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Abstract

When using antibody microarrays to diagnose diseases, the process of quality
control of the microarray data is an important step. Currently, a part of this
process is performed manually by visual inspection. In this master project, we aim
to automate the quality control in order to make it reproducible, as well as to find
out which properties of the data that have the most to do with its quality. The
tools we use for automation are artificial neural networks. From the microarray
data, we construct variables based on the spot and background signal, as well as
their spatial variations. We find that it is possible to reproduce the visual quality
assessment with small networks using the mean and standard deviation of the
microarrays’ background as inputs. Finally, we introduce a new, calculable measure
of quality and compare it to the visual quality control classification.



Populärvetenskaplig sammanfattning

Det finns många komplexa sjukdomar som i dagsläget är mycket sv̊ara att diag-
nostisera. Det är inte ovanligt att när dessa sjukdomar slutligen diagnostiseras
s̊a är det för sent för att kunna göra n̊agonting åt det. Men med en ny teknik
kan det bli möjligt att ställa diagnoser i tid. Tekniken grundar sig i att, fr̊an ett
vanligt blodprov, identifiera vilka proteiner som finns i blodet varp̊a sedan l̊ata
komplexa datoralgoritmer analysera proteindatan och ställa en diagnos. Dock, för
att datorn ska kunna ställa en korrekt diagnos är det viktigt att proteindatan är av
hög kvalitet, vilket inte alltid är fallet. I dagsläget utförs kvalitetskontrollen genom
att granska datan visuellt; det här masterprojektet g̊ar ut p̊a undersöka ifall det
g̊ar att automatisera, och eventuellt förbättra, kvalitetskontrollen.

För att automatisera kvalitetskontrollen provar vi att använda s̊a kallade artifi-
ciella neuronnätverk (ANN): en speciell inriktning inom artificiell intelligens (AI)
som är löst baserat p̊a—men under inga omständigheter ett försök att simulera—den
mänskliga hjärnan. ANN l̊ater kanske avancerat, men det är egentligen bara relativt
simpla datoralgoritmer som används för att lösa problem p̊a ett lite annorlunda sätt.
Om vi med konventionell programmering försöker lösa ett klassificeringsproblem,
exempelvis att avgöra om proteindata är av hög eller l̊ag kvalitet, måste de olika
klasserna definieras väl i förhand. Därmed fungerar det inte alls om definitionen
av klasserna inte är kända. ANN fungerar däremot p̊a ett annorlunda sätt: de
fungerar ungefär p̊a samma sätt som sm̊a barn. Barn lär sig inte veta ifall frukten
de pekar p̊a är ett äpple eller en banan genom att deras föräldrar beskriver de olika
frukternas definition för dem. De lär sig istället genom att vid en mängd upprepade
tillfällen f̊a det berättat för sig om frukten de pekar p̊a är ett äpple eller en banan,
s̊a f̊ar de själva lära sig vad som är skillnaden. Samma princip gäller för ANN.
Istället för att programmera in hur vi definierar bra respektive d̊alig kvalitet p̊a
proteindata, s̊a berättar vi för dem om proteindatan som de bearbetar för tillfället
är av hög eller l̊ag kvalitet, s̊a f̊ar de själva lära sig vad det innebär.

En automatiserad kvalitetskontroll har tv̊a stora fördelar jämfört med en manuell
s̊adan. För det första blir processen reproducerbar d̊a den mänskliga faktorn tas bort.
För det andra f̊ar vetenskapspersonerna som för tillfället utför kvalitetskontrollen
mer tid att lägga p̊a mer avancerat arbete som en dator inte kan klara av. Dessutom
skulle en förbättrat kvalitetskontroll öka datorns precision när den ställer diagnoser.



Abbreviations

ANN Artificial Neural Network

CNN Convolutional Neural Network

MAE Mean Absolute Error

MSE Mean Square Error

QC Quality Control
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1 Introduction

With the technology of biological microarrays, it is possible to diagnose a multitude
of complex diseases from a blood sample [1]. There exist many different kinds of
microarrays, where DNA- and RNA microarrays are the most common [1]. A few
applications of these microarrays are to find sequence aberrations in the genome,
and analysis of gene expression related to diseases [2]. There is also a newer type of
microarrays which map the proteome directly by using antibodies or fragments of
them [2]. By using machine learning algorithms, it is possible to recognise proteins
which indicate the targeted disease [3].

An antibody microarray is a platform which uses antibodies and fluorescent
markers to measure the protein content in the blood [4]. The protein data are
extracted from images of scanned microarrays. However, in order to obtain reliable
data, and in extension a reliable diagnosis, the data must first undergo quality
control (QC). This process is currently done in part manually by visual inspection of
images of scanned microarrays, which is suboptimal since it is neither reproducible
nor time efficient.

This master project aims to investigate if it is possible to automate the process
of QC by using artificial neural networks (ANNs). The main focus of the project is
to find which features of the data that correlate most with the quality and how
to extract those from the microarrays. From the microarray data, we construct
variables that contain information about the protein signals, the background, and
both their spatial variations by using two-dimensional discrete Fourier transforms
(DFTs). We use the different variables in various combinations as ANN-input
and train the networks in order to classify the microarrays into different quality
categories.

The paper is structured as follows: First, in Section 2, we give a background
on how microarrays work, how the data are extracted and what kind of datasets
we work with. Next, a description of the variables that were constructed and
what they represent follows in Section 3. Section 4 describes the networks that we
used when reproducing the visual QC and how well they performed. Finally, we
introduce a new, calculable measure of quality in Section 5 and compare it to the
visual QC-classifications.
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2 BACKGROUND E. Andersson

2 Background

2.1 Microarrays

One way of diagnosing a variety of complex diseases from a blood sample, is by
using antibody microarrays [4]. The antibodies are fixed at specific locations on
a plate and bind to their respective proteins when the blood sample is applied.
There are means of detecting bound proteins, which means that it is possible to
deduce the protein content in the sample.

There is a multitude of papers and reviews on the development and workings
of antibody microarrays by Borrebaeck and Wingren, see for instance [4–8], but
we will give a short introduction here as well. On a microarray, several spots
of antibodies (antibodies will often be referred to as reporters in this thesis) are
fixed, ordered in a matrix formation. The size of a microarray is less than 1 cm2

but contains several hundreds of spots, see Figure 1. A slide, in turn, is a plate
with a solid surface containing several microarrays ordered in two columns. The
antibodies that are used bind only to specific proteins, where it is a one-to-one
mapping between antibodies and proteins.

There are several ways of making the proteins detectable [7, 8]. The main idea
is that the proteins are marked with a fluorescent molecule. After the sample
has been applied to the microarray, and the proteins have had time to bind to
the antibodies, the unbound residues are washed away. Hence, it is possible to
detect the fluorescent molecules by scanning the microarray with light of a specific
wavelength. Given that the number of fluorescent molecules bound to the proteins
is proportional to the protein level, the scanned intensity of a spot will also be
proportional to the amount of that specific protein.

