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Abstract

Clustering of orbital characteristics for distant Solar System objects has been proposed to
indicate the presence of a ninth planet. Simulations show that the planets orbit would have
to have a mass of 5´10MC, a semi-major axis of 400´800 AU, an eccentricity of 0.2´0.5
and an inclination of 15°´25°. Simulations of a planet scattering off a giant planet into an
highly eccentric orbit, show that the scattered planet can circularise its orbit by dynamical
friction with a planetesimal disc, providing a hypothesis of the origins of Planet Nine. The
simulations show an increase in the planets inclination not explained by dynamical friction.

In this thesis a further examination of the increasing inclination is presented. Some
of the theory of the Kozai–Lidov resonance, phase space, dynamical friction and the
Miyamoto–Nagai potential is presented. The results show that a highly eccentric planet
travelling through a planetesimal disc is reliably circularised and achieves high inclination
at some point of its evolution. The phase space for the Kozai–Lidov resonance for this
setup is explored. Additional fixed points at 0 and 180 degrees, which are not present in
the regular Kozai cycle, are found to play a major role in the dynamics as the planet is
circularised.

An attempt was made to model the planetesimal disc with the Miyamoto–Nagai poten-
tial. Simulations were performed for different values of the disc parameters. The resulting
phase portraits lacked the additional fixed points produced by the planetesimal disc.





Populärvetenskaplig beskrivning

Ända sedan 1781, när William Herschel upptäckte Uranus, s̊a har astronomer letat efter
planeter som ligger ännu längre ut. Solsystemet är ett stort ställe, s̊a om man vill hitta
n̊agonting s̊a krävs lite vägledning till var man ska leta. 2016 publicerade astronomerna
Konstantin Batygin och Mike Brown en studie om små objekt utanför Neptunus, där de
hade upptäckt att många av de här himlakropparnas banor delar vissa egenskaper. De
föreslog att det här orsakas av en oupptäckt planet, kallad Planet Nio, p̊a en utdragen
omloppsbana l̊angt ifr̊an de planeterna vi redan känner till.

Ett problem med den här hypotesen är att vi inte vet hur Planet Nio skulle ha hamnat
s̊a l̊angt bort. Om den bildades där ute s̊a förklarar det inte hur den omloppsbana blev
s̊a utdragen. I andra teorier föresl̊as det att den bildades n̊agon annanstans. Solen hade
kunnat ta planeten fr̊an en annan stjärna som passerat för nära, eller s̊a kunde Planet Nio
ha bildats med de andra planeterna och blivit utslungad av n̊agot nära möte. Om den
senare teorin stämmer s̊a skulle det förklara varför banan är s̊a utdragen, det är vanligt för
objekt som har slungats ut bortom de andra planeterna. Men det finns ett problem med
teorin, den har sv̊art att förklara varför den förslagna banan lutar s̊a mycket jämfört med
de andra planeterna.

2018 föreslog Linn Eriksson vid Lunds Universitet en ny ide för hur planetens bana
hade kunnat utvecklas, fr̊an att den slungats ut, tills att den är p̊a den bana som forskarna
tror at den har. I hennes modell s̊a interagerar planeten med ett asteroidbälte som inte
har upptäckts än. Projektet var mest fokuserat p̊a hur excentrisk banan skulle bli, men
mot förmodan s̊a fick planetens bana en lutning som matchar förutsägelserna som gjorts.
Det här kandidatarbetets fokus har legat p̊a att först̊a varför banan fick lutningen och hur
planeten och bältet interagerar.

Det här arbetet kan vara användbart för astronomer i flera omr̊aden. Med en förbättrad
först̊aelse för hur Planet Nio bildats s̊a ökar v̊ara chanser att en dag hitta den. Om teorin
stämmer s̊a skulle den kunna stödja olika teorier om planetbildning. Även om vi inte hittar
Planet Nio s̊a skulle arbetet kunna användas för att bättre först̊a hur planeter runt andra
stjärnor beter sig, eftersom många av dem har banor som likar banan som föreslagits för
Planet Nio.
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Chapter 1

Introduction

Since Neptune was discovered in 1846 by investigating anomalies in Uranus’ orbit, as-
tronomers have searched for more distant planets by studying the orbits of the other bod-
ies in the Solar System. Current research focuses on ETNOs, Extreme Trans-Neptunian
Objects, and what appears to be a clustering in both physical space and in some of their
orbital features (Trujillo and Sheppard 2014; Batygin and Brown 2016). It is believed that
the clustering can be explained by an as of yet undiscovered object, dubbed Planet Nine.
Simulations show favourable results for a Planet Nine with a mass between 5 - 10 MC in
an orbit with a semi-major axis of 400 - 800 AU, an eccentricity between 0.2 and 0.5 and
an inclination of 15 - 25° (Brown 2019).

This proposed orbit is markedly different from the other Solar System planets orbits.
An explanation is needed for where the planet was formed and how it was put on its
current orbit. The three main theories are in-situ formation (Kenyon and Bromley 2016),
a capture event (Mustill, Raymond, and Davies 2016) or a scattering event. The scattering
event theory proposes that Planet Nine was formed in the giant planet region of the Solar
System and due to a close encounter with another giant planet it was scattered onto a
highly eccentric orbit. This initial configuration of a five giant planet Solar System has
been shown to produce results for the evolution of the Solar System which are equally as
valid as those produced with four giant planets (Batygin, Brown, and Betts 2012). An
initial fifth giant planet could also help explain certain orbital features of the other giant
planets (Nesvorný and Morbidelli 2012). To avoid subsequent scatterings, and possible
ejection from the Solar System, some gravitational interaction is required to circularise the
orbit. The first proposed mechanism for this purpose was fly-by encounters with other
stars. The problem with this proposal is that Planet Nine is successfully circularised onto
an orbit which can explain the observed clustering in ď 5% of simulations (Li and Adams
2016).

