthermore, we can no longer rigorously justify Eq. (4.8) since it was derived
under the assumption that there are only three electrons in the system. However, we can
still calculate the quantity on the right-hand side of Eq. (4.31) at �nite temperatures.
This can be used to de�ne a new Bloch vector with components r̃i,

r̃i =
J

K

∣∣∣∣
T≥0

, (4.33)

which at T = 0 will correspond to the Bloch vector of Bob's state if Alice measures ++.
At low temperatures, where the number of additional excitations is small, one might still
expect Eq. (4.33) to be a good approximation to the correct picture, but showing that
requires a more careful argument. These additional excitations also mean that we strictly
speaking no longer have a qubit system, since the excitations makes our state a more
complicated many-body state.

Nevertheless, we can still discuss how ~̃r behaves at nonzero temperature, to investigate
the deviations of the zero temperature scenario. Computing r̃i gives

~̃r =

q(T )rx
q(T )ry
rz

 , (4.34)

where q(T ) = A(T )/F (T ). q(T ) is plotted in Figure 4.2 and those plots suggest that q
behaves similarly to A and F , although it does not decrease as rapidly with temperature
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Figure 4.2: Temperature dependence of q(T ) for di�erent values of ΓΩ.

as A and F . The x and y components of the Bloch vector will shrink towards the center
of the Bloch sphere since they are multiplied by q(T ), but the z-component is una�ected.
The prepared states satisfy the equation r2

x + r2
y + r2

z = 1, because they are pure states,
but teleported states instead describe the surface

r̃2
x + r̃2

y

q(T )2
+ r̃2

z = 1, (4.35)

which for q(T ) < 1 is a prolate spheroid. Some examples of transformed Bloch spheres
for a few di�erent values of ΓΩ and kBT/~Ω are presented in Figure 4.3. Included in each
�gure is the Bloch vector (0,−1/

√
2, 1/
√

2) and the corresponding ~̃r Bloch vector. From
these �gures we see that the regions around the north and south poles of the Bloch sphere
contain the states that are least a�ected when the temperature is increased. These are
the states that are almost fully in one of the two modes. A prolate spheroid possesses
a cylindrical symmetry along the z-axis, in that each slice orthogonal to the z-axis, i.e.
where R and D are constant, will be described by a circle. This suggests that some
interesting quantities such as purity and �delity might not have a ϕ dependence. If we also
assume that K is a low temperature approximation of the probability for ++ outcomes in
Alice's measurement, then we see that the probability will be F (T )/16, which decreases
as temperature increases. In terms of teleportation, this suggests that the probability
for successful teleportation is negatively a�ected by an increase in temperature, but a
rigorous argument requires a proper POVM.

Figure 4.3: Here we can see how the Bloch sphere transforms as we move to �nite tem-
peratures. ~r and ~̃r are represented by the red and blue vectors, respectively. In the last
two pictures, the parameters were taken from an experiment that was performed with
levitons [37].
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A transformation of the Bloch vector like the one in Eq. 4.34 can be viewed as if a
random change in the phase di�erence of a superposition state has occured. This type
of noise can be described by a proccess called a phase �ip, where the phase factor of one
of the basis states changes sign with some probability p [7]. Since the north and south
poles of the Bloch sphere are not superpositions of modes, they are una�ected by this
type of noise. On the other hand, states on the equator are equal superpositions of two
modes and information about the superposition is lost when the phase is altered, which
leads to a less pure state. Since only the x and y components of the Bloch vector are
a�ected, this type of noise will transform the Bloch sphere into ellipsoids, as is shown
in Figure 4.3. So ~̃r seems to describe a teleported version of the state described by ~r
having been disturbed by some phase noise. Again, we should be careful about drawing
too many conclusions from these calculations, since our identi�cation of ~̃r with a Bloch
vector is not rigorous, but should rather be seen as a way to investigate deviations from
the ideal, zero temperature behavior.