A few examples of how a scanned microarray may look are shown in Figure 1.
The figure furthest to the right shows a scan with high quality: the spots stand out
clearly from the background and there is a clear difference in intensity between the

Figure 1: Examples of scanned microarrays. The left and the central image are both examples
of scanned microarrays with low quality. The left microarray is damaged which give rise to the
dark area while the central scan is overexposed. The image to the right is an example of a scanned
microarray with high quality. Image courtesy of Department of Immunotechnology, LTH.
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2 BACKGROUND E. Andersson

spots. The middle figure shows an example of how a scan with low quality may
look: it has very high background intensity which could be due to overexposure
or that some part of the sample preparation failed. From an image like this, it is
hard to say anything accurate about the protein data unless the effect of overall
high intensity is understood. The image furthest to the left shows how a scanned
microarray may be of low quality in another way: the scan itself is good, but there
is a large dark area where the array has been damaged. By considering these
examples of scans, it can be understood why the quality control of microarray data
is of such importance. There are many ways in which the scans may get corrupted
which, if used, leads to inaccurate protein data and in extension also unreliable
diagnoses. As it is today, the process of array quality control is performed manually
where a visual assessment is made for each scanned microarray. We have used
data where the microarrays were classified into one of three classes: pass if it is
considered to have high quality, discard if it is considered to have low quality, and
note if it is not a clear case and further assessment is needed.

2.2 The datasets

The data used in this project consist of three datasets A, B and C. Datasets A and
B are rather similar to each other where their main difference is that they were
produced at different times. These two sets are suitable for this study since, in
addition to the arrays being of high quality, also arrays of low quality are included
in the datasets. Dataset C, on the other hand, differs quite substantially from the
other two and do not contain any labels from visual QC. Thus, we will only use
dataset C for the last part of the study where this feature is not required.

From the images of the scanned microarrays, a set of pixels with intensities are
provided. During segmentation, it is identified which pixels that belong to spots
and which belong to the background. The segmentation yields two values for each
spot: a signal and a background. There are many different ways in how the signal
and background may be calculated, see e.g. review by Amaratunga and Cabrera [9].
We focused on performing array quality assessment based on the “state-of-the-art”
segmentation already performed on the datasets and did not consider changing the
segmentation procedure .

Dataset A contains data from 1120 microarrays while dataset B contains data
from 673 microarrays. Out of the 1120 microarrays in dataset A, 805 were labelled
as pass, 104 as discard and 211 as note. In dataset B, 472 microarrays were labelled
as pass, 61 as discard and 140 as note. All the microarrays in these datasets are
of the same kind: they all contain the same reporters in the same pattern. In
total, there are 63 different reporters and 21× 21 spots. On these microarrays, the
pattern containing a number of spots of each reporter is repeated three times so
that it is possible to notice spacial deviations in the signal. A sample from a single
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patient can occur in many different microarrays. Dataset A contains data from
715 different samples, where 17 of these samples are replicated on three or more
microarrays distributed on 318 different microarrays. Dataset B contains fewer
samples but more replicates: there are 216 different samples where 63 of these
occurs on three or more microarrays distributed on 367 microarrays.

The microarrays in dataset C are shaped differently: the spots are arranged in
an 18× 14-pattern. Next, the number of different reporters are 40 instead of 63.
Further, there are no labels from visual QC since the original study had a different
purpose than the one datasets A and B were used in. Finally, the dataset contains
1485 microarrays with 20 different samples where all of the samples occur on at
least 53 microarrays each.

3 Preparation of the Data

3.1 Construction of the QC-variables

In order to be able to use ANNs, we need suitable variables that can be used as
input. Since the goal is to assess the quality of arrays, we need variables that say
something about an array as a whole. It would, therefore, not be suitable to use
the individual spot-data directly since that data only say something about the
spots themselves. Further, there would be an unreasonable amount of input. Thus,
we need to construct new variables from the spot and background data.

As mentioned in Section 2.1, low quality could be that the whole array has a
very high intensity or that there are dark areas. Hence, we have constructed four
variables which may capture these effects. These four, which will be referred to as the
QC-variables, are the mean background intensity of an array, the standard deviation
of the background intensity, the standard deviation of the relative expression (see
definition in Section 3.1.2), and the Pearson correlation between the background
intensity and relative expression. In the following sections, we will motivate why
these variables are used and how they are constructed.

3.1.1 Background mean and standard deviation

Ideally, a scanned microarray should look like the array to the right in Figure 1
where the background intensity is low and fairly constant. Thus, if the background
intensity is high, and if it varies a lot over the array, that should imply low quality.
These effects can be captured by the mean and the standard deviation of the
background intensity.

The data contained a measure for the background intensity of each separate
spot. However, before we calculate the mean and standard deviation, we take the
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2-logarithm:

log bga,i =
1

ln(2)
ln(backgrounda,i), (3.1)

for spot i on array a. From this, it is straight forward to define the mean and
standard deviation:

log bg meana =
1

Nspots

Nspots∑
i=1

log bga,i (3.2)

and

log bg stddeva =

√√√√ 1

Nspots − 1

Nspots∑
i=1

(
log bga,i − log bg meana

)2
. (3.3)

One reason to take the logarithm is that log bg stddev and log bg mean are fairly
independent, as seen in Figure 3 (a).

It might happen that spots are missing in the data file. This could be due to
that the spot was deformed, had not been printed correctly on the microarray, or
that there was some issue with the array segmentation. In the case when a spot is
missing, it is replaced with log bg meana calculated from the existing spots on the
array.

3.1.2 Relative expression

The variable relative expression is based on the spot intensity and is a way to utilise
the fact that there are many replicates of each reporter on a single microarray. The
variable, therefore, says something about if the spot intensity varies at different
spatial locations of the array, i.e. it could perhaps capture if there are some dark
areas or an overall intensity gradient.

In order to calculate the relative expression and its standard deviation, first,
the expression, x, must be defined. We define the expression from the difference
between the spot signal and the background around the spot according to

xa,i =
1

ln(2)
ln(max{1, signala,i − backgrounda,i}), (3.4)

where, as earlier, i denotes the specific spot on array a. The relative expression
compares how one spot deviates from the mean of the other spots of the reporter.
Thus, also the mean for each type of reporter on an array is required:

〈x〉a,r =
1

Na,r

∑
i

xa,r,i, (3.5)
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where r denotes the reporter. It should be clarified that xa,i in Equation (3.4) is
the same as xa,r,i in Equation (3.5), where we with the new notation emphasise
that we only sum over the spots with reporter r.