In Eriksson et. al. (2018) a new proposal for how Planet Nine could be circularised is
presented. The perturber in this model is a massive belt of planetesimals beyond 100 AU,
referred to in the paper as a cryobelt. The existence of such a belt is as yet hypotheti-
cal. However, its existence is consistent with Carrera et. al. (2017), in which simulations
of planetesimal formation by the streaming instability with far ultra violet photoevapo-
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CHAPTER 1. INTRODUCTION

ration predicts that at least 60MC of planetesimals will form beyond 100 AU. Further
improvements to the model, accounting for different fragmentation speed, turbulence and
disc parameters, showed even greater masses of planetesimals formed (Carrera et al. 2017).
The rate of successful circularisations with the model presented in Eriksson et. al. (2018)
is 20´ 30%.

If the only interaction between Planet Nine and the cryobelt is dynamical friction, it
would be expected that both eccentricity and inclination would be dampened. As the
planet’s inclination in Eriksson et. al.’s simulations is increasing, another mechanism must
be involved. Eriksson et. al. proposes that this mechanism is the Kozai–Lidov resonance,
as while the planets’ inclination is increasing, its argument of periapsis oscillates around a
fixed value.

The aim of this thesis project is to investigate the nature of the mechanism causing
the deviations from the expected result of Eriksson et. al.’s model. To achieve this goal,
firstly the relevant parts of their simulations will be replicated. Secondly, the system will
be studied in a frictionless setup to better understand the impact of dynamical friction.
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Chapter 2

Theory

2.1 Keplerian orbital elements

The six degrees of freedom required to give the position and velocity of an object can be
expressed in a number of ways. When performing N-body simulations Cartesian position
and velocities are useful, but they are less helpful when attempting to visualise an orbit. For
that purpose Keplerian orbital elements, illustrated in figure 2.1, are often used. Kepler’s
first law states that all planetary orbits are ellipses with the Sun at one of the focal points.
The semi-major axis, apl, and the eccentricity, e, define the size and shape of the ellipse as

e “

d

1´
b2pl
a2pl
, (2.1)

where bpl is the orbits semi-minor axis. The orbit’s angle to some reference plane is set by
the inclination, i. The orbit’s orientation to that reference plane is fixed by two elements:
the argument of periapsis, ω, which is the angle between the ascending node, where the orbit
intersects with the reference plane in the direction of motion and the line of apses, where
the body makes its closest approach to the Sun; and the longitude of the ascending node,
Ω, which is the angle in the reference plane between the ascending node and a reference
direction, in the Solar System this is usually the vernal equinox. The final element is the
true anomaly, ν. It determines the position of the planet at a given time with the angle
between the line of apses and the planet’s radius vector in the orbital plane. In a two body
system only the true anomaly will change. This is in contrast to Cartesian coordinates
which always varies over an orbit. If the orbit is perturbed and the value of one or more
of the elements change, information about the nature of what perturbed the orbit can be
obtained by studying the time evolution of the orbital elements.

2.2 Kozai–Lidov resonance

The following discussion about the Kozai–Lidov resonance and the following section 2.3 on
dynamical friction are based on the derivations in The three-body problem (Valtonen and
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Figure 2.1: Illustration of some of the Keplerian orbital elements and the reference plane
and direction which are used to define them. Image from (Wikipedia, the free encyclopedia
2007)

.
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2.2. KOZAI–LIDOV RESONANCE CHAPTER 2. THEORY

Figure 2.2: Illustration of a setup which will produce a classical Kozai cycle, note that this
is not the setup which is considered in this thesis. Image source: (Batygin, 2018; edited)

Karttunen 2006).
One kind of system in which the Keplerian orbital elements are perturbed, is the hier-

archical three body system. In this system two bodies, m0 and m1, orbit each other in a
binary and are perturbed by a distant third body, m2. m0 is assumed to be significantly
more massive than the other bodies, and m1 is assumed to have a negligible mass compared
to m2. An example of such a setup is seen in figure 2.2, where the Sun is m0, Planet Nine
is m1 and m2 is some unknown exterior perturber.

The perturbation will cause m1 to enter into a resonance, where the argument of periap-
sis will oscillate around a fixed value, meaning that the rate of precession for the pericenter
and the line of nodes is equal. The resonance was described separately in 1961, by Mikhail
Lidov during the study of man-made satellites being affected by the Moon, and in 1962,
by Yoshihide Kozai studying asteroids being affected by Jupiter (Lidov 1962; Kozai 1962).
Therefore it is called the Kozai–Lidov resonance.

To describe the change in the Keplerian orbital elements caused by the perturbations
of a distant perturber, Hamiltonian mechanics is used. The Hamiltonian for m1 is divided
into two parts; one for the orbital motion in the binary, and one for the perturbation
from m2. By averaging the effect of the perturbation over the orbits of m1 and m2 the
secular evolution of m1 can be studied. Under these circumstances it is assumed that the
energy of both bodies are conserved separately, implying that their semi-major axis will be
conserved. The interaction they have in the resonance is instead an exchange of angular
momentum. The axial symmetry of the system will conserve the z-component of angular
momentum, Lz, for m1 and m2. A rescaling of the conserved Lz can be expressed in terms
of the eccentricity, e, and the inclination, i, of m1,

c “
?

1´ e2 cos ı. (2.2)

c will be referred to as the Kozai parameter in this text. It will be a constant for the
case of an interior test particle with a perturber on a circular orbit.

The time derivatives of the Keplerian orbital elements can be derived from the Hamil-
tonian of the system,
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9ı “ ´
15

8

e2
?

1´ e2
sin 2ω sin ı cos ı

A

n
,

9e “
15

8
e
?

1´ e2 sin 2ω sin ı2
A

n
,

9ω “
3

4

1
?

1´ e2

“

2p1´ e2q ` 5 sinω2
pe2 ´ sin ı2q

‰ A

n
,

9Ω “ ´
cos ı

4
?

1´ e2
p3` 12e2 ´ 15e2 cosω2

q
A

n
,

(2.3)

with the factor A “ Gm1m2m3

mBa3ep1´e
2
eq

3{2 .