Taking this analogy to noisy teleportation further, we can use the results of Section
2.2 to calculate the purity of the teleported state, as well as the teleportation �delity. The
purity of the teleported qubit will be

γ =
1 + q(T )2 (4RD) + (R−D)2

2
, (4.36)

and is shown as a function of temperature for a few di�erent values of R and ΓΩ in
Figure 4.4. The plots tell us that as the temperature increases the purity will decrease
until it reaches a constant value. Equation (4.36) suggests that what value the purity
will approach depends on R. If R is close to 0 or 1, then γ will be closer to 1, but if R
is close to 1/2, γ will instead approach values close to 1/2. If γ = 1/2, then the state
is completely mixed. This point is well illustrated in the left panel of Figure 4.4. On
the other hand, the right-hand panel shows that the leviton width is very important in
determining the purity of the output state, since there is a very large di�erence between
the three di�erent cases. This is not surprising when one considers that q(T ) also depends
very strongly on ΩΓ, as shown in Figure 4.2. The reason that we get better values for the
purity when ΓΩ is small is that the energy distribution for the leviton is broader, see e.g.
Eqs. (2.62) and (2.63), which means that the levitons stand out more from the Fermi sea,
which will have thermal excitations with energies of order kBT around the Fermi energy.
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Figure 4.4: These plots show the purity γ of the teleported state as a function of temper-
ature. On the left we have chosen a speci�c width of the levitons and the di�erent lines
correspond to the purity of the teleported state for di�erent values of R for the original
state. On the right we have instead chosen a speci�c value of R and varied the width of
the levitons.
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The �delity between the states described by the ~r and ~̃r Bloch vectors is

F (ρ, ρ̃ ) =
1 + 4q(T )RD + (R−D)2

2
. (4.37)

One thing to notice here is that neither the purity nor the �delity depends on the relative
phase between the two modes that make up the qubit, since the expressions for both γ and
F do not contain ϕ. This is a manifestation of the cylindrical symmetry that is present in
the Bloch sphere transformations that the �nite temperature introduces. Therefore, we
do not have to consider ϕ when calculating the teleportation �delity. Averaging F over
R, and using D = 1−R, leads to a teleportation �delity of the form

Ftel =
2

3
+
q(T )

3
. (4.38)

From this we see that the teleporation �delity approaches the classical limit of 2/3 as
the temperature is increased, as Figure 4.5 illustrates. However, Ftel always lies above
the classical limit. This is perhaps not so surprising considering that according to Eq.
4.33, the �delity should be perfect for the classical states, i.e. those with no superpositions.
The classical strategy for teleportation mentioned in Section 2.2 is una�ected by the phase
noise discussed above since the probability of �nding one of the basis states is independent
of the relative phase.

Figure 4.5: These plots show the �delity between the input state and the output state
as a function of the temperature. In the left panel we consider a �xed leviton width for
di�erent input states. In the middle panel, we consider a �xed input state for di�erent
leviton widths. The right panel shows Ftel, i.e. the �delity of the input and output states
averaged over all possible input states. This is plotted for di�erent leviton widths and is
compared to the best possible �delity of a classical teleportation scheme (horizontal line).

To get some feeling for what values of ΩΓ and at what temperatures it is currently
realistic to operate at, we can consider the experiment [37] which generated and studied
levitons. One part of the experiment was performed at T = 39 mK and used two pairs of
values for Ω and Γ, Ω = 2π·4.8 GHz, Γ = 37.5 ps, ΩΓ = 1.13 and Ω = 2π·6 GHz, Γ = 15 ps,
ΩΓ = 0.57. Table 4.2 contains the Ftel values that we �nd using these parameters, along
with the remaining parameter pair used in Figure 4.3. The results in Table 4.2 say that
with realistic operating parameters we could measure a �delity close to 1, having neglected
of course other sources of noise such as electron-electron interactions. Such interactions
might for instance occur between levitons from adjacent pulses, or between the levitons
and the rest of the 2DEG.
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Table 4.2: Values of the teleportation �delity for the same parameters used in Figure 4.3

kBT/~Ω ΩΓ Ftel

0.5 0.5 0.88
0.17 1.13 0.93
0.14 0.57 0.96

To see if the assumption of well separated pulses is satis�ed for the values of ΓΩ that
have been used in this section, we can look at the corresponding pulse trains to see how
much the individual pulses overlap. As Figure 4.6 shows, for ΩΓ = 0.01 and 0.1 the
individual pulses are well separated, while for ΩΓ = 1 the pulses overlap to a greater
extent. Since the values of ΩΓ that were taken from experiment are in the latter range,
it would be good if the leviton width in experiments could be decreased further, in order
for the assumption of well separated levitons to be valid.

Figure 4.6: Examples of Lorentizan pulse trains showing the mount of overlap between
individual pulses. As the width of the indivudal pulses are increased, the assumption that
the pulses are well separated becomes less justi�ed.