Now, the relative expression can be defined as

rel xa,i = xa,r,i − 〈x〉a,r . (3.6)

Finally, the standard deviation of the relative expression is straight forward to
obtain:

rel x stddeva =

√√√√ 1

Nspots − 1

Nspots∑
i=1

(rel xa,i)
2. (3.7)

If there exist missing spots, they are replaced with 0 since the mean of the relative
expression is

〈rel xa,i〉 =
〈
xa,r,i − 〈x〉a,r

〉
= 〈x〉a,r − 〈x〉a,r = 0. (3.8)

3.1.3 Pearson Correlation

The last of the four QC-variables is the Pearson correlation between the variables
log bg and rel x. The usage of this variable is motivated by that it could be able
to capture if the pattern in the background signal and the spot signal follow each
other. The Pearson correlation is defined as follows [10]:

pearson correlationa =

〈
[rel xa,i − 〈rel xa,i〉]

[
log bga,i −

〈
log bga,i

〉]〉
rel x stddeva · log bg stddeva

. (3.9)

3.2 Discrete Fourier Transforms

In addition to the four constructed QC-variables, there could be other means to
extract useful information from the data. One way to access the spatial structures
of the background signal could be by calculating the two-dimensional discrete
Fourier transform (DFT) for the arrays. Then, Fourier components with small
wavenumbers correspond to large spatial patterns while components with large
wavenumbers correspond to small noise.

The two-dimensional DFT is conveniently enough performed on rectangular
structures of discrete data. The spots on the microarrays compose such a structure
and we can make the transformation separately for both the background and the
relative expression. With n1 and n2 being the coordinates for the spot on the array,
where the array consists of N1 × N2 spots, the DFT of spot values Xn1n2(either
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background or relative expression) is by definition [11]

Ck1k2 =
1

N1N2

N1−1∑
n0=1

N2−1∑
n2=0

exp

(
−2πi

[
k1n1

N1

+
k2n2

N2

])
Xn1n2 , (3.10)

with the inverse transform

Xn1n2 =

N1−1∑
k1=0

N2−1∑
k2=0

exp

(
2πi

[
n1k1
N1

+
n2k2
N2

])
Ck1k2 . (3.11)

The normalisation is chosen so that the C00-component becomes the mean:

C00 =
1

N1N2

N1−1∑
n1=0

N2−1∑
n2=0

Xn1n2 = µ. (3.12)

The variance can also be expressed in the terms of the Fourier components. Starting
from the definition of the sample variance σ2, we have that

N1N2 − 1

N1N2

· σ2 =
1

N1N2

N1−1∑
n1=0

N2−1∑
n2=0

(Xn1n2 − µ)2

=
1

N1N2

N1−1∑
n1=0

N2−1∑
n2=0

(
X2
n1n2
− 2Xn1n2µ+ µ2

)
=

1

N1N2

N1−1∑
n1=0

N2−1∑
n2=0

X2
n1n2
− 2µ

1

N1N2

N1−1∑
n1=0

N2−1∑
n2=0

Xn1n2︸ ︷︷ ︸
=µ

+µ2

=

N1−1∑
n1=0

N2−1∑
n2=0

|Ck1k2|2 − µ2 =

N1−1∑
n1=0

N2−1∑
n2=0

|Ck1k2|2 − |C00|2,

(3.13)

where Parseval’s theorem [12] is used at the fourth equality.
By straightforward calculations, it is easy to show that the two-dimensional

DFT possesses the symmetry

|Ck1k2 |2 = |CN1−k1N2−k2|2. (3.14)

Thus, for the price of throwing away the information about the complex phase, the
number of unique components get reduced by almost a factor of two as is shown in
Figure 2.

7



3 PREPARATION OF THE DATA E. Andersson

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

10-3

10-2

10-1

100

|C
ij |

Figure 2: Example of the Fourier space with the symmetry-redundant components removed.

Finally, we divide the square of the absolute values of the components with the
variance

Yk1k2 =
|Ck1k2|2
σ2

, (3.15)

which are the variables that will be used as extra inputs to the networks. Since
the sum of all the Fourier components (excluding the C00 component) is the
variance, this measure is the proportion of the total variance which each component
contains. The interpretation of the Y00-component is how many times larger the
mean intensity is than the sizes of the fluctuations. These quantities will in the
future most often be referred to as the scaled Fourier intensities, or just the Fourier
data.

3.3 Visualising the datasets with respect to the visual QC

The datasets were provided with the three quality classes pass, discard and note
based on visual inspection. By plotting two of the four variables against each other,
it is possible to see both if the two variables seem independent of each other and
how well the variables separate the different classes. This have been done for the
three datasets in Figure 3, and Figures 21 and 22 in Appendix A.

For most of the variable pairings, there is no clear correlation, which means that
they are more or less independent. However, plot (a) in all of Figures 3, 21 and 22,
i.e. log bg mean against log bg stddev, show some periodic correlation. Though,
this is due to technical details of the scanner. It measures the intensity in discrete
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Figure 3: Two out of the four QC-variables are plotted against each other in each sub figure for
dataset A. Each marker denotes the position for each array and the colours indicate the array’s
visual classification.

steps which, apparently, affects the standard deviation of the median values as well.
When it comes to how well the variables partition the three classification classes,
log bg mean seems to be the one which does that the best, especially together with
log bg stddev as can be seen in Figure 3 (a) and 21 (a).

One interesting point to note is that in Figure 21, there are six microarrays
classified as discard which stand out in every plot. These arrays have lower
log bg mean than any array classified as pass at the same time as rel x stddev is
high. This could correspond to that these are arrays where a large area, but not
the whole array, are dark. This clearly shows that it is not that simple as to say
that low log bg mean with low log bg stddev corresponds to high quality, but if it
is too low, so is the quality.

A similar analysis can be made for the Fourier data. In Figure 4, the mean
over all arrays for each scaled Fourier intensity-component are plotted for dataset
A. This is done both for the Fourier data from the background and from the
relative expression. For the case of the background, in subfigure (a), there is a clear
separation between the three classes of the visual classification, at least for all the
components where none of the wavenumbers are zero. Since there is such a clear
separation, a network might be able to pick up this, even though this is just the
means of all the arrays’ Fourier intensities. However, there is quite a substantial
spread between the Fourier intensities of the different arrays. This is illustrated
in Figure 5 which shows a boxen plot [13,14] of all the (3, k2)-components of the
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Figure 4: The mean of all the arrays in dataset A for each scaled Fourier intensity-component,
where (a) shows the Fourier data for the background and (b) for the relative expression. A
seperate mean is calculated for each QC-classification. The components are ordered so that
consecutive rows of the Fourier space (see Figure 2) comes immediately after each other.

Fourier data for the background. In this representation of the Fourier data, the
separation is not as clear as in Figure 4 and the distributions overlap, but it is
still possible to see the tendency to a separation. The mean of the Fourier data
of the relative expression in Figure 4(b), on the other hand, do not show a clear
separation between the three classes and will therefore not be used further.

Another way to visualise the Fourier data is by plotting the Fourier space for
the mean of the different classes, as done in Figure 6. In this figure, it is shown in
a more direct way that it is the central region of the Fourier space that differs most
between the classifications. From both Figures 4 and 6, it appears that the scaled
Fourier intensities are smaller in the central region of the Fourier space while they
are larger in the upper-left corner for discard compared to what they are for pass.
Thus, it seems to be worse for the quality with large scale fluctuations than with
small noise.