2.2.1 Phase space and portraits

To visualise the time derivatives in equation 2.3 the argument of periapsis - eccentricity
phase space is used. The following description of phase space draws from Goldstein et. al.
(2014) with some modified terminology.

In Hamiltonian mechanics a particle is described by two sets of independent coordi-
nates, most commonly position q and momentum p. For a conservative system where the
Hamiltonian has a constant value E, the momentum can be written as a function of q and
E. By plotting this function in a p´q graph the possible trajectories of the function can be
analysed. This representation is called phase space. Displaying different initial conditions
as separate trajectories in the same plot creates a phase portrait.

There are two main types of periodic motion in phase space, libration and circulation.
A librating trajectory will be a closed loop, with a bounded set of possible values. A classic
example of a librating system would be a harmonic oscillator, which will oscillate around
a minima of the systems kinetic energy. The distance from the minima will be bounded by
the total energy of the system and can not increase indefinitely. A circulating trajectory
will instead represent rotation, a continual increase in the positions value. An example
would be a rigid rotating body, where the position coordinate q represents the angle of
rotation. Although the function for p will be periodic in increments of 2π, the range of
values q will not be bounded.

In figure 2.3 the phase portrait for a simple pendulum is shown. Orbit 1 is an example
of a librating orbit and orbit 3 is an example of a circulating one. At the centre of orbit 1 is
a fixed point, that is to say, a point where the time derivatives of both p and q are zero. A
fixed point with librating trajectories around it is called a centre. A second centre is seen
where the pendulum has turned by 2π. Between the two centres, at π, is a saddle; this is an
unstable equilibrium, representing the pendulum pointing directly opposite to the direction
of gravity. For the simple pendulum there must be a saddle between two centres. The area
of phase space with librating trajectories around a fixed point is commonly referred to as
an island.
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2.2. KOZAI–LIDOV RESONANCE CHAPTER 2. THEORY

Figure 2.3: Illustration of the two kinds of periodic motion and fixed points which are
found in the phase portrait for the Kozai cycle (Goldstein, Poole, and Safko 2014, fig 10.3)

.

Phase portraits can be constructed for other coordinate pairs than position and mo-
mentum. As the Kozai parameter represents a conserved quantity we can find fixed points
for this system as well.

Finding a solution for 9e “ 0 gives the conditions for having a fixed point in the evolution
of the planet’s orbit. A trivial solution exists for when the eccentricity or the inclination
is zero. The other solutions require ω to be a multiple of 90°. 9ω being zero tightens the
requirement to 90° and 270°, giving us our fixed points in the ω ´ e phase space.

Around these fixed points, the conservation of the Kozai parameter causes an exchange
of eccentricity and inclination. Creating a phase portrait for the ω´e phase space illustrates
the change in eccentricity. The properties of the phase space will be determined by the
value of the Kozai parameter. To illustrate this I have performed simulations of planets
orbiting at 600 AU with periodically varied values of eccentricity and argument of periapsis,
which are being being perturbed by a massive planet at 1500 AU, a setup closely resembling
the one in figure 2.2. The simulations were made with the program Mercury6, described
in section 3.1. The phase portraits produced are seen in figure 2.4. The trajectories for the
planets which librate have been highlighted in red, while the circulating trajectories are
displayed in black. For a falling value of the Kozai parameter the location of the fixed points
will fall, until they reach a critical value at c « 0.77 (Valtonen and Karttunen 2006) and
vanish. This occurs at this specific value because of the differential equations in equation
2.3. For an eccentricity going to 0, 9ω “ 0 will only hold for i “ 39.23°, meaning that
there are no fixed points for lower inclinations and higher values of the Kozai parameter.
To uniquely determine e and i the value of e cannot exceed a certain threshold, set by
the Kozai parameter. At c “ 1 all eccentricities are uniformly 0, or alternatively all the
inclinations are 90°.
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2.3. DYNAMICAL FRICTION CHAPTER 2. THEORY

Figure 2.4: Illustration of what a regular Kozai cycle with a distant perturber looks like
at different values of the Kozai parameter in equation 2.2. The black trajectories are
circulating and the red ones are librating.

2.3 Dynamical friction

The second mechanism which is important for this thesis is dynamical friction. While
moving through a medium of comparatively light bodies, a heavy body will experience a
number of hyperbolic two-body encounters. The gravity of the larger body will accelerate
the smaller body, and cause the larger body to lose some orbital energy after the encounter.
Assuming a homogeneous medium, the contributions to the velocity perpendicular to the
direction of motion will cancel each other out. Depending on the density of the medium
and the mass and velocity of the body, the velocity of the body will decrease.

It is expected that dynamical friction will dampen the eccentricity and inclination of
the bodies moving through the medium (Kokubo and Ida 1995; Del Popolo, Spedicato,
and Gambera 1999). In the context of the Kozai resonance described in section 2.2, this
dampening will have a two-fold effect, directly dampening the eccentricity, and changing
the Kozai parameter. To illustrate these two effects figure 2.5 shows two possible outcomes
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for an initial trajectory with c “ 0.50, seen in blue:

• The image to the right shows the first scenario, where the dampening of eccentricity
is more important than the change in the Kozai parameter. This allows the trajectory
to traverse the phase portrait, possibly changing from circulating to librating, as seen
with the red trajectory, or vice versa.

• The image to the right shows the other scenario, where the change in the Kozai
parameter is the more significant process. In this case the phase portrait has changed,
the fixed points have sunk to lower eccentricities. Because of this, the red trajectory
follows a different path than the blue trajectory, despite both trajectories starting at
similar eccentricities at ω “ 0.

Figure 2.5: Illustration of the competing effects of eccentricity being dampened. The blue
line shows an initial circulating trajectory for c “ 0.50. The image to the left shows a
librating trajectory in red, illustrating a possible outcome of the eccentricity dampening
being a more significant effect than the change in the Kozai parameter. The image to the
left displays a circulating trajectory for c “ 0.625 in red, a possible outcome of the Kozai
parameter changing while the eccentricity is only mildly affected.