Chapter 5

Summary and outlook

The results of this thesis project show that it is possible to perform quantum teleportation
using single-electron states. This was done by working within the framework of electron
quantum optics. We demonstrated two possible experiments that realize quantum tele-
portation. The �rst one requires reliable single-electron detection for �ying qubits, which
have not yet been demonstrated for systems based on edges states in the QHE. A scheme
to perform quantum state tomography on the teleported state was also described. The sec-
ond experiment where we periodically create levitons and do not perform single-electron
detection but instead measure average currents and zero frequency current cross corre-
lators, is currently the more realistic approach if one wants to work with architectures
based on edge states for guiding the electrons. In the periodically driven case we also
studied how the situation changes when non-zero temperatures are considered. The work
performed during this thesis is intended to be a part of a future journal publication.

In the single-shot experiment, teleportation is successful 25% of the time, provided
a conditional unitary transformation based on the outcome of Alice's measurement is
implemented by Bob. If the transformation is not included, the e�ciency is instead
12,5%. The protocol we have presented is probabilistic even in the best case scenario,
and a challenge for other quantum information protocols that are constructed similarly
to our experiment, if the aim is to create a useful system, is to minimize the probability
of ending up with an unwanted outcome.

The usefulness of the second experiment, lies in the fact that we can perform state
tomography and �nd success probabilities with measurements of direct currents and zero
frequency current cross correlators instead of single-electron detection. For a levtion and
QHE architecture, single-electron detection is not yet available, and this experiment is
therefore more feasible to perform than the idealized version. Still, the experiment is
not completely straightforward to perform since it requires 20 di�erent quantities to be
measured, see Table 4.1. The periodic injection experiment serves as a proof of concept
for single-electron teleportation and possible applications of periodic leviton teleportation
have not been considered.

In the �nite temperature case it is still possible to write down a Bloch vector, ~̃r, in
terms of the correlators that are used at zero temperature. ~̃r will look like the Bloch
vector of the original state a�ected by noise. As was stated in the text, precisely how
one should interpret the state represented by ~̃r is not fully understood, since the addition
of thermal excitations means that the POVM that was de�ned for the ideal case can fail
at nonzero temperatures, because the POVM elements are no longer guaranteed to be
positive. This means that ~̃r might not represent a quantity of the same form as Eq. (4.8).

37
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One could hope that the expression for ~̃r can be derived as a low temperature limit from a
description of the teleportation setup that properly deals with the additional excitations.
In other words, since Eq. (4.31) is exact at T = 0, one can perhaps show that Eq. (4.33)
should be a good description at low temperatures, where the e�ects of thermal excitations
should be small. Showing such a result would require additional work and has not been
done in this thesis.

There are several ways to connect the results of this thesis to a bigger picture. First,
we have demonstrated a new system in which we can perform quantum teleportation.
One can argue that it is not perhaps an extremely useful approach since the e�ciency
is not as high as others and the distances over which teleporation can be performed are
not very large, a few µm, compared to some of the alternatives presented in Chapter 1.
However, quantum information experiments with single electrons is a fairly new topic and
studying basic systems can be thought of as proof of principle experiments, with the aim
of trying to determine if there are applications where a single-electron approach can be
appropriate. As a part of this, one has to also consider which of the physical systems
that have been discussed here are most suitable for these kinds of tasks. This thesis has
focused mostly on levitons traveling in edge channels, but SAW based approaches has the
advantage that there single-electron detection is more straightforward. One also has to
consider other parameters such as the electron coherence length and how easy the systems
are to fabricate.

Another way is to think of this as a stepping stone to other technologies that utilize
electron quantum optics. Teleportation is one of the simpler protocols within quantum
information processing, and we can try to build upon it to perform more complex tasks.
For instance one could study the entanglement swapping protocol mentioned in Chapter 1,
or perhaps investigate architectures that have been proposed for optical quantum com-
putation. More broadly one can study how to utilize control over single-electron states in
other types of technologies. From a theorists point of view, this would involve analyzing
experiments that can be performed with the tools available to experimentalists.
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Appendix A

Checking beamsplitter and phase

settings for state tomography

We represent the qubit
|ψ〉 = (αa†B′1

+ βa†B′2
) |0〉 (A.1)

by the vector [
α
β

]
. (A.2)