The large fluctuations between the arrays’ scaled Fourier intensities could make
it hard for a network when training on the Fourier data. In an attempt to reduce the
fluctuations, the scaled intensity-components were averaged together in 3× 3-bins.
The components which had been put to zero due to symmetry reasons were not
included when calculating the average of the bin, i.e. if two reduced components
were in a bin, the average was calculated for the other seven components. In order
to check if this way of averaging together neighbouring components is reasonable,
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Figure 5: A boxen plot over all the (3, k2)-components of the scaled Fourier intensities for the
background. The arrays are separated into the three classes of visual QC: pass, note and discard.

Figure 6: The mean of the scaled Fourier intensities, for each QC-category, represented in the
Fourier space (pass in (a), note in (b) and discard in (c)). The (0,0)-components are excluded
from the figure since they are about 5-6 orders of magnitude larger than the other components
and would, thus, sabotage the colour scale.

the values of the binned components were plotted in the same manner as in Figure 4,
see figure Figure 7. It is clear that this way of binning the Fourier data manages to
keep the information that separates the different classes. Furthermore, the number
of Fourier-based inputs to a network has been reduced from 221 to 31. This is of
course only one possible way to bin together the intensity components: other ways
of binning together the components were also used, as described in Section 4.2.3.
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Figure 7: The scaled Fourier intensities averaged together in 3× 3-bins.

4 Reproducing visual quality control

In order to reproduce the visual quality control, artificial neural networks (ANNs)
were used. However, the main goal of this project is not to find the perfect network
for the task, but to find out if the data contain enough information about the
quality of the arrays and if it is possible to extract that information using ANNs.
Therefore, we allowed ourselves to not go into the deep in trying out advanced
architectures and regularisation methods, but, instead, focused on what could be
done with the input data.

4.1 Method

Our approach to this problem was to build rather simple networks, using various
combinations of the QC-variables and the scaled Fourier intensities discussed in
Section 3, and then validating them. To keep the networks simple, we used the
same number of nodes for all the hidden layers in a given network. Some larger
networks were evaluated as well. For those, we used L2-norm regularisation and in
some cases early stopping to reduce overtraining [15]. All the neural networks were
constructed in Python3 using Keras with Tensorflow as backend [16,17].

The datasets A and B both contain three classification categories: pass, note
and discard. However, given that the microarrays labelled with note are on the
border between pass and discard in the visual quality control, some of these arrays
may have qualities that agree more with pass while others agree better with discard.
Thus, these arrays would most likely decrease the performance of the networks.
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Therefore, we structured the classification task as two different problems: one
where the networks trained on complete datasets and made classifications into all
three categories, and one simplified problem where all the microarrays labelled with
note were removed from the datasets and, instead, the networks made a binary
classification into either pass or discard.

Many different network architectures were used, but the mathematical functions
were the same for all networks. As activation function for the hidden layers,
tanh(x) was used. However, which output- and error functions that were used,
of course, depended on the type of problem. For the two-classes classification
problem, the binary cross-entropy was used as the error function and the sigmoid
function was used as the output function with one output node [18]. For the
three-classes classification problem, the categorical cross-entropy was used as the
error function and the softmax function was used as the output function with three
output nodes [18]. Further, Adam was used as the optimiser [19]. Finally, the
networks were scored both with the accuracy, i.e. the fraction of correctly classified
arrays, and with the receiver operating characteristic (ROC) area under the curve
(AUC)-score [20].

Our ambition is to find out which input variables that contain the most informa-
tion about the quality, and, also, if there are some network architectures that are
better at extracting that information than others. Thus, we trained and validated
each network separately on the two datasets A and B so that it was possible to
see if the same network setup worked equally well on different datasets. Another
feature that was tested was how well a networked trained on one of the datasets
could predict the labels on the other dataset.

When validating one network setup, repeated K-fold validation was used [21].
We used K-fold loops with 10 folds where the dataset was divided into 10 parts by
random. The K-fold loop was repeated 20 times, with different partitions for each
iteration, where the mean and standard deviations of all the scores were calculated.
If nothing else is stated, the networks were trained for 100 epochs. The datasets
were normalised to zero mean and unit variance.

4.2 Binary networks: Classification into pass and discard

4.2.1 QC-variables as input

The first set of networks that were trained for the binary classification problem
took two out of the four, or all, QC-variables in the different combinations as
input at a time. In other words, we attempted to find the decision boundaries to
Figures 3 and 21 with all the arrays labelled with note removed. A set of rather
small networks were used: either one or two hidden layers with two, four or ten
nodes per hidden layer. We trained networks both with L2-regularisation and
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4 REPRODUCING VISUAL QUALITY CONTROL E. Andersson

without. In the cases where L2-regularisation were used, the regularisation control
parameter α was either α = 10−4 or α = 10−3. Since no tendency of overtraining
was seen for these small networks in the trial runs, all the networks were trained
for 100 epochs without early stopping being employed. The result for a selection
of the configurations used can be seen in Figure 8 for dataset A and Figure 9 for
dataset B. In the figures, bullets mark which input variables that were trained
on. The shorthand notations for the variables are: M for log bg mean, Sbg for
log bg stddev, Sx for rel x stddev and P for the Pearson correlation.

It is clear from Figure 8 that neither the L2-regularisation nor the architecture
of the networks, cause much of a difference for the performance of the models;
hence, not all setups are displayed in these figures nor in any future figures. The
main cause of the difference is the selection of input variables. It is clear that the
visual quality control is mostly based on the background mean with some help of
the fluctuations in the background signal, something which could be suspected from
Figures 3 and 21. The best accuracy achieved was 0.974 for the network with two
layers with ten hidden nodes per layers and α = 10−4 with background mean and
standard deviation as input, while the best AUC was 0.981 for the same network
architecture but with all the QC-variables as input and without L2-regularisation.
None of the networks that were trained on dataset B reached as high numbers;
however, the same network setups on the same input were among those that scored
the highest. The fact that the threshold independent AUC-scores are affected more
by the less successful input combinations than the threshold dependent accuracy is
could be due to the unbalanced distributions of pass and discard in the datasets.

4.2.2 The scaled Fourier intensities as input

Next, the scaled Fourier intensities were used as input. They were used both
together with all the four QC-variables as well as alone without giving the networks
any further information. First, the same, rather small network configurations as
before were used. However, since the number of input variables was much larger
now, overtraining was observed during the trial runs, and, therefore, we employed
L2-regularisation and some coarse early stopping in an attempt to avoid this. When
we only used the Fourier data, we, in addition to the rather small network, also
used larger networks. For those, we used one to five hidden layers with as many
nodes per hidden layer as the number of inputs, which in this case was 221. The
results are displayed in Figure 10 for dataset A.