2.4 Disk potential

As N-body simulations will eventually be limited by the scaling factor between the num-
ber of bodies and the time it takes to run the simulation, large systems often use some
other method to mimic the bodies with something less computationally intensive. The
Miyamoto–Nagai potential was constructed for such a purpose, to simulate the mass dis-
tribution of disc galaxies (Miyamoto and Nagai 1975). The potential corresponds to a
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radially symmetric disk described by two characteristic lengths representing thickness, b,
and radius, a. After these cutoff points the potential will decrease proportionally to R´1.

ΦpR, zq “ ´
GM

b

R2 ` pa`
?
z2 ` b2q2

. (2.4)

The potential was chosen because of its analytical volume density formula,

ρpR, zq “
b2M

4π

aR2 `
`

a` 3
?
z2 ` b2

˘ `

a`
?
z2 ` b2

˘2

”

R2 `
`

a`
?
z2 ` b2

˘2
ı5{2

pz2 ` b2q
3{2

(2.5)

This volume density formula could allow the potential to be combined with the equa-
tions for dynamical friction, which require such a density.

When b “ 0 the potential is reduced to the Kuzmin potential (Binney and Tremaine
2008), which has a well defined surface density. It is calculated as,

ΣpRq “
aM

2πpR2 ` a2q3{2
. (2.6)

The surface density is constant within the bounds of a, and drops of as R´3 after that
point.

The force exerted on an object by this potential is calculated as F “ ´∇Φ,

Fx “ ´
GMx

´

x2 ` y2 `
`

a`
?
z2 ` b2

˘2
¯3{2

,

Fy “ ´
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´

x2 ` y2 `
`

a`
?
z2 ` b2

˘2
¯3{2

,

Fz “ ´
GMz

`

a`
?
z2 ` b2

˘

?
z2 ` b2

´

x2 ` y2 `
`

a`
?
z2 ` b2

˘2
¯3{2

.

(2.7)
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Chapter 3

Method

The illustration in figure 3.1 shows the basic setup used as the initial conditions for this
thesis. Planet Nine has just been scattered in the giant planet region into an highly
eccentric orbit, which retains its pericenter distance at roughly 30 AU. The orbit crosses a
large belt of planetesimals, extending from 100 ´ 600 AU. The other planets in the Solar
System are not included to reduce the complexity of the system.

Figure 3.1: The setup for the studied system: the central point represents the Sun; the
dashed line is the orbit of Neptune; the solid line is the orbit of Planet Nine; and the grey
area represents the cryobelt.

Analytic solutions of problems increase in complexity with the number of bodies. Al-
ready at three bodies, full analytical solutions are only available for special cases. Studying
a disc of potentially thousands of particles will therefore require numerical simulations.

Three sets of simulations were carried out during the project:

• dynamical friction simulations, with a massive planet and a massive cryobelt

• frictionless simulations, with a reduced planet mass and a massive belt, to find the
shape of the phase portrait empirically

• simulations with the Miyamoto–Nagai potential, where the planet’s mass was set to
zero and the cryobelt was mimicked by the potential discussed in section 2.4
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The Miyamoto–Nagai phase portraits were created to reduce the long computational
times for the frictionless dynamics simulations and to rectify unphysical effects from close
encounters between the planet and the belt particles.

3.1 The Mercury6 N-body integrator

The N-body integrator Mercury6 (Chambers 1999) is used to carry out the simulations
in this project.

A useful feature in Mercury6 is its distinction between two kinds of input, big and
small bodies. Big bodies will gravitationally interact with all the bodies in the system,
while small bodies will only interact with big bodies. This greatly reduces the complexity
of N-body problems, as the computational time for big bodies will scale as N2, but only
as N for small bodies.

Mercury6 has different algorithms for solving N-body problems. In this case, the
handling of close encounters and highly eccentric orbits is essential, so the Bulirsch-Stoer
integrator was chosen. This algorithm works by combining different mathematical methods
to solve differential equations, the following explanation of those methods largely follows
that in Press et. al. (2007). The main idea of the algorithm is to take a large stepsize when
evaluating the differential equations and gradually subdivide it into smaller substeps. A
rational function dependent on the stepsize is fitted to the result of taking these substeps,
and is evaluated for a stepsize of zero to get an approximation of what the solution would
be for an infinitely small stepsize. The advantage of fitting a rational function over a
polynomial one is that it remains effective even at large stepsizes. The main advantage of
the Bulirsch–Stoer algorithm itself is its accuracy. The error function from evaluating the
substeps will only contain even powers of the stepsize when expressed as a power series.
Because of this two orders of terms can be eliminated when combining steps. This allows
the Bulirsch–Stoer algorithm to be accurate to the fourth order while only solving one
differential equation.

3.2 Dynamical friction simulations

For the first set of simulations a massive planet interacts with a massive belt of planetesi-
mals to investigate the effects of dynamical friction on the planet.

Replicating a system similar to the one in Eriksson et. al. (2018), the cryobelt is mod-
elled as Mercury6’s small bodies with near circular orbits with eccentricities below 0.01
and inclinations below 5°. The semi-major axis are set between the inner edge of the belt at
100 AU and the outer edge at 600 AU. The other orbital elements are randomised between
0° and 360° to get an axially symmetric disc. Two different surface density distributions,
Σ, are used. They are distinguished by how they scale with the semi-major axis, Σ´pα“1q

will drop of as 1
apl

, while Σ´pα“0q will have a constant distribution throughout the disc.

The total mass of the cryobelt is set to 60 MC. The mass is subdivided into a number of
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small bodies, N , between 125 and 1000. The accuracy of the simulations by Eriksson et.
al. (2018) show only marginal improvement when increasing the number of belt particles
from 1000 up to 10000.