The expectation values for σx,y are given by

rx = 〈ψ|σx |ψ〉 =
[
α∗ β∗

] [0 1
1 0

] [
α
β

]
= α∗β + αβ∗ (A.3)

and

ry = 〈ψ|σy |ψ〉 =
[
α∗ β∗

] [0 −i
i 0

] [
α
β

]
= −iα∗β + iαβ∗. (A.4)

In the B1 and B2 basis, the state is represented by the vector[ √
D′e−iθ −i

√
R′

−i
√
R′e−iθ

√
D′

] [
α
β

]
=

[ √
D′e−iθα− i

√
R′β

−i
√
R′e−iθα +

√
D′β

]
. (A.5)

The expectation value of σ′z is[
(
√
D′eiθα∗ + i

√
R′β∗) (i

√
R′eiθα∗ +

√
D′β∗)

] [1 0
0 −1

] [ √
D′e−iθα− i

√
R′β

−i
√
R′e−iθα +

√
D′β

]
=

= D′|α|2 − i
√
R′D′eiθα∗β + i

√
R′D′e−iθαβ∗ +R′|β|2 −R′|α|2 − ieiθ

√
R′D′α∗β+

+ ie−iθ
√
R′D′αβ∗ −D′|β|2.

(A.6)

If the expression after the last equality sign is evaluated for R′ = D′ = 1/2 it reduces to

i
(
e−iθαβ∗ − eiθα∗β

)
. (A.7)

With θ = π/2 this expression is equal to rx and with θ = 0 it is equal to ry.
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Appendix B

Verifying the POVM

A general POVM element describing the detection of the particle number of each mode
at A is given by

E
(
jA+

1
, jA−1 , jA

+
2
, jA−2

)
=
∏
i

N ji
i (I −Ni)

(1−ji) , (B.1)

where ji ∈ {0, 1} is the number of electrons detected in mode i, with i ∈ {A+
1 ,A

−
1 ,A

+
2 ,A

−
2 }.

Ni = a†iai is the particle number operator for mode i. The factor N ji
i (I −Ni)

(1−ji) in the
POVM will project states onto the subspace with ji particles in mode i. For the POVM
elements used in the main text we have E(+,+) = E(1, 0, 1, 0) etc. That the operators
de�ned by Eq. (B.1) are positive follows from the fact that they are products of operators
with eigenvalues 0 and 1 on the occupation number basis. Explicit examples of elements
with four, three, two, one and zero particles detected are

E(1, 1, 1, 1) = NA+
1
NA−1

NA+
2
NA−2

,

E(1, 1, 1, 0) = NA+
1
NA−1

NA+
2

(
I −NA−2

)
,

E(1, 0, 1, 0) = NA+
1
NA+

2

(
I −NA−1

)(
I −NA−2

)
= NA+

1
NA+

2

(
I −NA−1

−NA−2
+NA−1

NA−2

)
,

E(1, 0, 0, 0) = NA+
1

(
I −NA−1

)(
I −NA+

2

)(
I −NA−2

)
= NA+

1

(
I −NA−1

−NA+
2
−NA−2

+

+NA−1
NA+

2
+NA−1

NA−2
+NA+

2
NA−2

−NA−1
NA+

2
NA−2

)
,

E(0, 0, 0, 0) =
(
I −NA+

1

)(
I −NA−1

)(
I −NA+

2

)(
I −NA−2

)
=
(
I −NA+

1
−NA−1

−NA+
2
−

−NA−2
+NA+

1
NA−1

+NA+
1
NA+

2
+NA+

1
NA−2

+NA−1
NA+

2
+NA−1

NA−2
+NA+

2
NA−2
−

−NA+
1
NA−1

NA+
2
−NA+

1
NA−1

NA−2
−NA+

1
NA+

2
NA−2

−NA−1
NA+

2
NA−2

+NA+
1
NA−1

NA+
2
NA−2

)
.

The remaining elements will simply be index permutations of one of these �ve. When the
elements are written out in the form above, a straightforward calculation shows that∑

X

E(X) = I,

with X ∈ {(jA+
1
, jA−1 , jA

+
2
, jA−2 )}. We have now demonstrated that this set of operators

are positive and sum to the identity and can therefore conclude that they form a POVM.

43



Appendix C

Derivation of the third order correlator

Since the relation between the Bloch vector components of the teleported state and the
current correlators involve a third order current cross correlator between currents at A
and B, we need to �nd an expression for Qαβγ that can be evaluated. This expression is
valid under the assumptions that α, β and γ are not equal and that the system is chiral
in the sense that electrons are created at the sources and travel towards the outputs.