The first detail to notice in Figure 10 is that none of the networks outperform
the best ones that took only QC-variables as input. The highest accuracy reached
here was 0.924 and the highest AUC was 0.949, both for networks with one layer,
two hidden nodes and both QC-variables and Fourier data as input. It seems that
the additional information from the Fourier data obscures some of the information
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Figure 8: The performance of a selection of different network setups for the binary classification
problem for dataset A with QC-variables as input. The vertical axis is the accuracy or AUC-score.
The table denotes the network architecture, which inputs were trained on, and the strength of
the L2-regularisation.
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Figure 9: The performance of a selection of different network setups for the binary classification
problem for dataset B with QC-variables as input. The vertical axis is the accuracy or AUC-score.
The table denotes the network architecture and which inputs were trained on.
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Figure 10: The performance of a selection of different network setups for the binary classification
problem for dataset A with Fourier data and QC-variables as input. The vertical axis is the
accuracy or AUC-score. The table denotes the network architecture, which inputs were trained
on, the number of epochs of training, and the strength of the L2-regularisation.

contained in the QC-variables. However, it is interesting that some networks still
perform rather well (best accuracy 0.908 and best AUC 0.923) when only using
the Fourier data, which means that this input also seems to contain information
about the quality.

4.2.3 DFT reduction and CNN

In order to reduce the fluctuations in the Fourier data, as well as the number of
input variables, thus, decreasing the sizes of the networks, we averaged together
the scaled Fourier intensities in 3× 3-bins as described in Section 3.3. To explore
other binning options, we applied convolutional neural networks (CNNs).

A CNN is a special kind of network which has been used and developed since
the 1980s, but has had some major breakthroughs in the last decade in the field
of computer vision [22]. These networks have been used to, with remarkable
accuracy, recognise and classify objects in images. In short, the different layers
of the networks extract different features, by letting a kernel pass over the image
performing a convolution operation, until all the information have been boiled
down to classifiable signal.

As with the ANNs, we used CNNs with simple architectures. We had one to
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three layers with quadratic kernels. For a specific network, the kernels always had
the same sizes. The sizes we used were 2× 2, 3× 3 and 5× 5, and we had either
one, eight or thirty-two channels, i.e. the number of kernels per layer. The kernels’
stride lengths were, in both directions, either one, two or three. Zero-padding was
used so that the Fourier space kept its dimensions through every layer of processing.
One interesting comparison to make is that our manual 3× 3-binning is basically a
CNN with one layer, one channel, a 3× 3 kernel with stride length 3 and with all
the weights being one-ninth (except for the fact that we adapt the weights if the
bin contains symmetry reduced components).

We did not use the commonly used max-pooling operation [23] in our CNNs.
The main point with max-pooling is to downsample the input, but as an additional
effect, it also increases the translational invariance of the feature detection. When
applying CNNs to images, it should not matter if e.g. a dark spot is found in the
upper left corner of the image or in the centre, it is still a dark spot that is found.
However, it makes a crucial difference where the dark spot is found in the Fourier
space. Thus, we want to avoid translational invariance and, therefore, max-pooling
was not used.

The CNNs were applied to a partly symmetry reduced Fourier space: all of the
(0, k2) and (k1, 0) components were kept. For a selection of the network setups that
performed best, early stopping was employed in order to improve the performance
additionally. The results for the manual 3× 3 binning and the CNNs for dataset A
can be seen in Figure 11. This plot illustrates two notable points. The first point
is that the networks with the manually binned intensity components as inputs, as
well as most of the CNNs, perform better than the networks with all the Fourier
data. The best performing network, the one with one layer and ten hidden nodes,
scored an accuracy of 0.941 and AUC of 0.952. The second point is that the
manual binning performed better than the CNNs. Quite remarkably though, is
that one of the best performing CNN was the one with one layer, 3× 3 kernel and
a stride length of three, i.e. the one that up to the summing weights is equivalent
to the manual binning. Further, the binning of Fourier data helped the networks to
extract the information, but the manual binning was better than the CNN. Hence,
we did not use CNN any further.

With the different possibilities for usage of the Fourier data explored, a sum-
marised version of the results for dataset B for the same network setups as used for
dataset A, are presented in figure Figure 12. Here, the networks which trained on
the full Fourier data performed rather badly compared to what they did on dataset
A. The accuracy of the best setup is roughly the same as the best for dataset A,
but all the AUC-scores are much worse. Once again, the networks that took the
binned intensities as input performed better than the ones with all the components.
However, they are still not at the same level as when only the QC-variables are
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Figure 11: The performance of a selection of different network setups for the binary classification
problem for dataset A. The ANNs took the manually binned Fourier data is input while the
CNNs took all of the Fourier data as input. The vertical axis is the accuracy or AUC-score. The
table denotes whether an ANN or a CNN was used, the network architecture, the number of
epochs of training, and the strength of the L2-regularisation.

used as in Figure 9.

4.2.4 Predictions

In order to investigate the transferability of networks between datasets, we trained
a network on a complete dataset (i.e. no part of the dataset was excluded for
validation) and used it to classify the arrays from the other dataset. We chose to
do this for the network setup that seemed to perform best overall, which is the one
with two hidden layers with ten nodes per layer when it trains on the background
mean and standard deviation. The number of arrays that had been correctly and
falsely classified as pass (TP and FP), and correspondingly those that had been
correctly and falsely classified as discard (TD and FD) are presented as confusion
matrices in Table 1.

With these measures, it is possible to calculate the accuracy, sensitivity and
specificity, which are also presented in Table 1 [20]. The network which trained on
A gave about the same accuracy when predicting on B as it got during validation,
and the same is also true for the other way around. For both cases, the sensitivity
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was very high while the specificity was not as good. This means that we can be
almost completely certain that an array classified as discard actually is that while,
on the other hand, we cannot be as certain that the arrays classified as pass actually
are that.
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Figure 12: The performance of a selection of different network setups for the binary classification
problem for dataset B with Fourier data (complete or binned) and QC-variables as input. The
vertical axis is the accuracy or AUC-score. The table denotes the network architecture, which
inputs were trained on, and the strength of the L2-regularisation.

Table 1: Example of confusion matrices for binary predictions of a network with two hidden
layers with ten nodes per layers that trained on background mean and standard deviation. The
left matrix is for when the network trained on dataset A and predicted on B and the central
matrix is for the vice versa. The table to the right is a compilation of the accuracies, sensitivities
and specificities obtained for the predictions.

A on B

T F

P 464 18

D 43 8

B on A

T F

P 800 22

D 82 5

Dataset Accuracy Sensitivity Specificity

A on B 0.95 0.98 0.70

B on A 0.97 0.99 0.79
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4.3 Ternary networks: Classification into pass, note and
discard

4.3.1 Training and validation

For the problem of classifying the data into all three classes, the same network
setups were used as for the binary classification task, but, with the adaptation
to three classes as described in Section 4.1. However, since AUC is only valid
for binary classification, it was not used. The results for dataset A are shown
in Figures 13 and 14 and the results for B are showed in Figures 23 and 24 in
Appendix A. As expected, the performance is in general much lower than for the
binary classification problem. As for the result in Section 4.2, it is quite clear that
the networks trained on the QC-variables best reproduce the visual quality control,
and that the background mean is the most important variable. The accuracy now
varies between 0.827 (the best network setup for dataset A) and 0.580 (the worst
network setup for dataset B), where most of the networks land somewhere between
0.7 and 0.75.