To illustrate the effects of dynamical friction the planet is included as a massive, 10MC,
planet in Mercury6’s big body input. As the setup is simulating a scattering from the
giant planet region, the planet is given an initial eccentricity of 0.95 and 5° of inclination.
The semi-major axis, apl, is varied across experiments; if not specified otherwise, it is set
to 600 AU. The other orbital elements are set to 0. The axially symmetric nature of the
cryobelt, combined with the comparatively long period of the effects studied, makes the
initial values of ω, Ω and ν unimportant.

3.3 Frictionless dynamics

To understand the trajectories of the planet in the argument of periapsis-eccentricity phase
space, further simulations were performed. They were constructed to eliminate the effects
of dynamical friction by reducing the mass of the planet to be equal to that of bodies in the
cryobelt. The cryobelt was still modelled as massive superparticles, identical to the ones
in the dynamical friction simulations. This change reduces the rate of dynamical friction,
which scales with the mass of the body moving through the medium, but keeps the secular
effects from gravitational interactions with the belt.

All the frictionless dynamics simulations were done with a 1000 body cryobelt and with
planets with a semi-major axis of 600 AU. The planets were initialised with different values
of e and i, set to keep the Kozai parameter at a fixed value. ω was varied in intervals of 90°
to explore multiple regions of phase space. Multiple simulations were combined to construct
empirical phase portraits for different values of the Kozai parameter. For simulations where
a close encounter with a superparticle had impacted the value of the Kozai parameter
noticeably, the initial conditions for the cryobelt particles were re-randomised.

3.4 Miyamoto–Nagai potential integration

For the integrations carried out with the Miyamoto–Nagai potential, I implemented the
forces in equation 2.7 into the optional user defined force subroutine in Mercury6 to
mimic the cryobelt, previously simulated by superparticles. As the small body input in
Mercury6 was no longer used for simulating the cryobelt, multiple planets with different
orbital characteristics were simulated simultaneously as small bodies. This was made
possible due to small bodies not interacting with each other. However, it requires all
planets in these simulations to have zero mass, otherwise the planets could be perturbed
by shifts in the Sun’s position caused by the other planets. The other orbital parameters
of the planets were retained from the frictionless dynamics simulations.

As Mercury6’s built-in system for calculating energy conservation does not work when
a user defined force is included, the energy conservation was checked manually.
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A potential issue with the Miyamoto–Nagai potential is that it can not model the gap
in the cryobelt between the inner edge and the Sun. The mass enclosed within this region
is comparatively small, totalling less than 5% for values of the a parameter higher than 300
AU. The effect of this discrepancy was judged to be small enough that it was outweighed
by the benefits of the Miyamoto–Nagai potentials analytical volume density and easily
derived forces. For a “ 100 AU the case where the enclosed mass is significant, 29%, no
notable differences were observed compared to the other cases.
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Chapter 4

Results

4.1 Dynamical friction simulations

In total, 15 simulations were carried out to investigate dynamical friction. The parame-
ters of all of the simulations are presented in table 4.1, with the accompanying ω-e phase
space plots in appendix A. For several of the simulations the parameters were kept the
same, with the only change being the disc particles, which were randomly generated for
each simulation. The Kozai parameter is not kept at a constant value for these simula-
tions, as dynamical friction and belt interactions will change both the eccentricity and the
inclination.

Table 4.1: Table of the parameters for the dynamical friction simulations.
Simulation Σ´α apl[AU] Nbodies Time [Gyr]

A1 1 600 1000 1.00
A2 1 600 1000 1.00
A3 1 600 1000 1.00
A4 1 600 1000 0.85
B1 0 600 1000 0.80
B2 0 600 1000 0.75
C1 1 150 1000 0.20
D1 1 200 1000 0.30
E1 1 300 1000 0.40
F1 1 600 125 1.00
F2 1 600 125 4.00
F3 1 600 125 3.00
G1 1 600 250 3.00
H1 1 600 500 1.00
H2 1 600 500 3.00
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The examples presented in this section are: simulation A1 with apl “ 600 AU, N “ 1000
and α “ 1; simulation B1 with apl “ 600 AU, N “ 1000 and α “ 0; and simulation F2

with apl “ 600 AU, N “ 125 and α “ 1.
In figure 4.1 two plots from the A1, B1 and F2 simulations are shown: the ω-e phase

space, in which we search for indications of libration, to make comparisons with the classical
Kozai–Lidov resonance; and the time evolution of the inclination, the predictions of Planet
Nine’s inclination, presented in Batygin and Brown’s review (2019), have been marked in
green.

Simulation A1 starts of on a circulating trajectory, the eccentricity appears to slowly
be dampened by dynamical friction. The trajectory exhibits some downwards, step-like,
turns. After this, the trajectory librates around 0° and briefly 180°. The planets inclination
is initially dampened before it increases sharply at 200 Myr. It reaches a maximum of 39°
while ω oscillates around 0°.

Simulation B1 shows a step-like behaviour similar to simulation A1, after the eccentricity
has been slightly dampened by dynamical friction. The main point of libration is 270°.
The inclination is again initially dampened, before a more incremental increase occurs.
The planets inclination does not reach values matching Batygin and Brown’s prediction
until after 500 Myr. The planet reaches a maximum inclination of 35°.

The trajectories of simulations A1 and B1 in the ω-e phase space are discussed in more
detail in section 4.3.

Simulation F2 shows a longer evolution than the other simulations at 4 Gyr. After an
initial phase of being on a circulating trajectory and slowly dampening eccentricity due to
dynamical friction, the eccentricity starts to drop in a step-like behaviour like simulations
A1 and B1. After approximately 500 Myr the trajectory starts librating around ω “ 180°.
During the following 3.5 Gyr the trajectory alternately librates around the 0° and 180°
islands. The libration is ended by the dynamical friction reducing the eccentricity, and
thus increasing the Kozai constant, enough for the fixed points to ceases to exist. The
trajectory, now circularised into an orbit with e « 0.2, performs a series of loops which do
not correspond to previous points of libration. During its trajectory simulation F2 reaches
a maximum inclination of 38° while transitioning between fixed points, and periodically
reaches similar inclinations while its trajectory is in an island. After circularisation the
inclination has reached a value below 5°.
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Figure 4.1: Examples of dynamical friction simulations. The eccentricity - argument of
periapsis phase space is shown to the left, the colour scale shows time. The time evolution
of the inclination is shown to the right, the green area marks the range of inclinations
Planet Nine is predicted to have (Brown 2019). Note that the simulations have not run
for the same amount of time.
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Some general results drawn from the dynamical friction simulations:

• In all simulations the eccentricity of the planet is dampened and the pericenter de-
taches from Neptune.