To start with we need to de�ne Qαβγ and �nd an expression for it in terms of
Floquet scattering matrix elements. This can be done by calculating the correlator
〈Îα(ω1)Îβ(ω2)Îγ(ω3)〉, where the Îα(ωi) are current operators in frequency space. The
correlator can be expressed in terms of average currents and �uctuation operators, ∆Îα =
Îα − 〈Îα〉, as

〈Îα(ω1)Îβ(ω2)Îγ(ω3)〉 = 〈Îα〉〈Îβ〉〈Îγ〉+ 〈Îα〉〈∆Îβ∆Îγ〉+ 〈Îβ〉〈∆Îα∆Îγ〉+
+ 〈Îγ〉〈∆Îα∆Îβ〉+ 〈∆Îα∆Îβ∆Îγ〉,

(C.1)

by using 〈∆Îα〉 = 0. The left-hand side of Eq. (C.1) can also be expressed in terms
of creation and annihilation operators by using the frequency space expression for the
current in lead α

Îα(ω) = e

∫ ∞
−∞

dE
(
b†α(E)bα(E + ~ω)− a†α(E)aα(E + ~ω)

)
. (C.2)

This will lead to an expression that involves calculating averages of products of six creation
and annihilation operators and there are eight such terms. Wick's theorem says that we
can compute the average of a product of creation and annihilation operators, by computing
the sum of products of expaction values of paired operators [34]. For example Wick's
theorem says that

〈a†αaαa
†
βaβa

†
γaγ〉 = 〈a†αaα〉〈a

†
βaβ〉〈a

†
γaγ〉+ 〈a†αaα〉〈a

†
βaγ〉〈aβa

†
γ〉+

+ 〈a†αaβ〉〈aαa
†
β〉〈a

†
γaγ〉 − 〈a†αaβ〉〈aαa†γ〉〈a

†
βaγ〉+

+ 〈a†αaγ〉〈aαa†γ〉〈a
†
βaγ〉+ 〈a†αaγ〉〈aαa†γ〉〈a

†
βaβ〉.

The sign of each term above is determined by the number of operator swaps needed to
go from the original product to the new one. Wick's theorem can be applied to express
Eq. (C.1) in terms of these sums. It is then possible to identify terms that make up the
�rst four terms of the right-hand side of Eq. (C.1) and the remaining terms make up
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〈∆Îα∆Îβ∆Îγ〉. The result is

〈∆Îα∆Îβ∆Îγ〉 = e3

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

dE1dE2dE3

(
−〈b†αbβ〉〈bαb†γ〉〈b

†
βbγ〉+

+ 〈b†αbγ〉〈bαb
†
β〉〈bβb

†
γ〉+ 〈b†αbβ〉〈bαa†γ〉〈b

†
βaγ〉 − 〈b

†
αaγ〉〈bαb

†
β〉〈bβa

†
γ〉+

+ 〈b†αaβ〉〈bαb†γ〉〈a
†
βbγ〉 − 〈b

†
αbγ〉〈bαa

†
β〉〈aβb

†
γ〉 − 〈b†αaβ〉〈bαa†γ〉〈a

†
βaγ〉+

+ 〈b†αaγ〉〈bαa
†
β〉〈aβa

†
γ〉+ 〈a†αbβ〉〈aαb†γ〉〈b

†
βbγ〉 − 〈a

†
αbγ〉〈aαb

†
β〉〈bβb

†
γ〉−

− 〈a†αbβ〉〈aαa†γ〉〈b
†
βaγ〉+ 〈a†αaγ〉〈aαb

†
β〉〈bβa

†
γ〉 − 〈a†αaβ〉〈aαb†γ〉〈a

†
βbγ〉+

+ 〈a†αbγ〉〈aαa
†
β〉〈aβb

†
γ〉+ 〈a†αaβ〉〈aαa†γ〉〈a

†
βaγ〉 − 〈a

†
αaγ〉〈aαa

†
β〉〈aβa

†
γ〉
)
.