This range is approximately the proportion of microarrays labelled with pass.
Hence, there is a risk that the networks learned to always “majority guess” on pass
and that this would possibly yield the best accuracy. In order to make sure that
this was not the case, we also measured the performance with a modified accuracy
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Figure 13: The performance of a selection of different network setups for the ternary classification
problem for dataset A with QC-variables as input. The vertical axis is the accuracy or modified
accuracy. The table denotes the network architecture and which inputs were trained on.
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Figure 14: The performance of a selection of different network setups for the ternary classification
problem for dataset A with Fourier data and QC-variables as input. The vertical axis is the
accuracy or modified accuracy. The table denotes the network architecture, which inputs were
trained on, the number of epochs of training, and the strength of the L2-regularisation.

which takes the category sizes into account. If the signal from each of the three
output nodes are denoted y1, y2 and y3, where their sum is 1 (as is the property of
the softmax output function), then the standard accuracy classifies an array into
class 1 if y1 > max{y2, y3} and correspondingly for the other classes. The modified
accuracy that we used weights the signal with the sizes of each class so that an

array, instead, is classified into class 1 if y1 > max
{
N1

N2
y2,

N1

N3
y3

}
, and similarly for

the other two classes. Since the modified accuracy yielded roughly similar results
as the standard accuracy, we can be fairly certain that majority guessing was not
the issue.

4.3.2 Predictions

The predicting procedure described for the binary networks in Section 4.2.4 was
repeated for the ternary versions of the network. Just as for the binary predictions,
we used the network with two hidden layers with ten hidden nodes each which
trained on the background mean and standard deviation. The results are presented
as two 3× 3 confusion matrices in Table 2. From the confusion matrices, we can
calculate that for the case “A on B”, the accuracy is 0.77, and the case “B on
A” has accuracy = 0.81. Just as for the binary networks, we observe that the
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Table 2: Example of confusion matrices for ternary predictions of a network with two hidden
layers with ten nodes per layers that trained on background mean and standard deviation. The
left matrix is for when the network trained on dataset A and predicted on B and the right matrix
is for the vice versa.

A on B

Actual class

P
re

d
ic

te
d

cl
as

s

P N D

P 450 72 13

N 21 41 18

D 1 27 30

B on A

Actual class

P
re

d
ic

te
d

cl
as

s

P N D

P 784 106 11

N 19 93 68

D 2 12 25

accuracies are the same when predicting and cross-validating on a dataset, i.e. the
networks perform equally well on both datasets independently of which dataset it
trained on.

5 Array deviation

In the ideal situation, the scans of two different microarrays containing the same
sample should look exactly the same. However, this is not always the case which is
why quality control is needed. Based on this concept, we propose an alternative
measure of quality which we call array deviation. It is a quantity which measures
how much one array differs from another array containing the same sample.

5.1 Definition of array deviation

Each array contains the same set of 63 or 40 different reporters.1 By taking the
mean of the replicates of each reporter’s expression on an array, one single value
per reporter is obtained. This can be thought of as the arrays are located at a
specific point in the 63- or 40-dimensional reporter space. All array replicates of
the same sample can, hence, be placed in the reporter space according to the same
principle. Once all replicates are placed in the reporter space, their mean point
can be calculated. Then, it is straight forward to calculate the Euclidean distance
between each array and the sample’s mean point. The distance divided by the
number of reporters, i.e. the mean distance each reporter differs between an array
and the sample mean, is what we define as the array deviation, see Figure 15 for a

1Datasets A and B contain 63 different reporters and dataset C contains 40.
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Figure 15: A simplified illustration of the array deviation. Each marker represents an array’s
position in the (in this case) 2-dimensional reporter space. The red circle is the mean position of
all the arrays, and the distance di between the mean point and array i is the array deviation.

simplified illustration. With this measure of quality, a high value means low quality
and vice versa.

Put in mathematical terms, first, the mean expression for each reporter on an
array, i.e. the r-coordinate for each array’s position in reporter space, is calculated
by

xa,r =
1

Nr

Nr∑
i=1

xa,r,i, (5.1)

where a as usual denotes the identity of the microarray, r is the type of reporter,
Nr is the number of spots with reporter r and i is the spot index. It is understood
that the sum is only over the spots i with reporter r. This is exactly the same
quantity as in Equation (3.5) but where we reserve the 〈·〉-notation for the sample
mean. Next, we can find the r-coordinate of the mean position of all arrays of
sample s in the reporter space:

〈x〉(s)r =
1

N

∑
a

x(s)a,r, (5.2)

where N are the number of different reporters. The superscript (s) explicitly
indicates the array’s sample and implicitly restricts the sum to only include arrays
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with that sample. Finally, the definition of the array deviation da is

da =

√√√√ 1

N

N∑
r=1

(
x
(s)
a,r − 〈x〉(s)r

)2
. (5.3)

In order to be able to say anything from the array deviation, at least three
replicates are necessary. If only two exist, it is not possible to distinguish which
array that deviates from which. With the demand of at least three replicates of
each sample, dataset A is reduced to 318 instead of 1120 arrays and dataset B is
reduced to 367 instead of 673. This may, of course, affect the networks possibility to
learn since the sizes of the datasets have been reduced quite considerably. However,
this is not an issue for dataset C since all its 1485 microarrays are part of samples
with more than three replicates.

5.2 Agreement between array deviation and visual QC

To illustrate if the array deviation agrees with the visual QC, each array’s array
deviation has been plotted in Figure 16 with a division between the visual classifi-
cations. This has only been done for A and B since C only includes arrays that
passed the quality control. The figure shows that there are no replicates that have
been classified as discard in dataset A. Hence, dataset A is not really suitable
to use as training data: networks trained on A will not learn any information
about the array deviation for arrays labelled discard. Next, there seems to be no
agreement between the array deviation and the visual QC. It is only for the six
extreme arrays in dataset B where discard and array deviation agree. These are,

0.2 0.4 0.6 0.8 1.0 1.2
Array deviation

Vi
su

al 
QC

(a)Pass
Note
Discard

0 1 2 3 4
Array deviation

(b)

Figure 16: The separation of the visual QC due to the array deviation. Subfigure (a) contains
the arrays from dataset A and subfigure (b) the arrays from dataset B.
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Figure 17: Distribution of the array deviation where the ranges have been divided into 60 bins.
Subfigure (a) shows the distribution of dataset A, (b) shows dataset B and (c) shows dataset C.

in fact, the same six arrays that were pointed out earlier in Section 3.3, suggesting
that they have not only a very low background intensity, but also a low signal,
resulting in a large array deviation.