• For most simulations the inclination rises sharply while ω oscillates around a fixed
value, the exception being the simulations with a reduced semi-major axis.

• In the majority of the simulations, the planets trajectory exhibited an oscillating
behaviour around 0° or 180°. In some cases a transition occurred such that the
planet changed which angle it librated about.

• For all simulations the Kozai parameter starts at c “ 0.3. The value of the constant
oscillates, generally increasing while passing under fixed points and decreasing while
passing over them.

• In simulation F1, seen in appendix A, the planet ejected 98% of the 125 cryobelt
objects, ending the interactions.

4.2 Empirical phase portraits

The empirical phase portraits were constructed to better understand the trajectories in the
dynamical friction simulations. Each empirical phase portrait is a combination of a number
of individual simulations. The parameters for the empirical phase portraits are shown in
table 4.2. The semi-major axis was set to 600 AU and the number of belt particles was 1000.
For a surface density distribution with α “ 1, three phase portraits with different Kozai
parameters were constructed, to help with understanding the A1´4 simulations. One phase
portrait was made with α “ 0 to help understand simulations B1´2. The Kozai parameter
for the simulations is mostly preserved, the largest difference in the Kozai parameter value
is ∆c “ 0.0146.

All phase portraits show centres around 0° and 180° which are not present in the classical
Kozai cycle shown in figure 2.4. The phase portraits showed a lowering of some of their
fixed points as the value of the Kozai parameter increases, and a symmetry around 180°,
both results similar to the ones in figure 2.4. At 90° and 270°, for low eccentricities, there
are fixed points in the empirical phase portraits which most closely resemble the classical
Kozai fixed points when it comes to location and the shape of the phase space around them.
However, these points rise in eccentricity as the Kozai parameter increases, in contrast to
the classical Kozai fixed points in figure 2.4.

The evolution of the trajectories near the saddles was generally slower, leading to more
time for random walk to disrupt the trajectory. The saddles are therefore not always clearly
visible in the figures, necessitating their inference from the more readily visible centres.
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Table 4.2: Table of the simulations performed to get the empirical phase portraits.
Σ´α apl[AU] Nbodies c emax Number of simulations

1 600 1000 0.50 0.87 80
1 600 1000 0.67 0.74 56
1 600 1000 0.75 0.66 44
0 600 1000 0.67 0.74 38

In the empirical phase portraits, figs. 4.2 to 4.5, certain trajectories have been high-
lighted: the red trajectories are located at high eccentricity, around the 0° or 180° fixed
points which have been marked [a]; the purple trajectories are located at high eccentricity,
around the 90° or 270° fixed points which have been marked [b]; the green trajectories are
located at low eccentricities, around around the 90° or 270° fixed points which have been
marked [c]; the blue trajectories are circulating. The maximum allowed eccentricity for
each value of the Kozai parameter is displayed with a shaded grey area. All the marked
fixed points are centres, between each centre there appears to be a saddle.

• The phase portrait in figure 4.2 for c “ 0.50 has [a] and [b] centres, and what appears
to be either [c] centres which have not yet been found, or a region where [c] centres
will appear for a slightly higher value of the Kozai parameter. The [b] centres appear
to be a bit higher in eccentricity than the [a] ones.

• In the phase portrait in figure 4.3 for c “ 0.67, the [b] centres present in figure 4.2
appear to have disappeared, leaving a pair of saddles between the two [a] centres.
What was just a hint of [c] centres for c “ 0.50, have now appeared at e “ 0.2.

• In the phase portrait in figure 4.4 for c “ 0.75, the [b] centres are now more clearly
gone. The size of the islands have increased markedly, leaving only a thin band of
circulating trajectories. The eccentricity of the [c] centres continues to rise up to
e “ 0.27.

• The phase portrait in figure 4.5 for c “ 0.67 and α “ 0 has prominent [b] centres,
differentiating the simulation from figure 4.3 with the same Kozai parameter. The
additional fixed points makes the phase portrait more similar in appearance to figure
4.2, with the notable exception of the maximum eccentricity being lower and the
presence of the [c] centres.
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Figure 4.2: Empirical phase portrait for c=0.50. Examples of librating trajectories in red
and purple, circulating trajectory in blue.

Figure 4.3: Empirical phase portrait for c=0.67. Examples of librating trajectories in red
and green, circulating trajectory in blue.
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Figure 4.4: Empirical phase portrait for c=0.75. Examples of librating trajectories in red
and green, circulating trajectory in blue.

Figure 4.5: Empirical phase portrait for c=0.67 with a constant surface density distribution.
Examples of librating trajectories in red, purple and green, circulating trajectory in blue.
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4.3 Simulation trajectories

On their own, the causes of the twists and turns in the trajectories in the dynamical
friction simulations, figure 4.1, appear opaque. In this section the trajectories have been
plotted together with the empirical phase portraits to better understand those causes, and
a tentative explanation for what happens is presented.

4.3.1 Trajectory of simulation A1

Figure 4.6 shows simulation A1 overlaid on the three empirical phase portraits, with the
colour scale representing time. A separate illustration of the trajectory, colour coded
with the value of the Kozai parameter, is also presented. In that plot, red rectangles
highlight three key features, which are further elaborated on in the list below. Beneath the
trajectories is a plot of the Kozai parameter over time, which gives additional information
for what causes the twists and turns, the key regions have been highlighted here as well.
The different centres will be referred to as [a], [b] and [c], as shown in figs. 4.2 to 4.5.
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Figure 4.6: The trajectory of simulation A1 from the dynamical friction simulations has
been overlaid on the empirical phase portraits for c “ 0.50, 0.67, 0.75, with α “ 1. The
values of ω for simulation A1 have been shifted 180°, to centre the main point of libration.
The fourth panel has a different colour scale to show what value the Kozai parameter has
at different points of the trajectory. Three key features of interest have been highlighted
and are further elaborated on in section 4.3.1. To further clarify how the Kozai parameter
changes, its time evolution has been added below thew four panels, with the key regions
highlighted as well.