(C.3)

Here E1 is the energy associated with the α operators, E2 with the β operators and E3

with the γ operators.
We can now use Eqs. (2.45) and (2.41) to calculate each of the terms above. Fortu-

nately most of the terms will vanish for the system we are considering. First the Kronecker
deltas in Eq. (2.45) removes any term containing an average over incoming electrons from
di�erent leads, this will be true for any system where incoming electrons from di�erent
reservoirs are assumed to be uncorrelated. The fact that we are using chiral edge states
to implement the scheme then removes any term containing averages of the form 〈b†αaβ〉
and 〈bαa†β〉 with α and β both detectors, since by Eqs. (2.45) and (2.41) they will be pro-
portional to SF (Em, En)αβ, or its complex conjugate, and such matrix elements are zero
when both α and β are detectors. This is a result of the absence of backscattering which
is a feature of the chiral edge states. The result of this is that only the �rst two terms in
Eq. (C.3) are non-zero, and so the amount of calculation needed is reduced greatly.

The �rst term in Eq. (C.3) written in terms of matrix elements and distribution
functions and with two of the delta functions integrated away is

∑
δ,ε,ζ

∞∑
k,l,n,s,u,v=−∞

2πδ(lΩ− ω1 − ω2 − ω3)
e3

h

∫ ∞
−∞

dEf(En) (1− f(Es + ~ω1))

f(Ek + ~(ω1 + ω3))S∗F (E,En)αδSF (Ek−u + ~(ω1 + ω2 + ω3), En−l + ~(ω1 + ω2 + ω3))βδ

SF (E + ~ω1, Es + ~ω1)αεS
∗
F (Ek−v + ~ω1, Es + ~ω1)γε

S∗F (Ek−u + ~(ω1 + ω3), Ek + ~(ω1 + ω3))βζSF (Ek−v + ~(ω1 + ω3), Ek + ~(ω1 + ω3))γζ .

(C.4)

Doing the same for the second term gives

∑
δ,ε,ζ

∞∑
k,l,n,s,u,v=−∞

2πδ(lΩ− ω1 − ω2 − ω3)
e3

h

∫ ∞
−∞

dEf(En) (1− f(Es + ~ω1))

(1− f(Ek + ~(ω1 + ω2)))S∗F (E,En)αδSF (Ek−v + ~(ω1 + ω2 + ω3), En−l + ~(ω1 + ω2 + ω3))γδ

SF (E + ~ω1, Es + ~ω1)αεS
∗
F (Ek−u + ~ω1, Es + ~ω1)βε

SF (Ek−u + ~(ω1 + ω2), Ek + ~(ω1 + ω2))βζS
∗
F (Ek−v + ~(ω1 + ω2), Ek + ~(ω1 + ω2))γζ .

(C.5)

What we are interested in is the zero frequency part of the two expressions above,
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which corresponds to ωi = 0 and l = 0. This is given by

Qαβγ =
e3

h

∑
δ,ε,ζ

∞∑
k,n,s,u,v=−∞

(
−h(n, s, k)S∗F (E,En)αδSF (Ek−u, En)βδ

× SF (E,Es)αεS
∗
F (Ek−v, Es)γεS

∗
F (Ek−u, Ek)βζSF (Ek−v, Ek)γζ+

+ g(n, s, k)S∗F (E,En)αδSF (Ek−v, En)γδSF (E,Es)αεS
∗
F (Ek−u, Es)βε

× SF (Ek−u, Ek)βζS
∗
F (Ek−v, Ek)γζ

)
.

(C.6)

where h and g are de�ned by

h(n, s, k) =

∫ ∞
−∞

dEf(En) (1− f(Es)) f(Ek),

g(n, s, k) =

∫ ∞
−∞

dEf(En) (1− f(Es)) (1− f(Ek)) .

(C.7)

Using some simple algebra, one can show h(s, n, k) = g(−n,−s,−k). The function
g(n, s, k) is also clearly invariant under a simultaneous translation of all three vari-
ables i.e. g(n, s, k) = g(n + a, s + a, k + a) with a ∈ R. This means that we can write
g(n, s, k) = G(n− k, s− k), that is g only depends on the di�erences n− k and s− k. So
the �nal result is

Qαβγ =
e3

h

∑
δ,ε,ζ

∞∑
k,n,s,u,v=−∞

(
−G(k − n, k − s)S∗F (E,En)αδSF (Ek−u, En)βδ

× SF (E,Es)αεS
∗
F (Ek−v, Es)γεS

∗
F (Ek−u, Ek)βζSF (Ek−v, Ek)γζ+

+G(n− k, s− k)S∗F (E,En)αδSF (Ek−v, En)γδSF (E,Es)αεS
∗
F (Ek−u, Es)βε

× SF (Ek−u, Ek)βζS
∗
F (Ek−v, Ek)γζ

)
.

(C.8)
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