From Figure 16, it is clear that the different visual classifications overlap at
the same values of the array deviation; however, it is not really possible to see
the distribution of the microarrays’ array deviations. This is, instead, plotted
in Figure 17. From this figure, it appears that most of the arrays have an array
deviation between 0.1 and 0.6 for datasets A and B. For dataset C, the bulk of the
microarrays have an array deviation between 0.5 and 1.0. It is not strange that the
range is different for C since the distribution of the array deviation may depend on
the design and purpose of the original study.

Finally, before attacking this problem with networks, we will examine if there
is any correlation between any of the QC-variables and the array deviation by
considering the scatter plots in Figure 18 and Figures 25 and 26 in Appendix A.
There is little to no clear trend in any of them, except Figure 26 (a). In Figure 25,
the six arrays from dataset B which we have seen deviating from the rest of the
set in earlier figures, continue to do so here; although, since it is only those six, it
cannot really be called a clear trend throughout the dataset.

5.3 Learning the array deviation with ANN

If ANNs can be trained to recognise which features of an array yield a specific
array deviation, it would be possible to predict the array deviation of an array
which is not part of a replicate, and, hence, give it a quality score anyway which is
independent of the subjectivity of manual classification.
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Figure 18: Relations between each of the four QC-variables and array deviation for dataset A.

Prediction of array deviation is a regression problem, and we used networks
with one output node and linear output activation function. We used mean square
error (MSE) as the loss function, and used mean absolute error (MAE) as a score.
As an additional score, we used the MSE divided by the variance of the array
deviation of the dataset. If this measure is equal to 1, it means that there is no
useful information, while if it is smaller than 1, it suggests that useful predictions
can be made, as motivated in the supplements to [24]. Otherwise, we used the
same network setups as for the classification problems. If nothing else is stated,
the networks were trained for 1 000 epochs. The results for the three datasets for
networks trained on the QC-variables can be seen in Figure 19 and Figures 27 to 31
in Appendix A.

The striking difference between the networks that have been trained on the
QC-variables compared to those that have been trained on some version of the
Fourier data is that for the QC-variables, the MSE/var is mostly well below 1, while
for the Fourier data, it is more or less always above 1. Once again, we see that
the network architecture with two hidden layers and ten hidden nodes that trained
on the mean and the standard deviation of the background is among the best
networks, although it is not the best for datasets A and B. The best performing
network setup for dataset A reaches MAE = 0.095 which can be compared to
the median array deviation of the set which is 0.24, i.e. the MAE is 0.40 of the
median. For dataset B, the best network setup yields MAE = 0.17 and the median
array deviation is 0.28 which gives the ratio 0.61. The corresponding numbers for
dataset C are: best MAE = 0.12, median of array deviation = 0.67 with the ratio
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Figure 19: The performance of a selection of different network setups for the regression problem
for dataset A with QC-variables as input. The left vertical axis is MAE while the right vertical
axis is the MSE/var. The table denotes the network architecture, which input were trained on,
and the strength of the L2-regularisation.

0.18. The best MSE/var-values are 0.79, 0.32 and 0.31 for datasets A, B and C
respectively. This means that the networks clearly could find features in the input
which said something about the array deviation, even though the ratios between
the MAE and median array deviation would ideally be lower, especially for datasets
A and B. The fact that the best networks actually could extract useful data can be
confirmed by Figure 20. This figure shows scatter plots between the arrays’ array
deviation and the predicted values as predicted by networks with two layers and
ten hidden nodes trained on the background mean and standard deviation. Ideally,
all the microarrays would lie on a straight line with a 45◦ slope (the dashed grey
line in the plots), which they, of course, do not. However, it was possible to make
a linear fit where the null hypothesis of a horizontal line could be discarded with a
p-value < 10−10.

Finally, we made predictions with networks on the different datasets. We
trained a network on a full dataset and then used it to make predictions on the
other two. The MAE between the predicted values and the actual array deviation
was used as a score. The result of this can be seen in Table 3. The prediction
MAEs are notably worse than the validation MAEs. The network trained on A
performs roughly as well on B as a network trained on B performs on A. Networks
trained on C performs roughly equally well on A as on B, while networks trained
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Figure 20: The predicted array deviations and the actual array deviations for each array
as predicted by networks with two hidden layers with ten nodes per layer which trained on
background mean and standard deviation. The linear fits all have p-value < 10−10.

Table 3: The MAE between predictions and actual array deviations as predicted when a network
with two hidden layers and ten nodes per layer trains on dataset X and predicts on dataset Y .

Trained on

P
re

d
ic

te
d

on

A B C

A - 0.269 0.462

B 0.201 - 0.473

C 0.467 0.390 -

on A and B respectively, performs similarly on C. The problematics with worse
prediction scores than validation scores probably derive from the difference in the
distributions of array deviation in Figure 17.

6 Concluding remarks

The quality control of microarray data is an important intermediate step in the
endeavour of diagnosing complex diseases from a standard blood sample using
antibody microarrays. In this master project, we have investigated the possibilities
of automating the quality control by using ANN so that it can become reproducible.
We constructed variables to feed into the networks and found that the variable of
most importance to the quality is the background mean of an array. All the best
performing network setups took this variable as input, and in many cases, it was
helped by the standard deviation of the background. Furthermore, it sufficed with
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very simple networks to reach high accuracy: it was enough with one hidden layer
with two nodes in order to reach an accuracy above 0.97.

When we added additional information in the form of the scaled coefficients of
the two-dimensional Fourier transform of the background, the performance did not
improve; in fact, it decreased. However, the fact that networks that trained only
on some version of the Fourier data could score up to 0.94 in accuracy, without the
help of any other input variables, shows that there exists information about the
quality to be extracted from the Fourier data. It might be possible to improve the
performance with more advanced networks. A future investigation could include to
do a more detailed study of the scaled Fourier intensities, and to find out how the
information contained in the different components transfers between datasets with
differently shaped microarrays and Fourier spaces.

In order to be free from the subjectivity embedded in the labels from the
visual quality control, we introduced a new measure of array quality: the array
deviation. This is a measure which describes how much an array deviates from
other arrays containing the same sample, where low array deviation corresponds
to high quality and vice versa. This measure did, however, not correlate with the
visual classification, except that it seemed to be able to capture low-quality arrays
with very low background intensity. We found that it was possible for networks to
extract useful information about array deviation from the input data. Once again,
the background mean was the most important variable.

A crucial aspect for application on future datasets is if a network that trained on
one dataset could perform well on another. We found for the classification problems,
both the binary and ternary, that the networks predicted and validated on a dataset
equally well, no matter which of datasets A and B it had trained on. This suggests
that a trained network might be transferable between different datasets, although
this would, of course, be needed to test on more datasets before anything can be
concluded with certainty. When it comes to how the trained networks performed
on the other datasets for the problem of predicting array deviation, the networks
did not transfer as well. They could still extract some features, but could not make
predictions with as high accuracy as during validation. This is not particularly
strange since the range and distribution of the array deviation differed between the
datasets. Furthermore, there could be differences in the experimental protocols
that were used to generate the datasets. It is not reasonable to expect a neural
network to be able to transfer between datasets generated with different protocols,
not even for a future, finalised automatic quality control.