27



4.3. SIMULATION TRAJECTORIES CHAPTER 4. RESULTS

I The first region features a downwards turn, levelling out at the end. In section 4.1
this feature is referred to as step-like.

The top left phase portrait best reflects the start of the trajectory as it passes above
the [b] centre. As the trajectory gets close to the saddle point between the [b] and [a]
centres, the colour scale in the fourth frame and the plot of the Kozai parameter over
time show that the Kozai parameter starts to steadily increase as the trajectory starts
to bend downwards. The trajectory is stuck at this saddle throughout the decrease
in eccentricity. The end state of the trajectory in this region, above the [a] centre at
180°, is best seen in the top right phase portrait.

The cause of the trajectories downwards turn is the increasing Kozai parameter and
the resulting fall in eccentricity for the fixed points. In this region the trajectory does
not pass below the fixed points.

II The second region features the trajectory doing an almost closed, stretched out, loop.

The top right phase portrait best shows the start of the trajectory, as it has hit the
saddle between the two [a] centres. As the Kozai parameter steadily sinks, as we can
see in the bottom plot, the trajectory goes straight up. At the top, the trajectory is
better seen in the top left phase portrait. The Kozai parameter has decreased enough
that the [b] centre has appeared and the trajectory starts to pass above it. As it
does, we can see in the bottom plot that the Kozai parameter starts to rise again.
This causes the [b] centre to disappear, and the trajectory bends back towards the
[a] centre, passing below it.

The decreasing Kozai parameter causes the upward turn at the start of the region.
But, the main thing shaping the trajectory is the appearance and disappearance of the
[b] centre. In this region the trajectory passes from above to below the fixed points.

III The third region features the trajectory doing a more than 270° turn.

The top left phase portrait best shows the entirety of the trajectory. Hitting the saddle
between [a] and [b] centres, the trajectory is sharply turned away, passing below the
[b] centre. The Kozai parameter is seen to first decrease slightly before rising an equal
amount.

The main thing shaping this part of the trajectory is the shape of the phase portrait.
The circulating trajectories in the top right empirical phase portrait also feature sharp
turns at the saddles. This effect is then amplified by the change in the Kozai parameter
switching signs.

By looking closer at these key features we can see the competing effects of dynamical
friction described in section 2.3. Changing the Kozai parameter will both move the posi-
tion of the fixed point and cause them to appear and disappear, affecting the trajectory.
Dynamical friction will cause the dampening of the eccentricity seen initially. After the
initial dampening, the effects of dynamical friction still occur, but become harder to spot,
as something causes the Kozai parameter to periodically decrease.

28



4.4. MIYAMOTO–NAGAI PHASE PORTRAITS CHAPTER 4. RESULTS

4.3.2 Trajectory of simulation B1

Figure 4.7 shows a similar setup as figure 4.6, but as there is only one available empirical
phase portrait, a thorough analysis of every turn can not be performed, as it is unknown
how the fixed points evolve under a changing Kozai parameter. However, some general
observation can be made about the differences between the two sets of simulations. The
[b] centres, which are present at c “ 0.67 for this empirical phase portrait, but missing
from the ones for α “ 1 in figure 4.3, appear to be the main points of libration for
simulation B1. Step-like shapes, where the trajectory bends over the fixed points as the
Kozai parameter changes, are present in both simulations, but are more pronounced in
simulation B1, possibly because of the increased number of fixed points in the empirical
phase portrait. A loop-like shape is present at approximately 130°, possibly indicating the
presence of additional fixed points beyond the ones in figure 4.5.

Figure 4.7: Evolution of simulation B1 overlaid on the empirical phase portrait for c “ 0.67,
α “ 1

4.4 Miyamoto–Nagai phase portraits

24 simulations were performed with the Miyamoto–Nagai potential. The same values of
the Kozai parameter were investigated as in the empirical phase portraits. For each value
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of the Kozai parameter four different values of the disc parameter a were tested, and two
different values of disc parameter b.

The computational time required to produce a phase portrait with the Miyamoto–
Nagai potential is approximately 100 times shorter than the time required to produce an
empirical phase portrait. The value of the Kozai parameter was preserved to a notably
higher rate than in the frictionless dynamics simulations, with the maximum ∆c being on
the order of 10´4.

For all simulations two centres were found at ω “ 90° and 270°. The size of the islands
would increase with increasing a. Increasing b had a negligible effect for the simulations
with a ą 300 AU. For the simulations with a “ 100 AU, increasing b lifted the fixed points
noticeably, as the oblateness of the disc was significantly decreased.

In figure 4.8, c “ 0.75, a “ 1500 AU and b “ 50 AU. Approximately 7% of the
mass is within the planets semi-major axis of 600 AU. The phase portrait bears a strong
resemblance to the ones in figure 2.4 for the classical Kozai cycle where the perturber was
exterior to the planet.

In figure 4.9, c “ 0.50, a “ 300 AU and b “ 10 AU. Approximately 55% of the mass
is within the planet’s semi-major axis of 600 AU. The lowering of the Kozai parameter
has lowered the fixed points compared to figure 4.8. The decrease in the a parameter has
reduced the size of the island of librating trajectories around the fixed point. There is now
quite clearly saddle points present between the centres.

The phase portraits obtained have several major differences from the empirical phase
portraits. At a minimum, two centres are missing; no centres appeared at ω “ 0° or 180°
in any of the simulations with the Miyamoto–Nagai potential. Unlike the [c] centres, the
centres in these simulations will drop in eccentricity as the Kozai parameter increases, in
line with the regular Kozai cycle.