In this project, we have seen that it is possible to reproduce the binary visual
classification using simple networks. We can also say with high certainty that the
visual classification is mostly based on the mean of the background with some
help of its standard deviation. Furthermore, the newly introduced array deviation
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seems to be a reasonable measure of quality; however, for now, we have not been
able to make predictions with high enough precision to be satisfying, but this
might be possible with more complex networks. Additionally, it would need to be
investigated if the array deviation actually is a good measure of quality and how
one, in that case, finds a suitable threshold.
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visual classification.
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for dataset C.
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Figure 23: The performance of a selection of different network setups for the ternary classification
problem for dataset B with QC-variables as input. The vertical axis is the accuracy or modified
accuracy. The table denotes the network architecture, which inputs were trained on, and the
strength of the L2-regularisation.
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Figure 24: The performance of a selection of different network setups for the ternary classification
problem for dataset B with Fourier data (complete or binned) and QC-variables as input. The
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Figure 25: Relations between each of the four QC-variables and array deviation for dataset B.
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Figure 27: The performance of a selection of different network setups for the regression problem
for dataset B with QC-variables as input. The left vertical axis is MAE while the right vertical
axis is the MSE/var. The table denotes the network architecture and which input were trained
on.
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Figure 28: The performance of a selection of different network setups for the regression problem
for dataset C with QC-variables as input. The left vertical axis is MAE while the right vertical
axis is the MSE/var. The table denotes the network architecture and which input were trained
on.

34



A SUPPLEMENTARY DATA E. Andersson

•
•
-

1

2

-

•
•
-

1

10

-

•
•
-

2

2

-

•
•
-

2

10

-

-

•
-

1

2

-

-

•
-

1

10

-

-

•
-

2

2

-

-

•
-

2

10

-

-

•
-

1

221

-

-

•
-

2

221

-

-

•
-

3

221

-

-

•
-

4

221

-

-

•
-

5

221

-

-

-

•
1

2

-

-

-

•
1

4

-

-

-

•
1

10

-

-

-

•
2

2

-

-

-

•
2

4

-

-

-

•
2

10

-

-

-

•
1

31

E-3

-

-

•
2

31

E-3

-

-

•
3

31

E-3

-

-

•
4

31

-

-

-

•
5

31

-

0.100

0.120

0.140

0.160

0.180

0.200

0.220

0.240

0.260

0.280

0.300

0.320

0.340

QC var

DFT

Binned

Layers

Nodes

L2

M
ea
n
ab

so
lu
te

er
ro
r

MAE

•
•
-

1

2

-

•
•
-

1

10

-

•
•
-

2

2

-

•
•
-

2

10

-

-

•
-

1

2

-

-

•
-

1

10

-

-

•
-

2

2

-

-

•
-

2

10

-

-

•
-

1

221

-

-

•
-

2

221

-

-

•
-

3

221

-

-

•
-

4

221

-

-

•
-

5

221

-

-

-

•
1

2

-

-

-

•
1

4

-

-

-

•
1

10

-

-

-

•
2

2

-

-

-

•
2

4

-

-

-

•
2

10

-

-

-

•
1

31

E-3

-

-

•
2

31

E-3

-

-

•
3

31

E-3

-

-

•
4

31

-

-

-

•
5

31

-

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

QC var

DFT

Binned

Layers

Nodes

L2

M
ea
n
sq
u
ar
ed

er
ro
r/
va
ri
an

ce

MAE
MSE/var

Figure 29: The performance of a selection of different network setups for the regression problem
for dataset A with Fourier data (complete or binned) and QC-variables as input. The left
vertical axis is MAE while the right vertical axis is the MSE/var. The table denotes the network
architecture, which inputs were trained on, and the strength of the L2-regularisation.
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Figure 30: The performance of a selection of different network setups for the regression problem
for dataset B with Fourier data (complete or binned) and QC-variables as input. The left
vertical axis is MAE while the right vertical axis is the MSE/var. The table denotes the network
architecture, which inputs were trained on, and the strength of the L2-regularisation.

35



A SUPPLEMENTARY DATA E. Andersson

•
•
-

1

2

1000

-

•
•
-

1

10

1000

-

•
•
-

2

2

1000

-

•
•
-

2

10

1000

-

-

•
-

10

128

300

-

-

•
-

15

128

300

-

-

•
-

20

128

300

-

-

•
-

1

2

1000

E-3

-

•
-

1

10

1000

E-3

-

•
-

2

2

1000

E-3

-

•
-

2

10

1000

E-3

-

•
-

1

128

300

E-3

-

•
-

2

128

300

E-4

-

•
-

3

128

300

-

-

•
-

4

128

300

-

-

•
-

5

128

300

-

-

-

•
1

2

1000

E-3

-

-

•
1

10

1000

E-3

-

-

•
2

2

1000

E-3

-

-

•
2

10

1000

E-3

-

-

•
1

27

300

E-3

-

-

•
2

27

300

E-3

-

-

•
3

27

300

E-3

-

-

•
4

27

300

E-3

-

-

•
5

27

300

E-3

0.150

0.200

0.250

0.300

0.350

0.400

0.450

QC var

DFT

Binned

Layers

Nodes

Epochs

L2

M
ea
n
ab

so
lu
te

er
ro
r

MAE

•
•
-

1

2

1000

-

•
•
-

1

10

1000

-

•
•
-

2

2

1000

-

•
•
-

2

10

1000

-

-

•
-

10

128

300

-

-

•
-

15

128

300

-

-

•
-

20

128

300

-

-

•
-

1

2

1000

E-3

-

•
-

1

10

1000

E-3

-

•
-

2

2

1000

E-3

-

•
-

2

10

1000

E-3

-

•
-

1

128

300

E-3

-

•
-

2

128

300

E-4

-

•
-

3

128

300

-

-

•
-

4

128

300

-

-

•
-

5

128

300

-

-

-

•
1

2

1000

E-3

-

-

•
1

10

1000

E-3

-

-

•
2

2

1000

E-3

-

-

•
2

10

1000

E-3

-

-

•
1

27

300

E-3

-

-

•
2

27

300

E-3

-

-

•
3

27

300

E-3

-

-

•
4

27

300

E-3

-

-

•
5

27

300

E-3

1.00

1.50

2.00

2.50

3.00

3.50

QC var

DFT

Binned

Layers

Nodes

Epochs

L2

M
ea
n
sq
u
ar
ed

er
ro
r/
va
ri
an

ce

MAE
MSE/var

Figure 31: The performance of a selection of different network setups for the regression problem
for dataset C with Fourier data (complete or binned) and QC-variables as input. The left
vertical axis is MAE while the right vertical axis is the MSE/var. The table denotes the network
architecture, which inputs were trained on, the number of epochs of training, and the strength of
the L2-regularisation.
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