Manually checking the fractional energy change for these simulations shows that the
simulations are conserving energy well. The largest error was dE

E
“ 0.0015 for c “ 0.50,

a “ 100, b “ 10. Simulations with a higher value for a showed dE
E

values an order of
magnitude smaller.
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Figure 4.8: Phase portrait where the Miyamoto–Nagai potential mimics the cryobelt.

Figure 4.9: Phase portrait where the Miyamoto–Nagai potential mimics the cryobelt.
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Chapter 5

Discussion and conclusions

5.1 Initial goals and future possibilities

The initial goal of this project was to find a way to investigate the competing effects of
dynamical friction and the Kozai–Lidov resonance on a planet traversing a planetesimal
disc, and to find when these effects led to an excitation of the orbits inclination. This
would be accomplished by using the dynamical friction equations with some volume density
representing the cryobelt, and to combine those equations with the classical Kozai equations
of motion. Since the discovery of the additional fixed points, the focus shifted to mapping
out the phase portraits for the system.

For a more complete understanding of the possible orbital characteristics of Planet
Nine, or any other high eccentricity planet interacting with a planetesimal disc, several
steps could be taken.

• Producing more empirical phase portraits for a wider range of values of the Kozai
parameter could aid understanding of how the fixed points in these portraits move,
appear and disappear.

• Repeating this process for other values of the disc parameters, surface density distri-
bution and disc mass among other possibilities, could assist in narrowing down what
factors are important for the planet-belt dynamics.

• Finding a potential/density pair which aids computational time and eliminates po-
tentially unphysical effects from interactions with superparticles would be very valu-
able, both for quicker production of phase portraits, but also for combination with
the dynamical friction equations.

• The cause of the changing value of the Kozai parameter could be another topic of
further research. Dynamical friction is expected to drive the Kozai parameter up by
lowering eccentricity, but at certain times it is seen to fall, as seen in section 4.3.1.
The feedback on the disc could be a potential cause of this and an area for further
research.
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• Comparisons between this work and that of Thomas and Morbidelli (1996) on the
topic of long-period comets could be made, as their comets are getting trapped in a
Kozai–Lidov resonance with an interior perturber, showing similarities to the setup
considered for this thesis.

5.2 Conclusions

• In the simulations performed in this project, planets moving through an extended
disc of planetesimals will reliably be circularised by the dynamical friction, in line
with the findings of Eriksson et. al. (2018).

• The inclination of the planets in the simulations is reliably excited to levels close to
the ones predicted by the simulations of Batygin and Brown (2019).

• The planets argument of periapsis is seen to oscillate around fixed values in combina-
tion with an exchange of eccentricity and inclination. This is in line with the classical
Kozai–Lidov resonance, but the ω-e phase portrait for the system shows that there
are significant differences. The most important of these differences is the presence of
fixed points at high eccentricities and multiples of 90° in argument of periapsis.

• Of the additional fixed points found in the phase portraits, the ones at 0° and 180°
appear to play the most important role for the later evolution of the planet, being
the main points of libration.

• Mimicking the cryobelt with the Miyamoto–Nagai potential will yield computation
times which are lower by two orders of magnitude, but will not give analogous results,
due to differences in the phase portraits. Adjusting the disc parameters of the po-
tential will change the shape of the phase portrait as the mass distribution changes,
but it has failed to produce additional fixed points.
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Appendix A

Dynamical friction simulations

For all simulations eplanet “ 0.95, iplanet “ 5°, Mplanet “ 3E ´ 05 Md, Rin “ 100 AU,
Rout “ 600 AU, Mbelt “ 60MC.

Table A.1: Table of the parameters for the dynamical friction simulations.
Simulation Σ´α apl[AU] Nbodies Time [Gyr]

A1 1 600 1000 1.00
A2 1 600 1000 1.00
A3 1 600 1000 1.00
A4 1 600 1000 0.85
B1 0 600 1000 0.80
B2 0 600 1000 0.75
C1 1 150 1000 0.20
D1 1 200 1000 0.30
E1 1 300 1000 0.40
F1 1 600 125 1.00
F2 1 600 125 4.00
F3 1 600 125 3.00
G1 1 600 250 3.00
H1 1 600 500 1.00
H2 1 600 500 3.00
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APPENDIX A. DYNAMICAL FRICTION SIMULATIONS

Figure A.1: Dynamical friction plots, parameters of which are found in table 4.1.
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Appendix B

Miyamoto–Nagai phase portraits

The images are organised with each Kozai parameter having its own page, a increasing
downwards and b increasing left to right. All parameters shown in table B.1.

Table B.1: Table of the simulations performed to get the empirical phase portraits.
c a[AU] b[AU]

0.50 100 10
0.50 100 50
0.50 300 10
0.50 300 50
0.50 600 10
0.50 600 50
0.50 1500 10
0.50 1500 50
0.67 100 10
0.67 100 50
0.67 300 10
0.67 300 50
0.67 600 10
0.67 600 50
0.67 1500 10
0.67 1500 50
0.75 100 10
0.75 100 50
0.75 300 10
0.75 300 50
0.75 600 10
0.75 600 50
0.75 1500 10
0.75 1500 50
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APPENDIX B. MIYAMOTO–NAGAI PHASE PORTRAITS

Figure B.1: Phase portraits with the Miyamoto–Nagai potential. The Kozai parameter is
0.50 for all plots. The y-scale displays eccentricity between 0.1 and 0.9.
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APPENDIX B. MIYAMOTO–NAGAI PHASE PORTRAITS

Figure B.2: Phase portraits with the Miyamoto–Nagai potential. The Kozai parameter is
0.67 for all plots. The y-scale displays eccentricity between 0.1 and 0.9.
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APPENDIX B. MIYAMOTO–NAGAI PHASE PORTRAITS

Figure B.3: Phase portraits with the Miyamoto–Nagai potential. The Kozai parameter is
0.75 for all plots. The y-scale displays eccentricity between 0.1 and 0.9.

41


